


The Art of Insight
in Science and Engineering






The Art of Insight
in Science and Engineering

Mastering Complexity

Sanjoy Mahajan

The MIT Press
Cambridge, Massachusetts
London, England



© 2014 Sanjoy Mahajan

The Art of Insight in Science and Engineering: Mastering @@@@
Complexity by Sanjoy Mahajan (author) and MIT Press
(publisher) is licensed under the Creative Commons At-

tribution-Noncommercial-ShareAlike 4.0 International License. A copy of
the license is available at creativecommons.org/licenses/by-nc-sa/4.0/

MIT Press books may be purchased at special quantity discounts for
business or sales promotional use. For information, please email
special_sales@mitpress.mit.edu.

Typeset by the author in 10.5/13.3 Palatino and Computer Modern Sans
using ConTgXt and LuaTgX.

LiBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

Mahajan, Sanjoy, 1969- author.
The art of insight in science and engineering : mastering
complexity / Sanjoy Mahajan.

pages cm
Includes bibliographical references and index.
ISBN 978-0-262-52654-8 (pbk. : alk. paper) 1. Statistical physics.
2. Estimation theory. 3. Hypothesis. 4. Problem solving. I. Title.
QC174.85.E88M34 2014
501".9-dc23

2014003652

Printed and bound in the United States of America

10987654321



For my teachers, who showed me the way

Peter Goldreich
Carver Mead
Sterl Phinney

And for my students, one of whom said

I used to be curious, naively curious. Now I am fearlessly curious. I
feel ready to attack any problem that comes at me, and at least get a
feel for why things happen ... roughly.






Part ]

Part 11

Part 111

Brief contents

Preface

Values for backs of envelopes

Organizing complexity
1 Divide and conquer

2 Abstraction

Discarding complexity without losing information

3 Symmetry and conservation
4 Proportional reasoning

5 Dimensions

Discarding complexity with loss of information
6 Lumping

7 Probabilistic reasoning

8 Easy cases

9  Spring models

Bon voyage: Long-lasting learning
Bibliography

Index

xiii

Xvii

27

55
57

103
137

197
199

235
279
317

357
359
363






Part1

PartI1

Contents

Preface

Values for backs of envelopes

Organizing complexity

1 Divide and conquer

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

Warming up

Rails versus roads

Tree representations

Demand-side estimates

Multiple estimates for the same quantity
Talking to your gut

Physical estimates

Summary and further problems

2 Abstraction

2.1
2.2
2.3
24
2.5

Energy from burning hydrocarbons
Coin-flip game

Purpose of abstraction

Analogies

Summary and further problems

Discarding complexity without losing information

3 Symmetry and conservation

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Invariants

From invariant to symmetry operation
Physical symmetry

Box models and conservation

Drag using conservation of energy
Lift using conservation of momentum
Summary and further problems

xiii

xvii

NN O W W =

55

57
57
66
73
75
84
93
99



4 Proportional reasoning
4.1 Population scaling
4.2 Finding scaling exponents
4.3 Scaling exponents in fluid mechanics
4.4 Scaling exponents in mathematics
4.5 Logarithmic scales in two dimensions
4.6 Optimizing flight speed
4.7 Summary and further problems

5 Dimensions
5.1 Dimensionless groups
5.2 One dimensionless group
5.3 More dimensionless groups
5.4 Temperature and charge
5.5 Atoms, molecules, and materials
5.6 Summary and further problems

PartIII  Discarding complexity with loss of information
6 Lumping
6.1 Approximate!
6.2 Rounding on a logarithmic scale
6.3 Typical or characteristic values
6.4 Applying lumping to shapes
6.5 Quantum mechanics
6.6 Summary and further problems

7  Probabilistic reasoning
7.1 Probability as degree of belief: Bayesian probability
7.2 Plausible ranges: Why divide and conquer works
7.3 Random walks: Viscosity and heat flow
7.4 Transport by random walks
7.5 Summary and further problems

8 Easy cases
8.1 Warming up
8.2 'Two regimes
8.3 Three regimes
8.4 Two dimensionless quantities
8.5 Summary and further problems

103
103
105
117
123
126
128
135

137
139
147
152
165
175
192

197

199
199
200
203
212
229
234

235
235
239
249
263
276

279
279
281
291
308
312



9 Spring models
9.1 Bond springs
9.2 Energy reasoning
9.3 Generating sound, light, and gravitational radiation
9.4 Effect of radiation: Blue skies and red sunsets
9.5 Summary and further problems

Bon voyage: Long-lasting learning
Bibliography

Index

Xi

317
317
321
331
345
353

357
359
363






LEss
RIGOR

Preface

Science and engineering, our modern ways of understanding and altering
the world, are said to be about accuracy and precision. Yet we best master
the complexity of our world by cultivating insight rather than precision.

We need insight because our minds are but a small part of the world. An
insight unifies fragments of knowledge into a compact picture that fits in
our minds. But precision can overflow our mental registers, washing away
the understanding brought by insight. This book shows you how to build
insight and understanding first, so that you do not drown in complexity.

Therefore, our approach will not be rigorous—for rigor easily becomes rigor
mortis or paralysis by analysis. Forgoing rigor, we'll study the natural and
human-created worlds—the worlds of science and engineering. So you’'ll
need some—but not extensive!—knowledge of physics concepts such as
force, power, energy, charge, and field. We'll use as little mathematics as
possible—algebra and geometry mostly, trigonometry sometimes, and cal-
culus rarely—so that the mathematics promotes rather than hinders insight,
understanding, and flexible problem solving. The goal is to help you mas-
ter complexity; then no problem can intimidate you.

Like all important parts of our lives, whether spouses or careers, I came to
this approach mostly unplanned. As a graduate student, I gave my first sci-
entific talk on the chemical reactions in the retinal rod. I could make sense
of the chemical chaos only by approximating. In that same year, my friend
Carlos Brody wondered about the distribution of twin primes—prime pairs
separated by 2, such as 3 and 5 or 11 and 13. Nobody knows the distribu-
tion for sure. As a lazy physicist, I approximately answered Carlos’s ques-
tion with a probabilistic model of being prime [32]. Approximations, I saw
again, foster understanding.

As a physics graduate student, I needed to prepare for the graduate qualify-
ing exams. I also became a teaching assistant for the “Order-of-Magnitude
Physics” course. In three months, preparing for the qualifying exams and
learning the course material to stay a day ahead of the students, I learned
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more physics than I had in the years of my undergraduate degree. Physics
teaching and learning had much room for improvement—and approxima-
tion and insight could fill the gap.

In gratitude to my teachers, I dedicate this book to Carver Mead for irre-
placeable guidance and faith; and to Peter Goldreich and Sterl Phinney,
who developed the “Order-of-Magnitude Physics” course at Caltech. From
them I learned the courage to simplify and gain insight—the courage that
I'look forward to teaching you.

For many years, at the University of Cambridge and at MIT, I taught a
course on the “Art of Approximation” organized by topics in physics and
engineering. This organization limited the material’s generality: Unless
you become a specialist in general relativity, you may not study gravitation
again. Yet estimating how much gravity deflects starlight (Section 5.3.1)
teaches reasoning tools that you can use far beyond that example. Tools are
more general and useful than topics.

Therefore, I redesigned the course around the reasoning tools. This orga-
nization, which I have used at MIT and Olin College of Engineering, is re-
flected in this book—which teaches you one tool per chapter, each selected
to help you build insight and master complexity.

There are the two broad ways to master complexity: organize the complex-
ity or discard it. Organizing complexity, the subject of Part I, is taught
through two tools: divide-and-conquer reasoning (Chapter 1) and making
abstractions (Chapter 2).

Discarding complexity (Parts II and III) illustrates that “the art of being
wise is the art of knowing what to overlook” (William James [24, p. 369]).
In Part II, complexity is discarded without losing information. This part
teaches three reasoning tools: symmetry and conservation (Chapter 3), pro-
portional reasoning (Chapter 4), and dimensional analysis (Chapter 5). In
Part I1I, complexity is discarded while losing information. This part teaches
our final tools: lumping (Chapter 6), probabilistic reasoning (Chapter 7),
easy cases (Chapter 8), and spring models (Chapter 9).

Using these tools, we will explore the natural and human-made worlds. We
will estimate the flight range of birds and planes, the strength of chemical
bonds, and the angle that the Sun deflects starlight; understand the physics
of pianos, xylophones, and speakers; and explain why skies are blue and
sunsets are red. Our tools weave these and many other examples into a
tapestry of meaning spanning science and engineering.
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SuARING Like my earlier Street-Fighting Mathematics [33], this book is licensed under a
THIS WORK Creative Commons Attribution—-Noncommercial-Share Alike license. MIT
Press and I hope that you will improve and share the work noncommer-

cially, and we would gladly receive corrections and suggestions.

InTER- The most effective teacher is a skilled tutor [2]. A tutor asks many questions,
SPERSED because questioning, wondering, and discussing promote learning. Ques-
QuEs- tions of two types are interspersed through the book. Questions marked with
TIONS 4 '~ in the margin, which a tutor would pose during a tutorial, ask you to de-
velop the next steps of an argument. They are answered in the subsequent
text, where you can check your thinking. Numbered problems, marked with
a shaded background, which a tutor would give you to take home, ask you
to practice the tool, to extend an example, to use several tools, and even to
resolve an occasional paradox. Merely watching workout videos produces

little fitness! So, try many questions of both types.

Improve Through your effort, mastery will come—and with a broad benefit. As the
our physicist Edwin Jaynes said of teaching [25]:

WORLD [TThe goal should be, not to implant in the students’ mind every fact that the
teacher knows now; but rather to implant a way of thinking that enables the
student, in the future, to learn in one year what the teacher learned in two years.
Only in that way can we continue to advance from one generation to the next.

May the tools in this book help you advance our world beyond the state in
which my generation has left it.
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Part |

Organizing complexity

We cannot find much insight staring at a mess. We need to organize it. As
an everyday example, when I look at my kitchen after a dinner party, I feel
overwhelmed. It’s late, I'm tired, and I dread that I will not get enough
sleep. If I clean up in that scattered state of mind, I pick up a spoon here
and a pot there, making little progress. However, when I remember that a
large problem can be broken into smaller ones, calm and efficiency return.
I begin at one corner of the kitchen, clear its mess, and move to neighboring
areas until the project is done. I divide and conquer (Chapter 1).

Once the dishes are clean, I resist the temptation to dump them into one
big box. I separate pots from the silverware and, within the silverware, the
forks from the spoons. These groupings, or abstractions (Chapter 2), make
the kitchen easy to understand and use.

In problem solving, we organize complexity by using divide-and-conquer
reasoning and by making abstractions. In Part I, you'll learn how.

to master complexity

organize it discard it
Part1 Parts II, II1
€Dtk e, . without losing information losing information
conquer abstraction
1 2 Part II Part IIT
5 6 7 8 9
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As imperial rulers knew, you need not conquer all your enemies at once.
Instead, conquer them one at a time. Break hard problems into manageable
pieces. This process embodies our first reasoning tool: Divide and conquer!

Warming up

To show how to use divide-and-conquer reasoning, we’ll apply it to increas-
ingly complex problems that illustrate its essential features. So we start
with an everyday estimate.

What is, roughly, the volume of a dollar bill?

Volumes are hard to estimate. However, we should still make a quick guess.
Even an inaccurate guess will help us practice courage and, when we com-
pare the guess with a more accurate estimate, will help us calibrate our inter-
nal measuring rods. To urge me on, I often imagine a mugger who holds a
knife at my ribs, demanding, “Your guess or your life!” Then Ijudge it likely
that the volume of a dollar bill lies between 0.1 and 10 cubic centimeters.
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This range is wide, spanning a factor of 100. In contrast, the dollar bill’s
width probably lies between 10 and 20 centimeters—a range of only a factor
of 2. The volume range is wider than the width range because we have
no equivalent of a ruler for volume; thus, volumes are less familiar than
lengths. Fortunately, the volume of the dollar bill is the product of lengths.

volume = width x height x thickness. (1.1)

The harder volume estimate becomes three easier length ™ $1bill

estimates—the benefit of divide-and-conquer reasoning. 15cm

The width looks like 6 inches, which is roughly 15 cen-
timeters. The height looks like 2 or 3 inches, which is roughly 6 centimeters.
But before estimating the thickness, let’s talk about unit systems.

Is it better to use metric or US customary units (such as inches, feet, and miles)?

Your estimates will be more accurate if you use the units most familiar to
you. Raised in the United States, I judge lengths more accurately in inches,
feet, and miles than in centimeters, meters, or kilometers. However, for
calculations requiring multiplication or division—most calculations—I con-
vert the customary units to metric (and often convert back to customary
units at the end). But you may be fortunate enough to think in metric. Then
you can estimate and calculate in a single unit system.

The third piece of the divide-and-conquer estimate, the thickness, is diffi-
cult to judge. A dollar bill is thin—paper thin.

But how thin is “paper thin”?

This thickness is too small to grasp and judge easily. However, a stack of
several hundred bills would be graspable. Not having that much cash lying
around, I'll use paper. A ream of paper, which has 500 sheets, is roughly
5 centimeters thick. Thus, one sheet of paper is roughly 0.01 centimeters
thick. With this estimate for the thickness, the volume is approximately
1 cubic centimeter:

volume ~ 15cm x 6cm x 0.0lcm ~ 1cem3. (1.2)
width height thickness

Although a more accurate calculation could adjust for the fiber composi-
tion of a dollar bill compared to ordinary paper and might consider the
roughness of the paper, these details obscure the main result: A dollar bill
is 1 cubic centimeter pounded paper thin.



1.1 Warming up 5

To check this estimate, I folded a dollar bill until my finger strength gave
out, getting a roughly cubical packet with sides of approximately 1 centime-
ter—making a volume of approximately 1 cubic centimeter!

In the preceding analysis, you may have noticed the = and =~ symbols and
their slightly different use. Throughout this book, our goal is insight over
accuracy. So we’ll use several kinds of equality symbols to describe the
accuracy of a relation and what it omits. Here is a table of the equality
symbols, in descending order of completeness and often increasing order
of usefulness.

equality by definition read as “is defined to be”

equality “is equal to”

~ equality except perhaps for a purely ~ “is approximately equal to”
numerical factor near 1

~  equality except perhaps for a purely ~ “is roughly equal to” or

numerical factor “is comparable to”

o equality except perhaps for a factor “is proportional to”
that may have dimensions

As examples of the kinds of equality, for the circle below, A = 7r?, and
A ~ 412, and A ~ r2. For the cylinder, V ~ hr>—which implies V « r2
and V « h. Inthe V o h form, the factor hidden in the « symbol has
dimensions of length squared.

= mr? )

r
Aj ~ 4r2 Vo<{
g2

Problem 1.1 Weight of a box of books
How heavy is a small moving-box filled with books?

Problem 1.2 Mass of air in your bedroom
Estimate the mass of air in your bedroom.

Problem 1.3  Suitcase of bills

In the movies, and perhaps in reality, cocaine and elections are bought with a suit-
case of $100 bills. Estimate the dollar value in such a suitcase.



6 1 Divide and conquer

Problem 1.4 Gold or bills?

As a bank robber sitting in the vault planning your getaway, do you fill your suit-
case with gold bars or $100 bills? Assume first that how much you can carry is a
fixed weight. Then redo your analysis assuming that how much you can carry is
a fixed volume.

1.2 Rails versus roads

We are now warmed up and ready to use divide-and-conquer reasoning for
more substantial estimates. Our next estimate, concerning traffic, comes to
mind whenever I drive the congested roads to JFK Airport in New York
City. The route goes on the Van Wyck Expressway, which was planned by
Robert Moses. As Moses’s biographer Robert Caro describes [6, pp. 904ff],
when Moses was in charge of building the expressway, the traffic planners
recommended that, in order to handle the expected large volume of traffic,
the road include a train line to the then-new airport. Alternatively, if build-
ing the train track would be too expensive, they recommended that the city,
when acquiring the land for the road, still take an extra 50 feet of width and
reserve it as a median strip for a train line one day. Moses also rejected the
cheaper proposal. Alas, only weeks after its opening, not long after World
War Two, the rail-free highway had reached peak capacity.

Let’s use our divide-and-conquer tool to compare, for rush-hour commut-
ing, the carrying capacities of rail and road. The capacity is the rate at which
passengers are transported; it is passengers per time. First we’ll estimate
the capacity of one lane of highway. We can use the 2-second-following rule
taught in many driving courses. You are taught to leave 2 seconds of travel
time between you and the car in front. When drivers follow this rule, a sin-
gle lane of highway carries one car every 2 seconds. To find the carrying
capacity, we also need the occupancy of each car. Even at rush hour, at least
in the United States, each car carries roughly one person. (Taxis often have
two people including the driver, but only one person is being transported
to the destination.) Thus, the capacity is one person every 2 seconds. As an
hourly rate, the capacity is 1800 people per hour:

1person 36005 1800 people
X = .
2.8 1hr hr

(1.3)

The diagonal strike-through lines help us to spot which units cancel and to
check that we end up with just the units that we want (people per hour).
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This rate, 1800 people per hour, is approximate, because the 2-second fol-
lowing rule is not a law of nature. The average gap might be 4 seconds late
at night, 1 second during the day, and may vary from day to day or from
highway to highway. But a 2-second gap is a reasonable compromise esti-
mate. Replacing the complex distribution of following times with one time
is an application of lumping—the tool discussed in Chapter 6. Organizing
complexity almost always reduces detail. If we studied all highways at all
times of day, the data, were we so unfortunate as to obtain them, would
bury any insight.

How does the capacity of a single lane of highway compare with the capacity of a
train line?

For the other half of the comparison, we’ll estimate the rush-hour capacity
of a train line in an advanced train system, say the French or German system.
As when we estimated the volume of a dollar bill (Section 1.1), we divide the
estimate into manageable pieces: how often a train runs on the track, how
many cars are in each train, and how many passengers are in each car. Here
are my armchair estimates for these quantities, kept slightly conservative to
avoid overestimating the train-line’s capacity. A single train car, when full
atrush hour, may carry 150 people. A rush-hour train may consist of 20 cars.
And, on a busy train route, a train may run every 10 minutes or six times
per hour. Therefore, the train line’s capacity is 18 000 people per hour:

150 people 20 cars 6 trains 18000 people
X X = .
car train hr hr

(1.4)

This capacity is ten times the capacity of a single fast-flowing highway lane.
And this estimate is probably on the low side; Robert Caro [6, p. 901] gives
an estimate of 40 000 to 50 000 people per hour. Using our lower rate, one
train track in each direction could replace two highways even if each high-
way had five lanes in each direction.

Tree representations

Our estimates for the volume of a dollar bill (Section 1.1) and for the rail
and highway capacities (Section 1.2) used the same method: dividing hard
problems into smaller ones. However, the structure of the analysis is buried
within the sentences, paragraphs, and pages. The sequential presentation
hides the structure. Because the structure is hierarchical—big problems
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split, or branch, into smaller problems—its most compact representation is
a tree. A tree representation shows us the analysis in one glance.

Here is the tree representation for the capacity capacity
of a train line. Unlike the biological variety, our
trees stand on their head. Their roots, the goals,
sit at the top of the tree. Their leaves, the small

problems into which we have subdivided the  ?? people ?? cars ?? trains

goal, sit at the bottom. The orientation matches car train
the way that we divide and conquer, filling the
page downward as we subdivide.

In making this first tree, we haven’t estimated capacity
the quantities themselves. We have only identi-
fied the quantities. The question marks remind
us of our next step: to include estimates for the

hour

three leaves. These estimates were 150 people 150 people 20 cars 6 trains
per car, 20 cars per train, and 6 trains per hour car train hour
(giving the tree in the margin).
Then we multiplied the leaf values to propagate capacity
the estimates upward from the leaves toward 18000 people/hour
the root. The result was 18 000 people per hour.
The completed tree shows us the entire estimate
in one glance.

150 people 20 cars 6 trains
This train-capacity tree had the simplest possi- car train hour

ble structure with only two layers (the root layer

and, as the second layer, the three leaves). The

next level of complexity is a three-layer tree, which will represent our esti-
mate for the volume of a dollar bill. It started as a two-layer tree with three
leaves.

volume

width height thickness

Then it grew, because, unlike the width and height, the thickness was diffi-
cult to estimate just by looking at a dollar bill. Therefore, we divided that
leaf into two easier leaves.
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The result is the tree in the margin. The thick- volume
ness leaf, which is the thickness per sheet, has
split into (1) the thickness per ream and (2)
the number of sheets per ream. The boxed

—1 on the line connecting the thickness to the  width height thickness

number of sheets per ream is a new and use- \
ful notation. The —1 tells us the exponent to .
apply to that leaf value when we propagate it

1

\

upward to the root. thickness ?2 sheets

Here is why I write the —1 as a full-sized num- ream

ber rather than a small superscript. Most of

our estimates require multiplying several factors. The only question for
each factor is, “With what exponent does this factor enter?” The number
—1 directly answers this “What exponent?” question. (To avoid cluttering
the tree, we don’t indicate the most-frequent exponent of 1.)

This new subtree then represents the following equation for the thickness
of one sheet:

thickness =

; ?? -1
thickness y ( 27 sheets) ‘ (1.5)

ream ream

The —1 exponent allows, at the cost of a slight complication in the tree no-
tation, the leaf to represent the number of sheets per ream rather than a
less-familiar fraction, the number of reams per sheet.

Now we include our estimates for the leaf values. The width is 15 centime-
ters. The height is 6 centimeters. The thickness of a ream of paper is 5 cen-
timeters. And a ream contains 500 sheets of paper. The result is the follow-
ing tree.

volume
width height thickness
15cm 6cm

\—1

\

5 cm thickness 500 sheets

ream ream

ream
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Now we propagate the values to the root. volume

The two bottommost leaves combine to tell lem?

us that the thickness of one sheet is 1072

centimeters. This thickness completes the

tree’s second layer. In the second layer, the

three nodes tell us that the volume of a dol- width height thickness

-2
lar bill—the root—is 1 cubic centimeter. Loem 6em 107 em
With practice, you can read in this final tree \
all the steps of the analysis. The three nodes _1\
in the second layer show how the difficult 5 em thickness 500 sheets
volume estimate was subdivided into three T ream T ream

easier estimates. That the width and height

remained leaves indicates that these two es-

timates felt reliable enough. In contrast, the two branches sprouting from
the thickness indicate that the thickness was still hard to estimate, so we
divided that estimate into two more-familiar quantities.

The tree encapsulates many paragraphs of analysis in a compact form, one
that our minds can absorb in a single glance. Organizing complexity helps
us build insight.

Problem 1.5 Tree for the suitcase of bills

Make a tree diagram for your estimate in Problem 1.3. Do it in three steps: (1) Draw
the tree without any leaf estimates, (2) estimate the leaf values, and (3) propagate
the leaf values upward to the root.

