
9 789087 282134 LUP

M
E

A
N

IN
G

 V
E

R
SU

S G
R

A
M

M
A

R
C

rem
ers, H

ijzelen
d

oorn
&

 R
eckm

an

Meaning versus Grammar investigates the complicated relationship between
grammar, computation, and meaning in natural languages. It details
conditions under which meaning-driven processing of natural language
is feasible, discusses an operational and accessible implementation of the
grammatical cycle for Dutch, and offers analyses of a number of further
conjectures about constituency and entailment in natural language.

Crit Cremers is an associate professor in formal semantics and computational
linguistics at Leiden University. Maarten Hijzelendoorn is a senior
software engineer at the Faculty of Humanities of Leiden University.
Hilke Reckman is a senior researcher in natural language processing.

“This book is unique in my experience in giving this amount of detail to setting out
the Dutch case with respect to separately a parser and generator, and the motivation
for this as a property of the framework itself is wholly novel. But what makes this
book such a winner is its style: I know of no other book at this level of formal
explicitness that is such a joy to read.”

ruth kempson, professor of linguistics,

king’s college london

www.lup.nl

leiden university press

MEANING

GRAMMAR
An Inquiry into

the Computation of Meaning

and

the Incompleteness of Grammar

Crit Cremers

Maarten Hijzelendoorn

Hilke Reckman

VERSUS

* omslag Meaning versus Grammar II_DEF 29-08-14 15:50 Pagina 1

meaning versus grammar

Crit Cremers
Maarten Hijzelendoorn

Hilke Reckman

An Inquiry into the Computation of Meaning
and the Incompleteness of Grammar

MEANING
VERSUS

GRAMMAR

Leiden University Press

Cover design: Kok Korpershoek
Lay-out: Jurgen Leemans

Cover illustration: Matthias Stom, Samson and Delilah, 1630s, Palazzo Barberini, Galleria Nazionale
d’Arte Antica, Rome, Italy

isbn 978 90 8728 212 7
e-isbn 978 94 0060 183 3 (e-pdf)
e-isbn 978 94 0060 184 0 (e-pub)
nur 616

© Crit Cremers / Maarten Hijzelendoorn / Hilke Reckman / Leiden University Press, 2014

All rights reserved. Without limiting the rights under copyright reserved above, no part of this
book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any
form or by any means (electronic, mechanical, photocopying, recording or otherwise) without
the written permission of both the copyright owner and the author of the book.

This book is distributed in North America by the University of Chicago Press
(www.press.uchicago.edu).

 TABLE OF CONTENTS

 5

 TABLE OF CONTENTS

ACKNOWLEDGEMENTS 9

0. INTRODUCTION 11
0.1 A Language Machine 11

0.2 Language and computability 16

0.3 The book 21

1. SYNTAX:
the game of recursion and discontinuity 25

1.1 The need for syntax 25

1.2 Forms of Dutch 30

1.3 The task for syntax 34

1.4 The logic and the algebra of lists, flags, types and modes 41
1.4.1 Categories and complex symbols 41
1.4.2 Basics 44
1.4.3 Merge 47
1.4.4 Modalities 49
1.4.5 Argument list 50
1.4.6 Deduction schemes 52
1.4.7 The algebra of strings 53
1.4.8 Disharmonic composition and categorial logic:

grammar and reasoning 56
1.5 The calculi 60

1.5.1 Merge and Move 62
1.5.2 Soundness and completeness 63

6 TABLE OF CONTENTS

1.5.3 The fundamental asymmetry of merge 68
1.5.4 No manipulation of structure 70

1.6 The case for Dutch 71
1.6.1 General Format 71
1.6.2 A concise syntax of Dutch 74
1.6.3 Dealing with adjuncts 90

1.7 The grammar of discontinuity and coordination 94
1.7.1 The source of discontinuity and connectedness 94
1.7.2 Discontinuity in CLG 95
1.7.3 Patterns of Dutch 102
1.7.4 Coordination as discontinuity 106

1.8 Parsing the syntax 114
1.8.1 The syntax of CCG 115
1.8.2 Comparing the syntaxes of CCG and CLG 116
1.8.3 Comparing the generative capacity of CCG and CLG 120
1.8.4 CLG and the Chomsky hierarchy 124
1.8.5 Parsing CCGs 125
1.8.6 Parsing CLG 129
1.8.7 Extending and restricting a parser for CLG 130
1.8.8 Parsing coordination 136

1.9 Generating by syntax: agendas and linearization 138
1.9.1 Two-directional grammar 138
1.9.2 Categories as agendas 145

2. SEMANTICS:
the game of scope and intensionality 153

2.1 The ways of meaning 153

2.2 The forms of meaning 157

2.3 Scope and Specification 162
2.3.1 Quantifiers 162
2.3.2 The structures of quantification 167
2.3.3 Compositionality and underspecification 170

2.4 Intensionality and semantic dependency 175
2.4.1 Intensionality 175
2.4.2 Skolemization of dependent events 180

2.5 Events and states: reification of predication 182
2.5.1 Reference to events 182
2.5.2 Pluractionality 190

TABLE OF CONTENTS 7

2.6 Exploiting Logical Form for Parsing 196
2.6.1 Logical Form, Grammar and Computation 196
2.6.2 Logical form in Delilah 197
2.6.3 Stored Logical Form 198
2.6.4 Applied Logical Form 208
2.6.5 Flat Logical Form 210

2.7 Generating from Logic 217
2.7.1 Generation as translation 217
2.7.2 From logical form to lexical line up 219
2.7.3 From lexical line-up to sentence: intertwining agendas 223
2.7.4 Testing logical form by entailment 226

3. LEXICON:
the language’s encyclopaedia and database 229

3.1 Storing knowledge of language 229
3.1.1 Lexicalism: atoms and molecules 229
3.1.2 Delilah and HPSG 234
3.1.3 Words and worlds: a lexicon is not a dictionary 237
3.1.4 Lexical chemistry: cooking the graphs 240

3.2 Modes of lexical knowledge 242
3.2.1 Phonological form: the one-dimensional grammar 242
3.2.2 Morphology: the combinatoric guide 244
3.2.3 Syntax: the unification agenda 245
3.2.4 Semantics: ultimate knowledge of language 249
3.2.5 Information Structure: to the limits of decidability 258

3.3 Unification: powering grammar conservatively 259
3.3.1 Procedures and specifications 259
3.3.2 Problems with re-entrance 264

3.4 The making of the lexicon 265
3.4.1 Organizing lexical knowledge:

no lemmas – economy vs flexibility 265
3.4.2 General and special: everything as a graph 270
3.4.3 The rules that make the language 272
3.4.4 The constructive lexicon 279
3.4.5 The lexicon is local 283

3.5 Disclosing the lexicon: object-orientation and speed for semantic
generation 284

3.5.1 The enterprise 284
3.5.2 Two models 286

8 TABLE OF CONTENTS

3.5.3 Methods 292
3.5.4 Creating and accessing the object lexicon 294
3.5.5 Perspectives 297

3.6 The lexicon while parsing 298

4. GRAMMAR:
the reward of incompleteness 301

4.1 The three duals of grammar 301

4.2 The conservativity of syntax 302
4.2.1 The yield of syntax 302
4.2.2 The restrictedness of unification 303
4.2.3 The generality of unification 305

4.3 The destructivity of semantics 308
4.3.1 Divorcing constituents and entailments 308
4.3.2 Entailments as products of composition and deduction 309

4.4 The denial of structure 314

4.5 The mismatch of structure and meaning 316
4.5.1 The mismatch in exception phrases 318
4.5.2 The mismatch in comparatives 320
4.5.3 The mismatch in ellipsis 322
4.5.4 A conjecture on the interface 323

4.6 The lexicon as an oracle: the case of behalve 324

4.7 The incompleteness of grammar 327

4.8 The fruit of incompleteness 329

REFERENCES 333

INDEX 349

 9

ACKNOWLEDGEMENTS

This book reports on almost twenty years of struggling with grammar-in-
action. The language machine it describes has been contributed to by many
students in the Leiden University linguistic programmes since 1995. Essential
components were co-designed by Christiaan van de Woestijne and Mathieu
Fannee. Essential criticism was delivered by Marius Doornenbal, Erik Schoor-
lemmer, Peter Zinn, Martin Honcoop, Boban Arsenijevic, Emil van den Berg,
Jochem Poeder, Jay Landsdaal, Robin Langendijk, Pieter Lamers, and John
Terheijden. New fields around the machine have been explored by Marijn van
‘t Veer, Marja Oudega, Maartje Schulpen, David Shakouri, Mika Poß, Emma
Vanden Wyngaerd, and Boris Kozlov.

Many more students inspired us by discussing pitfalls and perspectives of
meaningful grammar, and by writing papers and theses on aspects of it. Like
many colleagues at Leiden University, they made the sweating worthwhile,
showing more than just polite interest in our efforts to keep grammar precise,
explicit, deep and operational. Presuming not to have stepped aside from real
linguistics more than necessary, we owe this orientation to them.

By and large, the research behind this monograph was facilitated by the Lei-
den University Centre for Linguistics. Hilke Reckman’s research was funded
by the Dutch Science Organization NWO as part of the Narrator project. The
first author has been hosted by the Netherlands Institute of Advanced Stud-
ies to almost-complete the book. We gratefully acknowledge the support of
these institutions.

Finally, we are indebted to Saskia de Haan for watching over the book’s lan-
guage.

Crit Cremers
Maarten Hijzelendoorn
Hilke Reckman

10 ACKNOWLEDGEMENTS

0. INTRODUCTION

0.1 A LANGUAGE MACHINE

Amidst efforts to Christianize Muslims, to describe ‘... profane love in scenes
of such repulsive realism that they would shock even an admirer of Henry
Miller’s fiction’ (Gardner 1958:7), to develop voting systems (which are still in
use), and to square the circle – his construction approached a circle’s surface
up to 0.04 % – Ramón Llull invented logic machines. In 13th-century Catalonia,
he designed and exploited the systematic and mechanical production of prop-
ositions. For example, he wrote phrasal concepts on the edges of concentric
circles. Connecting the concepts in one system of circles (or disks), by moving
the circles with respect to each other, yields propositions with and about these
concepts, according to the semantic frame of the particular system. Here is
Llull’s generator for truisms on the soul (from: Ars demonstrativa, c. 1283)–
one among hundreds of systems on all fields of philosophical theology.

Figure 1 Ramon Llull’s Prima figura S

A LANGUAGE MACHINE 11

0. INTRODUCTION

0.1 A LANGUAGE MACHINE

Amidst efforts to Christianize Muslims, to describe ‘... profane love in scenes
of such repulsive realism that they would shock even an admirer of Henry
Miller’s fiction’ (Gardner 1958:7), to develop voting systems (which are still in
use), and to square the circle – his construction approached a circle’s surface
up to 0.04 % – Ramón Llull invented logic machines. In 13th-century Catalonia,
he designed and exploited the systematic and mechanical production of prop-
ositions. For example, he wrote phrasal concepts on the edges of concentric
circles. Connecting the concepts in one system of circles (or disks), by moving
the circles with respect to each other, yields propositions with and about these
concepts, according to the semantic frame of the particular system. Here is
Llull’s generator for truisms on the soul (from: Ars demonstrativa, c. 1283)–
one among hundreds of systems on all fields of philosophical theology.

Figure 1 Ramon Llull’s Prima figura S

12 INTRODUCTION

It produces in each state four conjunctions of three ‘small clauses’, where each
conjunction describes a state of the soul, according to Gardner (1958:13) up
to a total of 136 combinations. Llull considered these generators as his Ars
Magna, his major trick. And though Llull contributed little to the material
knowledge of his days, Leibniz recognized him as a pioneer in combinatory
logic: let us calculate instead of endlessly disputing. Llull’s disks are gram-
mars, generative grammars of meaningful sentences. Unfortunately, Llull con-
sidered his grammars to generate (all and only) true propositions – a quite
common overestimation of the power of linguistics. Yet, the idea that prop-
ositions are meaningful because or to the extent that they are generated by
a system and that meaningfulness is not an accident, we may grant to the
‘obscurantist’ Ramon Llull.
Not everyone was and is convinced by Llull’s way of working, just as not every
scholar of language finds comfort in its mechanization. Llull and Leibniz tried
to tell truth from falsehood – an utterly philosophical and non-linguistic enter-
prise. This book seeks to explore the computability of meaningful language,
in order to tell meaningful from meaningless Dutch – an utterly linguistic
enterprise. Llull was after the grammar of truth. Unfortunately, there is none.
This book is after the grammar of meaningfulness, trying to show that such a
grammar can be established and be made to work. It investigates the modus
operandi of a particular language machine, called Delilah – the biblical con-
notation is a mere accident. This machine, available at http://www.delilah.
eu, executes a language program electronically, inspecting data, computing
actions and storing results. It produces meanings that correlate with mean-
ingful sentences, and meaningful sentences correlating with meanings. It can
be seen as an act of grammar engineering, an effort to make grammar work
and do part of the job of the language processing human brain. It is certainly
not an effort to improve on that processing, or to take away the burden of
processing. It is meant to model one human language in order to grasp how
it is designed and why it works, and in order to be able to test hypotheses on
its deepest feature: the relation between form and meaning, the success of
arbitrary forms conveying inter-subjective meaningfulness. The machine that
we describe and investigate is not an application. It is just a defective, but also
instructive and promising model of human language processing. It is a contri-
bution to linguistics-by-computation – it is computational linguistics. Thus, it
is neither a ‘bachelor machine’ – pure design and un-built – like the language
machines of Raymond Roussel (Carrouges 1975) – nor just a poem: ‘A poem
is a (small or) large machine made out of words’ (Williams 1969: 256). It
operates language, and it works while you sleep. Yet, the concept of mechani-
cal literature, and poetry in particular, is fascinating, and McHale (2000: 11)

A LANGUAGE MACHINE 13

tells why. Answering the question why computer-generated poetry ‘... reads
like some mode or other of contemporary American avant-garde writing ...’
he suggests that some of these avant-garde texts ‘ ... may themselves have
been generated “mechanically” ‘. He proceeds to distinguish four methods of
mechanical composition: imposing constraints, applying procedures, impos-
ing selection and using combination – indeed the ingredients of modern con-
struction grammar for natural language. Men’s built-in text generator may
behave mechanically now and then.

The basic hypothesis that we will investigate is that language entertains a
non-trivial level of semantic computability, and that meaning is the tractable
product of an (almost) mechanical architecture – meaning, not truth, that is,
nor adequacy, information, normality or any other non-truth-functional epi-
phenomenon of language-in-use. Our claim is not that all meaningful aspects
of language are computable; in particular, we don’t believe that the contex-
tual aspects of meaning are in the scope of deterministic algorithms. Prag-
matics of Gricean breed may be understood as a level of meaningful analysis
by Levinson (2000) and others: conversational implicatures e.g. assume intel-
ligence, awareness and a theory of mind which we consider to reach beyond
the minimal assessment for human language learning, usage and understand-
ing. We talk about those aspects of meaning that are not affected by a human’s
degree of autism. On the other hand, no sentence varies its meaning over the
infinitely many contexts in which it can be used. Those components of mean-
ing that do not vary with contexts but rather stay constant are the ones we
are after. For example, there are no contexts in which a sentence and its nega-
tion mean the same. Their pragmatic impact may be the same, however, for
example in a situation where one just says something irrelevant to break a
painful silence. Therefore, the difference between a sentence and its negation
is a dimension of meaning that we want to explore by computation. This bot-
tom line of meaning we consider to be ‘... the “holy grail” not only of linguistics,
but also of philosophy, psychology and neuroscience – not to mention more
distant domains such as cultural and literary theory’ (Jackendoff 2002: 268).

Although the aspects of meaning that we aim to compute are rather elemen-
tary when compared to ‘the pragmatic penumbra closely surrounding sen-
tence-meaning’ (Levinson 2000:1), analysis of meaning cannot do without
these elements. Even for determining the relevance, adequacy and specificity
of a text with or without conversational implicatures, all the small and inevi-
table seeds of the sentences in it have to be taken into consideration. The big
meaning lives on small components, emanating from sentence construal. In

14 INTRODUCTION

that sense, this book is about the grammatical conditions for computing the
propositional molecules of meaning in its broadest sense.

Sentences are meaningful because most strings – statistically: almost all
strings – of words are not well formed. To tell the fraction of well-formed and
meaningful strings from the virtual overflow of verbal nonsense is the task of
grammar, and of a grammar machine. We are not talking furiously sleeping
green ideas here. Some sentences may sound weird because they are mean-
ingful. The grammar cannot but approve of them, for exactly that reason. The
grammar-in-action must identify that utterly small-though-infinite subset of
serial words that happens to contain the meaningful propositions, whether
they are or turn out to be weird, false, insulting or inadequate. A grammar
machine must not stick with Boolean judgements. It arrives at a decision by
computing structure, and this structure conveys the semantics. All we have
to show, then, is that this semantics is not trivial. That amounts to the view
that there is meaning to a proposition, and not just to words. For the present
purpose, we will even assume that the meaning of words is not the non-trivial
level of meaning we are after. The hypothetical level of analysis is the one at
which semantic consequences can be established. That level is propositional,
by nature. It is, just like syllogisms, not dependent on the particular mean-
ing of words, but it assumes the meaningfulness of whatever constituent that
plays a role.
Remarkably, the meaning of a sentence is neither trivial nor vague. Although
this meaning is neither listed nor learned, it is almost beyond debate when
compared to the meanings of words or to the pragmatics of a text. We need
not agree on any particular word meaning in order to agree flawlessly on
the meaning of sentences. But agreement, in this case, presupposes shared
knowledge and shared interests. Consequently, our agreement on sentence
meaning cannot stem from inspection of ‘the world’: that is exactly where
our views and interest diverge. We can only – silently – agree on a domain
we never debate: the structure of the language. Therefore, the non-trivial but
unquestioned level of semantic computability cannot be established except
by language structure. Propositional meaning is neither an accident nor an
individual decision, but an intrinsic attribute of computed structure.

The general Turing machine models computability of the partial recursive
functions. The Turing machine is neither a model of the human brain nor
a model of computability in general. In particular, our brain may be able to
compute stuff that is far beyond the reach of our Turing machines. When we
try to ‘do’ language on a Turing device, we just try to determine whether or

A LANGUAGE MACHINE 15

not certain aspects of language are Turing-computable. The only importance
of this game lies in the question which aspects of language can be shown to be
Turing-computable. Here, we propose that propositional meaning and logi-
cal entailment are in this range. To the extent that we can establish this, it
shows that an interesting part of the human language capacity is recursive
enumerable or even more restricted. The part of the human language capac-
ity we envisage here, is interesting because it contains semantic combina-
torics. Given the computability of syntax and a compositionality ideology,
one can argue that the computability of semantics comes for free. That is not
true. The reason here is transparent: syntactic structure does not impose an
upper limit to the number of propositions it induces. The possible proposi-
tions easily outnumber the given syntactic structures they may be related to.
Linguistics, then, is bound to demonstrate that compositional semantics is
computable all the way up and down. To hope, to say or to claim it is does not
suffice. Linguists must do what Leibniz appreciated Llull for: calculate instead
of debating the possibilities of calculation.

Consequently, this book is on linguistic engineering, rather than on linguistic
theory. But then, linguistic theory is so incomplete or undirected that engi-
neering has to fill the gaps. Another way to look at the problem involved is to
say that theories, models and problem solving in linguistics are rather unbal-
anced. The theories may be about the data, and sometimes the data are the
theory, as in naive constructionism. There is too little distance; there is so
little distance that the theory can hardly guide the engineering. The point is
made by Shieber (1988) and has hardly lost relevance. This book, therefore,
presents linguistic engineering on all levels of sentence analysis, including the
theory of grammar. In doing so, it assumes what we call the language machine
hypothesis:

• that language is partly computable,
• that human language capacities are to be modelled by mechanisms

rather than by representations,
• that human grammar is a process – a parsing or generating process

– in the spirit of Marcus (1980), and that it is fast, faulty, correctable
and goal oriented, rather than being guided by principles of efficiency,
elegance and economy, and

• that an automaton may model but not describe the brain.

16 INTRODUCTION

0.2 LANGUAGE AND COMPUTABILITY

Not every scholar will be convinced that the conjunction heading this chap-
ter makes sense. Even in computational linguistic circles, the computability
of natural language is disputed, in at least two senses. In one respect, some
computational linguists believe that relevant parts of language are effectively
beyond the type of formalization that is required for Turing-computability. In
another though not unrelated respect, some computational linguists doubt
whether such formalization can be done efficiently. This second type of objec-
tion is taken for granted here. In a certain sense, even the authors of this book
are convinced that a whole class of language tasks can be performed more
efficiently by statistical models than by recursive analysis. We do not believe,
however, that interesting semantic tasks are in that class – notwithstanding
the numerous efforts to perform inferential tasks by shallow processing, gath-
ering in the TREC and other challenges; for a critique see Reckman (2009).
We just try to show that effective computation of dynamic semantics on the
basis of a lexicalized categorial grammar is within reach, for a non-trivial frag-
ment of Dutch, on the parsing track as well as for generation.

For the basic construal here, the outline of which we owe to Jan van Leeuwen
(p.c.), we are interested in the relation Means between sentences of Dutch
(NL) and propositions from a formal language L. Means(φ, ψ) holds between
φ ∈ NL and ψ ∈ L iff ψ is a meaning of φ. Furthermore, we will say that NL is
semantically computable iff there is a partial recursive function f such that
for all p in NL, if f(p) = ψ then Means(p, ψ), and L is enumerable. Clearly,
this function f is a parser, sending p to ψ. Suppose we have that parser. Then,
NL is semantically computable iff L is enumerable. If L has a finite lexicon –
which we assume by definition – then its sentences are enumerable by induc-
tion on their length. For every q in this enumeration, check whether f(p) = q.
There must be at least one, by the definition of f; the first one is found after a
finite number of steps. Thus, NL is semantically computable if Means(φ, ψ) is
decidable – equivalency is not at stake here.

The decidability of Means amounts to the general question whether human
beings can agree on whether a sentence means something with finite means.
In general, this is the anchor of successful communication, and there is little
reason to doubt we can. On the other hand, L is a formal language, to which
we don’t have intuitive access. Therefore, we offer a formal way to test Means.
Suppose we have the counterpart to f: a function g assigning NL sentences to

LANGUAGE AND COMPUTABILITY 17

formulas in L. Now consider the relation NLMeans(φ, ψ) between sentences
in NL. The relation holds if φ means ψ, that is, ψ can replace φ salve veri-
tate. NLMeans expresses agreement between human beings on the semantic
idem-potency of φ and ψ. We take it to be decidable: if humans cannot agree
on semantic equivalence, who can? Next, suppose we have a reliable genera-
tor g mapping meanings onto sentences. Let g be such that for all propositions
q, Means(φ, q) iff g(q, χ) and NLMeans(φ, χ) for φ, χ ∈ NL. In the presence of
such a generating function g, Means is decidable if NLMeans is. QED.

In this book we try to partially define the functions f and g of the foregoing
sketch of proof. The f is a parser assigning formal meanings to Dutch sen-
tences and g a generator assigning Dutch sentences to formal meanings. To
the extent that they turn out to be sound and reliable, the fragment of Dutch
covered by them qualifies as a semantically computable language by the rea-
soning above.

The parser and the generator could have been designed as each other’s
inverse, but actually they are not. That is: in our approach, neither the parser
nor the generator has an inverse, for functional reasons. The parser maps a
sentence under a particular analysis to a family of meanings. These meanings
are underspecified (cf. Bunt 2008): they do not – yet – specify the full net of
interpretative dependencies that can be identified in a sentence. There is a
post-derivational algorithm, inspecting the complete derivation of the sen-
tence that ‘spells out’ the full inferential semantic network, including effects
of scope and intensionality. The generator is fed with this type of input, but
cannot invert the ‘spell out’ algorithm, for the simple reason that there is no
one-to-one correspondence between fully specified meanings and sentences.
In fact, both the parser and the generator map their input into classes of
expressions. The parser maps a sentence in NL – Dutch – to a subset of L – the
representation language – and the generator maps a proposition in L to a sub-
set of NL. So, the parser f is a function from NL into the powerset of L, and the
generator g is a function from L into the powerset of NL. Here is the picture.

18 INTRODUCTION

parser f: NL ⟼ ℘(L)

generator g: L ⟼ ℘(NL)

NL

℘(NL)

L

℘(L)
grammar & lexicon

Figure 2 The parser and the generator as functions

Thus we claim that reversible grammars only exist outside the realm of fully
specified meaning. The functions f and g cannot be inverted, as they target
domains of a different order.
Talking about meaning, we can hardly escape the question what it is that lan-
guage is about. Suppose that the interpretation of a language expression were to
depend on and vary with the structure of its intended model. It is a good guess
to assume that there are more than countably many possible models for a lan-
guage expression. This interpretational dependency of a language expression
on its model would, then, run into incomputability of meaning. Most certainly,
however, the power to refer does not reside in language’s capacity to refer to –
or into or onto – a particular world. It is rather the other way round: language
can refer because it does not presuppose any particular organization of what
it is about. Dutch can be understood even if the world turns out to be created
in six days and constitutes a prototypical black hole, inhabited by square cir-
cled demons. As a matter of fact, we talk in Dutch about every possible and
impossible world. For language to refer, the minimal model is a non-empty set.
That set provides denotations of type e – but they may be discarded in favour
of generalized quantifiers, according to Montague (1972). The basic sets give
rise, without any additional ontology, to subsets, providing denotations of type
<e,t>, the predicates. One step further, we have sets of sets, of type <<e,t>,t>, the
quantifiers. That is all we need. Reference to denotations of type <<<e,t>,t>, tn>
is obsolete, since those domains will not provide an essentially new algebraic
structure (cf. Partee 1992). This three-layered window of denotational types
– for names, predicates and quantifiers, basically – provides enough seman-
tic structures to refer to whatever ontology – things, diseases, events, proposi-

LANGUAGE AND COMPUTABILITY 19

tions, times, beliefs, This is what natural languages share with programming
languages: the ontology is not fixed, but the syntax is. The difference between
natural languages and programming languages is that the latter, but not the
former, can switch ontologies in one single proposition, without declaration.
This is what makes natural language universal and communicative, and the
three-type window is an excellent candidate for the universal feature of natural
language. For this window and its derivatives like functions from one type into
another, the lambda calculus provides more than enough possible receipts to
catch every possible denotation living there. Neither extensionally nor inten-
sionally, will we easily run out of gas for our semantic machinery.

The basic concept behind Turing’s and Church’s notions of computability is
recursion. The computable functions are the partially recursive ones: those the
computation of which can be performed by a sequence or composition of func-
tions with ‘smaller arguments’ or of less arity, up to those functions that are
called primitive recursive. Recursion, more than anything else, is what links the
computation of meaning in natural language to Turing computability. Unfortu-
nately, recursion of semantic construal has been mixed up with composition-
ality in linguistic scenes: the meaning of a structure depends on the meaning
of its parts. Some call it Frege’s principle (see e.g. Heim and Kratzer 1998) but
Janssen (1986) denies this attribution. Compositionality is an unfortunate term
because it has been used to detract from the process: the meaning of the whole
is a function of the meaning of the parts. Interpretation, though, is a process,
not a property, and it is the recursion of the composition process, rather than
the meaningfulness of the proper parts of a constituent, that must guarantee
the semantic validity of the outcome. On the other hand, mathematics is the art
of describing processes in a stative way. But still, what we are looking for is a
procedure to apply meanings to each other, recursively. Semantic recursion and
compositionality are not equivalent concepts, in this respect. A layered treat-
ment of an oracle’s proclamation of meaning may be recursive, but not compo-
sitional, and the simple one-step concatenation of meanings may be composi-
tional but not recursive. This observation is crucial. The proposition assigned
as a meaning to a sentence may itself be composed of propositions, but natural
language is not such that simple concatenation suffices to assure that assign-
ment. That is: if abc is a well-formed sentence meaning φ and the meaning of a,
b and c are the conjunctions of propositions pa1 & ... pai ... &... pan, pb1 & ... pbi ... &...
pbm and pc1 & ... pci ... &... pck respectively, then we know for sure that φ ≢ pa1 & ...
pai ... &... pan & pb1 & ... pbi ... &... pbm & pc1 ... pci ... &... pck. More generally:

(1) If ⟦abc⟧ = φ then φ ≢ ⟦a⟧ & ⟦b⟧ & ⟦c⟧

20 INTRODUCTION

The basic idea behind this lemma is that the meanings of the parts are sup-
posed to be intertwined in a way that cannot be modelled by simple concate-
nation. In particular, we assume that the parts have variable-like placeholders
that have to be synchronized. This is where Montague’s Proper Treatment of
Quantification in Ordinary English comes in (Montague 1972). Here meanings
are composed by typed lambda conversion, in particular by function compo-
sition. The functions are such that the output of one is input to the other. As a
consequence, variables are ‘pipelined’ and the resulting propositions become
connected: every variable that was abstracted over is converted ‘away’ (or
bound by operators outside its origin) in the composition process. Model-
ling this recursive process of composition is the challenge for computational
semantics. The recursion must be steered in such a way that the place-hold-
ing variables are accounted for properly. Conjunction alone won’t do. Func-
tion composition might. Still, we will argue in chapter 2 that the composed
meaning can be designed as a conjunction of small clauses: unordered self-
contained semantic objects in their own right. But this conjunction is neither
immediate nor a trivial consequence of structure.

Semantic recursion stresses the arbitrariness of the primitive argument. The
difference relates to the nature of semantic units. A complex phrase may be
semantically atomic (or less complex) whereas its proper parts may be sub-
ject to syntactic manipulation. Picking up the phrase’s meaning can be done
recursively, but not very compositionally. Since phrasal meanings are utterly
important – and, as constructionist linguists argue, dominant – in sentence
construal, recursion is more adequate than composition. Yet, one of the most
prominent approaches in computational semantics is dubbed Minimal Recur-
sion Semantics, where minimal modifies recursion (Copestake et al. 2005).
The basic idea, also native to the approach applied here (chapter 2), is that the
derivation specifies a family of interpretations – a packed forest – and that the
spelling out of full meanings is done post-derivationally, according to a proto-
col that ‘reads’ and unfolds the packed forest. The family of interpretations is
dubbed under-specification. Essentially, unpacking the underspecified forest
is not part of the grammatical combinatorics. Thus, the computation of the
full meaning is set apart from grammatical computation, though fed by it. As
a consequence, the nasty implications of spurious ambiguity for the complex-
ity of grammar are avoided by sequencing algorithms, in a way comparable
to the cataract of finite state mechanisms that has been developed to fight the
opaqueness of monolithic systems (e.g. Van Noord 1997).

THE BOOK 21

To make a long history short: from our perspective, Aristotle, Frege, Church,
Chomsky, Montague, and Van Benthem equally contributed to the insight that
language can be captured by formal means. Aristotle revealed the laws of syl-
logism and the algebra of reasoning with words. Frege detected the polar-
ity of reference and meaning. Church made functions operational all the way
down. Chomsky re-styled grammar, for linguistics and psychology. Montague
gave meaning back to grammar. Van Benthem tied lambdas, types and deri-
vations together. And then, there were generalized quantifiers (Barwise and
Cooper 1981, Zwarts 1981) and they were the first semantic objects the alge-
braic structure of which turned out to be linguistically relevant: definable,
testable, refutable creatures in an algebraic landscape, interfering with the
distribution of phrases and connected to very general, if not universal, prop-
erties of natural language (Zwarts 1983). Their being there and their nature
made clear that language lives somewhere in the brain, and that it makes itself
known. There is no reason to underestimate or obscure or neglect it. There
is a system that facilitates conveyance of thoughts, findings, emotions. It may
have arisen from the lust for communication, or from the lust for expressing
one’s thought or from both – communication is the interaction between the
verbalized straw men of our minds. Like most things in evolution, it is not
designed to do what it turns out to do, but it is heavily affected by its function.
That system is computable, partly by symbolic means according to Marcus
(2003), and it may as well have a Dutch face. Quod sit demonstrandum.

0.3 THE BOOK

As we maintain a rather conservative view both on computational linguis-
tics – it is linguistics – and on semantics – meaning exists and can be com-
puted – the book has a rather conservative set-up. It consists of three chap-
ters devoted to the main linguistic engines of the language machine: syntax,
semantics and the lexicon. And it concludes with a fourth chapter in which the
relationship between the three engines is reviewed.
The chapter on syntax introduces a rigid, modal, constructionist, combina-
tory categorial grammar, Categorial List Grammar (CLG). Its main linguistic
and computational properties are made explicit and evaluated. The chapter
describes the main syntactic patterns of Dutch and the way CLG covers them,
in an all-and-only perspective, while linearizing strings and structuring com-

22 INTRODUCTION

plex symbols at the same time. Furthermore, the chapter scrutinizes how the
CLG is exploited in parsing and generation by the Delilah system.
The chapter on semantics presents three different but related instances of
logical form, dubbed Stored, Applied and Flat LF. They differ in specificity and
the way they are derived. The need for the threefold is established by ref-
erence to the variety of tasks with which a formal interpretation of natural
language has to comply. In particular, the interference of compositionality
with reading selection, scopal phenomena, intensionality and semantic infer-
ence is highlighted. The chapter describes how parsing in the Delilah system
leads to a fully specified semantic representation and how this fully specified
semantic representation can drive generation.
The third chapter deals with the data for meaning-driven parsing and genera-
tion, the lexicon. The Delilah system is lexicalistic, in an almost extreme way:
it holds entries – lemmas, in effect – for each use of each phrase. The explo-
sion of phrases following from this strategy is countered with smart indices
and utterly fast retrieval. The lexicon consists of unique fully specified com-
plex symbols, in the form of graphs open to unification. The chapter describes
the off-line construction and the on-line retrieval of the database. The way we
exploit the lexicon efficiently for parsing and for generation is revealed. As a
matter of fact, the lexicon described here is more of a constructicon: it holds
the phrasal components of Dutch in a non-hierarchical, matrix-like database,
the front-office access to which is much more relevant for computability than
its back-office genesis and hidden structure. In these chapters, essential data
structures are taken from the Delilah operation mode. The make-up of the
data structures may slightly differ depending on the process module handling
them. Notwithstanding these differences, they always represent the very
same type of underlying graph. In discussing the data structures we do not
differentiate between categories and types in a fundamental way.
The final chapter proposes a revision of the formal relationship between syn-
tax, semantics, and the lexicon. It claims that some of the less elegant solu-
tions in the preceding chapters trace back to a fundamental incongruence in
the architecture of formal grammar. It claims that grammar is bound to be
incomplete – that certain valid statements about form and meaning cannot be
derived by valid syntactic or semantic computations, and that this is a desir-
able state-of-affairs. In this sense, we feel this book to be a positive interpre-
tation of Hugo Brandt Corstius’ almost untranslatable ‘first law of computa-
tional linguistics’: Wat men ook doet, de betekenis gooit roet (Brandt Corstius
1978: 110) – ’Whatever you do, the semantics comes through’.

THE BOOK 23

To summarize, the book is meant to be a defence of at least the following claims:
• the propositional content of a Dutch sentence can be computed;
• for every proposition, a Dutch sentence can be computed that entails

that proposition;
• the proposition associated with a Dutch sentence can be represented

as a flat conjunction of small clauses, indexing the propositional con-
tent, with skolemized events and states as a backbone;

• when computing meaning, underspecified and specified levels of rep-
resentation are produced by essentially different algorithms;

• given this separation, no homomorphism between syntactic and seman-
tic procedures needs to be established for computational reasons;

• the parser computing propositions and the generator producing sen-
tences are not each other’s inverses but exploit the same lexical and
grammatical resources;

• underspecified levels of meaning can be computed by unification;
• the lexicon of Dutch is phrasal;
• the lexicon of Dutch can be organized and accessed as a non-hierarchi-

cal family of complex signs;
• all relevant unifications in the grammar of Dutch can be controlled by a

limited number of modes defined on a rigid categorial grammar;
• formal grammar is incomplete iff it is consistent.

24 INTRODUCTION

1. SYNTAX:
the game of recursion and
discontinuity

1.1 THE NEED FOR SYNTAX

Dutch is a natural language – to a certain extent. As such, it is torn by finite-
ness and two infinities. First, there is the finite set of all lexical atoms, the
lexicon. For the present purpose, it is immaterial how we define the ele-
ments of this set, as words, morphemes or phrases. There has to be a finite
set that is not an algebra: its members are not deduced but rather elected or
assigned or proposed or enforced, but by no means are they theorems of a
system. Without this set being finite, a language would be neither learnable
nor decidable. Second, we have the lexicon’s Kleene closure: the infinite set
of all finite strings over that lexicon. Since there is no reason to assume a
longest string, there are infinitely many of them, but each is of finite length.
Third, there is the infinite set of finite strings over the lexicon that we take
to be expressions of the language – the language in extension. Again, it is
immaterial how we define this set – by well-formedness, by interpretability,
by pragmatic criteria or any other sensible norm.
Language users are familiar with each of the three sets. They recognize the
elements of the lexicon. They are able to produce and recognize lists of lexi-
cal items of their language without being seduced to interpret those lists as
meaningful. They are able to recognize and interpret members of the distin-
guished set of (would-be) sentences. At the same time, there is no reason to
assume that felicitous language use presupposes any awareness of the nature
or extension of these sets. In order to describe the human language faculty,
however, it is advisable to postulate the sets.

THE NEED FOR SYNTAX 25

1. SYNTAX:
the game of recursion and
discontinuity

1.1 THE NEED FOR SYNTAX

Dutch is a natural language – to a certain extent. As such, it is torn by finite-
ness and two infinities. First, there is the finite set of all lexical atoms, the
lexicon. For the present purpose, it is immaterial how we define the ele-
ments of this set, as words, morphemes or phrases. There has to be a finite
set that is not an algebra: its members are not deduced but rather elected or
assigned or proposed or enforced, but by no means are they theorems of a
system. Without this set being finite, a language would be neither learnable
nor decidable. Second, we have the lexicon’s Kleene closure: the infinite set
of all finite strings over that lexicon. Since there is no reason to assume a
longest string, there are infinitely many of them, but each is of finite length.
Third, there is the infinite set of finite strings over the lexicon that we take
to be expressions of the language – the language in extension. Again, it is
immaterial how we define this set – by well-formedness, by interpretability,
by pragmatic criteria or any other sensible norm.
Language users are familiar with each of the three sets. They recognize the
elements of the lexicon. They are able to produce and recognize lists of lexi-
cal items of their language without being seduced to interpret those lists as
meaningful. They are able to recognize and interpret members of the distin-
guished set of (would-be) sentences. At the same time, there is no reason to
assume that felicitous language use presupposes any awareness of the nature
or extension of these sets. In order to describe the human language faculty,
however, it is advisable to postulate the sets.

26 SYNTAX

The basic fact about language-as-a-system is that the two infinite sets do
not coincide: a language is a proper subset of the Kleene closure over its
lexicon. No grammarian ever proposed any language to coincide with its
Kleene closure. No author of formal languages ever proposed an anything
goes language. Such a language would be bound to challenge meaningful-
ness: meaning results from distinction and distinctivity, but in the Kleene
closure all strings are born equal. Only length or the occurrence of individual
atoms could count as contributions to meaning. Since every atom occurs in
any order with other atoms, it is hard to see what an individual atom in a
random string could contribute to its specific meaning. Of course, the length
of a string could count as meaningful. Since the length is a fixed extensional
property of a string, length can only be meaningful in the way integers are
meaningful. Numbers, however, are meaningful in a way languages cannot
afford to restrict themselves to. Numbers are rigid designators. Tomorrow,
they will refer in exactly the same way as they did yesterday. They are one-
world designators, and do not provide content outside that world – unless
we use numbers in other languages that are not rigid. That leaves only the
possibility for strings in the Kleene closure to carry meaning randomly or by
oracle. It is hard, however, to look at meaning as an accident, not steered by
material properties of the expression. It would make your present enterprise
of reading this text vacuous. The famous but not uncontroversial concept of
compositionality of meaning represents an effort to explain why that enter-
prise is not completely vacuous (even if the concept cannot be attributed to
Gottlob Frege, as Janssen (1986) convincingly argues). Accidental meaning
would not convey information, just sound.
Almost by definition, then, languages are ‘smaller’ than their Kleene closure.
Since we have no reason to assume that the order of infinity between the
sets is different – as is the case with e.g. the sets of rational and real num-
bers – ‘being smaller’ here must be approached stochastically: the chance that
a string, randomly chosen from the Kleene closure, is also in the language is
less than one. As a matter of fact, the chance is close to zero.
The selection procedure that (dynamically) identifies that small island of lan-
guage in the sea of the Kleene closure is called grammar. It is a characteristic
function over that closure, the function dividing the sheep from the goats.
Grammar is the theory of the language. Most linguists assume that the func-
tion is operative in a man’s brain, but they entertain some disagreement as to
its whereabouts and ‘wherefroms’. The function, however, is most certainly
required in a computational system – if that system aims at interpretation.
Of course, a lot of language-related tasks could be performed without access
to an intensional description of the language; you don’t need grammar to

THE NEED FOR SYNTAX 27

count words or to find strings. But if meaning comes into play, distinction is
required. No automaton can reliably assign meanings to sentences and not tell
interpretable from uninterpretable ones, for the same reason that a computer
that adds * and #, can hardly be trusted when adding 3 and 4. If anything is
meaningful, meaning evaporates. Language lives on selectivity.

We now have the following situation: a finite lexicon L, its Kleene closure L* =
{<w1 ... wn> | wi ∈ L} and natural language NL ⊂ L, where NL is defined by
a Boolean function fNL, its grammar. NL is not necessarily well-defined. Its
characteristic function may be fuzzy, and certainly a family of languages that
intersects with NL can be defined or, more precisely, a family of languages
that shares infinite subsets with NL. This family covers the varieties of Dutch
one might want to focus on. It is more intriguing whether we could find natu-
ral languages in the complement of NL in L*, in the set L* - NL: languages
that live on the same lexicon but would not share any expression with NL
or, more precisely, that share at most finite subsets with NL, e.g. a set of one
word expressions. Probably, no such languages would be accepted as possible
natural languages. For formal languages, though, complementary languages
can be defined and exploited in simple ways. We might want to have, then,
a theory that determines which subsets of L* qualify as natural languages.
That theory is the theory of grammar, embodying the classical Chomskyan
concept of possible natural language. We won’t touch upon that theory here
directly, as we are dealing mainly with the theory of Dutch. We assume, how-
ever, that the theory of grammar will cover our analysis of Dutch. In defending
that ‘local’ theory, we will have to refer to more general points, now and then,
in particular when matters of restrictivity are at stake.
Grammar must be finite to be applicable. That is why a grammar cannot be
identified with the language in extension. We (humans, computers) need a
finite, intensional description – in whatever form: phrase structure rules,
algorithms, parsing routines, integrated circuits – to handle the inevitable
infinity of language. Exploiting finite means to deal with infinite sets provokes
recursive use of those means. That is: infinite, structured languages may have
sentences that show bracketing patterns like

(2) ….[x … [Y … [X …] …] …]

In these patterns, a certain type of string occurs within an instance of the
same type, with or without – mostly with – intervention of some other type
or category. In many natural languages, all ‘major’ categories (sentences,
nominal constituents, prepositional constituents, verbal constituents) have

28 SYNTAX

this property of re-entrance within themselves. Crucially, the pattern post-
pones the full interpretation of the upper occurrence until after the interpre-
tation of the lower occurrence. And that is where syntax comes in: the syn-
tax specifies which phrase depends on which phrase. Syntax is the carrier of
recursive embedding and dependency. It defines a finite family of categories
or equivalence classes and a finite class of relations between them. It assigns
lexical atoms to at least one class or category. It guarantees that every string
of the language, no matter how long or complex, can be divided into repre-
sentatives of those categories. The process of that division is called parsing,
and it is one of the more interesting ways to execute a characteristic function
over the set of all strings.

This is the – by now – classical approach to grammar, as practised in that
branch of mathematics that studies formal languages and automata (cf. Hop-
croft et al. 2001). It relates grammar to computation: an explicit formal gram-
mar determines a class of automata with respect to its use of resources, and
every computable problem can be represented as a characteristic function
over a set of sequences. The notion of automaton is used here in the math-
ematical sense, as a unit of data, processing, control, and storage, aka the
Turing machine. The first track of the relation has become canonised as the
Chomsky hierarchy, relating properties of languages, grammars and autom-
ata. The second track is due to digitalization: all automata can be defined in
a digital language, with a grammar; the sentences of that language are inter-
pretable as automata. In that sense, the circle is closed: languages have gram-
mars, grammars determine automata – they can be written as programs – and
automata are defined in languages.
In this view, syntax is the backbone of grammar because recursion resides
here and recursion mediates between finiteness and the infinities of lan-
guage. Moreover, in the ever-swelling literature on language evolution and
animal communication, recursion has become prominent in the field of
cognition after Hauser and Fitch (2003) reduced the exclusivity of human
language to just that. Independent of its cognitive status, though, it must
be something other than just “... the product of a given theory designed to
account for language structure” (Heine and Kuteva 2007:265). To see why,
consider this. Language is meaningful because not every conceivable string
is meaningful. To tell the infinite number of meaningless strings from the
infinite number of meaningful sentences, and/or determine the meanings
of the meaningful ones, we need a system. That system can be learnt and/or
acquired, and must be finite, for that reason. For the system to be finite and
still be effective and discriminatory, re-use or re-entrance of resources (cat-

THE NEED FOR SYNTAX 29

egories, constructs, embedding procedures) is essential. That is recursion:
linking phrases to each other in an asymmetrical style, ad libitum. Recursion
offers a framework for making expressions semantically dependent upon
each other, as well as for thematic relations, referentiality, intensionality,
mood, aspect, and so on. This view leaves open many ways of embedding
expressions semantically into each other. Physical – prosodic – embedding
as in (2) is just one of them. Anaphora or kataphora is another: the semantic
effect of (2) – the interesting effect – can be mimicked by a structure like (3),
where the indices indicate co-evaluation.

(3) …[X … itj …] … [y …[X …] …]j

Here too, the valuation of the ‘highest’ X is dependent on the interpretation of
the lower X. For example, the following two texts are idempotent. They both
subsume meaningful expressions under each other.

(4) The man who read a book said that the river was too wild
(5) There was a man. He read a book. He said this. The river is too wild.

Their logical forms must be the same, as their entailments converge: in both
texts, the speaking subject is described as a man reading a book, and the
wildness of the river is not presented as a fact, like the speaking event, but is
attributed to that man.
Anaphora, realized by copying, binding or co-reference, places the anteced-
ent under the semantic regime of the sentence containing the pro-form. As
a matter of fact, anaphora and kataphora do overtly what in the semantic
representation of a complex sentence is conducted covertly by reification
and binding; there, logical anaphora are called for. Overt anaphora and kata-
phora enforce recursion.
In the preceding examples, the semantic dependencies are marked by syn-
tactic means: categories, valency, embedding, linear order. Thus, interpreta-
tion is syntax-driven, and the interpretability of language is anchored by the
recursivity of syntax. That turns the syntax in a grammar into a crucial fac-
tor for the computation of meaning. In this vein, it cannot be accidental that
an explicitly semantic and wide-coverage grammar model like that of Sag et
al. (2003) sails under Syntactic Theory. And consequently, the nature of the
syntax is part of the message. The system presented below functions well for
parsing and generating Dutch. It is neither the syntax of Dutch nor a theory
of syntax, but describes a viable and operational way of demonstrating what
our enterprise is about: relating meaning to form in a domain where form is
extremely discriminating and meaning is far from trivial.

30 SYNTAX

1.2 FORMS OF DUTCH

As a natural language, Dutch shows signs of syntax. This section presents a
very concise characterization of those aspects of Dutch syntax that deter-
mined the nature of Delilah’s grammar. It is neither complete nor balanced,
as it focusses on those properties of Dutch phrase-structure formation that
resist uncomplicated accumulative combinatorics.

Dutch is an SOV language in the following sense: the nominal and preposi-
tional objects of a verb precede it. Verbal and propositional complements fol-
low the verb. Prepositional complements can occur to the right of a verb, and
verbal complements may occur to the left. Whether SOVness is a derived or a
fundamental property of languages is not relevant here.

Some verbs selecting infinitival complements must or tend to cluster with
the verbal head of that complement. This may lead to multi-clusters of verbs.
Dutch is infamous for maintaining a particular order in that cluster: the select-
ing verb can or must precede the head of its complement. In multi-clusters of
verbs that also select nominal complements, this order gives rise to crossing
dependencies between nominal and prepositional objects and their respec-
tive verbs. Here is an example, inspired by Evers (1976).

(6) … dat Jan de man Marie een koe zag helpen leren dansen
… that Jan the man Marie a cow saw help teach dance
… ‘that Jan saw the man help Marie to teach a cow (how) to dance’

The verbs cluster, and this cluster is preceded by their aggregated nominal
arguments in the same order: zag selects Jan, helpen selects de man, ... and
een koe controls dansen. Evers observed that in German verbs cluster too, but
tend to do so in reverse order. A major difference between the Dutch and Ger-
man orders is that in Dutch the head of the sentence – the verb dictating argu-
ment structure at top level – occurs more to the left. For parsing, this may be
an advantage, since the sentence structure is clarified at an earlier stage. In
the German order, the verb cluster must be processed as a whole before any
clue as to the sentence structure and the status of the argument is revealed.
The Dutch order may be more complex from the point of view of memory
management (cf. section 1.8), but the more sophisticated appeal to random
access memory – i.e. exploiting memory as it comes – may improve parsing, as
one can conclude from observations reported in De Vries et al. (2011).

FORMS OF DUTCH 31

This state of affairs is rather rare among the languages of the world. It has
been used to challenge the idea that the grammar of natural languages be
context-free. The point for Dutch was made by Huijbregts (1976). The con-
cept of context-freeness amounts to the claim that the internal structure of
categories in natural language is not essentially determined from outside,
and, equivalently, that natural languages can be parsed – and generated – with
a memory management that is more restrictive than random accessibility.
The discussion on the status of crossing dependencies and related phenom-
ena has been part of the genesis of Generalised Phrase Structure Grammar;
cf. Pullum and Gazdar (1982). Since crossing dependencies are what made
Dutch famous among linguists, this phenomenon influenced our choice of the
particular categorial grammar exploited in Delilah. Considerations relevant
to this choice are discussed by Stabler (2004) in an extremely useful exercise
on grammatical capacities beyond context-freeness. The topic will be further
discussed in section 1.8.
Crossing dependencies and verb-clustering are important sources of disconti-
nuity in the syntax of Dutch: the phenomenon that two phrases that establish
an essential grammatical relationship occur separated from each other rather
than adjacent in the sentence. Of course, a verb and its object are striking
examples of such a pair themselves. But adverbial or propositional adjuncts
can also occur amidst phrases to which they cannot be linked directly:

(7) … dat Jan de man misschien Marie een koe zag helpen leren dansen
… that Jan the man maybe Marie a cow saw help teach dance
… ‘that John maybe saw …’

Misschien ‘maybe’ is linked to the verb complex and modifies some event,
but occurs here at a seemingly random position in the sequence of nominal
phrases. Its position may have an effect at the level of information structure,
though, but that is not well established. Verb clustering provokes this type of
discontinuity in the Mittelfeld: verb clustering ‘obscures’ constituency, and
consequently the semantic or syntactic target of adjuncts has to be determined
and/or reconstructed by more complex manoeuvres than just concatenation.

Just like some other SOV languages, Dutch has a verb-second effect. In the
absence of a complementizer, a finite verb or auxiliary – in Dutch, finiteness
is exclusively morphologically marked – can or must occupy that position,
thereby determining the status of the sentence.

(8) Niemand heeft de dronken oom durven corrigeren
nobody has the drunken uncle dare correct
‘Nobody dared to correct the drunken uncle’

32 SYNTAX

(9) Gaat het mis, treedt de minister af
 goes it wrong, steps the minister down

‘If it goes wrong, the minister will step down’

In the first clause of (9), the finite verb is in complementizer position, mark-
ing it as a (conditional) subordinate clause. Verb-second (or verb-first, for
that matter) also enhances discontinutity: it can strand adverbial modifiers
and may separate a verb from its immediate objects.

The complex structure of the Dutch Mittelfeld allows for complex forms of
coordination. Cremers (1993a) argues that in Dutch almost any position in a
sentence can give rise to coordination, including coordination of non-constit-
uents. Thus, coordination is a source of discontinuity; in the following exam-
ple, the verb schilderen ‘paint’ is cruelly separated from its intended objects
de auto and de fiets:

(10) Ik had de auto met jou blauw en de fiets met haar groen willen schilderen
 I had the car with you blue and the bike with her green want paint

‘I wanted to paint the car blue together with you and (to paint) the bike green
together with her’

Complex coordination is not necessarily the same as ellipsis, though ellip-
sis does involve coordination, in our analysis. Ellipsis, however, is the kind
of complex coordination where the left context of the coordination element
must be sentential.

(11) Ik zal Jan een laptop geven en jij Peter
 I will Jan a laptop give and you Peter
 ‘I will give Jan a laptop and you, Peter’
(12) * Ik zal Jan en jij Peter een laptop geven

I will Jan and you Peter a laptop give

Complex coordination in Dutch influenced the set-up of the Delilah syntactic
architecture to large extent, as will be explained in section 1.7.4.
A standard form of discontinuity entertained by Dutch is movement of con-
stituents to the left periphery of a sentence, the position also known as SPEC
CP. As usual, movement here is a metaphor for one constituent governing or
controlling two non-equivalent positions in the sentence structure. Question
words, relative pronouns, arguments and adjuncts, even verbal complements,
occur at SPEC CP – obligatorily or optionally. Though they may come from
far and deep, their origins are not arbitrary, for the sake of wellformedness
and interpretability. As a consequence, Dutch defines islands of all kinds from

FORMS OF DUTCH 33

which a constituent cannot escape, or only under strict conditions (cf. Hon-
coop 1998, Szabolcsi 2006). These islands may be syntactic, lexical and/or
semantic. Here are some examples, where the intended rightmost position is
marked t.

(13) Welke prinsen denk jij dat t de receptie zullen bezoeken?
which princes think you that the reception will visit
‘Which princes do you think will visit the reception?’

(14) * Welke prinsen denk jij dat de receptie die t bezochten in de kerk was?
Which princes think you that the recepetion that visited in the church was

(15) Elke sonate die ik t speelde, wekte ergernis
Every sonata that I played raised annoyance

(16) * Elke sonate die ik een deel van t speelde, wekte ergernis
Every sonata that I a part of played, provoked annoyance

(17) Mijn vader heeft zij t niet gekend
My father has she not known
‘My father she never knew’

(18) * Mijn vader betwijfelde zij of t kon lezen of schrijven
My father she doubted whether could read or write

(19) Aan het dak hing mijn vader hammen te drogen t
At the roof hung my father hams to dry
‘From the roof my father hung hams for drying’

(20) * Aan de wilgen hing de grijsaard de viool t
In the willows hung the old-man the violin
(compare: * The bucket he kicked)

(21) Met onwaarschijnlijk geweld raasden de drie orkanen t over de eilanden
With incredible violence raged the three tornados over the islands
‘Incredible violently, the three tornados raged over the islands’

(22) * Met onwaarschijnlijk geweld raasde geen van de orkanen t over het eiland
With incredible violence raged none of the tornados over the islands

The grammar of Dutch has to account for such barriers to interpretation. And
since recursion seems to be the issue here, syntax must carry the load.
One could easily come up with many more intrinsicalities of Dutch syntax.
As a matter of fact, Dutch is one of those languages the structure of which
has been studied and documented extensively. Above, only a few of the more
complicated patterns are set out. An extensive, authorized description of
Dutch is available at http://ans.ruhosting.nl/. A less descriptive, more theo-
retically motivated ‘modern grammar of Dutch’ is being developed at present
by Hans Broekhuis (and others at http://www.taalportaal.org). An intriguing
side-effect of trying to make Dutch syntax work for interpretation is that one
cannot afford not to solve problems as they occur; otherwise, it will immedi-
ately corrupt the overall result. Here is a good example. Dutch has a class of
pronouns that act as left complements of prepositions, but are not necessarily

34 SYNTAX

adjacent to them. So, the infamous er can occur in any of the marked positions
in the following sentence, but only in one of them at the same time, but it can
always only be interpreted as the anaphoric complement of over.

(23) … dat ik (er) mijn vader (er) nooit (er) met mijn moeder (er) over heb horen
spreken
… that I (it) my father (it) never (it) with my mother (it) about have hear speak
… ‘that I never hear my father talk to my mother about it’

None of these positions is marked, except that er does not intrude into ‘closed’
constituents. Moreover, the same pronoun er – or a look-alike – can also occur
as an existential marker, as a place adverb and as a partitive pronoun, and
in all sorts of combined functionality. Although interesting aspects of er are
revealed by Bennis (1986) and Van Riemsdijk (1978), one has to invent syntax
that is not available anywhere in order to decide for a given sentence which er
is at stake and whether and how it can or must be interpreted – not to men-
tion how to accommodate er in generation.

1.3 THE TASK FOR SYNTAX

Having established the need for a syntax of Dutch, it is wise to reflect upon
its task. Syntax is not all of grammar. In our concept of a lexicalized grammar,
syntax is that dynamic module that directs unification of complex symbols.
Unification of complex symbols is the core business of grammar, both com-
putationally and cognitively. In a human’s brain as well in the digital lexicon,
much more information is stored than can be covered by syntax. Complex
symbols, feature structures, signs, templates or whatever we call our infor-
mation units, are supposed to accommodate all knowledge of language to
the extent that the knowledge can be attributed to phrases (localized) and
is expressible. Knowledge of language extends far beyond the combinatoric
mechanisms (routines, principles, parameters, ...); knowledge of language
is also about meaning, about sound, about use, about style, about semantic
and pragmatic fields. Basically, syntax is only arranging the concatenation of
phrases, and in this respect quite different from semantics, which is governed
by functional application.
Yet, syntax is far from trivial, for the simple reason that it has to be extremely
discriminating while steering the powerful engine of infinity, recursion. Sim-

THE TASK FOR SYNTAX 35

plistic syntax over-generates: it allows more unification to be tested than effi-
cient processing and subtle interpretation can afford. Too restrictive syntax
under-generates: it may miss meaningful combinations of signs. Good syntax
is in between. It defines the combinatorial space for a natural language. To
the extent that it does so adequately and transparently, it contributes to the
notion of possible language, for example by excluding permutation closure.
If syntax is to direct unification, unification and the data structures it oper-
ates on have to be defined carefully. Here we discuss the major outline. In the
chapter on the lexicon the complex symbols are presented more in detail.