Demand-side estimates

Our analysis of the carrying capacity of highways and railways (Section 1.2)
is an example of a frequent application of estimation in the social world—es-
timating the size of a market. The highway-railway comparison proceeded
by estimating the transportation supply. In other problems, a more feasi-
ble analysis is based on the complementary idea of estimating the demand.
Here is an example.

How much oil does the United States import (in barrels per year)?

The volume rate is enormous and therefore hard to picture. Divide-and-con-
quer reasoning will tame the complexity. Just keep subdividing until the
quantities are no longer daunting.
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Here, subdivide the demand—the consumption. We consume oil in so
many ways; estimating the consumption in each pathway would take a long
time without producing much insight. Instead, let’s estimate the largest
consumption—likely to be cars—then adjust for other uses and for overall
consumption versus imports.

all-usage imports
imports = carusage x X P . (1.6)
carusage allusage
Here is the corresponding tree. The first fac- imports

tor, the most difficult of the three to estimate,
will require us to sprout branches and make
a subtree. The second and third factors might
be possible to estimate without subdividing. all usage imports

. . car usage
Now we must decide how to continue. car usage all usage

Should we keep subdividing until we’ve built the
entire tree and only then estimate the leaves, or should we try to estimate these
leaves and then subdivide what we cannot estimate?

It depends on one’s own psychology. I feel anxious in the uncharted wa-
ters of a new estimate. Sprouting new branches before making any leaf esti-
mates increases my anxiety. The tree might never stop sprouting branches
and leaves, and I'll never estimate them all. Thus, I prefer to harvest my
progress right away by estimating the leaves before sprouting new branches.
You should experiment to learn your psychology. You are your best prob-
lem-solving tool, and it is helpful to know your tools.

Because of my psychology, I'll first estimate a leaf quantity:

all usage

— (1.7)
car usage

But don’t do this estimate directly. It is more intuitive—that is, easier for
our gut—to estimate first the ratio of car usage to other (noncar) usage. The
ability to make such comparisons between disjoint sets, at least for physi-
cal objects, is hard wired in our brains and independent of the ability to
count. Not least, it is not limited to humans. The female lions studied by
Karen McComb and her colleagues [35] would judge the relative size of
their troop and a group of lions intruding on their territory. The females
would approach the intruders only when they outnumbered the intruders
by a large-enough ratio, roughly a factor of 2.
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Other uses for oil include noncar modes of transport (trucks, trains, and
planes), heating and cooling, and hydrocarbon-rich products such as fer-
tilizer, plastics, and pesticides. In judging the relative importance of other
uses compared to car usage, two arguments compete: (1) Other uses are so
many and so significant, so they are much more important than car usage;
and (2) cars are so ubiquitous and such an inefficient mode of transport, so
car usage is much larger than other uses. To my gut, both arguments feel
comparably plausible. My gut is telling me that the two categories have
comparable usages:

other usage

_— = = (1.8)
car usage

Based on this estimate, all usage (the sum of car and other usage) is roughly

double the car usage:

all usage
— 9 2. (1.9)
car usage

This estimate is the first leaf. It implicitly assumes that the gasoline fraction
in a barrel of oil is high enough to feed the cars. Fortunately, if this assump-
tion were wrong, we would get warning. For if the fraction were too low,
we would build our transportation infrastructure around other means of
transport—such as trains powered by electricity generated by burning the
nongasoline fraction in oil barrels. In this probably less-polluted world, we
would estimate how much oil was used by trains.

Returning to our actual world, let’s estimate the second leaf:

imports
—_ (1.10)
all usage

This adjustment factor accounts for the fact that only a portion of the oil

consumed is imported.
What does your gut tell you for this fraction?

Again, don’t estimate this fraction directly. Instead, to make a comparison
between disjoint sets, first compare (net) imports with domestic production.
In estimating this ratio, two arguments compete. On the one hand, the
US media report extensively on oil production in other countries, which
suggests that oil imports are large. On the other hand, there is also extensive
coverage of US production and frequent comparison with countries such as
Japan that have almost no domestic oil. My resulting gut feeling is that the
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categories are comparable and therefore that imports are roughly one-half
of all usage:
imports _ imports 1

o o — = . 111
domestic production all usage 2 (1

This leaf, as well as the other adjustment factor, are dimensionless numbers.
Such numbers, the main topic of Chapter 5, have special value. Our percep-
tual system is skilled at estimating dimensionless ratios. Therefore, a leaf
node that is a dimensionless ratio probably does not need to be subdivided.

The tree now has three leaves. Having plausi- imports
ble estimates for two of them should give us
courage to subdivide the remaining leaf, the
total car usage, into easier estimates. That leaf

will sprout its own branches and become an all usage imports
internal node. carusage car usage all usage
2 0.5

How should we subdivide the car usage?

A reasonable subdivision is into the number of cars N, and car usage

the per-car usage. Both quantities are easier to estimate than / \

the root. The number of cars is related to the US population—a

familiar number if you live in the United States. The per-car

usage is easier to estimate than is the total usage of all US  Neass usage/car
cars. Our gut can more accurately judge human-scale quan-

tities, such as the per-car usage, than it can judge vast numbers like the

total usage of all US cars.

For the same reason, let’s not estimate the number of cars Nears

directly. Instead, subdivide this leaf into two leaves: 3x10%

1. the number of people, and

2. the number of cars per person.

The first leaf is familiar, at least to residents of the United ;\71;9%15 cars/ Il’erson

States: Npeopte ~ 3% 10,

The second leaf, cars per person, is a human-sized quantity.

In the United States, car ownership is widespread. Many adults own more
than one car, and a cynic would say that even babies seem to own cars.
Therefore, a rough and simple estimate might be one car per person—far
easier to picture than the total number of cars! Then N, ~ 3 x 108.
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The per-car usage can be subdivided into three usage/car
easier factors (leaves). Here are my estimates. T \
1. How many miles per car year? Used cars with |
10 000 miles per year are considered low use \ AN
?? miles ?? miles ?? gallons

but are not rare. Thus, for a typical year of
driving, let’s take a slightly longer distance:
say, 20 000 miles or 30 000 kilometers.

car year gallon

2. How many miles per gallon? A typical car fuel efficiency is 30 miles per
US gallon. In metric units, it is about 100 kilometers per 8 liters.

3. How many gallons per barrel? You might have seen barrels of asphalt
along the side of the highway during road construction. Following our
free-association tradition of equating the thickness of a sheet of paper
and of a dollar bill, perhaps barrels of oil are like barrels of asphalt.

Their volume can be computed by divide-and-conquer ~——

reasoning. Just approximate the cylinder as a rectangu-
lar prism, estimate its three dimensions, and multiply:

volume ~ 1m x 05m x 0.5m =025m3. (112
height width depth

A cubic meter is 1000 liters or, using the conversion of

v

4 US gallons per liter, roughly 250 gallons. Therefore, L osm -
0.25 cubic meters is roughly 60 gallons. (The official vol- ~—~=~-""_~

ume of a barrel of oil is not too different at 42 gallons.)

Multiplying these estimates, and not forgetting the effect of the two —1 ex-
ponents, we get approximately 10 barrels per car per year (also written as
barrels per car year):

2x10* miles 1gallon  1barrel 10 barrels
X X ~ .
car year 30 miles 60 gallons  car year
In doing this calculation, first evaluate the units. The gallons and miles
cancel, leaving barrels per year. Then evaluate the numbers. The 30 x 60 in

the denominator is roughly 2000. The 2 x 10* from the numerator divided
by the 2000 from the denominator produces the 10.

(1.13)

This estimate is a subtree in the tree representing total car usage. The car
usage then becomes 3 billion barrels per year:

y 10 barrels _ 3x10° barrels
car’ year year .

3x 108 cars (1.14)
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This estimate is itself a subtree in the tree imports
representing oil imports. Because the two 3 x10” barrels
adjustment factors contribute a factor of year
2 x 0.5, which is just 1, the oil imports are
also 3 billion barrels per year.
Here is the full tree, which includes the car usage all usage imports
subtree for the total car usage of oil: 3 x 10° barrels car usage all usage
year 2 0.5
imports
3 x 10° barrels
year
car usage all usage imports
3x10° barrels  carusage  all usage
year 2 0.5
N usage/car
cars 10 barrels
3x 108 —
car year
-1 -1
\ AN
Npeople 1 car 20000 miles 30 miles 60 gallons
3x10%  person car year gallon barrel

/TN

height ~ width  depth 250 gallons
Im 0.5m 0.5m T md

Problem 1.6  Using metric units

As practice with metric units (if you grew up in a nonmetric land) or to make the
results more familiar (if you grew up in a metric land), redo the calculation using
the metric values for the volume of a barrel, the distance a car is driven per year,
and the fuel consumption of a typical car.

How close is our estimate to official values?
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For the US oil imports, the US Department of Energy reports 9.163 million
barrels per day (for 2010). When I first saw this value, my heart sank twice.
The first shock was the 9 in the 9 million. I assumed that it was the number
of billions, and wondered how the estimate of 3 billion barrels could be
a factor of 3 too small. The second shock was the “million”—how could
the estimate be more than a factor of 100 too large? Then the “per day”
reassured me. As a yearly rate, 9.163 million barrels per day is 3.34 billion
barrels per year—only 10 percent higher than our estimate. Divide and
conquer triumphs!

Problem 1.7 Fuel efficiency of a 747

Based on the cost of a long-distance plane ticket, estimate the following quantities:
(a) the fuel efficiency of a 747, in passenger miles per gallon or passenger kilome-
ters per liter; and (b) the volume of its fuel tank. Check your estimates against the
technical data for a 747.

Multiple estimates for the same quantity

After making an estimate, it is natural to wonder about how much confi-
dence to place in it. Perhaps we made an embarrassingly large mistake. The
best way to know is to estimate the same quantity using another method.
As an everyday example, let’s observe how we add a list of numbers.

12
15
+18

(1.15)

We often add the numbers first from top to bottom. For 12 + 15 + 18, we
calculate, “12 plus 15 is 27; 27 plus 18 is 45.” To check the result, we add the
numbers in the reverse order, from bottom to top: “18 plus 15 is 33; 33 plus
12 is 45.” The two totals agree, so each is probably correct: The calculations
are unlikely to contain an error of exactly the same amount. This kind of
redundancy catches errors.

In contrast, mindless redundancy offers little protection. If we check the
calculation by adding the numbers from top to bottom again, we usually
repeat any mistakes. Similarly, rereading written drafts usually means over-
looking the same spelling, grammar, or logic faults. Instead, stuff the draft
in a drawer for a week, then look at it; or ask a colleague or friend—in both
cases, use fresh eyes.
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Reliability, in short, comes from intelligent redundancy.

This principle helps you make reliable estimates. First, use several meth-
ods to estimate the same quantity. Second, make the methods as differ-
ent from one another as possible—for example, by using unrelated back-
ground knowledge. This approach to reliability is another example of di-
vide-and-conquer reasoning: The hard problem of making a reliable esti-
mate becomes several simpler subproblems, one per estimation method.

You saw an example in Section 1.1, where we estimated the volume of a dol-
lar bill. The first method used divide-and-conquer reasoning based on the
width, height, and thickness of the bill. The check was a comparison with a
folded-up dollar bill. Both methods agreed on a volume of approximately
1 cubic centimeter—giving us confidence in the estimate.

For another example of using multiple methods, return to the estimate of
the volume of an oil barrel (Section 1.4). We used a roadside asphalt barrel
as a proxy for an oil barrel and estimated the volume of the roadside bar-
rel. The result, 60 gallons, seemed plausible, but maybe oil barrels have a
completely different size. One way to catch that kind of error is to use a
different method for estimating the volume. For example, we might start
with the cost of a barrel of oil—about $100 in 2013—and the cost of a gallon
of gasoline—about $2.50 before taxes, or 1/40th of the cost of a barrel. If
the markup on gasoline is not significant, then a barrel is roughly 40 gal-
lons. Even with a markup, we can still say that a barrel is at least 40 gallons.
Because our two estimates, 60 gallons and > 40 gallons, roughly agree, our
confidence in both increases. If they had contradicted each other, one or
both would be wrong, and we would look for the mistaken assumption, for
the incorrect arithmetic, or for a third method.

Talking to your gut

As you have seen in the preceding examples, divide-and-con-  US population
quer estimates require reasonable estimates for the leaf quan-

tities. To decide what is reasonable, you have to talk to your \
gut—what you will learn in this section. Talking to your gut

feels strange at first, especially because science and engineer-
ing are considered cerebral subjects. Let’s therefore discuss
how to hold the conversation. The example will be an esti-
mate of the US population based on its area and population density. The

population

area density
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divide-and-conquer tree has two leaves. (In Section 6.3.1, you'll see a qual-
itatively different method, where the two leaves will be the number of US
states and the population of a typical state.)

The area is the width times the height, so the area leaf US population
itself splits into two leaves. Estimating the width and
height requires only a short dialogue with the gut, at \
least if you live in the United States. Its width is a 6-hour
plane flight at 500 miles per hour, so about 3000 miles; area population
and the height is, as a rough estimate, two-thirds of the density
width, or 2000 miles. Therefore, the area is 6 million
square miles:

3000 miles x 2000 miles = 6 x 106 miles”. (116)  width  height

In metric units, it is about 16 million square kilometers.

Estimating the population density requires talking to your gut. If you are
like me you have little conscious knowledge of the population density. Your
gut might know, but you cannot ask it directly. The gut is connected to the
right brain, which doesn’t have language. Although the right brain knows
a lot about the world, it cannot answer with a value, only with a feeling.
To draw on its knowledge, ask it indirectly. Pick a particular population
density—say, 100 people per square mile—and ask the gut for its opinion:
“O, my intuitive, insightful, introverted right brain: What do you think of
100 people per square mile for the population density?” A response, a gut
feeling, will come back. Keep lowering the candidate value until the gut
feeling becomes, “No, that value feels way too low.”

Here is the dialogue between my left brain (LB) and right brain (RB).
LB: What do you think of 100 people per square mile?
RB: That feels okay based on my experience growing up in the United States.

LB: I can probably support that feeling quantitatively. A square mile with 100
people means each person occupies a square whose side is 1/10th of a mile or
160 meters. Expressed in this form, does the population density feel okay?

RB: Yes, the large open spaces in the western states probably compensate for the
denser regions near the coasts.

LB: Now I will lower the estimate by factors of 3 or 10 until you object strongly
that the estimate feels too low. [A factor of 3 is roughly one-half of a factor of 10,
because 3 x 3 =~ 10. A factor of 3 is the next-smallest factor by which to move
when a factor of 10 is too large a jump.] In that vein, what about an average
population density of 10 people per square mile?
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RB: I feel uneasy. The estimate feels a bit low.

LB: I understand where you are coming from. That value may moderately over-
estimate the population density of farmland, but it probably greatly underesti-
mates the population density in the cities. Because you are uneasy, let’s move
more slowly until you object strongly. How about 3 people per square mile?

RB: If the true value were lower than that, I'd feel fairly surprised.

LB: So, for the low end, I'll stop at 3 people per square mile. Now let’s navigate
to the upper end. You said that 100 people per square mile felt plausible. How
do you feel about 300 people per square mile?

RB: I feel quite uneasy. That estimate feels quite high.

LB: Thear you. Your response reminds me that New Jersey and the Netherlands,
both very densely populated, are at 1000 people per square mile, although I
couldn’t swear to this value. I cannot imagine packing the whole United States
to a density comparable to New Jersey’s. Therefore, let’s stop here: Our upper
endpoint is 300 people per square mile.

How do you make your best guess based on these two endpoints?

A plausible guess is to use their arithmetic mean, which is roughly 150 peo-
ple per square mile. However, the right method is the geometric mean:

best guess = ,/lower endpoint x upper endpoint. (1.17)

The geometric mean is the midpoint of the lower and upper bounds—but
on a ratio or logarithmic scale, which is the scale built into our mental hard-
ware. (For more about how we perceive quantity, see The Number Sense
[9].) The geometric mean is the correct mean when combining quantities
produced by our mental hardware.

Here, the geometric mean is 30 people per square mile: a factor of 10 re-
moved from either endpoint. Using that population density,

3
_miles™
The actual population is roughly 3x108. The estimate based almost entirely

on gut reasoning is within a factor of 1.5 of the actual population—a pleas-
antly surprising accuracy.

US population ~ 6 x 106 mites” x ~ 2x108. (1.18)

Problem 1.8 More gut estimates

By asking your gut to help you estimate the lower and upper endpoints, estimate
(a) the height of a nearby tall tree that you can see, (b) the mass of a car, and (c) the
number of water drops in a bathtub.
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Physical estimates

Your gut understands not only the social world but also the physical world.
If you trust its feelings, you can tap this vast reservoir of knowledge. For
practice, we’ll estimate the salinity of seawater (Section 1.7.1), human power
output (Section 1.7.2), and the heat of vaporization of water (Section 1.7.3).

Salinity of seawater

To estimate the salinity of seawater, which will later help you estimate the
conductivity of seawater (Problem 8.10), do not ask your gut directly: “How
do you feel about, say, 200 millimolar?” Although that kind of question
worked for estimating population density (Section 1.6), here, unless you
are a chemist, the answer will be: “I have no clue. What is a millimolar
anyway? I have almost no experience of that unit.” Instead, offer your gut
concrete data—for example, from a home experiment: adding salt to a cup
of water until the mixture tastes as salty as the ocean.

This experiment can be a thought or a real experiment—another example
of using multiple methods (Section 1.5). As a thought experiment, I ask
my gut about various amounts of salt in a cup of water. When I propose
adding 2 teaspoons, it responds, “Disgustingly salty!” At the lower end,
when I propose adding 0.5 teaspoons, it responds, “Not very salty.” I'll use
0.5 and 2 teaspoons as the lower and upper endpoints of the range. Their
midpoint, the estimate from the thought experiment, is 1 teaspoon per cup.

I tested this prediction at the kitchen sink. With 1 teaspoon (5 milliliters) of
salt, the cup of water indeed had the sharp, metallic taste of seawater that
I have gulped after being knocked over by large waves. A cup of water is
roughly one-fourth of a liter or 250 cubic centimeters. By mass, the resulting
salt concentration is the following product:

1tspsalt  1cupwater 5. cm3salt 2g salt
X X X
lcupwater 250gwater ltspsalt 1 cm3-salt.

Psalt

(1.19)

The density of 2 grams per cubic centimeter comes from my gut feeling that
salt is a light rock, so it should be somewhat denser than water at 1 gram
per cubic centimeter, but not too much denser. (For an alternative method,
more accurate but more elaborate, try Problem 1.10.) Then doing the arith-
metic gives a 4 percent salt-to-water ratio (by mass).
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The actual salinity of the Earth’s oceans is about 3.5 percent—very close to
the estimate of 4 percent. The estimate is close despite the large number
of assumptions and approximations—the errors have mostly canceled. Its
accuracy should give you courage to perform home experiments whenever
you need data for divide-and-conquer estimates.

Problem 1.9 Density of water

Estimate the density of water by asking your gut to estimate the mass of water in
a cup measure (roughly one-quarter of a liter).

Problem 1.10 Density of salt

Estimate the density of salt using the volume and mass of a typical salt container
that you find in a grocery store. This value should be more accurate than my gut
estimate in Section 1.7.1 (which was 2 grams per cubic centimeter).

Human power output

Our second example of talking to your gut is an estimate of hu- power
man power output—a power that is useful in many estimates \
(for example, Problem 1.17). Energies and powers are good can- Y
didates for divide-and-conquer estimates, because they are con- \
nected by the subdivision shown in the following equation and  energy time
represented in the tree in the margin:
energy

; . (1.20)
time

power =

In particular, let’s estimate the power that a trained athlete can generate for
an extended time (not just during a few-seconds-long, high-power burst).
As a proxy for that power, I'll use my own burst power output with two
adjustment factors:

athlete’s steady power

my steady power athlete’s steady power

my burst power my burst power my steady power

Maintaining a power is harder than producing a quick burst. Therefore,
the first adjustment factor, my steady power divided by my burst power,
is somewhat smaller than 1—maybe 1/2 or 1/3. In contrast, an athlete’s



22 1 Divide and conquer

power output will be higher than mine, perhaps by a factor of 2 or 3: Even
though I am sometimes known as the street-fighting mathematician [33],
am no athlete. Then the two adjustment factors roughly cancel, so my burst
power should be comparable to an athlete’s steady power.

To estimate my burst power, I performed a home experiment power

of running up a flight of stairs as quickly as possible. Deter- \

mining the power output requires estimating an energy and 4

a time: \
power = cnersy (1.21) energy time

time
The energy, which is the change in my gravitational potential
energy, itself subdivides into three factors:

m g h

energy = mass x gravity x height. (1.22)
m g h

In the academic building at my university, a building with high
ceilings and staircases, I bounded up a staircase three stairs at a
time. The staircase was about 12 feet or 3.5 meters high. There-
fore, my mechanical energy output was roughly 2000 joules:

E ~65kg x 10ms~2 x 3.5m ~ 2000]. (1.23)

3.5m

(The units are fine: 1] = 1kgm?s72.)

The remaining leaf is the time: how long the climb took me. I made it in
6 seconds. In contrast, several students made it in 3.9 seconds—the power
of youth! My mechanical power output was about 2000 joules per 6 sec-
onds, or about 300 watts. (To check whether the estimate is reasonable, try
Problem 1.12, where you estimate the typical human basal metabolism.)

This burst power output should be close to the sustained power output of
a trained athlete. And itis. As an example, in the Alpe d"Huez climb in the
1989 Tour de France, the winner—Greg LeMond, a world-class athlete—put
out 394 watts (over a 42.5-minute period). The cyclist Lance Armstrong,
during the time-trial stage during the Tour de France in 2004, generated
even more: 495 watts (roughly 7 watts per kilogram). However, he pub-
licly admitted to blood doping to enhance performance. Indeed, because
of widespread doping, many cycling power outputs of the 1990s and 2000s
are suspect; 400 watts stands as a legitimate world-class sustained power
output.
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Problem 1.11  Energy in a 9-volt battery
Estimate the energy in a 9-volt battery. Is it enough to launch the battery into orbit?

Problem 1.12  Basal metabolism
Based on our daily caloric consumption, estimate the human basal metabolism.

Problem 1.13  Energy measured in person flights of stairs

How many flights of stairs can you climb using the energy in a stick (100 grams)
of butter?

1.7.3 Heat of vaporization of water

Our final physical estimate concerns the most important liquid on Earth.
What is the heat of vaporization of water?

Because water covers so much of the Earth and is such an important part
of the atmosphere (clouds!), its heat of vaporization strongly affects our
climate—whether through rainfall (Section 3.4.3) or air temperatures.

Heat of vaporization is defined as a ratio: heat of
vaporization
energy to evaporate a substance
p (1.24) \
amount of the substance
-1
where the amount of substance can be measured N
inmoles, by volume, or (most commonly) by mass.  ¢nergy 0 evaporate mass of the
The definition provides the structure of the tree a substance substance
and of the estimate based on divide-and-conquer
reasoning.

For the mass of the substance, choose an amount of water that is easy to
imagine—ideally, an amount familiar from everyday life. Then your gut
can help you make estimates. Because I often boil a few cups of water at a
time, and each cup is few hundred milliliters, I'll imagine 1 liter or 1 kilo-
gram of water.

The other leaf, the required energy, requires more thought. There is a com-
mon confusion about this energy that is worth discussing.

Is it the energy required to bring the water to a boil?

No: The energy has nothing to do with the energy required to bring the
water to a boil! That energy is related to water’s specific heat Cp- The heat of
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vaporization depends on the energy needed to evaporate—boil away—the

water, once it is boiling. (You compare these energies in Problem 5.61.)

Energy subdivides into power times time (as when we es-

heat of

timated human power output in Section 1.7.2). Here, the vaporization

E

power could be the power output of one burner; the time
is the time to boil away the liter of water. To estimate these

leaves, let’s hold a gut conference. \
. . . energy mass
For the time, my dialogue is as follows.
LB: How does 1 minute sound as a lower bound?
RB: Way too short—you've left boiling water on the stove
unattended for longer without its boiling away! burner evaporation

LB: How about 3 minutes? power

RB: That’s on the low side. Maybe that’s the lower bound.
LB: Okay. For the upper bound, how about 100 minutes?

RB: That time feels way too long. Haven’t we boiled away pots of water in far
less time?

LB: What about 30 minutes?

RB: That’s long, but I wouldn’t be shocked, only fairly surprised, if it took that
long. It feels like the upper bound.

time

My range is therefore 3...30 minutes. Its midpoint—the geometric mean of

the endpoints—is about 10 minutes or 600 seconds.

For variety, let’s directly estimate the burner power, without estimating

lower and upper bounds.
LB: How does 100 watts feel?

RB: Way too low: That’s a lightbulb! If a lightbulb could boil away water so
quickly, our energy troubles would be solved.

LB (feeling chastened): How about 1000 watts (1 kilowatt)?

RB: That’s a bit low. A small appliance, such as a clothes iron, is already 1 kilo-
watt.

LB (raising the guess more slowly): What about 3 kilowatts?
RB: That burner power feels plausible.

Let’s check this power estimate by subdividing power into two factors, volt-

age and current:

power = voltage x current. (1.25)
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An electric stove requires a line voltage of 220 volts, even in the United
States where most other appliances require only 110 volts. A standard fuse
is about 15 amperes, which gives us an idea of a large current. If a burner
corresponds to a standard fuse, a burner supplies roughly 3 kilowatts:

220V x 15 A ~ 3000 W. (1.26)

This estimate agrees with the gut estimate, so both methods gain plausibil-
ity—which should give you confidence to use both methods for your own
estimates. As a check, [looked at the circuit breaker connected to my range,
and it is rated for 50 amperes. The range has four burners and an oven, so
15 amperes for one burner (at least, for the large burner) is plausible.

We now have values for all the leaf nodes. Prop- heat of vaporization
agating the values toward the root gives the heat 2x10°]
of vaporization (L,,,) as roughly 2 megajoules per kg
kilogram: \
power time -1
[ . 3KW x 600s \
T T 02 o
mass
~2x105Tkg . / \
The true value is about 2.2x10° joules per kilogram.
This value is one of the highest heats of vaporiza- burner power evaporation time

tion of any liquid. As water evaporates, it carries Skw 10min

away significant amounts of energy, making it an
excellent coolant (Problem 1.17).

Summary and further problems

The main lesson that you should take away is courage: No problem is too
difficult. We just use divide-and-conquer reasoning to dissolve difficult
problems into smaller pieces. (For extensive practice, see the varied exam-
ples in the Guesstimation books [47 and 48].) This tool is a universal solvent
for problems social and scientific.

Problem 1.14 Per-capita land area

Estimate the land area per person for the world, for your home country, and for
your home state or province.



26 1 Divide and conquer

Problem 1.15 Mass of the Earth

Estimate the mass of the Earth. Then look it up (p. xvii) to check your estimate.

Problem 1.16  Billion
How long would it take to count to a billion (10%)?

Problem 1.17 Sweating

Estimate how much water you need to drink to replace water lost to evapora-
tion, if you ride a bicycle vigorously for 1 hour. Represent your estimate as a
divide-and-conquer tree. Hint: Humans are only about 25 percent efficient in gen-
erating mechanical work.

Problem 1.18 Pencil line

How long a line can you write with a pencil?

Problem 1.19 Pine needles

Estimate the number of needles on a pine tree.

Problem 1.20 Hairs

How many hairs are on your head?
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Divide-and-conquer reasoning, the tool introduced in Chapter 1, is power-
ful, but it is not enough by itself to organize the complexity of the world.
Try, for example, to manage the millions of files on a computer—even my
laptop says that it has almost 3 million files. Without any organization, with
all the files in one monster directory or folder, you could never find informa-
tion that you need. However, simply using divide and conquer by dividing
the files into groups—the first 100 files by date, the second 100 files by date,
and so on—does not disperse the chaos. A better solution is to organize the
millions of files into a hierarchy: as a tree of folders and subfolders. The ele-
ments in this hierarchy get names—for example, “photos of the children” or
“files for typesetting this book”—and these names guide us to the needed
information.

Naming—or, more technically, abstraction—is our other tool for organizing
complexity. A name or an abstraction gets its power from its reusability.
Without reusable ideas, the world would become unmanageably compli-
cated. We might ask, “Could you, without tipping it over, move the wooden
board glued to four thick sticks toward the large white plastic circle?” in-
stead of, “Could you slide the chair toward the table?” The abstractions
“chair,” “slide,” and “table” compactly represent complex ideas and physi-
cal structures. (And even the complex question itself uses abstractions.)
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Similarly, without good abstractions we could hardly calculate, and mod-
ern science and technology would be impossible. As an illustration, imag-
ine the pain of the following calculation:

XXVII x XXXVI, 2.1)

which is 27 x 36 in Roman numerals. The problem is not that the notation is
unfamiliar, but rather that it is not based on abstractions useful for calcula-
tion. Not least, it does not lend itself to divide-and-conquer reasoning; for
example, even though V (5) is a part of XXVII, VxXXXVI has no obvious an-
swer. In contrast, our modern number system, based on the abstractions of
place value and zero, makes the whole multiplication simple. Notations are
abstractions, and good abstractions amplify our intelligence. In this chap-
ter, we will practice making abstractions, discuss their high-level purpose,
and continue to practice.

Energy from burning hydrocarbons

Our understanding of the world is built on layers of abstrac- fluid
tions. Consider the idea of a fluid. At the bottom of the ab- I
straction hierarchy are the actors of particle physics: quarks

and electrons. Quarks combine to build protons and neu- molecules

trons. Protons, neutrons, and electrons combine to build I
atoms. Atoms combine to build molecules. And large collec-
tions of molecules act, under many conditions, like a fluid. atoms

The idea of a fluid is a new unit of thought. It helps us un- / \

derstand diverse phenomena, without our having to calcu-
late or even know how quarks and electrons interact to pro-
duce fluid behavior. As one consequence, we can describe
the behavior of air and water using the same equations (the
Navier—Stokes equations of fluid mechanics); we need only
to use different values for the density and viscosity. Then
atmospheric cyclones and water vortices, although they result from widely
differing sets of quarks and electrons and their interactions, can be under-
stood as the same phenomenon.

electrons

A similarly powerful abstraction is a chemical bond. We’ll use this abstrac-
tion to estimate a quantity essential to our bodies and to modern society:
the energy released by burning chains made of hydrogen and carbon atoms
(hydrocarbons). A hydrocarbon can be abstracted as a chain of CH, units:

protons,
neutrons

|

quarks
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Burning a CH, unit requires oxygen (O,) and releases carbon dioxide (CO,),
water, and energy:

CH, + gOz — CO, + H,O + energy. 2.2)

For a hydrocarbon with eight carbons—such as octane, a prime component
of motor fuel—simply multiply this reaction by 8:

(CHy)g + 120, — 8CO, + 8 H,O + lots of energy. (2.3)

(The two additional hydrogens at the left and right ends of octane are not
worth worrying about.)

How much energy is released by burning one CH, unit?

To make this estimate, use the table of bond

energies. It gives the energy required to break bond energy
(not make) a chemical bond—for example, be- (@) ( ﬁ) (
tween carbon and hydrogen. However, there mol mol

is no unique carbon-hydrogen (C-H) bond. ~_ 4 99 414
The carbon-hydrogen bonds in methane are 111 464
different from the carbon-hydrogen bondsin ~_ -~ 83 347
ethane. To make a reusable idea, we neglect ~_ 86 360
those differences—placing them below our 1y 104 435
abstraction barrier—and make an abstraction ~_ 73 305
called the carbon-hydrogen bond. So the ta- _ 93 389
ble, already in its first column, is built on an 0=0 119 498
abstraction. Cc=0 192 803
The second gives the bond energy in kilo- c=C 146 611

calories per mole of bonds. A kilocalorie is N=N 226 946
roughly 4000 joules, and a mole is Avogadro’s

number (6x10%3) of bonds. The third column gives the energy in the SI units
used by most of the world, kilojoules per mole. The final column gives the
energy in electron volts (eV) per bond. An electron volt is 1.6 x 10717 joules.
An electron volt is suited for measuring atomic energies, because most bond
energies have an easy-to-grasp value of a few electron volts. I wish most of
the world used this unit!

eV
bond

43
4.8
3.6
3.7
4.5
32
4.0
52
8.3
6.3
9.8

)
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Let’s tabulate the energies in the combustion of one hydrocarbon unit.

H o H

| .\ 3 ﬁ I .\ / o bond energy
Cc— = X — C (@) 4

| 2 0 I \ (@) (ﬂ)
. o H mol mol

The left side of the reaction has two carbon-hy- 1 xC—C 1 x 83 1 x347
drogen bonds, 1.5 oxygen-oxygen double bonds, 2 xC—H 2 x 99 2 x414
and one carbon—carbon bond (connecting the car- 1.5x0=0  15x119  1.5x498
bon atom in the CH, unit to the carbon atom in Total 460 1925
a neighboring unit). The total, 460 kilocalories or

1925 kilojoules per mole, is the energy required to break the bonds. It is an

energy input, so it reduces the net combustion energy.

The right side has two carbon-oxygen double bonds
and two oxygen-hydrogen bonds. The total for the
right side, 606 kilocalories or 2535 kilojoules per mole, (@ ) (ﬂ)
is the energy released in forming these bonds. Itis the mol mol

energy produced, so it increases the net combustion 2xC=0  2x192  2x803
energy. 2x0—H 2x111  2x464

bond energy

The netresultis, per mole of CH,, an energy release of Total 606 2535
606 minus 460 kilocalories, or approximately 145 kilo-

calories (610 kilojoules). Equivalently, it is also about 6 electron volts per

CH, unit—about 1.5 chemical bonds” worth of energy. The combustion en-

ergy is also useful as an energy per mass rather than per mole. A mole of

CH, units weighs 14 grams. Therefore, 145 kilocalories per mole is roughly

10 kilocalories or 40 kilojoules per gram. This energy density is worth mem-
orizing because it gives the energy released by burning oil and gasoline or

by metabolizing fat (even though fat is not a pure hydrocarbon).

combustion energy

(ma) (%) (5)

hydrogen (H,) 68 34.0 142
methane (CH,) 213 13.3 56
gasoline (CgHij) 1303 11.5 48
stearic acid (C1gH305) 2712 9.5 40

glucose (CgH1,04) 673 3.7 15
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The preceding table, adapted from Oxford University’s “Virtual Chemistry”
site, gives actual combustion energies for plant and animal fuel sources
(with pure hydrogen included for fun). The penultimate entry, stearic acid,
is a large component of animal fat; animals store energy in a substance with
an energy density comparable to the energy density in gasoline—roughly
10 kilocalories or 40 kilojoules per gram. Plants, on the other hand, store
energy in starch, which is a chain of glucose units; glucose has an energy
density of only roughly 4 kilocalories per gram. This value, the energy den-
sity of food carbohydrates (sugars and starches), is also worth memorizing.
It is significantly lower than the energy density of fats: Eating fat fills us up
much faster than eating starch does.

How can we explain the different plant and animal energy-storage densities?

Plants do not need to move, so the extra weight required by using lower-den-
sity energy storage is not so important. The benefit of the simpler glucose
metabolic pathway outweighs the drawback of the extra weight. For ani-
mals, however, the large benefit of lower weight outweighs the metabolic
complexity of burning fats.

Problem 2.1 Estimating the energy density of common foods
In American schools, the traditional lunch is the peanut-butter-and-jelly sandwich.
Estimate the energy density in peanut butter and in jelly (or jam).

Problem 2.2  Peanut butter as fuel
If you could convert all the combustion energy in one tablespoon (15 grams) of
peanut butter into mechanical work, how many flights of stairs could you climb?

Problem 2.3 Growth of grass
How fast does grass grow? Is the rate limited by rainfall or by sunlight?

Coin-flip game

The abstractions of atoms, bonds, and bond energies have been made for us
by the development of science. But we often have to make new abstractions.
To develop this skill, we’ll analyze a coin game where two players take turns
flipping a (fair) coin; whoever first tosses heads wins.

What is the probability that the first player wins?

First get a feel for the game by playing it. Here is one round: TH. The first
player missed the chance to win by tossing tails (T); but the second player
tossed heads (H) and won.
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Playing many games might reveal a pattern to us or suggest how to com-
pute the probability. However, playing many games by flipping a real
coin becomes tedious. Instead, a computer can simulate the games, sub-
stituting pseudorandom numbers for a real coin. Here are several runs
produced by a computer program. Each line begins with 1 or 2 to indicate
which player won the game; the rest of the line shows the coin tosses. In
these ten iterations, each player won five times. A reasonable conjecture
is that each player has an equal chance to win. However, this conjecture,

based on only ten games, cannot be believed too strongly.

Let’s try 100 games. Now even counting the wins becomes tedious. My

TH
TH

TH
TTH
TTTH
TH

o=, R, NN R, DN NDN

computer counted for me: 68 wins for player 1, and 32 wins for player 2.
The probability of player 1’s winning now seems closer to 2/3 than to 1/2.

To find the exact value, let’s diagram the game as a tree re-
flecting the alternative endings of the game. Each layer rep-
resents one flip. The game ends at a leaf, when one player
has tossed heads. The shaded leaves show the first player’s
wins—for example, after H, TTH, or TTTTH. The probabili-
ties of these winning ways are 1/2 (for H), 1/8 (for TTH), and
1/32 (for TTTTH). The sum of all these winning probabilities
is the probability of the first player’s winning:
1,1 1

§+§+?§+"'. (2.5)

To sum this infinite series without resorting to formulas, make
an abstraction: Notice that the tree contains, one level down,
a near copy of itself. (In this problem, the abstraction gets
reused within the same problem. In computer science, such a
structure is called recursive.) For if the first player tosses tails,
the second player starts the game in the position of the first
player, with the same probability of winning.

start

0

1/2

/A

1/4

1/8

To benefit from this equivalence, let’s name the reusable idea, namely the
probability of the first player’s winning, and call it p. The second player
wins the game with probability p/2: The factor of 1/2 is the probability
that the first player tosses tails; the factor of p is the probability that the
second player wins, given that the first player blew his chance by tossing

tails on the first toss.

Because either the first or the second player wins, the two winning proba-

bilities add to 1:
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p + p/2 = 1. (2.6)

P(first player wins)  P(second player wins)

The solution is p = 2/3, as suggested by the 100-game simulation. The ben-
efit of the abstraction solution, compared to calculating the infinite proba-
bility sum explicitly, is insight. In the abstraction solution, the answer has
to be what it is. It leaves almost nothing to remember. An amusing illustra-
tion of the same benefit comes from the problem of the fly that zooms back
and forth between two approaching trains.

If the fly starts when the trains are 60 miles apart, each train travels at 20 miles per
hour, and the fly travels at 30 miles per hout, how far does the fly travel, in total,
before meeting its maker when the trains collide? (Apologies that physics problems
are often so violent.)

Right after hearing the problem, John von Neumann, inventor of game the-
ory and the modern computer, gave the correct distance. “That was quick,”
said a colleague. “Everyone else tries to sum the infinite series.” “What’s
wrong with that?” said von Neumann. “That’s how I did it.” In Problem 2.7,
you get to work out the infinite-series and the insightful solutions.

Problem 2.4 Summing a geometric series using abstraction
Use abstraction to find the sum of the infinite geometric series

14+r4+7r2 4134, @.7)

Problem 2.5 Using the geometric-series sum
Use Problem 2.4 to check that the probability of the first player’s winning is 2/3:
1 1 1 2
p=stgtgto=3 (2.8)
Problem 2.6 Nested square roots
Evaluate these infinite mixes of arithmetic and square roots:

B3xAI3%XA3%A3X - . (2.9)
242442 +A2+ . (2.10)

Problem 2.7 Two trains and a fly

Find the insightful and the infinite-series solution to the problem of the fly and
the approaching trains (Section 2.2). Check that they give the same answer for the
distance that the fly travels!
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Problem 2.8 Resistive ladder

In the following infinite ladder of 1-ohm resistors, what is the resistance between
points A and B? This measurement is indicated by the ohmmeter connected be-
tween these points.

10 1
A

o—— AN AA
VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV VVVVVVVV
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2.3 Purpose of abstraction

The coin game (Section 2.2), like the geometric series (Problem 2.4) or the
resistive ladder (Problem 2.8), contained a copy of itself. Noticing this reuse
greatly simplified the analysis. Abstraction has a second benefit: giving
us a high-level view of a problem or situation. Abstractions then show us
structural similarities between seemingly disparate situations.

As an example, let’s revisit the geometric mean, introduced in Section 1.6
to make gut estimates. The geometric mean of two nonnegative quantities
a and b is defined as

geometric mean = /ab. (2.11)

This mean is called the geometric mean because it has
a pleasing geometric construction. Divide the diameter
of a circle into two lengths, a and b, and inscribe a right
triangle whose hypotenuse is the diameter. The triangle’s
altitude is the geometric mean of 2 and b.

This mean reappears in surprising places, including the

beach. When you stand at the shore and look at the horizon, you are seeing
a geometric mean. The distance to the horizon is the geometric mean of
two important lengths in the problem (Problem 2.9).

For me, its most surprising appearance was in the “Programming and Prob-
lem-Solving Seminar” course taught by Donald Knuth [40] (who also cre-
ated TEX, the typesetting system for this book). The course, taught as a se-
ries of two-week problems, helped first-year PhD students transition from
undergraduate homework problems to PhD research problems. A home-
work problem requires perhaps 1 hour. A research problem requires, say,
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1000 hours: roughly a year of work, allowing for other projects. (A few prob-
lems stapled together become a PhD.) In the course, each 2-week module re-
quired about 30 hours—approximately the geometric mean of the two end-
points. The modules were just the right length to help us cross the bridge
from homework to research.

Problem 2.9 Horizon distance

How far is the horizon when you are standing at the shore? Hint: It’s farther for
an adult than for a child.

Problem 2.10 Distance to a ship

Standing at the shore, you see a ship (drawn to scale) with a 10-me-
ter mast sail into the distance and disappear from view. How far

away was it when it disappeared?

As further evidence that the geometric mean is a useful abstraction, the idea
appears even when there is no geometric construction to produce it, such
as in making gut estimates. We used this method in Section 1.6 to estimate
the population density and then the population of the United States. Let’s
practice by estimating the oil imports of the United States in barrels per
year—without the divide-and-conquer reasoning of Section 1.4.

The method requires that the gut supply a lower and an upper bound. My
gut reports back that it would feel fairly surprised if the imports were less
than 10 million barrels per year. On the upper end, my gut would be fairly
surprised if the imports were higher than 1 trillion barrels per year—a bar-
rel is a lot of oil, and a trillion is a large number!

You might wonder how your gut too can come up with such large numbers
and how you can have any confidence in them. Admittedly,  have practiced
a lot. But you can practice too. The key is the practice effectively. First, have
the courage to guess even when you feel anxious about it (I feel this anxiety
still, so I practice this courage often). Second, compare your guess to values
in which you can place more confidence—for example, to your own more
careful estimates or to official values. The comparison helps calibrate your
gut (your right brain) to these large magnitudes. You will find a growing
and justified confidence in your judgment of magnitude.

My best guess for the amount is the geometric mean of the lower and upper
estimates:

410 million x 1 trillion b;l;l;ls' 2.12)
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The result is roughly 3 billion barrels per year—close to the our estimate
using divide and conquer and close to the true value. In contrast, the arith-
metic mean would have produced an estimate of 500 billion barrels per year,
which is far too high.

Problem 2.11 Arithmetic-mean-geometric-mean inequality

Use the geometric construction for the geometric mean to show that the arithmetic
mean of 2 and b (assumed to be nonnegative) is always greater than or equal to
their geometric mean. When are the means equal?

Problem 2.12 Weighted geometric mean

A generalization of the arithmetic mean of 2 and b as (a + b)/2 is to give a and
b unequal weights. What is the analogous generalization for a geometric mean?
(The weighted geometric mean shows up in Problem 6.29 when you estimate the
contact time of a ball bouncing from a table.)

Analogies

Because abstractions are so useful, it is helpful to have methods for making
them. One way is to construct an analogy between two systems. Each com-
mon feature leads to an abstraction; each abstraction connects our knowl-
edge in one system to our knowledge in the other system. One piece of
knowledge does double duty. Like a mental lever, analogy and, more gen-
erally, abstraction are intelligence amplifiers.

Electrical-mechanical analogies

An illustration with many abstractions on which we can practice is the anal-
ogy between a spring-mass system and an inductor—capacitor (LC) circuit.

k Vi n fﬂm Vout

AAAAA o (213)
c ”—

In the circuit, the voltage source—the V;, on its left side—supplies a cur-
rent that flows through the inductor (a wire wrapped around an iron rod)
and capacitor (two metal plates separated by air). As current flows through
the capacitor, it alters the charge on the capacitor. This “charge” is confus-
ingly named, because the net charge on the capacitor remains zero. Instead,
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“charge” means that the two plates of the capacitor hold opposite charges,
Q and —Q, with Q # 0. The current changes Q. The charges on the two
plates create an electric field, which produces the output voltage V. equal
to Q/C (where C is the capacitance).

For most of us, the circuit is less familiar than the spring—mass system.
However, by building an analogy between the systems, we transfer our un-
derstanding of the mechanical to the electrical system.