Our data structures are feature trees: acyclic connected directed graphs in
which each node labels an attribute and its outgoing edges define the value for
that attribute in that graph. Technically, this concept is not essentially differ-
ent from the feature structures that characterize Head-Driven Phrase Struc-
ture Grammar (HPSG; Pollard and Sag 1994). The main difference, as will be
illustrated in chapter 3, is that we do not impose any regime on the nature of
features, and that we allow feature values to be plain variables. More esoteri-
cally, we consider feature graphs to be the objects of combinatoric manipula-
tion, rather than ‘just’ descriptions of those objects, which Kracht (2004:ch.
6) takes HPSG attribute-value matrices to be. Furthermore, we call a feature
graph a template, because Delilah exploits feature trees not only for gram-
matical unification, but also for the dynamic construction of the lexicon. Here
is a representation of a simple template, one of the lexical templates of the
finite verb werkt ‘works’.

36 SYNTAX

(24) a lexical template of werkt ‘works’

ID:A+B
HEAD:CONCEPT:work
 PHON:werkt
 SLF:work
 SYNSEM:ETYPE:event
 FLEX:fin
 NUMBER:sing
 PERSON:2
 TENSEOP:at-pres
 VTYPE:nonacc
PHON:C
PHONDATA:lijnop(werkt,A+B,[arg(left(11),wh,D)],C)
SLF:{{[E&(B+F)#G, H@some^I^and(and(quant(I,some),
 work~[I], event~[I],entails1(I,incr)), H,
 entails(I,incr))&(A+B)#J],[],[]},
 and(and(agent_of~[J,G],attime(J,K)),tense(J,pres))}
SYNSEM:CAT:s
 EVENTVAR:J
 EXTTH:agent_of~[A+B,G]
 PREDTYPE:nonerg
 SUBQMODE:L
 TENSE:tensed
TYPE:s\u~[np^wh#B+F]/u~[]

ARG: ID:B+F

 PHON:D
 SLF:E
 SYNSEM:CASE:nom
 CAT:np

 FOCUS:focus
 NUMBER:sing
 PERSON:2
 OBJ:subject_of(A+B)
 QMODE:L
 SUBCAT:pron
 THETA:agent_of

The template is hanging from one (hidden) top node, template, denoted by
TOP. From there, vertices lead to nodes ID, HEAD, PHON, PHONDATA, SLF, SYNSEM,
TYPE, and ARG. There is no ordering between these vertices. The node HEAD has
outgoing vertices to CONCEPT, PHON, SLF, and SYNSEM. The nodes PHON and SYNSEM
under HEAD are not equal to the nodes PHON or SYNSEM under the top node: each
node is uniquely defined by a path from the top node. Thus, we have three dif-
ferent nodes phon in (24): TOP:PHON, TOP:HEAD:PHON, and TOP:ARG:PHON. They
are separate, distinct, unique and independent.

THE TASK FOR SYNTAX 37

A node without outgoing vertices is a leaf or terminal. It represents val-
ues by definition, and may be variable or instantiated, and either com-
plex or simple. The value for the node TOP:SLF is a complex structure itself
– not a graph. The value for TOP:TYPE is a complex category constant. The
value for TOP:ARG:SYNSEM:QMODE is a variable, identical to the value for
TOP:SYNSEM:SUBQMODE. For each attribute, the set of values it may assume is
defined and finite. Thus, a template is finite, by definition.

Templates store information about phrases, in relation (attached) to one lexi-
cal part of the phrase. From this perspective, (24) specifies a sentential phrase
headed by werkt. Consequently, templates specify information on three levels:

(a) attributes of the phrase as a whole
(b) attributes of the (lexical) head
(c) attributes of the non-head parts of the phrase.

The properties of the head are specified as values of the node TOP. The prop-
erties of the non-head parts of the phrase are specified as values of nodes
TOP:ARG. Of these nodes there may be several, but each TOP:ARG node is uniquely
indexed. All other paths in the template specify values of the phrase as a whole.
The information at the three levels is not necessarily disjoint. As a matter of
fact, attributes sharing values at different levels of the templates specify net-
works of local dependencies, like agreement. In (24), all variables that occur as
(part of) values occur more than once, thus specifying agreement.

Two templates unify when their specifications at relevant attributes are com-
patible. The unification amounts to merging the templates and is of course
a template itself. Technically, the unification of two templates t1 and t2 is a
template t* which subsumes both t1 and t2; a template subsumes another if
it is more specific, being obtained from the other by valuation of variables.
The unification result therefore is at least as specific as each of the entry
templates. Unification operates point-wise. Singular attributes are compat-
ible if they are identical. For each specified pair of attributes, there is a check
whether the values are compatible. A variable is compatible with anything,
and is instantiated at unification. Two constants are incompatible unless they
are equal. Two structures are compatible if they match.

The syntax determines under what conditions templates – phrasal descrip-
tions – can or must unify. As the templates are specified at different levels,
the syntax is sensitive to the internal structure of the templates. In particular,
the syntax determines which part of a template should unify with another

38 SYNTAX

template. More precisely: if the syntax sends templates A and B to unification,
it arranges unification of A with one particular subtemplate TOP:ARG of B by
replacing ARG with the top of A. The other parts of B will be affected only by
the possible instantiation of variables resulting from this unification.
A syntactic category, then, is a projection of the internal structure of a tem-
plate. Every template is specified for a literal expressing its syntactic status;
the values here are, e.g. S, NP, and VP. They label the phrase as a whole. If the
template has attributes of type top:arg, these attributes may also carry syn-
tactic labelling. If so, that label occurs in the syntactic category, exactly once.
The syntactic category of a template, therefore, reflects the label of the phrase
as a whole and of the labelled arguments in the template. It is specified as the
value of the attribute TOP:TYPE. As the template is assigned to the head of the
phrase, the syntactic category, being a value in that template, can also be seen
as being assigned to that phrase. In that sense, the finite verb werkt in (24) is
of or belongs to the category s\u~[np^wh#B+F]/u~[].

The category relates information on the internal structure of the template to
conditions under which it can be unified. Abstracting from the label B+F, which
solely introduces a template internal index, the category s\u~[np^wh#B+F]/
u~[] for werkt expresses the following statements:

(a) the full phrase has syntactic label S “s ”
(b) one attribute TOP:ARG is labelled NP “[np ”
(c) there are no other specified arguments “], []”
(d) the subtemplate labelled NP can unify with a template labelled NP

occurring to the left of werkt “\ ”
(e) this unification is submitted to a package of conditions wh, specified in

a syntactic rule of category merging “^wh ”
(f) the template was not subjected to leftward or rightward unification

“u”

In the same vein, a syntactic category vp\a~[np^0]/u~[s_sub^6] summarizes
a template with phrase label VP with an argument labelled NP that can unify
leftward under rule condition 0, with a completed leftward unification for
another argument indicated by flag a, with an argument of label S_SUB that
can unify rightward under rule condition 6.

The arguments that are open for unification at each side are organized as a
list. An argument is open for unification only if it is in the list.

THE TASK FOR SYNTAX 39

The rules of syntax specify exactly and completely the conditions under which
unification can take place. They are triggered by the label of arguments and
by directionality. Every rule of syntax mentions three syntactic categories:

(a) the primary category, introducing the argument to be unified and its
subtemplate

(b) the secondary category, introducing a co-labelled counterpart to the
argument

(c) the resulting category: the category of the merged template.

Since the rules are sensitive to labels and directionality, the syntax resulting
from these rules is essentially anti-symmetric. Interchanging the primary and
secondary categories yields no merge, or a different one. Thus, the unification
process is anti-symmetric too. In this sense, our grammar complies with the
fundamental propositions of Kayne (1994).

For this triple, the rule specifies a complex set of constraints:
(a) the syntactic structure of the primary template (the one with the speci-

fied argument) at unification
(b) the syntactic structure of the secondary template (the one co-labelled

with the argument) at unification
(c) the syntactic structure of the unified and merged template.

The first two can be seen as preconditions of the unification. The third part of
the package summarizes the output of the unification. The preconditions on
the primary and secondary categories define a particular cancellation mode.
For each argument in a syntactic category this cancellation mode is explicit. It
is the main combinatory specification of a syntactic category.

Here is the general format of a syntactic rule, specifying leftward cancellation;
the rightward case is similar. The operation is defined relative to the cancel-
lation mode i; X⊕Y generalizes the appending of lists X and Y as XY or YX,
depending on the cancellation mode.

40 SYNTAX

(25) primary category: Prim \ Plf~Pla / Prf~[Sec^i|Pra]
composition operator: ⊗i
secondary category: Sec \ Slf~Sla / Srf~Sra
resulting category: Prim \ Plf~(Sla⊕Pla) / Rf~(Pra⊕Sra)

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category);
^i: cancellation mode; Rf: some flag determined by i

The constants in the formulation of a rule are these, labelled as properties of
the syntactic formalism:

(a) the label of the primary category is the label of the resulting category
(output: conservation of head)

(b) the label of the secondary category occurs as a label in an argument
stack of the primary category (input: well-foundedness of merge)

(c) only one argument is affected by the merge (output: exclusiveness of
merge and directedness)

(d) all non-affected arguments of the primary category and the arguments
of the secondary category are assembled in the resulting category with
the same labels and cancellation modes (output: conservation of argu-
ments)

(e) in the resulting category, the left stacks and the right stacks of the input
categories are assembled to a left stack and a right stack, respectively
(output: conservation of direction)

(f) argument stacks are appended and the order of arguments in a stack is
unaffected (output: stack integrity)

(g) the flag of the assembled stack for the passive direction in the result-
ing category equals the flag for that direction in the primary category
(output: passivity)

Normal business in a syntactic rule implies the following properties:
(h) the label of the merged argument does not occur in the resulting cat-

egory (output: cancellation)
(i) the target argument of the unification is at the top of its stack (input:

linear ordering)
(j) the assembled stack for the active direction in the resulting category is

marked for being affected (output: affectedness).

‘Normal business’ means that deviation from these practices marks that rule
as exceptional and a candidate for reconsideration. For example, the rule han-

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 41

dling ‘floating’ er in Dutch (see (23)) may exceed normal business, as er place-
ment is hardly understood.

Finally, the rules are parameterized with respect to:
(k) the labels of non-affected arguments and the label of the primary cat-

egory (input: labelling)
(l) the arity of stacks (input: arity)
(m) the flag of stacks in the primary and secondary categories (input: flag).

The instantiation of these parameters defines a certain merge mode. So, syn-
tax specifies which templates should be sent to unification on the base of their
internal structure.

The parameters of the syntactic rule determine their variety. All parameters
are finitely valued: there is a limited number of syntactic labels, templates
have only finitely many arguments and stacks have a restricted number of
flags. Consequently, a natural-language syntax along these lines can only have
finitely many rules. As a matter of fact: syntactic labels are very restricted
in number, and so is the argument complexity of templates. Therefore, the
number of syntactic rules that can be specified is very limited, the main fac-
tor being the arity of argument stacks in the specification. In its present state,
Delilah’s syntax comprises about ten rules per direction.

1.4 THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES
AND MODES

1.4.1 Categories and complex symbols

A category in a categorial constructive unification grammar like the one pre-
sented here has many tasks to fulfill. First of all, it embodies an agenda accord-
ing to which the rules of grammar – the modalized instances of the rule of
cancellation and composition – can operate. Secondly, it predetermines line-
arization of phrases in a sentence: the structure of the category imposes strict
conditions on linear order. Thirdly, it defines equivalence classes of phrases

42 SYNTAX

with respect to the grammar. And, fourthly, it represents the structure of lexi-
cal templates with respect to unification. As an example of this multi-tasking,
suppose that the grammar-in-action, say: the parser, runs into the following
category:

(26) pp\0~[n^0]/1~[np^0]

It tells the parser that at least two other phrases have to be found for this cat-
egory to be satisfied, that one is a noun-type phrase to occur to the left of the
other, a phrase with a noun-phrase-type of distribution, that the phrase carry-
ing the category is neither lexical nor completely saturated, that the template
which it encodes has two sub-templates which are subject to two different
unification acts, and that for the categorial hypothesis – if not pp – to be met,
at least one prepositional phrase must occur as an argument. Thus, the cat-
egory broadcasts information essential to grammatical dynamics.
In categorial grammar, categories carry all combinatory information feeding
into the grammar. For this reason, the categorial formalism is the quintes-
sence of the grammatical message. In exactly that sense, categorial grammar is
mathematical: grammar amounts to the manipulation of symbols according to
an established protocol, which as such may reflect fundamental theses on the
nature of the game. Unfortunately, the grammar we present here deviates from
more or less canonical categorial set-ups, established e.g. by Moortgat (1988),
Van Benthem (1991), Morrill (1994) and Carpenter (1997). On the other hand,
more recent developments of the categorial practice in Moortgat (1998), and
Baldridge and Kruijff (2003) indicate some convergence with the proposals
of Cremers (1993a), which underlie the system presented here, in particular
with respect to fine-grained modalities for composition. Still, the formalistic
nature of any categorial approach to natural language requires an in-depth
account of its architecture. That is what we are trying to achieve in this section.

It is of some importance to see that not all distributionally relevant aspects
of words and phrases can be encoded in the combinatory category, and that
a certain sense of arbitrariness is unavoidable. For example, the notion of np
underspecifies some distributional aspects of the class of nominal constitu-
ents, for example with respect to case, number and definiteness. What, then,
is the difference for a phrase between being nominal and being plural? The
answer is relatively clear. In all contexts, being nominal is a required property –
a phrase cannot be underspecified for category and still be rightfully selected;
being plural may or may not be relevant for the combinatorics, depending on
contextual requirements. This difference is a good reason to leave number to

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 43

the unification process, which is context-dependent by definition, and which
leaves room for all levels of specification. In the same vein, certain less classi-
cal distinctions may make it to the combinatory level. In Dutch, for example,
non-finite verb phrases may occur with and without te, a preposition-like and
meaningless particle. Selection of verb phrases is sensitive to this particle:
willen ‘to want’ takes only te-less vps as a complement, whereas proberen ‘to
try’ exclusively selects vps headed by te. In no situation is te irrelevant. As a
consequence, it is combinatorially relevant to mark a vp for having te. In the
Delilah grammar for Dutch, we thus have two distinct atomic types: vp and
vpt, for it is no use having unification decide – costly – on predictable combi-
natory properties.
Also, word order variation may have to be encoded at the level of categories.
Again, the criterion resides in selection: if the internal word order of a con-
stituent determines its candidacy for combinatory processes, that word order
is better reflected in category labeling. Now, Dutch is a verb-second language,
and the position of the finite verb determines the status of the sentence. Thus,
we have distinct sentential categories for distinct positions of the finite verb.
The set of categories that one needs can only be determined empirically –
by experimenting with how to get a semantic grammar to work properly,
i.e. to interpret all and only the well-formed strings over a lexicon. Yet, we
do not abandon the idea, inherent in the Polish origins of categorial gram-
mar, that there is a class of elementary types – typically two: one for names
and one for sentences – and that other categories denote functions over the
domains of these elementary types. That is, we assume that all syntactic cat-
egories denote (complex or composite) functions over elementary domains,
in short: that nps are of type ett. The (semi-)compositional semantics of our
system is essentially typed (see chapter 2). We do not assume, however, that
the syntax of Dutch must be grafted on to the internal typological structure
of the categories needed. The reason for this divergence between syntactic
and semantic labeling is typically pragmatic: there is no bijection between
types and combinatory classes. This point was already made clear in Mon-
tague (1972) – though the motivation there was not syntactic subtlety. It is a
fact of life that not every syntactic property is determined by the typological
structure; many, maybe even most, are not. Often, the syntax does not exploit
the semantic fine-structure of category: as was illustrated above, verb-place-
ment is syntactically big business but it is semantically vacuous. This type of
tension between combinatory and semantic interests makes the grammar of
natural languages worth pursuing.

44 SYNTAX

The manipulation of categories, to be pursued in this section, has one sin-
gle goal: arranging the unification of complex symbols – or signs – in such a
way that the right interpretation ensues. All interesting information – includ-
ing the categories steering the process – is in these complex symbols and is
treated conservatively in the unification process. The syntax as such does not
add to that information. It just controls it. This control, however, is the only
claim to effectivity and efficiency we can put forward. The ambiguity of natu-
ral language is overwhelming. Unification is too costly to have search space
reduced while we are waiting. It is the syntax that has to select and prepare
felicitous analyses; it is the syntactic routine that makes language work.

1.4.2 Basics

The syntax depends on three well-defined sets:
(a) a finite set Types of types
(b) a finite set Mods of modalities
(c) a set Cats of categories

The set Types consists of literals denoting syntactic and semantic equivalence
classes over lexical phrases. The only restriction imposed on this set is finite-
ness. At least one of the types is marked for sentencehood. One may reduce
the number of sentential types to one, but language calls for distinguishing
propositions from questions and imperatives. A typical set of types may con-
sist of literals like s for propositional sentences, q for questions, np for names
and nominal quantifiers, vp and ip for tensed and untensed verb phrases, and
so on. Clearly, the distribution of types over the grammar expresses our insight
into the phrasal tiers, but the types themselves lack any formal content.

The set Mods of modalities is also taken to be a set of literals disjoined from
Types. Modalities stand for modes of merging categories. They are defined
pointwise. Since the number of merge modes will turn out to be finite, Mods
is finite too.

The set Cats of categories holds the basic data structures of the grammar.
Every category is a triplet <Head, LeftArguments, RightArguments>. The head
is a single, bare member of Types.
LeftArguments consists of a pair <Flag, LeftArgumentList>; Flag is a label, hold-
ing information as to the present state of LeftArgumentList. RightArguments
is constructed accordingly. Both the left and the right argument lists consist of

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 45

a finite number – possibly zero – of pairs <Type, Modality> in Types × Mods.
The left arity of a category is the number of pairs <Type, Modality> in LeftAr-
gumentList. Equally, the right arity of a category is the number of modalized
types in the RightArgumentList. The arity of the category plain is the sum of its
left and right arities. Basically, a category should be seen as an n-place function
mapping categories onto categories, with n reflecting its arity.
For notational convenience, categories are written in the format

(27) Head\ LeftFlag~LeftArgumentList / RightFlag~RightArgumentList.

Non-empty argument lists are written [Type1^Mode1, Type2^Mode2, ….] or
[Type1^Mode1|Rest].
This format of categories is deducible to the flat types of Buszkowski (1982).
The only element added is treating all the arguments at one side of the head
as one object: a list or a stack. For this defining property of our categories, we
call the resulting grammar Categorial List Grammar or CLG.

Every phrase in the language that has to be defined is assigned to one or more
categories by the lexicon or by the grammar. Here is an example from Dutch.
The article de (‘the’) is lexically assigned to the category np\u~[]/u~[n^i]. Its
left arity is zero; its right arity is one. The category expresses that its phrases
are of type np if combined with phrases of type n. Combining with a phrase
equals merging with a category to which that phrase is assigned. It will oper-
ate according to merge mode i on a category headed by n. If mode i allows
operating on e.g. n\u~[]/u~[] and the noun duivelsuitdrijver (‘exorcist’) is
lexically assigned to that category, the grammar may assign the phrase de dui-
velsuitdrijver to the category np\u~[]/a~[]. The modalized argument n in the
original category for de has been cancelled, and RightFlag adapted. The cate-
gory thus specifies the nature of categories to be operated on by listing heads
in the argument lists. The associated modalities convey the conditions under
which this merge may unfold in the modalities. Furthermore, the category
stores concise information as to its merge history in the flags at the argument
lists. Merging categories is therefore a complex, asymmetric operation.

Merging categories is the only combinatory operation in the syntax. It was
originally introduced in Cremers (1993a). The operation is a generalization
of Generalized Composition for Combinatory Categorial Grammar, as it was
framed by Joshi et al. (1991) to capture the grammar engines constructed by
Steedman (1996, e.g.).

46 SYNTAX

In Combinatory Categorial Grammar, Generalized Composition is the main
engine of analysis; here are its two instances as presented by Joshi et. al.
(1991).

(28) x/y (...(y|z1)|z2 ... |zn) ⇒ (...(x|z1)|z2 ... |zn)
(29) (...(y|z1)|z2 ... |zn) x\y ⇒ (...(x|z1)|z2 ... |zn)

x/y and x\y are considered to be the primary category of the compositions
(28) and (29), respectively; the other one at the left of ⇒, headed by y, is called
the secondary category. Every occurrence of |zi is a unit, representing either
\zi or /zi. Directionality of arguments is not affected by composition (Steedman
1990). Generalized Composition cancels the argument /y in the primary
category against the secondary category’s head y and yields the remaining
structure x of the primary category with all the arguments of the secondary
category stacked on top of it.

Categorial List Grammar restricts Generalized Composition by requiring the
cancelled type y to be primitive or atomic, i.e. without internal structure. This
restriction is referred to as linearity. In the terminology of König (1990), the
resulting grammars would be characterized as first-order grammars, since
there is only one relevant level of type embedding. A type is either a head or an
argument to that head. Hepple (1996) describes a linearization procedure as
a compilation of higher-order categorial grammars for parsing. Moreover, the
syntax presented here will take into consideration the full internal structure
of type x, which is not specified in Generalized Composition. As a consequence,
Categorial List Grammar extends generalized composition form (28) to two
different operations:

(30) (…(p|w1)|w2…|wm)/y (...(y|z1)|z2 ... |zn) ⇒ (…(…(p|z1)|z2 … |zn)|w1|w2… |wm)
(31) (…(p|w1)|w2…|wm)/y (...(y|z1)|z2 ... |zn) ⇒ (…(…(p|w1)|w2… |wm)|z1|z2 … |zn)

Of these, the second is a more explicit version of (28). The first form of
composition is not covered by Generalized Composition, because there, the
primary category’s head and arguments cannot be separated. Furthermore,
Categorial List Grammar will split up both the secondary and the primary
category with respect to the directionality of arguments. CLG then collects the
set of arguments in each direction. Consequently, the extension will be split up
again into four different modes of composition. They are only distinguishable
as to the relative orderings of the directed arguments in the consequent when
compared to their sources (graphical marking is just for convenience):

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 47

(32) p\pl1...\pln /pr1.../prm/s s\sl1...\slk /sr1.../srl ⇒
 p\sl1...\slk \pl1...\pln/sr1.../srl/pr2.../prm
(33) p\sl1...\slk\pl1...\pln/pr1.../prm/sr1.../srl

(34) p\pl1...\pln\sl1...\slk/sr1.../srl/pr1.../prm
(35) p\pl1...\pln\sl1...\slk/pr1.../prm/sr1.../srl

By simple computation, CLG extends every instance of Generalized Compo-
sition to eight patterns. The properties of these patterns are discussed in
the remainder of this section. In the formatting of CLG below the directed
arguments of a category are bundled into two single objects, ordered lists or
stacks. In order to keep the composition or merge of categories functional, a
finite number of distinct modes of composition will be distinguished.

1.4.3 Merge

Merge basically sends pairs of categories to categories, and therefore resides
in the functional space CC×C. It consists of four sub-operations:
(36) cancelling a type in a pair <Type, Mode> at the top of an argument list of one

category against the head of the other
(37) appending two pairs of argument lists
(38) reflagging the resulting argument list
(39) constructing a new category from the components

The whole operation is subjected to one out of a finite set of modalities, the
one that is associated with the type to be cancelled.

Here is an example of a merge of two categories C1 = s\u~[pp^isl]/
u~[vp^rais] and C2 = vp\u~[np^isl]/a~[vp^cons]. The only possible cancel-
lation involves the type vp in the righthand argument list of C1 and the vp head
of C2, under the modality ^rais. The cancellation can be effected when C2 is
the right member of the pair of input categories and the internal structure of
C1 and C2 complies with the constraints defined by ^rais. Suppose that both
conditions are met. If we indicate the asymmetric merge with the infix ⊗, the
merge could look like

(40) C1 ⊗ C2 → C3
s\u~[pp^isl]/u~[vp^rais] ⊗ vp\u~[np^isl]/u~[vp^cons] →

s\u~[np^isl, pp^isl]/a~[vp^cons]

In this merge, the left-argument lists are appended in such a way that the
argument list delivered by C2 is prefixed to the left-argument list stemming

48 SYNTAX

from C1. Hereby, the order of future cancellation is fixed. At the right-hand
side, only the argument list of C2 survives, as the right-argument list of C1
is emptied of its only argument after cancellation. The flag a~ at the new list
indicates that it was rightward cancelling that brought about this merge: the
right-hand argument list is the affected one.

Reversing the point of view, one may now define what exactly are the con-
straints imposed by the ^rais mode. In fact, two different patterns have to
be stated, depending on the direction of the cancelling. The particular merge
mode imposed by ^rais is indicated by the modalized merge operator ⊗rais.
This convention is also used by Cremers (1993a) to introduce modes of appli-
cation, by Moortgat (1998) to describe Multi-Modal Categorial Logics, and by
Baldridge and Kruijff (2003) to represent Multi-Modal Combinatory Catego-
rial Grammar. In terms of the last, the grammar of Cremers (1993a) might be
described as multi-modal combinatoric.

Since merge is essentially asymmetric – this item is addressed in section 1.5.3
below – the process discriminates systematically between the two input cat-
egories. The category that has an argument at the top of one of its lists can-
celled is dubbed the primary category. Its head is Prim, and all its others com-
ponents are preceded by a p. The other components are identified by f and
a for flags and argument lists, respectively, and by r and l, for left and right
sides, respectively. The other category is doomed to be the secondary one,
with head Sec and s’s instead of p’s. Finally, asymmetric append is marked
by ⊕. Here then are two possible instances of the merge mode ^rais. Capital
onsets indicate variables.

(41) (⊗rais /)
Prim\Plf~Pla/Prf~[Sec^rais|Pra] ⊗rais Sec\Slf~Sla/Srf~Sra →

Prim\Slf~Sla⊕Pla/a~Pra⊕Sra
(42) (⊗rais \)

Sec\u~Sla/Srf~Sra ⊗rais Prim\Plf~[Sec^rais|Pla]/Prf~[] →
Prim\a~Pla⊕Sla/Srf~Sra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list

The first of these two merge modes does not impose any constraint on the
input categories apart from the presence of cancelable types. As for the out-
put, it specifies prefixing of the secondary argument list at the left-hand side
and the reverse at the right-hand side. The flag a~ at the right-hand side marks

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 49

affectedness of this argument list. The flag at the other side is provided by the
secondary category.
Unlike (⊗rais /), (⊗rais \) does impose restrictions on the structure of the input
categories. It requires the left argument list of the secondary category to be
unaffected up to then, and specifies emptiness for the right argument list of
the primary category. In its output specifications it essentially behaves like its
rightward dual, modulo directionality.

Here is a sample instantiation of (⊗rais /). The Dutch verb willen (‘to want’)
is a typical verb raiser. It selects, among other things, infinitival complements
and adjoins to the left of their verbal head. Consider one of its finite forms, for
example the singular past tense form for embedded, i.e. verb-final, sentences:
wou. This form introduces a subject argument it agrees with to its left, and an
infinitival complement to its right. It would typically be assigned to the cat-
egory s_emb\u~[np]/u~[vp^rais]. Both lists are marked zero, as the category
originates from lexical assignment. Take, furthermore, the verb gaan (‘to go’).
One of its combinatorial options is to create a vp by selecting a directional pp
to its left. Thus, it will be assigned lexically to the category vp\u~[pp]/u~[];
the directionality of the pp is expressed in the template of the verb, as a fea-
ture. The merge mode (⊗rais /) specified above yields the following composi-
tion of these two categories, deriving a new category for the string wou gaan
(‘wanted to go’):

(43) s_emb\u~[np]/u~[vp^rais] ⊗rais vp\u~[pp]/u~[] →
s_emb\u~[pp, np]/a~[]

In compliance with the format for ⊗rais, the left argument list of the second-
ary category, here consisting only of the argument pp, is appended as a prefix
to the left argument list of the primary category. By implication, the resulting
category will have to cancel ppdir before np. This reflects the state of affairs
where the subject of wou gaan is more peripheral to that phrase than to its
directional argument.

1.4.4 Modalities

It is by no means necessary that every modality be specified both for rightward
and for leftward cancellation. Given the nature of the example (43) for (⊗rais /),
it is even unlikely that the grammar of Dutch would give rise to (⊗rais \). Merge
is inevitably asymmetric. One head is cancelled, the other head persists. The
argument lists in one direction are unaffected, those in the other direction lose

50 SYNTAX

an argument. For each direction, the unfolding or execution of one argument
list will be suspended, while the other is readily available for cancellation. Since
linearity matters in natural language, directional duals for merging modes will
be the exception, rather than the rule.
Plural specifications in one direction are possible. They should address dis-
jointed sub-domains of Cats × Cats, though, as merge is functional. Neverthe-
less, it can be proven that the set of expressible merges, and thereby the set
of merge modes, is finite. To see why, consider first this characterization of
an expressible merge. A merge aims at the cancellation of exactly one type
at the top of one argument list and does not refer to other types in that or
other argument lists. It specifies the heads of two categories and exactly two
appends of argument lists. It specifies two flags at most to these lists. There-
fore, the gamma of specifications by a merge mode is rather limited. Moreo-
ver, all the components of a merge come from limited sets or classes of sub-
operations. First, the set Types is taken to be finite, in accordance with the
standard condition in formal grammar that both the terminal and the non-
terminal alphabet be so. As for input conditions, merge modes may specify
for each of four argument lists whether they are empty or nonempty, and may
specify flags for these lists. The number of different modes is very limited, by
definition. As for output conditions, a merge mode can only specify argument
lists that were part of the input. There are only two combinatory possibilities
for constructing new argument lists out of these, resulting from the asym-
metry of append. No other operations on argument lists are definable. The
number of flags to specify for the new lists is as restricted as it was at input.
All components of merge appear to stem from restricted sets. Consequently,
the number of different combinations is bound to be finite, and so is the set
Mods of merge modes.

1.4.5 Argument list

The only operations defined on argument lists are cancellation of an argu-
ment according to the modality that comes with it and appending. The latter
creates a new list but leaves the lists that are feeding it intact. One could think
of alternatives to this rigid form of list construction, like mixing or popping:

(a) mixing: [a,b] ∇ [d,e] = [a,d,b,e]
(b) popping: [a,b] ↵ [d,e] = [d,a,b] ↵ [e] = [e,d,a,b]
(c) appending: [a,b] + [d,e] = [a,b,d,e]

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 51

Mixing is sometimes referred to as list merge; for obvious reasons, the term
mixing is preferred here. Lists are linearized, and thus they are ordered struc-
tures. Specifying append as the operation to be performed while merging cat-
egories implies conservation of these structures with respect to adjacency
and precedence. Mixing respects linearity but not adjacency. Popping respects
adjacency, but partially reverses linearity. As a matter of fact, appending is the
only operation that respects both the local characteristic of adjacency and the
global characteristic of precedence.

Comparing mixing, popping and appending, some analogies are straightfor-
ward. Popping reflects the way stacks combine. A stack is loaded and emp-
tied in a regular fashion, element by element, by simple repetition of the
same manoeuvre. Mixing is a context-sensitive operation. It requires keep-
ing track of former moves and accounting for the internal structure of the
lists involved. The analogy here is that of combining agendas, i.e. tasks that
have to be performed in a certain order, feeding and bleeding each other.
Appending, then, is in-between. It requires recursion, i.e. going back to a
bottom case while suspending the shifts of individual elements. No book-
keeping of the internal structure of the lists involved is necessary, and it is
context-free (cf. section 1.8). If append turns out to be the canonical mode
of merging argument sequences, this operation alone would already fall in
with the need for recursion in natural languages, as has been argued by Hol-
lebrands and Roeper (2007). Although we adhere to append as the proper
mode of merging, we will use both of the terms stack and list, as they both
reflect the essential property of complete ordering. Moreover, taking argu-
ment lists to be the stores that govern cancellation of types, we will address
argument list as the grammar’s agendas.

The conservation of adjacency and precedence in the local environment intro-
duced by a category is the reason for considering append as the structural
operation underlying merge. Categories to which lexical items are assigned
reflect partial knowledge of the combinatoric potency of that item. That knowl-
edge concerns selection and subcategorization, but also linearization of the
selected items. Moreover, it can be seen as constituting the domain governed
by the phrase assigned to this category. This configuration is not accidental
but defines the whereabouts of the phrase’s interpretation. The merging of
categories is the engine of phrase combinatorics in this grammar. As such,
it accounts for the discontinuities natural language abounds in. But merging
would be self-destructive if it were to come with the mutation or covering of
the configurations that make the phrases which it combines meaningful and

52 SYNTAX

interpretable. Grammar is supposed to make sense of the intrinsicalities of
natural language. Appending the identifying domains of phrases, then, seems
to be the more harmless option in merging categories.

1.4.6 Deduction schemes

The grammar outlined here can be framed into a sequential, deductional for-
mat. Here is a model. Types are indicated by lower case letters, lists of argu-
ments by indexed Li and Rj. Categories are marked by Roman capitals A, B,
C. Potentially empty sequences of categories are marked by distinct Greek
capitals.

(44) Axioms
unary axiom: C → C
binary axiom: A ⊗i B → C for all ⊗i defined

rightward: a\L1/[b^i|R1] ⊗i b\L2/R2 → a\L1⊕iL2/R1⊕iR2
leftward: b\L2/R2 ⊗j a\[b^j|L1]/R1 → a\L1⊕iL2/R1⊕iR2

(45) Rules
left rule D → B A ⊗i B → C G’, C, G” → T

 G’, A, D, G” → T

right rule D → B B ⊗i A → C G’, C, G” → T
 G’, D, A, G” → T

Note that the rightmost premise is shorter than the conclusion, in that its
antecedent contains at least one category less than the conclusion’s anteced-
ent. Note furthermore that in all binary axioms the arity of the consequent is
exactly one less than the sum of the arities in the antecedent, which is neces-
sitated by the definition of merge as involving cancellation. It follows that the
arity of the right-hand premise is smaller than the arity of the conclusion.
Clearly, then, the decidability of this calculus depends on the decidability of
the term D → B. We prove its decidability by induction on the length of D.
|D|≤|G’ G’|, by definition. If |D|=1, the term instantiates identity or it is false. If
|D| = 2, its components satisfy, following the rule format, one of finitely many
binary axioms, or it is false. If |D| > 2, the rules apply to create a left-hand
premise D’ → B’ such that |D’| < |D|. Given the remarks on the decidability
of the middle and right-hand premises in the rules, the derivability of each
proposition G → t for some designated type t can thus be deduced in a finite
number of steps.

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 53

For the type of grammar presented in (44) and (45), an important invariant
can be established. The invariant is a simplified version of the count-invari-
ancy that Van Benthem (1991) uncovered for the Lambek-calculus and related
systems. This invariant states that there is a certain way of counting primitive
types, such that theorems of that calculus of the form f → y invariantly have
the same count at both sides of the arrow. Since categories in the Lambek-
calculus are more complex than in our grammar, the metric is simpler too.

(46) For each type in a category C,
count an occurrence of t as +1 if it is the head, and as -1 if it is an argument,
determine t-count(C) as the sum of the occurrences of t in C,
for each sequence of categories, determine the t-count for that sequence as the
sum of the t-count for the categories in the sequence.

Given this metric, the simple fact that cancellation is a zero-sum operation,
and the observation that no types other than the one cancelled are affected in
an axiom, the following proposition is evident:

(47) Count Invariance
For each axiom f → y in (44) and for every type t, t-count(j) = t-count(y).

As an immediate consequence, the rules in (45) are conservative in the sense
that all the operations above and below the deduction line respect Count
Invariance. In particular, the conclusion and the major premise share t-counts.
Thus, the grammar enjoys deductive monotony: no types appear or disappear
apart from zero-sum cancellation.

1.4.7 The algebra of strings

The categories, and the operations defined on these, can be interpreted on a
string model <L*, +>. L is the set of atomic phrases of a language and L* is Kleene
closure: the set of non-empty strings over that language such that L ⊆ L* and
for all a, b ∈ L*, a+b ∈ L*. The string operation + is taken to be associative and
noncommutative. It gives rise neither to idempotency nor to persistency. As
such, it is, as Morrill (1994) states, an operation on pieces of matter rather than
an operation on pieces of knowledge. Another image that comes to mind when
looking for interpretations is the flow of time. Language essentially extends in
time. Phrases can be seen as decorated intervals. Although time may be dealt
with under all kinds of logics, there is a standard perception of the flow of
time as a noncommutative, i.e. irreversible, and nonpersistent, i.e. segmenta-
ble, process. The operation + is meant to reflect this analogy.

54 SYNTAX

Consider furthermore the power set 2L*. A mapping ℜ: Cats ⋃ Types → 2L*
has to be established, assigning to a category or type a set of strings of that
category or type. This is the standard interpretation of a category as a class
of strings with equivalent combinatorial behaviour. In presenting categories
for this purpose we will, for the moment, abstract from flags and modalities.
The operator indicates asymmetric associative concatenation of categories;
 interprets this relation on categories.

(48) ℜ(A) = ℜ (A\[]/[]) for all A ∈ T
ℜ([A1,…,Ai,…,An]) = ℜ(A1…Ai…An) =
ℜ(A1)…ℜ(Ai)…ℜ(An) = { a1+…+ai+…+an | aj ∈ ℜ(Ai), 1 ≤ j ≤ n }
ℜ(A⊗m B) = { a+b | a ∈ ℜ(A), b ∈ ℜ(B)}, for all m
ℜ(A\x~L/y~R) = { a | ∀l ∈ ℜ(reverseL), ∀r ∈ ℜ(B) l+a+r ∈ ℜ(A) } (the reverse of L
is needed here as the order of the list of arguments to the left is the reverse of the
order of strings associated with that list; flags of argument lists do not interfere
with the denotation of categories.)

The syntax established here gives rise to a form of category merging that has
been dubbed mixed or disharmonic composition. Its characteristic feature is
that arguments from the secondary category not belonging to the direction
that is affected by the cancellation are taken over by the new category. For
example, if Sla below is non-empty, the indicated merge will involve this dis-
harmonic composition. (The + operator amounts to standard append.)

(49) Prim\Plf~Pla/Prf~[Sec^j|Pra] ⊗j Sec\Slf~Sla/Srf~Sra →
Prim\Slf~Sla+Pla/a~Sra+Pra

In a slightly more transparent but less general notation, disharmonic compo-
sition is exemplified in the following lines:

(50) x/y y\z ⇒ x\z (rightward cancelling, leftward composition)
y/z x\y ⇒ x/z (leftward cancelling, rightward composition)

The particular appending of Pra and Sra in (49), on the other hand, is called
homogeneous or harmonic. Here, the arguments entered by the secondary
category, are of the direction affected by the cancellation. They are placed on
top of those entered at that side by the primary category. Here are the simpli-
fied representations for harmonious composition:

(51) x/y y/z ⇒ x/z (rightward cancelling, rightward composition)
y\z x\y ⇒ x\z (leftward cancelling, leftward composition)

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 55

The main combinatorial difference between harmony and disharmony in this
respect is the following. If a string is constructed with harmonious composi-
tion, there may be an alternative derivation without transfer of arguments; if
a string is constructed by disharmonious composition, there is no alternative
to that derivation. Again, this is illustrated in the alternative notation, but only
in one direction. In (52), there are two ways to merge three categories into
one: one involving (harmonious) composition of the two leftmost categories,
the other using sheer cancellation twice; for the disharmonious composition
in (53), there is no alternative.

(52) x/y y/z z ⇒ x/z z ⇒ x
x/y y/z z ⇒ x/y y ⇒ x

(53) z x/y y\z ⇒ z x\z ⇒ x

Consequently, disharmonious composition allows for grouping of strings that
are discontinuous to such a degree that it cannot be solved by the present
categories. That is: the Lambek-calculus cannot map the categories in (53) to
other categories that can be reduced to a single type without resorting to dis-
harmonious composition. Since the Lambek-calculus has been proven to be
weakly equivalent to context-free grammars (Pentus 1993), the use of dishar-
monious composition pushes a categorial grammar beyond context-freeness.
As a matter of fact, the syntax of merging listed first-order categories under
modalities induces several distinct patterns of discontinuity; these will be
discussed in the sections on the syntax of Dutch. The syntax (of Dutch) is one
of discontinuity, rather than a syntax of gluing constituents. The basic com-
binatorics that is envisaged for interpretable strings is chaining rather than
appending. It is designed not so much for combining strings w and z into wz
but for combining strings wx and zy into wzxy or zwyx in a controlled man-
ner. Such forms of string merge are immanent to natural language: strings
chain each other rather than just glue together. They bubble up between each
other’s edges in a variety of modes. Nevertheless, we can have resort to + as
the designated operation on strings, since no operation of the grammar vio-
lates the integrity of a deduced string. Merging prompts strings for periph-
eral association only. It does not involve any kind of extraction from or inser-
tion into otherwise constructed strings. The discontinuous effects are solely
caused by reference to the internal structure of the category that is associated
with a string, i.e. to which a string is assigned. Once a string is derived by
merge, it is maintained in the rest of the derivation. In this respect, the syntax
is conservative and monotonous.
By consequence, the general strategy for constructing ywzx as stemming from
wx and yz is mandatory. Suppose wx ∈ ℜ(A) and yz ∈ℜ(B) for some A and B,

56 SYNTAX

but there is no C such that wz, yw or zx ∈ ℜ(C). That is what it means to say
that ywzx stems from wx and yz. The only derivation in the grammar depicted
above runs as follows. Construct w and put the construction of string x on the
agenda. Construct z and put the construction of string y on the agenda. Merge
w and z and execute the agenda.
Now consider how under this regime a string wyzx must be derived from the
same formants and with the same labour division between w and x. The string
wz cannot be constructed, not even if for some C wz ∈ ℜ(C), since no rule of
grammar could split it up for y to be inserted. Therefore, the string yz has to
be formed first. Next, wyz can be derived, while putting x on the agenda.

1.4.8 Disharmonic composition and categorial logic:
grammar and reasoning

As indicated above, CLG comes with disharmonic composition. In the pre-
sent setting, disharmony results from appending a non-empty argument list
of the secondary category in the passive direction, i.e. the direction that is
not affected by cancellation – Sla in merge scheme (49). It has often been
argued that categorial grammars involving disharmonic composition are
beyond string models. Disharmony is rejected in, e.g., Carpenter (1997), Mor-
rill (1994) and Jacobson (1991). The last states that disharmonic or mixed
composition, though attractive for dealing with certain phenomena, cannot
be function composition. If f sends a to ba and g sends c to cd and cd is in the
domain of f, then fg sends c to bcd, as Jacobson correctly claims for functions
f and g. If the merge of categories A and B does not have this functional effect,
it cannot be functional. To put it bluntly: for every argument c, the composi-
tion applied to the argument – fg(c) – is bound to be equal to the subsequent
application of the rightmost function to the argument and the application of
the leftmost function to the result of the innermost application – f(g(c)). In
disharmonic merge, this is typically not the case. If disharmony is called for,
there is no alternative to it, as was argued in the preceding section.
This argument against the functional nature of disharmony takes the direc-
tionality of categories seriously: it defines the functionality of categories in
terms of linearization of strings. On the other hand, functions are not neces-
sarily directed objects. The functional interpretation of categorial deduction
under the Curry-Howard correspondence (cf. Van Benthem 1986) abstracts
from directionality. As a matter of fact, this is the main reason why the corre-
spondence is not an isomorphism over substructural logic – intuitionistic logic
with selective use of structural rules – and constitutes a particular fragment

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 57

of the lambda calculus. Merge, as defined above, can be seen as a complex of
operations, some of which deal with linearization, while others take care of
the logical aspects. The linearization operation – append, basically – does not
contribute to functionality, although append itself is a homomorphism in LL×L,
where L is the class of finite lists over a given domain. The grouping or brack-
eting operation that comes with merge is as functional as it can be.

Morrill (1994: 231-232) refutes a syntax which applies selective linearization
schemes: ‘… then the theory of syntax is not logical, in the sense of being the
reflection of an interpretation of category formulas, but … a deductive sys-
tem receiving definitions in terms of non-logical axioms and rules.’ The point
here is not merely that one could choose, operationally, between redefining
‘existing’ operators and adding new ones, the latter being common practice
in Multimodal Categorial Logic (Moortgat 1998). The crux is the nature of
the relationship between logic and grammar. In Morrill’s understanding, logic
starts out with irrefutable axioms, and the grammatical combinatorics reflect
this reasonable base. The basic logic here is intuistionistic conditionalization.
It defines three operators (left division, right division and noncommutative
multiplication) in a multiplicative fashion by residuation:

(54) a→ c /b iff a · b → c iff b → c\a

One could also opt for nondirected commutative operators, according to

(55) a → c|b iff a · b → c iff b · a → c iff b → c|a

Other operators can be defined, also in duals, in terms of residuation. The
one-place operators ◊ and □ are famous by now (see Moortgat 1998, Morrill
1994):

(56) ◊a → b iff a → □ b

Their multiplicativity can be compared to the duals n-root and n-power
defined on the positive reals: √a = b iff a = b2.
For deduction, division is interpreted as implication and multiplication as co-
occurrence. The one-place operators add modal control, by closing and open-
ing – basically, marking and unmarking – (sequences of) categories.

From a logical point of view, an important aspect of this system is that it lacks
negation, or its algebraic counterpart, complementation. The string alge-

58 SYNTAX

bra has no zero-element Zero such that concatenating any String with Zero
always yields String. Suppose Zero existed. Its category should be of type x/x
and x\x, for all categories x. Zero would be a homomorphism over all catego-
ries. Any string String would be combinatorially and materially equivalent
to Zeron+String+Zerom, and identity of strings would not be decidable – note
that the algebra of strings is resource-sensitive. Therefore, no combinatory
object in grammar denotes the empty string.

The absence of complementation in the logical basis to the categorial analysis
can be well defended under reference to the nature of language combinatorics.
Language is a material system, and its grammar deals with real objects; it can-
not be unwound. Its combinatorics are, in intuitionistic terms, resource-sensi-
tive. It irreversibly consumes time and space, and it is hard to see what opera-
tion in grammar could cover algebraic complementation or logic negation.

In the same vein, it is worth asking what aspect of natural language makes
conditionalization a suitable vehicle to guide combinatorial operations. In
‘classical’ flexible categorial grammar (Lambek 1958, Moortgat 1988 and
subsequent work) hypothetical reasoning is the fuel for the type-changing
operations that drive deduction. In the calculus, deductive hypothetical rea-
soning is reflected in so-called introduction rules. These rules increase cat-
egorial complexity and cover – among others – one of the greatest discoveries
in the history of linguistics, the generalizability of quantification (Montague
1972, Barwise & Cooper 1981):

(57) e → <<et>t> or: whenever you run into a primitive entity, you had better take a
structured set of sets of entities

Its proof in elementary categorial logic involves the assumption that e is
brought to t in the presence of <et>, to wit: e <et> → t. The type transition (57)
withdraws the assumption that <et> is available. It is the same hypothetical
reasoning as in classic natural deduction, but with the intuitionist proviso
that assumptions and withdrawals are one-to-one.

What makes hypothetical reasoning so attractive in grammar is the previ-
ously acknowledged insight that language is a material, resources-consuming
system. To say that a certain element requires another or is conditioned by
another is saying that somewhere in the linguistics space (e.g. a sentence)
that other element must be available. Somewhere, however, is far too weak. It
never means anywhere. Generally, the requirement is much more specific: the
other element must be available in a certain well-defined subspace of the lin-

THE LOGIC AND THE ALGEBRA OF LISTS, FLAGS, TYPES AND MODES 59

guistic space. This subspace is identified relatively, with respect to the posi-
tion of the requiring element, and in linear terms: to the right or to the left
of that element. Relative linear occurrence is the language instance of logical
conditionalization. In natural language, linear occurrence amounts to con-
ditionality. It is by no means accidental that direction is part of the logical
basis for natural-language analysis. Directionality is the name of the language
game. And it is from directional requirements that we derive hierarchy, not
the other way around: such is the message of Kayne (1994). We are still far
from understanding exactly how linearity induces subordination and seman-
tic dependency, but linearization is indispensable in the grammar base.

This being the case, we have at least two data structures for encoding the lin-
earization requirements of phrases, i.e. their spaced conditionalizations.
First, there are the types exploited in Lambek (1958) and subsequential
related work, notably Moortgat (1988) and Van Benthem (1991). Combina-
torially, they can be seen as onions. Their internal structure might be com-
plicated, but only their outer skin determines the combinatorial potential in
a given state. The related combinatorics is naturally context-free, since the
internal structure of the consequent of the primary category in the directed
modus ponens that drives the system is left out of consideration. The full proof
of the context-freeness of the Lambek-calculus based on this concept of type
was presented by Pentus (1993). The computations that come with it relate
to a tuple <body, outer skin>, where outer skin is the specified argument with
its direction (see Steedman 1990 for an invariant of this nature).
Secondly, there are the ‘flat’ categories as derived in Buszkowski (1982).
Though the author may not necessarily see them this way, they introduce the
full directed internal structure of the premisse major as an entity in the modus
ponens. Combinatorics defined on these data structures are context-sensitive
(though not necessarily in the strong sense) because the internal structure of
the premise is specified, and possibly taken into consideration. The computa-
tions that go with it relate to triple <head, leftward structure, rightward struc-
ture>. These characteristics of the flat, skinned categorial data structures also
apply to the very first proposals of Combinatory Categorial Grammar, in Ades
& Steedman (1982).
These two types of categorial information structures induce different calculi.
The differences follow from the data structures themselves. The flat types
allow for a fine-grained resource management in terms of linearization and
subspaces. The onion types induce calculi that exploit the bare conditionali-
zation, in the form of a conditional hierarchy, adding additional operations for
resource management, like linear structuring.

60 SYNTAX

Although a grammar may exploit conditionalization, it has no use for full com-
plementation. Yet, negation is the landmark of reasoning, as it offers an alter-
native to the referent of a proposition. Without negation, we would not have
truth – or whatever other device we may use to express the contingency of a
proposition. Negation constitutes the smallest device that one needs to gen-
eralize over situations or states-of-affairs and to tell them apart. In grammar,
however, there is no place for algebraic complementation. By consequence,
natural-language grammar cannot be identified with reasoning as such. It can
only be depicted as an algebra forging some structure over a set of expres-
sions. Linguistics, then, is about the components of that algebra.

1.5 THE CALCULI

The strategy for characterizing natural languages as an algebra is choosing
some well-defined starting-point to see what additional power is needed to
deal with the intrinsicalities of the language at hand. That starting point could
be PLA, the categorial system based on commutative residuation (55) and
explored by Van Benthem (1991); it amounts to the Lambek-calculus under
abstraction of directionality. This system is too weak, though. It defines no
(syntax of any) natural language at all, since it induces a permutation-clo-
sure over the set of accepted strings. No natural language is known to be that
free, not even Warlpiri, Hungarian or Latin. Therefore, it seems reasonable to
upgrade one level, and exploit the system defined by residuation (54), i.e. the
Lambek-calculus. In doing so, we take directionality and non-commutativity
as basic, just like we take the interpretation of division as conditionalization
to be basic. On the other hand, directionality and non-commutativity can be
added to PLA in terms of modalized duals. Here is an example, expressing the
functionality of (54) in (55):

(58) a → c|ib iff a ·i,j b → c iff b → c|j a

Here we can see that directionality and non-commutativity can be added to
PLA just as any other regime of structural management could. The expressiv-
ity of such a system is more than sufficient to cover natural languages, it seems.
It leaves room for the embedding of complex analyses of natural languages,
as shown in Vermaat (1999). In this approach, every computable structure
can be accommodated. It is Turing-complete. Of course, it is highly interesting

THE CALCULI 61

and revealing to scrutinize which embeddings are possible for every particu-
lar phenomenon or analysis. In fact, the multimodal approach exemplified in
(58) seems to come with the categorial alternative to the Chomsky hierarchy
called for in Van Benthem (1991).
CLG is considerably less expressive than multimodal categorial grammar. It
imposes heavy restrictions on the set of derivable sequents and, on top of
that, on the class of accepted strings, for any finite lexical assignment.

Morrill (1994) considers grammar as applied logic, as residing on logic
grounds. In this view, adding axioms or adjusting operators just to comfort
language analysis is needlessly weakening the grammar-logic connection; it
amounts to redefining mathematics in order to get hold of nature. In another
perspective, however, logic is defining (some of) the instruments for gram-
matical construal. Grammar is not necessarily applied logic, but may involve
the application of logical means for natural-language analysis. This perspec-
tive finds justification in the present state of ignorance about the embedding
of language in the cognitive and intellectual resources of our species. As far as
we can see, at this moment we do not have conclusive evidence for language
as an independent faculty, or for language as an epiphenomenon of emerged
cognitive capacities, or for anything in between. This should not stop us from
pursuing some hypothesis or other. In any case, one should adhere to expli-
cating in grammar all those processes that one observes in scrutinizing natu-
ral language. Logic is extremely useful for this explication. CLG is an effort to
localize the interference of selection and linearization in natural languages.
Take, for example, the wrapping that canonical auxiliaries in Dutch induce.
Auxiliaries, except when advanced to second position, are head adjuncts: they
select a verbal complement of some sort to their right, but will typically wrap
this complement around themselves in such a way that the complement’s
head is its right neighbour:

(59) auxiliary wordt (‘is’, passive aux) x/vppas
vppas in de verf gezet (‘painted’) (verb: gezet)
string in de verf wordt gezet x

Alternatively, they select a complement to their left. But in that case, eve-
rything occurring to the right of the complement’s head has to occur, after
merge, to the right of the passive auxiliary:

62 SYNTAX

(60) auxiliary wordt x\vppas
vppas met geweld gedwongen te vertrekken (verb: gedwongen)
 (‘violently forced to leave’)
string met geweld gedwongen wordt te vertrekken x

Neither for the rightward nor for the leftward selection are string-ordering
alternatives available. Any other ordering essentially affects interpretation
or endangers interpretability. The following ordering variations on leftward
selection show this.

(61) * met geweld gedwongen te wordt vertrekken
met geweld gedwongen te vertrekken wordt
can only mean something like ”becomes violently forced to leave”

But then the following statement appears to be true: if the direction of the
complement selection is part of the auxiliary’s lexical definition, the way of
wrapping that complement is part of that definition too. That is what CLG
specifies. It takes discontinuity seriously, in defining natural-language gram-
mar as computation of discontinuity. Likewise, non-adjacency of strings that
are to be interpreted in relation to each other is a fundamental fact of lan-
guage. Language is linear. It is a time-consuming process, and the order of
events in this process is crucial. Disharmonious composition is one of the
instruments for dealing with this ordering. It is not favoured or disfavoured
compared to other merge formats. Logic, then, is just exploited to keep the
analyses tractable.

1.5.1 Merge and Move

The presentation of the syntax hitherto has left no room for a fundamental
distinction between the move and merge operations, as introduced in Chom-
sky (1995). Stabler (1992) essentially reduces this distinction to a matter
of arity. Move is operating on one category to produce another. Merge oper-
ates on two categories to produce another. In both operations, checking fea-
tures is the engine of the process. Cormack and Smith (1999) hypothesize
that interpretation and merge of a constituent take place at the same level
of derivation. There is no need for move in this case. CLG incorporates the
view that merging implies moving, as lexical material is anchored in positions
where it may or must split what otherwise would have been decent chains.
The famous case at stake here is dative insertion. It is generally acknowledged
that a verb and its direct object are tightly related. In many languages, how-

THE CALCULI 63

ever, a second object – the indirect one – may or must interfere between the
verb and the direct object. This object too is licensed by the verb, but its rela-
tion to it seems looser, both syntactically and semantically. There is no par-
ticular relation between the direct and the indirect object. Nor is it the case
that the complex of verb and neighbouring indirect object represents a more
complete syntactic or semantic frame for the direct object. We do not know
of any cases where verb and indirect object bring in interpretations that are
not available to the verb without an indirect object. Since the indirect object
is still part of the verbal complex, the mere merge of verb and indirect object
induces relative movement of the direct object some distance away from its
very licenser, the verb.
Likewise, one might look at the relation between prenominal adjectives and
determiners. It is quite clear that there are several very severe restrictions
operating on a determiner and its noun, ranging from the morphological
shape to the quantificational nature of the resulting constituent. Adjectives
have no, or hardly any, relation to the determiner, and some, but not very
lexical (and thus not very computable) semantic cross-links with the noun.
Still, adjectives occur at that side of the noun where determiners are bound
to reside. The complex formation of adjective and noun, then, puts the deter-
miner at some distance from its closest comrade.
In many respects, therefore, merge inevitably induces discontinuity, and dis-
continuity amounts to movement (cf. Cremers 2004).

1.5.2 Soundness and completeness

A sequent of the form G → B is valid if the set of phrases associated with G is
included in the set of phrases assigned to B, i.e. if ℜ(G) ⊆ ℜ(B). Here is proof
that the sequent calculus presented above is sound, and in a certain sense
complete with respect to the string model.

1.5.2.1 Soundness

As for soundness, i.e. the proposition: all that can be derived is valid, consider
the following. The unary axiom is trivially valid. The binary axioms are valid
by definition. We can therefore concentrate on the left one of the only two
productive derivational steps:

(62) D → B A ⊗i B → C G’, C, G” → T
 G, A, D, G” → T

64 SYNTAX

Suppose d ∈ ℜ(D) and a ∈ ℜ(A). By induction, d ∈ ℜ(B). By definition, a+d ∈
ℜ(C) and ℜ(AD) ⊆ ℜ(C). So for g’ ∈ ℜ(G’) and g” ∈ ℜ(G”), g’+a+d+g” ∈ ℜ(T)
and thus ℜ(GADG”) ⊆ ℜ(G’C G”) ⊆ ℜ(T).