In the mechanical system, the fundamental variable spring
is the mass’s displacement x. In the electrical sys-

tis the ch h ) Th _ variable
tem, it is the charge Q on t e ca'pac'ltor. ese vari- . 4.4 tive v
ables are analogous so their derivatives should also -
2nd derivative a

be analogous: Velocity (v), the derivative of posi-
tion, should be analogous to current (I), the derivative of charge.

Let’s build more analogy bridges. The derivative of velocity, which is the
second derivative of position, is acceleration (a). Therefore, the derivative
of current (dI/dt) is the analog of acceleration. This analogy will be useful
shortly when we find the circuit’s oscillation frequency.

These variables describe the state of the systems and how that state changes:
They are the kinematics. But without the causes of the motion—the dy-
namics—the systems remain lifeless. In the mechanical system, dynamics
results from force, which produces acceleration:

a= E. (2.14)
m

Acceleration is analogous to change in current dI/dt, which is produced by
applying a voltage to the inductor. For an inductor, the governing relation
(analogous to Ohm’'s law for a resistor) is

a _ v

it~ L’
where L is the inductance, and V' is the voltage across the inductor. Based
on the common structure of the two relations, force F and voltage V must
be analogous. Indeed, they both measure effort: Force tries to accelerate
the mass, and voltage tries to change the inductor current. Similarly, mass
and inductance are analogous: Both measure resistance to the correspond-
ing effort. Large masses are hard to accelerate, and large-L inductors resist
changes to their current. (A mass and an inductor, in another similarity,
both represent kinetic energy: a mass through its motion, and an inductor
through the kinetic energy of the electrons making its magnetic field.)

(2.15)

circuit
Q

I
dl/dt
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Turning from the mass—inductor analogy, let’s look at the spring—capacitor
analogy. These components represent the potential energy in the system:
in the spring through the energy in its compression or expansion, and in
the capacitor through the electrostatic potential energy due to its charge.

Force tries to stretch the spring but meets a resistance k: The stiffer the
spring (the larger its k), the harder it is to stretch.

F
X = (2.16)

Analogously, voltage tries to charge the capacitor but meets a resistance
1/C: The larger the value of 1/C, the smaller the resulting charge.
14

Q=1 (217)

Based on the common structure of the relations for x and Q, spring constant
k must be analogous to inverse capacitance 1/C. Here are all our analogies.

mechanical electrical

kinematics
fundamental variable X Q
first derivative v I
second derivative a dl/dt
dynamics
effort F Vv
resistance to effort (kinetic component) m L
resistance to effort (potential component) k 1/C

From this table, we can read off our key result. Start with the natural (an-
gular) frequency w of a spring-mass system: w = ./k/m. Then apply the
analogies. Mass m is analogous to inductance L. Spring constant k is anal-
ogous to inverse capacitance 1/C. Therefore, w for the LC circuitis 1/4/LC:
1/C 1
_ [ ) 218

I el (2.18)
Because of the analogy bridges, one formula, the natural frequency of a
spring-mass system, does double duty. More generally, whatever we learn
about one system helps us understand the other system. Because of the
analogies, each piece of knowledge does double duty.
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Energy density in the gravitational field

With the electrical-mechanical analogy as practice, let’s try a less famil-
iar analogy: between the electric and the gravitational field. In particular,
we’ll connect the energy densities (energy per volume) in the correspond-
ing fields. An electric field E represents an energy density of €,E%/2, where
€p is the permittivity of free space appearing in the electrostatic force be-
tween two charges g, and g;:

_ N2

= ) 2.19
47reyr? 19

Because electrostatic and gravitational forces are both inverse-square forces
(the force is proportional to 1/ r2), the energy densities should be analogous.
Not least, there should be a gravitational energy density. But how is it re-
lated to the gravitational field?

To answer that question, our first step is to find the gravitational analog of
the electric field. Rather than thinking of the electric field only as something
electric, focus on the common idea of a field. In that sense, the electric field
is the object that, when multiplied by the charge, gives the force:

force = charge x field. (2.20)

We use words rather than the normal symbols, such as E for field or g for
charge, because the symbols might bind our thinking to particular cases
and prevent us from climbing the abstraction ladder.

This verbal form prompts us to ask: What is gravitational charge? In elec-
trostatics, charge is the source of the field. In gravitation, the source of the
field is mass. Therefore, gravitational charge is mass. Because field is force
per charge, the gravitational field strength is an acceleration:

force _ force

= = acceleration. (2.21)
charge  mass

gravitational field =

Indeed, at the surface of the Earth, the field strength is g, also called the
acceleration due to gravity.

The definition of gravitational field is the first half of the puzzle (we are
using divide-and-conquer reasoning again). For the second half, we’ll use
the field to compute the energy density. To do so, let’s revisit the route from
electric field to electrostatic energy density:

E - %eoEz. (2.22)
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With ¢ as the gravitational field, the analogous route is

g - % x something x g2, (2.23)
where the “something” represents our ignorance of what to do about €.
What is the gravitational equivalent of €?

To find its equivalent, compare the simplest case in both worlds: the field
of a point charge. A point electric charge q produces a field

__1 4
© ey r2’

(2.24)

A point gravitational charge m (a point mass) produces a gravitational field
(an acceleration)

G
g= TT' (2.25)

where G is Newton’s constant.

The gravitational field has a similar structure to the electric field. Both
are inverse-square forces, as expected. Both are proportional to the charge.
The difference is the constant of proportionality. For the electric field, it is
1/4mey. For the gravitational field, it is simply G. Therefore, G is analogous
to 1/4mey; equivalently, €, is analogous to 1/47G.

Then the gravitational energy density becomes
1.1 5, _ &
2" 47G % T G

We will use this analogy in Section 9.3.3 when we transfer our hard-won

knowledge of electromagnetic radiation to understand the even more subtle
physics of gravitational radiation.

(2.26)

Problem 2.13  Gravitational energy of the Sun

What is the energy in the gravitational field of the Sun? (Just consider the field
outside the Sun.)

Problem 2.14 Pendulum period including buoyancy

The period of a pendulum in vacuum is (for small amplitudes) T = Zﬂm , Where
[ is the bob length and g is the gravitational field strength. Now imagine the pen-
dulum swinging in a fluid (say, air). By replacing ¢ with a modified value, include
the effect of buoyancy in the formula for the pendulum period.
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Problem 2.15 Comparing field energies

Find the ratio of electrical to gravitational field energies in the fields produced by
a proton.

Parallel combination

Analogies not only reuse work, they help us rewrite expressions in compact,
insightful forms. An example is the idea of parallel combination. It appears
in the analysis of the infinite resistive ladder of Problem 2.8.

the ladder all over again
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To find the resistance R across the ladder (in other words, what the ohmme-
ter measures between the nodes A and B), you represent the entire ladder
as a single resistor R. Then the whole ladder is 1 ohm in series with the
parallel combination of 1 ohm and R:
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(2.27)
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The next step in finding R usually invokes the parallel-resistance formula:
that the resistance of R; and R, in parallel is
RiR,

. 2.28
Ri+Ry (228)

For our resistive ladder, the parallel combination of 1 ohm with the ladder
is 1 ohm x R/(1 ohm + R). Placing this combination in series with 1 ohm
gives a resistance

10 xR
1Q+R’
This recursive construction reproduces the ladder, only one unit longer. We
therefore get an equation for R:

10OxR
10+R

10+ (2.29)

R=10O+ (2.30)
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The (positive) solution is R = (1 + J/5)/2 ohms. The numerical part is the
golden ratio ¢ (approximately 1.618). Thus, the ladder, when built with
1-ohm resistors, offers a resistance of ¢ ohms.

Although the solution is correct, it skips over a reusable idea: the parallel
combination. To facilitate its reuse, let’'s name the idea with a notation:

Ry I R,. (2.31)

This notation is self-documenting, as long as you recognize the symbol ||
to mean “parallel,” a recognition promoted by the parallel bars. A good
notation should help thinking, not hinder it by requiring us to remember
how the notation works. With this notation, the equation for the ladder
resistance R is

R=10 + 1Q|R (2.32)

(the parallel-combination operator has higher priority than—is computed
before—the addition). This expression more plainly reflects the structure
of the system, and our reasoning about it, than does the version

10OxR
10+R

The || notation organizes the complexity.

R=10Q+ (2.33)

Once you name an idea, you find it everywhere. As a child, after my family
bought a Volvo, I saw Volvos on every street. Similarly, we’ll now look at
examples of parallel combination far beyond the original appearance of the
idea in circuits. For example, it gives the spring constant of two connected
springs (Problem 2.16):

AWMV = AWV (234
k k

1 2 kyll ey

Problem 2.16  Springs as capacitors

Using the analogy between springs and capacitors (discussed in Section 2.4.1), ex-
plain why springs in series combine using the parallel combination of their spring
constants.

Another surprising example is the following spring-mass system with two
masses:

k

Bl
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The natural frequency w, expressed without our || abstraction, is

_kim+ M)
w= M (2.35)
This form looks complicated until we use the || abstraction:
k
w = W (2.36)

Now the frequency makes more sense. The two masses act like their parallel
combination m || M:

k

Y e

The replacement mass m || M is so useful that it has a special name: the re-
duced mass. Our abstraction organizes complexity by turning a three-com-
ponent system (a spring and two masses) into a simpler two-component
system.

In the spirit of notation that promotes insight, use lowercase (“small”) m for
the mass that is probably smaller, and uppercase (“big”) M for the mass that
is probably larger. Then write m || M rather than M || m. These two forms
produce the same result, but the m | M order minimizes surprise: The
parallel combination of m and M is smaller than either mass (Problem 2.17),
so it is closer to m, the smaller mass, than to M. Writing m || M, rather than
M || m, places the most salient information first.

Problem 2.17 Using the resistance analogy

By using the analogy with parallel resistances, explain why 1 || M is smaller than
m and M.

Why do the two masses combine like resistors in parallel?
The answer lies in the analogy between mass and resistance. Resistance
appears in Ohm’s law:

Voltage = resistance x current. (2.37)

Voltage is an effort. Current, which results from the effort, is a flow. There-
fore, the more general form—one step higher on the abstraction ladder—is

effort = resistance x flow. (2.38)

In this form, Newton’s second law,



244

44 2 Abstraction

force = mass x acceleration, (2.39)

identifies force as the effort, mass as the resistance, and acceleration as the
flow.

Because the spring can wiggle either mass, just as current can flow through
either of two parallel resistors, the spring feels a resistance equal to the par-
allel combination of the resistances—namely, m || M.

Problem 2.18 Three springs connected

What is the effective spring constant of three springs connected in a line, with
spring constants 2, 3, and 6 newtons per meter, respectively?

Impedance as a higher-level abstraction

Resistance, in the electrical sense, has appeared several times, and it under-
lies a higher-level abstraction: impedance. Impedance extends the idea of
electrical resistance to capacitors and inductors. Capacitors and inductors,
along with resistors, are the three linear circuit elements: In these elements,
the connection between current and voltage is described by a linear equa-
tion: For resistors, it is a linear algebraic relation (Ohm’s law); for capacitors
or inductors, it is a linear differential equation.

Why should we extend the idea of resistance?

Resistors are easy to handle. When a circuit contains only resistors, we can
immediately and completely describe how it behaves. In particular, we can
write the voltage at any point in the circuit as a linear combination of the
voltages at the source nodes. If only we could do the same when the circuit
contains capacitors and inductors.

We can! Start with Ohm’s law,

voltage
current = —————, (2.40)
resistance
and look at it in the higher-level and expanded form
flow = 1 x effort. (2.41)

resistance

For a capacitor, flow will still be current. But we’ll need to find the capac-
itive analog of effort. This analogy will turn out slightly different from
the electrical-mechanical analogy between capacitance and spring constant
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(Section 2.4.1), because now we are making an analogy between capacitors
and resistors (and, eventually, inductors). For a capacitor,

charge = capacitance x voltage. (2.42)
To turn charge into current, we differentiate both sides to get
d(voltage)

-

To make the analogy quantitative, let’s apply to the capacitor the sim-
plest voltage whose form is not altered by differentiation:

V =V,e“t, (2.44)

current = capacitance x (2.43)

where V is the input voltage, V) is the amplitude, w is the angular fre-
quency, and j is the imaginary unit /—1. The voltage V is a complex num-
ber; but the implicit understanding is that the actual voltage is the real part
of this complex number. By finding how the current I (the flow) depends
on V (the effort), we will extend the idea of resistance to a capacitor.

With this exponential form, how can we represent the more familiar oscillating
voltages V1 cos wt or Vq sin wt, where V' is a real voltage?
Start with Euler’s relation:

/¥t = cos wt + jsin wt. (2.45)
To make V; cos wt, set Vo = V;in V = V,e/“!. Then

V = Vy(coswt + jsin wt). (2.46)
and the real part of V is just V; cos wt.
Making V; sin wt is more tricky. Choosing V|, = jV; almost works:

V =jVi(coswt + jsinwt) = V4 (j cos wt — sin wt). (2.47)

The real part is —V sin wt, which is correct except for the minus sign. Thus,
the correct amplitude is Vj; = —jV;. In summary, our exponential form can
compactly represent the more familiar sine and cosine signals.

With this exponential form, differentiation is simpler than with sines or
cosines. Differentiating V' with respect to time just brings down a factor of
jw, but otherwise leaves the Ve/*“! alone:

ii_‘t/ =jw x Vyel“! =jwV. (2.48)
v
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With this changing voltage, the capacitor equation,

) d(voltage)

current = capacitance x — (2.49)
becomes

current = capacitance x jw x voltage. (2.50)
Let’s compare this form to its analog for a resistor (Ohm’s law):

current = ; x voltage. (2.51)

resistance
Matching up the pieces, we find that a capacitor offers a resistance
1
Ze = —. 2.52
¢ jwC 252

This more general resistance, which depends on the frequency, is called im-
pedance and denoted Z. (In the analogy of Section 2.4.1 between capacitors
and springs, we found that capacitor offered a resistance to being charged of
1/C. Impedance, the result of an analogy between capacitors and resistors,
contains 1/C as well, but also contains the frequency in the 1/jw factor.)

Using impedance, we can describe what happens to any sinusoidal signal
in a circuit containing capacitors. Our thinking is aided by the compact
notation—the capacitive impedance Z- (or even R¢). The notation hides
the details of the capacitor differential equation and allows us to transfer
our intuition about resistance and flow to a broader class of circuits.

V, AN
i VVVVV

The simplest circuit with resistors and capacitors is the R

so-called low-pass RC circuit. Not only is it the sim-
plest interesting circuit, it will also be, thanks to fur-
ther analogies, a model for heat flow. Let’s apply the

c ——

impedance analogy to this circuit.

To help us make and use abstractions, let’s imagine defocusing our
eyes. Under blurry vision, the capacitor looks like a resistor that just
happens to have a funny resistance Rc = 1/jwC. Now the entire cir-
cuit looks just like a pure-resistance circuit. Indeed, it is the simplest

AMA—e

such circuit, a voltage divider. Its behavior is described by one num- 2 Re
ber: the gain, which is the ratio of output to input voltage V,/Vin.
In the RC circuit, thought of as a voltage divider,
) capacitive resistance Re
gain = = (2.53)

~ total resistance from V;, to ground = R+ R¢’

Vout

ground
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Because R¢ = 1/jwC, the gain becomes
1

jwC

T
R+jw_C

gain = (2.54)

After clearing the fractions by multiplying by jwC in the numerator and
denominator, the gain simplifies to

o 1 _
gain = 1 +ijC' (2.55)

Why is the circuit called a low-pass circuit?

At high frequencies (w — o0), the jwRC term in the denominator makes
the gain zero. At low frequencies (w — 0), the jwRC term disappears and
the gain is 1. High-frequency signals are attenuated by the circuit; low-fre-
quency signals pass through mostly unchanged. This abstract, high-level
description of the circuit helps us understand the circuit without our get-
ting buried in equations. Soon we will transfer our understanding of this
circuit to thermal systems.

The gain contains the circuit parameters as the product RC. In the denom-
inator of the gain, jwRC is added to 1; therefore, jwRC, like 1, must have
no dimensions. Because j is dimensionless (is a pure number), wRC must
be itself dimensionless. Therefore, the product RC has dimensions of time.
This product is the circuit’s time constant—usually denoted 7.

The time constant has two physical interpretations. To construct them, we
imagine charging the capacitor using a constant input voltage V; eventu-
ally (after an infinite time), the capacitor charges up to the input voltage
(Vout = V) and holds a charge Q = CV,. Then, att = 0, we make the input
voltage zero by connecting the input to ground.

AL AAAA
VVVVV VoutL VVVVV Vout

ground ground

t<0 t>0

The capacitor discharges through the resistor, and its voltage decays expo-
nentially:
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gound(V=0) N ___
After one time constant 7, the capacitor voltage falls by a factor of e toward
its final value—here, from V|, to V/e. The 1/e time is our first interpretation
of the time constant. Furthermore, if the capacitor voltage had decayed at
its initial rate (just after t = 0), it would have reached zero voltage after one
time constant T—the second interpretation of the time constant.

The time-constant abstraction hides—abstracts away—the details that pro-
duced it: here, electrical resistance and capacitance. Nonelectrical systems
can also have a time constant but produce it by a different mechanism.
Our high-level understanding of time constants, because it is not limited
to electrical systems, will help us transfer our understanding of the electri-
cal low-pass filter to nonelectrical systems. In particular, we are now ready
to understand heat flow in thermal systems.

Problem 2.19 Impedance of an inductor

An inductor has the voltage—current relation
dl
V =L—, 2.56
it (2.56)
where L is the inductance. Find an inductor’s frequency-dependent impedance
Z;. After finding this impedance, you can analyze any linear circuit as if it were
composed only of resistors.

Thermal systems

The RC circuit is a model for thermal systems—which are not obviously
connected to circuits. In a thermal system, temperature difference, the ana-
log of voltage difference, produces a current of energy. Energy current, in
less fancy words, is heat flow. Furthermore, the current is proportional to
the temperature difference—just as electric current is proportional to volt-
age difference. In both systems, flow is proportional to effort. Therefore,
heat flow can be understood by using circuit analogies.
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walls
AAAAN

As an example, I often prepare a cup of tea but forget to
drink it while it is hot. Like a discharging capacitor, the Vvlé:v
tea slowly cools toward room temperature and becomes
undrinkable. Heat flows out through the mug. Its walls
provide a thermal resistance; by analogy to an RC cir-

G ——

tea

cuit, let’s denote the thermal resistance R,. The heat is

stored in the water and mug, which form a heat reservoir. This reservoir,
of heat rather than of charge, provides the thermal capacitance, which we
denote C,. (Thus, the mug participates in the thermal resistance and capac-
itance.) Resistance and capacitance are transferable ideas.

The product R,C; is, by analogy to the RC circuit, the thermal time con-
stant 7. To estimate T with a home experiment (the method we used in
Section 1.7), heat up a mug of tea; as it cools, sketch the temperature gap
between the tea and room temperature. In my extensive experience of tea
neglect, an enjoyably hot cup of tea becomes lukewarm in half an hour. To
quantify these temperatures, enjoyably warm may be 130 °F (= 55 °C), room
temperature is 70 °F (= 20 °C), and lukewarm may be 85 °F (= 30 °C).

130 °F (hot tea) |

Based on the preceding data, what is the approximate thermal time constant of the
mug of tea?

In one thermal time constant, the temperature gap falls by a factor of e (just
as the voltage gap falls by a factor of e in one electrical time constant). For
my mug of tea, the temperature gap between the tea and the room started
at 60 °F:

enjoyably warm — room temperature = 60 °F. (2.57)
130 °F 70°F

In the half hour while the tea cooled in the microwave, the temperature gap
fell to 15 °F:

Ttea

| mug and

Trm)m
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lukewarm — room temperature = 15°F. (2.58)
85 °F 70 °F

Therefore, the temperature gap decreased by a factor of 4 in half an hour.
Falling by the canonical factor of e (roughly 2.72) would require less time:
perhaps 0.3 hours (roughly 20 minutes) instead of 0.5 hours. A more pre-
cise calculation would be to divide 0.5 hours by In 4, which gives 0.36 hours.
However, there is little point doing this part of the calculation so precisely
when the input data are far less precise. Therefore, let’s estimate the ther-
mal time constant 7 as roughly 0.3 hours.

Using this estimate, we can understand what happens to the tea mug when,
as it often does, it spends a lonely few days in the microwave, subject to the
daily variations in room temperature. This analysis will become our model
for the daily temperature variations in a house.

How does a teacup with T ~ 0.3 hours respond to daily temperature variations?

First, set up the circuit analogy. The output signal is walls T
still the tea’s temperature. The input signal is the (si- vvlgv “
nusoidally) varying room temperature. However, , —_ mugand
the ground signal, which is our reference tempera- T tea
ture, cannot also be the room temperature. Instead,

Twavg

we need a constant reference temperature. The sim-
plest choice is the average room temperature T,,. (After we have trans-
ferred this analysis to the temperature variation in houses, we’ll see that
the conclusion is the same even with a different reference temperature.)

The gain connects the amplitudes of the output and input signals:

amplitude of the output signal 1

gain = (2.59)

amplitude of the input signal ~ 1+ jwt’
The input signal (room temperature) varies with a frequency f of 1 cycle
per day. Then the dimensionless parameter wt in the gain is roughly 0.1.
Here is that calculation:

f
cycle lday
27T X 1d_ay x 0.3hr x e~ 0.1. (2.60)
w T 1

The system is driven by a low-frequency signal: w is not large enough to
make wT comparable to 1. As the gain expression reminds us, the mug of
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tea is a low-pass filter for temperature variations. It transmits this low-fre-
quency input temperature signal almost unchanged to the output—to the
tea temperature. Therefore, the inside (tea) temperature almost exactly fol-
lows the outside (room) temperature.

The opposite extreme is a house. Compared to walls
. Toutside WA Tinside
the mug, a house has a much higher mass and
therefore thermal capacitance. The resulting time I .
constant T = R,C, is probably much longer for a N
house than for the mug. As an example, when .
avg

I taught in sunny Cape Town, where houses are
often unheated even in winter, the mildly insulated house where I stayed
had a thermal time constant of approximately 0.5 days.

For this house the dimensionless parameter wt is much larger than it was
for the tea mug. Here is the corresponding calculation.

f
1
21 x 120 % 05 days =~ 3. (2.61)
day
w T

What consequence does wt =~ 3 have for the indoor temperature?

In the Cape Town winter, the outside temperature varied daily between
45°F and 75 °F; let’s also assume that it varied approximately sinusoidally.
This 30 °F peak-to-peak variation, after passing through the house low-pass
filter, shrinks by a factor of approximately 3. Here is how to find that factor
by estimating the magnitude of the gain.

amplitude of T}, 4e
amplitude of T,

outside

|gain| = . (2.62)

_ 1
1+ jwT

(Itis slightly confusing that the outside temperature is the input signal, and
the inside temperature is the output signal!) Now plug in wt = 3 to get

. 1 1 1
~ = ~ —. 2.63
B2~ 1755 = Tm a3 2o

In general, when wt > 1, the magnitude of the gain is approximately 1/wT.

Therefore, the outside peak-to-peak variation of 30 °F becomes a smaller
inside peak-to-peak variation of 10 °F. Here is a block diagram showing
this effect of the house low-pass filter.
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R house as a . 264
30°F low-pass filter 10°F (2.64)

Our comfort depends not only on the temperature variation (I like a fairly
steady temperature), but also on the average temperature.

What is the average temperature indoors?

It turns out that the average temperature indoors is equal to the average
temperature outdoors! To see why, let’s think carefully about the reference
temperature (our thermal analog of ground). Before, in the analysis of the
forgotten tea mug, our reference temperature was the average indoor tem-
perature. Because we are now trying to determine this value, let’s instead
use a known convenient reference temperature—for example, the cool 10 °C,
which makes for round numbers in Celsius or Fahrenheit (50 °F).

The input signal (the outside temperature) varied in winter between 45 °F
and 75 °F. Therefore, it has two pieces: (1) our usual varying signal with
the 30 °F peak-to-peak variation, and (2) a steady signal of 10 °F.

75°F 15°F o
60°F —
10°F
60°F — = 0°F + 50°F——V (2.65)
(reference temp.)
45°F — —15°F
full signal varying piece steady piece

The steady signal is the difference between the average outside temperature
of 60 °F and the reference signal of 50 °F.

Let’s handle each piece in turn—we are using divide-and-conquer reason-
ing again. We just analyzed the varying piece: It passes through the house
low-pass filter and, with wt = 3, it shrinks significantly in amplitude. In
contrast, the nonvarying part, which is the average outside temperature,
has zero frequency by definition. Therefore, its dimensionless parameter
wt is exactly 0. This signal passes through the house low-pass filter with a
gain of 1. As a result, the average output signal (the inside temperature) is
also 60 °F: the same steady 10 °F signal measured relative to the reference
temperature of 50 °F.
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The 10 °F peak-to-peak inside-temperature amplitude is a variation around
60°F. Therefore, the inside temperature varies between 55 °F and 65 °F
(13°C to 18°C). Indoors, when I am not often running or otherwise gener-
ating much heat, I feel comfortable at 68 °F (20 °C). So, as this circuit model
of heat flow predicts, I wore a sweater day and night in the Cape Town
house. (For more on using RC circuit analogies for building design, see the
“Design masterclass” article by Doug King [30].)

Problem 2.20 When is the house coldest?

Based on the general form for the gain, 1/(1 + jwT), when in the day will the Cape
Town house be the coldest, assuming that the outside is coldest at midnight?

2.5 Summary and further problems

Geometric means, impedances, low-pass filters—these ideas are all abstrac-
tions. An abstraction connects seemingly random details into a higher-level
structure that allows us to transfer knowledge and insights. By building ab-
stractions, we amplify our intelligence.

Indeed, each of our reasoning tools is an abstraction or reusable idea. In
Chapter 1, for example, we learned how to split hard problems into tractable
ones, and we named this process divide-and-conquer reasoning. Don’t
stop with this one process. Whenever you reuse an idea, identify the trans-
ferable process, and name it: Make an abstraction. With a name, you will
recognize and reuse it.

Problem 2.21  From circles to spheres

In this problem, you first find the area of a circle from its circumference and then
use analogous reasoning to find the volume of a sphere.

a. Divide a circle of radius r into pie wedges. Then snip and unroll the circle:

T
b b 500 b

Use the unrolled picture and the knowledge that the circle’s circumference is

27tr to show that its area is 7r72.

b. Now extend the argument to a sphere of radius r: Find its volume given that
its surface area is 47t72. (This method was invented by the ancient Greeks.)
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Problem 2.22  Gain of an LRC circuit

Use the impedance of an inductor (Problem 2.19) to L C

find the gain of the classic LRC circuit. In this con- Vin —’Tm')—| }T— out
figuration, in which the output voltage measured

across the resistor, is the circuit a low-pass filter, a R
high-pass filter, or a band-pass filter?

AAA

VVVVV

ground

Problem 2.23 Continued fraction
Evaluate the continued fraction
1

1+ T
1+T

(2.67)

Compare this problem with Problem 2.8.

Problem 2.24 Exponent tower

Evaluate

ﬁﬁﬁ" ; (2.68)

Here, a’ means a®").

Problem 2.25 Coaxial cable termination

In physics and electronics laboratories around the world, the favorite way to con-
nect equipment and transmit signals is with coaxial cable. The standard coaxial
cable, RG-58/U, has a capacitance per length of 100 picofarads per meter and an
inductance per length of 0.29 microhenries per meter. It can be modeled as a long
inductor—capacitor ladder:

IL IL IL IL
'”ll | qTTn | "”i ”'“
C | C | C | 000 C j_
What resistance R placed at the end (in parallel with the last capacitor) makes the
cable look like an infinitely long LC cable?

Problem 2.26 UNIX and Linux

Using Mike Gancarz’s The UNIX Philosophy [17] and Linux and the Unix Philoso-
phy [18], find examples of abstraction in the design and philosophy of the UNIX
and Linux operating systems.
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Discarding complexity
without losing information

You've divided your hard problems into manageable pieces. You've found
transferable, reusable ideas. When these tools are not enough and prob-
lems are still too complex, you need to discard complexity—the theme of
our next three tools. They help us discard complexity without losing in-
formation. If a system contains a symmetry (Chapter 3)—or what is closely
related, it is subject to a conservation law—using the symmetry greatly sim-
plifies the analysis. Alternatively, we often do not care about a part of an
analysis, because it is the same for all the objects in the analysis. To ig-
nore those parts, we use proportional reasoning (Chapter 4). Finally, we
can ensure that our equations do not add apples to oranges. This simple
idea—dimensional analysis (Chapter 5)—greatly shrinks the space of pos-
sible solutions and helps us master complexity.

to master complexity

organize it

Part I discard it
without losing information losing information
Part 11 Part II1
symmetry and proportional dimensional / \\
conservation reasoning analysis 6 7 8 9

3 4 5
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The rain is pouring down and shelter is a few hundred yards away. Do you
get less wet by running? On the one hand, running means less time for
raindrops to hit you. On the other hand, running means that the raindrops
come toward you more directly and therefore more rapidly. The resolution
is not obvious—until you apply the new tool of this chapter: symmetry and
conservation. (In Section 3.1.1, we'll resolve this run-in-the-rain question.)

Invariants

We use symmetry and conservation whenever we find a quantity that, de-
spite the surrounding complexity, does not change. This conserved quan-
tity is called an invariant. Finding invariants simplifies many problems.

Our first invariant appeared unannounced in Section 1.2 when we estimated
the carrying capacity of a lane of highway. The carrying capacity—the rate
at which cars flow down the lane—depends on the separation between the
cars and on their speed. We could have tried to estimate each quantity and
then the carrying capacity. However, the separation between cars and the
cars’ speeds vary greatly, so these estimates are hard to make reliably.
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Instead, we invoked the 2-second following rule. As long as drivers obey it,
the separation between cars equals 2 seconds of driving. Therefore, one car
flows by every 2 seconds—which is the lane’s carrying capacity (in cars per
time). By finding an invariant, we simplified a complex, changing process.
When there is change, look for what does not change! (This wisdom is from
Arthur Engel’s Problem-Solving Strategies [12].)

To run or walk in the rain?

We'll practice with this tool by deciding whether to run or walk in the rain.
It's pouring, your umbrella is sitting at home, and home lies a few hundred
meters away.

To minimize how wet you become, should you run or walk?

Let’s answer this question with three simplifica- Yo"
tions. First, assume that there is no wind, so the
rain is falling vertically. Second, assume that the
rain is steady. Third, assume that you are a thin
sheet: You have zero thickness along the direc-
tion toward your house (this approximation was
more valid in my youth). Equivalently, your head is protected by a water-
proof cap, so you do not care whether raindrops hit your head. You try to
minimize just the amount of water hitting your front.

. raindrops |

— U -

Your only degree of freedom—the only parameter that you get to choose—is
your speed. A high speed leaves you in the rain for less time. However, it
also makes the rain come at you more directly (more horizontally). But
what remains constant, independent of your speed, is the volume of air
that you sweep out. Because the rain is steady, that volume contains a fixed
number of raindrops, independent of your speed. Only these raindrops hit
your front. Therefore, you get equally wet, no matter your speed.

This surprising conclusion is another application of the principle that when
there is change, look for what does not change. Here, we could change our
speed by choosing to walk or run. Yet no matter what our speed, we sweep
out the same volume of air—our invariant.

Because the conclusion of this invariance analysis, that it makes no differ-
ence whether you walk or run, is surprising, you might still harbor a nag-
ging doubt. Surely running in the rain, which we do almost as a reflex,
provide some advantage over a leisurely stroll.

home
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Is it irrational to run to avoid getting wet?

If you are infinitely thin, and are just a rectangle moving in the rain, then
the preceding analysis applies: Whether you run or walk, your front will
absorb the same number of raindrops. But most of us have a thickness, and
the number of drops landing on our head depends on our speed. If your
head is exposed and you care how many drops land on your head, then you
should run. But if your head is covered, feel free to save your energy and
enjoy the stroll. Running won’t keep you any dryer.

Tiling a mouse-eaten chessboard

Often a good way to practice a new tool is on a mathematical problem. Then
we do not add the complexity of the physical world to the problem of learn-
ing anew tool. Here, therefore, is a mathematical problem: a solitaire game.

A mouse comes and eats two diagonally opposite corners out
of a standard, 8 x 8 chessboard. We have a box of rectangular,
2 x 1 dominoes.

Can these dominoes tile the mouse-eaten chessboard? In other words,
can we lay down the dominoes to cover every square exactly once
(with no empty squares and no overlapping dominoes)?

Placing a domino on the board is one move in this solitaire

game. For each move, you choose where to place the domino—so you have
many choices at each move. The number of possible move sequences grows
rapidly. Instead of examining all these sequences, we’ll look for an invari-
ant: a quantity unchanged by any move of the game.

Because each domino covers one white square and one black square, the
following quantity I is invariant (remains fixed):

I = uncovered black squares — uncovered white squares. (3.1)

On a regular chess board, with 32 white squares and 32 black squares, the
initial position has I = 0. The nibbled board has two fewer black squares,
so I starts at 30 — 32 = —2. In the winning position, all squares are covered,

so I = 0. Because I is invariant, we cannot win: The dominoes cannot tile
the nibbled board.

Each move in this game changes the chessboard. By finding what does not
change, an invariant, we simplified the analysis.
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Invariants are powerful partly because they are abstractions. The details of
the empty squares—their exact locations—lie below the abstraction barrier.
Above the barrier, we see only the excess of black over white squares. The
abstraction contains all the information we need in order to know that we
can never tile the chessboard.

Problem 3.1 Cube solitaire

A cube has numbers at each vertex; all vertices start at 0 except 0 0
for the lower left corner, which starts at 1. The moves are all of
the same form: Pick any edge and increment its two vertices
by one. The goal of this solitaire game is to make all vertices 0 0
multiples of 3.

\
=i
o

/

For example, picking the bottom edge of the front face and = =
then the bottom edge of the back face, makes the following
sequence of cube configurations:

0 0 0 0 0 0

d] 0 2 1 2 1

Although no configuration above wins the game, can you win with a different
move sequence? If you can win, give a winning sequence. If you cannot win, prove
that you cannot.

Hint: Create analogous but simpler versions of this game.

Problem 3.2  Triplet solitaire

Here is another solitaire game. Start with the triplet (3,4,5). At each move, choose
any two of the three numbers. Call the choices 2 and b. Then make the following
replacements:

a — 0.8a — 0.6b;

(3.3)
b — 0.6a + 0.8b.

Can you reach (4,4,4)? If you can, give a move sequence; otherwise, prove that it
is impossible.

Problem 3.3 Triplet-solitaire moves as rotations in space

At each step in triplet solitaire (Problem 3.2), there are three possible moves, de-
pending on which pair of numbers from among 4, b, and c you choose to replace.
Describe each of the three moves as a rotation in space. That is, for each move, give
the rotation axis and the angle of rotation.
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Problem 3.4 Conical pendulum

Finding the period of a pendulum, even at small amplitudes,
requires calculus because of the pendulum’s varying speed.
When there is change, look for what does not change. Accord-
ingly, Christiaan Huygens (1629-1695), called “the most inge-
nious watchmaker of all time” [20, p. 79] by the great physi-
cist Arnold Sommerfeld, analyzed the motion of a pendulum
moving in a horizontal circle (a conical pendulum). Project-
ing its two-dimensional motion onto a vertical screen produces
one-dimensional pendulum motion; thus, the period of the
two-dimensional motion is the same as the period of one-dimensional pendulum
motion! Use that idea to find the period of a pendulum (without calculus!).

3.1.3 Logarithmic scales

In the solitaire game in Section 3.1.2, a move covered low end of hearing 20Hz
two chessboard squares with a domino. In the game piano middle C 262Hz
of understanding the world, a frequent move is chang- highest piano C 4186 Hz

ing the system of units. As in solitaire, ask, “When high end of hearing ~ 20kHz
such a move is made, what is invariant?” As an exam-

ple to crystallize our thinking, here are frequencies related to human hear-

ing. Let’s graph them using kilohertz (kHz) as the unit. The frequencies

then arrange themselves as follows:

low end high C high end

v v | . Y v
0} 10 20

middle C

Now let’s change units from kilohertz to hertz (Hz)—and keep the 0, 10, and
20 labels at their current positions on the page. This change magnifies every
spacing by a factor of 1000: The new 20 hertz is where 20 kilohertz was
(about 4 inches or 10 centimeters to the right of the origin), and 20 kilohertz,
the high end of human hearing, sits 100 meters to our right—far beyond the
borders of the page. This new scale is not very useful.

However, we missed the chance to use an invariant: the ratio between fre-
quencies. For example, the ratio between the upper end of human hearing
(20 kilohertz) and middle C (262 hertz) is roughly 80. If we use a repre-
sentation based on ratio rather than absolute difference, then the spacing
between frequencies would not change even when we changed the unit.
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We have such a representation: logarithms! On a logarithmic scale, a dis-
tance corresponds to a ratio rather than a difference. To see the contrast,
let’s place the numbers from 1 to 10 on a logarithmic scale.

| | | | IR I I I
1 2 3 4 5 6 7 8 9 10

The physical gap between 1 and 2 represents not their difference but rather
their ratio, namely 2. According to my ruler, the gap is approximately 3.16
centimeters. Similarly, the physical gap between 2 and 3—approximately
1.85 centimeters—represents the smaller ratio 1.5. In contrast to their rela-
tive positions on a linear scale, 2 and 3 on a logarithmic scale are closer than
1 and 2 are. On a logarithmic scale, 1 and 2 have the same separation as 2
and 4: Both gaps represent a ratio of 2 and therefore have the same physical
size (3.16 centimeters).

Problem 3.5 Practice with ratio thinking

On a logarithmic scale, how does the physical gap between 2 and 8 compare to the
gap between 1 and 2? Decide based on your understanding of ratios; then check
your reasoning by measuring both gaps.

Problem 3.6 More practice with ratio thinking

Is the gap between 1 and 10 less than twice, equal to twice, or more than twice the
gap between 1 and 3? Decide based on your understanding of ratios; then check
your reasoning by measuring both gaps.

Problem 3.7 Moving along a logarithmic scale

On the logarithmic scale in the text, the gap between 2 and 3 is approximately 1.85
centimeters. Where do you land if you start at 6 and move 1.85 centimeters right-
ward? Decide based on your understanding of ratios; then check your reasoning
by using a ruler to find the new location.

Problem 3.8 Extending the scale to the right

On the logarithmic scale in the text, the gap between 1 and 10 is approximately
10.5 centimeters. If the scale were extended to include numbers up to 1000, how
large would the gap between 10 and 1000 be?

Problem 3.9 Extending the scale to the left

If the logarithmic scale were extended to include numbers down to 0.01, how far
to the left of 1 would you have to place 0.04?

On a logarithmic scale, the frequencies related to hearing arrange them-
selves as follows:
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lowend middle C high C

| | | | l | l | l }Tghfnd | Hgz

102 1071 100 10! 102 10% 10* 10°

Changing the units to kilohertz just shifts all the frequencies, but leaves
their relative positions invariant:

lowend middleC high C

| l | l | l hlighfnd | | | | WHz

102 107! 10° 10! 102 103 104 10°

Problem 3.10 Acoustic energy fluxes

In acoustics, sound intensity is measured by energy flux, which is measured in deci-

bels (dB)—a logarithmic representation of watts per square meter. On the decibel

scale, 0 decibels corresponds to the reference level of 10712 watts per square meter.

Every 10 decibels (or 1 bel) represents an increase in energy flux of a factor of 10

(thus, 20 decibels represents a factor-of-100 increase in energy flux).

a. How many watts per square meter is 60 decibels (the sound level of normal
conversation)?

b. Place the following energy fluxes on a decibel scale: 10~° watts per square me-
ter (an empty church), 10~2 watts per square meter (front row at an orchestra
concert), and 1 watt per square meter (painfully loud).

Logarithmic scales offer two benefits. First, as we saw explicitly, logarithmic
scales incorporate invariance. The second benefit was only implicit in the
previous discussion: Logarithmic scales, unlike linear scales, allow us to
represent a huge range. For example, if we include power-line hum (50 or
60 hertz) on the linear frequency scale on p. 61, we can hardly distinguish
its position from 0 kilohertz. The logarithmic scale has no problem.

lowend  middleC high C

| | | | l | l | i }:ig}lend I 1z

102 101 100 101 102 103 104 10°

power-line hum

In our fallen world, benefits usually conflict. One usually has to sacrifice
one benefit for another (speed for accuracy or justice for mercy). With log-
arithmic scales, however, we can eat our cake and have it.
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Problem 3.11 Labeling a logarithmic scale

Let’s make a scale to represent sizes in the universe, from protons (10~'> meters)
to galaxies (10°° meters), with people and bacteria in between. With such a large
range, we should use a logarithmic scale for size L. Which one of these two ways
of labeling the scale is correct, and which way is nonsense?

| | | | | logy,L
~10 0 10 20 30

b. I 10 I0 I10 I20 I30 L (m)
10~ 10 10 10 10

a.

Logarithmic scales can make otherwise obscure symbolic calculations intu-
itive. An example is the geometric mean, which we used in Section 1.6 to
make gut estimates:

estimate = ,/lower bound x upper bound. (3.4)

Geometric means also occur in the physical world.
As you found in Problem 2.9, the distance d to the
horizon, as seen from a height i above the Earth’s
surface, is

d~+hD, (3.5)

where D = 2Ry, is the diameter of the Earth.
Imagine a lifeguard sitting with his or her eyes at
a height i = 4 meters above sea level. Then the distance to the horizon is

d~( 4m x 12000km ).
R D

(3.6)

To do the calculation, we convert 12 000 kilometers to 1.2 x 10”7 meters, cal-
culate 4 x 1.2 x 107, and compute the square root:

d~+4x12x10" m ~ 7000m = 7 km. 3.7)

In this symbolic form with a square root, the calculation obscures the fun-
damental structure of the geometric mean. We first calculate hD, which is
an area (and often contains, as it did here, a huge number). Then we take
the square root to get back a distance. However, the area has nothing to do
with the structure of the problem. It is merely a bookkeeping device.

Bookkeeping devices are useful; they are how you tell a computer what to
calculate. However, to understand the calculation, we, as humans, should
use a logarithmic scale to represent the distances. This scale captures the
structure of the problem.
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h vhD D
left gap right gap
LY | | | \ I m
100 102 104 100 108
How can we describe the position of the geometric mean N'hD ?
The first clue is that the geometric mean, because it gap  endpoints ratio
is a mean, lies somewhere between h and D. This
property is not obvious from the calculation using left h..AlhD @ = \/g
the square root. To find where the geometric mean
lies, mind the gaps. On a logarithmic scale, a gap right  J#D...D % - \/g

represents the ratio of its endpoints. As shown
in the table, the left and right gaps represent the
same ratio, namely m ! Therefore, on the logarithmic scale, the geomet-
ric mean lies exactly halfway between 1 and D.

Based on this ratio representation, we can rephrase the geometric-mean
calculation in a form that we can do mentally.

What distance is as large compared to 4 meters as 12 000 kilometers is compared to
it?

For lack of imagination, my first guess is 1 kilometer. It’s 12000 times
smaller than the diameter D (which is 12 000 kilometers), but only 250 times
larger than the height i (4 meters). My guess of 1 kilometer is therefore
somewhat too small.

How is a guess of 10 kilometers?

It’s 2500 times larger than /, but only 1200 times smaller than D. I overshot
slightly. How about 7 kilometers? It’s roughly 1750 times larger than 4 me-
ters, and roughly 1700 times smaller than 12000 kilometers. Those gaps
are close to each other, so 7 kilometers is the approximate geometric mean.

h VhD =~ 7km D

factor of 1732 factor of 1732
Ly | Vi | Y I m

100 102 10* 106 108

Similarly, when we make gut estimates, we should place our lower and up-
per estimates on a logarithmic scale. Our best gut estimate is then their
midpoint. What a simple picture!



3.2

3.2.1

66 3 Symmetry and conservation

Should all quantities be placed on a logarithmic scale?

No. An illustrative contrast is between size and position. Both quantities
have the same units. But size ranges from 0 to oo, whereas position ranges
from —co to co. Position therefore cannot be placed on a logarithmic scale
(where would you put —1 meter?). In contrast, size (a magnitude) belongs
on a logarithmic scale. In general, location parameters, such as position,
should not be placed on a logarithmic scale but magnitudes should.

From invariant to symmetry operation

In the preceding examples, we knew the moves of the game and sought
the invariant. In the mouse-eaten chessboard (Section 3.1.2), the moves are
putting down a 2 x 1 domino on two adjacent empty squares. The invariant
was the difference between empty black and white squares. Often, however,
the benefit of invariants lies in the other direction: You know the invariant
and seek the moves that preserve it. These moves are called the symmetry
operations or simply the symmetries.

We'll first examine this idea in a familiar situation: converting units (Sec-
tion 3.2.1). Then we’ll practice it on a sum solved by the three-year-old Carl
Friedrich Gauss (Section 3.2.2) and then by finding maxima and minima
(Section 3.2.3).

Converting units

We often convert a quantity from one unit system to another—for example,
mass from English to metric units or prices from dollars to pounds or euros.
A useful physical conversion is writing energy density—energy divided by
amount of stuff—in useful units. Let’s start with the reasonable energy
unit for a chemical bond, namely the electron volt or eV (Section 2.1). Then
a useful unit for energy density is

1eV

molecule’ (8)

This energy density is our invariant. As we convert from one unit system
to another, our moves have to preserve the energy density.