1.5.2.2 Completeness

As for completeness, i.e. the proposition: all that is valid can be derived, we
have to prove that ℜ(D) ⊆ ℜ(T) implies derivability of the sequent D → T.
In its full strength, this probably cannot be proven for the present system,
as it lacks hypothetical reasoning and, thus, structural completeness – the
property that the order of deduction steps is irrelevant for well-formedness
and derivability. What can be proven, however, is a weaker statement that
amounts to the following proposition.

(63) There is always an assignment of phrases to categories, such that if d ∈ ℜ(D),
d ∈ ℜ(T), then there is a G such that d ∈ ℜ(G), |D|= |G| and G → T.

This means that the calculus is complete salve assignments of phrases to cat-
egories. The proof yields a construction of G as a string of categories D[Xi←Yi]
which is like D, except for a finite number of substitutions of a category Xi
by Yi. The number of substitutions has an upper limit |D| and consequently,
|D[Xi←Yi]| = |D|.

1.5.2.3 Help lemmas for completeness salve assignment

To prove completeness salve assignment, we have resort to the following
lemma; here L-LL denotes the remnant of L after taking out that which L and
LL have in common.

(64) Binary derivability lemma

for all G, |G| ≥ 2, G→ a\L/R iff
G = D’ D” and either
D’ → a\L1/[b^i|R1], D” → b\L-L1/R-R1 and

a\L1/[b^i|R1] ⊗i b\L-L1/R-R1 → a\L/R
 or
 D’ → b\L-L1/R-R1, D” → a\[b^i|L1]/R1 and

b\L-L1/R-R1 ⊗i a\[b^i|L1]/R1 → a\L/R

This lemma is to play the same role in the present completeness proof as the
canonical lemma of Buszkowski (1982) plays in the completeness proof of the
product-free Lambek-calculus.

THE CALCULI 65

From right to left, the lemma is evident, as it reflects the deductive aspect
of the calculus. From left to right, the lemma is not trivial. It induces binary
branching of the deductive process. The crucial deduction step in (62) substi-
tutes a category C with a string [A,D]. If D → B is derivable, it is an axiom, or it
is derived by the same rule. In that case, D can be represented as D’’, B’ or B’, D’
for some category B’ with the same head as B. This can be repeated until we
end up with single categories only. Thus the structure ‘below’ C can be seen
as a binary branching construal with a category on one branch and a string
of categories on the other. ‘Above’ C, we may safely assume that C itself will
be a right-hand or left-hand partner of some peripheral substring of either
G’ or G”. This duet, then, is substituted, in the deduction, by come category
C’. Consequently, C itself will be the product of a binary process. Since every
reduction decreases the number of categories and the accumulated complex-
ity of the sequence, the structure converges, and must be binary branching.
But then, at the top of that structure there are two categories covering the
whole string of categories that is being deduced. The format of the categories
involved in the lemma follows from the definition of merge. Note that by the
monotony property of the grammar the arity of the consequent puts an upper
limit on the arity of each of the categories in the antecedent.

We furthermore need the notion of compatibility between categories. If A ⊗i
B → C, both A and B are compatible with C. If A is compatible with C, then, by
binary derivability, for some B, A ⊗i B → C. One can easily compute that com-
patibility of A to C amounts to C’s argument lists being embeddable in A’s. It is
noteworthy that the number of categories X compatible with a given Y is finite:
Y’s argument lists are finite and the set of types is finite. In fact, the number
is linear in the arity of Y. Compatibility in this sense is a derivative of count
invariance, established by Van Benthem (1991) for the Lambek-calculus with
permutation. Count invariance expresses the property of a rule of categorial
grammar that the types at the left-hand side add up to the types at the right-
hand side when types can occur either positively or negatively in categories.

Finally, it must be shown that for every category that could be the product of
reduction by some merge, such a merge can be found. A category is reduced
if exactly one of its argument lists is flagged a~. Recall that this flag indicates
that one of the argument lists from which it was appended contained an argu-
ment that was cancelled by merge. If none of the list flags of a category is a~,
the category might still be a reduction; this would, however, depend on the
availability of particular instances of merge. Furthermore, we assume that
there is no interesting difference in denotation between two categories which

66 SYNTAX

differ only in the flagging of their arguments. Flagging is control, not seman-
tics. This was expressed in the last statement in definition (48).
Under this proviso, the following has to be shown:

(65) Reducibility
for every reduced T, there are categories A and B and a merge mode i such that
A ⊗i B → T

Since categories are constructable ad libitum, the presence of suitable merge
modes is the bottleneck here. We may safely assume that every grammar
defines at least one merge mode. Let ⊗i be this merge mode and suppose,
without loss of generality, that it induces a right-hand side cancellation; let T’s
reducibility agree with this directional feature. T will, then, have the format
a\fllt~L/a~R. Thus it must be proven that there are argument lists L1, L2, R1 and
R2 such that:

(66) a\flla~L1/flra ~[b^i|R1] ⊗i b\fllb~L2/flrb~R2 → a\fllt~L/a~R

The merge mode i specifies some appends L1 ⊕il L2 = L and R1 ⊕ir R2 = R with
appropriate flagging as output-conditions, and some restrictions inp(Lj) and
inp(Rj) as input-conditions on the left and right argument lists of the two
antecedent categories, including their flags. Now suppose that flla~L1 agrees
with inp(Lj) and that flra~[b^i|R1] agrees with inp(Rj); of course, we can
always construct the first category so that it accords with the input require-
ments for i. So, the only thing left to show is that, given T, the operation ⊗i
and an appropriate compatible left-hand side can be constructed. Recall that
the appendings that come with the merges are defined conservatively. They
are restricted to asymmetric linear gluing of lists. Consequently, L1 is con-
structed in such a way that it is a sublist of L; as a matter of fact, it is a (pos-
sibly empty) prefix or a (possibly empty) suffix of L. Which of these options
holds is defined by ⊕il as part of the definition of ⊗i . But then, L2 is the result
of the subtraction L-L1, uniquely defined given L and L1. The same reason-
ing can be carried over to R1, R2 and R. So, L2 and R2 are uniquely defined by
⊗i and the other argument lists. As for the flags of the argument lists of the
antecedent categories, since they do not in any respect reflect the present
state of these lists, they can be chosen freely in accordance with ⊗i. So, B can
be constructed. This proves reducibility (65).

THE CALCULI 67

1.5.2.4 Completeness salve assignments

Given binary derivability, completeness salve assignments amounts to the
claim that ℜ(D) ⊆ ℜ(T) implies derivability of the sequent D’, D” → T for some
bipartition D’, D” of D and reduced T. Recall that ℜ(T) = ℜ(T’) if T = T’ modulo
flagging of argument lists. Now suppose d ∈ ℜ(D), d = d’+ d”, d’ ∈ ℜ(D’), and d”
∈ ℜ(D”). Then, if D’ → A and D” → B for some A en B such that A ⊗i B → T, D’,
D” → T and, by soundness, d’+d” ∈ ℜ(T). So it must be proven that such A and
B exist. This proof is by induction on the length of D’ and D”.

(67)
(a) If |D’| = 1, we have identity and for some A, D’ → A.
(b) Suppose A is compatible with T. By reducibility, there is a B such that A ⊗i B → T.

As for D”, the proof now requires D” [Xi←Yi]→ B to be derivable.
(c) If |D”| = 1 and D” = C and C → B, we are done. Either D → T, as in case (a), or

D[A←A']→ T.
(d) But suppose that not C → B. We assign every string in ℜ(C) to ℜ(B). Then, ℜ(C)

⊆ ℜ(B) and in particular, d” ∈ ℜ(B). It is evident that substituting C for B in D”
amounts to identity, and assures derivability of D[C←B] → T, i.e. reducibility of the
string D with the rightmost occurrence of C substituted by B to T. Moreover, d ∈
ℜ(D[C←B]) and d ∈ ℜ(T).

(e) Now suppose |D”| = 2. Again, by binary derivability, D” → B if C’ C” → B for some
C’, C”. We take the same cycle (a)-(c) as above and show that either D” → B or
D”[C’←C’”] → B, or D”[C”←C””] → B, or D”[C’←C’”, C”←C””] → B. Moreover, d” ∈
ℜ(D”[…]) and d” ∈ ℜ(B). Consequently, d’+d” ∈ ℜ(A ⊗i B) ⊆ ℜ(T).

(f) If |D”| > 2, the reasoning (a)-(d) applies to prove the derivability of some sequent
D”’ → B, where D”’ is D” except for a number of substitutions X←Y linearly bounded
by |D”|, such that d” ∈ ℜ(D”’), D’, D”’ → T and d ∈ ℜ(D’ D”’).

(g) Now suppose that A is not compatible with T. Then substitute A by some A’ that is
compatible with T and ensure that ℜ(A) ⊆ ℜ(A’). Then go for B, as above. Inevita-
bly, D[A←A']→ T or D[A←A'|Other] → T, where Other is any combination of substi-
tutions induced by inspection of D”.

(h) Suppose |D’| > 1. Then, following the track (d)-(f) above for D”, create a deriv-
able sequent D”” → A such that A is compatible with T, d’ ∈ ℜ(D””) and D”” is like
D’ except for a number of substitutions X←Y that is linearly upwardly bound by
|D’|. For that A, there must be a B such that D”’ → B where D”’ comes from D” as
described above. Again, d’+ d” ∈ ℜ(D””, D”’), D””,D”’ → T and D is like (D””, D”’)
except for a finite number of substitutions X←Y linearly bounded by |D|. Moreover,
|D| = |D””, D”’|.

This ends the proof of completeness salve assignments for Categorial List
Grammar. So, for a string D of power n, for which ℜ(D) ⊆ ℜ(T), one can find, in
at most n substitution steps, each of which is decidable, a string G = D[Xi←Yi],
0 ≤ i ≤ n, such that G → T.

68 SYNTAX

1.5.3 The fundamental asymmetry of merge

In section 1.3, it was put forward that append treats argument lists, originat-
ing from two antecedent categories in a merge, necessarily asymmetrically.
At each side, all the arguments of one category will be on top of the argu-
ments of the other category. This relative order correlates with the relative
distance of argument strings to the string of the category: the types on top of
the argument list induce strings that will be closer to the string induced by
the category’s head than the strings induced by lower types. Since append is
the canonical operation on argument lists, this asymmetry is included in CLG.

Furthermore, the linearization of the strings in the two antecedent categories
of each merge brings in another intrinsic form of asymmetry. It implies that
at least at one side the strings induced by the arguments of an antecedent cat-
egory will be separated from the string induced by the category’s head. Here
is a scheme of this pattern for a certain instance of a defined merge mode.

(68) (⊗i/)
Prim\Plf~Pla/Prf~[Sec^i|Pra] ⊗i Sec\Slf~Sla/Srf~Sra →

Prim\Slf~(Sla⊕Pla)/a~(Pra⊕Sra)

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list

(69) s\u~[np^j]/ a~[vp^i, pp^k] ⊗i vp\ u~[ap^l] / u~[vp^m] →
 s\u~[ap^l, np^j]/a~[pp^k, vp^m]

(70) prim ∈ ℜ(s\u~[np^j]/ a~[vp^i, pp^k]), sec ∈ ℜ(vp\u~[ap^l]/u~[vp^m]),
vp ∈ ℜ(vp^m), np ∈ ℜ(pp^k), np ∈ ℜ(np^j), ap ∈ ℜ(ap^l)

(71) np + ap + prim + sec + pp + vp

Here, (71) represents a string that under assignment (70) may be the result of
a derivation involving instantiation (69) of merge mode (68). The string prim
is of the category that licensed pp but is separated from it by sec. Similarly, sec
is of the category that brought in ap but is not adjacent to it in (71); yet, the
type of ap was the top of the left argument list of the secondary antecedent
category in merge (69). In this case, sec is not adjacent to any string induced
by arguments of the category it belongs to. By definition of merge, however,
the string associated with the primary category will be next to at least one
string induced by the primary category’s argument: the string induced by the
cancelled argument and the secondary category. This asymmetric aspect of
merge gives rise to an essential difference in status between strings of the pri-
mary category and strings of the secondary category. We hesitate to identify

THE CALCULI 69

this difference with headness, as made relevant to categorial grammar by Pol-
lard (1984), Hoeksema and Janda (1988) and Jacobson (1991), among others.
A head – if not empty – is the predominant string in a certain substring. Its
category defines the structure immediately around it. From the asymmetry
observed here, however, we can only derive the following property of string
connectedness for strings in primary categories of a merge.

(72) String connectedness
A string s of category C – s ∈ ℜ(C) – is connected if it can be partitioned as w+h+v
and w and v are induced by arguments in C, or w is induced by an argument in C
and v is induced by an argument of the category w belongs to, or the other way
around.

Merge imposes string connectedness on the string in its primary category.
The string in the secondary category lacks this property, as one of its neigh-
bours, namely the string associated with the primary category, is not induced,
directly or indirectly, by one of the secondary category’s arguments. It is
precisely in this sense that the primary category defines a string beyond the
string by which it is introduced.
String connectedness has a dual. If a string w+p+s+v is ‘felt’ to be defined by p
then there is a category C such that p ∈ ℜ(C) and C connects p in w+p+s+v. It is
not necessarily the case, however, that w+p+s+v is a constituent. Also, there
does not have to be a sequence of categories D such that w+p+s+v ∈ ℜ(D), that
C is in D, that D → C’ for some C’ (and that C introduces the head type of C’).

Summarizing, merge imposes asymmetry in the relation between the ante-
cedent categories in each of the following senses:

(a) precisely one category has one of its arguments cancelled, i.e. one cat-
egory is primary, the other secondary

(b) the linear ordering of the categories in the merge induces the linear
ordering of the strings

(c) append on argument lists is asymmetric, i.e. at each side, the arguments
of one category are on top of those of the other category

(d) the strings associated with the primary category are connected in the
string defined by the primary category.

Asymmetry, i.e. irreversibility of the (dependency) relationship between ele-
ments in natural language is the resultant of linearization. In CLG, lineariza-
tion is an intrinsic component of the syntactic engine. It has been argued that
in the grammar of natural language precedence and dominance relations
could, or should, be separated. This has been a major topic in the develop-

70 SYNTAX

ment of GPSG and HPSG. It was suggested for categorial grammar by Flynn
(1983). Flynn stressed that constituency relations might be at another level of
universality from linear restrictions. The topic recurs in the categorial main-
stream in the format of specialized permutation modalities, meant to rear-
range word order in a controlled way but independent of the combinatory,
reductionist engine; see Moortgat (1998) for a detailed overview, and Hepple
(1990) for the original approach. The modular view on precedence and dom-
inance, word order and constituency, permutation and composition or any
other duality that captures the two-dimensionality of natural language has
been challenged by Kayne (1994). Kayne holds language to be essentially anti-
symmetric – and thus asymmetric – because linearization entails dependency.
In his view, a certain linearization is not an accident of a particular language,
but the prerequisite to interpretability and its reflection.
The present system is hardly reminiscent of Kayne’s concept of grammar. But
CLG respects the interdependency of word order and constituency by exploit-
ing only one syntactic operation that accounts both for word order and hier-
archical, interpretative dependencies. The asymmetry which CLG imposes on
the linear dimension and the ordering of strings comes with an irreversible
inequality of the primary and secondary categories in a merge. In this respect,
it must be noted that typed logics, and typed lambda calculus in particular,
incorporate antisymmetry by nature: the types of function and argument dif-
fer by definition, and whatever process can be reduced to functional applica-
tion would embed antisymmetry this way.
The asymmetry of CLG is, of course, not an argument in favour of linearity as
the anchoring dimension of natural-language grammar. It represents, though,
a choice in this respect.

1.5.4 No manipulation of structure

An immediate property of the syntactic model advocated here is that it
excludes the manipulation of structure. Once a configuration has been con-
structed, it is fixed by the simple fact of its being constructed. Of course the
syntax must be able to handle discontinuities, but discontinuities arise from
merging categories, just as continuous structures do.
The anchor of this property is the monotony of the derivation. In each and
every derivational step exactly one cancellation occurs. As a consequence, the
structure of the categories controls the derivation with an iron hand. No empty
moves can occur. In this respect too, our syntax is rigid. The phrase structure

THE CASE FOR DUTCH 71

and the derivational structure – not necessarily the derivational process –
coincide. To put it in other terms, there are no type-shifts in our syntax.
Since transformations and other manipulations of structure are not neces-
sarily without purpose, the syntax’ rigidity calls for a trade-off. In Delilah,
the burden is on the lexicon. Every variation in structure has to be introduced
lexically. It leads to a massive number of distinct lexical specifications for each
individual member of central syntactical classes like verbs. It makes no sense
to try and express this in figures, as Delilah’s grammar is in no way com-
plete. The specification load on the lexicon calls for a powerful lexical engine,
producing all these forms and expressing two types of generalizations:

(a) all the specifications of a certain verb are of that verb – they live on one
matrix lemma;

(b) the entire variety of each matrix lemma is induced by general proper-
ties of sentence structure, i.e. reflects the structure of the language.

In chapter 3, the structure of the lexicon will be addressed, and there we offer
arguments with respect to the viability, constructability and operation mode
of a lexicon with dimensions as sketched above. Here, it suffices to repeat that
the operational rigidity of the syntax re-enters in the overall system as the
tremendous complexity of the lexicon. This, however, is a choice – a radically
lexicalist choice.

1.6 THE CASE FOR DUTCH

1.6.1 General Format

In the preceding section, the general properties of the standard two-place
operation of merge were introduced. It was noted that every merge modality
specifies a format for the two categories that go into the merge, and a format
for the category that emerges from them. Several aspects of the operation are
general. There is always exactly one type to be cancelled, in a designated posi-
tion at the edge of one argument list. The stacks are addressed as lists. Cancel-
lation requires typological identity of that argument and the head of the other
stack. The head of the output category is invariably the head of the primary
input category. The (remnants of) the argument lists are appended, pairwise

72 SYNTAX

and directionwise. Argument lists are marked for affectedness, i.e. for having
or not having undergone cancellation of one or more member types. Argu-
ments are marked with one merging mode, indicating a specific mask on the
input and output of the merge operation that is to cancel that argument.

Furthermore, the nature of the specifications that can be stated in a merge
modality is fixed. They come from a limited set. Argument lists of the input
may be required to be empty or non-empty; non-emptiness means that the
stack contains at least, or exactly, one argument, specified or not – this differ-
ence will be ignored in the calculations. Moreover, lists are marked affected or
not-affected, initially unaffected by assignment and subsequently affected or
unaffected by computation or specification. Specifications on argument lists
are not necessary, though. The output category is specified in terms of the
input components. The way of appending the input lists is determined. So is
the affectedness marking on the output lists. Here is an overview of the pos-
sible specifications on input and output for a rightward cancelling modality i.

(73) phrase1: Prim \ Plf~Pla / Prf~[Sec^i| Pra]
⊗i

phrase2: Sec\ Slf~Sla/Srf~Sra
→

phrase1+phrase2: Prim\Lf~La/Rf~Ra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

specifications of Prf, Srf: affected, unaffected or none
specifications of Plf, Slf: wh, affected or unaffected
specifications of Pla, Pra, Sla, Sra: empty, nonempty or none
specifications of Lf: wh, affected, unaffected, depending on the values of Plf and
 Slf and the values of Pla and Sla
specifications of Rf: affected (normally; exceptionally unaffected)
specifications of La: Pla + Sla or Sla + Pla
specifications of Ra: Pra + Sra or Sra + Pla

Now we can compute the total number of different modalities that can be
specified within these limits. There are twelve items that may be specified:
six argument lists and six flags. For each of the input arguments lists three
options are available: the list is empty, the list is non-empty with a specified
type on top, or the list is unspecified. The options for the two input lists are
formally independent. Each of the input flags also has three options available:
the list may have been affected by prior cancellations, it may be affected (in

THE CASE FOR DUTCH 73

fact, emptied) by a rule involving cancellation under a wh-mode, and it may
be unaffected or in its lexical state. The choices are, again, formally independ-
ent of each other, but the wh-flag is only realized for flags of left lists. For each
of the four components of the output category only two options are available,
since they must be fully determined by the rule. These options are also inde-
pendent, with the possible exception of the value of Rf.
Any mix of these options will define a modality. That is: a modality is a 12-tuple
<Plf, Pla, Prf, Pra, Slf, Sla, Srf, Sra, Lf, La, Rf, Ra>. As an example, a modal-
ity could be <u, a, [np | []], a, [], u, _, a, l+r, a, r+l >. Consequently, within this
format at most 38.24 = 104976 different modalities can co-exist. Materially,
however, this limit is too high. Every requirement as to the emptiness of an
input argument list fixes the value (for append) of the output list in that direc-
tion, since [] ⊕ L = L ⊕ [] = L for any L. Thus, the values for La and Ra are
not independent of the values for Pla and Sla and for Pra and Sra, respec-
tively. Practically, then, the limit is (32-22).34.22(24 + (32-22)) = 34020 different
modalities for rightward merge.
Moreover, the flags of the output argument lists are completely determined
by the values of the flags and lists of the input categories. They are there-
fore not so much part of a specification but computed at each merge, with
the exception of Rf’s value being unaffected. This reduces the number of
modalities down to half the computed number, i.e. 17010 and almost to one
quarter (say, 9000) if we take the exception to be exceptional. Moreover, it is
likely that we could establish various kinds of clusters of specifications which
might exclude or induce each other. For example, it is unlikely that a certain
argument list is required to be both empty and either affected or unaffected.
Affectedness indicates that the phrase bearing such an argument list is not
lexical but composed. Unaffectedness has the opposite flavour. How likely is
it that we will discover a merge process that imposes conditions both on the
internal structure of a category’s component and on its ‘flattened history’?

A categorial list grammar will be any set of modalities, defined on a given
set of types. This view raises all kinds of questions as to the consistency of
these sets, as well as with respect to the practical and theoretical equivalence
between classes of modalities, and the decidability and expressibility of cer-
tain properties. Most of these questions cannot be addressed here.
In the section on patterns of discontinuity, we will reconsider the variety of
merge modalities. But, clearly, the number of possible modalities ensures that
no grammar constructed from them is trivial. Each selection of modalities,
even if the selection is very small, as will normally be the case, represents a
very specific grammar.

74 SYNTAX

In practice, and in our system, the number of modalities will be relatively small.
In the fragment described below, no more than twenty modalities in each direc-
tion are addressed, despite the considerable complexity of the phenomena cov-
ered. The reason is simple: the formal independence of the twelve parameters
is not maintained in the practice of natural-language grammar – grammar is a
subtle network of co-occurrence restrictions on parameter values.

1.6.2 A concise syntax of Dutch

1.6.2.1 Flagging argument lists

All the modalities used in the Delilah grammar of Dutch enjoy some kind of
input specification. The single mode that does not specify any input compo-
nent is not used. It is unlikely that any reasonable grammar of any language
will employ that mode. It amounts to the absolute insensitivity of an element
for the structure of its environment. Only extra-sentential elements, like inter-
jections of sighing, qualify for this form of context-freeness, but, even there,
constituency may play a role.

The output category of the merge is always fully specified. The flags of the
output argument list, appended from a pair of input lists, are computed from
the flags of the input lists that are appended, and from the lists’ status. The
flag in the active direction of the merge will almost invariably get the value
affected, abbreviated a~ or w~. The affectedness value w~ is assigned if the
cancelled argument required application of the wh-modality. Most other can-
cellations lead to the affectedness value a~. This will be explained below. The
other value is marked u~, for unaffected. The other output flag, the one for the
argument list in the passive direction, is computed deterministically accord-
ing to chart (74), the table of possibilities for two input lists and one output
list in the same (passive) direction.

(74) Table of flags for output argument list: flag ~ list
 input 1 input 2 output flag

a. w~_ a~[_|_] w~
b. u~_ w~[_|_] w~
c. u~_ a~[_|_] a~
d. _~[] _~[] u~
e. u~_ _~[] u~
f. u~_ u~_ u~
g. a~[_|_] a~_ a~

THE CASE FOR DUTCH 75

The situation where two input lists are flagged w~ does not occur, because
of the way the w~ flag is embedded. Just like a~, the flag is assigned only
combinatorially and, by definition, to an empty list in the active direction.
The flag can be transferred, however, to non-empty lists according to (74)
a. Derivations involving the computations (74)a and b, however, are bound
to be pathological and dead-ending: the w~ flag is to occur in categories that
are completed (no arguments left to be cancelled), because wh-extraction
induces strong islands.
The most important aspect of the computation is the restoration of unaf-
fectedness by (74)d and e. The moral here is that whenever an empty list
is appended, the nature of its emptiness – emptied or lexical – gets out of
sight. This embodies locality. If a constituent has completed its agenda at one
side, the next merge renders its completion invisible or irrelevant for further
merges; its history and its structure are enveloped in the new structure. Note,
furthermore, that the output list can be marked affected only if at least one of
the input lists is.

In the sections to follow, all the rules of the Delilah grammar are presented,
explained and exemplified. The modalities are indicated by short memo-sub-
scripts on the merge-operator and as extensions to arguments. The rules are
named after the modalities. The flag of the output list in the passive direction
is to be computed according to the scheme above, and is not specified in the
rule, but invariantly dubbed Lf.

1.6.2.2 Rightward rules

1.6.2.2.1. /^isl for saturated constituents
This mode requires that the secondary category is completed. It does not
allow any part of a secondary agenda to be transferred to the output.

(75) Prim \ _~Pla / _~[Sec^isl|Pra] ⊗isl Sec \ _~[] / _~[] → Prim \ Lf~Pla / a~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

Because of the emptiness of the secondary argument lists, the appends are
trivial. The standard application of this merge is the consumption of a noun
phrase. Noun phrases are closed domains in Dutch. They do not allow for any
discontinuity in their components. All noun phrases in argument lists select
the /^isl cancelling mode.

76 SYNTAX

Here is an example of /^isl:

(76) q\u~[]/u~[np^isl, vp^x] ⊗isl np\u~[]/a~[] → q\u~[]/a~[vp^x]
wil ‘wants’ ⊗ de man ‘the man’ → wil de man

Other candidates for cancelling under /^isl are all those constituents that
have been identified as absolute islands, like (embedded) questions. One of
the standard categories for a verb selecting an embedded question must be
vp\u~[]/u~[q^isl].

1.6.2.2.2. /^transp for unsaturated constituents
This merge mode is in a certain sense the opposite of /^isl in that it requires
the secondary category to be transparent instead of closed. It specifies that the
argument lists in the passive direction – leftward – must both be unaffected.
Being lexically assigned as such is one of the ways to meet this condition. The
left agendas of both input categories are transferred to the resulting category.
On the other hand, the active list of the secondary category is bound to be
empty (or emptied, for that matter). Since this is a rightward rule, this require-
ment provokes a rightward embedding structure (…X1(…Xi(…Xn)..)..), where
the right arguments of the secondary category must be met before the con-
stituent itself is subject to merge. As a consequence, this merge mode induces
a kind of head adjunction, in that the phrases introducing the primary and the
secondary head types end up being neighbours in the string.

(77) Prim \ u~Pla / _~[Sec^transp|Pra] ⊗transp Sec \ u~Sla/ _~[] →
Prim \ Lf~Sla+Pla / a~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

The secondary passive argument list ends up on top of the passive arguments
brought in by the primary category. The secondary arguments will therefore
be first to meet at the left-hand side.

The typical case here is the cancellation of the infinitival verbal complement
of a verb-raising (semi-)auxiliary. This was also the example given in (41). The
particular appending of the passive argument lists under this merge accounts
for the famous crossing dependencies in the Dutch verb cluster. In the follow-
ing example, the nps are indexed to show this effect.

THE CASE FOR DUTCH 77

(78) s\u~[np1^isl]/u~[vp^transp] ⊗transp
vp\u~[np2^isl, np3^isl, np4^isl]/a~[] →

s\u~[np2^isl,np3^isl,np4^isl,np1^isl]/a~[]

kan ‘can’ ⊗ laten geven ‘let give’ → kan laten geven

This mode is a good example of the combination of linearization and deriva-
tion, and of grammar and control. The emptiness condition on the secondary
passive argument list forces this category to complete its right-hand agenda
before getting involved in this merge. Unaffectedness-marking on the two left
lists and the append specification make the string instantiations of primary
left arguments peripheral to the substring formed here and make them pre-
cede their string counterparts of the secondary arguments. Any string intro-
duced to meet the demands of the primary category’s left agenda is bound to
occur to the left of the ‘secondary’ strings. Recall that no further operation
can change that state of affairs. The only operations that the new argument
list can be submitted to are cancelling of its top element and/or appending.
Neither of these operations changes the internal order established by /^transp.

There is an alternative for (77). It allows for an alternative derivation if the
secondary category’s left agenda is lexically empty, i.e. is empty and unaf-
fected at merge. This would be its format:

(79) Prim \ _~Pla / _~[Sec^transpb|Pra] ⊗transpb Sec \ u~[]/ _~Sra →
Prim \ Lf~Pla / a~Sra+Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

The primary left agenda no longer has to be unaffected. The primary category
may have consumed one or more of its left arguments before entering into
this merge. This would not harm the ‘crossing dependency’ effects here, since
the merge presupposes that there are no left arguments to the secondary cat-
egory. Moreover, it defines an append at the right-hand side, guaranteeing
that the secondary category’s arguments are met first. Here, this does not
amount to crossing dependencies, but to completion of the secondary agenda
before that of the primary right agenda. That is, in effect, the same result as
was reached more rigidly by the emptiness requirement on Sra in (77). Thus,
(79) defines a derivationally liberalized sub-case of, for example, verb clus-
tering. There is no need, however, to compute the verbal complex of Dutch in
a syntactically and semantically adequate way.

78 SYNTAX

1.6.2.2.3. /^open for optional discontinuity
An intriguing variety of /^transp eliminates the unaffectedness constraint on
the secondary left agenda. Consequently, it allows the secondary category to
consume the left agenda or part of it without destroying its fitness for this
merge. A string associated with the primary category can therefore connect
to a string of which the left edge was not lexically associated with the second-
ary category.

(80) Prim \ u~Pla / _~[Sec^open|Pra] ⊗open Sec \ _~Sla/ _~[] →
Prim \ Lf~Sla+Pla/ a~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

Note that the (remaining) left arguments of the secondary category at merge
have to be put on top of the primary ones, which are supposed to be unaf-
fected. This merge does not mix up the left arguments differently, but puts
fewer restrictions on the pre-merge behaviour of the secondary category. The
only difference between /^open and /^transp is the affectedness of the left
argument list of the secondary category.
The canonical example in Dutch for this merge is the complementation of
verbs that induce the ‘third construction’ (Den Besten et al. 1988, among
others). Prominent among them is proberen ‘to try’, which occurs in each of
the following, semantically equivalent patterns. All other scramblings are
ungrammatical.

(81) … dat jij probeerde Ramses ‘Egyptian Nights’ te laten lezen

… that you tried Ramses ‘Egyptian Nights’ to have read
… ‘that you tried to have Ramses read Egyptian Nights’

(82) … dat jij Ramses probeerde Egyptian Nights te laten lezen
(83) … dat jij Ramses Egyptian Nights probeerde te laten lezen

Here is the instance of /^open that would give rise to (82):

(84) s\u~[np1^isl]/u~[vp^open] ⊗open vp\a~[np2^isl]/u~[] →
s\a~[np2^isl, np1^isl]/a~[]

probeerde ‘tried’ ⊗ Egyptian Nights te laten lezen ‘Egyptian Nights to have read’
→ probeerde Egyptian Nights te laten lezen

THE CASE FOR DUTCH 79

The value for affectedness of the secondary right argument list results from
two empty lists being appended at the previous merge, according to compu-
tation (74)d.
This merge mode is also basic to the arguments of adjunctive automorphisms.
Verbal and sentential qualifiers may occur in a lot of positions inside verbal
complexes. Consider the variety of positions for the instrumental adjunct met
een gedicht in the following sentences.

(85) … dat Henk met een gedicht Jan de kast wilde laten openen
… that Henk with a poem Jan the cupboard wanted have open
… ‘that Henk wanted to have John open the cupboard with a poem’

(86) … dat Henk Jan met een gedicht de kast wilde laten openen
(87) … dat Henk Jan de kast met een gedicht wilde laten openen

This flexibility reflects the combinatorial potency of proberen, and makes the
merge mode /^open to an essential ingredient of a Categorial List Grammar
of Dutch.

1.6.2.2.4. /^penins for near islands
The next mode accounts for the merge with near islands, i.e. constituents that
have on their passive (leftward) agenda one specified argument at most. In
practice, this merge is used to account for combinations with constituents
that lack fronted or leftward dislocated elements. A constituent licenses a dis-
located element iff its left argument list contains a type^mode pair xp^w. The
rule comes in two mutually exclusive formats, differing only in the specifica-
tion of secondary passive (leftward) list. This double format leads to a dis-
junction of specifications.

(88) Prim \ _~Pla / _~[Sec^penins|Pra] ⊗penins Sec\ _~[]/_~[] →
Prim \ Lf~Pla / a~Pra

(89) Prim \ _~Pla / _~[Sec^penins|Pra] ⊗penins Sec\ _~[_^w]/_~[] →
Prim \ Lf~Pla+[_^w]/ a~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

It is grammatically very important that in (89) the append in the passive direc-
tion suppresses the cancellation of the ^w argument in favour of cancellation
of the primary category’s left arguments. In this way, the intended dislocated
element can only be absorbed as the final step of completing the left agenda.
That is also what the merge modality \^w will specify as a requirement. The

80 SYNTAX

example below illustrates a case of long-distance dislocation, where an argu-
ment of a deeply embedded infinitival complement is ‘wh-ed’, as in (91).

(90) s\u~[np^isl]/u~[vp^penins] ⊗penins vp\a~[np^w]/u~[] →
s\a~[np^isl,np^w]/a~[]

 dwong ‘forced’ ⊗ een boek te geven ‘a book to give’ → dwong een boek te geven
(91) Wie zei Henk dat Agnes hem dwong een boek te geven?

Who said Henk that Agnes him forced a book to give
‘Who did Henk say Agnes forced him to give a book?’

In order to ensure that in this case the ^w argument is properly transferred
under composition, all appendings of the left argument list – independently
of the particular merge mode they appear in – should be defined in such a
way that ^w arguments are stacked down. To see why, consider the case of
/^transp in section 1.6.2.2.2. If one of the complement’s arguments is of the
dislocated breed, this argument has to be suppressed in the output in favour
of the arguments of the primary category. Otherwise, it would be at the top
of the stack at the wrong moment in the derivation, namely when it is not the
only item in the left agenda. That is, the output of the crucial /^transp merge
in (92) should be as in (93) rather than as in (94).

(92) Wie denk jij dat ik Agnes een boek kan laten geven?
Who think you that I Agnes a book can have give
‘To whom do you think that I can have Agnes give a book?’

(93) s\u~[np^isl]/u~[vp^transp] ⊗transp vp\u~[np^isl,np^isl,np^w]/a~[] →
s\u~[np^isl,np^isl,np^isl,np^w]/u~[]

(94) s\u~[np^isl]/u~[vp^transp] ⊗transp vp\u~[np^isl,np^isl,np^w]/a~[] →
s\u~[np^isl,np^isl,np^w,np^isl]/u~[]

We can make sure that every ^w starts at the bottom of its stack in the lexicon.
For this purpose, we only have to change the standard append, applied to
argument lists, in such a way that ^w arguments at the bottom of either stack
remain there. This is relevant to the tail of the list that is to become the upper
part of the stack. An adequate reformulation of append for argument lists in a
Prolog-like fashion will be this:

(95) clg_append(L, R, LR’) ←
append(Lmin, [X^w], L),
!,
append(R, [X^w], R’),
append(Lmin, R’, LR’).

clg_append(L, R, LR) ←
append(L, R, LR).

THE CASE FOR DUTCH 81

Before gluing lists together, the left argument list is checked for the occur-
rence of a dislocated argument; if present, it is stacked down.
From now on, append at argument lists is considered to be reformulated as
clg_append. Note that (95) does not interfere with the context-freeness of this
operation (cf. section 1.8.3).

1.6.2.2.5. /^transpipp for infinitive pro participio

This mode is a variation of /^transp, deviating only in the additional specifica-
tion that the secondary active list must be affected. As a consequence, no lexi-
cal category can comply with the secondary requirements of this mode. Its
output conditions are the same as in (77).

(96) Prim \ u~Pla / _~[Sec^transpipp|Pra] ⊗transpipp Sec\ u~Sla/ a~[] →
Prim \ u~Sla+Pla / a~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

Just like /^transp, this merge mode is mainly applied for dealing with the
verb cluster. This particular variation is partly responsible for the so-called
infinitivus-pro-participio effects. An auxiliary verb may select a participle as
the head of its verbal complement, but can also require an infinitive when the
complement itself contains a verbal cluster. Here are some relevant data; note
the form of willen ‘to want’ in the examples.

(97) Jeroen had die baan wel gewild
Jeroen had that job wanted
‘Jeroen would have wanted that job’

(98) Jeroen had die baan wel willen nemen
Jeroen had that job want accept
‘Jeroen would have wanted to accept that job’

(99) * Jeroen had die baan wel willen
Jeroen had that job want

(100) * Jeroen had die baan wel gewild nemen
Jeroen had that job wanted accept

The mode /^transpipp is assigned to the verbal arguments of auxiliaries that
are sensitive to the ipp-effect. Unfortunately, that the secondary active argu-
ment list is affected is not the whole story here. It appears that the argu-
ment cancelled in the construction of the secondary category must be vp,
and nothing else:

82 SYNTAX

(101) Hij had gewild dat ik er bij was
‘he had wanted that I was present’

(102) * Hij had willen dat ik er bij was
he had want that I was present

This particular requirement cannot be expressed in our syntactic formal-
ism. It is handled by the specification in the template that the candidate ipp
is a semi-auxiliary itself – a qualification that is restricted to a certain group
of verbs taking infinitival complements. This group is qualified in Cremers
(1983) as taking infinitival complements that can only be interpreted below
propositional level. Zeggen ‘to say’ is not in that class. It may take infiniti-
val complements, but they must be interpreted as propositions. Therefore, it
should be excluded from ipp-effects, and it is:

(103) Merel had gezegd te blijven zingen
Merel had said to keep sing
‘Merel said that she would keep on singing’

(104) * Merel had zeggen te blijven zingen
Merel had say to keep sing

This justifies the qualification of ipp-candidates as semi-auxiliaries.

1.6.2.2.6. /^sentop for wh-islands
This mode requires the secondary passive list to be flagged w. This flag results
from application of merge mode \^wh, to be discussed below. With this it indi-
cates that the last left mode dealt with a cancellation under this merge. The
present mode consumes that flag.

(105) Prim \ u~Pla / _~[Sec^sentop|Pra] ⊗sentop Sec \ w~[]/ _~[] →
Prim \ u~Pla / a~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

The mode canonically applies to the first of the pair of categories to which
an argument wh-phrase is assigned. In Delilah’s lexicon, a wh-word like wie
‘who’ is assigned to a pair of co-occurring categories, Cleft * Cright (see also
chapter 3). The asterisk in the category disappears as soon wie is used com-
binatorially. Two adjacent categories remain. The rightmost of these is simply
np\u~[]\u~[], dealing with the selectional properties of the word as an argu-
ment to some other phrase in the sentence. The leftmost category that comes

THE CASE FOR DUTCH 83

with wie selects the sentence that has been built by the merge in which the
rightmost category evaporates, and qualifies it. It may be qualified as a ques-
tion, a postnominal modifier, or whatever operation wh-elements can per-
form. Here is the example of wie introducing a question; the operation ⊗wh is
introduced below as part of a leftward rule.

(106) wie :: q\u~[]/[s^sentop] * np\u~[]\u~[]
(a) np\u~[]\u~[] ⊗wh s\u~[np^w]/u~[] → s\w~[]/u~[]

(b) q\u~[]/[s^sentop] ⊗sentop s\w~[]/u~[] → q\u~[]/a~[]

(b)*(a) q\u~[]/[s^sentop] ⊗sentop np\u~[]\u~[] ⊗wh s\u~[np^w]/u~[]
→ q\u~[]/a~[]

 wie ‘who’ ⊗ slaapt ‘sleeps’ → wie slaapt

When the wh-term is not an argument, it has a single category. This category
cannot expect a particularly constructed right partner. For example, hoe ‘how’
just requires its sentential argument to have an unaffected left argument list,
thus enforcing that the last and decisive merge of this argument has not been
leftward – compare the flag computation (74). The relevant mode is given
below; it is as specific as (105) and therefore an exclusive alternative to it.

(107) Prim \u~Pla /_~[Sec^sentop|Pra] ⊗sentop Sec \u~[]/ _~[] →
Prim \u~Pla /a~Pra

(108) q\u~[]/[s^sentop] ⊗sentop s\u~[]/a~[] → q\u~[]/a~[]

hoe ‘how’ ⊗ vlieg jij ‘fly you’ → hoe vlieg jij

1.6.2.2.7. /^adj

The last right merge is a very tolerant one: the primary category does not
affect the status of the secondary category. The latter imposes all its specifica-
tions on the output. Even the output flag in the active direction is dictated by
the secondary category, instead of being a~ or w~ by default. The combinato-
rial and derivational effect of this merge is almost zero. The mode is particu-
larly suited for the merges not rising from selection or subcategorization, but
rather from adjunction or modification. Under these circumstances, the head
types of the two categories will be equal, Prim = Sec.

(109) Prim_~Pla/_~[Sec^adj|Pra] ⊗adj Sec_~Sla/Rf~Sra →
Prim\ Lf~Pla+Sla/Rf~Sra+Pra

As a typical case of this mode, consider the merge of a preposition introduc-
ing a verbal adjunct with a displaced r-pronoun as nominal complement and
the verb:

84 SYNTAX

(110) … vp\u~[r^wh]/u~[vp^adj] ⊗adj vp\u~[np^isl]/u~[] →
 vp\u~[np^isl, r^wh]/u~[]
(waar heeft hij het boek) mee ‘with’ ⊗ geschreven ‘written’ →

mee geschreven
‘(what has he the book) with written’
what did he write the book with?

The specific order in the left output list follows from the redefinition of append
(95).

This completes the set of rightward merge modalities, activated in the gram-
mar of Delilah Dutch. There are seven of them, one of which, to wit /^tran-
spipp, is merely added to handle a peculiarity of Dutch syntax. The other six
represent core modalities, in that they represent essential combinatorial pro-
cesses in Dutch sentence formation. Some of the rightward merges discussed
below are labelled like left-directional merges. Except for the island modali-
ties, which represent rigid cancellation without any transfer of combinatorial
agendas, they seem to be only directional images. In fact, there is little sym-
metry in the selection of merges for dealing with Dutch syntax. Linearization
itself is the source of asymmetry.

1.6.2.3 Leftward Rules

It is attractive to call leftward cancellations backward, and rightward ones
forward, following the terminology first used by Ades & Steedman (1982). It
is also misleading, however, as this terminology refers to the parsing process
instead of to the linearity of sequence formation. The direction of an argu-
ment may influence but will not control the parsing process.

1.6.2.3.1. \^isl for saturated constituents
The most rigid form of rightward cancellation (75) does have its leftward mir-
ror image. The arguments cancelled under this mode are basically of the same
types as the ones which are submitted to /^isl: nominal phrases, determiner
phrases, quantifiers. The standard case is the object arguments of verbs. The
canonical position of these objects is to the left of the verb, if Dutch is an SOV
lookalike.

(111) Sec_~[]/_~[] ⊗isl Prim_~[Sec^isl|Pla]/_~Pra → Prim\a~Pla/Rf~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

THE CASE FOR DUTCH 85

1.6.2.3.2. \^transp for auxiliary inversion
This mode is labelled like /^transp since it applies to order variants of con-
figurations in which that mode is invoked. Nevertheless, it enforces differ-
ent types of input conditions. The primary category is forced to cancel its left
argument first, whereas the secondary category is bound to be unaffected in
both directions, and therefore lexical. The general formulation would be thus:

(112) Sec\u~Sla/u~Sra ⊗transp Prim_~[Sec^transp|Pla]/u~Pra →
 Prim\a~Sla+Pla/u~Pra+Sra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

The canonical application for this merge is the case of auxiliary inversion: cer-
tain auxiliaries or semi-auxiliaries may take the head of their verbal comple-
ments to the left, leaving the rest of their – or that head’s – complement, if any,
to the right. (For an intriguing and almost discouraging analysis of Germanic
verb cluster phenomena see Wurmbrand 2006, and for encouraging efforts to
formalize the phenomena in different syntactic settings see Van Dreumel and
Coppen 2003 and Bouma and Van Noord 1996). Here are relevant examples
with the modal auxiliary kunnen.

(113) … dwingen kan te werken
… force can to work ‘can force … to make … work’

(114) … * willen kan laten werken
… want can let work

(115) … kan dwingen te laten werken
(116) … * dwingen te laten kan werken
(117) … * dwingen te laten werken kan

The phenomenon is not restricted to infinitival complements but also occurs
with participles and the temporal and passive auxiliaries, under slightly dif-
ferent conditions. In particular, the auxiliary triggering the inversion can be
infinitival just as well as finite.

(118) … dat Gezinus in het parlement probeerde te worden gekozen
… that Gezinus in the parliament tried to be chosen
… that Gezinus tried to be chosen in parliament

(119) … dat Gezinus in het parlement gekozen probeerde te worden
… that Gezinus in the parliament chosen tried to be

The relevant merge in constructing (113), for example, is:

86 SYNTAX

(120) vp\u~[np1^isl]/u~[vp^open] ⊗transp
s_vn\u~[vp^transp,np2^isl]/u~[] →

s_vn\a~[np1^isl,np2^isl]/u~[vp^open]

 dwingen ‘force’ ⊗ kan ‘can’ → dwingen kan

Since primary categories introducing this mode will generally be auxiliaries
or semi-auxiliaries with just one (verbal) complement, we may restrict the
mode to situations in which the primary right argument list is empty, except
for the verbal complement. Under these assumptions, format (112) boils
down to:

(121) Sec\u~Sla/u~Sra ⊗transp Prim_~[Sec^transp|Pla]/u~[] →
Prim\a~Sla+Pla/u~Sra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

1.6.2.3.3. \^open

The most liberal of all merges does not impose any input restrictions whatso-
ever. As such it belongs to the small class of modes with these characteristics,
differing from each other only in the output specifications.

(122) Sec_~Sla/_~Sra ⊗open Prim_~[Sec^open|Pla]/_~Pra →
 Prim\a~Sla⊕Pla/Rf~Sra⊕Pra

The standard application here is to the automorphic argument of an adjunct,
e.g. by an adverbial constituent to a VP. In that case, however, we might as well
opt for some more restrictive version. For example, we could consider the pri-
mary category itself to be ‘closed’, in having no arguments unsaturated, except
the one to be cancelled. Such a restriction would imply that the primary cat-
egory itself represents an island; this, indeed, has generally been considered
to be an identifying feature of adjuncts since Ross (1967). Here is this more
restricted version.

(123) Sec_~Sla/Rf~Sra ⊗open Prim_~[Sec^open]/_~[] → Prim\a~Sla/Rf~Sra

Since the flag of an empty list hardly charges the relevant flag in the output,
all output lists stem from the secondary category and the passive flag may
also be equal to the passive input of the secondary category. The dominance
of the secondary category, again, seems to be in accordance with the nature

THE CASE FOR DUTCH 87

of adjunctival modification. The primary category merely intervenes in the
secondary structure. In the following example, heeft ‘has’ introduces the sec-
ondary category, and waarschijnlijk ‘probably’ the primary category to an
\^open merge.

(124) Elke student heeft waarschijnlijk de boeken willen verkopen
Every student has probably the books want sell
‘Every student probably wanted to sell the books’

For the sake of generality, however, we will stick with the liberal (122). It is
subsumed by the more restrictive (123).

1.6.2.3.4. \^wh for the mother of discontinuity
This is the rather basic merge mode that cancels a leftward-dislocated com-
plex for its licensing argument. It is supposed to be the final move in the com-
pletion of an argument structure. At every previous merge, the argument with
this mode was suppressed, in the sense of being kept at the bottom of the out-
put stack, according to the revised definition of list append as clg_append in
(95). Thus, when cancelling an argument under mode \^wh, there is no remain-
ing active list in the primary category. The merge is designed to consume ele-
ments that in other frameworks may be considered to live in the specifier of
a complementizer phrase. At output, the left argument list is flagged w for
being affected by this particular cancellation (cf. section 1.6.2.1).

(125) Sec_~[]/_~[] ⊗wh Prim_~[Sec^wh]/_~Pra → Prim\w~[]/Rf~Pra

It seems mandatory for the secondary active (leftward) list to be empty. Since
this category is assumed to represent a left edge element, it must be com-
pleted at that side. The condition that the secondary passive list is also empty
amounts to the claim that only arguments can be cancelled in this way, not
heads. In this sense, the condition reflects the percolation of a wh-marking to
some maximal projection, inducing pied piping.
Applications of this merge mode comprise standard wh-movement phenom-
ena, topicalization with verb-second and subject lefting. As for Dutch, we take
them to be the same because they exclude each other: a classic structuralist
argument. These structures are exemplified in the following set (for /^sentop
see section 1.6.2.2.6); recall that wh-arguments come with double categories
(star-categories; see (106)).

88 SYNTAX

(126) q\u~[]/u~[s^sentop] ⊗sentop np\u~[]/u~[] ⊗wh s\u~[np^wh]/a~[] →

 s\w~[]/u~[]
wie ‘who’ ⊗2 denk jij dat werkt ‘think you that works’ →
 wie denk jij dat werkt ‘who do you think is working?’

(127) np\u~[]/u~[] ⊗wh s\u~[np^wh]/a~[] → s\w~[]/u~[]
die man ‘that man’ ⊗ heb ik zien slapen ‘have I see sleep’ →
 die man heb ik zien slapen ‘that man I saw sleeping’

(128) np\u~[]/u~[] ⊗wh s\a~[np^wh]/a~[] → s\w~[]/u~[]
ik ‘I’ ⊗ slaap ‘sleep’ → ik slaap ‘I am sleeping’

In (126), it is assumed that lexical argumentative wh-elements come with
two categories, rather than one (see also at /^sentop above). That is the main
difference between these elements and the dislocated entities in (127) and
(128). The relevant merges under \^wh as such are equal.

1.6.2.3.5. \^adj for freely occurring adjuncts
This is the leftward counterpart of /^adj, introduced in section 1.6.2.2.7. It
has the same motivation and application.

(129) Sec\Slf~Sla/_~Sra ⊗adj Prim_~[Sec^adj|Pla]/_~Pra →
 Prim\Slf~Sla⊕Pla/Rf~Pra⊕Sra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

Here is a characteristic example:

(130) … s\u~[]/a~[] ⊗adj s\u~[s^adj,r^wh]/u~[] → s\u~[r^wh]/u~[]

… zaten zij ‘sat they’ ⊗ op ‘on’ → (daar) zaten zij op ‘on (that) they sat’

1.6.2.3.6. \^part for particles
Finally, in the leftward division, we need the inverse of an adjunct merge: a
selected item the cancellation of which as a secondary category does not pro-
voke affectedness.

(131) Sec\u~[]/u~[] ⊗part Prim\u~[Sec^part |Pla]/_~Pra → Prim\u~Pla/Rf~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

There are all kinds of restrictions on the secondary input, as it is mainly
applied to lexical particles that may occur separate from their licenser. Those
particles behave as if they are part of that licensing phrase, in that they may

THE CASE FOR DUTCH 89

occur in positions in which other arguments of that licenser cannot occur. The
example below has a resultative small clause predicate groen ‘green’ – such a
predicate may occur with almost any transitive verb. It can take any position
in a cluster where it is accessible as the left argument of the verb to be met
first, independently of verb-raising configurations, though not every position
is felicitous for every type of particle – but the \^part modality generalizes
over ‘real’ particles and resultatives:

(132) … dat Agnes Henk de auto groen wil laten verven
… that Agnes Henk the car green wants have paint
… ‘that Agnes wants to have Henk paint the car green’

(133) … dat Agnes Henk de auto wil groen laten verven
(134) … dat Agnes Henk de auto wil laten groen verven

The relevant merge for (134) is

(135) ap\u~[]/u~[] ⊗part vp\u~[ap^part,np^isl]/u~[] →

vp\u~[np^isl]/u~[]
groen ‘green’ ⊗ verven ‘paint’ → groen verven ‘paint green’

Because the u-flag at the left argument list remains in the output, the result-
ing category can participate in the verb clustering directed by the /^transp
mode of the complement of laten (see section 1.6.2.2.2.).

Since particles of the sort targeted by this mode in a certain sense disturb the
order of cancellation of the verb’s left arguments, it makes sense to consider
a little more liberal version of (131), where it is not required for the particle
to be at the top of its stack.

(136) Sec\u~[]/u~[] ⊗part Prim\u~[... Sec^part ...]/_~Pra → Prim\u~Pla/Rf~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

It introduces an anytime cancellation strategy for a designated class of con-
stituents, namely exactly those that are marked with the cancellation mode
\^part by the lexicon. On the one hand, this complicates the derivation: every
category has to be checked for containing a ^part argument in its left stack.
On the other hand, it makes a huge set of lexical specifications redundant for
every particle taking verbs in which the particle is just ‘hopping’ in the left
argument list.

90 SYNTAX

Since particles in Dutch seem to exhibit the anywhere property that (136)
tries to account for (cf. Van Dreumel and Coppen 2003), we take this to be the
canonical version of (131).

This completes the set of leftward merges. Again, the number is very restricted.
One of the six, to wit (112), deals with a local inversion, the subtle auxiliary
switch in the Dutch verb cluster. The other five represent merges in the core
of Dutch syntax.

1.6.3 Dealing with adjuncts

In the exposition above, several modes were introduced aimed at dealing with
adjunctive modification. The nature of this modification is automorphistic.
An adjunct sends its argument to the same type the argument comes with.
Consequently, adjunctive modification does not contribute essential ingredi-
ents to well-formedness or saturation. Moreover, adjunctive phrases are not
very picky. They are usually capable of modifying different sorts of phrases,
thus taking different sorts of categories as secondary category. In Dutch, they
hardly impose conditions on the derivational status of their arguments. Finally,
adjuncts themselves are not subject to discontinuous operations, peripheral to
the sentential backbone as they are. They are rigid islands, with the exception
of the extraction of so-called r-pronouns in adjunctive prepositional phrases.
In CLG, then, it is not very difficult to conceive of a category for an adjunct. For
example, a lexical adjunct that can occur as the left modifier of a verb phrase
– say: snel ‘quick(ly)’ – is categorizable as follows:

(137) vp\u~[]/vp^adj

The /^adj mode is defined liberally enough in (109) to allow for all kinds of
interference between this category and a constituent headed vp. Apart from
(137), the word snel would also have to be assigned to categories taking
sentences into sentences, nouns into nouns, and so on. This would yield a
restricted class of assignments – recall that because of merge modes there
is no need to come up with different categories for different arities of verbs,
not even when immediate (left) adjunction to these verbs as heads of vp has
to be enabled. The class would be unsatisfactory, nevertheless, since it is not
very general and would have to be repeated all through the lexicon. As an
alternative, adjunctive phrases may be assigned to a categorial classifier, to
be instantiated at need in the combinatorial process. Such a classifier would

THE CASE FOR DUTCH 91

look like (137) but it would have variable typing. The variable is valuated in
a closed finite class of types, e.g. {vp, s, n}.

(138) X\u~[]/u~[X^adj]

Subsequently, in a certain environment, a transfer rule is needed to give the
relevant instantiation. As a matter of fact, since not all automorphic merges
behave exactly alike, we could even parameterize the merge mode in assign-
ment (138), having target type and merge mode specified in one rule, yielding
the category

(139) X\u~[]/u~[X^M]

Derived merge rules will have this format:

(140) X\u~[]/u~[X^M] ⊗M vp\Lf~SLa/Rf~Sra → vp\Lf~SLa/Rf~Sra

only if
vp\u~[]/u~[vp^adj] ⊗adj vp\Lf~SLa/Rf~Sra → vp\Lf~SLa/Rf~Sra

(141) X\u~[]/u~[X^M] ⊗M s\Lf~SLa/Rf~Sra → s\Lf~SLa/Rf~Sra
only if
s\u~[]/u~[s^isl] ⊗isl s\Lf~SLa/Rf~Sra → s\Lf~SLa/Rf~Sra

It should be stressed that following such a track would not affect the outline
of the grammar as given in section 1.4, but merely shorten lexical specifica-
tions. Equivalently, then, for every adjunct in the lexicon one can spell out at
which types it applies and in what ways. This track is chosen in the present
state of Delilah. The choice is mainly sensitive to the degree of sophistication
with which the lexicon can be addressed.

As a matter of fact, the grammatical treatment of adjuncts puts a heavy burden
on the grammar under any implementation. The more radical solution would
be to treat adjuncts as optional arguments all the way down. This is essentially
what Bouma and Van Noord (1994) suggested, and it is implicit in the cogni-
tively inspired combinatoric model of Vosse and Kempen (2000). In our sys-
tem, this proposal would amount to cancellation of arguments which would
not affect the arity of the primary category: adjunctive arguments are optional
as well as multiple. Here is one of the hypothetical rules for such a mode.

(142) Sec_~[]/_~[] ⊗adj Prim\Lf~[Sec^adj|Pla]/_~Pra →
 Prim\Lf~[Sec^adj|Pla]/Rf~Pra

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

92 SYNTAX

In this rule, the secondary category is the adjunct, to be eaten by a VP- or
S-headed category, but without being cancelled from the left-argument list
and without affecting the status of that list. The insularity of the adjunct is
recognized in its empty argument lists.
There are clear grammatical advantages in treating adjuncts as optional argu-
ments. In particular, all wh-types of operations on adverbial and adsentential
adjuncts are easier to define if they are treated as arguments of higher func-
tors in a (142)-type approach. Under the syntax given in section 1.6.2, it is
simply not possible to handle a primary category as dislocated: all discontinu-
ity is attributed to the way argument lists are merged. This merge cannot (re-)
define or reconstruct the position of the primary category. Redefining adjuncts
as secondary categories in the relevant merge would solve this problem.

The main problem for this redefinition, from a linguistic point of view, is that
the argument approach to adjuncts seems more feasible for verbal functors
than for nominal functors. Adjectives and relative clauses ad-modify nominal
arguments, and the reversal of (142) would imply that nouns, too, become
functors over optional modifiers. Such a strategy has been suggested by Jans-
sen (1986) for relative clauses. The processing of nominal domains, however,
would become more complex if nouns were optional functors.

Apart from the question whether it would be wise to have the adjunct at the
top of the stack and not use the anywhere-proviso of section 1.6.2.3.6, (142)
suffers from violating Count Invariance (47). That, however, would be very
damaging to the (chart-) parsability of the system – see section 1.8. The only
way to handle adjuncts as arguments, then, is to neglect them in deduction,
introducing the following axiom:

(143) Adjunct_~[]/_~[] ⊗adj Prim\Lf~Pla/Rf~Pra → Prim\Lf~Pla/Rf~Pra

This introduces typological anarchy and global anywhere-ness. It violates the
well-foundedness of merge (25)(b) and challenges the resource sensitivity of
the grammar.
One way or another, reconstructing adjuncts as arguments involves tress-
passing on resource sensitivity, as can be read from the alternatives (142)
and (143). Unfortunately, however, as will be made clear in section 1.8, plac-
ing adjuncts outside the frame of resource sensitivity endangers the system’s
computability. And computability is what we are after.
As a conclusion, then, the lexicon has to carry the load for syntax: multiple
assignment of categories in a well-organized lexicon is easier to handle than

THE CASE FOR DUTCH 93

an increase of combinatorial power. We stick with adjuncts as primary cat-
egories, and pay the price of multiple typing.

This choice has one drawback that deserves special attention. Adnominal
adjuncts can appear separate from their targets by the intervention of cat-
egories that eat their targets. The resulting structure is called extraposition.
Here are two examples:

(144) Wie heeft de man zien werken met de hoed?
‘Wie has the man seen work with the hat’
Who has seen the man with the hat work?

(145) Wie heeft de man zien werken die gisteren staakte?
‘Who has the man seen work that yesterday striked’
Who has seen the man who was on strike yesterday work?

Under the present categorization, these sentences have to the following pat-
tern (with simplified categories for clarity):

(146) ... np vp\np np\np

There is no way of bringing the adjunct category to its target before the target
has been swallowed by a category – vp – that is intransparent to the adnomi-
nal adjunct. Now suppose that the np ‘de man’ would be categorized as look-
ing for some adjunct to its right, and the adjuncts met de hoed and die gisteren
staakte as primitive categories:

(147) ... np/adj vp\np adj

Clearly, then, there is an easy disharmonic composition of the two first catego-
ries (cf. (49)) bringing the negative and the positive versions of adj towards
each other

(148) ... np/adj vp\np adj ⇒ ... vp/adj adj ⇒ ... vp

Treating adnominal adjuncts as arguments here would therefore have the
major advantage of accounting for extraposition, and even of offering a theory
of extraposition in terms of disharmonic composition. Following this track,
however, every np would become ambiguous between looking for an adjunct
and being saturated – a major complication in the derivation and increase of
combinatorial power. The alternative of sticking with higher-order adnomi-
nal adjuncts calls for the ad hoc treatment of extraposition.

94 SYNTAX

At this moment we have no decisive arguments for either strategy, and leave
this question undecided.

1.7 THE GRAMMAR OF DISCONTINUITY AND COORDINATION

1.7.1 The source of discontinuity and connectedness

Natural language abounds in discontinuities: elements that depend on each
other, do not necessarily come together, and are not necessarily adjacent.
Grammar is the study of the nets rising from these discontinuous interde-
pendencies. Yet, not everything goes. For a structure like

(149) A B A’ B’

no grammarian of any language would offer the analysis

(150) ((A A’) (B B’)).

It is a heartfelt desire of grammarians to present analyses that are – in a very
precise way – connected:

(151) Connectedness
For any sequence (A B A’) the structure of the sequence is either (A (B A’)) or
((A B) A’).
There is an asymmetric relation ℜ such that (A B A’) is a constituent only if either
ℜ(A, ℜ (B, A’)) or ℜ(ℜ (A, B,) A’)).

In Steedman (1990) this is presented as the invariance Adjacency for catego-
rial combinatorics: you can combine categories only if they are adjacent.
In axiomatic calculi of categorial grammar without permutation, there are no
values for types y and w such that the sequence

(152) a b y\a w\b → x

can be deduced for a product-free type x. The sequence is more discontinuous
and less connected than these calculi can afford.

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 95

This does not mean that discontinuity and connectedness in natural language
are unrelated. Our present framework, with categories that merge and have
to express some linearization at the same time, discontinuity and connect-
edness paradoxically arise from the same source: the internal complexity of
categories. It is important to see that this internal structure not only reflects
linearization but also and equivalently induces semantic structure, general-
izing dependency.

1.7.2 Discontinuity in CLG

In CLG, phrases are related to categories that express their selectional condi-
tion. If a phrase occurs discontinuously, i.e. separated from its selecting phrase,
the nature of that discontinuity as well as the nature of the interveners must
be expressed by the interaction of two other categories: the category of the
selecting phrase and the category of the intervening phrase. The nature of the
interaction of the two categories is given by the cancellation modality on the
argument that complies with the head of the category of the selecting phrase.
Here is an example with a right occurring selecting phrase and a left adjunct-
ing intervener. I is the intervening phrase, Sd the selected phrase, to be sepa-
rated from Sg, the selecting phrase. Catx stands for a category of phrase X. For
the ease of the exposition, let us assume that I is the only intervening phrase.

(153) Sd I Sg
CatSd CatI CatSg

CatSd = HSd\LfSd~Slad/RfSd~Srad
CatI = HI\LfI~LI/RfI~[HSg^Msg|RI]
CatSg = HSg\LfSg~[HSd^Msd|Slag]/RfSg~Srag

(154) CatI ⊗i CatSg → CatI+Sg
HI\LfI~LI/RfI~[HSg^Msg|RI] ⊗Msg HSg\LfSg~[HSd^Msd|Slag]/RfSg~Srag →

HI\LfI+Sg~([HSd^Msd|Slag]⊕MsgLI)/RfI+Sg~(RI⊕Srag)

(155) CatSd ⊗j CatI+Sg → Cat(I+Sg)+Sd
HSd\LfSd~Slad/RfSd~Srad ⊗Msd
HI\LfI+Sg~([HSd^Msd|Slag] ⊕Msg LI)/RfI+Sg~(RI⊕Srag) →

 HI\LfI+Sg+Sd~((Slag ⊕Msg LI)⊕Msd Slad)/RfI+Sg+Sd~((RI⊕Srag)⊕Msd Srad)

HX: head of CatX; Mx: cancellation mode for HX; Plf: primary category’s left argument list flag;
Sra: secondary’s category’s right argument list; Lf: left flag; Ra: right argument list;
RX: right argument list introduced by category X

96 SYNTAX

Note that the intervener types the merged phrase Sd+I+Sg. It is the primary
category in the first merge, (155) cancelling the head of the selecting phrase,
and determines the primary category in the second merge, cancelling the head
of the selected phrase. Abstracting from direction, this is the only relationship
between the phrases Sg, I and Sd that can be reconstructed by CLG and com-
plies with the definition of connectedness (151). Connectedness is realized in
CLG as generalized composition, taking over ‘agendas’ under merge. Because
connectedness is interpreted here as composition, the category CatI, besides
intervening, is also bridging between Sd and Sg and their respective catego-
ries. While intervening, it brings the two occurrences of HSd – the negative and
the positive one – together in adjacent positions, after all.
In CLG, then, discontinuity is accounted for inasmuch as bridges exist or can be
constructed. Connectedness has a clear-cut categorial condition, in the form
of a predictable construal, within the limits of finite combinatorics, of bridg-
ing interveners. The construal of discontinuity is dictated by the specifica-
tion of the merge modes involved in the bridging, MSd and MSg in the example
above. In particular, they may maximize or minimize the effects of discontinu-
ity by the way they append argument lists and by zero requirements on argu-
ment lists of the categories involved. Clearly, the merge under mode MSg may
introduce additional discontinuity if LI, Slag or RI is not empty: this merge will
mark the phrase associated with the primary category, or the phrase associ-
ated with the secondary category, or both as an intervener with respect to the
arguments in these lists.
This construal of discontinuity in CLG is will be scrutinized in the next sections.

1.7.2.1 Managing discontinuity

To get a clear idea of what discontinuity under CLG is up to, consider two
phrases P and S – for primary and secondary string, respectively – and their
respective categories Prim\Plf~Pla/Prf~[Sec^j| Pra] and Sec\Slf~Sla/
Srf~Sra. Let Pla, Pra, Sla and Sra be sequences of strings with types that
can be cancelled against the corresponding arguments in the categories of
P and S. Prim and Sec stand for the smallest phrases with the corresponding
head categories, i.e. for the phrases introducing the primary and the second-
ary head types, respectively. Depending on the specification of the mode j, any
of the following strings may model this family of merges. Prim and phrases
selected by it (Pla and Pra) are italicized for transparency. For each sequence,
a number indicates how many of the four argument strings are separated
from their head string. The dislocated argument strings are underlined.

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 97

(156) Sla Pla Prim Sec Sra Pra :: 1
(157) Pla Sla Prim Sec Sra Pra :: 1
(158) Sla Pla Prim Sec Pra Sra :: 2
(159) Pla Sla Prim Sec Pra Sra :: 3

Several aspects of this exercise are noteworthy. First, none of the four strings
is fully continuous. As a consequence, every merge with four non-empty argu-
ment lists induces some form of discontinuity.
Secondly, the number of discontinuous pairs varies with the ways of append-
ing (non-empty) argument lists.
Thirdly, all discontinuities respect connectedness, in the sense that there is a
bracketing available which complies with (151). For example, (159) may be
parsed as follows:

(160) (Pla ((Sla (Prim Sec)) Pra) Sra)

This follows from the fact that absolute discontinuity of degree 4 is impossible:
in the active direction – rightward in the examples – the primary argument
string Pra cannot be dislocated, since it is bound to be more peripheral than
the string introduced by the cancelled secondary head, its former companion.
The degree of discontinuity, then, can be controlled by the grammar in either
of two ways. One way is requiring one or both of the relevant input argument
lists to be empty. The other way is appending the lists in such a way that argu-
ments cannot intervene between other arguments and its selecting phrase.
The latter way induces crossing dependencies. In that case, the primary cat-
egory – the intervener – imposes as little discontinuity on the secondary cat-
egory’s combinatorics as possible.

Here are some instances of merge mode definitions to this effect, guided by
the examples above. Only the elements relevant to the strategy are specified.

(161) Prim_~[]/_~[Sec^j|_] ⊗j Sec_~Sla/_~_ → Prim_~Sla/_~_
(162) Prim_~Pla/_~[Sec^j|_] ⊗j Sec_~[]/_~_ → Prim_~Pla/_~_
(163) Prim_~Pla/_~[Sec^j|_] ⊗j Sec_~Sla/_~_ → Prim_~Sla+Pla/_~_

The two ways of reducing discontinuity under the presupposition of connect-
edness are not independent of each other. Choosing the empty list strategy
makes the append strategy redundant. There are two ways to avoid discon-
tinuity by empty lists. If the secondary argument list is doomed to be empty,
as in (162), that category is sealed to cover a (partial) island. If the primary
argument list is marked empty, as in (161), this can only mean that the other

98 SYNTAX

arguments – which are required to have been cancelled already – are more
intrinsic to the primary phrase than the secondary argument.
In this vein, crossing dependencies as in (157) and (159) are the inevitable
result of a close connection between primary and secondary category on one
hand and linearization and antisymmetry on the other. In other words, cross-
ing dependency is a normal configuration, induced by a sound strategy of
appending non-empty passive argument lists in such a way that connected-
ness is assured.

The following table contains an overview of the discontinuous effects of every
possible specification of argument list. The condition in that table means that
the specification has the effect mentioned only if that condition is fulfilled.
Otherwise, it is without any effect on linearization.

(164) Table of merge effects for rightward cancelling

specification combined with linearization/bracketing linearization
effects

Pla := [] Sla (Prim Sec .). discontinuity
Sla := [] Pla (Prim Sec.). continuity
Pra := [] .(.Prim Sec) Sra continuity
Sra := [] .(.Prim Sec) Pra continuity
Sla+Pla Pla, Sla ≠ [] Pla (Sla (Prim Sec .). crossing disc
Pla+Sla Pla, Sla ≠ [] Sla (Pla (Prim Sec .). discontinuity
Pra+Sra Pra, Sra ≠ [] .(. Prim Sec) Pra) Sra discontinuity
Sra+Pra Pra, Sra ≠ [] .(. Prim Sec) Sra) Pra continuity
Plf := u Sla+Pla, Sla ≠ [] Pla (Sla (Prim Sec.). crossing disc
Plf := a Sla+Pla, Sla ≠ [] Pla” (Sla ((Pla’ Prim) Sec.). incoherent disc
Slf := u Sla+Pla, Sla ≠ [] Pla (Sla (Prim Sec .). crossing disc
Slf := a Pla+Sla, Pla ≠ [] Sla” Pla (Prim (Sla’ Sec .). incoherent disc
Srf := u Pra+Sra, Sra, Pra ≠ [] .(. Prim Sec) Pra) Sra crossing disc
Srf := a Pra+Sra, Sra, Pra ≠ [] .(. Prim (Sec Sra’)) Pra Sra” incoherent disc

Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

The above scheme suggests a hierarchy in specifications of merge modes
affecting linearization. The strongest effect results from emptiness condi-
tions on input argument lists. Any such specification guarantees continuity
or connected discontinuity at its side, without further specifications being
necessary. Next are the ways of appending. Their effect is conditioned by

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 99

non-emptiness of any of the argument lists involved. Their effect, therefore,
is dependent. Finally, the effect of affectedness specification subsists on the
choice for particular appends, which were already dependent themselves.
Thus, flags are the subtlest instruments for influencing linearization. Appends
bring in discontinuity; flags regulate the nature of the discontinuity. Recall
that flags are sensitive to derivational history in ways specified for Dutch in
(74): a flag u encodes that the list has not hitherto been activated, or that it
was not involved in the last few merges. As a rule, the conditions on argument
lists model the phenomena as such, whereas the conditions on flagging cor-
relate with conditions on phenomena.
The hierarchy renders some combinations redundant or nonsensical, or just
marked. For example, it is not easy to see what any appending or flagging
might add to the empty input specification. In the same vein, flagging spec-
ifications have effect only when append is discontinuous. Moreover, it may
seem that there may be more options to the same effect. Compare for example
the following merge modes.

(165) Prim_~Pla/_~[Sec^i |Pra] ⊗i Sec_~Sla/u~Sra →
 Prim_~Pla ⊕i Sla/_~Sra+Pra
(166) Prim_~Pla/_~[Sec^j |Pra] ⊗j Sec_~Sla/a~[] →

Prim_~Pla ⊕j Sla/_~Pra
(167) Prim_~Pla/_~[Sec^k |Pra] ⊗k Sec_~Sla/_~[] →

Prim_~Pla ⊕k Sla/_~Pra

 Prim: head of primary category; Plf: primary category’s left argument list flag;
Sec: head of secondary category; Sra: secondary’s category’s right argument list;
Lf: left flag (in resulting category); Ra: right argument list (of resulting category)

At first glance, the linearization effects may appear similar: in each case, the
relevant order of phrases will be . . Prim Sec Sra Pra. The bracketings differ,
however: ..(..Prim Sec) Sra) Pra for (165), ..(..Prim (Sec Sra)) Pra for the two
other cases. Only the first specification ensures the merge of the primary cat-
egory with a lexical secondary category. (166) excludes a lexical status for the
secondary category, whereas (167) is indifferent in this respect. The options
thus vary in their derivational consequences.

The line of reasoning followed above leaves no room for discriminating
between processes handling continuous structure and processes dealing
with discontinuity. All structure and all interpretation result from merging
complex categories, and the mere merge of complex categories provokes
forms and degrees of discontinuity. The opposition between move-type oper-
ations inducing discontinuity and merge-type operations inducing continu-

100 SYNTAX

ous structures in generative grammar is counter-productive in CLG. If merge
deals with linearization, move is redundant (Cremers 2004).

1.7.2.2 Discontinuity and minimalism

Generative grammar deserves credit for making explicit that discontinuities
format sentence structure. In the minimalist emanation of the generative
view, the distinction between merge and move (or copy+merge) highlights
discontinuity as one of language’s omnipresent properties. Moreover, the
formulation of move as a one-structure-operation, handling features in one
local tree, illustrates that discontinuity is neither unbounded nor random, but
inherently determined by properties of the structure. The general idea is that
merge builds structure, and move changes it, subsequently. This amounts to
restyling the division of labour between context-free phrase structure rules
and transformations, as established in earlier stages of generativism.
It is noteworthy that subsuming discontinuity under move does not mean
that discontinuity is defined independently. As a matter of fact, there is circu-
larity. Discontinuity is marked by applying move, and if something moves it is
discontinuous.

Categorial grammar combinatorics does not favour a principal distinction
between operations of move and operations of merge. In the first categorial
approaches to wh-movement, for example, forms of type-raising were pro-
posed for handling the interpretation of leftward dislocated elements. Later
(e.g., Moortgat 1988), special binary extract and insert operators were intro-
duced to cover these configurations. They were subject, partially, to the same
logic that governed the operators taking care of continuous sequences. From
the point of view of linearization, however, these operators were of the ‘any-
where’ kind: A B was interpreted as the set of those split strings ww’ such
that wbw’ is in A if b is in B, but the category gave no information as to where
the string was to be invaded. In recent extensions of multimodal categorial
grammar, as outlined in Moortgat (1997), the toolkit has been extended to
such a degree that specialized indexed operators, exclusive to certain struc-
tural configurations, can handle discontinuous or permutative instances of
linearization. Discontinuity is handled by specialized structural operations
on marked structures. With these wide coverage formalisms, it is possible to
translate the minimalist distinctions between move and merge into catego-
rial terms, as was shown by Vermaat (1999).

Still, it has not been decided that merge and move, i.e. continuous and discontin-
uous linearizations, really are different processes needing distinct treatments

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 101

in a grammar. Scrutinizing the definitions of merge and move as presented in
Stabler (1992), and putting technical details aside, we are led to assume the
following distinction between the two operations. Merge deals with two trees
where one tree occupies one position in the other tree. Move deals with two
trees where one tree is related to two positions in the other. Move projects one
tree twice, merge projects two trees once. Distinguishing these two processes
is mandatory only to the extent that not every subtree of a tree is doubly or
multiply projected in the end. That is, if every tree that is ‘placed’ by merge
were to be doubly committed by move, one might as well come up with one
single operation mergemove that performs the structure building and the posi-
tion linking in one hit. In that case, discontinuous occurrence would be the fate
of every phrase, in the exact sense that every phrase except the one associ-
ated with the top node links two or more not necessarily adjacent positions in
the structure. Moreover, as move would be bound to merge, all double linking
would be specified locally. It would amount to the conception that the occur-
rence of every phrase in a sentence is backed by a chain: to be a constituent is
to be the head of a chain. Of course, this is not really far removed from having
every configuration licensed by feature checking, i.e. by matching pairs of fea-
tures which are introduced at different positions. Here is an attempt to formu-
late such a unified structure building operation mergemove.

Let every lexical element come with a three-leaf labeled stucture [X Spec [X
Compl]] such that Spec and Comp have the same type. For example: an intran-
sitive verb like walk would be assigned [vp NP [walk NP]]. Spec and Comp are
supposed to be chained, having the same relevant features except for lexical
content. At each lexical structure, the position in which the argument is lexical-
ized – either Spec or Comp – is marked; we will use italics to do so. The head is
lexical per se. So, the category of walk might be [vp NP [walk NP]]. The structure
[X Y [H Y]], having no lexicalizations at all, is supposed to be equivalent to just H.
Mergemove is defined on every pair of trees [X Y [.X .Y]] or [X Y [.X .Y]] and
[Y Z1 [. Y. Z2]], where either Z1 or Z2 is the lexical position and the dots mark
possibly intervening right branching structures. It is assumed, however, that
the head of every structure is uniquely defined as the highest position equal
to the top label. This has the same effect as the directional head marking in
Stabler’s (1992) formalization of minimalistic combinatorics. This yields the
following definition of mergemove:

(168) Mergemove
[X Y [.X .Y]] + [Y Z1 [. Y. Z2]] ⇒ [X Z1 [X Y [. X .[Y.Y. Z2]]
[X Y [.X .Y]] + [Y Z1 [. Y. Z2]] ⇒ [X Z1 [X Y [. X .[Y.Y. Z2]]

102 SYNTAX

At merge, the lexical content of the head of the selected structure is placed in
the position marked in the selecting structure. To see how things would turn
out, consider the following mini-grammar of a language over the alphabet
{1,2,3,4}. The lexicon would be the following set of structures:

(169) { [1 2 [1 2]], [1 2 [1 2]], [2 3 [2 3]], [2 3 [2 3]], [3 4 [3 4]], [3 4 [3 4]], [4 e [4 e]] }

Clearly, 1 is supposed to select 2, 2 to select 3, and 3 to select 4. Below is the
derivation of the number 4321.

(170) [1 2 [1 2]] + [2 3 [2 3]] ⇒ [1 3 [1 2 [1 [2 2 3]]]]
[1 3 [1 2 [1 [2 2 3]]] + [3 4 [3 4]] ⇒

[1 4 [1 3 [1 2 [1 [2 2 [3 3 4]]]]]
 [1 4 [1 3 [1 2 [1 [2 2 [3 3 4]]] + [4 e [4 e]] ⇒

[e[1 4 [1 3 [1 2 [1 [2 2 [3 3 [4 4 e]]]]]]]] (= [1 4 [1 3 [1 2 [1 2 3 4]]]])

The linearization of the italicized elements and the head position gives the
desired result.
The choice of categories is far from trivial. Under the present lexicon, not every
order of the digits is derivable, while all chains are nested around 1. In particu-
lar, no digit word can be derived in which 1 and 2 are not adjacent. This is due to
the selectional restrictions implemented in the categories, i.c. the choice to have
2 selected by the element that invariably projects the top node. To exclude some
more orders, one can limit the lexicon. For example, by taking the category [1 2
[1 2]] out, one excludes the derivation of any number representation in which 2
occurs to the left of 1, which is half of the original language. The extension and
the nature of the language are thus completely localized in the lexical specifi-
cation. The above implementation proves that one can consistently and non-
trivially consider merge and move to be a single operation.

1.7.3 Patterns of Dutch

This section contains an overview of the specifications used in the concise
syntax of Dutch of section 1.6.2. Instead of naming lists by direction, the table
generalizes over directionality and names list (primary or secondary) pas-
sive or active, active being the direction in which the cancellation takes place.
Only if some explicit value is required by the merge mode is this require-
ment specified in the relevant column. Even if modes seem to have the same
specifications, they may differ as to exceptional output flagging, which is not
accounted for in this table. Recall, furthermore, that appending of left lists

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 103

always implies down-stacking of a wh-argument in either list, according to
provision (95).

(171) Table of merge specifications for Delilah’s grammar of Dutch

Prim\Ppf~Pp/_~[Sec^i |Pa] ⊗i Sec\Spf~Sp/Saf~Sa → Prim_~appendP/_~appendA
Sec\Saf~Sa/Spf~Sp ⊗j Prim_~[Sec^j |Pa]/Ppf~Pp → Prim_~appendA/_~appendP

mode Pp Sa Sp Ppf Saf Spf appendP appendA

/^isl [] []
/^transp [] u u Sp+Pp
/^open [] u Sp+Pp
/^penins [] []/[x^wh] Sp+Pp
/^transpipp [] u a u Sp+Pp
/^sentop [] [] u w/u
/^adj Pp+Sp Sa+Pa
\^isl [] []
\^transp -/[] u u u Pp+Sp Sa+Pa
\^open -/[] Sp+Pp Sa+Pp
\^wh [] []
\^adj Pp+Sp Sa+Pa
\^part [] [] u u u

Prim: head of primary category; Ppf, Paf: primary category’s passive / active argument list flag;
Sec: head of secondary category; Sa, Sp: secondary’s category’s active / passive argument list;
Sra: secondary’s category’s right argument list

From this table, one can read some aspects of the merges needed for this frag-
ment of Dutch. Before going into details, however, it should be stressed that
other grammars of the same fragment may be equally efficient or more enlight-
ening. One might even compare grammars with respect to the instruments they
choose for determining the family of merge modes doing the job. Below, we will
discuss the use of the discontinuity toolkit in Delilah’s grammar.

What immediately strikes the eye is that almost all input specifications of
empty lists concern the secondary category. The only cases of such specifica-
tion for a primary list represent an alternative formulation for a rule without
such specification. These alternatives are driven by reflection, not by necessity,
though. Thus, in this grammar the main load of discontinuity management is
put on the secondary category. The primary category is often required to be
unaffected in the passive direction and to allow the secondary passive agenda
to be the first to be met, thus reducing the chance of incoherent discontinuity:
the secondary arguments are close to the secondary head. It is, furthermore,

104 SYNTAX

remarkable that in particular Sa – the edge of the secondary category neces-
sarily separated from the primary category – tends to be completed before
the merge occurs.
None of the merges involves a requirement on non-emptiness of input argu-
ment lists. The possible specification that an input list be affected is used only
once, in the mode /^transpipp. This mode exclusively deals with infinitivus-
pro-participio effects, which occur only in the presence of complex verb clus-
ters. All other affectedness specifications require an input list to be unaffected.
As for the modes of append, it is noteworthy that the passive direction always
complies with the side the primary category is on. Thus, from a directional
point of view, the active appendings in the leftward cancellations all reflect
the priority of the secondary left agenda, i.e. the imposition of continuity.
Accordingly, the passive appendings in the rightward cancellations express
the same priority, now invoking coherent discontinuity. The only exception
here concerns a secondary left list that only contains a wh-element, this ele-
ment being the only one to escape from the secondary domain.
As a whole, the grammar of Dutch according to this specification exists on
only a few instruments of discontinuity management. The variety of means is
rather limited.

(172) Table of discontinuities in Dutch according to section 1.6.2

mode Pp Sa Sp append mode 5 3 1 2 4 6

/^isl [] [] Pla Prim Sec Pra

/^transp [] Sp+Pp Pla Sla Prim Sec Pra

/^open [] Sp+Pp Pla Sla Prim Sec Pra

/^penins [] [] Pla Prim Sec Pra

/^transpipp [] Sp+Pp Pla Sla Prim Sec Pra

/^sentop [] [] Pla Prim Sec Pra

/^adj Pp+Sp; Sa+Pa Sla Pla Prim Sec Sra Pra

\^isl [] [] Pla Sec Prim Pra

\^transp -/[] Pp+Sp; Sa+Pa Pla Sla Sec Prim Pra Sra
\^open -/[] Sp+Pp; Sa+Pa Pla Sla Sec Prim Sra Pra

\^wh [] [] Pla Sec Prim Pra

\^adj Pp+Sp; Sa+Pa Pla Sla Sec Prim Sra Pra

\^part [] [] Pla Sec Prim Pra

Prim: head of primary category; Ppf, Paf: primary category’s passive / active argument list flag;
Sec: head of secondary category; Sa, Sp: secondary’s category’s active / passive argument list;
Sra, Sla: secondary’s category’s right/left argument list; 1-6: peripherality indication

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 105

Table (172) shows the resulting discontinuties for the fragment. Here, the ref-
erence to active and passive direction is directionalized again as left and right
lists and flags. The string positions are numbered from inside out, to indicate
peripherality with respect to the kernel of primary and secondary head. Con-
tinuous structures are shaded. Italics indicate dependencies determined by
the primary category.

From this table one can see that the grammar of Dutch – though infamous for
its discontinuous verbal clustering – avoids many possible sources of discon-
tinuity. With the notorious exception of the rules for left and right adjunction,
all rules keep or may keep argument lists empty. Some rules do not introduce
discontinuity at all – those requiring both secondary lists to be empty. Recall,
furthermore, that in the active direction the primary arguments cannot occur
discontinuously. As a result, discontinuity arises in one direction at most.
Although we cannot deduce this result, it can hardly be accidental. Therefore,
we present it as a conjecture on CLG-type grammars for natural language.

(173) conjecture
In a CLG grammar of a natural language, no rule imposes discontinuity in two
directions.

Basically, the conjecture reduces the relevance of the grammatical formalism
for ‘real applications’ to a relevant fragment of the formalism. Interestingly,
this seems to be on a par with statements like the following:

(174) Although the set of terms of the full typed lambda calculus is context-free, the set
of lambda terms characterizing the Lambek fragment of type logic (Lambek cat-
egorial grammar) is a non-context-free subset (Van Benthem 1991:109).

(175) Combinatory Categorial Grammar is mildly context-sensitive (Joshi et al. 1991).

The first statement refers to the fact that not every lambda term gives a recipe
for a deduction in Lambek categorial grammar (see sections 1.4. and 1.8). Not
every lambda term is a Lambek proof as well. The second statement says that
a certain formalism transgresses the boundaries of context-freeness without
falling into the full expressivity of context sensitivity (see also section 1.8).
This is argued by Cremers (1999) to hold for CLG too. In both cases, powerful
machinery is used only selectively when applied to natural-language gram-
mar. Moreover, section 1.8.6 reports on Van de Woestijne’s (1999) observa-
tion that Delilah’s CLG does not seem to meet its worst case complexity when
parsed; we now conjecture that this is because of (173).

106 SYNTAX

1.7.4 Coordination as discontinuity

Coordinated phrases are inherently discontinuous. In the presence of coor-
dinators, at least one phrase is separated from its selector or its selection by
other phrases, among which is the non-connected coordinator. Coordinators
have no special licensing relation with any phrase or category. Thus, they
intrude on the combinatoric process. This is the case both for constituent and
non-constituent coordination. Here are some examples; the peripheral edge
of each of the conjuncts is indicated by a dot.

(176) Ik heb .haar echtgenoot. en .diens moeder. ontmoet
I have her husband and his mother met
‘I met her husband and his mother’

(177) Ik heb .haar echtgenoot de fiets. en .diens moeder de auto. gegeven
I have her husband the bike and his mother the car given
‘I gave the bike to her husband and the car to his mother’

(178) … dat ik .de jongens wil. en .de meisjes moet. begeleiden
… that I the boys want and the girls should supervise
… ‘that I want to supervise the boys and should supervise the girls’

In the sentences above, the non-coordinated selector or selection that is
related to both conjoined phrases is underlined. Each underlined phrase is
separated from at least one of its relatives by at least the coordinator itself.
Unless the coordinator itself is selected, this state of affairs marks non-con-
nected discontinuity.

In the preceding section, we argued that discontinuity is a normal attribute of
sentences in our grammatical analysis. Nevertheless, there are several good
reasons to treat coordination as a structure of a nature different from other
discontinuities. These reasons will be discussed below. They amount to the
thesis that the type of discontinuity established by coordination is uncon-
nected by necessity, in the sense of (151).
Under the present assumptions, our grammar is not suited to deal with this
type of discontinuity. Therefore, Delilah handles coordination by a distinct
algorithm that is fed by the grammar and feeds onto it, but is steered by
essentially different procedures and aims. The algorithm is introduced and
accounted for in Cremers (1993a) and Cremers and Hijzelendoorn (1996),
and will be discussed separately in section 1.8.8 as part of the Delilah autom-
aton. It sets coordination apart from the computation of other linguistic struc-
tures because the mechanics of these computations do not fit the nature and
the scope of coordination.

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 107

The arguments for a dedicated treatment of coordinated structures are given
below.

1.7.4.1 Conjunctions do not select

There are only a few, mostly focus-related restrictions on the occurrence of
conjunctions and conjuncts in a sentence. The general rule is that if the con-
juncts can be properly contrasted with each other at the level of information
structure and are syntactically compatible, the conjunction is well-formed
and interpretable. Well-formedness, then, depends on the information con-
tour rather than on the structural properties of the sentence. A recipe for
forming coordinated structures could be this. Take any well-formed sentence
without coordination. Choose any position to the right of some phrase. Take
some string to the left of that position. Construct another string that is con-
trastive to the selected one, and insert the conjunction with the constructed
string in the chosen position. The result will generally be a well-formed coor-
dinated structure.
The main challenge to this recipe is the coordination of singular filters gen-
erated by non-empty atoms (singular referential DPs) in subject position;
their conjunction may violate agreement under this procedure. Elsewhere we
argue that this phenomenon is neither syntactically nor semantically persua-
sive (Cremers 1993a: ch. 2; Cremers 2002).
There is no reason to assume that conjunctions are biased towards certain
types of phrases or categories. In particular, conjunctions neither select nor
license either of the conjuncts. Consider the following phrase.

(179) Geen enkele ambtenaar durfde mij een notitie over de begroting en ...
No civil servant dared me a memo on the budget and ...
‘No civil servant dared ... (to) me a memo on the budget and ...’

Even when the focus structures of these phrases are given, no grammarian
can tell by inspecting only this left environment of a coordinator which part
of the phrase will turn out to be conjoined. As a matter of fact, every dot in the
following representation of (179) may turn out to be the left edge of the con-
junct, but only one – in rare cases of ambiguity: two – will be. The selection of
this edge is not determined by the structure of the phrase.

(180) .Geen enkele ambtenaar. durfde .mij .een .notitie .over .de .begroting en ...

Being a conjunct, then, is not an independent configurational property of a
phrase but the outcome of a process (Cremers 1993b, Harbusch and Kempen

108 SYNTAX

2006, but see Houtman 1994 for a defense of the opposite view). Conjunct is
neither a category nor a type. It is not even a function. We take the argument
embodied by (180) to weigh heavily against any categorial characterization of
conjunctions in languages like Dutch.
The argument is directed against proposals to consider conjunctions as types
with essential variables or as multi-typed operators in categorial grammar,
as put forward by Wittenburg (1986), Moortgat (1986), Steedman (1990),
Houtman (1994) and others. The argument also opposes analyses of conjunc-
tions as phrasal heads, as suggested by Johannesen (1997) and Munn (1993).
It even runs counter to the ‘classic’ conjunction-reduction approaches, since
grammatical processes of the transformational type target specified catego-
ries and/or constituents. But generative grammar seems to have left coordi-
native structures as a discrete object of study: none of the 77 chapters of the
Companion to Syntax (Everaert and Van Riemsdijk 2006) focuses on them.

1.7.4.2 Conjunctions are not selected

A good argument for conjuncts playing a role in the semantics of certain maxi-
mality expressions was made by Postma (1995). He observes that in Dutch
phrases like met man en muis vergaan (‘with man and mouse sink’), have en
goed verliezen (‘stock and barrel loose’) entail universality or totality, and that
it must be the semantics of conjunction that brings about this effect. In a sense,
the conjunction is selected by the verb as an expression of degree. Hoeksema
(1988) and Poß (2010) put forward other lexicalised forms of coordination.
These expressions, however, are all frozen, and meaningful only to the extent
that they are frozen. Notwithstanding Postma’s observation that the conjunc-
tion may introduce maximality, it makes no sense to say that the conjunction is
selected by the verb as a conjunction. It is selected as an expression of degree.
Therefore, no phrase selects a conjunction. Conjunctions do not occur on the
demand side of the grammar. Note that conjunctions and adjuncts differ in
this respect. It is relatively unproblematic to reverse the normal automorphic
analysis of adjuncts into an argument analysis in which adjuncts are selected,
even with certain limitations, by other phrases (see section 1.6.3). Analyses
along these lines have been put forward by, e.g. Bouma en Van Noord (1994)
and Janssen (1986). Such a move is not conceivable for conjunctions. Con-
junctions are that unspecific that selecting them as arguments would simply
double (or more than double) the set of categorial specifications, according to
the formula: if category X is selected then also X and X and X or X. No analytical
gain would result from doing so, however.

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 109

1.7.4.3 Coordinations do not obey Count Invariance

Count invariance (47) – repeated below – is a major distinctive feature of
resource- sensitive type logics and categorial grammars.

(181) Count Invariance (repeated)
For each axiom f → y in (44) and for every type t, t-count(j) = t-count(y).

It identifies the combinatoric engine of these systems as establishing a rela-
tionship (e.g. cancellation) between two items fulfilling opposite roles in the
structure. By definition, coordination entails the multiplication of certain
roles in a configuration, i.e. it spreads identity rather than opposition. In the
presence of coordination, the balance between selectors and selectees breaks
down, not by accident, but by neccessity. Only by considering conjunctions
to be unselective automorphic selectors can one overcome this imbalance.
This is effected by assigning them to type (x\x)/x, where the two negative
occurrences of x restore the balance against the two positively occurring con-
juncts which they aim to cover. Another strategy advocated by Dalrymple
et al. (1995) is to weaken the resource sensitivity of their (linear) logic. In
either approach, however, count invariance (a reflection of resource sensitiv-
ity) loses its edge: we cannot tell which is the balance to be restored before
having parsed the sentence in order to identify the conjuncts that bring in
the type doubling. And we must parse because the conjuncts themselves are
not identified locally. This paradox of coordination is addressed in Cremers
(1993a) and Cremers and Hijzelendoorn (1997a). In the latter it is argued
that the best counts we can get in the presence of coordination are (complex)
inequalities, whereas count invariance is expressed in terms of equalities.

1.7.4.4 Coordinations do not mean

In this section, we will argue that a conjunction i.e. the unit formed by the two
coordinates and the coordinator, in general cannot be interpreted prior to the
interpretation of the sentence or sentences which the coordination is part of.
First, recall the statement from preceding sections that the identification of the
coordination is the result of parsing, not a sub-process of it, like the identifica-
tion of any other constituent. This alone already implies that the meaning of the
conjunction cannot contribute independently to the meaning of the sentence
that is construed from parsing it. But even if we abstract from this contradiction,
and assume that coordinations contribute to the meaning construal by oracle,
it is hard to determine what that contribution could be. Suppose we were, by
oracle, capable of identifying any conjunction as some constituent of a certain

110 SYNTAX

category with structure [cat cat conj cat]. In order to establish a meaning for it,
we must be able to identify an operation executed by the conjunct on the mean-
ings of the conjuncts, yielding one ‘merged’ meaning. It is tempting to interpret
conj as a certain operation defined on the algebra Dcat of denotations of category
cat. It is well-known, though, that conjunctions do not show boolean behaviour,
in the sense that they denote a fixed algebraic operation on their arguments’
algebra. The standard example is with quantifiers, i.e. denotations of type np. In
sentence (182), the coordination is most likely interpreted as the meet over the
two quantifiers it conjoins: what is predicated of the coordination is predicated
of each coordinate. In (183), on the other hand, nothing is predicated of each of
the coordinates. Many scholars have suggested that we need something like a
group denotation to get the semantics in order here. In (184) it is rather the join
over the two denotations that should be the coordination’s contribution to the
sentence’s meaning. The reason is quite clear. The coordination of (184) does
not denote the set of spots on earth that are both Norwegian and Swedish, but
rather the set of spaces that are (either) Norwegian or Swedish.

(182) De regering heeft [Smit en De Vries] bevorderd tot ridder in een of andere orde
‘The government has Smit and De Vries promoted to knight in one or other order’

(183) De regering heeft [Smit en De Vries] belast met het onderzoek
‘The government has Smit and De Vries charged with the investigation’

(184) In Noorwegen en Zweden rookt niemand meer
‘In Norway and Sweden smokes nobody anymore’

The semantic effect of coordination may depend on functional properties of
its environment, as was made abundantly clear by Zwarts (1986), and on
denotational properties of the predication that the coordination is involved
in (see Link 1983 for the original argument and e.g. Winter 2001 for an
extensive treatment). These interactions may be steered by laws of logic and
algebra, but it is impossible to identify an independent contribution to the
semantics of a sentence made by coordination. Rather, the opposite is the
case: in order to define the nature of the coordinative linking we have to
interpret the sentence it is part of.
Does this position endanger compositionality? Janssen (1997) considers
arguments against compositionality, as brought forward by Higginbotham
(1986) with respect to the interpretation of unless. It is observed that unless
behaves differently in different functional domains.

(185) Every person will eat steak unless he eats lobster
(186) No person will eat steak unless he eats lobster

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 111

In an upward-entailing environment such as the nuclear domain of a univer-
sal quantifier, unless denotes disjunction. In a downward-entailing environ-
ment it denotes conjunction. Janssen, who considers compositionality to be a
requisite of grammatical architecture rather than a decidable property of lan-
guage, offers two ways out in this case: either unless is constructed as a func-
tion from contexts to values, or it is considered to be ambiguous. We may try
to subsume the context dependency of constituent coordination under this
analysis. The first solution – context valuation – would not solve our prob-
lem, because there is no definite context available for coordination (see sec-
tion 1.7.4.1). Unless precedes or follows a proposition offering the relevant
context. Coordination is part of the context that should license its interpreta-
tion, since there is no proposition independent of the coordination. Moreover,
coordinations may be part of each other’s contexts, yielding circular traffic
under this approach.
The second solution – inherent ambiguity – is the last resort. For conjunctions
it would amount to a huge number of ambiguities, none of which would be
locally decidable (Cremers 1993a). If conjunctions were multiply ambiguous,
one would expect languages to come up with specialized elements, reduc-
ing ambiguity. Though some languages have a specialized element for group
formation (a kind of ‘with’ element, see Payne 1985) these languages do not
have explicit sentential coordination at all. Languages that have propositional
conjunction, though, use it in all other environments, introducing massive
ambiguity under this approach.

The propositional (and boolean) base of coordination is reflected in the pro-
posal in Partee and Rooth (1983) to interpret all coordinations as the meet of
propositions: |[|[a]| and |[b]|]| = λj. [j(|[a]|) ∧ j(|[b]|)], where j’s type can be
derived from the coordinates’ type. The argument to this function must be pro-
vided by the sentential construction surrounding the coordination. Here, the
local indeterminism of coordination strikes back: such remnant environment
cannot be established without parsing the whole construction and determin-
ing the coordinates. But that is the problem. Though Partee and Rooth succeed
in generalizing the typological aspect of the meaning of the coordination, their
proposal does not solve the conjunction paradox: in order to determine the
coordination’s contribution to the semantic construal of parsing, parsing must
be completed including the determination of the coordinates. It is because of
this paradox that we claim that there is no local semantic construal for coordi-
nation. The meaning of John or Bill and John to swim and Bill to walk does not
exist independently of the semantic construal of a sentence.

112 SYNTAX

The arguments above entail that conjunctions be treated syncategoremati-
cally, not subjected to the core categorial engines of grammar, as proposed in
Grootveld (1994) from a generative perspective and in Cremers (1993a). We
take Kempen’s (2008) analysis that coordination is an updating construction,
to be in the same spirit.

1.7.4.5 Ellipsis is coordination speciale

Everaert and Van Riemsdijk (2006) not only subsume coordination under
other constructional phenomena but also the massive handbook lacks a chap-
ter on ellipsis. That is not accidental. Coordination and ellipsis are intrinsi-
cally related, along the following lines of reasoning.
Firstly, to be elliptical is a prerogative of sentences. It does not make a lot of
sense to talk about incomplete VPs or DPs, as they may occur discontinuously
or underspecified in languages under normal business. Secondly, ellipsis calls
for a propositional interpretation. There is no reason to call six an elliptical
DP in the sentence I have six, but it is inevitable to call John six elliptical in
the sentence I had five and John six. Third, ellipsis needs textual context to
be interpretable. The sentences John had five and I’ll catch it are perfectly
interpretable as propositions without any reference to textual context. This is
characteristic of certain anaphora, as was pointed out by Hankamer and Sag
(1976). The sentence John six has no propositional interpretation outside a
textual context licensing some semantic reconstruction. It is elliptical.
In short, we take ellipsis to be sentential, propositional and textual. In this
vein, ellipsis is essentially defined as coordinative. It introduces a phrase of
a category that is the canonical target of coordination and is interpreted as a
proposition, and it has the same inferential status as the context it is licensed
by – the logical function of conjunction.
This property can be illustrated by having a close look at instances of ellipsis
for which coordinative analysis is not obvious, like VP ellipsis and compara-
tives; the elliptical phrases are in italics.

(187) Sue called John before Bill did
(188) Sue painted John more realistically than Bill did

Clearly, (187) is equivalent to the following sentence.

(189) Sue called John and Bill called John and Sue’s call was earlier than Bill’s call.

Bill called John is entailed, and this is because it is in ‘semantic conjunction’
with the main sentence: a conjunction of propositions entails each of its con-
joints. In the same vein, the meaning of (188) must be represented as

THE GRAMMAR OF DISCONTINUITY AND COORDINATION 113

(190) Sue painted John in a certain manner and Bill painted John in a certain manner,
and Sue’s manner of painting John was more realistic than Bill’s manner of paint-
ing John.

Again, there is no difference in inferential status between the ellipsis and its
licenser. The coordinative nature of comparison was pointed out by Hendriks
(1995). The semantic and inferential co-ranking of ellipsis and its textual
antecedent – backward ellipsis is a contradictio in terminis – explains why VP
ellipsis cannot occur in sentences like

(191) * Sue sang so loudly that Bill did

VP ellipsis fails here, because the relationship between the intended propo-
sitions Sue sang (with loudness x) and Bill sang (with loudness y) is not just
conjunction at top level, but (asymmetric) causation.

Elliptical constructions like gapping, sluicing and answering are explicitly
coordinative, and bound to their antecedents in the sense that they cannot
afford any textual intrusion.

(192) * I visited John, Sue went to Amsterdam and Mary Bill.
(193) * John visited someone, Sue went to Amsterdam but I forgot whom.
(194) * Who went to Amsterdam? Why are we here? John.

Therefore, we assume that ellipsis occurs exclusively in the (right) context of
(semantic) coordination of sentences. Yet, coordination and ellipsis are not
the same – coordination is basically not reductional but augmental. Under
the present analysis, ellipsis is a subcase of coordination, a combination of
augmenting and rearranging a preceding structure. Since we handle coordi-
nation syncategorematically, ellipsis is treated this way too.
The algorithm dealing with coordination identifies ellipsis as those instances
of coordination for which categorial directionality is weakened. To illustrate
the point, compare

(195) Destijds wou ik Susan en jij Marie benaderen
‘in those days wanted I Susan and you Marie approach’
In those days I wanted to approach Susan and you, Mary

(196) Destijds wou ik Susan benaderen en jij Marie
‘in those days wanted I Susan approach and you Marie’

(197) Destijds benaderde ik Susan en jij Marie
‘in those days I approached Susan and you Mary’

114 SYNTAX

The coordination algorithm deals with the first sentence straightforwardly:
the components of both conjoints are adjacent at the level of the sentence-
to-be. The second sentence is elliptic. To the left of the coordinator a full
propositional sentence occurs; the right-hand side is not interpretable as
such. The right-hand conjoint cannot be mapped onto a coherent sequence
at the left. The conjunction is sentential, in all respects. (197) seems to be in
between: there is a full sentence to the left of the conjunction, but the right-
hand conjoint maps onto a coherent sequent of constituents to the left. But
the sentence is not ambiguous in any interesting sense. Ambiguity, however,
would be expected if coordination and ellipsis were different procedures. As
a matter of fact, the sentences (195) - (197) share non-directional aspects of
the argument structure – their arity and linearity. In order to parse ellipsis,
then, we can restrict ourselves to applying the coordination algorithm under
relaxed directionality in the presence of a full sentence. The computational
nature of this algorithm will be discussed in section 1.8.8.

1.8 PARSING THE SYNTAX

The Chomsky hierarchy of formal languages (e.g. Hopcroft et al. 2001) con-
nects languages, grammars and automata by stating that if languages are sets,
their grammars embody programs to determine membership and that the dif-
ferences in memory management between programs may reflect differences
in the grammar. The hierarchy used to be the dominant frame for evaluating
grammatical and procedural properties in the early days of computational
linguistics, when storage was expensive and processing slow. But it is not
technological progress alone that diminished the Chomsky hierarchy’s impor-
tance. Firstly, theoretical linguistics itself seems to have lost its interest in the
hierarchy: both for the generative enterprise and for its competition – from
categorial grammar through HPSG to construction grammar – the hierarchy is
too crude to catch up with the tendencies towards semantically relevant, fine-
grained and construction specific grammatical analyses; there is more than
context-freeness on earth and in heaven (e.g. Van Benthem 1991). Secondly,
the parsers themselves turned out to be intrinsically more complex than the
grammars or the grammatical structures which they were supposed to oper-
ate on as far as natural language was concerned (McCawley 1968): even if one
describes natural-language grammar as a complex of regular structures, the
overall system regulating the labour division is certainly not just finite-state.

PARSING THE SYNTAX 115

Thirdly, of course, the hierarchy became less relevant in computational lin-
guistics as grammars tended to be avoided in favour of non-symbolic models.
Yet, the nature of the parsing process of a symbolic grammar is a central
benchmark for two evaluations: first, comparison of the complexity of the
natural-language recognition and interpretation problem with other prob-
lems and, second, its pretentions as a model of human language processing.
We assume that these are different and even independent valuations. To say
that natural-language recognition is nearly as hard as the Tower of Hanoi,
chess or the Salesman problem is saying little about human language pro-
cessing. To say that human language processing leans on memory routines
rather than on on-line computation (cf. Daelemans and Van den Bosch 2005)
is saying little about the problem of its mathematical complexity. Both in the
domain of complexity as well as in that of modelling processing, the nature of
the parsing procedure is distinctly relevant.
In this section we will reflect extensively on the Delilah parser, by comparing
it to the parsing of other grammatical frames, in particular to Combinatory
Categorial Grammar (CCG) as revealed in Steedman (2000), for example. The
section is largely based on previous work by Peter Zinn and Christiaan van de
Woestijne (Zinn 1993, Van de Woestijne 1999); the latter author also devel-
oped the core of the chart parser. The coordination algorithm was added to
the chart parser by Mathieu Fannee (Fannee 2006). Robustness strategies at
the syntactic level were investigated by Poeder (1994).

1.8.1 The syntax of CCG

As stated earlier, CLG is closely related to Combinatory Categorial Grammar
(CCG). The definition of CCGs below is based on Joshi et al. (1991).

(198) Definition

A CCG, G, is denoted by (VT, VN, S, f, R) where
VT is a finite set of terminals (lexical items),
VN is a finite set of non-terminals (atomic categories),
S is a distinguished member of VN,
f is a function that maps each element of VT to a finite set of categories,
C(VN) is the set of categories, where

 VN ⊆ C(VN) and
if c1, c2 ∈ C(VN) then (c1/c2) ∈ C(VN) and (c1\c2) ∈ C(VN),

R is a finite set of combinatory rules.

116 SYNTAX

CCG’s central rule-scheme is generalized composition, again according to
Joshi et al. (1991). It comes in two directions.

(199) Generalized Composition forward

(x/y) (y|1z1|2 …|mzm) ⇒ (x|1z1|2 …|mzm) (m ≥ 0)
(200) Generalized Composition backward

(y|1z1|2 …|mzm) (x\y) ⇒ (x|1z1|2 …|mzm) (m ≥ 0)

Here, x, y, z1,…, zm are meta-variables over C(VN), and each |i ∈ {\,/}. For m=0,
these rules correspond to function application and for m > 0 to function com-
position. The set R contains a finite subset of these possible forward and
backward rules, i.e., for any given CCG only some of the combinatory rules
will be available. Furthermore, restriction conditions can be put on calling
combinatory rules in R. Rules can be constrained in two ways: the initial non-
terminal of the category to which x is instantiated (the head) can be limited,
or the entire category to which y is instantiated can be restricted. In Joshi et
al. (1991), the mapping function f may also assign categories to the empty
symbol, ε. CLG does not use this feature. Excluding the empty category makes
CLG cycle-free: there is no non-terminal category A ∈ C(VN), such that A ⇒+ A,
that is, no A can derive itself in one or more steps. CLG is cycle-free because
each derivational step cancels exactly one category, while empty moves can-
not occur (cf. section 1.5.4). Note that for m=0, these rules simplify to the For-
ward and Backward Application rules of classical AB grammars (Ajdukiewicz
1935, Bar-Hillel 1953).

1.8.2 Comparing the syntaxes of CCG and CLG

In CLG, rules (199) and (200) have been adapted. Rule (199) has been replaced
by two instantiations, and repeated here for convenience. These two rules dif-
fer only in the order in which the lists of arguments are appended. These rule
types are the only ones in CLG, as merging is the only combinatory operation
in the syntax (cf. section 1.4.3).

(201) Generalized Composition forward in CLG, discontinuous
(…(p|w1)|w2….|wm)/y (...(y|z1)|z2 ... |zn) ⇒ (…(…(p|z1)|z2 ... |zn)|w1|w2….|wm)

(202) Generalized Composition forward in CLG, continuous
(…(p|w1)|w2….|wm)/y (...(y|z1)|z2 ... |zn) ⇒ (…(…(p|w1|w2….|wm)|z1|z2 … |zn)

In the same vein, backward composition (200) has been instantiated by two
CLG rules.

PARSING THE SYNTAX 117

(203) Generalized Composition backward in CLG, discontinuous
(...(y|z1)|z2 ... |zn) (…(p|w1)|w2….|wm)\y ⇒ (…(…(p|z1)|z2 ... |zn)|w1|w2….|wm)

(204) Generalized Composition forward in CLG, continuous
(...(y|z1)|z2 ... |zn) (…(p|w1)|w2….|wm)\y ⇒ (…(…(p|w1|w2….|wm)|z1|z2 … |zn)

The instantiations are logically not neutral. The CCG forward rule (199) is
entailed by the discontinuous (201) but not by the continuous CLG forward
rule (202). CLG allows for one more merge mode than CCG.

CLG defines several restrictions and alternations in comparison to CCG. The
most relevant ones are listed below.

(a) in CLG, categories are required to be linear, that is, without any bracketing
(Cremers 1989, 1993a). They may be represented as y|1z1|2 …|mzm, where y is
primitive or atomic, and m ≥ 0. A linear category is a particular instance of a
CCG category. Compared to Lambek’s set {n,s} of non-terminal symbols, CLG
uses a larger and more fine-grained set. Yet, CLG non-terminals could be ana-
lyzed as fixed or de-activated {n,s}-complexes; the CCG category np represents
a lambekian category (n,(n,s)), but is not addressed as such by the syntax. As
far as we can see, nothing hinges on the cardinality of the primitives from a
syntactic point of view; Roorda (1991) proved that even a one-type-categorial
logic may work to distinguish what has to be distinguished, and Montague
(1972) operates a two-type semantics but declares the object atom e (the lam-
bekian n) syntactically inert. Regarding the number of non-terminals, there is
no fundamental difference between one-, two- and multi-atoms approaches.
In CLG, due to categories being linear, an argument can only be cancelled against
the primitive head of the secondary category. More accurately, when both the
primary and the secondary category have been fully expanded and argument
lists are not empty, disharmonious composition cannot be avoided in the sense
that argument lists in the passive directory are also merged: disharmony is
the standard option for composition when linear and complex categories are
involved (cf. section 1.4.8). This is no different in CCG. As can be read from the
composition schemes (199) and (200) where vertical slashes abstract from
directionality, arguments of the secondary category pass over onto the result-
ing category even when their direction is opposite to the slash that induces the
cancelling. In (205), you find two simple but legitimate instances of general-
ized composition, showing disharmony in the italicized negative type |z.

(205) x/y y\z ⇒ x\z
y/z x\y ⇒ x/z

118 SYNTAX

In standard categorial grammar of the lambekian breed, composition and
application allow both for complex heads and for cancelling of complex types.
This will not induce structural ambiguity, as the internal structure of complex
heads is fixed by a particular bracketing. In the case of np ⊗ (s\np)\np, the
rightmost np is the only candidate for cancellation. Of course, the complex
head can be abbreviated by an atomic label. However, atomic labels for com-
plex heads hide linguistic information and will yield an uninteresting gram-
mar (Zinn 1993). The computationally interesting property of using simplex
labels as the trigger for rule invocation is applied in CLG, and formulated as
linearity. When heads are required to be primitive (simplex) categories with-
out any structure, calling a rule boils down to matching two basic (simplex)
types – which is a cheap test.

(b) In CLG, the form of the categories has been adapted for both computa-
tional and linguistic purposes. CLG assigns categories of the format x\1l1\2…
\m/1r1/2…/n , where x is a simplex head, and li and ri constitute lists L and R of
left and right arguments, respectively, taken from VN, and m, n ≥ 0. A category
may then be written as x\L/R. L and R may be the empty list [], for m=0, and
n=0, resp. Non-empty lists L and R have been split further into regular (Lreg,
Rreg) and special arguments lists (Lsp, Rsp). Lsp accommodates wh-movement
or, better, any form of peripheral dislocation. Its size is one element at the
most, kept at the end of the list of leftward searching arguments (L is a ‘pri-
ority stack’). Its counterpart Rsp is currently not used (it is the empty list). In
the definition of rules, CCG’s general operator |i has been instantiated by the
directional equivalents \i and /i. Moreover, the relative order of the leftward
searching arguments is reversed with respect to the order displayed in tra-
ditional category notation: the leftmost element of both lists represents the
‘searcher’, which is to be satisfied first; it is the innermost argument. Thus
a representation of the argument lists as Prolog lists – stacks, essentially –
becomes straightforward.

(c) Some words – typically wh-words – are assigned a pair of categories, Cleft
* Cright, where Cleft and Cright are single categories from C(VN). Such a pair is
called a double type (or star-category). Cleft and Cright have different selectional
roles and can never be cancelled against each other, by definition (see section
1.6.2). Double types are not derived dynamically by some rule that can be
applied repeatedly, but are defined statically in the lexicon.