What are the legal moves—the moves that preserve the energy density?

The legal moves are all ways of multiplying by 1—for example, by
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6 x 102 molecules 1mol
1mol 6 x 102 molecules’

(3.9)

Either quotient is a form of 1, because 1 mole is defined to be Avogadro’s
number of molecules, and Avogadro’s number is 6 x 10%. I carefully wrote
“1mol” with the number rather than simply as “mol.” The more explicit
form reminds us that “6 x 102> molecules per mole” is shorthand for a quo-
tient of two identical quantities: 6 x 10>> molecules and 1 mole.

Multiplying the energy density by the first form of 1 gives
lev 6x10% molecules  6x10%eV
X = .
molecule 1mol mol

(3.10)

(If we had multiplied by the second form of 1, the units of molecules would
have become molecules squared instead of canceling. The strike-through
lines help us check that we got the desired units.) The giant exponent makes
this form almost meaningless. To improve it, let’s multiply by another form
of 1, based on the definition of an electron volt. Two forms of 1 are

16x10°) leVv i)
leV 1.6x10-1] B
Multiplying by the first form of 1 gives
1eV 6x10% molecules 1.6x1071] 102k]
X ~ )

X
molecule 1 mol 1eV mol

(3.12)

(A more exact value is 96 kilojoules per mole.) In the United States, energies
related to food are stated in Calories, also known as kilocalories (roughly
4.2 kilojoules). In calorie units, the useful energy-density unit is

96k 1kcal 23kcal
X ~ .
1mol 4.2kf mol

(3.13)

. . . kcal 23 kcal
gﬁl : - ?
thchform 1S more meanin [: 23 ] or T

The forms are mathematically equivalent: You can multiply by 23 before or
after dividing by a mole. However, they are not psychologically equivalent.
The first form builds the abstraction of kilocalories per mole, and then says,
“Here are 23 of them.” In contrast, the second form gives us the energy for
1 mole, a human-sized amount. The second form is more meaningful.

Similarly, the speed of light ¢ is commonly quoted as (approximately)
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3x108 ? (3.14)

The psychologically fruitful alternative is

3x10°m
c=—F.
1s
This form suggests that 300 million meters, at least for light, is the same as
1 second. With this idea, you can convert wavelength to frequency (Prob-
lem 3.14); with a slight extension, you can convert frequency to energy
(Problem 3.15) and energy to temperature (Problem 3.16).

(3.15)

Problem 3.12 Absurd units

By multiplying by suitable forms of 1, convert 1 furlong per fortnight into meters
per second.

Problem 3.13 Rainfall units

Rainfall, in nonmetric parts of the world, is sometimes measured in acre feet. By
multiplying by suitable forms of 1, convert 1 acre foot to cubic meters. (One square
mile is 640 acres.)

Problem 3.14 Converting wavelength to frequency

Convert green-light wavelength, 0.5 micrometers (0.5 m), to a frequency in cycles
per second (hertz or Hz).

Problem 3.15 Converting frequency to energy

Analogously to how you used the speed of light in Problem 3.14, use Planck’s
constant ki to convert the frequency of green light to an energy in joules (J) and in
electron volts (eV). This energy is the energy of a green-light photon.

Problem 3.16 Converting energy to temperature

Use Boltzmann’s constant kg to convert the energy of a green-light photon (Prob-
lem 3.15) to a temperature (in kelvin). This temperature, except for a factor of 3, is
the surface temperature of the Sun!

Conversion factors need not be numerical. Insight often comes from sym-
bolic factors. Here is an example from fluid flow. As we will derive in
Section 5.3.2, the drag coefficient c4 is defined as the dimensionless ratio

cq = (3.16)

1 247
3 V%A

where p is the fluid density, v is the speed of the object moving in the fluid,
and A is the object’s cross-sectional area. To give this definition and ratio a
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physical interpretation, multiply it by d/d, where d is the distance that the
object travels:

Fdragd
% pv2Ad

(3.17)

The numerator, Fy,,d, is the work done or the energy consumed by drag.
In the denominator, the product Ad is the volume of fluid displaced by the
object, so pAd is the corresponding mass of fluid. Therefore, the denomina-
tor is also

% x mass of fluid displaced x v2. (3.18)

The object’s speed v is also approximately the speed given to the displaced
fluid (which the object shoved it out of its way). Therefore, the denominator
is roughly

% x mass of fluid displaced x (speed of displaced fluid)?. (3.19)

This expression is the kinetic energy given to the displaced fluid. The drag
coefficient is therefore roughly the ratio
energy consumed by drag

fa ™ energy given to the fluid 20

My tenth-grade chemistry teacher, Mr. McCready, told us that unit conver-
sion was the one idea that we should remember from the entire course.
Almost every problem in the chemistry textbook could be solved by unit
conversion, which says something about the quality of the book but also
about the power of the method.

Gauss'’s childhood sum

A classic example of going from the invariant to the symmetry is the follow-
ing story of the young Carl Friedrich Gauss. Although maybe just a legend,
the story is so instructive that it ought to be true. Once upon a time, when
Gauss was 3 years old, his schoolteacher, wanting to occupy the students,
assigned them to compute the sum

S=14+2+3+--+100, (3.21)

and sat back to enjoy the break. In a few minutes, Gauss returned with an
answer of 5050.
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Was Gauss right? If so, how did he compute the sum so quickly?
Gauss saw that the sum—the invariant—is unchanged when the terms are
added backward, from highest to lowest:

1+2+3+--4100=100+99 498 + --- + 1. (3.22)
Then he added the two versions of the sum, the original and the reflected:

1+ 2+ 3+--+100= S
+ 100+ 9+ 98+--+ 1= S (3.23)

101 + 101 + 101 + --- + 101 = 25.

In this form, 2S is easy to compute: It contains 100 copies of 101. Therefore,
25 =100 x 101, and S = 50 x 101 or 5050—as the young Gauss claimed. He
made the problem so simple by finding a symmetry: a transformation that
preserved the invariant.

Problem 3.17 Number sum

Use Gauss’s method to find the sum of the integers between 200 and 300 (inclu-
sive).

Problem 3.18 Symmetry for algebra

Use symmetry to find the missing coefficients in the expansion of (a — b)3:

(a—b)® = a® — 3a%b+? ab?+? bS. (3.24)

Problem 3.19 Integrals
Evaluate these definite integrals. Hint: Use symmetry.

10 =) 2 )
3 2 X Inx
@) _fw x3e=* dx, (b) _L T s v and © ! el

Finding maxima or minima

To practice finding the symmetry operation, we’ll find the maximum of the
function 6x — x? without using calculus. Calculus is the elephant gun. It
can solve many problems, but only after blasting them into the same form
(smithereens). Avoiding calculus forces us to use more particular, but more
subtle methods—such as symmetry. As Gauss did in summing 1+2+--- +
100, let’s find a symmetry operation that preserves the essential feature of
the problem—namely, the location of the maximum.
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Symmetry implies moving around an object’s pieces. Fortunately, our func-
tion 6x — x? factors into pieces:

6x —x%2 = x(6 — x). (3.25)

This form, along with the idea that multiplication is commutative, suggests
the symmetry operation. For if the operation just swaps the two factors,
replacing x(6 — x) with (6 — x)x, it does not change the location of the
maximum. (A parabola has exactly one maximum or minimum.)

The symmetry operation that makes the swap is
X — 6—2x. (3.26)

It turns 2 into 4 (and vice versa) and 1 into 5 (and vice versa). The only value
unchanged (left invariant) by the symmetry operation is x = 3. Therefore,
6x — x2 has its maximum at x = 3.

Geometrically, the symmetry operation reflects the graph of
6x — x2 through the line x = 3. By construction, this symme-
try operation preserves the location of the maximum. There-
fore, the maximum has to lie on the line x = 3.

We could have found this maximum in several other ways, so
the use of symmetry might seem superfluous or like overkill. :
However, it warms us up for the following, more compli- x=3
cated use. The energy required to fly has two pieces: gener-

ating lift, which requires an energy A/v?, and fighting drag, which requires
an energy Bu?. (A and B are constants that we estimate in Sections 3.6.2 and
46.1.)

A
Efight = Gt Bo?. (3.27)

To minimize fuel consumption, planes choose their cruising speed to min-
imize Eg;gp,. More precisely, a cruising speed is selected, and the plane is
designed so that this speed minimizes Eg;gy.

In terms of the constants A and B, what speed minimizes Egq,?

Like the parabola x(6 — x), this energy has one extremum. For the parabola,
the extremum was a maximum; here, it is a minimum. Also similar to the
parabola, this energy has two pieces connected by a commutative opera-
tion. For the parabola, the operation was multiplication; here, it is addition.
Continuing the analogy, if we find a symmetry operation that transposes
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the two pieces, then the speed preserved by the operation will be the mini-
mum-energy speed.

Finding this symmetry operation is hard to do in one gulp, because it must
transpose 1/v? and v? and transpose A and B. These two difficulties suggest
that we apply divide-and-conquer reasoning: Find a symmetry operation
that transposes 1/0% and v?, and then modify so that it also transposes A
and B.

To transpose 1/v2 and v?, the symmetry operation is £
the following;:

v — 1. (3.28)
0

Now let’s restore one of the two constants and modify

the symmetry operation so that it transposes A /v? and
2.

v

JA

Ve— . (3.29)

0 Umin

Now let’s restore the second constant, B, and find the
full symmetry operation that transposes A/ v? and Bov?:

JBv «— g (3.30)

Rewriting it as a replacement for v, the symmetry operation becomes

JA/B
v — U/ : (331)

This symmetry operation transposes the drag energy and lift energy, leav-
ing the total energy Eg;,p,, unchanged. Solving for the speed preserved by
the symmetry operation gives us the minimum-energy speed:

A 1/4
Umin = (E) . (3.32)

In Section 4.6.1, once we find A and B in terms of the characteristics of the
air (its density) and the plane (such as its wingspan), we can estimate the
minimum-energy (cruising) speeds of planes and birds.

Problem 3.20 Solving a quadratic equation using symmetry

The equation 6x —x2 +7 = 0 has a solution at x = —1. Without using the quadratic
formula, find any other solutions.
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Physical symmetry

For a physical application of symmetry, imagine a uniform metal 80° 10°
sheet, perhaps aluminum foil, cut into the shape of a regular pen-
tagon. Imagine that to the edges are attached heat sources and e 10°

sinks—big blocks of metal at a fixed temperature—in order to
hold the edges at the temperatures marked on the figure. After
we wait long enough, the temperature distribution in the pentagon stops
changing (comes to equilibrium).

10°

Once the pentagon temperature equilibrates, what is the temperature at its center?

A brute-force, analytic solution is difficult. Heat flow is described by the
heat equation, a linear second-order partial-differential equation:

oT

2T = 2=
kV-T = SF (3.33)
where T is the temperature as a function of position and time, and x (kappa)
is the thermal diffusivity (which we will study in more detail in Chapter 7).
But don’t worry: You do not have to understand the equation, only that it

is difficult to solve!

Once the temperature settles down, the time derivative becomes __80° ,
zero, and the equation simplifies to V2T = 0. However, even this /
simpler equation has solutions only for simple shapes, and the 10"
solutions are complicated. For example, the temperature distrib-
ution on the simpler square sheet is hardly intuitive (the figure
shows contour lines spaced every 10°). For a pentagon, the temperature
distribution is worse. However, because the pentagon is regular, symmetry
might make the solution flow.

10°

10°

What is a useful symmetry operation?

Nature, in the person of the heat equation, does not care about the direc-
tion of our coordinate system. Thus, rotating the pentagon about its center
does not change the temperature at the center. Therefore, the following five
orientations of the pentagon share the same central temperature:

80° 10° 10° 10° 10° 10° 10° 10° 10° 80°
100®100 800®100 100©100 10()@800 100©100
10° 10° 80° 10° 10°
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Like Gauss adding the two versions of his sum (Section 3.2.2), stack these
sheets mentally and add the temperatures that lie on top of each other to
make the temperature profile of a new super sheet (adding the tempera-
tures is valid because the heat equation is linear).

= 120° 2 (3.34)

Each super edge contains one 80° edge and four 10° edges, for a temperature
of 120°. The super sheet is a regular pentagon where all edges are at 120°.
Therefore, the temperature throughout the sheet is 120°—including at the
center. Because the symmetry operation has helped us construct a much
easier problem, we did not have to solve the heat equation.

One more step tells us the temperature in the center of the original sheet.
The symmetry operation rotates the pentagon about its center; when the
plates are stacked, the centers align. Each center then contributes one-fifth
of the 120° in the center, so the original central temperature is 24°.

To highlight the transferable ideas (abstractions), compare the symmetry
solutions to Gauss’s sum and to this temperature problem. First, both prob-
lems seem complicated. Gauss’s sum has many terms, all different; the
pentagon problem seems to require solving a difficult differential equation.
Second, both problems contain a symmetry operation. In Gauss’s sum,
the symmetry operation reversed the order of the terms; for the pentagon,
the symmetry operation rotates it by 72°. Finally, the symmetry operation
leaves an important quantity unchanged. For Gauss’s problem, this quan-
tity is the sum; for the pentagon, it is the central temperature.

When there is change, look for what does not change. Look for invariants and the
corresponding symmetries: the operations that preserve the invariants.

Problem 3.21 Symmetry solution for a square sheet

Here is the contour plot again of the temperature on a square 80°
sheet. The contour lines are separated by 10°. Use that infor- \//
mation to label the temperature of each contour line. Based 10°

on the symmetry reasoning, what should the temperature at

the center of the square be? Is this predicted temperature con- 0°
sistent with what is shown in the contour plot?
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Problem 3.22  Simulating the heat equation

Using symmetry, we showed that the temperature at the cen-
ter of the pentagon is the average of the temperatures of the
sides. Check the solution by simulating the heat equation

with a pentagonal boundary.

Problem 3.23  Shortest bisecting path

10°

10°

10°
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What is the shortest path that bisects an equilateral triangle into two equal areas?

Here are three examples of bisecting paths:

To set your problem-solving gears in motion, first rank these three bisecting paths

according to their lengths.

3.4 Box models and conservation

3.4.1

Invariance underlies a powerful everyday abstraction: box models. We al-
ready made a box model in Section 3.1.1, to decide whether to run or walk
in the rain. Now let’s examine this method further. The simplest kind of
box contains a fixed amount of stuff—perhaps the volume of fluid or the
number of students at an ideal university (where every student graduates
in a fixed time). Then what goes into the box must come out. This conclu-

sion seems simple, even simplistic, but it has wide application.

Supply and demand

For another example of a box model, return to our
estimate of US oil usage (Section 1.4). The flow
into the box—the push or the supply—is the im-
ported and domestically produced oil. The flow

supply

box

oil

demand

out of the box—the pull or the demand—is the oil usage. The estimate,
literally taken, asks for the supply (how much oil is imported and domesti-
cally produced). This estimate is difficult. Fortunately, as long as oil does
not accumulate in the box (for example, as long as oil is not salted away
in underground storage bunkers), then the amount of oil in the box is an
invariant, so the supply equals the demand. To estimate the supply, we ac-
cordingly estimated the demand. This conservation reasoning is the basis

of the following estimate of a market size.
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How many taxis are there in Boston, Massachusetts?

For many car-free years, I lived in an old neighborhood of Boston. I often
rode in taxis and wondered about the size of the taxi market—in particular,
how many taxis there were. This number seemed hard to estimate, because
taxis are scattered throughout the city and hard to count.

The box contains the available taxi driving (mea-
sured, for example, as time). It is supplied by
taxi drivers. The demand is due to taxi users. As
long as the supply and demand match, we can
estimate the supply by estimating the demand.

supply available | demand

(drivers) |taxidriving | (yserg)

For estimating the demand, the starting point is that Boston has roughly
500000 residents. As a gut estimate, each resident uses maybe one taxi per
month, for a 15-minute ride: Boston taxis are expensive; unless one doesn’t
own a car, it’s hard to imagine using them more often than once a month
or for longer than 15 minutes. Then the demand is about 10° hours of taxi
driving per month:

15 min’ 1hr 10° hr

5x10° residents x X ~ . (3.35)
resident month 60 min month

How many taxi drivers will that many monthly hours support?

Taxi drivers work long shifts, maybe 60 hours per week. I'd guess that they
carry passengers one-half of that time: 30 hours per week or roughly 100
hours per month. At that pace, 10°> hours of monthly demand could be
supplied by 1000 taxi drivers or, assuming each taxi is driven by one driver,
by 1000 taxis.

What about tourists?

Tourists are very short-term Boston residents, mostly without cars. Tourists,
although fewer than residents, use taxis more often and for longer than
residents do. To include the tourist contribution to taxi demand, I'll simply
double the previous estimate to get 2000 taxis.

This estimate can be checked reliably, because Boston is one of the United
States cities where taxis may pick up passengers only with a special permit,
the medallion. The number of medallions is strictly controlled, so medal-
lions cost a fortune. For about 60 years, their number was restricted to 1525,
until a 10-year court battle got the limit raised by 260, to about 1800.
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The estimate of 2000 may seem more accurate than it deserves. However,
chance favors the prepared mind. We prepared by using good tools: a box
model and divide-and-conquer reasoning. In making your own estimates,
have confidence in the tools, and expect your estimates to be at least half
decent. You will thereby find the courage to start: Optimism oils the rails
of estimation.

Problem 3.24 Differential equation for an RC circuit

Explain how a box model leads to the differential R box
equation for the low-pass RC circuit of Section 2.4.4: v, W Vout
av,
RC d‘;“t + Vot = Vin- (3.36) c——
(Almost every differential equation arises from a box

or conservation argument.)

Problem 3.25 Boston taxicabs tree

Draw a divide-and-conquer tree for estimating the number of Boston taxicabs.
First draw it without estimates. Then include your estimates, and propagate the
values toward the root.

Problem 3.26 Needles on a Christmas tree

Estimate the number of needles on a Christmas tree.

3.4.2 Flux

Flows, such as the demand for oil or the supply of taxi cabs,
are rates—an amount per time. Physical flows are also rates,
but they live in a geometry. This embedding allows us to de- g, rate

fine a related quantity: flux. - =

amount

flux of stuff = rate _ amount O,f stuf-f' (3.37) time
area area X time

For example, particle flux is the rate at which particles (say,

molecules) pass through a surface perpendicular to the flow, divided by
the area of the surface. Dividing by the surface area, an operation with no
counterpart in nonphysical flows (for example, in the demand for taxicabs),
makes flux more invariant and useful than rate. For if you double the sur-
face area, you double the rate. This proportionality is not newsworthy, and
usually doesn’t add insight, only clutter. When there is change, look for
what does not change: Even when the area changes, flux does not.
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Problem 3.27 Rate versus amount

Explain why rate (amount per time) is more useful than amount.

Problem 3.28 What is current density?

What kind of flux (flux of what?) is current density (current per area)?

The definition of flux leads to a simple and important connection between
flux and flow speed. Imagine a tube of stuff (for example, molecules) with
cross-sectional area A. The stuff flows through the tube at a speed v.

In a time t, how much stuff leaves the tube?

In the time ¢, the stuff in the shaded chunk, |<U_f>|

chunk has volume Avt. The amount of stuff

spanning a length vt, leaves the tube. This /
A —»0
in that volume is

stuff

volume
density of stuff ~ volume

x Avt. (3.38)

The amount of stuff per volume, the density of stuff, occurs so often that
it usually gets a special symbol. When the stuff is particles, the density is
labeled 1 for number density (in contrast to N for the number itself). When
the stuff is charge or mass, the density is labeled p.

From the amount of stuff, we can find the flux:

Avt
flux of stuff — amount of stuff _ density of stuff x volume )
© areax time area x time ' '
At
The product At cancels, leaving the general relation
flux of stuff = density of stuff x flow speed. (3.40)

As a particular example, when the stuff is charge (Problem 3.28), the flux of
stuff becomes charge per time per area, which is current per area or current
density. With that label for the flux, the general relation becomes

current density = charge density x flow speed , (3.41)

J P Udrift

where vy, is the flow speed of the charge—which you will estimate in
Problem 6.16 for electrons in a wire.
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The general relation will be crucial in estimating the power required to fly
(Section 3.6) and in understanding heat conduction (Section 7.4.2).

Average solar flux

An important flux is energy flux: the rate at which energy passes through
a surface, divided by the area of the surface. Here, rate means energy per
time, or power. Therefore, energy flux is power per area. An energy flux
essential to life is the solar flux: the solar power per area falling on Earth.
This flux drives most of our weather. At the top of the atmosphere, looking
directly toward the sun, the flux is roughly F = 1300 watts per square meter.

However, this flux is not evenly distributed over the surface of the earth.
The simplest reason is night and day. On the night side of the Earth, the
solar flux is zero. More subtly, different latitudes have different solar fluxes:
The equatorial regions are warmer than the poles because they receive more
solar flux than the poles do.

What is the solar flux averaged over the whole Earth?

We can find the average flux using a box model (a
conservation argument). Here is sunlight coming

sunlight

to the Earth (with parallel rays, because the Sun is
so far away). Hold a disk with radius Rg,, perpen-
dicular to the sunlight so that it blocks all sunlight that the Earth otherwise
would get. The disk absorbs a power that we can find from the energy flux:

power = energy flux x area = F nRéarth, (3.42)

where F is the solar flux. Now spread this power over the whole Earth,

which has surface area 47‘[R% arth

power _ F NR]%arth F

== (343)

average flux =

- 2
surface area 4nRZ

Because one-half of the Earth is in night, averaging over the night and day-
light parts of the earth accounts for a factor of 2. Therefore, averaging over
latitudes must account for another factor of 2 (Problem 3.29).

Problem 3.29  Averaging solar flux over all latitudes

Integrate the solar flux over the whole sunny side of the Earth, accounting for the
varying angles between the incident sunlight and the surface. Check that the result
agrees with the result of the box model.
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The result is roughly 325 watts per square meter. This average flux slightly
overestimates what the Earth receives at ground level, because not all of the
1300 watts per square meter hitting the top of the atmosphere reaches the
surface. Roughly 30 percent gets reflected near the top of the atmosphere
(by clouds). The surviving amount is about 1000 watts per square meter.
Averaged over the surface of the Earth, it becomes 250 watts per square me-
ter (which then goes into the surface and the atmosphere), or approximately
F/5, where F is the flux at the top of the atmosphere.

3.4.4 Rainfall

These 250 watts per square meter determine characteristics of our weather
that are essential to life: the average surface temperature and the average
rainfall. You get to estimate the surface temperature in Problem 5.43, once
you learn the reasoning tool of dimensional analysis. Here, we will estimate
the average rainfall.