(d) All arguments of CLG’s categories are flagged by modes. These flags enforce
certain restrictions on the applicability of reduction rules. For example, a flag

PARSING THE SYNTAX 119

may require an argument list to be empty. Moreover, every rule instance must
assign a flag value to the head of the resulting category. Modes of composition
are included in CCG as well (Joshi et al. 1991, Baldridge and Kruijff 2003).

(e) With respect to the reduction rules used, CLG’s Generalized Composition
rules obey Count Invariance (see section 1.4.6), directionality and adjacency.
Directionality means that if a category c asks for some argument category c’
on its left, it should find the lexical element which introduces the head of c’ to
the left of the lexical constituent bearing the category c. The same reasoning
is valid for right-searching arguments. Directionality prohibits permutation
from being introduced. Steedman (1990) states that any combinatorics is to
be limited by some form of adjacency. The inference engine of the grammar
is supposed to instantiate the types in the antecedent of the axiom schemes
only by adjacent types in the sentence, in the order given by the scheme. This
restriction, too, prevents permutation from slipping in (Cremers 1993a). It
can be reformulated by requiring that axioms with antecedent strings of more
than two members are not allowed. This is stated by the Binary Derivability
lemma (64), which excludes rules of the form x ⇒ y, where x and y are single
non-identical categories, any form of type raising, i.e. x ⇒ y\y/x, permutations
of the form x y ⇒ y x, expansions of the form if x ⇒ y then x x ⇒ y, contractions
of the form if x x ⇒ y then x ⇒ y, nor do they accept or derive empty symbols,
ε. Van Benthem (1991) shows that (some combination of) rules like Permu-
tation, Expansion, and Contraction even decrease the generative capacity of
categorial grammars.

(f) CLG’s rules are degree-decreasing: the number of basic categories on the
right hand side is strictly lower (i.e. <) than that on the left hand side. Here,
heads and arguments of the same basic type are cancelled in accordance with
the Van Benthem count invariance protocol (Van Benthem 1986). Cremers
and Hijzelendoorn (1996, 1997a, and 1997b) extend count invariance to free
coordination and left dislocation.
Degree-decreasing rules imply that the language membership of CLG is decid-
able, as the height of the derivation tree is bounded upward by the length of
the input string. To put it differently, for CLG, being a cycle-free grammar (cf.
section 1.8.1), the length of a derivation – i.e. the number of steps – is linear
in the length of the generated string. Exactly this theorem was proven for con-
text-free cycle-free grammars by Harrison (1978:418). Stabler (1992) proves
a closely related version: for any cycle-free context-free grammar, there is a
linear bound to the size of the derivation tree – i.e. the number of nodes – as a

120 SYNTAX

function of the length of the terminal string that is the yield of that tree. Both
theorems illustrate the close relationship between CLG and CFG.

1.8.3 Comparing the generative capacity of CCG and CLG

The format of the categories in CLG differs from the format in CCG in several
respects. We discuss the main differences, and explore the consequences for
the generative capacity.

(a) In CLG, the category’s arguments have been split into argument lists for
leftward and for rightward searching arguments. The first element refers to
the innermost argument. This gives greater freedom in choosing to reduce
to the left or to the right, while in a standard categorial format this order is
explicitly specified in the order of the arguments. This increases the strong
recognizing capacity of CLG. That is: CLG recognizes more different struc-
tures than CCG. Maintaining more than one argument list does not affect the
weak recognition capacity of CLG (Cremers 1999). CLG and CCG share the
same string language, but may assign different structures to it. In CCG, using
only categories in standard format, the same strong recognizing capacity
can be achieved by adding categories created by mixing the left and right
arguments in a different way from the categorization of the word. Because of
Lambek’s theorem (a/b)\c ⇔ (a\c)/b, these categories are (weakly) equiva-
lent. The theorem is responsible for generating an exponential number of
analyses for a constituent. Any derivation tree over CLG can be transcribed
into a tree containing only categories in standard form. In principle, lexi-
cal entries might be assigned a large number of different categorizations.
Because of rule restrictions, however, each lexical entry has only one typical
categorization that is effectively taken into account. Thus, the lexicon can be
organized in such a way that any category is supplied with one list of argu-
ments (modulo the list of special arguments) in a standard order. This elimi-
nates ambiguity on the lexical level. Nevertheless, as words can still have dif-
ferent categorizations, i.e. non-mixed-up equivalents, structural ambiguity is
not taken out of the grammar.

(b) In CLG, argument lists are flagged for affectedness (cf. section 1.6.1).
These flags can be seen as indices of the category’s head (Van de Woestijne
1999; one could read a category x\a~L/u~R as having a head xau, for exam-
ple, yielding a category xau\L/R. By definition however, flags may change
as a consequence of cancellation and composition; basically, therefore, one

PARSING THE SYNTAX 121

could claim that the primary head is affected by cancellation and composi-
tion. This runs counter to the definition of head in CCG by Joshi et al. (1991);
here, the head is essentially unaffected by composition. However, the flag on
the result category does not constrain the applicability of a rule, but merely
serves as an output feature. In order to stay within the CCG framework, we
would have to abstract away from flags. On the other hand, flags do not con-
tribute to the generative capacity of the grammar. This follows from the fact
that both category names and flag names, hence any combination of them,
come from finite sets. Affectedness flags limit the search space for the appli-
cable rules, but do not exclude proper derivations. They are processing fea-
tures, rather than syntactic markers.

(c) In CLG, wh-arguments come with a particular cancellation mode and are
treated in a special way. In merging argument lists, they are ‘suppressed’ in
that they always end up at the bottom of the merged list, in order to be left-
peripheral when cancelled (cf. section 1.6.2.3.4). This special treatment is very
restrictive, and affects neither count properties nor the preservation of direc-
tionality. The restrictions are the following: an argument list (whether lexical
or merged) may contain one wh-argument at most and a wh-argument occurs
only in a left argument list. These restrictions start out from the lexicon, and
are maintained under composition. Clearly, the special treatment is context-
free: in merging lists, check for the occurrence of wh-elements; if none is pre-
sent, just append; if more than one is present, cancel the operation; if there is
exactly one, put it at the bottom of the appended stack. The only effect of this
treatment is on the word order: the wh-argument is bound to be ‘consumed’
at the left periphery of the categorial complex that introduced it.
The context-freeness of this special append operation of two lists L and R can be
shown by constructing a pushdown automaton, or merely a pushdown trans-
ducer, that uses an input tape containing the category symbols of L, followed by
those of R, and one stack, on top of which the dislocated element is pushed as
soon as the category symbols of L have been written to the output tape, and that
is popped as soon as the category symbols of R have been written to the output
tape. Pushdown automata are equivalent to context-free grammars.

(d) Furthermore, in the grammar of Dutch certain pronouns must be allowed
to be cancelled (deleted from an argument list) without being on top of the
stack, i.e. without having a fixed position in the order of arguments. These
pronouns occur (among other functions, which are not under discussion
here) as left arguments or complements of prepositions. They come in three
forms: hier ‘here, this’, daar ‘there, that’ and er ‘there, it’ (see also section 1.2).

122 SYNTAX

By necessity, they are a distinct class of pro-nps. The rule concerning their
cancelling differs from all other rules in grammar, in that it does not match
the top of the stack but has to check a complete argument list. Still, processing
it is context-free as the argument stack – not to be confused with the stack of
a pushdown automaton – is simply a list, and cancelling, that is deletion of a
list element, requires only regular operations. Even this dirty feature of Dutch
does not unbalance the grammatical set-up, although er-pronouns lean heav-
ily on disharmonious composition, a notorious composition mode beyond con-
text-freeness, which we need to handle crossing dependencies, among others
(cf. section 1.4.8). Neither the repression of wh-elements discussed above nor
the anywhere-cancellation of er-type pronouns permutes argument lists.

(e) While expressing the rules of CCG, the syntax of categories is also
involved. In CCG’s Generalized Composition rules, the full internal structure
of the secondary category is taken into account, while in CLG, composition
is also sensitive to the full internal structure of the primary category. Shift-
ing part of the load to the primary category does not increase or decrease
CLG’s generative capacity. In particular, ‘opening’ the primary category as
such does not induce permutation closure, nor does it result in the so-called
MIX languages (Cremers 1999).

(f) In CLG, two types of categorial assignments are used that may refer to
themselves, to wit the double type for wh-elements, and the automorphism
type for adjuncts. The syntax of a double type, represented by a pair of cat-
egories Cleft * Cright, could compromise the grammar or its generative capacity
when Cleft and Cright are cancelled against each other. However, this is made
impossible because of appropriate lexical assignments. The only disadvan-
tage of double types, then, is having to treat one more category per sentential
domain. Adding this constant number does not affect CLG’s generative capac-
ity. For double types see also section 1.6.2.2.6 and chapter 3.
Automorphism types are types that can combine with categories headed by a
category from a subset from VT to form a new category of that head. Their sta-
tus is discussed in section 1.6.3. In CLG, this subset is restricted to some pre-
dicative and sentential basic types. Procedurally, this definition means that
an inert type automorphism, when heading the primary category, is replaced
by the head of one of the secondary category, while changing/constituting
left or right argument lists up to the merge mode level. This is implemented
by assigning a unique label to an automorphism in the lexicon and by apply-
ing a rewrite rule to the label once, and as soon as the automorphism type is
involved in a derivation. The syntax of a rewrite rule takes the same form as

PARSING THE SYNTAX 123

normal CLG rules. By its nature, a rewrite rule does not obey count invariance
or reducibility, but is to be regarded as a non-recurring translation step that
constructs a suitable instance of a combinatory rule as needed during the der-
ivation process, and can be taken in polynomial time and space. This rewrite
procedure prevents the lexicon from being overloaded with completely
predictable forests of adjuncts. CLG’s generative capacity is not affected by
rewrite rules as they do not introduce new structures.

(g) CLG’s Generalized Composition rules can be derived from CCG’s General-
ized Composition rules (199)-(200) as follows. In these rules, the primary
and the secondary heads x and y may be complex categories by definition.
Substituting (p|w1|w2….|wm) for x in (199) gives (202), taking time and space
proportional to the number of categories, i.e. m+1. Thus, (202) is an ordinary
rule of CCG, though written down more restrictively, to be derived from (199)
in linear time and space. Such a substitution cannot be made to achieve (201),
however, because separating the primary category’s head and arguments can-
not be done in one of CCG’s Generalized Composition rules in constant time
and space. However, although a category is defined recursively, each lexical
category from VN, and consequently each derived category from C(VN), has a
finite internal complexity. It is easy to see that an algorithm exists splitting the
head and arguments of a generalized category (p|w1|w2….|wm), taking time
and space that are proportional to the number of arguments. In fact, Prolog’s
append/3 predicate (in reverse) is such an algorithm. Specified as a Prolog list,
splitting only costs constant time, as splitting a list into its head and tail is
a one-step operation. By appending (‘chaining’) the arguments, which takes
time and space proportional to the number of arguments of the primary cat-
egory, the result category is achieved. Thus, (201) is an extraordinary rule of
CCG, to be derived from (199) in no more than linear time and space.

The overall conclusion is that there is a polynomial mapping function from
CLG’s category format to CCG’s more general form. CLG’s rule syntax is a more
practical, and slightly more liberal reformulation of CCG’s rule syntax, and can
be derived from it by polynomial means. CLG is maximally as complex as CCG;
this means that, if the recognition task for CCG can be done in polynomial
time, it can also be done for CLG in polynomial time. Although CLG’s genera-
tive capacity is a little larger than CCG’s, it is practical for the chapters to come
to regard CLG as an instance of CCG.

124 SYNTAX

1.8.4 CLG and the Chomsky hierarchy

The first categorial grammars only defined rules for Forward and Backward
Application. Bar-Hillel et al. (1964) have shown that these grammars have
the same weak generative capacity as context-free phrase-structure gram-
mars. Lambek (1958) added new deduction rules to these A(jdukiewicz)
B(ar-Hillel) grammars, in particular, rules deriving complex categories by
hypothetical reasoning: if a and b go to c, a goes to c under hypothesis b. These
rules add to the descriptive power of AB grammars, as they allow for more
combinatorics, like harmonic (function) composition x/y y/z → x/z and x\y
y\z → x\z, and type raising x → y/(y\x) and x → y\(y/x). Pentus (1993) proved
that Lambek grammars are still context-free. Adding ‘residuation modalities’
to Lambek (1958) grammars does not extend their weak generative capac-
ity beyond context-freeness (Jäger 2003). CCGs generalize the Forward and
Backward Application rules by Generalized Forward and Backward Compo-
sition rules, respectively (Steedman 1990). This means that CCGs, including
CLG, at least recognize the context-free languages. CLG’s extended form of
Generalized Composition cannot be exploited to recognize the permutation
closure of the so-called MIX language {anbncn: n > 0} (Cremers 1999). The MIX
language is more than context-sensitive. Adding modal operators plus struc-
tural postulates greatly increases the complexity of Categorial Grammars
(Jäger 2003). The crux is what is to be understood as ‘structural postulates’.
CLG’s rules of Generalized Composition can hardly be taken as ‘structural’, as
they can be derived from CCG’s rules in polynomial time. The same is true for
the finite set of modal operators. Joshi et al. (1991) show that CCGs, e.g. CLG,
are weakly equivalent to Linear Indexed Grammars, which are in the class
of the Mildly Context-Sensitive grammars. Linear Indexed Grammars (LIGs)
were defined by Gazdar (1985) as a restriction of the Indexed Grammars,
introduced by Aho (1968) as a generalization of CFGs. Indexed Grammars
may be described as CFGs in which a stack of so-called stack indices is associ-
ated with each non-terminal. Rule invocations can be limited by restrictions
on the top of the stack. In a LIG, only one daughter non-terminal can inherit
its parent’s stack, instead of all daughters.

Joshi (1985) defined a class of formal grammars which are only slightly more
powerful than CFGs, but which still allow for descriptions of natural languages
in a linguistically significant way. This class, dubbed mildly context-sensitive
languages (MCSL), is described by Joshi (1985) and Joshi et al. (1991) to have
at least the following properties.

PARSING THE SYNTAX 125

(1) CFLs are properly contained in MCSL;
(2) Languages in MCSL can be parsed in polynomial time;
(3) MCSGs capture only certain kinds of dependencies, such as nested

dependencies and certain limited kinds of crossing dependencies;
(4) Languages in MCSL have the constant growth property.

CCGs, including CLG, are an extension of AB grammars, which are weakly
equivalent to CFGs, satisfying (1). Polynomial time parsers for CCG do exist;
see below. This satisfies (2). Regarding (3), Joshi et al. (1991) give the exam-
ple of “subordinate clause constructions in Dutch or some variations on them,
but perhaps not the so-called MIX (or Bach) language, which consists of equal
numbers of a’s, b’s, and c’s in any order”. CLG was designed to capture the
Dutch verb cluster in subordinate clauses, including crossing dependencies.
Obviously, CLG also handles various instances of nesting dependencies. As
was mentioned above, CLG is not able to generate the MIX language. CLG,
then, may be said to comply with (3). The constant growth property requires
that the length of the sentences generated and put in order by the grammar
grows linearly. This is certainly not the case for {a2n | n ≥ 0}. In CLG there is no
substantial numerical condition, like the sentence’s length, on the generated
structures. Look-ahead is restricted to one neighbour’s category only, and by
inspecting the first element of the list of leftward arguments and the first ele-
ment of the list of right searching arguments, including the wh-position, at
the same time. CLG, then, complies with (4). In conclusion we can say that the
language generated by CLG is not inconsistent with MCSL.

The positioning of Categorial Grammar in the Chomsky hierarchy is not obvi-
ous. In the spirit of Van Benthem (1993), Jäger (2003: 106) states “that there
is tight connection between interaction postulates and generative capacity.
This may eventually lead to a taxonomy of languages that is much more fine-
grained than the traditional Chomsky hierarchy.” MCSL is an excellent candi-
date for an in-between class of ‘reasonable’ grammars that are linguistically
relevant and semantically potent. If CLG lives in MCSL, it is in good company.

1.8.5 Parsing CCGs

For any computational problem, we are interested in algorithms that can
solve the problem. We want to know how efficiently these algorithms operate
in terms of running time, memory usage, or other computational resources.
Most of the time, by ‘most efficient’ we mean ‘fastest’, as time considerations

126 SYNTAX

are often the most important in practice. Time complexity relates the execu-
tion time of an algorithm to the size of its input. Here, the problem is deciding
whether a string (a sentence) is in the language generated or recognized by a
grammar of some type. A parser is an algorithm to solve this problem. For a
CFL and an MCSL the problem is known to be polynomially solvable. That is:
for any arbitrary input sentence, i.e. in the worst case, the largest amount of
time needed by the parser to decide whether the sentence is in CFL or in MCSL
is a polynomial function of the size of the input, n. Such a parser is called effi-
cient. When the major term of the polynomial function is n3, ignoring constants
and lower orders of magnitude, the parser is said to run in cubic time, or, to put
it formally: to have O(n3) time complexity. The ‘Big O’ notation is useful when
analyzing and comparing the efficiency (or: scalability) of algorithms – espe-
cially when the size of the input becomes large – independent of properties of
actual hardware. The key to efficiency is for a parser to be more rigid than the
grammar. Where a grammar defines the allowed structures in a language, a
parser blocks the redundant, albeit grammatical ones (Eisner 1996).

Above, it was shown that there is a relationship between CLG and CCG, which
can be established in polynomial time and space. For practical purposes,
we regard CLG to be an instance of CCG. A well-known parsing algorithm
for CCGs, including CLG, and displaying polynomial time complexity is that
of Vijay-Shanker and Weir (1990). It is based on a well-known parsing tech-
nique for context-free grammars, namely the chart parsing technique (Kay
1973, 1980), and runs in n6 time.

Chart parsing algorithms are based on dynamic programming. This technique
systematically fills in a table of solutions (or, more general: items) to sub-prob-
lems. When the table is complete, and spurious ambiguities have been removed
(see below), it contains not only the solution to each sub-problem, but also to
the problem as a whole. Because of this property, the way chart parsers handle
alternative solutions is dubbed parallel, as opposed to backtracking, the latter
keeping only one solution at a time in memory. Tabulation is necessary to face
the inherent ambiguity of natural language. Chart parsing algorithms may dif-
fer as to the type of items they use (their data structure), and the processing
order (which follows from the algorithm’s control structure).

When parsing of a grammar G is the problem, the table is a chart (or: well-
formed substring table). A chart is a two-dimensional array that relates spans
(substrings, denoted by starting and ending position) to categories (or, more
generally, constituents encoded by sub-trees). A sentence has a parse, i.e. it is

PARSING THE SYNTAX 127

in L(G), if the chart has an entry that relates the substring starting at position
1 and ending at position n to some designated symbol, for example s. For CFGs,
a parser does not have to know how a constituent is constructed, but only that
it can be constructed. As a consequence, there are Cn2 different constituents
possible to be constructed for a sentence of length n, where C is the number of
different categories in the grammar. A constituent can be constructed in mul-
tiple ways. There are O(n) different ways of building a constituent that is O(n)
in size. Building Cn2 constituents in O(n) ways takes O(n3) time, assuming adja-
cency of constituents. Adjacency is guaranteed by categorial combinatorics.
Chart parsers, then, run in cubic time. Generated constituents that cannot be
reached from a valid designated symbol, like s, are purged from the chart. A
sub-tree is never computed more than once, and never stored more than once,
so that it can be shared among parses, which explains the efficiency of chart
parsers. However, as the chart is a compact data-structure, called a shared for-
est, containing analyses to sub-sentences, the analysis for the whole sentence
must be constructed by putting all pieces together by travelling systematically
through the chart. To retrieve the first analysis, this procedure takes polyno-
mial time; to find all analyses, however, takes exponential time.

A chart, being a data-structure, is neutral with respect to parsing and search
strategy. The same is true for CFG rules; they may be said to be declarative
statements. In categorial grammar, however, the categories encode partial
derivation trees. It is easy to see them as the items of a chart parser. From
a parser’s point of view, a category with an adjacent neighbour category
directly triggers the calling of an appropriate reduction rule. In turn, the
resulting category, together with another adjacent neighbour category, fires
a reduction rule that fits their requirements, etc. until the designated symbol,
e.g. s, is reached after a finite number of reductions. In other words: categorial
grammar rules are one-way traffic, that is, directional. They are procedural. A
bottom-up approach (or: data-driven search) is the natural control structure
for a parsing algorithm for lexicalized grammars, like categorial grammar.

A top-down approach (or: hypothesis-driven search) for parsing our type
of categorial grammar would be rather artificial. Given a hypothesis about a
phrase, it is very inefficient to guess two categories that constitute the hypoth-
esis, as categories can be fairly complex (recursive). This also means that a
top-down grammar filter does not make sense. One might add statistics – e.g.
extracted from treebanks – so as to determine a realistic hypothesis about
a phrase, consisting of two possibly complex daughter categories. However,
applying probabilistic means to steer the derivation is contra the rigidity of

128 SYNTAX

our lexicalized syntax (cf. section 1.3): it might cut off possible analyses on
non-grammatical grounds. Applying probabilistic means for selecting analy-
ses post-deriviationally is unproblematic. Extensions to CLG benefit from a
bottom-up parsing regime. The algorithm for removing spurious ambigu-
ity operates in a bottom-up fashion. Regarding robustness, it is pointless to
make any top-down hypotheses for partial derivation structures. A semantic
filter will gain maximum efficiency only when it can be applied to fully speci-
fied logical forms, as early as possible and at any derivational level. Seman-
tic structures that are created in a top-down fashion may be incomplete and
therefore be of less use for filtering or constraining analyses. Top-down pro-
cedures that cannot be applied in parallel to a bottom-up parser for CLG, such
as determining scopal dependencies (cf. chapter 2 on semantics), can only be
applied post-derivationally, that is at the moment that all words of the input
sentence have been processed and all data structures have been computed.

One of the main disadvantages of a bottom-up parsing strategy is that struc-
tures (sub-trees) are created that will never lead to the designated top sym-
bol. As a top-down grammar filter cannot be implemented efficiently while
filling the chart, because of the recursive nature of categories, nodes that are
not descendants of a valid top node are filtered from the completed chart.
While constructing the parse tree(s), disambiguation takes place by deploy-
ing a bottom-up semantic filter (see below). Empty categories – being another
problem for bottom-up parsers – do not occur in CLG.

In addition to a bottom-up control structure, the parsing strategy needs a way
to consume the input symbols. A straightforward implementation is a left-to-
right approach, building one-word constituents first, starting at position i-1, and
ending at position i, for i=1..n, then proceeding to two-word constituents, start-
ing at position i-2, and ending at position i, etc. while each level builds on the
results of previous levels, that is, building constituents from shorter to longer
ones in a strictly bottom-up manner. Finally, a constituent is built from position
1 up to n. A left-to-right bottom-up processing order ensures that all analyses of
shorter ranges are ready before reductions of longer ranges are tried.

Vijay-Shanker and Weir’s (1990) algorithm for parsing CCGs is based on the
Cocke-Kasami-Younger (CKY) algorithm (Kasami 1965, Younger 1967), which
is an example of a bottom-up chart parser. The CKY algorithm requires the
grammar to be in Chomsky normal form: grammar rules are of the form A →
a with A a non-terminal and a a terminal symbol, or A → A1 A2, with A, A1 and
A2 non-terminals.

PARSING THE SYNTAX 129

1.8.6 Parsing CLG

The grammar rules in CCG, as defined by Joshi et al. (1991) and including CLG,
can be said to be in Chomsky normal form, as they take the format of binary
rewrite rules. This means that standard CFG parsing algorithms, including
the standard CKY chart algorithm, but even a non-deterministic shift-reduce
parser, will suffice as a parser for CCGs. Stated otherwise: standard CFG pars-
ing algorithms, including chart parsers, are ‘insensitive’ to CCGs as defined
by Joshi et al. (1991), including CLG. Obeying count invariance, directionality
and adjacency (cf. section 1.4), CLG’s rules can be processed locally. In gen-
eral, a rule’s format does not determine its generative capacity. For example,
the disharmonious composition rule has a context-free rule format, but gen-
erates mildly context-sensitive structures. This is possible due to the fact that
the two categories in a CCG rule entertain a relationship that can be defined
by any function. Categories in a CFG rule are atomic and functionally inde-
pendent. The categories in a CCG are indexed, as in Linear Indexed Grammars
(cf. section 1.8.3). They are data-structures, or complex symbols. The locality
of the context-free rule format compensates for the richness of information
compiled in these data-structures. The combination of locality and rich infor-
mation is reminiscent of the deterministic program of Marcus (1980), which
merges grammatical specification and control.

CLG – like any grammar for natural language – includes large context-free
sub-parts. In CLG, these sub-parts follow from applying only the basic case
of the Generalized Composition rules, namely Application. This is enforced
by using only some designated flags (to wit: /^isl for saturated constituents,
/^penins for near islands, /^sentop for wh-islands, and \^part for particles)
which require the secondary category’s arguments list to be empty (cf. sec-
tion 1.6.1). They reduce the grammar to a standard AB grammar, which has
been proven to be context-free.

In general, however, CLG’s generative capacity is beyond context-freeness.
This means that there are families of sentences that a standard CKY algorithm
will not parse in cubic time, but in exponential time instead. Vijay-Shanker and
Weir (1990) explain this behaviour by noting that categories spanning part
of the input can grow proportionally to the input size, and, as a consequence,
be exponential in number. In CLG, this can happen only to categories occur-
ring in the final verb cluster with crossing dependencies in Dutch, and which
can have arbitrarily long sequences of arguments. However, these arguments
can only be of type np. This implies that the number of possibilities for argu-

130 SYNTAX

ment lists is bounded for each value of the list length, and does not exceed a
boundary that is polynominal in the sentence length. By taking advantage of
the fact that regardless of the length of a category only a bounded amount of
information (its head and its innermost argument) is necessary for determin-
ing which rule to apply, Vijay-Shanker and Weir (1990) turn the exponential
worst-case behaviour of the standard CKY algorithm on CCGs into polynomial
behaviour, namely O(n6). Their chart-parsing algorithm is made sensitive to
the characteristics of CCG. Komagata (1997) concludes that their method only
removes a possibility that rarely occurs in realistic grammars. Experiments
with a standard CKY algorithm on CLG for a typical set of Dutch sentences dis-
play an average-case behaviour of O(n3). The same behaviour is reported for
experimental parsers for realistic fragments of English and Japanese (Koma-
gata 1997, 1999). Parsing natural language, then, is just one of the problems
that have bad worst-case performance, but good average-case performance.

1.8.7 Extending and restricting a parser for CLG

Natural language is ambiguous. A parsing algorithm for natural language
will compute different structural descriptions for the same sentence. This is
called structural ambiguity. In Lambekian categorial grammar, this ambigu-
ity is even more apparent due to type raising x → y\(y/x), an immediate con-
sequence of the rule of slash introduction, and associativity of composition.
For instance, John likes Mary might be parsed as [S [John likes] Mary] or as
[S John [likes Mary]], applying (s/np)\np and (s\np)/np for likes, respectively,
which yields different parses for the same sentence with the same mean-
ing. CCG’s flexible notion of constituency allows for the structure [John likes],
which indeed must not be blocked as can be seen in coordinated sentences,
like John likes, but Harry hates Mary. This type of ambiguity has its source in
the grammar, and not in the language. Hence, it is called spurious ambiguity
(Wittenburg 1986). On the other hand, rule-based parsers, confronted with
a grammar or lexicon that is not sound (soundness: all word-forms are cor-
rectly defined by lexical entries) and not complete (completeness: the lexi-
cal entries are the only definitions of the word-forms) may not produce any
analysis at all for some correct sentences. This asks for robustness.

1.8.7.1 Removing spurious ambiguity

Spurious ambiguity in Lambekian categorial grammar is caused by the prop-
erty of structural completeness: when a sentence is grammatical, it can be
derived under all binary bracketings (Moortgat 1988). This gives rise to an

PARSING THE SYNTAX 131

exponential number of possible analyses. Approaches for eliminating spuri-
ous ambiguity can be distinguished in syntactically and semantically oriented
methods. The syntactic method of Eisner (1996) only allows for normal-form
parses. “A parse tree is in normal form, when the result of every rightward
(leftward) [Generalized] Composition rule is not composed (or applied) over
anything to its right (left). ... Thus, every functor will get its arguments, if pos-
sible, before it becomes an argument itself.” Lexical categories are preferred
to derived ones, and application is preferred to composition. This method will
block the structure [s/np John likes] in John likes Mary: it is created by rightward
composition and cannot serve as an argument of a functor to its right after-
wards. This very structure will be allowed, however, in deriving whom John
likes: it can serve as an argument of a functor to its left. Although Eisner (1996)
specifies the restrictions for strictly rightward and leftward operating rules,
he notes that disharmonious (‘mixed’) composition rules are not harmed. He
proves that all spurious ambiguity originates in associative forward (back-
ward) “chains”, like A/B/C C/D D/E/F/G G/H, and that normal-form restric-
tions in fact only allow right-branching derivation trees. Any CCG parser can
be easily adapted to produce only normal-form parses by marking the result
of each rule invocation, and using the markings in the next rule invocation, i.e.
by adding tags to the grammar rules. With the Dutch verb cluster – which is
an instance of a backward chain – in mind (cf. section 1.2) it turns out that Eis-
ner’s tags are a bit too coarse for implementation in CLG. Instead, CLG makes
use of carefully designed sets of modes and flags for a fine-grained control of
the combinatorics, entertaining syntactically rigid derivations. For example,
it distinguishes between islands, near-islands, and wh-islands. In principle,
the grammar rules with modes and flags attached to them produce unique
analyses to an arbitrary string of categories. This follows from the non-asso-
ciativity of the CLG calculus. Thus, CLG avoids spurious ambiguity at the cost
of giving up direct composition of fully specified semantics (but see the next
paragraph on semantic methods for eliminating spurious ambiguity). How-
ever, in order to define CLG in a more principled way, some grammar rules
are underspecified, which leaves some room for spurious ambiguity. A typical
example is the attachment of adjuncts. Many cases can be removed at a local
level by an adapted version of an algorithm by Hepple and Morrill (1989) that
was developed in Vijay-Shanker and Weir (1990). Operating on a full chart, it
inspects each triple of adjacent constituents and checks whether they have
been combined in two different ways with the same result category. The only
possibilities are a left-branching and a right-branching structure. We decided
the right-branching parse to be the ‘normal form’ (cf. Kayne 1994) and
removed the left-branching derivation tree (not the categories themselves).

132 SYNTAX

By applying this method bottom-up and recursively, all and only the spuri-
ous ambiguity will be removed from the chart, according to Vijay-Shanker
and Weir (1990). Their method is defined for spurious ambiguity that arises
from the associativity of (generalized harmonious) composition. Since noth-
ing in their method hinges on the type of composition, spurious ambiguity
that might arise from CLG’s disharmonious composition is removed as well. In
conclusion, all possible sources of spurious ambiguity in CLG will have been
removed before the chart is travelled in order to construct the parse trees.

Another main stream of methods that eliminate spurious ambiguity is seman-
tically oriented. This approach, e.g. Karttunen (1986), eliminates a constit-
uent when its logical form is equal to or subsumes a logical form that has
already been derived and stored in the chart. This check might require expo-
nential time. Note that the concept of a chart – storing computed structures
only once – is exploited here for syntactic as well as for semantic descriptions.
In general, if two interpretations share the same syntactic structure, it may
not suffice to store this structure in the chart only once, because its semantic
structure may require different variable bindings for different interpretations.
Although sharing of semantic substructures is certainly possible, the concept
of a chart is most efficiently exploited for syntactic structure. In CLG then, the
chart is used only for syntactic purposes. After the chart has been filled and
all spurious ambiguity has been removed, one or more parse trees are con-
structed from the chart. Semantic readings are constructed compositionally.
These readings start out in the lexicon as underspecified Stored Logical Form
frames which are unified in parallel to each derivation step. An SLF frame is
a pre-derivational specification of the functor/argument relationships, which
as such does not change during derivation. Derivationally, they will get more
and more instantiated. A chart that has been freed from spurious ambigu-
ity will only give rise to possibly plural but definitely unique logical forms.
Where Eisner (1996) tries to keep only those syntactic parts together that
will enable exactly one parse in each semantic equivalence class (by blocking
non-normal form parses in the grammar), the CLG framework already assigns
the semantic contours in the lexicon. Clearly, rigid grammar, avoiding spuri-
ous ambiguity, can only come with underspecified compositional semantics.
(See also chapter 2 on semantics.)

1.8.7.2 Adding robustness

As for robustness, grammatical and lexical deficiencies need to be remedied.
A chart parser that cannot assign a complete parse tree for an input sentence
might assign sub-trees to parts of the input sentence. This only makes sense

PARSING THE SYNTAX 133

when it is done in a bottom-up fashion. A cover-over-a-chart or cover for short
is a sequence of sub-analyses to sub-parts of the input, together spanning the
whole sentence. A cover consisting of one sub-analysis only, headed by a sin-
gle sentential type, corresponds to the traditional notion of a parse tree. The
definition of a chart parser guarantees that all possible sub-analyses are found
and stored in the chart. Thus, the notion ‘cover’ does not apply to non-parallel
parsing methods, such as a shift-reduce (backtracking) parser. Finding the best
possible cover is a non-deterministic process, as it is an instance of an optimi-
zation problem. Possible evaluation criteria include: to what extent is the cover
fragmented (the number of sub-analyses), to what extent are right-branching
structures to be preferred over left-branching structures, and to what extent
are the sub-analyses’ top-nodes sentential and saturated. Of course, the appli-
cation of these criteria depends on the type of information gathered in the
parsing process. Currently, the Delilah parser selects best parses primarily on
the basis of fragmentation and secondarily, by inspecting the complexity of the
fragments’ logical form (see also chapter 2). But the available information is
so extensive that many other selection procedures could be implemented too.
Since robustness basically corrects grammatical deficiencies, fragmentation
of the parse may also be repaired by relaxing those grammatical restrictions
that resisted composition of combinatory categories or unification of complex
symbols. These are three more or less independent sources of fragmentation:

• two adjacent fragments strand by lack of appropriate categorial typing
– this results from underspecification;

• two categories resist composition because of not complying with the
actual mode of composition (cf. section 1.4.4, 1.6.2 and 1.7.3) – this is
due to overspecification;

• two complex symbols cannot be unified because of inconvergence of
specifications – this too is due to overspecification.

Fragmentation resulting from underspecification – basically: the lack of appro-
priate combinatorial material – can only be repaired by adding new combina-
tory options, by means of a categorial hypothesis. Because the CLG operates
a rigid syntax, inspection of a fragmented sequence may invoke an ‘educated
guess’ on one or more combinatorial options that would have resolved the
fragmentation. This is the general idea:

(206) If < C1, ...Cj ... Cn > is a sequence of combinatory categories and
Cj → α\ [Cj-1...C1]/[Cj+1...Cn], then C1... Cj....Cn → α

134 SYNTAX

The projected category is a hypothetical extension of the specification of the
phrase with category Cj. Projecting this type of hypothesis is to be seen as a
learning tool. It is less suited, however, to solve on-line parsing problems.
As for fragmentation resulting from overspecification: Delilah’s modalized
grammar offers the opportunity to ‘neutralize’ modes of composition post-
derivationally and see what happens to a cover when modal combinatorial
restrictions are lifted. That is: two fragments may be composed according to
generalized non-modal composition rules of the following type, where the
merges of argument lists are chosen so that discontinuity effects are minimal-
ized (cf. section 1.7.2):

(207) a\List1/[b^nonmode|List2] b\List3/List4 →
a\List1+List3/List4+List2

If this relaxation leads to unification of the associated complex symbols and
to a non-fragmented interpretation, this composition seems to be acceptable:
it results from basically sound combinatorics. Note, moreover, that adding
this post-derivational relaxation does not introduce an everything goes deri-
vation – a form of robustness that would violate the semantic regime, which
lives on the idea that being meaningful is not an accident but the outcome of
structural subtlety.

Concerning robustness at the lexical level, information in the lexicon may be
absent, incomplete or simply wrong. A simple, but rough approximation is to
regard missing information to be a name (of type np). In categorial grammar,
however, there are better options, since categories are not absolute, but rela-
tive encodings of the grammar’s agenda. The arguments of a category refer to
one or more neighbours to the left and/or to the right. When in an input sen-
tence exactly one word is missing in the lexicon, an estimate of its category
– modulo adjunctive types – can be derived from the other categories in the
sentence by applying some count protocol (cf. Van Benthem 1986, Cremers
and Hijzelendoorn 1997a). Such a protocol determines supply and demand
of heads and arguments in a string of categories, and applies to CLG. Moreo-
ver, because of CLG’s typical rigidity, the estimate is even deterministic, given
some hypothesis as to the string’s ultimate goal. The strategy applied here
basically follows from ‘inverting’ the operation of reduction rules. This is pos-
sible for CLG, as will be demonstrated in section 1.9.1, where CLG’s recogniz-
ing grammar is converted into a generating grammar.

This means that there are different learning strategies possible for the parser
to construct or reconstruct a missing type. The options include a hypothe-

PARSING THE SYNTAX 135

sis for the result type, e.g. np, the direction(s) in which missing categories
are searched for, and the number of them in each direction. Strategies may
depend on the position of the missing category in the sentence, and do not
depend on the parsing algorithm, but operate on the level of the pre-terminal
analysis of the input sentence. The matter is pursued in Van ‘t Veer (2007).

1.8.7.3 Semantic filter

In addition to the filter that eliminates spurious ambiguity, a semantic filter
has been designed that ranks semantic readings post-derivationally. All logical
forms that arise from the parse trees in the chart are valid and different. They
differ mainly as to their ‘lexical feed’: the way the lexicon has delivered build-
ing blocks to the semantic combinatorics, and therefore the level to which
lexical aggregation – semantic collocates, extended lexical units, construc-
tions – is reflected. Clearly, a logical form accounting for lexical aggregation
is in some sense more adequate than a logical form that does not. Sentence
(208) is more sophistically represented by logical form (209) than by (210),
though the latter can hardly be seen as a wrong interpretation.

(208) John kicked the bucket
(209) died’(john’)
(210) ιx. bucket’(x) & kicked(j,x)

In Delilah, different readings are ranked by evaluating the semantic com-
plexity of their Stored Logical Form at top level, i.e. at the level of the whole
sentence. In successful analyses, small semantic structures that correspond
to large parts are favoured above large semantic structures corresponding
to small parts. This distinction, however, makes sense only when comparing
viable interpretations; therefore, semantic complexity is a property of the
analysis as a whole, and not of its parts. The semantic complexity is calculated
by measuring certain properties of an SLF, including depth, items per store
and number of the (resolved) semantic variables. Since all semantic struc-
ture stems from the lexicon, the degree of involvedness of the top-level SLF
reflects the lexical semantics of the analysis. The ranking of readings resulting
from this measurement can be used to select readings.
There is no canonical way to measure the complexity. The first implementa-
tion of this type of post-derivational reading selection was sketched in Crem-
ers and Reckman (2008). There, the metrics were calibrated by human judge-
ments on the outcome of the ranking. Other approaches may be equally valid.
The important point is that SLF makes this computation feasible (see chapter
2) as part of the parsing process.

136 SYNTAX

1.8.8 Parsing coordination

In section 1.7.4, it was argued that coordinative structures are handled extra-
grammatically by a dedicated algorithm, as the coordinates as such are not
syntactically marked. Such an algorithm was developed in Cremers (1993a),
and implemented in a backtrack parser according to Cremers and Hijzelen-
doorn (1997a). Fannee (2006) converted the algorithm into a tier of the chart
parser. In both implementations, parsing a coordinated sentence consists of

(a) marking the boundaries of the left and right coordinates by finding a
conjunction symbol; it has a combinatorially inert category, which is
not taken into account by the parser

(b) parsing the left and right coordinates separately up to some ‘fully
reduced’ level, which is slightly different, but comparable to an analy-
sis of a cover, revealing that the coordination algorithm in fact imple-
ments a robustness strategy on incomplete phrases

(c) finding and matching levels of corresponding linguistic structures by
applying a specialized, deterministic decomposition algorithm to the
level of analysis pointed at by (b)

(d) constructing a top level analysis for each conjunct, e.g. a sentential
analysis.

In abstracto, here is what the algorithm does. Given a sequence of categories,
one of which is a conjunctive, with hypothetical reduction to α

(211) [α c1 c2 c3 & c5 c6 c7]

the algorithm determines, by inspecting the nature of the categories at both
sides of the conjunction, which category has to be decomposed in order to
reveal a coordinate and which other categories form a coordinate, e.g.

(212) [α c1 c2 [c3 c4 c5] & c5 c6 c7]

and resolves all elliptical structure to the left and the right of the conjunction,
yielding

(213) [α c1 c2 c4 c5 c6 c7] & [α c1 c2 c4 c5 c6 c7].

Subsequently, the parser pursues the hypothesis that both sequences <c1, ...,
c7> actually reduce to α according to normal syntactical and semantical com-
binatorics. More concretely, it computes the well-formedness and interpret-
ability of the structure

PARSING THE SYNTAX 137

(214) [s [c1 John] [c3 [c4 loves] [c5 his dog]] [& and] [c5 her puppies] [c6 a lot]]

by transforming it into

(215) [s [c1 John] [c4 loves] [c5 his dog]] [& and] [s [c1 John] [c4 loves] [c5 her puppies] [c6 a lot]]

in order to test whether the sequences of categories to the left and the right
of and reduce properly to S.
Determining the category in the span of which an outer border of a coor-
dinate is ‘hidden’ – c3 in the examples (211) and (214) – is the algorithm’s
major task and achievement. The algorithm subsists on CLG’s rigidity: instead
of pumping up – in a particular context – the conjunction to some hypotheti-
cal category with structure β\β/β and testing that hypothesis on the present
partial analyses, it sticks with the normal categorial reductions, and compen-
sates for the lack of categorial flexibility with deterministic inspection of the
reductions’ result. Cremers (1993a) argues that this strategy is sound and
complete in the following sense:

(a) it deals with both constituent and non-constituent coordination
(b) keeping the conjunction combinatorially inert and promoting it to a

position ‘outside of the brackets’ respects the semantic integrity of the
original phrasal conjunction.

Currently, the algorithm is defined and implemented for binary conjunctive
structures only. Even this restriction is proven to complicate the parsing pro-
cess for coordinations when compared to the parsing of non-coordinative sen-
tences by significantly enlarging search space (Cremers and Hijzelendoorn
1997a) – the procedure by definition operates on partial analyses. This com-
plication is inevitable, given the inherent syntactic underspecification of coor-
dination discussed in section 1.7.4. There can be no doubt that allowing for
multiple coordinations will again increase the complexity of the parsing task.
This increase, due to partiality, is bounded only by the fact that the algorithm
itself does not add to the complexity of the parsing process, as it works in poly-
nomial time for each cover (Fannee 2006). The rise of complexity follows from
the nature of coordination, not from the application of the parsing algorithm.

The core of the algorithm will suit the parsing of other coordinative phenom-
ena, like discontinuous ellipsis. We expect this to be the case because the algo-
rithm is essentially a repair mechanism, a ‘late’ and high-level implementation
of grammatical knowledge, applied to solid syntactic information. All phenom-
ena that cannot be detected or unveiled by normal combinatorics for composi-
tion of adjacent phrases can be delegated to this type of repair strategies.

138 SYNTAX

1.9 GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION

There are many good reasons for modeling language generation. Most of them
point to the potential usefulness of generating natural-language systems for
information retrieval and disclosure of any kind, as is widely discussed in
Reiter and Dale (1997) and the many workshops on natural-language genera-
tion nowadays. In this section, we will concentrate, however, on modelling gen-
eration as the ultimate test for the adequacy of a computational grammar: your
grammar is as good as the sentences produced by it. The question one can ask a
grammarian, then, is: did you construct your grammar so that it is explicit and
precise enough to generate well-formed and interpretable sentences without
having resort to pre-established frames, scenarios or templates? If you want
to know whether a grammar leaks, and where, build a free generator for it and
evaluate its yield. This is the issue in this section. In the chapter on semantics,
it will be argued, in addition, that a generator needs free generating capacity
to generate from logical form, since logical representations are bound to be
underspecified with respect to the sentences underlying them.

1.9.1 Two-directional grammar

From a computational perspective, the main difference between parsing
natural language and generating natural language is linearization. When you
parse a sentence, the order of words is input; when you generate, the order of
words is output.
Prolog’s definite clause grammars (dcgs) are famous for being applicable in
two directions: the same set of rules can be used for parsing as well as for gen-
erating (Pereira and Warren 1983). As a matter of fact, the difference between
parsing and generation evaporates in such a formalism. Although Delilah is
not founded on dcg, it is instructive to study the limitations of dcg. The revers-
ibility of dcgs hinges on a tight connection between linearity and constituency:
to be a constituent in a rule is to be well-ordered and continuous in a sen-
tence. Literally between brackets, the constituents can be related to each other
in every expressible manner – including e.g. semantic subsumption – but the
linear ordering of a phrase cannot be manipulated. Fixing linear order is the
backbone of reversibility in dcg. A slightly weaker but very insightful conclu-
sion in this vein is drawn by Van Noord (1993:62) for reversible grammars
in general. Moreover, it must be noted that any indeterminism in a dcg, e.g.
caused by alternative expansions of rules, leads to irreversibility of the gram-
mar in the sense that certain structures – those covered by rules lower in the

GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION 139

parsing hierarchy than their alternatives – cannot be generated without rede-
fining Prolog’s built-in depth-first strategy for unification and recursion.
Consequently, every discontinuity in dcg has to be spelled out as a sequence
of well-defined and well-ordered constituents. No essential variables can be
used to cover a variety of strings: dcgs operate by recursive instantiation of
strings, and string variables in the rules cannot be instantiated. Of course, this
makes the whole complex of non-constituent coordination indefinable as a
‘normal’ rule in dcg. Since we do not deal with coordination in the combina-
tory grammar anyway, this does not have to prevent us from using reversible
dcg as the combinatory engine. There is, however, another form of discon-
tinuity in Dutch that transgresses the one-to-one correspondence between
constituency and linear ordering. The problem is adverbial adjunction, again
(cf. section 1.6.3). Consider the following sentence. The adverbial operator
waarschijnlijk ‘probably’ can occur in each position marked by a dot.

(216) Toen heeft . een linguist uit Ter Apel . een boek van Chomsky . op internet . te
koop aangeboden
then has . a linguist from Ter Apel. a book by Chomsky . on internet. for sale offered
‘Then a linguist from Ter Apel offered a book by Chomsky for sale on internet’

In all cases of waarschijnlijk ‘insertion’, the adjunct must be related to a propo-
sitional domain – it is a sentential modifier – categorially headed by the finite
auxiliary. At the same time, however, its scope with respect to other operators
like the indefinite quantifiers has to be established (cf. Diesing and Jelinek
1995, De Hoop 1992). In a dcg, this would mean that for each possible posi-
tion of waarschijnlijk in this sentence, its left and its right environment must
be specified at constituent level in a separate rule of grammar. Although this
would probably not push the grammar of Dutch completely outside the realm
of finiteness, we clearly miss a generalization if every vp-design introduces a
set of dcg rules to account for its internal distribution of adjunctive operators.

When one takes semantic reconstruction seriously, reversible grammar like
dcg is not the right – nor most enlightening, most transparent, or most eco-
nomic – instrument to tackle recursive discontinuity, the essence of syntax:
discontinuity arising in structures embedded in discontinuous structures, like
movement out of an extraposed or otherwise dislocated constituent. Delilah
does not entertain reversible grammar but operates two related, interde-
pendent, yet distinct syntaxes for parsing and generation. The main differ-
ence between the two grammars is that generation must account for com-
position of segments that may turn out not to be adjacent in the final string.
To put it directly: the rule that induces the unification of a verbal structure

140 SYNTAX

and one of its arguments must result in a linearization structure that leaves
room for an intervening verbal adjunct. That is: the resulting structure must
acknowledge a well-ordered string segment in which an adjunct (or another
intervener with a suitable category) can reside – whether that intervention
actually ‘occurs’ or not. The generating rule format has to keep track of pos-
sible or ‘future’ linearizations.

The rule format for parsing has been discussed above, and mainly dealt with
merging stacks of arguments under composition. Empty stacks – unless speci-
fied otherwise – behave as empty lists under append. The rule format for gen-
eration deals with segments of strings, since linearization has to be arranged.
A category in a generation rule is a quadruple of strings <WhString, LeftString,
HeadString, RightString>. The role of each (sub)string is indicated in its name.
A generation rule is associated with a mode according to which two quadru-
ples are compiled into a new one. The basic operation is a reordering of (sub)
strings. To compare the formats, we repeat the parsing rule for mode /^open
(see section 1.6.2.2.3) here, and compare it to its generating or linearizing
counterpart.

(217) Prim \ u~Pla / _~[Sec^open|Pra] ⊗open Sec \ _~Sla/ _~[] →
Prim \ Lf~Sla+Pla / a~Pra

(218) <WhP,LeftP, HeadP,RightP> +open
 <WhS, LeftS1+LeftS2, HeadS, RightS> →

<WhP+WhS, LeftP+LeftS1, HeadP, RightP+LeftS2+HeadS+RightS>

In the generating rule, + stands for string concatenation. The generating rule
is invoked by the primary category, according to an agenda (see section 1.9.2).
At the moment of composition, the primary category must claim four fields:
one for its wh-arguments, one for its other left arguments, one for its head, and
one for its right-hand-side arguments; these form the quadruple of the pri-
mary category in the generating rule (218). The same holds for the secondary
category, addressed by the agenda. At the moment of merge, the claims on the
fields are just that: the final structure of each category and the saturation of
its arguments may be unknown. The /^open merge mode leaves the possibil-
ity that some left arguments of the secondary category are saturated before
this particular merge, while others are absorbed after the merge. Therefore,
the generating rule has to introduce a split of LeftS, LeftS1 and LeftS2; these
lists occur at different positions in the final line-up, the line-up corresponding
with the resulting category in (218).
The secondary head string HeadS has been integrated in the right field of the
resulting quadruple. This is the counterpart in the concatenation algebra to

GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION 141

being cancelled in the algebra of types. One can lose types by cancellation, but
one cannot get rid of strings combinatorially – the grammar of natural lan-
guage is resource-sensitive. For that reason, the leftmost string of the result-
ing category must account for the wh-deliveries of both the primary and the
secondary category, although at least one of them must end up empty. Which
one, is to be determined by the generating \^wh-mode.
In the same vein, the generating rules cannot control the derivation, like
requiring lists – string-fill recipes – to be empty or emptied, as is done in
(217). Instead, (218) positions the secondary right field in such a way that it
being claimed cannot influence the ordering of the other strings: it is periph-
eral in the resulting category.

When one does not use a reversible grammar as such, the question arises how
to travel from one grammar – e.g. the parsing one – to the other. Hitherto, we
have not implemented a general translation from parsing rules into generat-
ing rules, but constructed the generating grammar by hand out of the parsing
grammar. For the sake of the computability of Dutch, however, it would be
rewarding to have an algorithm performing such a translation. In order to
achieve such an algorithm, we first have to formulate a very general relation-
ship between categories and concatenated strings instantiating the category:

(219) C ::= w (C is instantiated by w) iff w is a string of category C;
[C1, ..., Cn] ::= w1+...+wn iff Ci:=wi and the list of categories is a left argument list;
[C1, ..., Cn] ::= wn+...+wi iff Ci:=wi and the list of categories is a right argument list;
[] ::= ε, where ε is the empty string and for all strings w, w+ε = ε+w = w;
H_~La / _~Ra ::= wWh+ wLa-+wH+wRa, where for some XP^wh in La, XP^wh ::=
wWh, and wLa- instantiates the remainder of La. The string wWh+ wLa-+wH+wRa is
represented above and below as a quadruple <WhString, LeftString, HeadString,
RightString>, with appropriate re-labeling.

In this instantiation, a category is associated with a quadruple of strings
wWh+wLa+ wH+wRa. Only the string instantiating the head wH is real, represent-
ing the phonological phrase to which that category is assigned. The other
three strings are virtual, in the very same sense as the types in the argument
list occur negatively until cancellation. Every category constructs a linearly
ordered space of strings. Given this mapping from (lists of) categories to
(concatenation of) strings, we can conjecture the declarative outline of a com-
position-to-concatenation translation for, e.g., the rightward cancelling sort
of rule, like (217). It must be noted, though, that CLG rules give rise to some
degree of non-determinism, allocated in the input conditions of the cancella-
tion modes, the flags (cf. section 1.6). Since flags are declared only at negative

142 SYNTAX

occurrences of types (i.e. in argument lists) and not on heads, a certain con-
text may comply with more than one cancellation mode – one cannot exclude
this possibility. For that reason, the generating, concatenative rules must fol-
low the pattern of the cancellation modes. With this starting point, here is a
translation procedure for the class of rightward cancelling rules; the case for
leftward rules is comparable. The result of the translation is a purely concat-
enative grammar.

(220) Translation of recognizing grammar into producing grammar

Given a rightward cancelling rule

Prim \ Flag1~Pla / Flag2~[Sec^mode|Pra] ⊗mode
Sec \ Flag3~Sla/ Flag4~Sra →

Prim \ Flag13~Sla⊕modePla / Flag24~Pra⊕modeSra

create a generating concatenative rule
<WhP, LeftP, HeadP, RightP> +mode
<WhS, LeftS, HeadS, RightS > →

<WhPS, LeftPS, HeadP, RightPS>

where all the elements of the quadruples in the concatenative rule represent strings
such that

 HeadP represents the string to which the category
 Prim \ Flag1~Pla / Flag2~[Sec^mode|Pra] is assigned

 HeadS represents the string to which the category
 Sec \ Flag3~Sla/ Flag4~Sra is assigned

 WhP is the string such that for some XP^wh in Pla, XP^wh ::= WhP and LeftP
 instantiates the remainder of Pla

 WhS is the string such that for some XP^wh in Sla, XP^wh ::= WhS and LeftS
 instantiates the remainder of Sla

 RightP represents the string to be formed by concatenating the strings that
 introduce the types in Pra, and the empty string if Pra = []

 RightS represents the string to be formed by concatenating the strings that
 introduce the types in Sra, and the empty string if Sra = []

 RightFields = RightP + RightS if Pra is the prefix of Pra⊕modeSra
 RightFields = RightS + RightP otherwise
 LeftFields = LeftP + LeftS if Pla is the prefix of Sla⊕modePla
 LeftFields = LeftS + LeftP otherwise

where + is simple concatenation, and furthermore

GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION 143

a. if Sla = [] then RightPS = LeftS+HeadS+RightFields and
 LeftPS = LeftFields

else if Sla ≠ [] and Flag3 = u then
RightPS = HeadS+RightFields and

 LeftPS = LeftFields
otherwise for some suffix LeftS2 of LeftS,

 RightPS = LeftS2+HeadS+RightFields and
 LeftPS = LeftFields
b. if Flag1 = wh then WhPS = WhP

else if Flag3 = wh then WhPS = WhS
otherwise WhPS = WhS+ WhP

Basically, the mapping, for each string-to-come defines in which region the
string is bound to dwell; this region is defined by the given strings of the pri-
mary and secondary categories. A rightward cancelling rule generates if there
is a generating concatenative rule that simultaneously meets the constraints
above. This representation of a generating grammar is operationalized by
specifying in each lexical template (complex symbol) not only a triple compo-
sitional category a\b/c but also a quadruple concatenative category <w,x,y,z>,
and by having both categories related to proper parts of the template. The
nature of this linking will be discussed in the chapter on the lexicon and uni-
fication. The way the quadruple is specified differs quintessentially from the
way the triple is represented: the quadruple is derived post-derivationally by
an operation makestring/3 that is parametrized inside the template by uni-
fication of the strings and the modes to operate on. makestring/3 is defined
in (221) as a Prolog predicate, operating on derivationally given quadruples
to determine a new one – the quadruple holding the linearization of the tem-
plate itself. The definition is followed by a scheme for a template in which it is
functional; here, in quadruples e stands for the empty string.

(221) makestring(OutString, [], OutString) :- !.

makestring(In, [(FirstMode, FirstArgumentString)|Rest], OutString :-
 generating_rule(In ⊗FirstMode FirstArgumentString → Result),
 makestring(Result, Rest, OutString).

144 SYNTAX

(222) Template-scheme for triple and quadruple categories

...
triple-category: a_~[b^mode1] / _~[c^mode2]
quadruple-category: A
string: makestring(<e,e,Headstring,e>, [(mode1, <W1,X1,Y1,Z1>),
 (mode2, <W2,X2,Y2,Z2>)], A)
...
head: string: Headstring
...
argument(1): type:b
 mode:mode1
 string:<W1,X1,Y1,Z1>
...
argument(2): type:c
 mode:mode2
 string:<W2,X2,Y2,Z2>

Under such formalisms, the generator can be adapted into an excellent test
apparatus for the parser if every cancelling rule generates. In Functional
Grammar, exploring two-way grammars has been good practice in the com-
putational enterprise from the very start (e.g. Kay 1981). This, however, does
not imply that parsing and generation are themselves reversible processes.
(222) shows that there is a homomorphism from the cancellation algebra
into concatenation, but the mapping is not bijective. The cancellation algebra
essentially computes types to get the lambda conversions right, checking lin-
earization in order to avoid ambiguity or invalid unification. The concatena-
tion algebra focuses on linearization only. Because linearization comes with
discontinuity – dismantling constituenthood and adjacency, the prerequisites
for categorial composition according to Steedman (1990) – strings cannot be
the sole basis for appropriate lambda conversions. Thus, there is no homo-
morphism from concatenation into cancellation. The grammar is two-sided,
translatable and computable, but not reversible. As a matter of fact, the triple
categories steer generation in a way that is described in the next section.

When, for the sake of parsing, one needs cancellation rules that do not gen-
erate, these rules are at least suspicious. They endanger the testability of
the grammar, and question the idea that we have a homogeneous grammar
for each language. One such rule might be the one dealing with the recovery
of so-called r-pronouns in Dutch (see also (23)). It allows for an ‘anywhere’
appearance of the category rnp and has to be defined recursively.

GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION 145

(223) rnp-special rule

Prim\ L / _RF1~R ⊗rnp rnp \u~[] /u~[] → Prim\ L / a~RR if
 append(Pra, [pp^6|Sra], R) and

rnp\u~[]/u~[] ⊗isl pp_LF1~[rnp^isl]/Pra →
pp\a~[]/PraP and

 append(Pra, [pp^rnp| Sra], RR)

The rule states that an rnp can be cancelled in any position if the primary cat-
egory gives rise to a pp-argument that licenses the rnp, and that the pp has to
be marked for being saturated with respect to that rnp. This rule is meant to be
exceptional as a parsing rule, and it does not generate, because its context-free
rule format is conditioned. We are not aware of any grammatical analysis for
the phenomenon that could help us out of this impasse. Interestingly, the situ-
ation is less complex from a linearization point of view: whenever a pp look-
ing for an rnp is absorbed, the rnp-string is integrated with the left field of the
absorbing category. The problem with the linearization rule, though, is that it
cannot be translated from (223). As a consequence, we are forced to leave open
the possibility that some ‘abnormal’ parsing rules must be manually turned
into linearizing and generating rules. Because this linearization procedure is
completely opportunistic and ad hoc, we will not try to specify it here.

1.9.2 Categories as agendas

Reiter and Dale (1995) define generation for applications by means of a
layered architecture involving at least three stages: text planning, sentence
planning and linguistic realization. The generation we describe here is, of
course, not an application. Yet, it may be useful to locate the strategies of the
Delilah generator as living in the interface of sentence planning and linguis-
tic realization. Our generator creates a meaningful sentence by following a
syntactical strategy. It may have as a goal to produce a sentence with certain
detailed semantic properties or even expressing a certain proposition. This
goal, however, is achieved by piecemeal, unification-oriented construal. In
chapter 2, on semantics, a procedure will be given to generate from fully-
specified logic in this manner.
Here, we concentrate on the use of combinatory categories in the generation
process, for any purpose and for any input. The internal structure of these
categories sets off a sequence of lexical lookup, unification of complex sym-
bols and update of the agenda.
In the remainder of this section, we will offer a shortcut through a generation
process by numbered statements. Below is the generation scheme, focusing

146 SYNTAX

on agenda management. The templates are represented by suggestion, rather
than by detail. The indexation of arguments is considerably simplified.

(224) Concise overview of a generation procedure

(a) initialization: determine the categorial hypothesis: s

(b) determine a lexical template with type: s_/_
(c) found (randomly): wenst ‘wish’

 T1 = [...HEAD:CONCEPT:wish...SEM:f(..wish..)...
 TYPE: s\u~[np^wh#1]/u~[np^isl#2]...
 ARG(1):...
 ARG(2):...PHON:makestring(..wenst..)]

(d) fix agenda (by cancellation and merge):
given: [s]
to_find: [np^wh#2, np^isl#1]

(e) retrieve a lexical template with type np_/_ and properties as determined by
the value for the feature ARG(2) in the s template

(f) found (randomly): wettig ‘lawful’

T2 = [...HEAD:CONCEPT:lawful...SEM:g(..lawful..)...
 TYPE: np\u~[]/u~[n^isl#3]...ARG(3):...]

(g) fix agenda (by cancellation, merge and unification T1 ⊔ T2):
given: [s]
to_find: [n^isl#3, np^isl#1]

(h) retrieve a lexical template with type n_/_ and properties as determined by the
value for the feature ARG(3) in the s template

(i) found (randomly): goud ‘gold’

T3 = [...HEAD:CONCEPT:gold ...SEM:h(..gold..)...
 TYPE: n\u~[]/u~[] ...]

(j) fix agenda (by cancellation, merge and unification (T1 ⊔ T2) ⊔ T3):
given: [s]
to_find: [np^isl#1]

(k) retrieve a lexical template with type np_/_ and properties as determined by
the value for the feature ARG(1) in the s template

(l) found (randomly): langzaam ‘slow(ly)’

T4 = [...HEAD:CONCEPT:slow...SEM:k(..slow..)...
 TYPE: np\u~[]/u~[n^isl#3]...ARG(4):...]

(m) fix agenda (by cancellation, merge and ((T1 ⊔ T2) ⊔ T3) ⊔ T4):
given: [s]
to_find: [n^isl#4]

(n) retrieve a lexical template with type n_/_ and properties as determined by the
value for the feature ARG(4) in the s template

(o) found (randomly): water ‘water’

T5 = [...HEAD:CONCEPT:water ...SEM:m(..water..)...
 TYPE: n\u~[]/u~[] ...]

(p) fix agenda (by cancellation, merge and (((T1 ⊔ T2) ⊔ T3) ⊔ T4) ⊔ T5:
given: [s]
to_find: []

GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION 147

(q) apply makestring/3: wettig goud wenst langzaam water
 ‘lawful gold wishes slow water’

apply f∘g∘h∘k∘m
T = [... HEAD:CONCEPT:wish, HEAD:PHON:wenst...

 SEM: quant(A,gen).[water(A) & slow(A) &
 quant(B,some).[gold(B) & lawful(B) &
 quant(C,some).[wish(C) & state(C) &
 experiencer_of(C,B) & theme_of(C,A) &
 attime(C,D) & tense(C,pres)]]]...
 TYPE:s\a~[]/a~[]...
 ARG(1):PHON:langzaam...
 ARG(2):PHON:wettig...
 ARG(3):PHON:goud...
 ARG(4):PHON:water...]

The yield of the generation procedure is a template that contains at least lin-
earization of phonological units and composition of semantic functions. The
linearization and the composition are the main results, and they are fed by
incremental unification of templates during the procedure. Chapter 3 elabo-
rates on this unification process. It is important to stress here that the incre-
mental unification is steered by the agenda which is cast in terms of the out-
put categories of the syntactic composition rules. The ‘agendafication’ of an
output category is straightforward. For any category (225) that is the result
of a cancel-and-merge rule called for in the derivation, the agenda it imposes
on the subsequent generation procedure is (226).

(225) Head_~L1 ⊕i L2/_~R1 ⊕i R2

(226) given: Head
to_find: L1 ⊕i L2 and R1 ⊕i R2

Technically, the agenda is added to the existing one under cancellation of
the given-value from that agenda, if possible. If not, both the head and the
appended argument lists are added to the given and to find values, respec-
tively. Below is the generating algorithm, amounting to an agenda regime;
first, the well-known notion of logical backtrack is defined procedurally.

(227) Backtrack

the statement backtrack p1, ...pn-1 until pn means:

find a valuation V such that for all i, V(pi) is true
if such V exists then proceed to the next statement

else regress to previous statement

148 SYNTAX

(228) Generating algorithm

a. input hypothesis H
 set agenda to <given: [], to_find: [H]>
 set structure to []

b. backtrack
c. if agenda = <given: [], to_find: [Only]> then

 select a template Tonly with category(Tonly) = Only\L/R
 set structure to [Tonly]
 set agenda to <given: [Only], to_find: L+R >
 endif

d. if agenda = <given: Given, to_find: ToFind> then
e. backtrack
f. if Given = [First | Rest] then
 extract a TFirst from structure

 select a template T such that for some rule
 category(T) ⊗ First\L/R → New\LNew/RNew

 set TNew
 to T ⊔ TFirst

 endif
g. if Rest =/= [] then

 for some R ∈ Rest determine some rule
 New\LNew/RNew ⊗ R\L7/R7 → New\LN2/RN2

 extract a TR from structure
 set TNew

 to TNew ⊔ TR
 replace in structure TFirst by TNew

 remove TR from structure
 set agenda to <given: Rest-[R]+[New],
 to_find: LN2+RN2+ToFind>
 else
 replace in structure TFirst by TNew

 set agenda to <given: [New],
 to_find: LNew+RNew+ToFind>
 endif
 until Given = [H] % end backtrack (e)

h. backtrack
 if ToFind = [First | Rest] then
 select a template T with category(T) = First\L/R
 % by now, structure is a singleton set
 extract TOnly from structure
 set structure to [TOnly ⊔ T]
 set agenda to < given: Given,

to_find: L+R+Rest>
 endif
 until ToFind = [] % end backtrack (h)
i. endif % end if (d)
j. until agenda = <given: [H], to_find: []> % end backtrack (b)
k. output structure

GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION 149

Basically, the algorithm tries to find templates and to unify them according
to an agenda which is set by an initial hypothesis and updated by applying
combinatory categorial rules. The agenda consists of two parts: given, corre-
sponding with complex symbols already adopted, and to_find, corresponding
with structures still to be checked. The result of successfully unifying com-
plex symbols according to the agenda is accumulated in a store structure. The
procedure succeeds if the to_find part of the agenda can be discarded, and
the given section contains only the initial hypothesis. The complex symbol in
structure is the yield of the procedure. The repeat-loop (228)b-j does the job.
It checks the agenda and acts accordingly. Firstly, it tries to reduce the given
part to a single occurrence of the hypothesis, in (228)e-g. After that, it looks
for complex symbols matching the to_find agenda, in (228)h. In practice, every
step of the algorithm can be sugared with additional directives. For example,
in steps (228)f and (228)g it might be desirable to have the algorithm select
templates with categories headed by the hypothesis. In general, the select sub-
procedure can be regimented by shortcuts respecting the agenda. As a matter
of fact, the procedure we propose here amounts to posing additional restric-
tions on select. In particular, select will be restricted by conceptual conditions
derived from logical form. These conditions are discussed in chapter 2.

Halting is not an intrinsic property of the procedure: the length and the com-
plexity of the expression to be produced are not fixed. For practical purposes,
however, we may impose restrictions on the length of the sentences to be pro-
duced. Suppose that is the case. Given such a restriction, we must investigate
the soundness and completeness of the procedure in the following sense:

(229) Soundness
for every template T used in the production of a sentence S, there is a parse of S
using T

(230) Completeness
for every template T used in the parse of a sentence S, there is a production of S
using T

The soundness of (228) depends on the soundness of the translation (220)
and the completeness of the parser. The generator cannot be better than the
parser. We assume that by the translation and unification procedure underly-
ing both parsing and generation, the generated sentences are among the par-
sable ones. This is an empirical matter, however. The generator can always be
tuned or even made sound in this respect by having its output tested on the
parser. Note that this does not invalidate the idea that the generator can be
used to test and cure the parsing grammar.

150 SYNTAX

The completeness of (228) is a much more complex affair. The question is
whether we can prove that every grammatical expression – within the limits
of the parsing grammar – can be produced, i.e. can be part of a successful pro-
duction. The burden of proof is on the design of the selection procedure. In
favour of completeness are the following considerations:

• the selection for a particular agenda can be organized as trial-and-
error by pop-up without return from a randomized stack;

• the stack on which selection operates is finite by definition and thus
backtracking is enhanced;

• there are no inhibitions for the introduction of complex categories,
including recursion.

The last argument pro completeness, however, is dangerous. Under the
assumptions of limited length, the complexity of categories must be con-
trolled somehow. To make this work, we have to assume that for every type
X (with a possible exception for the hypotheses) representatives with zero
categorial complexity are available, i.e. templates of the category X\u~[]/
u~[], for only selection of these arguments reduces the arity of the to find-
agenda. This requirement is met by the parsing grammar, however. Under the
principles of count invariancy (47) and antisymmetry (cf. section 1.5.3) of the
combinatorial rules, the parser can recognize sentences only if a few of these
‘zero’ categories exist lexically. If we – additionally but perfectly reasonably
– assume that every instance of a complex category can be reduced by some
cancellation, the requirement that zero argument categories are available is
met – actually, by virtue of some normality condition on the grammar. At the
same time, categories of a certain complexity may be the only solution to the
agenda problem. The situation of (228)g can be solved only if there are cat-
egories which have at least two arguments (complexity ³ 2). The existence of
such categories cannot be assumed trivially. Consider sequences like

(231) a/b d b/c c\d → a
 a/b b/c c/d d → a

These sequences are designed perfectly, without containing any category of a
higher complexity than 1. Is there any reason to believe that these sequences
do not or could not occur in natural language? There is nothing wrong in nat-
ural-language analysis with a binary branching left-headed tree like (232).

GENERATING BY SYNTAX: AGENDAS AND LINEARIZATION 151

(232) a

 a/b b

 b/c c

 c/d d

It might be the format of a simple transitive sentence with object c and subject
a/b, for example. It might even be the dreamt configuration for antisymmetri-
cal syntax with lambda annotation. Moreover, if the complexity of categories
were below 2, agenda management at the to_find-side would be considera-
bly simplified: this part of the agenda could never increase in complexity – it
would be at most 1, by definition. Therefore, it is ill-advised to require the
generating syntax to be such that it contains categories of complexity 2 or
higher. Rather, we would have the algorithm enriched with a check on the
maximal complexity of categories meeting certain conditions, and have these
checks abort the present search and force backtracking if the required com-
plexity is no longer available in the lexicon.
Alternatively, we may consider how to avoid the situation covered by (228)
g that the given agenda contains more than one type. In our experience, this
situation occurs when a set of unrelated side-conditions to the generation
is processed initially. If one of them cannot be passed to the actual to_find-
agenda by cancellation, the category associated with the side-condition is by
necessity passed on to the given agenda, which is already inhabited by the
hypothesis, at least. It takes brute force at the control side to avoid such a situ-
ation, passing the account of side-conditions on to the to_find agenda under
the regime of (228)h. To the extent that one succeeds in this task, backtrack-
ing and termination for the generation process are enhanced, independently
of accidental features of the lexicon and the grammar. By the general design of
selection sketched above, randomization and backtracking ensure the com-
pleteness of the generation procedure.
Of course, completeness (230) does not imply that every parsable sentence
will be generated at some moment by the procedure. It ensures, however, that
the procedure can be adopted in an enumeration automaton to this effect.
Thus, Delilah’s grammar embodies a generator that mirrors the parser.

152 SYNTAX

2. SEMANTICS:
the game of scope and intensionality

2.1 THE WAYS OF MEANING

Language refers. It cannot help doing so. As soon as it hits the mind – and is
experienced as language – it is about something other than its forms. Language
refers to something outside of itself. It is the only system with this property.
Therefore, no other system needs to be interpreted the way language is inter-
preted. Language refers by encoding propositions – statements expressing
the way of being of, or the state of affairs in, another system. This system we
may call a model. A system is a model because it is described by a proposi-
tion, to the extent to which it is described by that proposition. For semantic
analysis, it is irrelevant whether the model is independent of the proposi-
tion – that is a matter of philosophy, and has been intensively discussed in
medieval logic. A proposition refers to a model, by definition. This way of
being about a model we call meaning.

The interesting thing about propositional meaning is that it is not conven-
tional. It is not given by some canonical prescription. Therefore, it is not a
genuine topic of debate among language users. The meaning of a proposition
is something on which those that know a language converge – on penalty of
failed communication. In this respect, the meaning of a proposition is some-
thing completely different from the meaning of a word or a phrase. A proposi-
tion does not mean something because its phrases are point-wise meaningful:
it means something notwithstanding the fact that we do not know or do not
agree what the words or the phrases mean. That is: we do not know whether
our interpretation of words is the same as someone else’s – the speaker’s, for
example – and we do not need to know. To paraphrase Frege’s Nur im Zusam-
menhang eines Satzes bedeuten die Wörter etwas: phrases mean something if

THE WAYS OF MEANING 153

2. SEMANTICS:
the game of scope and intensionality

2.1 THE WAYS OF MEANING

Language refers. It cannot help doing so. As soon as it hits the mind – and is
experienced as language – it is about something other than its forms. Language
refers to something outside of itself. It is the only system with this property.
Therefore, no other system needs to be interpreted the way language is inter-
preted. Language refers by encoding propositions – statements expressing
the way of being of, or the state of affairs in, another system. This system we
may call a model. A system is a model because it is described by a proposi-
tion, to the extent to which it is described by that proposition. For semantic
analysis, it is irrelevant whether the model is independent of the proposi-
tion – that is a matter of philosophy, and has been intensively discussed in
medieval logic. A proposition refers to a model, by definition. This way of
being about a model we call meaning.

The interesting thing about propositional meaning is that it is not conven-
tional. It is not given by some canonical prescription. Therefore, it is not a
genuine topic of debate among language users. The meaning of a proposition
is something on which those that know a language converge – on penalty of
failed communication. In this respect, the meaning of a proposition is some-
thing completely different from the meaning of a word or a phrase. A proposi-
tion does not mean something because its phrases are point-wise meaningful:
it means something notwithstanding the fact that we do not know or do not
agree what the words or the phrases mean. That is: we do not know whether
our interpretation of words is the same as someone else’s – the speaker’s, for
example – and we do not need to know. To paraphrase Frege’s Nur im Zusam-
menhang eines Satzes bedeuten die Wörter etwas: phrases mean something if

154 SEMANTICS

and only if they occur in meaningful propositions. The proposition’s meaning
is primary; the meaning of a phrase is derived.

In this respect, natural language essentially differs from formal languages.
There we find finite, fixed and of course conventional interpretations for all
meaningful phrases in a sentence. It would be almost perverse to come up
with artificial languages the lexicon of which is semantically flexible. In natu-
ral languages, however, only functional elements – those that many speak-
ers consider to be meaningless or indefinable – can boast that they are well-
defined, to a certain degree. The compositionality of natural languages is so
impressive that it obscures lexical indeterminism. Words do not mean a thing,
but they are saved by the proposition; the proposition assigns types to the
words, semantic roles to be played in a functional space. From this type, the
nature of a phrase’s contribution to the overall meaning is induced. This is
how we discover, and never stop discovering, (aspects of) words and phrases,
according to Bloom (2002). We are able to use and understand words to the
extent to which we are able to use and understand sentences.

In this vein, it is intriguing that in Wierzbicka’s Natural Semantic Metalan-
guage (NSM, e.g. Goddard 2002) words represent extremely complex con-
cepts, the definition of which almost amounts to propositions – which we
would expect for meanings of types <α, t>. Here follows, as an example, God-
dard’s (2002) analysis of a phrase of type X is watching Y:

(233) for some time X was doing something because X thought: when something hap-
pens in this place I want to see it; because X was doing this, X could see Y during
this time

The idea that this meaning is built from universal conceptual atoms is less
intriguing for the present exposal than the definitely propositional format
which Goddard resorts to. Unfortunately, NSM hardly deals with the logical
structure of phrasal meanings. In the logical framework of Delilah to be dis-
cussed below, however, (233) would have to be converted into an extensive
spell-out of logical units and structure:

(234) at some period p before now, there was an event e with agent X and place pl and
 there is a state of thinking s with agent X and theme ts
 and
 s was the reason for e
 and

THE WAYS OF MEANING 155

 t is the proposition
 (there is a state w of wanting with agent X and theme tw
 and
 tw is the property of X such that if there is an event ev at pl there is a
 state si of seeing with patient X and theme ev)
 and
 there is a state se of seeing with patient X and theme Y during p
 and
 there is a state sp of being possible with theme se
 and
 sp had reason e.

Not everyone will be convinced that (233) or (234) represents the canonical
meaning of the verb to watch in its progressive form. One may even consider
these to be defective, or overdone. Yet, the proposition-like structure of lexical
meanings in this universalistic approach of NSM can be seen as a statement
that we need propositions to register, encode and store lexical meanings, and
consequently, that propositions underlie lexical meaningfulness. The mean-
ing of a proposition is not an agglomeration of simpler or atomic meanings: it
is generated by structure.

These remarks concern neither the organization of grammar nor the pro-
cess of parsing and generation. In the production and processing of language,
human beings rely on compiled routines rather than on philosophical hier-
archies. In particular, the lexicon is the place where knowledge (experience,
skills, insights, generalizations, guesses) of language aggregates to complex
symbolizations – not necessarily elegant, not necessarily principled but
extremely efficient. These very complex symbolizations reflect our versatile
competence, including its semantic creativity.

The role of a lexicon in the computation of natural language is addressed
in chapter 3. In the present chapter we are concerned with the way Dutch
propositions are meaningful. There is not much that is particular about the
meaning of Dutch. We do not have reason to assume that ways of being mean-
ingful vary with the language. We must assume, however, that the proposi-
tional meaning is conveyed by the structure of the language, and thus by its
particular grammar. This assumption is known as compositionality – accord-
ing to Janssen (1986) wrongly attributed to Frege, but underlying all formal
languages and as such effectuated for the interpretation of natural language
by Richard Montague (e.g. Montague 1972) and many others. Compositional-
ity implies that propositional meaning results from the way a proposition is

156 SEMANTICS

built. Since grammar is not debated among those who know a language, the
construal of propositional meaning in that language is not either. Thus, the
fundamental meaningfulness of a language depends both on the generality
and on the particularity of grammar.

As it stands, we do not claim that bare structure is meaningful. We assume
that the grammar both structures and labels sentences, that this combined
effort induces types, and that these types – semantic functions – are sensitive
to specification. It is not the semantic specification that is computed but the
typological, functional semantic tier. That is where meaning grows and lives.
Here is what we consider to be the backbone of meaning.

(235) labeled structure
 [[np nodet dutchmann] [ip canaux [vp beaux fooled]vp alwaysadj]]]
 (extensional) types
 <<et> <et>t> et <<et><et>> <<et><et>> et <<et><et>>,
 <<et> <et>t> et <<et><et>> <<et><et>> et <t, t> ...
 meanings
 fno(gdutchman) (kalways (hcan(ibe (jfooled))),
 fno(gdutchman) (hcan (kalways (ibe (jfooled))) ...

Our understanding of compositionality is not that there be a functional rela-
tion between labels, types and meanings. Compositionality in the montegovian
sense sees to a well-defined relationship between the specifications of form
and the specifications of meaning. In Montague (1972), this relationship was
conceived of as a mapping between syntactic and semantic rules of construal.
The rules of construal, however, were produced neither by mathematics nor
by aesthetics or economy – they were opportunistic but operational. Though it
is wise to look for principles and restrictions governing the rules of construal,
compositionality is not a derivative of these constraints on grammar. In particu-
lar, it is not the case that syntactic labeling and semantic typing must be homo-
morphic for compositionality to be guaranteed. A functional relation between
syntactic labeling and semantic typing is a valid anchor for compositionality,
but it is neither necessary nor sufficient to entertain a computable relation
between form and meaning. Approaches to natural-language semantics like
Discourse Representation Theory (Kamp and Reyle 1993) and Head-Driven
Phrase Structure Theory (e.g. Sag 2003) exploit all kinds of mechanisms, strat-
egies and principles to assure compositionality. These instruments are beyond
form-meaning homomorphisms of the sort elaborated in Hendriks (1993) and
in type-logical grammar more generally (cf. Carpenter 1997, Morrill 1994).

THE FORMS OF MEANING 157

This chapter offers a quite eclectic view on the construal of meaning. It
defines three different but related layers of propositional semantics. It
marks unification as the process feeding into semantic construal. It takes
no position whatsoever on the meaning of particular items. In particular, it
leaves open the possibility that lexical items have complex, proposition-like
meanings – like (233) or (234) – which also contribute to the overall prop-
ositional semantics by unification. The abducted representations live on a
much richer language than first-order predicate logic, in order to account for
the variety of quantification, for event structure, for tense, mood, aspect and
other issues beyond the borders of classical logic. The chapter also leaves
room for post- and extra-derivational algorithms dealing with semantically
defined constructions like anaphora and ellipsis. Moreover, the following
sections will focus on formal entailment such as the litmus test for semantic
representations. In short, the syntax-semantics interface may be more like a
jungle than like a French garden.
The jungle enjoys some ordering, however, by a tight and intrinsic relation-
ship between entailment and logical form. Entailment is a convergence of
natural-language speakers on the necessity of the relationship between two
sentences. An entailment is a converging judgement, and can be measured
among language users. Logical form is a linguistic artefact, meant to model
linguistic meaning. The following definition reflects the relationship between
the entailment judgements and the calculus of logical form.

(236) Logical Form
 ⟦X⟧ is the logical form of a sentence X if for some logic L,
 S entails P iff ⟦S⟧ ⊢L ⟦P⟧ and ⟦S⟧ ⊨L ⟦P⟧.

The definition stresses the need for a well-defined deductive mechanism
defined on logical forms that calculates entailments. We take the develop-
ment of that logic to be a major task for semantic theory.

2.2 THE FORMS OF MEANING

Montague (1972) – hereafter: PTQ – introduced a package for meaning rep-
resentation that we take as a basis for our efforts to interpret Dutch mechani-
cally. The package includes

158 SEMANTICS

(237) higher-order functional terms with application and composition
 semantic typing
 intensionality and intensional embedding
 full scoping
 post-derivational meaning postulates.

The Delilah semantics implements this package in the following way:

(238) higher-order functional terms with application and composition
 implicit extensional semantic typing
 intensional embedding
 underspecified representation at derivation (but)
 post-derivational, syntactically constrained unfolding of full representation.

In this sense, Delilah is tributary of PTQ. By extending the ‘fragment’, how-
ever, with an account of peculiarities of Dutch, by focusing on inference and
entailment and by adding many additional features, our system comes up
with representations which are hardly recognizable as montegovian deriva-
tives. Here is an example, reconstructing the diversity of modules in PTQ,
with its intended restyling in Delilah’s various semantic formats; the com-
parison is enhanced by the fact that Delilah uses English words to represent
lexical concepts – just like PTQ.

(239) Every man seeks a unicorn
 λP. ∀z. [man’{z} → P{z}]
 (^λy. try-to’(y, λQ.∃x. [unicorn’{x} & Q{x}](^λz.find’(y, z)]))

This formula is the semantic yield of a particular derivation of the sentence
every man seeks a unicorn in PTQ. It says, roughly, that the function from
intensional properties to propositions corresponding to every man is to be
applied to the function from individual concepts to propositions that inter-
prets seeks a unicorn as the relation try-to between individuals and the prop-
erty of finding a unicorn. The (restyled) derivational product in Delilah that
corresponds to this formula and its derivation reads like (241); we abstracted
away from all ‘book-keeping’ information which occurs in the machine, and
just give the mere functional structure. It is formatted as a storage of lambda
terms, called Stored Logical Form; its main structure is indicated in (240), by
abstracting over all operators and lexical specification.

THE FORMS OF MEANING 159

(240) Stored Logical Form < Store, Body> abstract

 < [store0

 <<[store1 man 1erots] every >>,
 <<[store2 <<<[store3 <<<<[store4 unicorn 4erots], some >>>> 3erots],
 find >>> 2erots], agent_of(U, F) & theme_of(U, P) & attime(U, W)

> 1erots] property(X(L))>>, try 0erots],
agent_of(D, I) & theme_of(D, Z) & attime(D, A) & tense(D, pres)
>

(241) Stored Logical Form < Store, Body> full detail
 < [store0

 <<[store1 λI.state(I, man) 1erots] λJ.λK. quant(I, every) & J(I) &
entails1(I, decr) & K(I) & entails(I,incr)>>,

 <<[store2 <<<[store3 <<<<[store4 λP.state(P, unicorn) 4erots], λQ.λR.
quant(P, some) & Q(P) & entails1(P, incr) & and(R(P) & entails(P,
incr) >>>> 3erots],

 λT.quant(U, some) & event(U, find) & entails1(U, incr) & T(U) &
entails(U, incr)>>> 2erots],

 λW.λU.λP.λF. agent_of(U, I) & theme_of(U, P) & attime(U, A) >
1erots],

 λX.λY.quant(Z, the) & property(X(L)), Z) & entails1(Z, decr) &
Y(Z), entails(Z, incr)>>,
 λC. quant(D, some) & event(D, try) & entails1(D, incr) & C(D)
& entails(D, incr)
0erots],
λI.λZ.λD.λA. agent_of(D, I) & theme_of(D, Z) & attime(D, A) &
tense(D, pres) >

The structure establishes the following. There is a finite thematic signature of
an agent and a theme to a try-event: the second element in the main structure
<α,β>. The agent is a universal quantifier over man: the first element of store0.
The theme is a quantifier over a property marking an intensional domain –
there are no intensional types. This property is a thematic signature to an
event find. This event is a signature over a free (but controlled) agent and a
theme introduced by an existential quantifier over unicorn. In all cases, the tar-
get variables for quantification are identified with the bound variable, to com-
pensate for the lost book-keeping of conversion. The specification of temporal
objects is left unresolved, but they are identified in the two event-signatures.
The structure of SLF is further discussed in section 2.6.3.

An immediate difference between (239) and (241) is that in (241) the scopal
relation between the quantifiers involved is still underdetermined. The PTQ
formula may, however, be subject to meaning postulates to the effect of reor-
dering the dependencies between the existential and the universal quantifier
and the intensional domain of the complement of try. Moreover, the lambda
terms in the Stored Logical Form abound in analytical specifications from the

160 SEMANTICS

lexicon, whereas PTQ is very reticent in this respect. Partially, these speci-
fications follow from adopting an event-structure analysis. Other specifica-
tions like entail, entail1 and property are meta-predicates indicating semantic
domains relevant to the spell-out of full scopal semantics. Here are the three
fully-scoped analyses, called Applied Logical Form, which Delilah derives
from (241) by a post-derivational algorithm; they correspond to the scope
orderings every-intension-a, every-a-intension and a-every-intension, respec-
tively. The event-related existential quantifiers are not scoped, for reasons to
be discussed in section 2.5.

(242) Applied Logical Form
 (a)
 quant(B,every).[man(B) ⟹ quant(C,some).[event(C, try) &

quant(D,the).[property(D).[quant(A,some).[unicorn(A) &
quant(E,some).[event(E, beat) & agent_of(E,B) & theme_of(E,A) &
attime(E,F)]]] & agent_of(C,B) & theme_of(C,D) & attime(C,F) &
tense(C,pres)]]]

 (b)
 quant(B,every).[man(B) ⟹ quant(C,some).[event(C, try) &

quant(A,some).[unicorn(A) & quant(D,the).[property(D).[
quant(E,some).[event(E, beat) & agent_of(E,B) & theme_of(E,A) &
attime(E,F)]] & agent_of(C,B) & theme_of(C,D) & attime(C,F) &
tense(C,pres)]]]]

 (c)
 quant(A,some).[unicorn(A) & quant(B,every).[man(B) ⟹

quant(C,some).[event(C, try) & quant(D,the).[property(D).[
quant(E,some).[event(E, beat) & agent_of(E,B) & theme_of(E,A) &
attime(E,F)]] & agent_of(C,B) & theme_of(C,D) & attime(C,F) &
tense(C,pres)]]]]

In this representation, the event structure is naturally maintained, but the
meta-predicates are mostly resolved. The quantification over property is pre-
served, though, as it marks intensional embedding in an extensionally typed
logic. Apart from the lexical decomposition, this representation is on a par
with the result of applying β-conversion and meaning postulates to (239):

(243) ∀x. [man’{x} → try’{x,^∃z. [unicorn’{z} & find’{x, z}]})

Apart from the ‘classical’ analysis (242), Delilah derives another representa-
tion from (241), the Flat Logical Form. In this logical form, all scopal depend-
encies induced by quantification and intensionality are compiled onto every
occurrence of every bound variable. Moreover, the scopal operators them-

THE FORMS OF MEANING 161

selves are reduced to indices on the variables, with their main inferential
attribute. For example: the clause event(E+↑+some+[D], beat) is to be read as
follows.

(244) event(E+↑+some+[D], beat) ::
the (meta-)relation event holds between the bound variable E and the concept
beat,
E is referentially (as for its valuation) dependent on the (bound) variable D,
E is bound by the quantifier some and here allows for increasing inferences
with respect to the predicate of which it is an argument.

The remaining structure is essentially a flat conjunction of fully-specified
small clauses of this nature, each of which is entailed under a certain regime
accounting for referential dependency and quantification (see section 2.6.5).
Below is the Flat Logical Form derived from (241) and equivalent to the fam-
ily of formulas (242).

(245) Flat Logical Form

state(B+↓+every+[], man) &
event(C+↑+some+[B], try) &
property(D+↓+the+[]) &
event(E+↑+some+[D], find) &
agent_of(E+↑+some+[D],B+↑+every+[]) &
 (theme_of(E+↑+some+[D],A+↑+some+[D]);
 theme_of(E+↑+some+[D],A+↑+some+[B]);
 theme_of(E+↑+some+[D],A+↑+some+[]))
&
 (state(A+↑+some+[D], unicorn);
 state(A+↑+some+[B], unicorn);
 state(A+↑+some+[], unicorn)) &
attime(E+↑+some+[D],F) &
agent_of(C+↑+some+[B],B+↑+every+[]) &
theme_of(C+↑+some+[B],D+↑+the+[]) &
attime(C+↑+some+[B],F) &
tense(C+↑+some+[B],pres)

It spells out all possible semantic dependencies in the sentence, as represented
by the applied logical forms in (242). In Flat Logical Form, distinct readings
accumulate as a disjunction of those clauses for which scopal alternatives are
available. Thus, in (245) the scopal variation shows up as a disjunction of
small clauses state(A+↑+some+[...], unicorn), differing from each other only
in the fourth term of the variable specification – the dependency marking.
The conjunctive frame of Flat Logical Form can be seen as an index – and a
meta-representation – of Applied Logical Form.

162 SEMANTICS

Clearly, the relationship between PTQ and Delilah’s semantics is not straight-
forward. In order to deal with the extremely rich semantic profile of natural
languages and to make automated interpretation ‘inference proof’, we need
more extended and more versatile formalisms than the one Montague applied.
Yet, we consider our way of dealing with automated interpretation as anchor-
ing in Montague’s program of computing meanings for forms.

2.3 SCOPE AND SPECIFICATION

2.3.1 Quantifiers

Basically, sentences express predication, modification, mood and quantifica-
tion. Take the sentence

(246) Enkele klassieke teksten waren niet goed bestudeerd
some classical texts were not well studied
‘Some classical texts were not studied well’

The semantic structure may be pictured as follows, with predicates in stand-
ard font, mood in bold, modifiers in italics and the quantifier in small capitals

(247) some (text, past(not(well(studied))))

In our approach, modification reduces to predication. By reification of predi-
cates in event structures (see section 2.5), all modification of basic predicates
can be cast as properties of the object associated with that predicate: if walks
is interpreted as an event e, the modifier in walks fast predicates over that
object e. Mood certainly is an operator over predication: negation has to be
expressed on predicates, and is always introduced as a distinct lexical unit.
Quantification, however, is a distinct phenomenon. It relates predicates inde-
pendently of their nature, and cannot be reduced to predication by enrich-
ing that notion. This was Aristotle’s insight in the Prior Analytics. From these
insights, Boethius constructed the square of opposition that governed medi-
eval logic. He defined four quantifiers: A and I (from Lat. AffIrmo ‘I affirm’)
and E and O (from Lat. nEgO ‘I deny’). A, I and E correspond to all, some and
no, respectively. O is best approximated to not all or some...not – no language

SCOPE AND SPECIFICATION 163

has a lexicalized determiner for this quantifier, and that is not an accident
(Jaspers 2005). The four quantifiers were related as follows:

(248) by necessity, the propositions Aφ and Oφ differ in truth
 by necessity, the propositions Nφ and Iφ differ in truth
 by necessity, the propositions Aφ and Nφ cannot be both true
 by necessity, the propositions Oφ and Iφ cannot be both false
 by necessity, Aφ entails Iφ
 by necessity, Nφ entails Oφ.

Usually, this family of relations is pictured as the Square of Opposition (source:
http://plato.stanford.edu/entries/square/):

(249) Every S is P
contraries

subcontraries

contradictoriessubalterns subalterns

Some S is P Some S is not P

No S is P
A E

I O

In this diagram, the counterparts to the quantifiers in natural language are
added. From these, one can read that the I and the E corners express symmet-
ric quantifications in that the S and P predicates can be inverted salve veritate.
In the course of the centuries, it has been debated passim whether the O cor-
ner has existential import and is proper, and, in the same vein, whether S
is true of at least one entity for the A corner to be true, or cannot be empty
generally. The relation in the square between the two conjectures is revealed
in Kneale and Kneale (1962). Suppose there are no Ss. Then I over S and P is
false. By contradiction, E is true. By entailment (sub-alternation) O is true. But
then, I is not necessarily false, as was assumed. So either S cannot be empty
or O has no existential import. Jaspers (2005) argues convincingly that the O
corner is linguistically, psychologically and computationally exceptional and
must be abandoned. Seuren (2006) reverts to boethian logic in stressing that
natural logic for natural language does not deal with empty sets and proper-
ties that no object has.
Part of this discussion on the logic of quantification can be projected to the
need felt in Generalized Quantifier Theory to restrict the set of possible quan-

164 SEMANTICS

tifiers. Particularly illuminating in this respect is the numerical approach of
Van Benthem (1986), illustrated by the following fig ure.

(250)

 np

 vp

α β
γ

 α = | np - vp |
β = | np ∩ vp |
γ = | vp - np |

The open oval indicates the extension of the nominal predicate (S in the
Square) in a quantified sentence; the grey one is the extension of the verbal
predicate (P in the Square). Van Benthem observes that most quantifiers in
natural language can be defined as restrictions on α and β, the cardinality of
their respective subsets. That is, these quantifiers are ‘about’ the NP and in
that sense conservative. For their evaluation, the only domain needed is the
NP. Moreover, the restrictions are numerical. Below are two alternative defi-
nitions of the classical quantifiers.

(251) A: α = 0 ; α < 1
 E: β = 0 ; β < 1
 I: β ≠ 0 ; α > 0
 O: α ≠ 0 ; β > 0

One could choose, in the light of the discussion above, to add numerical state-
ments in order to guarantee existential import.

(252) A: α < 1, α + β > 0
 E: β < 1, α + β > 0
 I: β > 0
 O: α > 0, α + β > α

The γ value in (250) is only needed for certain classes of quantifiers, called
non-conservative, like only.

(253) only: γ = 0 (β + γ > 0)
 not only: γ > 0 (β + γ > 0)

SCOPE AND SPECIFICATION 165

One of the problems with the Square of Opposition and the logics built on it
for linguistic analysis is that there are many more quantifiers in natural lan-
guage than these four, and that not all of them can be reduced to some finite
combination of these four. They are called higher-order quantifiers, and Van
Benthem (1986) proves them to be those quantifiers that cannot be modelled
by finite state automata. Many and most, for example, are among them, but
only is not. To start with, we give the definitions of finite state automata for
the classical quantifiers and for only. They are taken to operate on sequences
over {1,0}, where, for the classical quantifiers, 1 indicates an object in the β
section of (250) and 0 an object in the α section, and for only 0 is an object in
the γ section. As a matter of fact, the automata for A and for only are the same,
under this proviso.

(254) p

q q

p
(1+0)*

A: + = accepting, x = rejecting,
p = 1, q = 0

E: + = accepting, x = rejecting,
p = 0, q = 1

I: + = rejecting, x = accepting,
p = 1, q = 0

O: + = rejecting, x = accepting,
p = 0, q = 1

It follows that all quantifiers of the type at least n for finite integers n can be
processed by automata with n+1 states, and quantifiers of the types at most
n and precisely n by automata with n+2 states. The particular status of the
O quantifier (some ... not or not all) can be read from the circumstance that
its automaton’s initial state rejects ‘positive’ evidence: the canonical ‘models’
for the predication – the members of β, represented by 1s in the input of the
automaton – are irrelevant to the accepting state.
Clearly, the processing of quantifiers like most and many needs memory, since
they express relations between numbers; in terms of (250):

(255) most: β > α
 many: (α + β) / β > k or: (γ + β) / β > k, for some k, 0 < k < 1 or 0 ≤ k ≤ 1

Most can be processed with simple stack memory or a counter. Many and its
like require more sophisticated but not very complicated, memory manage-
ment beyond context-freeness. Notice, though, that many, according to (255),
has both a conservative and a non-conservative interpretation.

Quantifiers are relations between predicates, and predicates can be complex.
In particular the predicates related by quantifier X may give rise to a quanti-

166 SEMANTICS

fication Y. Typically, in that case X and Y share at least one of their predicates,
while at least one of the four predicates involved is independent. Here are
some classical examples, with an informal analysis where smthing indicates
the locus of dependency.

(256) Every man loves a woman
 Pevery: love_someone Severy: man
 Pa: to_be_loved_by_smthing Sa: woman
(257) Every farmer who owns a donkey, beats it
 Pevery: beat_smthing Severy: farmer_who_owns_smthing
 Pa: be_beaten_by_smthing Sa: donkey
(258) Every gentleman who meets her will salute a lady he respects
 Pevery: salute_smthing Severy: man_who_meets_smthing
 Pa: to_be_saluted_by_smthing Sa: lady_who_is_respected_by_smthing

(257) has been recorded as the donkey-anaphora phenomenon, and (258)
as the Bach-Peters paradox (Bach 1970). The occurrence of anaphora here,
however, and its syntax should not obscure the underlying phenomenon of
semantic dependency. When quantifiers share a predicate, their valuation
gets intertwined. For some quantifiers, this intertwining leads to depend-
ency: the relation they express is governed by an instantiation controlled by
the other quantifier. Some quantifiers, typically I and its derivatives, are sen-
sitive to this government: their valuation may vary with the valuation of the
other quantifier. Other quantifiers, like A and O, are unaffected. In (256) we
have the choice to have the evaluation of I vary or not vary with the evalua-
tion of A; the sentence is ambiguous in this respect. In the first case, when the
evaluation of I varies with the instantiation controlled by A, we say that I is in
the scope of A. It is not very useful – though common practice – to say that in
the other case, A is in the scope of I, since the evaluation of A will never vary
with the instantiation controlled by I. In general, we can say that only those
quantifiers that have a definition in terms of (250), like

(259) Q: β ≥ n

for some independent integer n > 0 are sensitive to scope. That is, quantifica-
tional ambiguity is relevant neither in sentences with only A, E or O quanti-
fiers nor in any of the following complex quantifications.

(260) Every man loves at most three / many / most / the / only women

The source of the sensitivity of I quantifiers must lie in the fact that they may
be in competition with other quantifiers as for aboutness of the sentence. By

SCOPE AND SPECIFICATION 167

definition, they introduce entities that are both S and P. No other type of quan-
tifier does. The sentence is about these entities, by definition. The aboutness
claim of another quantifier, however, may interfere with I’s one, if that quan-
tifier introduces a different focus – as A does, for example, by not introduc-
ing entities in the intersection of the predicates but requiring one difference
between them, NP-VP, to be zero. In that situation, the aboutness claims have
to be ordered with respect to each other. Thus, we would expect that only and
not all may also have an aboutness conflict with I. And they do: the next sen-
tences are as ambiguous as (256).

(261) Only men loved a favourite actress of Hitchcock’s
 Not every man loved a favourite actress of Hitchcock’s

No conflict arises when two Is meet. Since they share at least one predicate
and target at the intersection of the predicates only, they focus on the same
subset of the universe. In that case, both I quantifiers are dynamic, in the
sense that they can both occur referentially and license anaphora outside
their syntactic domain – the Dekker (1993) litmus test to tell dynamic from
static quantifiers:

(262) Somei men read aj book by Chomsky. Theyi had bought itj for 10 bucks.
(263) Alli men read aj book by Chomsky. * Theyi had bought itj for 10 bucks.

The determination of semantic dependencies between quantifiers must be a
target of linguistic analysis. In Delilah, it is taken care of by a complex post-
derivational procedure dubbed apply_store that inspects Stored Logical form
and – among other tasks – determines for each quantifier whether or not it
might be in the scope of one or more others. It spells out possible ambiguity,
and thus maps the Stored Logical Form on a family of disambiguated readings.
In doing so, it takes into account syntactic as well as semantic information
accumulated in the derivation. It will not mechanically produce representa-
tions of all possible scopal variation; it restricts its output to semantically dis-
tinctive readings. In Flat Logical Form, these readings are assembled as local
disjunctions of the relevant predicates.

2.3.2 The structures of quantification

In all languages, proper names and quantificational NPs share most para-
digms. In particular, argument positions at predicates are open to both.
Yet, they are semantically different. Names denote rigidly, as Kripke (1972)

168 SEMANTICS

argues, but quantifiers denote contingently, varying with situations and the
extension of predicates. It took linguistics some millennia to reconcile the
distribution and the typing of the different sorts of nominal constituents, and
it took a logician to find the key. Montague (1972) typed both proper names
and quantificational NPs as characteristic functions over predicates, and thus
puts them in the same semantic league as higher order sets, in compliance
with their equal distribution. The general format of a one-place predication
in natural language, then, is that a sentence [s NP VP] is to be interpreted as
the proposition that the meaning of the NP applies to the meaning of the VP,
in this case: ⟦VP⟧ ∈ ⟦NP⟧. Barwise and Cooper (1981) argued that the rich
algebraic structure of these characteristic sets can, and indeed should, be
exploited for linguistic analysis. They coined the term Generalized Quantifier
for the algebraic objects that could be identified in the realm of the power-
set of the universe (the universal predicate) as interpretations for natural-
language NPs. The general definition boils down to this:

(264) Generalized quantifier
A set of subsets Q of the universal predicate U is a generalized quantifier iff
there is a subset A of U and a well-defined relation R, such that X is in Q iff
R(A,X) applies.

That is: a generalized quantifier requires a property to live on and a relation
to generate the set from this property. For normal quantificational NPs, the
property-to-live-on comes with the nominal predicate. In the case of proper
names, it is the singleton of being a particular individual, like {j}. This prop-
erty limits the aboutness of the quantifier. The class of relations is given with
the algebra of sets < ∪, ∩, ⊆, − > and numerical conditions on sets. To find the
restrictions limiting this class of relations is a main target of modern seman-
tics. The classical quantifiers A, E, I and O and the proper name Socrates are
defined below as generalized quantifiers.

(265) ⟦every N⟧ = { X ⊆ U | ⟦N⟧ ⊆ X }
 ⟦some N⟧ = { X ⊆ U | ⟦N⟧ ∩ X ≠ ∅ }
 ⟦no N⟧ = { X ⊆ U | ⟦N⟧ ∩ X = ∅ }
 ⟦not every N⟧ = { X ⊆ U | ⟦N⟧ ⊆ X }
 ⟦Socrates⟧ = { X ⊆ U | {s} ⊆ X }

The structures that these quantifiers establish are far from random. Barwise
and Cooper (1981) and Zwarts (1982, 1986) identify numerous typical alge-
braic objects like filters and ideals among them, and relate these structures to
distributional characteristics of the corresponding NPs. This, then, is the real

SCOPE AND SPECIFICATION 169

revolution of generalized quantifiers: language users apparently recognize
the algebraic characteristics of the quantifiers when constructing or parsing
sentences. In this vein, it is not remarkable that Emon Bach is reported to
have said that generalized quantification is the major development in linguis-
tics in the past millennia.
Another very valuable feature of generalized quantifiers is that literally any
quantifier can be captured in these terms. Here are a few more.

(266) ⟦only N⟧ = { X ⊆ U | X ⊆ ⟦N⟧ }
 ⟦most N⟧ = { X ⊆ U | |⟦N⟧ ∩ X| > | ⟦N⟧ -X | }
 ⟦many N⟧ = { X ⊆ U | |⟦N⟧ ∩ X| > k,
 for some k depending on |⟦N⟧| or |X| }
 ⟦at most n N⟧ = { X ⊆ U | |⟦N⟧ ∩ X| < n }

Quantifiers are of type <<et>t> in a (t, e)-based type-logic. As extensional pred-
icates (like nouns) are of type <et>, determiners are of type <<et><<et>t>>
or, equivalently, of type <<<et><et>>t>. Although Montague (1972) charac-
terized determiners syncategorematically, consequent typing identifies the
relevant determiners as relations between sets. The definitions are fairly
straightforward, given (265).

(267) ⟦every⟧ = { <X,Y> | X ⊆ Y }
 ⟦some⟧ = { <X,Y> | Y ∩ X ≠ ∅ }
 ⟦no⟧ = { <X,Y> | Y ∩ X = ∅ }
 ⟦not every⟧ = { <X,Y> | X ⊈ Y }
 ⟦many⟧ = { <X,Y> | |Y ∩ X| > k }

This amounts to an analysis of determiners as relations between predicates,
almost in the medieval sense, but now with access to all the concepts coming
with modern algebra, as practiced in Zwarts (1983). Among the fruits of this
approach, we have the insight that certain determiners cannot occur in a lan-
guage but on the penalty of violating contingency. For example, if a language
were to have a determiner Q to validate the syllogism in (268), this deter-
miner would only produce trivially true sentences.

(268) Q A B, Q A C ⫢ Q B C

Thus, Q X Y would be true for any X and Y. As languages may be assumed not
to lexicalize triviality, such a quantifier (dubbed ‘Euclidean’) cannot exist. For
details of the proof, see Zwarts (1983).

170 SEMANTICS

In the same relational vein, determiners can be projected on a Pascal triangle
of pairs of numbers <α, β> following (250), with α standing for the cardinality
of NP-VP and β standing for the cardinality of NP ∩ VP,

(269)
<0,0>

<1,0> <0,1>
<2,0> <1,1> <0,2>

<3,0> <2,1> <1,2> <0,3>
....

Clearly then, these pairs represent the way a determiner may divide an NP
with cardinality α+β. For example, the quantifier A selects the rightmost edge
of the triangle, and E the leftmost. This way, one can construct a geometry of
determiners and try to find out which planes do, or do not, qualify as repre-
senting (lexical) natural-language determiners (cf. Van Benthem 1984).

2.3.3 Compositionality and underspecification

Generalized quantification opens an algebraic window on semantic structures.
It assumes – or rather: hypothesizes – that language entertains higher-order
objects, the structure of which is understood and/or computed in action. It
adds structure to meaning – it lends a face to meaning. For the theory of gram-
mar, it poses the question to what extent Montague’s idea of synchronizing
syntactic and semantic structure can or must be preserved. This strict concept
of so-called compositionality is expressed in the categorial grammar emanat-
ing from Lambek (1958), by identifying syntactic and semantic types, and by
correlating logic and derivation. This strategy has been explored in-depth in
Moortgat (1988), Hendriks (1993), Morrill (1994) and more work by these
and other authors. The bottom line in this approach is that interpretation and
derivation are parallel, and that semantic variation comes with derivational
variation. In particular, variation in semantic dependency – like scope – is
(partially) accounted for by syntactic processes. In this sense, compositional
categorial grammar is montegovian by nature.

Delilah does not observe strict compositionality. In particular, scopal rela-
tionships – semantic dependencies between variable binding or other opera-
tors – are not computed during the derivation, but afterwards. The derivation
itself delivers an underspecified storage of functional terms, assembled by
sheer unification. This structure is subject to a kind of spell-out algorithm,

SCOPE AND SPECIFICATION 171

establishing full scopal relations in a fine-grained propositional frame. The
ideology and benefits of this post-derivational after-burn will be discussed in
section 2.6. What matters here is the proper balance between compositional-
ity and semantic specificity.

It is not a secret that syntax – or form in general – underdetermines the sub-
tleties of interpretation. It is simply not the case that scopal ambiguities are
completely resolved by syntactic or prosodic marking, or that intensional
embedding always comes with specific morphology. The reverse is true, too.
If you have an interpretation for a sentence, not every formal aspect of a sen-
tence carrying that interpretation can be read from it. This is established in
section 2.7 on generation. In strictly compositional approaches to parsing,
derivational flexibility plays the role of marking by form. If a sentence S has
several meanings P, then for each P there is a different way to construe S.
These different construals may even yield the same configuration: it is the
procedure, the order of combining terms that makes the difference. There
is a serious problem with this approach. Although structural ambiguity is
reflected in variation of interpretation, no common representational layer for
this variation can be computed: nothing is the (core of the) interpretation(s)
of a sentence that is fully interpreted by derivation.
Of course, for interpretation we do not need a semantic object that is shared
by the readings; the relationship between readings is defined logically and
not syntactically. For processing purposes, however, a computable object
capturing the core of a family of readings might be very welcome. This idea
has become the heart of the approach to the computation of semantics that
is simply dubbed underspecification. It rejects the idea that every aspect of
sentential semantics must be computed by derivation. Bunt (2008) identifies
lexical ambiguity, syntactic ambiguity, structural semantic ambiguity, impre-
cision and missing information as the main motives for underspecification.
At the same time, he observes that the different techniques for underspeci-
fication also fulfill different needs, and that no existing technique meets all
semantic requirements – a conclusion formalized in Ebert (2005) as expres-
sive incompleteness. The conclusion affects approaches like Cooper storage
(Cooper 1983, Frank and Reyle 1994), Hole Semantics (Bos 2002), Minimal
recursion Semantics (Copestake et al. 2005) and Glue Semantics (Dalrymple
et al. 1995, Crouch and Van Genabith 1999).

With Delilah we pretend to live in two worlds: the world of underspecifi-
cation, and the world of full logic. Underspecification is necessary when
meaning is to be computed by derivation and no information on the deriva-

172 SEMANTICS

tion is retained elsewhere. Full logic requires distance from the derivational
processes, as many of them do not convey any information relevant to full
logic. Delilah stores all relevant derivational and structural information in
an accessible manner, in the very same data structures. This information
is accessible afterwards to provide full logic out of underspecification. The
underspecified semantic object, generalizing over a family of readings, is just
one of the yields of the derivation. Information management provides the
algorithm spelling out that family with all the pieces of information that it
needs and the availability of which would interfere with strict compositional
and derivational interpretation. Under this strategy, fully-specified semantics
like (242) or (245) can be derived from a well-defined derivational product,
Stored Logical Form. A comparable strategy is proposed in Koller and Thater
(2006). Consequently, the family of analyses ALF and FLF is protected against
spurious redundancy while it is being constructed by incorporating gram-
matical knowledge.
Below, an outline is presented of the algorithm that takes care of the transla-
tion from SLF into full specification.

(270) apply(f, g) ⇒ f(g) iff g is of type α and f of type <α, β>
 apply(f, g) ⇒ g(f) iff f is of type α and g of type <α, β>
 undefined otherwise

(271) orden(ListOfTerms, Template) ⇒ the list of terms Ordered such that for every a
and b in ListOfTerms, a and b occur in Ordered and a precedes b iff according to
Template, b is scope-sensitive and a is not.

(272) applystore(Store, Body, Template) ⇒ app(lied)logi(cal)form
(1) applystore([], Body, Template) ⇒ Body;
(2) otherwise Store = [First|Rest] and
(2.1) if First = <S, B> then
(2.1.1) if B is not an island according to Template then
(2.1.1.1) apply(B, Body) ⇒ BodyB and
(2.1.1.2) applystore(S∪Rest, BodyB, T) ⇒ applogform and
(2.1.1.3) applystore(S, B, Template) ⇒ BS and
(2.1.1.4) applystore([BS|Rest], Body) ⇒ applogform
(2.1.2) otherwise
(2.1.2.1) applystore(S, B, Template) ⇒ BS and
(2.1.2.2) applystore([BS|Rest], Body, Template) ⇒ applogform
(2.2) otherwise
(2.2.1) if First is scope-sensitive according to Template then
(2.2.1.1) if Rest contains structures <S’, B’> then
(2.2.1.1.1) applystore(Rest, Body, Template) ⇒

 <NStore, NBody> and

SCOPE AND SPECIFICATION 173

Below is an example of the algorithm’s effect. Let (273) stand for the deriva-
tion of a simple transitive sentence, which marks Det2 as scope-sensitive in a
non-island. Let (274) be the Stored Logical Form produced by the derivation,
with the lambda terms related to the constituents italicized in a <Store, Body>
format. The application of algorithm (272) to this storage yields, in some logi-
cal formalism, the family of readings in (275).

(273) [[Det1 NP1] [Vfin [Det2 NP2]]]
(274) <<NP1, Det1> <[NP2] Det2><[],V>> FIN>
(275) Det1(NP1)(Det2(NP2)(FIN(V)))

 Det2(NP2)(Det1(NP1)(FIN(V)))

In this example, FIN represents the term associated to finiteness, and V holds
the event structure. As such, V contains a quantifier but the derivational tem-
plate excludes this quantifier from taking scope.
In general, two scope-sensitive operators are unordered with respect to each
other. So is each pair of non-scopers. The cardinality of the readings created
by (272), therefore, is less than the faculty of the number of operators. This
can be deduced as follows. In each semantic island (see Szabolcsi and Den
Dikken 1999, Honcoop 1998) the derivation de facto distinguishes between
scope-sensitive and scoping, independent, non-sensitive operators. A read-
ing is any particular configuration of the members of these two classes. Let
a domain contain three scope-sensitive operators {x, y, z} and two independ-
ent operators {a, b}. In general, indefinite operators are scope-sensitive, or
dynamic, while definite operators are scope-insensitive, or static. The order
of the members of the second class is irrelevant. A scope-sensitive operator
is in the scope of an independent operator if it occurs to the right of it. The
algorithm (272) ends up with the following set of readings

(2.2.1.1.2) applystore(NStore∪[First], NBody, Template) ⇒
 applogform

(2.2.1.2) otherwise
(2.2.1.2.1) orden(Rest∪[First], Template) ⇒ OrderedStore and
(2.2.1.2.2) applystore(OrderedStore, Body, Template) ⇒

 applogform
(2.2.2) otherwise
(2.2.2.1) apply(First, Body) ⇒ BFirst and
(2.2.2.2) applystore(Rest, BodyFirst, Template) ⇒ applogform

174 SEMANTICS

(276) x y z a b x y a z b x y a b z y z a x b y z a b x
 x z a y b x z a b y x a y z b x a y b z x a z b y
 x a b y z y a x z b y a x b z y a z b x y a b x z
 z a x y b z a x b y z a y b x z a b x y a x y z b
 a x y b z a x z b y a y z b x a x b y z a y b x z
 a z b x y a b x y z

If s is the number of scope-sensitive operators and i the number of independ-
ent scope-taking operators, the number of different readings is si+1. In this
case there are 27 readings. Naive permutation would yield 5! = 120 readings.
In general, we compare n! to kn-k+1 for k < n.
In Flat Logical Form (see (245)) different readings are clustered into one sin-
gle formula of local disjunctions of small clauses. Thus, the backbone of the
final representation for the sentence with the operators {x, y, z} and {a, b}
will be a conjunction of small clauses. The different readings occur in the fol-
lowing way: every small clause in which a scope-sensitive operator x binds is
replaced by a disjunction of small clauses each of which represents exactly
one scopal dependency under which x can occur. In a scheme: instead of hav-
ing a conjunction of small clauses (277), we have a conjunction of disjunc-
tions of small clauses – the left arrow marks semantic dependency:

(277) x and y and z
(278) (x or x↤a or x↤a,b)
 and
 (y or y↤a or y↤a,b)
 and
 (z or z↤a or z↤a,b)

This disjunction is all that remains of the 27 readings in Delilah’s semantic
set-up. The whole process from Stored Logical Form to Flat Logical Form is a
transition from under-specification to full specification, steered by derivational
information, amounting to a kind of logarithmic interpretation: it decreases
the order of semantic multiplicity. This implements the idea that one single
semantic object should be assigned to every sentence that is lexically disam-
biguated, at every level of interpretation – its interpretation. Scopal ambiguity
is brought back to sentence structure, and that is compositionality.
In section 2.7, finally, we will consider the use of Flat Logical Form as a pro-
gram for generation. Although (278) is a conjunction of disjunctions, one can
still read it as an instruction to a generator to produce a family of sentences.