If the box representing the atmosphere holds a o\ noration| waterin | rainfall
fixed amount of water—and over a long timescale, —— ™ atmosphere [
the amount is constant (it is our invariant)—then
what goes into the box must come out of the box.
The inflow is evaporation; the outflow is rain. Therefore, to estimate the
rainfall, estimate the evaporation—which is produced by the solar flux.

How much rain falls on Earth?

Rainfall is measured as a height of water per time—typically, inches or mil-
limeters per year. To estimate global average rainfall, convert the supply of
solar energy to the supply of rainwater. In other words, convert power per
area to height per time. The structure of the conversion is

power ?  height
< L=

(3.44)

7

area ? time

where ?/? represents the conversion factor that we need to determine. To
find what this conversion factor represents, we multiply both sides by area

per power. The result is
? _ areaxheight  volume

= = 2 = ) (3.45)
?  power x time energy

What physical quantity could this volume per energy be?
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We are trying to determine the amount of rain, so the volume in the numer-
ator must be the volume of rain. Evaporating the water requires energy, so
the energy in the denominator must be the energy required to evaporate
that much water. The conversion factor is then the reciprocal of the heat of
vaporization of water L,,,, but expressed as an energy per volume. In Sec-
tion 1.7.3, we estimated L,,, as an energy per mass. To make it an energy
per volume, just multiply by a mass per volume—namely, by p,ya¢er

ener; mass ener
&Y X = &Y . (3.46)
mass volume volume
Lvap pwater pwateerap

Our conversion factor, volume per energy, is the reciprocal, 1/paterLyap-
Our estimate for the average rainfall then becomes

solar flux going to evaporate water
T .

Pwater vap

(3.47)

For the numerator, we cannot just use F, the full solar flux at the top of the
atmosphere. Rather, the numerator incorporates several dimensionless ra-
tios that account for the hoops through which sunlight must jump in order
to reach the surface and evaporate water:

0.25 averaging the intercepted flux over the whole surface of the Earth
(Section 3.4.3)

0.7 the fraction not reflected at the top of the atmosphere

0.7 of the sunlight not reflected, the fraction reaching the surface (the
other 30 percent is absorbed in the atmosphere)

x 0.7 of the sunlight reaching the surface, the fraction reaching the oceans
(the other 30 percent mostly warms land)

= 0.09 fraction of full flux F that evaporates water (including averaging the
full flux over the whole surface)

The product of these four factors is roughly 9 percent. With L,,, = 2.2 x
10° joules per kilogram (which we estimated in Section 1.7.3), our rainfall
estimate becomes roughly

3 fraction

1300Wm=2 x 0.09 . 53x10%m
103kgm™3 x 22x10°J kg™ s
L

Pwater 'vap

(3.48)
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The length in the numerator is tiny and hard to perceive. Therefore, the
common time unit for rainfall is a year rather than a second. To convert the
rainfall estimate to meters per year, multiply by 1:

53x108m 3x107g 1.6m
X ~

8 lyr yr

(3.49)

(about 64 inches per year). Not bad: Including all forms of falling water,
such as snow, the world average is 0.99 meters per year—slightly higher
over the oceans and slightly lower over land (where it is 0.72 meters per
year). The moderate discrepancy between our estimate and the actual aver-
age arises because some sunlight warms water without evaporating it. To
reflect this effect, our table on page 81 needs one more fraction (~ 2/3).

Problem 3.30  Solar luminosity

Estimate the solar luminosity—the power output of the Sun (say, in watts)—based
on the solar flux at the top of the Earth’s atmosphere.

Problem 3.31 Total solar power falling on Earth

Estimate the total solar power falling on the Earth’s surface. How does it compare
to the world energy consumption?

Problem 3.32 Explaining the difference between ocean and land rainfall
Why is the average rainfall over land lower than over the ocean?

Residence times

Because of evaporation, the atmosphere contains a lot of water: roughly
1.3 x 10'° kilograms—as vapor, liquid, and solid. This mass tells us the res-
idence time: how long a water molecule remains in the atmosphere before
it falls back to the Earth as precipitation (the overall name for rain, snow, or
hail). The estimate will illustrate a new way to use box models.

Here is the box representing the water in the atmosphere (assumed to need
only one box). The box is filled by evaporation and emptied by rainfall.

evaporation Muyater rainfall

in atmosphere

Y

Imagine that the box is a water hose holding a mass 1,,,.,. How long does
a water molecule take to get from one end of the hose to other? This time
is the average time taken by a water molecule from evaporation until its
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return to the Earth as precipitation. In the box model, the time is the time
to completely fill the box. This time constant, denoted 7, is

mass of water in the atmosphere

G.

a1

T = - - . 0)
rate of inflow or outflow, as a mass per time

The numerator is m,,,,. For the denominator, we convert rainfall, which

is a speed (for example, in meters per year), to a mass flow rate (mass per

time). Let’s name the rainfall speed v ;.. The corresponding mass flux

is, using our results from Section 3.4.2, oy aterUrainfall:

mass flux = density x flow speed = Py aterVrainfall- (3.51)

Pwater Orainfall
Flux is flow per area, so we multiply mass flux by the Earth’s surface area
Agarn to get the mass flow:

mass flow = Pwaterrainfall AEarth' (3.52)

At this rate, the fill time is

m
= water (3.53)

Pwater Urainfall AEarth

There are two ways to evaluate this time: the direct but less insightful
method, and the less direct but more insightful method. Let’s first do the
direct method, so that we at least have an estimate for 7:

1.3x10% kg

T ~
103kgm=3 x Tmyr~! x 477 x (6x 10°m)?

~2.5x102yr, (3.54)

which is roughly 10 days. Therefore, after evaporating, water remains in
the atmosphere for roughly 10 days.

For the less direct but more insightful method, notice which quantities are
not reasonably sized—that is, not graspable by our minds—namely, 17, .,

and Ag,. But the combination 7, ,ier/ PwaterAgarth 1S Teasonably sized:

Myyater 1.3x10% kg

~ ~25x1072m. 3.55
Pwater Apartn 103 kg m—3 x 477 x (6 x 106 m)2 X m (3.55)

This length, 2.5 centimeters, has a physical interpretation. If all water, snow,
and vapor fell out of the atmosphere to the surface of the Earth, it would
form an additional global ocean 2.5 centimeters deep.

Rainfall takes away 100 centimeters per year. Therefore, draining this ocean,
with a 2.5-centimeter depth, requires 2.5x 1072 years or about 10 days. This
time is, once again, the residence time of water in the atmosphere.
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3.5 Drag using conservation of energy

A box model will next help us estimate drag forces. Drag, one of the most
difficult subjects in physics, is also one of the most important forces in every-
day life. If it weren’t for drag, bicycling, flying, and driving would be a
breeze. Because of drag, locomotion requires energy. Rigorously calculat-
ing a drag force requires solving the Navier-Stokes equations:

(v-V)v + v _ —1Vp + vV3v. (3.56)
ot Iy

They are coupled, nonlinear, partial-differential equations. You could read
many volumes describing the mathematics to solve these equations. Even
then, solutions are known only in a few circumstances—for example, a
sphere moving slowly in a viscous fluid or moving at any speed in a non-
viscous fluid. However, a nonviscous fluid—what Feynman [14, Section
1-40-2], quoting John von Neumann, rightly disparages as “dry water”—is
particularly irrelevant to real life because viscosity is the cause of drag, so a
zero-viscosity solution predicts zero drag! Using a box model and conser-
vation of energy is a simple and insightful alternative.

3.5.1 Box model for drag

We will first estimate the energy lost to drag as an ob- /
ject moves through a fluid, as in Section 3.2.1. From the Acs >

energy, we will find the drag force. To quantify the the
problem, imagine pushing an object of cross-sectional
area A at speed v for a distance d. The object sweeps out a tube of fluid.
(The tube length d is arbitrary, but it will cancel out of the force.)

fe——d—>

How much energy is consumed by drag?

Energy is consumed because the object gives kinetic energy to the fluid
(say, water or air); viscosity, as we will model in Section 6.4.4, then turns
this energy into heat. The kinetic energy depends on the mass of the fluid
and on the speed it is given. The mass of fluid in the tube is pAd, where
p is the fluid density. The speed imparted to the fluid is roughly the speed
of the object, which is v. Therefore, the kinetic energy given to the fluid is
roughly pA v%d:

Ekinetic ~ pAcsd x v? = pAcsvzd' (3.57)

—_—
mass
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This calculation ignores the factor of one-half in the definition of kinetic
energy. However, the other approximations, such as assuming that only
the swept-out fluid is affected or that all the swept-out fluid gets speed v,
are at least as inaccurate. For this rough calculation, there is little point in
including the factor of one-half.

This kinetic energy is roughly the energy converted into heat. Therefore,
the energy lost to drag is roughly pA.v?d. The drag force is then given by

energy lost to drag = drag force x distance . (3.58)

N/JAcsvzd Fdrag d
Now we can solve for the drag force:
2 B
Farag ~ PASV” (3.59)

As expected, the arbitrary distance d has canceled out.

Testing the analysis with a home experiment

To test this analysis, try the following home experiment. Photocopy or
print this page at 200 percent enlargement (a factor of 2 larger in width
and height), cut out the template, and tape the two straight edges together
to make a cone:

— (3.60)

We could use many other shapes. However, a cone is easy to construct, and
also falls without swishing back and forth (as a sheet of paper would) or
flipping over (as long as you drop it point down).

We'll test the analysis by predicting the cone’s terminal speed: that is,
its steady speed while falling. When the cone is falling at this constant
speed, its acceleration is zero, so the net force on it is, by Newton’s second
law, also zero. Thus, the drag force Fy,,, equals the cone’s weight mg
(where m is the cone’s mass and g is the gravitational acceleration):

pairUZAcs ~ mg. (3.61)

F drag
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The terminal speed thus reveals the drag force. (Even though the drag force
equals the weight, the left side is only an approximation to the drag force,
so we connect the left and right sides with a single approximation sign ~.)
The terminal speed vy, is then

mg
Uterm ~ Apu (3.62)
The mass of the cone is
M = Apaper X areal density of paper. (3.63)
Opaper
Here, Apaper is the area of the cone template; and the areal density paper/

named in analogy to the regular (volume) density, is the mass per area of
paper. Although areal density seems like a strange quantity to define, it is
used worldwide to describe the “weight” of different papers.

The quotient m/A. contains the ratio A,,per/Ae. Rather than estimating
both areas and finding their ratio, let’s estimate the ratio directly.

How does the cross-sectional area A, compare to the area of the paper?

Because the cone’s circumference is three-quarters of the circum-
ference of the full circle, its cross-sectional radius is three-quar-
ters of the radius r of the template circle. Therefore,

3 \2
Ag=T (Zr> . (3.64)

Because the template is three-quarters of a full circle,

3
Apaper = mez.

(3.65)

The paper area has one factor of three-quarters, whereas the cross-sectional
area has two factors of three-quarters, s0 A per/Acs = 4/3. NOW Uy, sim-
plifies as follows:

Apaper Upaper x g _ §Upaper 8
Uterm ™~ A = s . (3.66)
cs Pair Pair

The only unfamiliar number is the areal density ¢, the mass per area
of paper. Fortunately, areal density is used commercially, so most reams of
printer paper state their areal density: typically, 80 grams per square meter.
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Is this 03y, consistent with the estimates for a dollar bill in Section 1.1?

There we estimated that the thickness t of a dollar bill, or of paper in general,
is approximately 0.01 centimeters. The regular (volume) density p would
then be 0.8 grams per cubic centimeter:

7, 80gm™2 1m?
paper ) m )
= ~ =038 . 3.67

Ppaper t 102cm 107 cm? cm? e
This density, slightly below the density of water, is a good guess for the
density of paper, which originates as wood (which barely floats on water).
Therefore, our estimate in Section 1.1 is consistent with the proposed areal
density of 80 grams per square meter.

After putting in the constants, the cone’s terminal speed is predicted to be
roughly 0.9 meters per second:

Upaper g 1/2
4 8x1072kgm2 x 10ms~2 )
Uterm ™~ §X 1.2kgm_3 ~ 09ms™. (3.68)
Pair

To test the prediction and, with it, the analysis justifying it, I held the cone
slightly above my head, from about 2 meters high. After I let the cone go,
it fell for almost exactly 2 seconds before it hit the ground—for a speed of
roughly 1 meter per second, very close to the prediction. Box models and
conservation triumph again!

Cycling

In introducing the analysis of drag, I said that drag is one of the most impor-
tant physical effects in everyday life. Our analysis of drag will now help us
understand the physics of a fantastically efficient form of locomotion—cy-
cling (for its efficiency, see Problem 3.34).

What is the world-record cycling speed?

The first task is to define the kind of world record. Let’s analyze cycling on
level ground using a regular bicycle, even though faster speeds are possible
riding downhill or on special bicycles. In bicycling, energy goes into rolling
resistance, friction in the chain and gears, and air drag. The importance of
drag rises rapidly with speed, due to the factor of v? in the drag force, so at
high-enough speeds drag is the dominant consumer of energy.
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Therefore, let’s simplify the analysis by assuming that drag is the only con-
sumer of energy. At the maximum cycling speed, the power consumed by
drag equals the maximum power that the rider can supply. The problem
therefore divides into two estimates: the power consumed by drag (Pgy,s)
and the power that an athlete can supply (P miete)-

Power is force times velocity:
energy  force x distance

ower = = = force x velocity. 3.69

P time time y (3.69)
Therefore,

Pdrag = Pdragvmax ~ pUBACS' (3.70)

Setting Pyrag = Pathlere allows us to solve for the maximum speed:

1/3
v - ( Pathlete ) 3.71)
mex pair Acs

where A is the cyclist’s cross-sectional area. In Section 1.7.2, we estimated
P intete s 300 watts. To estimate the cross-sectional area, divide it into a
width and a height. The width is a body width—say, 0.4 meters. A racing
cyclist crouches, so the height is roughly 1 meter rather than a full 2 meters.
Then A is roughly 0.4 square meters.

Plugging in the numbers gives

1/3
Umax ™~ S00W . (3.72)
1kgm=3 x 0.4 m?2

That formula, with its mix of watts, meters, and seconds, looks suspicious. Are the
units correct?

Let’s translate a watt stepwise into meters, kilograms, and seconds, using
the definitions of a watt, joule, and newton:

kgm

= é, J=Nm, N = . (3.73)

2
The three definitions are represented in the next divide-and-conquer tree,
one definition at each nonleaf node. Propagating the leaves toward the root
gives us the following expression for the watt in terms of meters, kilograms,
and seconds (the fundamental units in the SI system):

W= kgm2

. (3.74)
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The units in v,,,,, become w
\Y 1/3 kgm
kg m*s™3 3\ / \
gmoixm? | () - e
kgm
The kilograms cancel, as do the square meters. The
cube root then contains only meters cubed over sec- / \

onds cubed; therefore, the units for v, are meters per
second. kgms

Let’s estimate how many meters per second. Don’t let / I \
the cube root frighten you into using a calculator. We

can do the arithmetic mentally, if we massage (adjust) 8 m s
the numbers slightly. If only the power were 400 watts

(or instead the area were 0.3 square meters)! Instead of wishing, make it
so—and don’t worry about the loss of accuracy: Because we have neglected
the drag coefficient, our speed will be approximate anyway. Then the cube
root becomes an easy calculation:

s00400w )"
T\ 1kgm—3 x 0.4 m?

-2

= (1000)’ms~1 =10ms™1.  (70)

In more familiar units, the record speed is 22 miles per hour or 36 kilome-
ters per hour. As a comparison, the world 1-hour record—cycling as far as
possible in 1 hour—is 49.7 kilometers or 30.9 miles, set in 2005 by Ondfej
Sosenka. Our prediction, based on the conservation analysis of drag, is
roughly 70 percent of the actual value.

How can such an estimate be considered useful?

High accuracy often requires analyzing and tracking many physical effects.
The calculations and bookkeeping can easily obscure the most important
effect and its core idea, costing us insight and understanding. Therefore,
almost everywhere in this book, the goal is an estimate within a factor of 2
or 3. That level of agreement is usually enough to convince us that our
model contains the situation’s essential features.

Here, our predicted speed is only 30 percent lower than the actual value, so
our model of the energy cost of cycling must be broadly correct. Its main
error arises from the factor of one-half that we ignored when estimating the
drag force—as you can check by doing Problem 3.33.
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Fuel efficiency of automobiles

Bicycles, in many places, are overshadowed by cars. From the analysis of
drag, we can estimate the fuel consumption of a car (at highway speeds).
Most of the world measures fuel consumption in liters of fuel per 100 kilo-
meters of driving. The United States uses the reciprocal quantity, fuel effi-
ciency—distance per volume of fuel—measured in miles per US gallon. To
develop unit flexibility, we’ll do the calculation using both systems.

For a bicycle, we compared powers: the power consumed by drag with the
power supplied by an athlete. For a car, we are interested in the fuel con-
sumption, which is related to the energy contained in the fuel. Therefore,
we need to compare energies. For cars traveling at highway speeds, most
of the energy is consumed fighting drag. Therefore, the energy consumed
by drag equals the energy supplied by the fuel.

Driving a distance d, which will be 100 kilometers, consumes an energy
Edrag ~ pairv2Acs d. (B.77)
The fuel provides an energy

E¢ ~ energy density x fuel mass = &g Pruel Vivel (3.78)

Epuel Pruel Vel

Because E,e| ~ Egrag, the volume of fuel required is given by

2
Edrag N Pair 0 Acs d
pfuelgfuel Pfuel 6fuel
A

Vel ~ (3.79)

consumption

Because the left-hand side, V., is a volume, the complicated factor in front
of the travel distance d must be an area. Let’s make an abstraction by nam-
ing this area. Because it is proportional to fuel consumption, a self-docu-

menting name is Acopeumption- INOW let’s estimate the quantities in it.

1. Density ratio p,;,/ Ppe- The density of gasoline is similar to the density of
water, so the density ratio is roughly 1073.
2. Speed v. A highway speed is roughly 100 kilometers per hour (60 miles

per hour) or 30 meters per second. (A useful approximation for Ameri-
cans is that 1 meter per second is roughly 2 miles per hour.)

3. Energy density &g, We estimated this quantity Section 2.1 as roughly
10 kilocalories per gram or 40 megajoules per kilogram.
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4. Cross-sectional area A,,. A car’s cross section is about 2 me-

ters across by 1.5 meters high, so A.. ~ 3 square meters. car
y R s ! (cross section) L5m

With these values,
v? A 2m
32 o2 2
Aconsumption ~ 1073 x A0S~ X 3 g 10-8 2, (3.80)
4x107Jkg
g’fuc]

To find the fuel consumption, which is the volume of fuel per 100 kilometers
of driving, simply multiply A ;nsumption Py 4 = 100 kilometers or 10° meters,
and then convert to liters to get 8 liters per 100 kilometers:

103 ¢ _

Vil ® 8x1078.m?% x 10°.a7 x P

8 L. (3.81)

Acnnsumptinn

For the fuel efficiency, we use A snsumption in the form d = Vi, /A onsumption
to find the distance traveled on 1 gallon of fuel, converting the gallon to

cubic meters:
Vfue]

1 galtory ar  10%m?
X X
8x108.m? 1 gallon 194

consumption

=5x10*m. (3.82)

~

The struck-through exponent of 3 in the m? indicates that the cubic me-
ters became linear meters, as a result of cancellation with the m? in the
Aconsumption- 1he resulting distance is 50 kilometers or 30 miles. The pre-
dicted fuel efficiency is thus roughly 30 miles per gallon.

This prediction is very close to the official values. For example, for new mid-
size American cars (in 2013), fuel efficiencies of nonelectric vehicles range
from 16 to 43 miles per gallon, with a mean and median of 30 miles per
gallon (7.8 liters per 100 kilometers).

The fuel-efficiency and fuel-consumption predictions are far more accurate
than we deserve, given the many approximations! For example, we ignored
all energy losses except for drag. We also used a very rough drag force
P02 A, derived from a reasonable but crude conservation argument. Yet,
like Pippi Longstocking, we came out right anyway.

What went right?
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The analysis neglects two important factors, so such accuracy is possible
only if these factors cancel. The first factor is the dimensionless constant
hidden in the single approximation sign of the drag force:

2
Fdrag ~ pairAcsv . (3.83)

Including the dimensionless prefactor (shown in gray), the drag force is
1
F drag = §Cd PairAc502, (3.84)

where ¢, is the drag coefficient (introduced in Section 3.2.1). The factor of
one-half comes from the one-half in the definition of kinetic energy. The
drag coefficient is the remaining adjustment, and its origin is the subject of
Section 5.3.2. For now, we need to know only that, for a typical car, ¢y = 1/2.
Therefore, the dimensionless prefactor hidden in the single approximation
sign is approximately 1/4.

Based on this more accurate drag force, will cars use more or less than 8 liters of
fuel per 100 kilometers?

Including the c4/2 reduces the drag force and the fuel consumption by a fac-
tor of 4. Therefore, cars would travel 120 miles on 1 gallon of fuel or would
consume only 2 liters per 100 kilometers. This more careful prediction is
far too optimistic—and far worse than the original, simpler estimate.

What other effect did we neglect?

The engine efficiency—a typical combustion engine, whether gasoline or
human, is only about 25 percent efficient: An engine extracts only one-quar-
ter of the combustion energy in the fuel; the remaining three-quarters turns
into heat without doing mechanical work. Including this factor increases
our estimate of the fuel consumption by a factor of 4.

The engine efficiency and the more accurate drag force together give the
following estimate of the fuel consumption, with the new effect in gray:

1
Ecd x pairvacs d
025 ppuerCpuel

Vfuel ~ (3.85)
The 0.25 in the denominator, from the engine efficiency, cancels the %cd in
the numerator. That is why our carefree estimate, which neglected both fac-
tors, was so accurate. The moral, which I intend only half jokingly: Neglect
many factors, so that the errors can cancel one another out.
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Problem 3.33  Adjusting the cycling record

Our estimate of the world 1-hour record as roughly 35 kilometers (Section 3.5.3)
ignored the drag coefficient. For a bicyclist, cq = 1. Will including the drag coeffi-
cient improve or worsen the prediction in comparison with the actual world record
(roughly 50 kilometers)? Answer that question before making the new prediction!
What is the revised prediction?

Problem 3.34 Bicyclist fuel efficiency

What is the fuel consumption and efficiency of a bicyclist powered by peanut but-
ter? Express your estimate as an efficiency (miles per gallon of peanut butter) and
a consumption (liters of peanut butter per 100 kilometers). How does a bicycle
compare with a car?

Lift using conservation of momentum

If drag is a drag, our next force, which is the companion to drag, should lift
our spirits. Using conservation and box models, we will estimate the power
required to generate lift. There are two main cases: hovering flight—for
example, a hummingbird—and forward flight. Compared to forward flight,
hovering flight has one fewer parameter (there is no forward velocity), so
let’s begin with its analysis, for a bird of mass m.

Hovering: Hummingbirds

How much power does a hummingbird require to hover?

Hovering demands power because a hummingbird has weight: box
The Earth, via the gravitational field, supplies the hummingbird @
with downward momentum. The Earth therefore loses downward
momentum or, equivalently, acquires upward momentum. (Thus,
the Earth accelerates upward toward the hummingbird, although
very, very slowly.) This flow of momentum can be tracked with
a box model. Let’s draw the box around the Earth-hummingbird
system and imagine the system as the whole universe. The box contains
a fixed (constant) amount of downward momentum, so the gravitational
field can transfer downward momentum only within the box. In particular,
the field transfers downward momentum from the Earth to the humming-
bird. This picture is a fancy way of saying that the Earth exerts a downward
force on the hummingbird, but the fancy way shows us what the hovering
hummingbird must do to stay aloft.

downward
momentum
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box

If the hummingbird keeps this downward momentum, it would accu-
mulate downward speed—and crash to the ground. Fortunately, the @
box has one more constituent: the fluid (air). The hummingbird gives
the downward momentum to the air: It flaps its wings and sends air @
downward. Lift, like drag, requires a fluid. (The air pushes down on
the Earth, returning the downward momentum that the Earth lost
via the gravitational field. Thus, the Earth does not accelerate.) @

How much power is required to send air downward?

Power is force times speed. The force is the gravitational force mg that the
hummingbird is unloading onto the air. Estimating the air’s downward
speed v, requires careful thought about the flow of momentum. The air car-
ries the downward momentum supplied to the hummingbird. The
momentum supply (a momentum rate or momentum per time) is
the force mg: Force is simply momentum per time. Because mo-
mentum flux is momentum per time per area,

mg = momentum flux x area. (3.86)
downward
When we first studied flux, in Section 3.4.2, we derived that mom. density
~ Pair¥Vz
flux of stuff = density of stuff x flow speed. (3.87)

Because our stuff is momentum, this relation takes the particular form
momentum flux = momentum density x flow speed. (3.88)
Substituting this momentum flux into mg = momentum flux x area,
mg = momentum density x flow speed x area. (3.89)

Momentum density is momentum (m,;,,v,) per volume, so it is p,;v,. The
flow speed is v,. Thus,

Mg = PV, X U, X area = p,;,0? x area. (3.90)

To complete this equation, so that it gives us the downward velocity v,, we
need to estimate the area. It is the area over which the hummingbird di-
rects air downward. It is roughly L2, where L is the wingspan (wingtip to
wingtip). Even though the wings do not fill that entire area, the relevant
area is still L2, because the wings disturb air in a region whose size is com-
parable to their longest dimension. (For this reason, high-efficiency planes,
such as gliders, have very long wings.)

Using L? as the estimate for the area, we get
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mg ~ 04 07L?, (3.91)
so the downward velocity is
mg
Pairl?

With this downward velocity and with the downward force mg, the power
P (not to be confused with momentum!) is

P=Fu,~m s (3.93)
- : g IoairL2 . o

Let’s estimate this power for an actual hummingbird: the Calliope hum-
mingbird, the smallest bird in North America. Its two relevant characteris-
tics are the following;:

U, ~

) (3.92)

wingspan L = 11 cm,
(3.94)
mass m = 2.5g.
As the first step in estimating the hovering power, we’ll estimate the down-
ward air speed using our formula for v,. The result is that, to stay aloft, the
hummingbird sends air downward at roughly 1.3 meters per second:

e 1/2

-2
v, ~ 25x107°N ~ 13ms L (3.95)
1.2kgm™3 x 1.2x1072 m?

pair LZ

The resulting power consumption is roughly 30 milliwatts:

P~ 25x1072N x 13ms™! ~ 3x1072W . (3.96)
mg v, 30 mW

(Because animal metabolism, like a car engine, is only about 25 percent effi-
cient, the hummingbird needs to eat food at a rate corresponding to 120
milliwatts.)

This power seems small: Even an (incandescent) flashlight bulb, for exam-
ple, requires a few watts. However, as a power per mass, it looks more
significant:
-2

E ~ M ~ 10 E (3.97)

m  25x1073kg kg
In comparison, the world-champion cyclist Lance Armstrong, with one of
the highest human power outputs, was measured to have a power output of
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7 watts per kilogram (Section 1.7.2). However, for a chemically unenhanced
world-class athlete, 5 watts per kilogram is a more typical value. According
to our estimates, hummingbird muscles should be twice as powerful as this
world-class human value! Even for a small bird, hovering is hard work.

Problem 3.35 Fueling hovering

How much nectar must a hummingbird drink, as a fraction of its body mass, in
order to hover for its working day (roughly 8 hours)? By mass, nectar is roughly
50 percent sugar.

Problem 3.36 Human hovering

How much power would a person have to put out in order to hover by flapping
his or her arms?

Lift in forward flight

Now that we understand the fundamental mechanism [ A]
of lift—discarding downward momentum by giving it wing |
to the air—we are ready to study forward flight: the body I
flight of a migrating bird or of a plane. Forward flight :
is more complicated than hovering because forward wing| !
flight has two velocities: the plane’s forward velocity il

v and the downward component v, of the air’s veloc-
ity after passing around the wing. In forward flight, v, depends not only on
the plane’s weight and wingspan, but also on the plane’s forward velocity.

To stay aloft, the plane, like the hummingbird, must deflect air downward.

air wing

_— . :
v (side view) \d:
Uz

The wing does this magic using complicated fluid mechanics, but we need
not investigate it. All the gymnastics are hidden in the box. We need just
the downward velocity v, required to keep the plane aloft, and the power
required to give the air that much downward velocity. The power is, as
with hovering, mgv,. However, the downward velocity v, is not the same
as in hovering.

It is determined by a slightly different momentum-flow diagram. It shows
the air flow before and after it meets the wing.
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downward
mom. density
~ PairVz

Before the air reaches the wing (the left tube), the air has zero downward
momentum. As in the analysis of hovering flight, the Earth supplies down-
ward momentum to the plane, which passes it onto the air. This downward
momentum is carried away by the air after the wing (the right tube).

As with any flux, the rate of transfer of downward momentum is
flux of downward momentum x area. (3.98)

As in the analysis of the hummingbird, this rate must be mg, so that the
plane stays aloft. The first factor, the flux of downward momentum, is

density of downward momentum x flow speed. (3.99)
Therefore,
mg = density of downward momentum x flow speed x area.  (3.100)

As in the analysis of hovering, the density of downward momentum is pv,.

In contrast to the analysis of hovering, where the stuff (downward momen-
tum) is carried by the air moving downward, here the stuff is carried by air
moving to the right. Thus, where the flow speed in hovering was the down-
ward air speed v,, in forward flight the flow speed is the forward velocity v.

As in the analysis of hovering, the relevant area
is the squared wingspan L2, because the wings al-
ter the airflow over a distance comparable to their
longest dimension, which is their wingspan. You
can see this effect in a NASA photograph of an
airplane flying through a cloud of smoke. The gi-
ant swirl, known as the wake vortex, has a diam-
eter comparable to the plane’s wingspan. Large
planes can generate vortices that flip over small
planes. Thus, when coming in for landing, planes
must maintain enough separation to give these vortices time to dissipate.
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With these estimates, the equation for v, becomes

mg ~ Oair¥z x v x L%, (3.101)
transfer rate  downward-momentum density  flow speed area

Now we can solve for the downward air speed:
mg
% airvL 2

2 (3.102)

Now we can estimate the power required to generate lift in forward flight:

mg (mg)?

P = force x velocity ~ mg x = .
pairvL2 IOaiI‘ULZ

mg &

(3.103)

Here is a comparison of hovering and forward flight.

hovering forward flight
deflection area L? L2
downward-momentum density Pair¥z Oair¥z
flow speed v, v
downward-momentum flux pairvz2 Pair¥;0
downward-momentum flow mg pairvzsz Oair0,0L?
downward velocity v, A Mg/ P L? Mg / PairL?
power to generate lift (mgv,) mgmg/oarl®  (mg)%/0a1r0L2

In contrast to hovering, in forward flight the power contains the forward
velocity in the denominator—a location that would produce nonsense for
hovering, where the forward velocity is zero.

As we did for hovering flight using the Calliope hummingbird, let’s apply
our knowledge of forward flight to an actual object. The object will be a
Boeing 747-400 jumbo jet, and we will estimate the power that it requires in
order to take off. A 747 has a wingspan L of approximately 60 meters, and
a maximum takeoff mass m of approximately 4 x 10° kilograms (400 tons).

We'll estimate the power in two steps: the weight mg and then the down-
ward air speed v,. The weight is the easy step: It is just 4 x 10® newtons.
The downward air speed v, is mg/p,,vL?. The only unknown quantity is
the takeoff speed v. You can estimate it by estimating the plane’s acceler-
ation a4 while taxiing on the runway and by estimating the duration of the
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acceleration. When I last flew on a 747, I measured the acceleration by sus-
pending my key chain from a string and estimating the angle 6 that it made
with vertical (perpendicular to the ground). Then tan 6 = a/g. For small 0,
the relation simplifies to a/g ~ 6. I found 6 = 0.2, so the acceleration was
about 0.2¢ or 2 meters per second per second. This acceleration lasted for
about 40 seconds, giving a takeoff speed of v ~ 80 meters per second (180
miles per hour).

The resulting downward speed v, is roughly 12 meters per second:

mg
6
= 1.2kgm™3 x E;LOXI;Z_I]\I x 3.6x103m? ~12ms. e
Pair v L2
Then the power required to generate lift is roughly 50 megawatts:
P~ mgu, ~ 4x10°N x 12ms~! ~ 5x 107 W. (3.105)

Let’s see whether these estimates are reasonable. According to the plane’s
technical documentation, the 747-400’s four engines together can provide
roughly 1 meganewton of thrust. This thrust can accelerate the plane, with
a mass of 4 x 10° kilograms, at 2.5 meters per second. This value is in good
agreement with my estimate of 2 meters per second, made by suspending
a key chain from a string and turning it into a plumb line.

As another check: At takeoff, when v is roughly 80 meters per second, the
meganewton of thrust corresponds to a power output Fv of 80 megawatts.
This output is comparable to our estimate of 50 megawatts for the power
to lift the plane off the ground. After liftoff, the engines use some of their
power to lift the plane and some to accelerate the plane, because the plane
still needs to reach its cruising speed of 250 meters per second.

Symmetry and conservation make even fluid dynamics tractable.

Summary and further problems

In the midst of change, find what does not change—the invariant or con-
served quantity. Finding these quantities simplifies problems: We focus
on the few quantities that do not change rather than on the many ways in
which quantities do change. An instance of this idea with wide application
is a box model, where what goes in must come out. By choosing suitable
boxes, we could estimate rainfalls and drag forces, and understand lift.
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Problem 3.37 Raindrop speed

Use the drag force Fyag ~ pAcv? to estimate the terminal speed of a typical rain-
drop with a diameter of 0.5 centimeters. How could you check the prediction?

Problem 3.38  Average value of sin squared

Use symmetry to find the average value of sin’t over the interval t = [0, 77].

Problem 3.39 Moment of inertia of a spherical shell

The moment of inertia of an object about an axis of rotation is axis
Z md?, (3.106)

summed over all mass points i, where d; is the distance of the
point from an axis of rotation. Use symmetry to find the moment
of inertia of a spherical shell with mass m and radius r about an
axis through its center. You shouldn’t need to do any integrals!

Problem 3.40 Flying bicyclist

Estimate the wingspan a world-champion bicyclist would require in order to get
enough lift for takeoff.

Problem 3.41 Maximum-gain frequency for a second-order system

In this problem, you use symmetry to maximize L c

the gain of an LRC circuit or a spring-mass system Vi, —'TlTﬂ—| |—— Vout
with damping (using the analogy in Section 2.4.1).

The gain G, which is the amplitude ratio Vi,¢/ Vip, R %E
depends on the signal’s angular frequency w: L ]
jw
G(w) = “o R (3.107)
L e @
Quwy «f

where j = A1, wj is the natural frequency of the system, and Q, the quality factor,
is a dimensionless measure of the damping. Don’t worry about where the gain for-
mula comes from: You can derive it using the impedance method (Problem 2.22),
but the purpose of this problem is to maximize its magnitude |G(w)|. Do so by
finding a symmetry operation on w that leaves |G(w)| invariant.

Problem 3.42 Runway length
Estimate the runway length required by a 747 in order to take off.

Problem 3.43 Hovering versus flying

At what forward flight speed does the hummingbird of Section 3.6.1 require as
much power to generate lift as it would to hover? How does this speed compare
to its typical flight speed?
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Problem 3.44 Resistive grid

In an infinite grid of 1-ohm resistors, what is the resis-
tance measured across one resistor?

To measure resistance, an ohmmeter injects a current .
I at one terminal (for simplicity, imagine that] = 1 am- [ '@
pere). It removes the same current from the other ter-
minal, and measures the resulting voltage difference
V between the terminals. The resistance is R = V/I.

Hint: Use symmetry. But it’s still a hard problem!

Problem 3.45 Inertia tensor

Here is an inertia tensor (the generalization of moment of inertia) of a particular
object, calculated in an ill-chosen (but Cartesian) coordinate system:

4 0 0
(0 5 4) (3.108)

0 4 5

a. Change the coordinate system to a set of principal axes, where the inertia tensor
has the diagonal form

L. 0 O
( 0 Iyy 0 ) (3.109)
0 0 I,

and give the principal moments of inertia Iy, Iyy, and I,,. Hint: Which proper-

ties of a matrix are invariant when changing coordinate systems?

b. Give an example of an object with a similar inertia tensor. Rhetorical question:
In which coordinate system is it easier to think of such an object?

This problem was inspired by a problem on the physics written qualifying exam
during my days as a PhD student. The problem required diagonalizing an inertia
tensor, and there was too little time to rederive or even apply the change-of-basis
formulas. Time pressure sometimes pushes one toward better solutions!

Problem 3.46 Temperature distribution on an infinite sheet

On this infinite, uniform sheet, the x axis is held at zero tempera- o
ture, and the y axis is held at unit temperature (T = 1). Find the e
temperature everywhere (except the origin!). Use Cartesian co-
ordinates T (x,y) or polar coordinates T (r, §), whichever choice

makes it easier to describe the temperature.
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When there is change, look for what does not change. That principle, in-
troduced when we studied symmetry and conservation (Chapter 3), is also
the basis for our next tool, proportional reasoning.

Population scaling

An everyday example of proportional reasoning often happens when cook-
ing for a dinner party. When I prepare fish curry, which I normally cook
for our family of four, I buy 250 grams of fish. But today another family of
four will join us.

How much fish do I need?

I need 500 grams. As a general relation,

new number of diners

new amount = old amount x - .
usual number of diners

4.1)

Another way to state this relation is that the amount of fish is proportional
to the number of diners. In symbols,
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Mg X Ndiners/ (4.2)

where the oc symbol is read “is proportional to.”
But where in this analysis is the quantity that does not change?

Another way to write the proportionality relation is

new amount of fish _  old amount of fish 43)
new number of diners ~ old number of diners’ -
Thus, even when the number of diners changes, the quotient
amount of fish @4

number of diners

does not change.

For an analogous application of proportional reasoning, here’s one way to
estimate the number of gas stations in the United States. Following the
principle of using human-sized numbers, which we discussed in Section 1.4,
I did not try to estimate this large number directly. Instead, I started with
my small hometown of Summit, New Jersey. It had maybe 20000 people
and maybe five gas stations; the “maybe” indicates that these childhood
memories may easily be a factor of 2 too small or too large. If the number
of gas stations is proportional to the population (Nytions & Npeopte), then

NpLS)p]e
8
Us — N\JSummit % 3x10 (4.5)
stations — ' stations 2% 104 . ’

Summit
people

The population ratio is roughly 15000. Therefore, if Summit has five gas
stations, the United States should have 75 000. We can check this estimate.
The US Census Bureau has an article (from 2008) entitled “A Gas Station for
Every 2,500 People”; its title already indicates that an estimate of roughly
10° gas stations is reasonably accurate: Summit, in my reckoning, had 4000
people per gas station. Indeed, the article gives the total as 116 855 gas
stations—as close to the estimate as we can expect given the uncertainties
in childhood memories!

Problem 4.1 Homicide rates

The US homicide rate (in 2011) was roughly 14 000 per year. The UK rate in the
same year was roughly 640. Which is the more dangerous country (per person),
and by what factor?
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4.2 Finding scaling exponents

The dinner example (Section 4.1) used linear proportionality: When the
number of dinner guests doubled, so did the amount of food. The relation
between the quantities had the form y « x or, more explicitly, y « x!. The
exponent, which here is 1, is called the scaling exponent. For that reason,
proportionalities are often called scaling relations. Scaling exponents are a
powerful abstraction: Once you know the scaling exponent, you usually do
not care about the mechanism underlying it.

4.2.1 Warmup

After linear proportionality, the next simplest and most common
type of proportionality is quadratic—a scaling exponent of 2—and
its close cousin, a scaling exponent of 1/2. As an example, here is
a big circle with diameter d,,;, = 5 em.

What is the diameter of the circle with one-half the area of this circle?

Let’s first do the very common brute-force solution, which does not
use proportional reasoning, so that you see what not to do. It begins
with the area of the big circle:

_ T _5 2 )
Abig = Zdbig = Zﬂcm . (4.6) -
bi
The area of the small circle Agy,y i Apig/2, S0 Agman = 571/8 cm?, Asman = 2g

Therefore, the diameter of the small circle is given by

[A 5
dsmall = %ZH = \/gcm. (4.7)

Although this result is correct, by including 77/4 and then dividing it out,
we run around Robin Hood’s barn (all of Sherwood forest) to reach a simple
result. There must be a more elegant and insightful approach.

This improved approach also starts with the relation between a circle’s area
and its diameter: A = 7rd?/4. However, it discards the complexity early—in
the next step—rather than carrying it through the analysis and having it
vanish only at the end. An everyday analog of this approach is packing for
a trip. Rather than dragging around books that you will not read or clothes
that you will not wear, prune early and travel light: Pack only what you will
use and set aside the rest.
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To lighten your problem-solving luggage, observe that all circles, indepen-
dent of their diameter, have the same prefactor 77/4 connecting d? and A.
Therefore, when we make a proportionality or scaling relation between A
and d, we discard the prefactor. The result is the following quadratic pro-
portionality (one where the scaling exponent is 2):

A « d2. (4.8)
For finding the new diameter, we need the inverse scaling relation:
doc AY2, (4.9)

In this form, the scaling exponent is 1/2. This proportionality is shorthand
for the ratio relation

1/2
dsmall — (Asmall>
dbig Abig

(4.10)

The area ratio is 1/2, so the diameter ratio is 1/+/2. Because the large diam-
eter is /5 cm, the small diameter is ,/5/2 cm.

The proportional-reasoning solution is

shorter than the brute-force approach, Abig = %ﬂ em? == - — - = — > Agoa = 5?71 em?
so it offers fewer places to go wrong. It A (exiri baggose) !
is also more general: It shows that the AT go A
= — = l
result does not require that the shape b4 |
be a circle. As long as the area of the ' doc A2 v 5
. . dpig = Vem —————» mall = \/t m
shape is proportional to the square of prop. reasoning 2

its size (as a length)—a relation that
holds for all planar shapes—the length ratio is 1/4/2 whenever the area ratio
is 1/2. All that matters is the scaling exponent.

Problem 4.2 Length of the horizontal bisecting path

In Problem 3.23, about the shortest path that bisects an equilateral
triangle, one candidate path is a horizontal line. How long is that
line relative to a side of the triangle?

Areas are connected to flux, because flux is rate per area. Thus, the scaling
exponent for area—namely, 2—appears in flux relationships. For example:
What is the solar flux at Pluto’s orbit?

The solar flux F at a distance r from the Sun is the solar luminosity Lg,,,—the
radiant power output of the sun—spread over a sphere with radius r:
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— LSun
4mr?’
Even as r changes, the solar luminosity remains the same (conservation!),
as does the factor of 477. Therefore, in the spirit of packing light for a trip,
simplify the equality F = Lg,,/47r? to the proportionality

4.11)

For2 4.12)

by discarding the factors Lg,,,, and 47t. The scaling exponent here is —2: The
minus sign indicates the inverse proportionality between flux and area, and
the 2 is the scaling exponent connecting r to area.

The scaling relation is shorthand for

(4.13)

F -2
Pluto’s orbit ( TPluto’s orbit )
7

F Earth’s orbit TEarth’s orbit

or

-2
T , ;
Pluto’s orbit ) ) (4.14)

FPIuto’s orbit = FEarth’s orbit (
TEarth’s orbit

The ratio of orbital radii is roughly 40. Therefore, the solar flux at Pluto’s
orbit is roughly 4072 or 1/1600 of the flux at the Earth’s orbit. The resulting
flux is roughly 0.8 watts per square meter:

r _ 1300W 1 08W
Pluto’s orbit — m2 x 1600 ~ m2

(4.15)

Receiving such a small amount of sunlight, Pluto must be very cold. We
can estimate its surface temperature with a further proportionality.

Surface temperature depends mostly on so-called sunlight energy | plackbody
blackbody radiation. The surface temperature is —— # atplanet
the temperature at which the radiated flux equals surface
the incoming flux; we are making another box

model. The radiated flux is given by the blackbody formula (which we
will derive in Section 5.5.2)

radiation

F=0T4 (4.16)

where T is the temperature, and ¢ is the Stefan—Boltzmann constant:
W
m2K*

o ~57x1078 4.17)

What is the resulting surface temperature on Pluto?



108 4 Proportional reasoning

As with any proportional-reasoning calculation, there is a long-winded,
brute-force alternative (try Problem 4.5). The elegant approach directly
uses the proportionalities

T « F1/4 and Fo«r7?, (4.18)
where r is the orbital radius. Together, they produce a new proportionality

T (r—2)1/4 = 12 (4.19)
A compact graphical notation, similar to the divide-and-conquer trees, en-
capsulates this derivation:

1"772—>F—14>T
4

As indicated by the » — F arrow, changing r changes F. The boxed number
along the arrow gives the scaling exponent. Therefore, the r — F arrow
represents F o r=2. The F — T arrow indicates that changing F changes T
and, in particular, that T o F1/4,

To find the scaling exponent connecting r to T, multiply the scaling expo-
nents along the path:
1 1
—2x = =—=. 4.20
1 5 (4.20)
Problem 4.3 Explaining the graphical notation

In our graphical representation of scaling relations, why is the final scaling expo-
nent the product, rather than the sum, of the scaling exponents along the way?

This scaling exponent r