INTENSIONALITY AND SEMANTIC DEPENDENCY 175

2.4 INTENSIONALITY AND SEMANTIC DEPENDENCY

2.4.1 Intensionality

Phrases in a sentence may not directly contribute to determining its reference.
They are not meant to refer directly to semantic objects that can be identified in
the situation or state-of-affairs the sentence aims to be about. The crucial con-
figuration is an embedding clause. If a sentence φ properly contains a sentence
ψ, they cannot refer to the same semantic object. If φ refers to the situation-at-
hand, ψ can’t. In that case, ψ refers either to a sub-situation of the coordinates
proposed by the main sentence, or it introduces new interpretative coordi-
nates or indices. By now, we are referring to the latter situation as intensional
embedding. It is typical for sentences or situation-type expressions because we
assume that interpretation of a complex sentence amounts to its interpretation
in one particular situation – that is what model theory tells us. Sentences can be
about many objects, relations and moods, but about only one situation. So, the
initial definition of intensionality or, better, intensional embedding is like this.

(279) Intensional embedding
 where ⟦ψ⟧W is the interpretation of ψ with respect to situation W

 A proposition φ is intensionally embedded in a context [s X φ Y] iff
 ⟦[s X φ Y] ⟧W is not a function of ⟦φ⟧W.
 In that case, φ is an intensional domain.

(280) Extensional embedding
 A proposition φ is extensionally embedded in a context [s X φ Y] iff
 ⟦[s X φ Y] ⟧W = f(⟦φ⟧W) for some f associated with [s X _ Y].

As was said before, Montague (1972) considers every embedding to be inten-
sional, unless explicitly denunciated as such post-derivationally. This view is
the same as the one expressed here since Montague’s lambda terms, which
were lifted to intensional functions under embedding, are all of type <α,t>,
mapping onto the canonical type for propositions.

For Delilah, we assume that every sentential embedding amounts to the cre-
ation of an explicit intensional domain. This domain, however, is not reflected
at the level of types, as in Montague (1972), but by semantic operators that
may or may not lead other variables into semantic dependency. Embedding

176 SEMANTICS

comes with the introduction of definite quantifiers over restrictions like prop-
osition or property and scoping over or below the content of the embedded
sentential or infinitival construction. The relevant distinction between prop-
erties and propositions is made within the class of infinitival complements,
following Cremers (1983): all finite sentences map onto propositions, and
some but not all infinitival complements do. For reasons explained there, the
internal semantic construal of a property is much more restricted than the
construal of a proposition, and verbs select for that construal: proberen ‘to
try’ selects a property, beloven ‘to promise’ selects a proposition.

This strategy leads to the following Applied and Flat Logical Forms; in FLF, the
arguments of predicates occurring in an intensional domain are marked for
dependency on the proposition or property that establishes the domain and
scopes over them at ALF.

(281) Jan probeert te slapen
‘Jan tries to sleep’

NLF
exists(A) & quant(A,henk).[quant(B,some). event(B, try) &
quant(C,the).[property(C).[quant(D,some).[event(D, work) &
agent_of(D,A) & attime(D,E)]] & agent_of(B,A) & theme_of(B,C) &
attime(B,E) & tense(B,pres)]]]

FLF
exists(A+↑+henk+[]) &
event(B+↑+some+[], try) &
property(C+↓+the+[]).[
work(D+↑+some+[C]) &
event(D+↑+some+[C], work) &
agent_of(D+↑+some+[C],A+↑+henk+[]) &
attime(D+↑+some+[C],E)] &
agent_of(B+↑+some+[],A+↑+henk+[]) &
theme_of(B+↑+some+[],C+↑+the+[]) &
attime(B+↑+some+[],F) &
tense(B+↑+some+[],pres)

(282) Henk zei elke jongen te slaan
Henk said every boy to beat

 ‘Henk said that he beats every boy’

ALF
exists(A) & quant(A,henk).[quant(B,some).[event(B, promise) &
quant(C,the).[proposition(C).[quant(D,every).[man(D) & young(D) ->
quant(E,some).[beat(E) & event(E) & agent_of(E,A) & theme_of(E,D) &
attime(E,F)]] & agent_of(B,A) & theme_of(B,C) & attime(B,F) &
tense(B,past)]]]

INTENSIONALITY AND SEMANTIC DEPENDENCY 177

exists(A) & quant(A,henk).[quant(B,some).[event(B, promise) &
quant(D,every).[man(D) & young(D) -> quant(C,the).[proposition(C).[
quant(E,some).[beat(E) & event(E) & agent_of(E,A) & theme_of(E,D) &
attime(E,F)] & agent_of(B,A) & theme_of(B,C) & attime(B,F) &
tense(B,past)]]]]

FLF
exists(A+↑+henk+[]) &
event(B+↑+some+[], say) &
proposition(C+↓+the+[]).[
 (man(D+↓+every+[C]); man(D+↓+every+[])) &
 (young(D+↓+every+[C]; young(D+↓+every+[])) &
event(E+↑+some+[C,D], beat) &
agent_of(E+↑+some+[C,D],A+↑+henk+[]) &
 (theme_of(E+↑+some+[C,D],D+↑+every+[C]);
 theme_of(E+↑+some+[C,D],D+↑+every+[]))&
attime(E+↑+some+[C,D],F)] &
agent_of(B+↑+some+[],A+↑+henk+[]) &
theme_of(B+↑+some+[],C+↑+the+[]) &
attime(B+↑+some+[],G) &
tense(B+↑+some+[],past)

The logical forms of (282) reflect the classical ambiguity between the de dicto
and the de re readings of (every) boy – the genuine target of research into
intensionality. There are two important questions to consider, though. First, it
is not clear whether intensionality affects the interpretation of the embedded
quantifier as a whole, or just of its restrictions, or both. Second, one can won-
der whether the de dicto / de re ambiguity also affects the event of beat.
As for the first question: does it make sense to assume that (282) is three-way
ambiguous?

(283) ... say...[... for every boy(x) ... beat(...x)
 for every boy(x) ... say ...[... beat(...x)
 for every x ... say ...[... if boy(x) then beat(...x)

As far as we can see, no interesting truth-functional distinction can be con-
structed between the second and the third readings. Yet, it is certainly rea-
sonable to consider the ‘responsibility’ for the qualification boy; it is with the
speaker or the utterer (de re) in the second and with the alleged ‘sayer’ in the
third. That distinction becomes quite clear when a less neutral qualification
for the restrictor is chosen:

(284) ... say...[... for every traitor(x) ... beat(...x)
 for every traitor(x) ... say ...[... beat(...x)
 for every x ... say ...[... if traitor(x) then beat(...x)

178 SEMANTICS

Now, it certainly matters whether one is quoting or summarizing the propo-
sition made by the sayer. The second, but not the third, reading entails that
those who are said to be beaten are traitors. The quantifier, however, is irrel-
evant for this opposition, in this case. If the quantifier were existential or
indefinite, however, truth-functional considerations would make a difference
independently of your modal model: there is someone who is said to be a trai-
tor and who is said to have been beaten vs. there is a traitor said to have been
beaten. In our view, the first reading amounts to the referential reading of
indefinites pointed at by Fodor and Sag (1982:380): ‘... a referential indefinite
can be used for the purpose of making an assertion about an individual, even
though the individual in question is not identified by the speaker’.
Ruys (2006) proposes to deal with certain scope phenomena around indef-
inites precisely by distracting the quantificational aspect from the referential
aspect. He assumes, however, an analysis of indefinites in terms of existentially
quantified choice functions – functions from a non-empty set to members of
that set – of type <<et>e>. One can reconstruct the interpretation scheme of
his example (64) Every country’s security will be threatened if some building is
attacked by terrorists as follows.

(285) for all x, if Country(x)
then there is a choice function f and ThreatenedIfAttacked (x, f(Q))

for all x, there is a choice function f such that if Country(x)
then ThreatenedIfAttacked(x, f(Q))

there is a choice function f and for all x, if Country(x)
then ThreatenedIfAttacked(x, f(Q))

Clearly, the quantification over the choice function is made dependent on the
universal quantifier in the first two, but not in the last reading. The second
one is relevant here: the existential quantifier is in the scope of the universal
quantifier but not in its restriction. Quantified choice functions, however, do
not come with a labour division between restriction and nuclear scope, which
is characteristic for natural-language quantifiers (see section 2.3.1). Moreo-
ver, choice functions themselves are hardly referential – the axiom of choice is
non-constructive – and thus not subject to de dicto/de re alternations. A choice
function is a way to identify members of a set. By the axiom of choice, a choice
function exists for every set (Jech 1977; cf. section 2.4.2). The function is not
subject to interference with other quantifiers or operators. The introduction
of entities by existential closure of choice functions imposes the referential
dependency on the selection of entities, but is not scoped itself. In this respect,
we do not follow Ruys (2006), Winter (2001) and Reinhart (1997). Conse-
quently, as for (285), we take the third reading to be the crucial one: the selec-

INTENSIONALITY AND SEMANTIC DEPENDENCY 179

tion and identification of set members is postulated by existential closure, but
the ordering of the relevant set is parameterized by other terms.
Although it is not impossible to account for three-way ambiguity in Applied Log-
ical Form, Flat Logical Form does not qualify for this representation: all quan-
tification is compiled into the predications. We must conclude, therefore, that
this representational strategy may be defective in this sense. But this imperfec-
tion hardly disqualifies the logical form with respect to other approaches.

The second question raised by (282) was whether this intensional ambiguity
would also arise in the case of the event beat. This question seems to be pro-
voked by our choice to quantify over events, but even if in non-event semantics,
the question who is responsible for the embedded predicate is relevant. For
independent reasons to be addressed in section 2.5, events do not participate
in scopal dependencies – reference to events is not influenced by their embed-
ding. As a matter of fact, we take events to be introduced by the ultimate choice
functions: assuming – philosophically rather than linguistically – that on every
index of interpretation or in every situation there is always at least one event,
labelling the event chosen is always possible and is not an act of reference as
such. The event is identified by its roles and their performers, rather than by
labelling it. Thus, in order to lift the event out of the intensional domain and
still have it participate in meaningful scopal dependencies, it would be neces-
sary to bring its full class of related propositions to the main clause level.

(286) for some event x of sort A there is an agent z and a patient y such that ...
INTENSIONAL OPERATOR ...[...x ...y ... z

This would render the proposition, the theme of say, for example, vacuous as
to its content: at best, the remaining proposition could be interpreted repeat-
ing the lifted constituent, namely that there is an event so and so. To put it
boldly: it amounts to lifting the proposition out of itself.
It is difficult to see the gain here. Therefore, we assume that events are dwell-
ing inside their intensional domain, being semantically dependent by defini-
tion. In general, we will assume that events have narrow scope in the follow-
ing sense: the interpretation of no variable in a sentence ever depends on
the valuation of the event term. Or, in different phrasing: the verb may be the
queen of syntax, but she surely is the beggar of reference.
The domains of intensionality are introduced as a lexical feature of the
embedding. Verbs taking infinitival complements – but not the standard aux-
iliaries – subsume the semantics of that complement under a property or a
proposition. Overt complementizers come with a propositional domain. An

180 SEMANTICS

infinite verbal form is not intensional by definition, but a sentence with an
overt complementizer is.
Intensional dependency, then, is represented by semantic dependence. If φ is
to be interpreted in an intensional domain, it is marked for being dependent
on the valuation of a variable of type s – the intensional basic type in Mon-
tague’s logic. φ can be inferred only with respect to this valuation. And this is
the main goal of an intensional logic: to shield certain semantic objects from
unconditioned inference and from interpretation at the default indices.

2.4.2 Skolemization of dependent events

Indefinites may be referential or quantificational, specific or non-specific, with
wide or narrow scope. Their proper interpretation has received strong focus in
modern semantic reflection. In order to deal with their magic, Reinhart (1997)
proposes to interpret them partially by choice functions, for ‘assigning wide
scope to existentials without moving their restriction’, i.e. in order to avoid
manipulations on logical form by quantifier raising and the like. She targets
on those indefinites that come with bare numerals and that were classified by
Kamp and Reyle (1993) as introducing a discourse referent.
Events are candidates for introduction by choice functions because they are
indefinite – their existence can be denied consistently – and because they
introduce discourse referents – they can easily be referred to by definite
anaphora. Moreover, the phrases restricting the events – all sorts of predi-
cates – hardly qualify for quantificational manipulation. It seems as if choice
functions are the only but also the optimal option to handle the semantic
behaviour of events. To see why, we have to project the particular nature of
quantification over events on the concept of choice function.
Choice functions are assumed to exist as executors of the axiom of choice. In
set theory, this axiom states that in every non-empty set a member can be
identified (chosen), even if that set is infinite and no selection rule is given.
The axiom amounts to the claim that every set is well ordered so that its mem-
bers can be distinguished from each other. This is not trivial for infinite sets or
for sets the construction of which is unknown. As a matter of fact, the axiom is
independent of set theory but has by now become accepted as an important
non-constructive but intuitively valid tool. The axiom was introduced by Zer-
melo in 1904 and is defined as follows in Jech (1977):

(287) For every family F of nonempty-sets, there exists a function f such that f(S) ∈ S
for each set S in F.

INTENSIONALITY AND SEMANTIC DEPENDENCY 181

The axiom reduces the identification of members of a set to the function by
which they are selected. More precisely, the identification of a member of a set
is made relative to the identification of a member of another set. This means
that we can identify the member of a set the ordering of which is not evident
in the same way as we identify the member of a set the ordering of which
is less problematic and in which identification of individual members is less
problematic: we can always pick the first, the second or the n-th member by
refering to a set with an established well-ordering.
As Winter (2001) notes, choice functions can be generalized to Skolem func-
tions: functions that identify an object with reference to independently identi-
fied other objects. Skolem functions are applied in the valuation of sentences
in a predicate calculus, e.g. by the programming language Prolog (cf. Clocksin
and Mellish 1984). A Skolem function fφ for a formula φ(v0 , ...,vn) is defined by

(288) ∀v0... ∀vn-1[∃vn.φ(v0, ...vn-1, vn) → φ(v0, ...vn-1, fφ(v0, ...,vn-1))] (cf. Morley 1977)

The function replaces the existential quantifier and its (dependent) variable
vn by a function of type <<ent>e> that is essentially a choice function over the
set ⟦λvn. φ(v0 , ...vn-1 , vn)⟧ with respect to some assignment of values to each vi,
0 ≤ i ≤ n-1. The Skolem function identifies a dependent object by using param-
eters from other sets (valuations of variables into those sets) and by getting
rid of the related (indefinite) quantifier. Thus, it turns the object scope-inde-
pendent, frees it from quantification and makes it addressable; and it does so
by leaning on the axiom of choice. Basically, the Skolem function is the proce-
dural counterpart of scopal dependency.
We need Skolem functions to deal with events, for at least three reasons. Firstly,
events are existential and semantically dependent, intuitively. The use of a
predicate asserts the existence of an event or state but the event is identified
by refering to the arguments and adjuncts, like the specifications of time and
place. From the point of view of modelling, it does not make sense to claim that
there is an event of a certain sort without refering to its thematic, temporal
and, possibly, spatial correlates (cf. Verkuyl 1993, ch. 13). There are no events
outside the gates of Eden. Consequently, Skolemization of the interpretation of
events reflects their real but secondary referentiality.
Secondly, the algebraic structure of the set of events and states is such that
identification of events by simple quantification is not enough. Events are
mass-like, rather than discrete and countable (cf. Bach 1986). We have to
guarantee the selection and identification of an event and its labelling with
predicates by more fundamental means, like contextual fixation.

182 SEMANTICS

Thirdly, the algebra of events is such that manipulating scope does not buy us
much – except in the case of truly collective events or states like the kolchoz col-
lectivity or the angles of a triangle are 180 degrees – the predicative and seman-
tic structure of which is difficult anyway. Except in the kolchoz cases, one event
or state for all can always be split into sub-events or sub-states per individual,
just as events per individual easily aggregate to just one; since events combine
in many ways, their scope is referentially not distinctive.
The three reasons amount to just one from an ontological point of view:
events are entities that differ essentially – i.e. algebraically – from other enti-
ties living in the realm of natural-language semantics, and therefore deserve
some logical respect.
In the following excursions, we will assume that every predicate comes with
a Skolem function, identifying a state or event by refering to its parameters,
without assigning scope to its value. Logically, however, the interpretation of
predicates is supposed to be existentially quantified, though the quantifier
is redundant in the valuation. In the sections to come, events and states are
marked as such. They do not enter into exciting interactions with other oper-
ators, because their valuation is handled by Skolem functions. In Flat Logical
Form, however, quantifiers do not return as scopal objects anyway.

2.5 EVENTS AND STATES: REIFICATION OF PREDICATION

2.5.1 Reference to events

In natural language, predicates come in some variety: nouns, verbs, adjec-
tives, adverbs, prepositions may all introduce properties of entities intro-
duced by other phrases in a sentence. For reasons of inference, all these
predications have to be made explicit. John put the wood in the garden entails,
among others, that after a certain moment the wood is in the garden, and this
predication must be made explicit in the sentence’s representation in order
to make that inference viable. In the same vein, something is predicated to
be wood and to have been put in the garden. Is there also something of which
the sentence predicates that it is putting-wood-in-the-garden, or putting-
something-by-John, or putting-wood-in-the-garden-by-John? Yes, there is. In
both sequences of (289) the italicized phrase in the second sentence refers

EVENTS AND STATES: REIFICATION OF PREDICATION 183

to a “something” that is not addressed or introduced by any phrase in the
sentence other than the one headed by put.

(289) John put the wood in the garden. But Mary did not approve of it.
 John put the wood in the garden. He did not do it alone, though.
 John put the wood in the garden. He was all alone, then.

Davidson (1967) was the first to propagate that the predicative “something”
of action verbs should be addressable in natural-language semantics. The
strategy of assigning a referential backbone to real predicates is named after
him: ‘(neo-)Davidsonian’. Here is an example from Reckman (2009).

(290) I flew my spaceship to the Morning star
 ∃x. Flew(i, my_spaceship, x) & to(morningstar, x)

Here the predicate flew is expressed as a three-place relation, one of the argu-
ments of which is a bound variable that occurs as an argument in a typical
adverbial modification of the predicate.

At least three questions immediately arise: (1) what is the nature of the pre-
dicative entity? (2) should or can all natural-language predicates be reified
this way and (3) how does it get quantified over?

The first question can be answered as: that is a matter of philosophical taste. If
you prefer a sharp ontology, you can introduce a particular type or sort for the
predicative entity: apart from entities and/or propositions, there are proper-
ties representing a ‘basic’ type, as has been proposed by Turner (1989). Alter-
natively, you have the predicative entity’s nature defined by some predicate,
e.g. the predicate itself. This is more or less the strategy undertaken in Deli-
lah. But there we introduce reified predicates by a metapredicate like event,
relating the predicative thing to a name and introducing explicit role labels
for the predicate’s arguments. Delilah’s version of (290) looks like this:

(291) I flew my spaceship to the Morning star
∃x. Event(x, flew) & Agent_of(x, I) & Theme_of(x, My_spaceship) &
To(x, MorningStar)

The main advantage of this way of representing flew is that it makes explicit,
and thus inferable, that I was actively engaged in something, and that my
spaceship was in a different way engaged in the same thing, no matter what
we call it. In other words, the sentence establishes a semantic term in which

184 SEMANTICS

the phrases act as values to attributes. All phrases are born equal, so to speak,
but it is the main verb here that comes with the thematic frame: it still is the
sentence’s queen. The headness of the verbal predicate can only be read from
the derivation, though. In the lexicon, the verb is endowed with a thematic
frame that unfolds in the transition from Stored to Applied and Flat Logical
Form. For example, a lexical template for the finite verb slaapt ‘sleeps’ at SLF
not only has a variable for the subject term in store, but also a genuine quanti-
fier introducing an event; abstracting away from bookkeeping, the SLF in the
lexicon looks like this.

(292) SLF of slaapt ‘sleeps’

 < [store0 SubjectTerm, λY.some(U).[event(U, sleep) & Y(U)] 0erots],
 λA.λI.λV.agent_of(V, A) & attime(V, I) & tense(V, pres) >

Basically, the event is ‘quantified in’ the finite or infinite structure of the verb,
just like, at some moment in a derivation, the subject or any other argument
is. The verb imposes its argument structure on the whole sentence, includ-
ing its own semantic impact. In the ultimate representation, after derivation,
grammatical headness can no longer be traced, as it is irrelevant to meaning
and may obscure logical operations. In any case, this explicit way of handling
events allows for a representation language that is independent of syntactic
realization – an interesting feature with respect to generation (see section 2.7).

As for the typological status of the event variable – U and V in (292) – we take
their type to be e, essentially. Assigning an elementary type to them implies
that in the semantic representation of sentences we cannot exploit the alge-
braic structure and the partial ordering of the set of events. Event variables
are sorted by the system-predicate event, and identifiable as such. As far as
we can see, there is no technical objection to typing them differently, how-
ever. Montague’s s for situational indices may qualify. In that case, the intui-
tive reading of an event structure would be that there is a particular situation
to be labelled with a certain verbal concept. John sings is read as: there is
a particular situation that we label as a singing event in which John acts as
an agent. There is, however, a linguistic reason not to resort to any different
type. All languages are able to put predicative concepts in nominal jackets.
These nominalizations may or may not have a distribution which slightly dif-
fers from other nominal constituents, but they certainly are part of a nomi-
nal paradigm. Reckman (2009) and Reckman and Cremers (2007) present
an analysis of really predicative nominalizations in the present framework,
which shows that it is possible to give full credit to the predicative semantics

EVENTS AND STATES: REIFICATION OF PREDICATION 185

of nominalizations while maintaining normal nominal syntax, in particular,
quantification and adnominal modification. The sheer concept of nominaliza-
tions asks for a syntactically homogeneous treatment. In that respect, there
is no reason to switch types; at the end of the day, verbal and nominal pred-
icates converge. This view is also expressed by Khalaily (1997), albeit in a
completely different framework.

The second question with respect to reification is whether it applies to all
predicates. It is clear that event is not the right predicate to classify all verbal
predicates. We need states of some kind to refer to predications like lie and
be at, following Reckman (2009: ch. 3). There it is also argued that proper
nouns and adjectives, at least intersective ones, can be modelled as introduc-
ing states. The linguistic evidence is less convincing here. But in Dutch nomi-
nal and adjectival predicates can be referred to with the very same set of pro-
nouns that is used for reference to propositions, events and verbal states, and
(neutral) noun phrases.

(293) Karel lijkt nogal zenuwachtig de laatste weken. Dat was hij eerder niet
 Karel seems rather nervous the last weeks. That was he before not.
 ‘Karel seems rather nervous these weeks. He was not before’
(294) Hij is dokter. Iedereen kan dat hier worden.
 He is doctor. Everybody can that here become.
 ‘He is a doctor. Everybody can become one here.’

This anaphorical reference is to nominal and adjectival phrases in predicative
positions. But there is no evidence that these predicates are different from the
ones used in nominal or adnominal positions. Consequently, we take all nouns
and adjectives to refer to states, following Parsons (2000). So, the first reading
of Every man seeks a unicorn would be (295) rather than (242)a.

(295) quant(B,every).[[quant(P, some).[state(P, man) &
theme_of(P,B)] ⟹ quant(C,some).[event(C, try) &
quant(D,the).[property(D).[quant(A,some).
[quant(Q,some).[state(Q, unicorn) & theme_of(Q,A)] &
quant(E,some).[event(E, beat) & agent_of(E,B) &
theme_of(E,A) & attime(E,F)]]] & agent_of(C,B) &
theme_of(C,D) & attime(C,F) & tense(C,pres)]]]

These states introduced by nouns and adjectives are not specified for time. By
default, their extension in time covers the temporal extension of the verbal
predicate to which their argument is thematically connected. The reasoning
here is that, in Dutch, (296) is a simple claim about the present prime-minis-

186 SEMANTICS

ter’s former career, whereas (297) seems to imply that the then prime-minis-
ter had to go to school (again?).

(296) De minister-president is in Zeeland naar school gegaan
 the minister-president has <pres+perf> in Zeeland to school gone
(297) De minister-president ging in Zeeland naar school
 the minister-president went <past> in Zeeland to school

This balance in temporal extension can be made explicit, but because it can
also be stated as a language default, we leave it out.

With respect to quantification over events and states: in our approach, all
predicative objects are bound by a dedicated existential quantifier. This
quantifier, although scope-sensitive as such, does not participate in scopal
ambiguities, in that it does not take wide scope, for reasons explained above:
their interpretation and identification is handled by Skolem functions, pro-
viding a contextually parametrized referent from the set of events (see sec-
tion 2.4.2). Thus, the existential quantifier is treated as a kind of dependent
definite description. So we have to explain why events and states are bound
by existential operators rather than by the iota-operator or the like. The rea-
son is this. Even if we typologically treat events and states as normal objects,
there is no reason to believe that they are unique in their sort at a certain
index, as would be the implication of marking them definite, in the sense of
being semantically independent and fixed. All that is claimed by the identi-
ficational use of a nominal predicate (the man, a man, no men) is that some
way-of-being of an assumed entity can be labelled with a certain concept.
It does not claim that this labelling amounts to rigid naming of the way-of-
being, that no other labelling of that particular way-of-being is possible or
viable, or that the labelling is axiomatic. The concepts may be rigid designa-
tors, as Kripke (1972) argues, but the ways-of-being are certainly not rigidly
identified. Moreover, the Skolemization of nominal states has the advantage
that the state’s identification is made to be dependent on the referent of the
predication. In that vein, a sentence like (298) has a quantified logical form
like (299) and a skolemized representation like (300). In the latter represen-
tation, neither man nor walk introduces a quantifier. The state is identified
by a Skolem function associated with the nominal predicate man and para-
metrized for the valuation of x, and the event is identified by a Skolem func-
tion associated with the verbal predicate walk, which is parametrized for the
values of the individual variable x and the temporal object t.

EVENTS AND STATES: REIFICATION OF PREDICATION 187

(298) The man walks
(299) ιx. ∃t. time(t, present) & ∃s. state(s, man) & ∃e. event(e, walk) & theme(s,x) &

agent(e, x) & attime(e, t)
(300) ιx. state(fman(x), man) & event(gwalk(x, t), walk) & theme(fman(x), x) &

agent(gwalk(x,t), x) & attime(gwalk(x,t), t)

The dependency that comes with Skolemization is comparable to the way in
which even extensional adjectives denote properties that are partly deter-
mined by the noun class over which they are predicated: the red in this apple
is red denotes a colouring pattern different from the red in this flag is red. Here
too, the way of being red is determined by the choice of the referent, whereas
the predication as such is not ambiguous.
Adopting simple existential quantification for states and events, it is certainly
tempting to exploit it for marking other semantic phenomena. What imme-
diately comes to mind is the infamous ambiguity between collective and dis-
tributive readings for plural and plural-like predications. We could decide to
interpret (301) as either one of (302)-(304).

(301) All women are singing
(302) ∀x. ∃y. state(y, woman) & theme(y, x) ⇒ ∃z. event(z, sing) & agent(z, x) &

time(z, pres)
(303) ∃y. state(y, woman) & ∀x. theme(y, x) ⇒ ∃z. event(z, sing) & agent(z, x) &

time(z, pres)
(304) ∃y. state(y, woman) & ∃z. event(z, sing) & time(z, pres) & ∀x. theme(y, x) ⇒

agent(z, x)

A few aspects are noteworthy. No good interpretation is available for the scopal
differences between the universal quantifier and the state quantifier. It seems
undecidable whether the state quantifier is semantically independent or not
– even when we leave a restriction for the universal quantifier. It is impossible
to design a situation in which (302) is true and (303) false. And of course that
is due to the intuitive durativity and the non-eventuality of states. We cannot
force non-identity of states; they are mass, rather than countable. It is consid-
erably easier to design different models for (303) and (304). The first sentence
may be true for an opera agent who observes that each of her divas is actually
performing some role somewhere. In that situation, (304) may not apply. It
seems, then, as if the possible collectivity of an event can be represented by
scopal independency of the event. This presumes, however, that the existential
quantification is dynamic, in the sense that its power to bind across sentences
is influenced by its referentiality. That is not the case. The anaphorical rela-
tion in (305) is viable whether we interpret the first sentence collectively or

188 SEMANTICS

distributively. But the anaphor in (306) is only compatible with a wide-scope
reading of the existential quantifier.

(305) All students are having a good time. I want it too.
(306) All students admire an associate professor. I know her well.

This points to a general phenomenon: propositions, properties, events and
states refer sui generis. Their behaviour with respect to number or, more gen-
erally, their algebra differs essentially, as was argued in e.g. Cremers (1993a,
2002). Moreover, referentiality is maintained, even in the presence of negation.

(307) You did not hit Bill. I saw that.

In this example, the pronoun refers to a non-event, say a state: the state of
not being an event of hitting, of ‘you’ not being the agent in that event and of
Bill not being its theme. It looks as if, as Asher (1993: 215) puts it, ‘...negation
always transforms an event inside its scope into a state outside its scope’. As a
matter of fact, the interpretation that accounts for the anaphor must be

(308) the index in space and time for which there is no event of John hitting Bill.

This is the state that no inviting event occurred or John was not its agent or
Bill was not its theme. This observation, however, also confirms the position
in Asher (1993: ch. 1) that events are not closed under negation: the negation
of an event is not an event. In our semantics, the representation of the first
clause in (307) would be like (309). After Skolemization, this renders (310)a,
which in turn is equivalent to the disjunction (310)b.

(309) ¬∃e. event(e, hit) & agent(e, j) & theme(e, b)
(310) a. ¬ (event(fhit(j,b), hit) & agent(fhit(j,b), j) & theme(fhit(j,b), b))

b. ¬ event(fhit(j,b), hit) ∨ ¬agent(fhit(j,b), j) ∨ ¬ theme(fhit(j,b), b)

The latter representation amounts to the following proposition: whatever the
choice function fhit returns as a value on arguments j and b is not an invita-
tion event or j is not its agent or b is not its theme. The first disjunct may
seem weird, but it is not. A set of events and states induced by the predicate
hit may contain all kinds of indices, which have in common only the fact that
they are selected by application of the concept hit. The set may contain the
spatio-temporal indices at which no event of invitation occurred: the state
of nobody inviting anybody. This index is the value of fhit(j,b) if neither j nor b
was involved in inviting events. This index does not identify an event, and that

EVENTS AND STATES: REIFICATION OF PREDICATION 189

is exactly what the first disjunct says: the hit-induced relationship between j
and b is not an event. The relation of j not inviting b itself is real and address-
able, however. Thus, Skolemization offers an alternative to Asher (1993: 217),
who concludes that events force us to ‘...construe the aspectual and transfor-
mational character of negation as affecting a level of semantic interpretation
other than denotations’.
The simple fact that predicates always refer, even when absorbing negation,
elicits the hypothesis that they are introduced by Skolem functions, rather
than by scope-sensitive quantifiers. Like choice functions, Skolem functions
exist by the axiom of choice. Their existence does not need to be reclaimed in
any particular representation. They can be considered as lexically assigned
attributes of predicates. Consequently, instead of the representations in (311)
and (312) with higher order quantifiers over choice functions as in Winter
(2001), Delilah would produce the Applied Logical forms (313), where ei and
si stand for the result of applying an indexed Skolem functions and i marks the
temporal argument of the function.

(311) All men sing
∀x. ∃g. state(g(x,i), man) & theme_of(g(x,i), x) ⇒ ∃f. event(f(x,i), sing) &

agent_of(f(x,i), x) & attime(f(x,i), i).
(312) All students admire an associate professor

∀x. ∃g. state(g(x,i), student) & theme_of(g(x,i), x) ⇒
∃y. ∃f. ∃h. state(h(y,i), assocprof) & theme_of(h(y,i), y) & event(f(x,i),
admire) & agent_of(f(x,i), x) & theme_of(f(x,i), y) & attime(f(x,i), i)

(313) a. quant(every, x).state(si, man) & theme_of(si, x) ⇒
event(ej, sing) & agent_of(ei, x) & attime(ei, i)

b. quant(every, x). state(si1, student) & theme_of(si, x) ⇒
quant(some, y). state(si2, assocprof) & theme_of(s

i
2,y) &

event(ei,admire) & agent_of(ei, x) & theme_of(ei, y) &
attime(ei, i)

In Flat Logical Form, no quantification of the event and state variables will be
marked either.

Finally, there is a decisive reason to adopt a neo-Davidsonian event structure.
Extended lexical units or constructions may be such that the optional modi-
fication of elements that do not contribute to the meaning of the predicate
directly is to be interpreted as a modification at the semantic top level. For
example, in the constructions of the type honger hebben ‘to be hungry’, the
mass noun honger may carry a determiner that conveys the mood of the state:
geen honger hebben (lit: no hunger have) means ‘not to be hungry’ and weinig

190 SEMANTICS

honger hebben (lit: little hunger have) means ‘to be a little hungry’. The nomi-
nal modification is by-and-large free, but always interpretable at the predica-
tive level. In the semantic set-up of the extended lexical unit honger hebben,
this transfer of essential semantic information can only be established if at
the top-level predication enough ‘hooks’ are available. Quantification over
events and states offers these hooks. It reduces the difference between nouni-
ness and verbiness (cf. Wetzer 1995) at the semantic level – for syntax this
reduction was already pleaded for by Khalaily (1997). Without this cross-cat-
egorial equalization, systematic or even finite treatment of semi-transparent
extended lexical units does not seem possible. In this respect, neo-Davidso-
nian event structure leads to normalization and homogenization of logical
form, as pointed out by Reckman (2009). The question will be discussed fur-
ther in section 2.6.

2.5.2 Pluractionality

Modern linguistics has developed an impressive tradition of applying model
theory to semantics. With respect to events, this tradition has two foci: the
theory of groups and related objects, and the investigation into the nature of
events and states. The first domain originates from Link (1983) and enriches
the model with entities built out of other entities. The idea is that these enti-
ties exist outside language and are introduced – implicitly – into natural lan-
guages by processes like pluralization and interfere with interpretation. The
other domain is strongly connected to the study of aspect and Aktionsart and
deals with the way states and events unfold in time and space, and the reflec-
tion of these model properties in the way we refer to them in natural-lan-
guage propositions. There, we have Vendler’s classification and, for example,
Verkuyl’s work on aspect (cf. Verkuyl 1993) and work on the algebra of events,
like Bach (1986) and Krifka (1990). The two foci converge in the treatment
of what is by now called pluractionality: the study of the interaction between
quantification and predication, addressing issues like distributivity and col-
lectivity, iterativity and other aspects of simultaneous multiple predication.
Here we want to outline a framework for dealing with pluractionality in a com-
putational way, i.e. relating to the construal of logical form and to inference.
This framework leans heavily on our conviction that the structure of the world
is not reflected in the structures of languages in any interesting way.
First, we do not go along with the idea that, apart from atomic entities, the model
for the interpretation of natural language contains super-atoms like Linkean
groups, nor with its consequence that the semantics of natural languages gives

EVENTS AND STATES: REIFICATION OF PREDICATION 191

rise to group-forming operators. As explained in Cremers (1993a) and Crem-
ers (2002), we believe that the group concept is both too strong and too weak:
it multiplies entities beyond necessity and it does not properly restrict infer-
ences. The conjunction of two proper names in the following sentence does
not refer to a group, since, if it did, the sentence would entail nonsensically
that Hijzelendoorn was involved in developing quantum physics.

(314) Niels Bohr and Maarten Hijzelendoorn developed quantum physics.

The sentence is distinctly false because no group {Bohr, Hijzelendoorn} exists
and the latter certainly did not contribute in any interesting way to quantum
physics in its seminal years or thereafter.
As far as we can see, groups may be ontologically relevant but superfluous in
the model theory of natural languages. Moreover, we believe that number is
nothing but an agreement feature of natural languages, with as little seman-
tic relevance – relevance for the model and for inference – as case or gender.
The tasks that groups fulfil in formal semantics – to account for collective and
cumulative readings – can easily be conveyed to decomposition of predicates
– a device needed anyway. This will be illustrated below.
Secondly, we do not believe that the phrasing of natural language reflects
structural properties of processes in time and space. That is, we do not believe
that any constituent in natural language can be held responsible for express-
ing properties of processes. To put it more bluntly: the algebra of events is not
involved in any interesting way in the semantics of natural language. No fea-
ture of the semantics of natural-language propositions hinges on the intrinsic
nature of an event or state. Natural-language semantics is not about the ques-
tion which sequence of moves counts as a minimal walking event in a non-
metaphorical interpretation of an occurrence of the verb walk in

(315) The duck was walking on the water.

Whether this sentence is true or not depends only on whether we accept the
description of whatever the duck was doing as an act of walking. If not, we
may not even know why we disagree, and still enjoy fruitful communication.
It makes no sense to encode a definition of walking as a process of moving and
muscling in the semantics of a sentence. Thus, we simply refer to the events
predicated, without providing a model-theoretical definition of the event.
That definition is for the encyclopedia, not for the lexicon.
Thirdly, we try to tackle problems with pluractionality by adopting an idea by
Schein (1993): essential separation. In this view, different thematic relations

192 SEMANTICS

in a sentence select different events, or every eventual predicate introduces a
sequence of events and states. In a sentence like

(316) The boys carried the piano upstairs

for every boy there is an event in which he is the agent and there is a state of
being upstairs with a piano as a theme, for example:

(317) For every boy x, x is the agent of some event of carrying and there is a state of
being upstairs for some piano.

The analysis that some predicates – e.g. telic ones – introduce sequences of
events and states is also developed in Arsenijevic (2006), referring to Verkuyl
(1972) and Ramchand (2002), among others. Arsenijevic has the following
decomposition for telic VPs with three thematic arguments:

(318) [vp [initiating subevent Participant1 [lexical_predicate Participant2]
 [(concat) [resulting subevent Participant2 [lexical_predicate Participant 3]]]

As an example, the ‘template’ [vp John put the bag in the closet] is analyzed as

(319) [vp [initiating subevent John [add_to/control/contact/place the bag]
 [(concat) [resulting subevent the bag [place_in the closet]]]

In his view, this is a syntactical structure where each sub-event comes with
a fully-fledged sentence. The sentences are essentially concatenated, for
example by temporal ordering and/or by a causative linking of the type and
therefore, and thus, or and by that. The nature of this link is given by the VP.
The lexical templates in the analysis are also induced by, or derived from, the
VP predicate; the first one, however, can be identified as the add_to feature
of Verkuyl (1993), and the notion of contribution in Cremers (1993a: ch. 2).
To implement analysis (318) in a syntactically less demanding framework,
we assume that every predicate comes with an internal aspectual structure,
by means of decomposition, which for every argument specifies one type
of event. We assume that every non-intransitive eventive predicate can be
decomposed. Consequently, we take the simple transitive sentence (320) to
have an eventive structure as in (321):

(320) The boys have painted a car
(321) For every boy x, x is the agent of some painting-related event and (by the sum of

these actions) some car is in the state of having been painted.

EVENTS AND STATES: REIFICATION OF PREDICATION 193

Note that in this structure an algebraic relationship between the two events
is lacking. In particular, we do not claim that the agentive event is related to a
painting event in any interesting algebraic sense. It is neither required to be
a sub-event of painting nor is it linked in space or time to any painting event.
The concatenation of (319) is cumulative causation: the sum of the painting
related events leads to the resultive state in a way that is not specified in the
sentence, let alone in the lexicon.
The quantifier on the subject determines the nature of the accumulation. If
the quantifier is non-referential, the painting-related event is equivalent to
painting and any individual agentive action leads to the state of a car hav-
ing been painted. This is distribution of the subject over the predicate. If the
quantifier is referential, no such equivalence is claimed. This leads to the col-
lective reading. As a matter of fact, both readings instantiate the cumulative
reading of Scha (1981) for sentences like

(322) Nineteen software companies own seven mainframes

where the number of mainframes owned is the sum of the mainframes of all
companies. In our approach, the subject’s atoms are always involved in, and
contribute to, what is predicated of the object, and the cumulation’s arithmetic
– the nature of the sum to be made – is determined by the subject quantifier.
Numerals like those in (322) allow for simple addition of the subject atoms’
contributions, where each atom is mapped on some rational between 0 and 1,
reflecting the impact of the contribution to the Boolean value 1 for the predica-
tion over the object. The sentence is true if the sum of the atomic contributions
is 1. For real quantifiers, the sum is simple: every atomic contribution is taken
to be 1. Real quantifiers can not induce the simple addition that underlies (322).
This approach makes a few predictions. Most prominently, it predicts that only
events can introduce ambiguity into the cumulation, since only events can
decompose and concatenate in the way assumed above. Nouns, for example,
can only be distributive. Furthermore, it predicts that only multi-argument
predicates can introduce an opposition between distribution and collectivity.
Intransitive verbs are like nouns, in allowing distribution only. The sentence
The men sing is not ambiguous but univocally distributive. The English verb
meet is the exception here, which explains why in almost any other language
meet is transitive, or at least reciprocal. Our analysis dooms meet to be an
irregular intransitive.
In summary, our format for the eventual structure of a transitive sentence
is a decomposition of the verbal predicate into essential separation (Schein

194 SEMANTICS

1993), with the separated events being related cumulatively according to the
quantifier of the ‘external argument’.

(323) Q1x. S1(x) ∃e1 P’(e1) & agent(e1,x) &cumulativecausation(Q1, P, P’) Q2y. S2(y) ∃e2 P(e2) &
theme(e2, y)

In this set-up, the connection between the two separated events – represented
here as conjunction-plus – carries the semantic load of the main verb: a dedi-
cated form of causation, reduced to some arithmetical operation on quanti-
fied causes. The connection therefore depends both on the main predicate
and on the subject quantifier: the predicate determines the space for what
count as causes for – or, more generally, contributions to – its being brought
about, and the quantifier determines the mode of addition.
Clearly, this separation can be introduced lexically and the cumulative causa-
tion can also be deduced compositionally. That is: a transitive predicate will
lexically be associated with a lambda term introducing essential separation
and cumulative causation, with a slot for the arithmetical constraint to be
borrowed from the subject. To make this work, we have to assume that every
predicate P comes with an encyclopaedically determined set of related activi-
ties RAP, which certainly does not only contain predications derived from P
‘algebraically’. Moreover, the nature of the relationship between the subject-
oriented event and the object-oriented state can be spelled out as a specific
instance of a general predicate λQλPλRλxλy.contributes(Q,P(x),R(y)) relating
a quantifier Q and predicate-related events x and y in order to state that an
event x of predicate P contributes to a degree determined by Q – the agentive
quantifier – and R to bringing about a state y of predicate R. The contributes-
relation is introduced lexically as part of a verb, and indexed for the nature of
Q. In that case, the propositional frame (323) turns into (324), and a verb like
carry comes with lexical specification (325):

(324) Q1x. S1(x) ∃e1.P’(e1) & agent(e1,x) & Q2y. S2(y) ∃e2.P(e2) &
theme(e2, y) & contributesq1(P’(e1), P(e2))

(325) λQλR.Q(λx.∃e1.∃P’∈RAcarry P’(e1) & agent(e1, x) & P(λy. ∃e2. carry(e2) &
theme(e2, y) & contributesQ1(P’(e1), carry(e2))

If Q is a real ‘distributive’ quantifier, P’ is identified with carry and the related
events are identified too: every agentive contribution is set to 1 with respect
to bringing about the thematic state. This is equivalent to the merge of P’ and P,
resulting in normal distributivity. If Q is referential, the function specifies that
the P’-event(s) contribute to some non-zero degree possibly lower than 1. It
is worth noting that the relative scope of the two argument quantifiers is not

EVENTS AND STATES: REIFICATION OF PREDICATION 195

relevant to pluractionality under neo-Davidsonian semantics. The ‘number’
of carrying events is not related to the specificity of the objects if both quanti-
fiers are scope-sensitive, since the quantification over the event is bound to
have narrow scope, as explained before.
This analysis diverges from the approach in Cremers (1993a: ch. 2), in that no
adding up of the contributions to 1 is required under referential quantifica-
tion. In the new analysis, the sentence

(326) The boys carried the piano upstairs

states that each of the boys contributed to the carrying and that the piano ended
up upstairs; it does not claim that the contributions of the boys exclude other
essential contributions to bringing about the resultative state. The sentence
does not exhaust the set of contributors, and so it does not entail

(327) No one else contributed to carrying the piano upstairs.

This lack of exhaustion correlates to the referential nature of the quantifier
that is responsible for the possibly-less-than-one contribution. The sentence
John and Pete sang a song does not exhaust the list of song singers: why would
John and Pete built a house exhaust the list of contributors to the construction
of the house, while not exhausting the list of those who built a house?

The essential separation approach unfolded above is not yet implemented in
Delilah, in order to not complicate the logical form beyond necessity. Instead,
we represent the structure (323) ‘simply’ in the format

(328) Q1x. S1(x) Q2y. S2(y) ∃e P(e) & agent(e, x) & theme(e, y)

The translation from (328) into (324) is straightforward, once the predicate P
is offered in a decomposed manner.

196 SEMANTICS

2.6 EXPLOITING LOGICAL FORM FOR PARSING

2.6.1 Logical Form, Grammar and Computation

We take logical form to be that mode of linguistic analysis in which lexical con-
cepts, inferential semantics and information structure interact. The required
analysis is formal, in the sense that it should account for the inter-subjective
and – thus – systematic aspects of sentential and lexical meaning. In particu-
lar, logical form is a level of grammatical representation at which semantic
consequences can be computed – a view already expressed by Higginbotham
(1985). Logical form is therefore one of the ultimate targets of linguistic anal-
ysis and the representation of what makes natural language a unique module
of human cognition. Typically, logical form emanates from deep processing;
there are no shallow routes to semantic precision, flexibility and coverage.

The claim that logical form is formal by necessity does not imply that it is
bound to comply with first-order predicate logic. Predicate logic does not
entertain a privileged relation to semantic interpretation: the set of meanings
of natural language is neither a subset nor a superset of the well-formed and
interpretable propositions of predicate logic or their complements. It may be
a helpful tool in describing certain aspects of the relations between concepts
and operators in natural language; in our view, however, it is neither the tar-
get nor the anchor of natural-language semantics. A logical form is a repre-
sentation for which some adequate notion of semantic consequence (entail-
ment) can be defined.

Overlooking modern grammar, it makes sense to state that the relationship
between logical form and syntactical structure defines the arena. That is not
a trivial observation: though linguistics ranks among the older sciences in the
world, it took millennia for the proper balance between form and interpreta-
tion to be questioned from a grammatical perspective. In recent times, Ber-
trand Russell (1949) has argued that logical form is not even homomorphic to
syntactical structure. Generative grammar split on the question of with which
aspects of meaning grammar could afford to deal (Seuren 1998: ch. 7). In the
same period, Montague (1972) defined logical form by compositional interpre-
tation, but correlated it to pseudo-syntax. Pursuing this semantic perspective,
categorial grammar started taking the syntax seriously and producing inter-
pretations by derivation, deduction or unification (Ades and Steedman 1982,

EXPLOITING LOGICAL FORM FOR PARSING 197

Moortgat 1988, Morrill 1994 and much other work in this spirit). Categorial
grammar’s strong generative capacity, however, challenges linguistic relevance
(see chapter 1). At the same time, modern grammar theories appear to con-
verge at some formal link between structure and interpretation. The composi-
tional nature of the main semantic configurations is by now undisputed, after
the generative self-reflection of Heim and Kratzer (1998) – that is, if we agree
on the lexicon being the only source of semantic wisdom, and on meaning being
computable. For a deeper assessment of the relationship between syntax and
semantics in grammar, however, see the final chapter.

In computational linguistics, logical form is not a very common module of lan-
guage processing systems. Approaches that avoid incorporating explicit gram-
mar deliberately refrain from logical form, a fortiori. Many scholars working
on such systems seem to share the scepsis about the computability of mean-
ing that some theoretical linguists entertain. These ‘agnostic’ strategies gov-
ern the field in our days. As a matter of fact, for each language that is targeted
by computational efforts, the number of systems doing semantic analysis is
quite restricted. And among these, computation of logical form for inference
is rare. Notorious icons here are the LINGO enterprise (Copestake and Flick-
inger 2000), the grammars involved in the Verbmobil project (Wahlster 2000),
the PARC XLE parser (Maxwell and Kaplan 1993) and DRT-related approaches,
like Bos (2001) and Bos (2004). None of these deal with Dutch.
As for Dutch: memory-based language learning as established in Daele-
mans and Van den Bosch (2005), does not seem hitherto to have targeted
propositional interpretation or any other semantic level. The problem for
these learning approaches is twofold: there is hardly any tagging from which
propositional semantics can be induced – there is nothing to be stored or
learned – and if it existed, the scarceness of data might be overwhelming
with regard to the subtlety that propositional interpretation for inference
calls for. Robust and wide-coverage parsers like Alpino (Bouma et al. 2001,
http://www.let.rug.nl/~vannoord/alp/Alpino/) and the older Amazon
(http://lands.let.ru.nl/amazon/) do not aim at full logical semantic repre-
sentations. Inference – the core business of computational semantics accord-
ing to Bos (2004) – is not addressed.

2.6.2 Logical form in Delilah

Delilah computes three related levels of logical form: Stored Logical Form or
SLF, Applied logical form or ALF and Flat Logical Form or FLF (section 2.2).

198 SEMANTICS

SLF is derivational: it is constructed by applying rules of grammar, which
induces unification of complex symbols. It is compositional in that it expresses
and reflects important aspects of the grammatical structure, and by being built
derivationally. Moreover, it is underspecified. Important features of the interpre-
tation are not made explicit at SLF. SLF underlies the construal of both ALF and
FLF. Specialized algorithms translate SLF into ALF and FLF post-derivationally.
Consequently, ALF and FLF are no longer fully compositional in the strict sense:
not every aspect of these logical forms is functionally related to the grammati-
cal structure. ALF and FLF both specify all definable features of the interpreta-
tion. They differ in the ways of specifying semantic properties. In ALF, matters
of scope and semantic dependency are encoded globally and implicitly, as in
standard predicate logic. In FLF, scope and semantic dependency are compiled
out and made explicit at local levels. FLF acts as a semantic index on ALF.
Therefore, in Delilah, fully-specified logical form is derived from underspeci-
fied SLF by an algorithm that section 2.6.4 argues is exploiting grammatical
knowledge.
Alshawi et al. (1991) explicitly address the question of why one should enter-
tain multiple levels of logical form. They claim the Quasi Logical Form of the
Core Language Engine to be a single level of semantic representation, with
additional procedures of resolution providing values for free variables. In that
sense, our three logical forms also provide one single representation that con-
sists of several layers. We claim that these different layers can have distinct
functions. We certainly do not claim that the logical forms arise from different
semantic modes. There is just one process of logical form construal, unfolding
at different stages. Here is the picture.

(329) Derivation SLF spell-out
ALF

FLF

2.6.3 Stored Logical Form

2.6.3.1 Construal

Stored Logical Form is constructed independently of derivation. The struc-
ture of SLF is defined lexically. It is instantiated during the derivation, but par-
ticular derivational moves or procedures do not influence that instantiation.
Neither syntax nor control can modify SLF. As a consequence, syntactically
different sentences can have the same SLF. Different derivations of the same

EXPLOITING LOGICAL FORM FOR PARSING 199

sentence will have equal SLFs by definition. As an example: the following sen-
tences will have equal SLFs in a Delilah-approach.

(330) John was beaten by nobody.
 Nobody beats John.
 John, nobody beats.
 It is John who nobody beats.
 It is John who is beaten by nobody.

Therefore, Delilah realizes the old idea of deep structure. There is a distinc-
tive level of derivation at which all these sentences are equal. They are not
born equal, though, but simply converge semantically by unification of lexical
specifications. This unification process is steered by syntax and parsing con-
trol, but its outcome is independent of that steering. SLF, in this sense, owes
its architecture to the concept of Quasi Logical Form introduced and explored
by Alshawi (1992).

Each lexical phrase is provided with a template – an HPSG-style attribute-
value matrix – that specifies the structure Store+Body as the value of the lf-
feature semantics. Body is a lambda term, representing the canonical mean-
ing of the phrase. Store contains slots for the logical forms (lf) of dependent
phrases: a verb stores the lf of its arguments, a preposition the lf of its com-
plement, etc. The storage reflects the combinatoric patterns specified in the
syntax. So the store contains lambda terms for all dependent constituents,
and not just for scope sensitive operators, as was proposed by Cooper (1983)
for early Montague grammar. For each slot in Store, the variable it operates
on in Body is specified. Here is a general scheme for the Store+Body structure
in a lexical template; all markers are variables, except for the predicates and
relations in Store.

(331) Store: { DependentLF1↾X1,, DependentLFn↾Xn }
 Body: operator1^...operatorq^relation1(Xi, Xj) & ... & relationp(Xk, Xm)

The variables in Store that stand for the logical forms of dependent constitu-
ents – DependentLFi in (331) – are linked to these logical forms inside the tem-
plate. In general, they are instantiated by Store+Body structures themselves in
the process of unification. As the outcome of this graph unification, the tem-
plate of the computed phrase provides the Store+Body structure that contains
all relevant logical forms of the sub-phrases involved but underspecifies the
interaction of operators. In general, the relations in (331) are constants speci-
fied in the template itself.

200 SEMANTICS

The store may contain elements that do not correspond to syntactic constitu-
ents. In particular, the store of a finite verb will contain meanings indexed by
its stem. This choice typically reflects the level of morphological decomposi-
tion fixed in the lexicon and the nature of the morpho-syntactic interface.
For a very simple sentence like Every man works, after unifying the relevant
templates for every, man and works, the Store+Body structure looks like this:

(332) Store: { {Store: {Store: ∅, Body: λX. man(X)↾Q}
 Body: λP.∀y. Q(y) → P(y)}↾S},
 ∃z. event(z, work)↾E }
 Body: agentof(E, S) &attime(E,T) & time(T, present)

The operator φ↾Y indicates that the formula φ in store has to be converted as
to the variable X in the body: depending on the implicit typing, either the body
is a term λX.ψ and type-sensitive β-conversion renders ψ[φ/X], or φ is a term
λR.σ, the body is λX.ψ and β-conversion can only yield σ[λX.ψ/R]. Neglecting
these bookkeeping features of the storage, (332) could be read like this:

(333) Store: { {Store: {Store: ∅, Body: λx. man(x)}
 Body: λQ.λP.∀y. Q(y) → P(y)},
 λR. ∃z. event(z, work) & R(z)}
 Body: λT.λE.λT.agentof(E, S) & attime(E,T) & time(T, present)

The interpretative formula before conversion would be this:

(334) λQ.λP.∀y. Q(y) → P(y)
(λR. ∃z. event(z, work) & R(z)

(λT.λE.λS. agentof(E, S) & attime(E,T) & time(T, present)(now)))
 (λx. man(x))

The resulting conversions are here, stepwise.

(335) (i) [now/T]
λQ.λP.∀y. Q(y) → P(y)

(λR. ∃z. event(z, work) & R(z)
(λE.λS. agentof(E, S) & attime(E, now) & time(now, present)))

 (λx. man(x))
(ii) [(λE.λS. agentof(E, S) & attime(E, now) & time(now, present)))/R]

λQ.λP.∀y. Q(y) → P(y)
(λS. ∃z. event(z, work) & agentof(z, S) & attime(z, now) &
time(now, present))

 (λx. man(x))

EXPLOITING LOGICAL FORM FOR PARSING 201

(iii) [(λx. man(x)/Q]
λP.∀y. man(y) → P(y)

(λS. ∃z. event(z, work) & agentof(z, S) & attime(z, now) &
time(now, present))

(iv) [(λS.∃z. event(z, work)&agentof(z, S)&attime(z, now)& time(now, present))/P]
∀y. man(y) → ∃z. event(z, work) & agentof(z, y) & attime(z, now) &
time(now, present))

The representation (333) is, therefore, a kind of abbrevation for reasons of
bookkeeping of the typed conversion protocol.

The representations for the quantifier, the noun, the verb and the inflectional
element occur in a structured and labelled way in the sentential SLF: they are
explicitly linked to constituents in the grammatical analysis. In (336), part of
the lexical specification of the verb zag ‘saw’, as in Elke man zag Henk werken
‘every man saw Henk work’, is represented. Links between SLF and the other
tiers of the analysis are underlined; the link is on indices of type X+Y. All struc-
tural variables are in bold face.

202 SEMANTICS

(336) lexical template for zag ‘saw’

ID:A+B
HEAD:CONCEPT:see
 PHON:zag
 SLF:see
 SYNSEM:ETYPE:state
 PERSON:or([2, 3])
 TENSEOP:at-past
 VTYPE:semi_aux
PHON:C
PHONDATA:lijnop(zag, A+B, [arg(left(1), 0, D),
 arg(left(11),wh,E), arg(right(1), 9, F)], C)
SLF:{{[G&(B+H)↾I, {{[J$K&(B+L)↾M], [], []},
 N@some^O^and(quant(O, the), property~[M, O],

 entails1(O, decr), N, entails(O, incr))}&(B+L)↾P,
 Q@some^R^and(quant(R, some), state~[R, see],
 entails1(R, incr),

 and(Q, entails(R, incr)))&(A+B)↾S],[], []},
 and(and(and(and(experiencer_of~[S, I],
 goal_of~[S, T]), theme_of~[S, P]), attime(S, K)),
 tense(S, past))}
SYNSEM:CAT:s_vn
 CONTROL:controls(goal_of~[A+B, T], U~[B+L, T])
 PREDTYPE:nonerg
 TENSE:tensed
TYPE:s_vn\0~[np^0#B+W, np^wh#B+H]/0~[vp^9#B+L]
ARG:ID:B+H
 PHON:E
 SLF:G
 SYNSEM:CASE:nom
 CAT:np
 NUMBER:sing
 OBJ:subject_of(A+B)
 PERSON:or([2, 3])
 THETA:experiencer_of
ARG:ID:B+L
 PHON:F
 SLF:J
 SYNSEM:CAT:vp
 EXSEM:X
 EXTTH:U~[B+L, T]
 THETA:theme_of
ARG:ID:B+W
 PHON:D
 SLF:X
 SYNSEM:CASE:obliq
 CAT:np
 OBJ:dirobject_of(A+B)
 THETA:goal_of

EXPLOITING LOGICAL FORM FOR PARSING 203

This template clarifies that whatever plays an active role in SLF is anchored in
the grammatical analysis by a network of variables, open to dynamic instan-
tiation. In this sense too, SLF is compositional and derivational.

2.6.3.2 Application of SLF: disambiguation

SLF reflects the morphological-syntactical complexity of the phrase: every
constituent that contributes to the meaning of the whole phrase is repre-
sented in the relevant Store+Body structure. For this reason, different SLFs
of one sentence correlate to different meanings. This property of SLF can be
used to determine to what extent extended lexical units or ‘constructions’ have
contributed to an SLF and, thus, what degree of lexical aggregation it repre-
sents. Normally, an interpretation with a high degree of lexical aggregation is
preferred over an interpretation that was not, or less, based on extended lexi-
cal units. For the sentence Nobody has kicked the bucket until now the reading
Until now nobody has hit the bucket such that it fell should have a considerably
lower priority than the reading Until now nobody has died. In Delilah, com-
paring SLFs in this respect suffices for selecting the least naive interpretation.
It has been widely acknowledged by now – and it has never been denied, for
all we know – that the lexicon of a natural-language processing system not
only specifies single words; it must also – and maybe even predominantly –
contain phrases or phrase structures that have a specialized syntax and/or
semantics. At present, scholars proclaiming Construction Grammar (cf. Croft
2001) stress the central role of non-atomic construal in natural language. In
formal grammar and computational linguistics applicants of HPSG, Categorial
Grammar and Tree Adjoining Grammar always have accounted for consider-
ably more involved structures than just atomic units.
Poß and Van der Wouden (2005) show that there is a huge variety of ways in
which words and structures cluster to build complexes with specialized syntax
or semantics. In general, lexical units limiting lexical selection or syntactical
transparency will come with a meaning to which not every proper part con-
tributes according to its proper class. Here are just some examples from Dutch:

• hebben with a DP can mean possess, among others; together with mass
nouns like honger and dorst, it expresses in all its morpho-syntactic
varieties the property of being hungry (thirsty); the verb itself hardly
contributes to this meaning; the construal to possess hungriness (thirst-
iness) cannot be barred from being parsed;

• prepositional phrases may introduce adjunctive modifiers, but very
often verbs select certain prepositions to express specialized meanings,
e.g. werken op iemands DP, meaning affect somebody’s DP, where the DP

204 SEMANTICS

introduces a psychological concept; parsing cannot be withheld from
an adjunctive construal, but the selected meaning deserves priority;

• intransitive verbs V can be part of the so-called Dutch way-construc-
tion, expressing the meaning of moving to a certain position by V-ing,
e.g. to laugh oneself a way/path to DP; the characteristic DP with the
way-type NP does not play a role in the semantics.

In all these cases, the Store+Body structure representing the meaning of the
extended lexical unit is simpler than the SLF resulting from a parse that does
not account for the lexicalized meaning. In particular, the Store will contain
less distinct lambda terms. Crucially, we do not presume that the semantic
structure of an extended lexical unit is simpler in any logical or arithmeti-
cal sense. All we claim is that the store of an extended lexical unit will show
less internal structure than its distributed counterpart. This follows from the
construal of SLF. Therefore, a simple measurement on the stores of SLFs may
select the simplest and highly aggregated and most ‘normal’ reading.
Here is an example. Any sentence containing phrases of the type honger heb-
ben will come with two analyses: one reflecting the reading ‘be hungry’, the
other reflecting the reading ‘possess hunger’. The latter SLF will contain a
store where the lambda term for the noun ‘hunger’ is specified. The former
SLF will have an empty store instead, as the lambda term for ‘to be hungry’
irrespective of its logical complexity will not be stored, but specified in a body
field of SLF. Computing the aggregated complexity of the stores and compar-
ing them will identify the former SLF as the simpler one. Since this SLF is part
of a full analysis, we can select this analysis as the preferred interpretation.
The case is illustrated for the sentence ik heb honger ‘I possess hungriness / I
am hungry’, with simplified representations of the Store+Body structures for
the sake of transparency. The preferred reading has a simpler store than the
non-preferred one.

(337)
SLF 1: { { i:x }, be_hungry(x) }

SLF 2: { { i:x, hungriness:y }, possess(x, y) }

Delilah produces all readings permitted by the grammar. For each SLF, it
defines the structural complexity, i.e. the degree of embedding of Store+Body
structures. For every acceptable parse, it computes a number that expresses
the ratio between the structural complexity of the SLF and the total number
of terms specified in the stores. This ratio marks the semantic complexity of
the SLF. Parses can be ordered according to these ratios. In addition, Delilah
computes the total number of predicates or small clauses in the bodies of the

EXPLOITING LOGICAL FORM FOR PARSING 205

SLFs. This number is used as a secondary marker for semantic complexity,
but does not necessarily discriminate between lexical units and semantically
composed phrases.
The approach to reading selection on the base of SLF complexity is steered by
some principles:

(338) Compositional complexity rule
The degree of compositionality of a phrase corresponds to the number of
lambda terms in its store as compared to the number of syntactical arguments.

This gives an immediate first approach to the compositional complexity of a
lexical sign.

(339) Compositional complexity of a lexical sign
The compositional complexity of a lexical sign equals 0 if the store is empty;
otherwise, it is the number of lambda terms in its store divided by the number
of proper parts that the sign specifies.

The compositional complexity is 0 for, e.g., simple one-word phrases. It is
n/n = 1 if all n specified proper parts of a construction contribute to the
meaning of the whole phrase. It is a rational number if the construction is
not purely compositional.
Apart from this simple metric, one could also count the number of semantic
primitives and/or the number of variables in the compositional logical form,
either in store or in the body or both, but we consider those data to be sec-
ondary, though not necessarily uninformative. Of course, metrics other than
the two above for measuring compositional complexity are also conceivable.
Measure (339) extends to non-lexical signs after unification by making it
recursive.

(340) Complexity of Stored Logical Form

The (compositional) complexity of a Stored Logical Form is the sign
complexity plus the sum of the Stored Logical Form complexity of all
the terms in its store.

In this we have a purely semantic, yet quantitative criterion for selecting read-
ings. If two analyses differ only in their logical forms, choose the one with
the lower compositional complexity of its Stored Logical Form. That analy-
sis will contain the most aggregated meaning. It entertains at least one more
extended lexical unit (elu) than the competitor.

206 SEMANTICS

In NLP, the most aggregated reading will be preferred, generally, since elus
are listed in the lexicon because their aggregated meaning is more prominent
than the full composition of their individual meanings. The complexity meas-
urement therefore results in the following selectional strategy:

(341) Underspecification selection rule

If two signs differ only in compositional complexity of Stored Logical
Form, the one with the lower compositional complexity of Stored Logi-
cal Form represents the lexically preferred prominent reading.

This way, the selection is driven by the identification of lexical or construc-
tional units and the evaluation of their interpretations. As an example, we can
see that among the two Stored Logical Forms for (342), the underspecifica-
tion selection rule easily identifies the be hungry reading of sign (343) as lexi-
cally preferred over the possess hunger reading of sign (344), by comparing
their SLF complexity.

(342) Elke man heeft honger
 Every man has hungriness

(343) reading 1

head:[phonology:/heeft/, semantics:() ...]
argument(1):[semantics:< store:{

 < store: [],
 body:λP.λQ.∀Z.P(Z)→ Q(Z) > #Y},
 body: λY.man(Y) >,
 cat:np ...]
argument(2):[phonology:/honger/, cat:np, semantics:....]
semantics: < store:{

 < store:{
 < store:[],
 body: λP.λQ.∀Z.P(Z)→ Q(Z)> #Y }

 body: λY.man(Y)> #X },
 body: λX.be_hungry(X) >...

 SLF complexity according to (339): 1/2 + 1/1 = 1.5

EXPLOITING LOGICAL FORM FOR PARSING 207

(344) reading 2

head: [phonology:/heeft/, semantics: possess, ...]
argument(1):[cat:np, role:theme, ...,

 semantics: < store:{
 < store: [],

 body: λP.λQ.∀Z. P(Z) → Q(Z) > #Y},
 body: λY.man(Y) >]

argument(2):[phonology:/honger/, cat:np,
 semantics: < store:{

 < store: [],
 body: λP.λQ.∃Z. P(Z)& Q(Z)> #X},

 body: λX.hungriness(X) >]
semantics: < store:{

 < store:{
 < store: [],
 body: λP.λQ.∀Z. P(Z) → Q(Z) > #Y },

 body: λY.man(Y) > #W,
 < store:{
 < store: [],
 body: λP.λQ.∃Z. P(Z)& Q(Z)> #X },
 body: λX.hungriness(X) > #V }
 body: λW.λV.possess(W,V) >

 SLF complexity according to (339): 2/2 + 1/1 +1/1 = 3

Delilah is primed to pick the simplest reading for a sentence by exploiting the
underspecification of SLF. This method is very reliable, because it is anchored
in lexical specifications. In the analysis of the sentence Sommige kinderen had-
den weinig honger (‘some children were not very hungry’) the possess-reading
will be suppressed. This is because the lexicon contains an extended lexical
unit relating honger and hebben, the SLF of which is simpler than the SLF con-
structed from independent lemmas for to have and hunger. The SLF for the
whole sentence is constructed by sheer unification, including an integrated
interpretation for the quantificational parameter weinig ‘little’. Therefore, the
complexity of the lexically specified SLFs is conserved during the derivation.

This approach to resolving lexical ambiguity lives off the layered structure of
SLF. The basic idea is that the semantic elements which are contributed freely
– without pre-derivational lexical commitment – are stored, whereas all other
semantic specification dwells in the body-part of SLF. Free combinatorics thus
increases the complexity of the stores, by definition and exclusively. Measur-
ing the storage is therefore measuring the degree of combinatorial freedom.
Note that this variation in degrees of freedom can only be accounted for at
SLF, that is, before all semantic interaction is mixed up in a complex proposi-

208 SEMANTICS

tion. Consequently, in Delilah, the structured SLF is an essential feature of
lexical items, whether complex or simple.

Underspecified logical form therefore offers a natural and grammatically
precise way to tell ‘heavy’ compositional readings from ‘light’ constructional
readings while parsing, without any additional information being needed. It
only refers to the semantic nature of the construction and the way in which
(proper) parts of the construction contribute or do not contribute to the over-
all meaning. Since the overall meaning of constructions must be specified lex-
ically anyway, no additional data are required for the metric to be applicable.
The selection procedure comes free with a lexicon that allows for deep pro-
cessing and semantic inference by specifying constructional meanings.

2.6.4 Applied Logical Form

In our approach, there is no special grammatical task for ALF. At the same
time, this format – or a variant of it – complies best with requirements of
human readability. To illustrate that, we repeat the (labelled, edited and ‘nor-
malized’) SLF, the disjunctive FLF and the ALFs of the sentence Elke man zoekt
een eenhoorn ‘Every man seeks a unicorn’ (from section 2.2).

(345) Stored Logical Form

 < [store0

 <<[store1 λX.state(X, man) 1erots] λJ.λK. quant(I, every) & J(X) &
theme_of(X,I) & entails1(I, decr) & K(I) & entails(I,incr)>>,

 <<[store2 <<<[store3 <<<<[store4 λY.state(Y, unicorn) 4erots],
λQ.λR.quant(P, some) & Q(Y) & theme_of(Y, P) & entails1(P,
incr) & R(P) & entails(P, incr) >>>> 3store],

 λT.quant(U, some) & event(U, find) & entails1(U, incr) & T(U) &
entails(U, incr)>>> 2erots],

 λW.λU.λP.λF. agent_of(U, I) & theme_of(U, P) & attime(U, A) >
1erots]

 λX.λY.quant(Z, the) & property(X(L)), Z) & entails1(Z, decr) &
Y(Z), entails(Z, incr)>>,
 λC. quant(D, some) & event(D, try) & entails1(D, incr) & C(D)
& entails(D, incr)
0erots],
λI.λZ.λD.λA. agent_of(D, I) & theme_of(D, Z) & attime(D, A) &
tense(D, pres) >

EXPLOITING LOGICAL FORM FOR PARSING 209

(346) Flat Logical Form

 state(si, man) &
 theme_of(si, G+↓+every+[]) &
 event(ej, try) &
 property(D+↓+the+[]) &
 event(ek+[D], find) &
 agent_of(ek+[D], G+↑+every+[]) &
 (theme_of(ek+[D], H+↑+some+[D,G]);
 theme_of(ek+[D], H+↑+some+[G]);
 theme_of(ek+[D], H+↑+some+[])) &
 state(sj, unicorn) &
 (theme_of(sj, H+↑+some+[D,G]);
 theme_of(sj, H+↑+some+[G]);
 theme_of(sj, H+↑+some+[]))&
 attime(ek+[D], F) &
 agent_of(ej, G+↑+every+[]) &
 theme_of(ej, D+↑+the+[]) &
 attime(ej, F) &
 tense(ej, pres)

(347) Applied Logical Form

 (a)
 quant(G,every).[[state(si, man) & theme_of(si, G)] ⟹ event(ej,

try) & quant(D,the).[property(D).[quant(H,some).[state(sj,
unicorn) & theme_of(sj, H) & event(ek, find) & agent_of(E,G) &
theme_of(ek,H) & attime(ek,F)]]] & agent_of(ej,G) &
theme_of(ej,D) & attime(ej,F) & tense(ej,pres)]

 (b)
 quant(G,every).[[state(si, man) & theme_of(si, G)] ⟹ event(ej,

try) & quant(H,some).[state(sj, unicorn) & theme_of(sj, H) &
quant(D,the).[property(D).[event(ek, find) & agent_of(ek,G) &
theme_of(ek,H) & attime(ek,F)]] & agent_of(ej,G) &
theme_of(ej,D) & attime(ej,F) & tense(ej,pres)]]

 (c)
 quant(H,some).[state(sj, unicorn) & theme_of(sj, H) &

quant(G,every).[[state(si, man) & theme_of(si, G)] ⟹ event(ej,
try) & quant(D,the).[property(D).[event(ek, find) &
agent_of(ek,G) & theme_of(ek,H) & attime(ek,F)]] &
agent_of(ej,G) & theme_of(ej,D) & attime(ej,F) &
tense(ej,pres)]]

Just like FLF, ALF is spelled out post-derivationally from SLF. It is cast as
enriched predicate logic, in the sense that it must accommodate operators
and quantifiers other than strictly logical ones. Contrary to FLF, it is neither
a conjunction, nor operator-free. Just like FLF, all semantic dependencies are
unambiguously and fully encoded. ALF is structured by logical operators.

210 SEMANTICS

ALF can best be seen as the logical label of the semantic process. We assume
that its role in natural-language processing is limited. Yet, the number of ALFs
delimits the number of readings at FLF. The multiple disjunction of local read-
ings in (346) suggests an explosion of readings. This is not intended. Reckman
(2009) presents an index on FLF to the effect that in a certain disjunction the
choice of one reading implies the choice of a local reading elsewhere – to wit,
the same one. This index on readings is not represented here, but is assumed
to be part of the FLF-generation procedure.

2.6.5 Flat Logical Form

2.6.5.1 Construal

Each SLF that passes the complexity test is submitted to a post-derivational
algorithm, outlined in section 2.3.3, in particular in (272). This algorithm
performs two tasks: it converts the SLF into a coherent formula and it com-
piles onto each variable the additional semantic information resulting from
this conversion.
The first step involves b-reduction of implicitly typed lambda terms, while
explicitly specifying scope dependencies between semantic operators like
quantifiers, modalities and negation. This conversion is sensitive to scopal
variation of operators, to the semantic nature of operators and to structural
restrictions on scope imposed by islands or other intervention effects. In this
step, a good deal of a semantic theory can be effectuated, for example with
respect to islands, scope and negation. This step yields a more or less stand-
ard logical form. All quantifiers, though, are described rather than interpreted
as operators (as e.g. in (295) and (313)), to allow for quantificational variety.

In the second step, the information spelled out by the conversion is specified
at each occurrence of each variable by a compilation protocol that turns the
semantic operators superfluous. After applying this protocol, each variable is
locally sugared with information as to

• its entailment property,
• the quantificational regime it is bound to,
• the variables its instantiation is dependent upon.

The entailment property indicates whether the predicate the variable is an
argument of allows for upward, downward or no entailment with respect to
the variable. The specification of ‘governing’ variables indicates whether a

EXPLOITING LOGICAL FORM FOR PARSING 211

variable is referentially independent or has to be valuated by a choice func-
tion; the notion of variables yi governing a variable x thus amounts to the
introduction of a choice function f(y1,..,yn) for x, claiming: given values for yi
there is a way to determine a value for x such that the proposition resulting
from these valuations is true.

The information encoded on the variables is compiled from an intermedi-
ate representation where lambda terms are fully converted and scopes are
specified. The index with respect to entailment – up and down – specifies the
local monotony properties of the binding quantifier in the relevant domain,
according to its definition as a general quantifier. For simple, lexical deter-
miners this is straightforward, as these properties are lexically defined by the
theory of generalized quantifiers (in Barwise and Cooper 1981, and Zwarts
1986, for example). For complex determiners like at least n but not more
than m entailment properties have to be computed from the composition; in
many of these cases no monotony can be detected, however. This calculus is
discussed in Reckman (2009).

The index with respect to the binding quantifier can be complex, as the quan-
tifier itself is complex. Yet, complex quantifiers too should be classified in such
a way that e.g. existential impact of the quantifier can be derived immediately.
Note that the entailment property of the variable y varies with the domain of
its quantifier: in the restriction of the universal quantifier, the variable bound
by it allows for downward entailment in the nuclear scope it gives rise to
upward entailment. Referential dependency does not vary with domains.

In our system, FLF is derived from a purely semantic, fully-specified logical
form ALF (cf. section 2.6.4). Neither this logical form nor its derivative FLF
contains any language-specific information. Therefore, if two sentences mean
the same, their logical forms must be equivalent – which is undecidable – and
their FLFs will comply. Paraphrasing an example of Shieber (1993), the fol-
lowing five sentences share one particular canonical and normalized seman-
tic representation, in so far as they share a meaning:

(348) Clapton led Derek and the Dominos
Derek and the Dominos was led by Clapton
The leader of Derek and the Dominos was Clapton
Clapton yazzℜr ĩ Derek ɘd the Dominos
Clapton yămôs amuzăr ɘn Derek ɘd the Dominos

212 SEMANTICS

According to the requirements above, their FLFs, when fed into appropriate
generators for English and Tuareg respectively, should give rise to these, and
maybe even more, sentences. Note that looking at logical form in this way
implies that it is underspecified in comparison to natural-language sentences
inducing it. This underspecification is inevitable, even when the logical form
itself is fully specified from a logical point of view: sentences 1 to 5 are neither
equal nor equivalent, but their logical forms are.
As a matter of fact, Flat Logical Form is an index on ALF. The FLF is derived by
taking every single predicate term at ALF and indexing every variable in that
term for the way it is bound, for polarity and for the variables on which its
valuation depends. Here are two examples.

(349) Every man invites a woman that he does not know

standard first-order representation:
∀x. [M(x) ⇒ ∃y. [W(y) & I(x,y) & ¬K(x,y)]

logical form ALF:
∃e1 ∃e2 ∃e3 ∃e4 ∀x. [[state(e1, M) & th1(e1,x)] ⇒ ∃y.
[state(e2, W) & th2(e2, y) & state(e3, K) & ¬[th3(e3, x) &
th4(e3, y)] & event(e4, I) & th5(e4, x) & th6(e3, y)]]

index FLF:
{ state(e1+↓+some+[], M), th1(e1+↓+some+[], x+↓+all+[]),
 state(e2+↑+some+[], W), th2(e2+↑+some+[], y+↑+some+[x]),
 state(e3+↓+some+[], K), th3(e3+↓+some+[], x+↓+no+[]),
 th4(e3+↓+some+[], y+↓+no+[x]), event(e4+↑+some+[],I),
 th5(e4+↑+some+[],x+↑+all+[]), th6(e4+↑+some+[],y+↑+some+[x])}

(350) Few monkeys dare to fly

standard – no first-order standard
logical form ALF:

∃e1 ∃e2 ∃e3 Few(x). [state(e1, M) & th1(e1, x) & state(e2, D)
& th2(e2, x) & iy. [property(y) & th3(e2, y) & th5(y, e3) &
event(e3, F) & th4(e3,x)]]

index FLF:
{state(e1+↓+some+[], M), th1(e1+↓+some+[], x+↕+few+[]),
 state(e2+↑+some+[], D), th2(e2+↑+some+[], x+↕+few+[]),
 property(y+↕+the+[e2]), th3(e2+↑+some+[], y+↕+the+[]),
 event(e3+↑+some+[y], F), th4(e3+↑+some+[y], x+↕+few+[]),
 th5(y+↕+the+[e2], e3+↑+some+[y])}

Of course, the construction of ALF involves numerous decisions on the seman-
tics of natural language, many of which are not consolidated (cf. Cooper et
al. 1996). These decisions, like introducing intensional domains or assign-
ing wide scope to state and event quantifiers, are not at issue here: whatever

EXPLOITING LOGICAL FORM FOR PARSING 213

clause occurs in ALF is indexed at FLF. The index is computed along with LF,
and can be exploited for computing entailment between sentences and sen-
tence generation.
The exploitability of the FLF index on logical form resides in its permutabil-
ity. Given an FLF, one can select the subset of clauses that share a particular
variable. Let us call this subset a net. For each net, a normal form can be con-
structed, e.g. by some ordering of the predicates involved. Here is a complete
network for the FLF of (350):

(351)
e1-net: < state(e1+↓+some+[], M), th1(e1+↓+some+[], x+↓+all+[]) >
e2-net: < state(e2+↑+some+[], W), th2(e2+↑+some+[], y+↑+some+[x])>
e3-net: < state(e3+↑+some+[], K), th3(e3+↑+some+[], x+↑+no+[]),

th4(e3+↑+some+[], y+↑+no+[x]) >
e4-net: < event(e4+↑+some+[], I), th5(e4+↑+some+[], x+↑+all+[]),

th6(e4+↑+some+[], y+↑+some+[x]) >
x-net: < th1(e1+↓+some+[], x+↓+all+[]), th3(e3+↑+some+[], x+↑+no+[]),

th5(e4+↑+some+[], x+↑+all+[]) >
y-net: < th2(e2+↑+some+[], y+↑+some+[x]),

th4(e3+↑+some+[], y+↑+no+[x]), th6(e4+↑+some+[], y+↑+some+[x])>

The effort to construct the network of the FLF index is proportional to the
number of variables in the LF. The network is the anchor for computation of
entailment and for generation. It seems a characteristic property of natural-
language Logical Form, reflecting the semantic coherence of sentences, that
in its FLF every variable defining a net occurs in at least one other net. It is
worthwhile to point to this form of connectivity by way of conjecture.

(352) Connectivity conjecture for FLF
Given the LF of a well-formed and meaningful sentence S, in the network that
represents its FLF, every indexed variable that defines a net occurs as an indexed
variable in at least one other net.

2.6.5.2 Application: inference

The notion of entailment for unrestricted natural language is far from being
logically validated. From a processing point of view, entailment is problem-
atic on both the logical and the semantic sides. As for the semantics, many – if
not most – constructions of natural language lack any consolidated interpre-
tation. As for the logic, even first order representations of natural language
are too rich to be left to theorem-provers. In addition, Shieber has pointed
out that equivalency for first-order logic, being undecidable, controlled gen-
eration of (unrestricted) natural language from pure first-order logic con-

214 SEMANTICS

straints is not feasible (Shieber 1993). This means that reasoning in natural
language by entailment, using first-order logic, cannot induce provably cor-
rect verbalization of the outcome.
It is not just a trend that these days textual entailment is generally computed by
shallow means – not by full grammatical representations. The RTE challenges
show that relatively shallow analysis, combined with intelligent search and/
or learning strategies, may cover a fair amount of ‘common sense’ entailment,
as was pointed out by e.g. Chambers et al. (2007, Tatu and Boldovan (2007)
and Bobrow et al. (2007). Moreover, deepening the grammatical analysis does
not necessarily improve the result – the argument here is by Bos and Merkert
(2006). Yet, the constructional nature of unrestricted natural language calls
for deep processing: the lexicon for processing is bound to be phrasal, to con-
tain complex lambda terms and to be submitted to subtle syntactic combina-
torics in order to maintain phrasal semantic integrity. The phrasal lexicon is
the source of all semantic wisdom, but in order to exploit it in processing a lot
of grammar is required. Cooper et al. (1996) argue convincingly that several
tasks for natural-language processing require structural semantic processing
– deep structural semantic processing.

FLF is an operator-free conjunction of disjunctions. Each conjunct indexes
a part of the ALF. All logical information is specified in every small clause
as indices on variable occurrences. This representation intends to facilitate
inference. To decide whether a certain inference is possible, it suffices to lin-
early inspect an FLF and, for each conjunct, to locally decide whether or not it
gives rise to (part of) the hypothesis, i.e. the sentence to be inferred.

Here, we propose a means of exploiting deeply processed and fully-specified
logical form for the sake of computing entailment for unrestricted natural
language and for generation. The representations used can be computed, and
are taken to enhance semantic inference between sentences and to feed into
controlled generation (see section 2.7).

Our strategy is to approach the modal notion S entails T for Dutch sentences
S and T by inspecting their respective FLF networks. We define a notion of
l-coverage for FLF networks and suggest that l-coverage of FLFs is a sufficient
condition for entailment.

(353) For Dutch sentences S and T, S entails T if FLF(S) l-covers FLF(T).

EXPLOITING LOGICAL FORM FOR PARSING 215

In order to compare the FLFs, we must assume that their respective networks
can be compared salve alphabetic variance. This is far from trivial, but we will
not pursue this here, since this problem is more general; we simply assume that
an educated guess as to the line-up of variables in the two FLFs can be made.
Under this assumption, we first define the notion of i-coverage for individ-
ual FLF-clauses φ and ψ. Below is a tentative inventory of its instances; each
instance is illustrated by a natural-language entailment relation in which
that instance of i-coverage is intended to be the decisive licensing factor – the
phrases involved are in small caps. In this definition we take <φ,ψ> to be a sub-
net – the clauses share a variable by definition. σ stands for two-place relations
between an indexed variable and a conceptual constant, like state and event; τ
abbreviates all relations between indexed variables, like thematic roles. Fur-
thermore, we assume that between concepts and predicative constants a sub-
sumption order may be defined, by meaning postulates and/or by ontologies
such that X↓ ⊑ X↑ means that X↓ is at least as specific as X↑. Moreover, lists of
governing variables are supposed to be in alphabetical variance when checked;
this is indicated by the notation F/F’. Finally, an intensional net is a net which
is headed by an intensional predicate like proposition/1 or property/1 and the
defining variable of which is dependent on some other variable.

(354) I-coverage
(a) identity:

φ i-covers ψ
if φ and ψ are alphabetic variants

(b) strengthening:
φ[F] i-covers ψ[F’]

if φ and ψ are alphabetic variants except for the list of parameters F and F’, and
F-F’ does not contain variables that define an intensional net in the FLF of the
covering clause and F’-F does not contain variables that define a net in the FLF of
the covered clause
(These men kissed a woman entails Some woman is kissed;
He said that a man died not-entails A man died;
Some woman kissed him not-entails These men were kissed by a woman)

(c) upward coverage:
<σ(A,C),τ(A, x+↑+Q+F)> i-covers <σ(A,C↑), τ(A, y+↑+Q+F’)>

if C↑ is defined by subsumption
(Every candidate is German entails Every candidate is European)

(d) downward coverage:
<σ(A,C), τ(A, x+↓+Q+F)> i-covers <σ(A,C↓), τ(A, y+↓+Q+F’)>

if C↓ is defined by subsumption
(At most three candidates are European entails At most three candidates are
german)

216 SEMANTICS

(e) downward extension:
<σ(A,C), τ(A, x+↓+Q+F)> i-covers

<σ(A,C), τ(A, y+↓+Q+F’), τ’(A, y+↑+Q’+[]) >
if τ’ does not occur in the covering net
(No woman gave flowers entails No woman gave flowers to me)

(f) upward reduction:
<σ(A,C), τ(A, x+↑+Q+F)> i-covers σ(A,C)

(John ate an apple entails John ate)
(g) existential impact:

τ(A, x+M+Q+F) i-covers τ(A, y+M+some+F’)
unless Q = no
(That student read a book entails Some student read a book
Few students read a book entails Some student read a book)

(h) upward concept:
σ(e1+↑+Q+F, C) i-covers σ(e2+↑+Q+F’, C↑)

if C↑ is defined by subsumption
 (She is a girl entails she is a woman)

(i) downward concept:
σ(e1+↓+Q+F, C) i-covers σ(e2+↓+Q+F’, C↓)

if C↓ is defined by subsumption
(At most three students were ill entails At most three students had the flu)

(j) upward relation:
τ(A, x+↑+Q+F) i-covers τ↑(A, y+↑+Q+F’)

if τ↑ is defined by subsumption
(This man hit the woman entails the man did something to the woman)

(k) downward relation:
τ(A, x+↓+Q+F) i-covers τ↓(A, y+↑+Q+F’)

if τ↓ is defined by subsumption
(No men did anything to this woman entails No men hit this woman)

(l) distribution:
<φ, ψ> i-covers <φ’, ψ’> iff φ i-covers φ’ and ψ i-covers ψ’

This list of elementary coverings is rather tentative, but the ambition will be
clear: the relationship between FLFs can be constructed from more elemen-
tary relations at the level of nets and subnets. In linguistic terms, it means that,
by using the FLF index, we are trying to reduce the relation between (mean-
ings of) sentences to a relation between (meanings of) phrases, notwithstand-
ing the complex logical and syntactical interaction between these phrases. On
this basis, we can define a notion n-coverage for the relationship between nets.

(355) A net N is n-covered by a net M if every clause in N is i-covered by M.

The i-coverage almost has to be functional in this definition: in the list of pairs
of i-covering and i-covered subnets, no subnet can occur in an i-covering posi-

GENERATING FROM LOGIC 217

tion more than once, with the possible exception of applications of downward
extension (354) (e).
This leads to the following notion of l-coverage between FLFs.

(356) L-COVERAGE
An FLF Φ = < φ1, … φk> l-covers an FLF Ψ = < ψ1, … ψm > iff
for every network Nψ = <ψ1 … ψn> in Ψ there is exactly one (possibly empty)
network Nφ = <φ1 … φm> that n-covers it.

In order to back up conjecture (353), which introduces l-coverage as a suf-
ficient condition for entailment, we argue that we essentially treat the FLF
index as a conjunction of independent clauses. FLF abstracts away from any
non-commutative connective at LF, in particular, from the material implica-
tion. Although FLF-indexing itself is non-reversible, one observation is rele-
vant: conjunction entails implication if we do not allow for ex falso interpreta-
tion of implication in the combinatory semantics of natural languages. Seuren
(2006) argues that the cognitive-pragmatic construal of natural language does
not leave space for zero-valued antecedents. Following his lead, we assume
that phrasal semantics does not induce ex falso interpretation – the univer-
sal quantifier has existential impact. Under this assumption, the ‘conjunctive’
logic of FLF as presented above is more restrictive than the logic of ALF, which
goes proxy for the relation between sentences. In that case, conjecture (353)
seems a fair and cautious approximation of entailment in natural language.

2.7 GENERATING FROM LOGIC

2.7.1 Generation as translation

In the preceding section, Delilah was explained as computing – apart from a
semi-standard full representation ALF – two related but procedural and for-
mally very distinct levels of semantic representation: underspecified, com-
positional SLF and fully-specified, para-compositional FLF. SLF is produced
as part of the graph unification, which is the kernel of the parsing and gen-
eration procedures. Therefore, its construction does not complicate the deri-
vation. Yet, on SLF, measures can be defined that express essential semantic
properties of the structure and can be exploited for selection of readings and

218 SEMANTICS

reduction of ambiguity. Developing the best and most telling measurements
in this respect is an empirical matter, but it is clear that hard-boiled criteria
can be found and applied in reducing ambiguity exactly where it resides: in
the semantic structure of a sentence. Of course, not all problems of selecting
readings can be handled at SLF. Pure global polysemy cannot be decided upon
by inspecting SLF. But the delicate balance between levels of lexical aggrega-
tion can most certainly be tracked at this level.
SLF seems a good level for generation to take off because of its sensitivity
to constituent structure. We aim at a procedure to generate sentences the
SLF of which gives rise to an FLF that entertains a strict logical relationship
to another FLF, the generation constraint. That is, the procedure starts with
analyzing an FLF, proceeds with guessing a syntactical structure on the basis
of that information, then spells out its SLF and compares the result with the
original FLF. In this sense, the labour division between SLF and FLF may con-
tribute to purely meaning-driven translation, as argued in Alshawi (1991)
and Copestake et al. (2005). Rosetta (1994) made clear that machine trans-
lation on a semantic base – this is not a pleonasm nowadays – flourishes by
strict and controllable compositionality. FLF approaches the representation
of meaning in the spirit of Minimal Recursion Semantics (MRS) as imple-
mented in the English Resource Grammar (Flickinger et al. 2000, Copestake
et al. 2005). The main point of convergence is that MRS and FLF present full
semantics while avoiding syntactical complexity of the logical form. There are
some differences, however. Since FLF is derived from SLF, all constraints on
the interaction of semantic operators – like weak island conditions – are inte-
grated in this derivation. The construal of FLF thus embodies an explicit the-
ory on the syntax-semantics interface. Furthermore, FLF encodes all scopal
and inferential information directly onto the logical form, rendering inference
strictly local, as was pointed out in section 2.6.5.2.
In the following sections, we present a system for generating natural language
that acts as a semantic translation automaton. Both the source and the target
are FLFs; the precise semantic relationship between these two FLFs can be
computed, and yields the criterion for the generation’s success. In between,
Delilah’s generator explores the syntactic-semantic interface, deriving well-
formed sentences with SLFs to be converted into FLF. Schematically:

(357) Generation procedure
 (a) input: FLF InputFLF
 (b) transform InputFLF into a set of lexical constraints Constraints
 (c) generate a sentence Sentence that obeys Constraints
 (d) transform Sentence’s SLF into OutputFLF
 (e) check whether OutputFLF entails InputFLF

GENERATING FROM LOGIC 219

 (f) if (e) is negative, repeat (c)-(e); else: done;
 (g) output: Sentence, translating InputFLF

This procedure is essentially non-deterministic. In stage (b), as much infor-
mation as possible is gained from the full semantic representation InputFLF,
but – quintessentially – this logical form contains too little information to
determine the structure of a sentence representing it. Because the seman-
tic constants in FLF are taken from lexical SLF – the spell-out does not add
or delete any conceptual content – the acquisition of information from FLF
amounts to a line-up of lexical units that can or must contribute to the sen-
tence, with some pre-established relations between them. Starting from this
line-up, at stage (c) a sentence is constructed according to the generation
procedure of chapter 1. The generation procedure tries to accommodate at
most and at least the concepts of the line-up. If the procedure comes up with
a sentence that meets these requirements, its FLF is computed. We assume
that OutputFLF is at least as specific as InputFLF because InputFLF inevitably
underspecifies the features of its translation. Therefore, at stage (e), Output-
FLF is checked to entail InputFLF. The outcome of this check may be nega-
tive, for reasons beyond predictability but having to do with the fundamental
incongruence between form and meaning. If so, the generation procedure is
so little deterministic that it may come up with another sentence meeting the
lexical and conceptual requirements. We assume that in principle it is impos-
sible to add reliable information to this backtracking manoeuvre as to the
source of the proven incompatibility. If that were possible, the information
could have been added before, making the generation essentially determinis-
tic. But in that case, InputFLF would contain full information with respect to
sentence construal. This runs counter to every semanticist’s experience: the
track from form to meaning is one-way. Going from form to meaning and back
is taking a roundabout, with obligatory change of vehicle. Yet, we will argue
that the grammars for parsing and generation are essentially and character-
istically identical, to wit, the joint of the syntax of chapter 1, the semantics of
this chapter and the lexicon of chapter 3.

2.7.2 From logical form to lexical line up

Entailment is a relation between natural-language sentences. That relationship
can be judged by language users: natural-language semantics is an empirical
art when founded on entailment (cf. Chierchia and McConnell-Ginet 2000). At
the end of the day, it is not the relation between formal representations, but
the informal relation between sentences, that can and must be tested. To lead

220 SEMANTICS

entailment and reasoning back to natural-language processing, we must be
able to generate from those logic representations that are exploited for reason-
ing and inference. We now present a non-deterministic procedure to generate
Dutch sentences with a predefined, fully-specified formal meaning; of course,
the procedure is grafted on the Delilah parser and generator. The input to the
procedure is an FLF index, as presented above. This index formula contains
semantic information only. The output is a well-formed Dutch sentence with a
full grammatical representation, again providing a formula in LF and its index
FLF. The main characteristics of the procedure are:

• the input constraint is not biased towards the syntax or the lexicon;
• the generation procedure is non-deterministic, but finite;
• the result can be validated logically: input and output semantics are

formulas in the same language.

Here, we describe a method to relate FLF to the lexicon and the (categorial)
grammar by exploiting the semantic nets induced by it, exemplified in (351).
These networks are shown to be able to steer lexical selection and grammati-
cal unification. L-coverage (356) is applied to validate the result.
The generator is hypothesis-driven: it tries to construct a well-formed and
meaningful phrase of a given category, with a complete parse in the form of
a unified graph representing a complex symbol. The generation procedure
is strictly meaning-driven: it operates without any structural preconditions,
unlike the logical form-driven generators described in Carroll et al. (1999) and
White and Baldridge (2003). In these ‘realizers’ – as in the famous transla-
tion system of Rosetta (1994) – the input to the generation procedure con-
tains essential pieces of structural information relevant to the output. Here,
we propose a purely semantic way of constraining the realization, as our input
constraint completely abstracts from syntax. Generation proceeds by selecting
appropriate phrases from the lexicon after inspecting an agenda and by testing
their unification. The generation is successful if the hypothesis can be checked,
no item is left at the agenda and some non-empty structure has been created.
Basically, the algorithm tries to find templates and tries to unify them accord-
ing to an agenda which is set by an initial hypothesis and updated by applying
combinatory categorial rules. The agenda consists of two parts: given, corre-
sponding with complex symbols already adopted, and to_find, corresponding
to structures still to be checked. A successful unification of complex symbols
according to the agenda is the genuine result of the procedure.
An FLF offered to the generator is ‘chunked’ into nets. As an example, the set
of clauses in the FLF of a Dutch sentence Elke vrouw probeerde te slapen ‘Each
woman tried to sleep’ is given here.

GENERATING FROM LOGIC 221

(358) { state(e1+↓+some+[], woman), th1(e1+↓+some+[], x+↓+every+[]),
 tense(e2+↑+some+[], past), event(e2+↑+some+[], try),

 th2(e2+↑+some+[], x+↑+every+[]), property(y+↕+the+[e2]),
 th3(e2+↑+some+[], y+↕+the+[e2]), event(e3+↑+some+[y], sleep),
 th4(e3+↑+some+[y], x+↑+every+[]),

 th5(y+↕+the+[e2], e3+↑+some+[y]) }

For each variable all the clauses in which it occurs as an argument are
selected. Here is the resulting list of variable-induced nets over (358).

(359)
e1-net: <state(e1+↓+some+[], woman), th1(e1+↓+some+[], x+↓+every+[])>
e2-net: <event(e2+↑+some+[], try), th2(e2+↑+some+[], x+↑+every+[]),

th3(e2+↑+some+[], y+↕+the+[e2]), tense(e2+↑+some+[], past)>
e3-net: <event(e3+↑+some+[y], sleep), th4(e3+↑+some+[y], x+↑+every+[]),

th5(y+↕+the+[e2], e3+↑+some+[y])>
x-net: <th1(e1+↓+some+[], x+↓+every+[]), th4(e3+↑+some+[y],

x+↑+every+[]), th2(e2+↑+some+[], x+↑+every+[])>
y-net: <property(y+↕+the+[e2]), th3(e2+↑+some+[], y+↕+the+[e2]),

th5(y+↕+the+[e2], e3+↑+some+[y])>

Each of the nets P[X] in (359) is taken to be a sequence of simultaneous con-
ditions on the semantics of some lexical phrase. Together, the nets determine
the lexical space for a generation process. Per net, all the candidates in their
lexical quality of complex symbols are selected. That being done, the genera-
tor tries to produce a grammatical construct in which each net is represented
exactly once. The agenda for this process is derived from the contingent syn-
tactic properties of the candidates.
The conceptual agenda raised by the FLF-network strictly limits the freedom
of the generator. Even when the available lexical space is extended by allow-
ing purely functional additions, infinite looping is excluded under the cancel-
lation agenda. On backtracking, the generator will produce all and only the
sentences that live within the lexical space constructed by the input network
and are reachable by the grammar.
Yet, this generation procedure from FLF is essentially non-deterministic in at
least two senses:

• the (structure of the) FLF does not fixate the structure of the sentence,
by definition of FLF;

• the output-FLF may not match the input-FLF, according to a certain
semantic standard.

Like LF, FLF underdetermines not just the syntax, e.g. the word order, of sen-
tences generated in this way. Because of this ‘inverse underspecification’ – LF

222 SEMANTICS

and FLF are not the outcome of a derivation but the spell-out of an under-
specified unification result – the generation procedure cannot fixate all the
characteristics of the produced semantics in the logical space in advance or
on the fly. There are two sources for this flaw:

• FLF may itself contain less specifications (aspect, mood, tense, …) than
any verbalization would introduce;

• inspection of the input-FLF cannot predict which logical dependencies
between variables are blocked or improved by following a certain con-
struction mode for the sentence.

The first aspect of generative underspecification is evident: one cannot be sure
that an FLF contains all the information that a full sentence will produce by
default. Natural language is meant to be more expressive than any logical rep-
resentation. Complex symbols may introduce additional meanings to those
mentioned in the conceptual agenda, e.g. by default specifications like tense on
finite verbs. The concepts in the input are a subset of those in the output. More-
over, the input FLF, when constructed by reasoning, may not specify semantic
dependencies that are inherent in sentential construal, like intensional embed-
ding.
The second incongruence between input-FLF and output-FLFs is due to the
form-driven nature of sentence meaning. Whether or not a certain opera-
tor can scope over another depends partly, if not mainly, on its embedding.
The generation process may isolate an operator on a strong or weak island,
by choosing certain phrases or certain syntactical patterns for the respec-
tive nets. For example, a quantifier embedded in a nominal construction (to
make the promise that ….) has fewer scope options than a quantifier embed-
ded in a non-nominal, but conceptually equivalent construction (to promise
that …). In the same vein, intensional domains are not completely predict-
able from inspecting an FLF. Generally, weak and strong islands of any sort
are induced by syntax, and the syntax is underspecified, by definition and
inevitably. Consequently, the generation procedure cannot be enriched with
an additional agenda controlling possible scopal dependencies. Scope can
be checked or compared only post hoc.
Since FLF – and in fact, every purely semantic logical form – contains too lit-
tle information to fully determine the generation procedure, generating from
logic is a non-deterministic trial, by necessity. The outcome of the process
can or must be checked against the input constraint. It is important to realize,
however, that the input constraint and the output FLF can differ in a limited
number of ways only. For example, the output may contain concepts that are
not present in the input. But this situation occurs only if these concepts are

GENERATING FROM LOGIC 223

introduced by default, when applying certain complex symbols and if they
passed the restrictions on unification imposed by the semantic networks. The
output is far from being in free variation with the input.
As was argued above, it is not wise to check for strict identity or equivalence
of input- and output-FLFs. Taking into account the considerations given above
with respect to the ‘inverse underspecification’, we propose that the normal
check would be as in

(360) Accept S with OutputFLF as a generated translation of InputFLF into Dutch iff Out-
putFLF l-covers InputFLF.

Informally, this means that the generated sentence is at least as specific as
the input, or that a model for OutputFLF is also a model for InputFLF, but not
necessarily the other way round. Again, it should be noted that the conceptual
difference between InputFLF and OutputFLF will be very limited, restricting
lexical resources to those induced by the semantic nets of InputFLF.

2.7.3 From lexical line-up to sentence: intertwining agendas

Given the lexical constraint of the previous section – basically: a restriction on
the lexicon – the generator can start producing sentences within this restric-
tion. The engine for this procedure is the categorial grammar and the con-
structional agenda that can be derived from its types (see chapter 1). For the
sake of efficiency, we may add to the procedure a semantic agenda: a list of
concepts that must occur exactly once in the sentence to be produced. Again
for reasons of efficiency, it makes sense to combine the constructional and the
conceptual agendas. The semantic agenda does not provide constructional
information, though. Therefore, the generation procedure is essentially non-
deterministic, if not of the trial-and-error breed. Yet, there is no objection to
exploiting the network information as much as possible. It is, for example,
advisable to retain the network itself as part of the semantic agenda, and put
it to use in the following way. Suppose the constructional agenda requires
a phrase with an np as a head to be instantiated and suppose that this part
of the agenda is dictated by a phrase representing network e2-net. Before
selecting a phrase to fulfil this task, check which variable in the actual net-
work is related to that np and determine for that variable which semantic
constraints it induces. Use these constraints to select a candidate phrase from
the restricted lexicon. In the example it is clear that if the desired np is sup-
posed to deliver the agent for the try-instantiation, the x-net immediately tells

224 SEMANTICS

you that this agent entertains universal quantification: a candidate for the np-
phrase had better comply with this semantics.
The architecture for this intertwining of agendas is an empirical matter.
Instead of trying to capture idle wisdom in words, let us look stepwise at the
construction of a sentence according to Delilah’s present state.

Suppose we have an FLF like (361) with networks (362):

(361) { agens(ei, x+↑+every+[])
 event(ei, sing)
 atplace(ei, y+↑+some+[])
 state(sj, car)
 theme_of(sj, y+↑+some+[])
 state(sk, man)
 theme_of(sk, x+↓+every+[] }

(362) x-net: <agens(ei, x+↑+every+[]),
 theme_of(sk, x+↓+every+[])>
 y-net: <atplace(ei, y+↑+some+[]),
 theme_of(sj, y+↑+some+[])>
 ei-net: <agens(ei, x+↑+every+[]),
 event(ei, sing),

 atplace(ei, y+↑+some+[])>
 sj-net: <state(sj, car),
 theme_of(sj, y+↑+some+[])>
 sk-net: <state(sk, man) &
 theme_of(sk, x+↓+every+[])>

The x-net does not contain a non-functional concept. The set of lexical items
induced by that net, LEX(x-net), therefore consists only of quantificational
elements representing the functional concept every, among which of course
are determiners like elke ‘every’ and alle ‘all’. They are stored in the ad hoc lex-
icon, referring to variable x. The same holds mutatis mutandis for LEX(y-net).
LEX(ei-net) is centered around the concept sleep and contains at least those
lexical instances of this concept that introduce both events and agents; it does
not contain the nominal versions of sleep as they will not meet these require-
ments. LEX(sj-net) is centered around the concept car and selects those lexi-
cal entries of this concept that introduce at least a state. Similarly, LEX(sk-net)
contains at least the nominal instances of the concept man. All retrieved lexi-
cal items are indexed for the variable of their network.
Each LEX-net is constructed according to a particular selection algorithm
scrutinizing the particulars of the network. These algorithms – the selectors –
are at the heart of the procedure: they must be liberal enough to allow every
lexical item that might be needed for the production, and restrictive enough

GENERATING FROM LOGIC 225

to keep the generation within the semantic borders of the input FLF. The con-
struction of these algorithms is feasible: every network is finite and all small
clauses in the networks are headed by standardized predicates from a finite
set. Yet, the selectors are language specific and in need of experimental vali-
dation. They represent grammatical intelligence.
So, the dedicated lexicon for the generation procedure is the union of these
five sets. This lexicon is enriched with two more sets:

• the set of all lexical items that are specifically requested by one or more
of the entries in the union, in particular lexically-selected ‘words’ in
multi-word expressions or constructions;

• some selection of functional elements that may be necessary to bridge
the underspecification gap between logical form and full sentence, in
particular auxiliaries and functional markers without operational con-
tent, like Dutch er.

These sets can be constructed pre-derivationally, or addressed during gen-
eration, ‘on demand’. It is important to note that in both cases the resulting
lexicon for the generation procedure is a severe restriction on the full lexicon.
After the dedicated lexicon has been established, generation takes off in the
very same way as described in section 1.9. On the basis of a categorial hypoth-
esis – let there be an S – agendas are created, executed and checked until a
grammatical string complying with the hypothesis arises. The lexical space
for the full generation procedure is reduced to the union of the LEX(X-net)
sets and the two sets mentioned above.

Of course, it makes sense to load the agenda in advance with the restriction
that from each LEX(X-net) exactly one item is chosen for the ultimate pro-
duction. Moreover, the relationship between the networks can be used as an
agenda for the construction of the sentence. The relevant observation here is
that for an FLF to be represented by a sentence its networks have to be con-
nected in the following sense.

(363) FLF is connected iff every net in it contains at least one clause that also occurs in
another net of the FLF.

Connectedness means, among other things, that the networks do not constitute
a partition of FLF. If an FLF is not connected, the formula lacks semantic coher-
ence. Sentences can be constructed only for coherent parts of the formula.
Now suppose that an FLF is connected, as (362) proves FLF (361) to be. The
coherence of the FLF can be expressed in a connected graph, linking variables

226 SEMANTICS

and constants if they co-occur in at least one clause. Here is such a graph for
(361)/ (362):

(364) sj ei sing sk

 car y x man
 place

 some every

Every non-constant is a vertex supporting at least two edges. This graph can
be used to steer the generation agenda, e.g. by starting at the densest vertex
and following a depth-first strategy. In this way, the intrinsic combinatorial
agenda according to which the generator operates and the semantic desid-
erata can be combined into one goal-directed procedure.
Restrictions like these on the generation procedure improve efficiency but do
not disturb its essential non-determinism. In fact, finding the proper balance
between lexical restrictions and the application of the grammatical agenda is
an experimental rather than a theoretical matter. The generation procedure
has its own syntactical backbone strong enough to accommodate additional
lexical or semantic constraints. It seems beyond our grammatical reach, how-
ever, to predict the semantic fine structure of a sentence, in particular with
respect to matters of scope and referential dependencies. Only a fully-gener-
ated sentence can therefore be checked for compatibility with the input.

2.7.4 Testing logical form by entailment

A sentence generated according to the protocols is bound to be grammatical
and to comply with the lexical restrictions. There is no guarantee, however,
that its Flat Logical Form entertains the intended semantic relationship with
the input condition. In order to check whether it does, the derivationally pro-
duced SLF has to spell out as a family of FLFs. According to section 2.6.5, this
family amounts to a conjunction of disjunctions. Since we assume that the
input condition generally under-specifies the particulars of the sentence-to-
be-produced, the produced Flat Logical Form is at least as specific as the input
condition. Therefore, the intended semantic relation must be: the produced
logical form entails the input: PrLF ⥽ IP. On the other hand, we do not want the
produced FLF to contain content or information not covered by the input. The
protocols of the previous sections are designed to prevent that. As a matter of
fact: we take a sentence that is less specific than its semantic condition to be

GENERATING FROM LOGIC 227

a better instantiation of that condition than a sentence that is more specific.
In both the following triples, the condition is more adequately and more cor-
rectly represented by the entailed than by the entailing ‘translation’.

(365) condition: John hits Bill
 entailed/acceptable translation: Bill was hit.
 entailing/over-specified: Bill was hit by John with a stick
(366) condition: John did not hit Bill
 entailed/acceptable translation: Bill was not hit by John with a stick
 entailing/over-specified: Bill was not hit

Therefore, one could also require the produced form to be at most as specific as
the input: the input entails the produced logical form or: IP ⥽ PrLF. Consequently,
we may want the two logical forms to be equivalent: IP ⟚ PrLF. But the require-
ment of simple equivalence ignores the asymmetry of the directional argumen-
tation for entailment: the input cannot be required to specify everything that a
full sentence in a particular language brings along, and the sentence cannot be
kept from coming with intrinsic essentials like tense and aspect which may be
absent in IP, in particular when the input is not language-borne.
The analytic nature of FLF and the simplicity of its inference engine offer a
solution to the problem. To see how, let us first be specific about the require-
ments of the produced logical form:

• no clause in PrLF introduces non-functional concepts absent in IP;
• every clause in IP is uniquely reflected in the PrLF – a bijection should

exist between IP and a subset of PrLF;
• no clause in the PrLF is more specific than its reflection in IP: at clause

level, the produced FLF is entailed per clause.

To meet these requirements simultaneously, PrLF minus the image of IP has
to be submitted to severe restrictions, both with respect to the variables in
the remnant clauses as well as with respect to the concepts. These restric-
tions are language-dependent, influenced for example by finite morphology.
In Dutch, for example, PrLF cannot contain states or events outside the image
of IP but it may contain tense specifications in that segment.
This yields the following definition of a successful generation procedure.

(367) Given semantic condition IP, PrLF is a correct representation of IP iff
(a) IP’ is a conjunctive subset of PrLF such that for every clause φ in IP’ there is
exactly one clause ψ in IP and vice versa for which ψ ⥽ φ

 (b) PrLF - IP’ contains only clauses that obey predefined semantic restrictions.

228 SEMANTICS

By the construal of Flat Logical Form, this constraint can be checked linearly.
If the check is positive, the produced sentence is one of the kind we were after.
If not, simple backtracking will produce another sentence.

By combining the connected graphs of type (364) and the type-driven agenda
of the generator, a generation will almost inevitably produce sentences which
comply with the semantic infrastructure expressed by the graph. In particular,
one may expect that the input graph is an alphabetical variant of a subgraph of
the one constructed on the output- FLF. This is a presupposition of condition
(367). Scopal dependencies, however, cannot be arranged by manipulating
the agenda. Scopal dependencies follow from the structure as a whole; they
are determined under a top-down regime, whereas the constructive agendas
operate piecewise and bottom-up. Scope is reconstructed post-derivationally,
in the transition from SLF to FLF and ALF, rather than being constructed on-
line. Its validity with respect to the input can only be tested and not predicted.
Generally, clauses with independent variables entail clauses with referentially
charged variables: if there is a woman that every man loves, it must be the
case that every man loves one or other woman. Consequently, following (367),
if a clause in the input-FLF specifies variable dependency, the output LF must
specify an equivalent dependency. Again, scheme (354) can do the job.

STORING KNOWLEDGE OF LANGUAGE 229

3. LEXICON:
the language’s encyclopaedia and
database

3.1 STORING KNOWLEDGE OF LANGUAGE

3.1.1 Lexicalism: atoms and molecules

The computational model of language presented here is knowledge-driven. It
lives on the explication of grammatical combinatorics. The knowledge needed
is both analytical as well as synthetic, both detailed and global, concrete and
abstract, heading for the rules as well as for the exceptions. This knowledge
has to be explicated and stored somewhere, and be readily accessible for
parsing and generation. The explication and the storage had therefore better
be efficient, with respect to operation as well as maintenance and manipula-
tions like change and extension – learning, basically.
Accessibility of grammatical knowledge presupposes that the knowledge
is retrievable on demand. And this requires a transparent storage policy. A
language’s immediate building blocks, the atoms of form and meaning, also
known as words, morphemes or phrases, are the easiest addresses to handle,
to retrieve and to order information. Let us call them word complexes, for the
time being. There is little doubt that they are the basics of human awareness
when it comes to language, as convincingly argued in Levelt (1989) and not
really challenged since. These word complexes are also the best anchors for
storing grammatical knowledge in a computational system. The reservoir of
words presents itself as the immediate database for knowledge of language.
This point of view is quite common, but is no good unless we have an idea
about what the building blocks of a language really are. This amounts to

230 LEXICON

the question at what level of language form and meaning meet. Clearly,
pure forms are below that level, and texts are above it. This leaves us with
morphemes, words, phrases and sentences as candidates. Sentences fail for
the purpose of storing information, as they form an infinite set – informa-
tion stored in an infinite database is hard to retrieve. As for morphemes,
categorial grammarians in particular have argued, with some force, that
the meaningful combinatorics of word formation and sentence forma-
tion are quintessentially equal (Moortgat 1988, Hoeksema 1984, and – to
some extent – Wheeler 1981). This, however, is misguided, Aronoff (2008)
claims: ‘... what happens inside lexemes is qualitatively different from what
happens outside them’. He sticks with Chomsky’s hypothesis on the need to
lexicalize nominalizations: the semantics of morphological operations are
idiosyncratic, and morphological combinatorics do not match syntactical
operations at phrase level (Chomsky 1970, Rozwadowska 2006) – it must
be admitted, though, that generative syntax is more abundant than the
categorial algebras of Moortgat and Hoeksema. This lexicalist hypothesis
accounts for the difference between word grammar and sentence grammar.
Sentence grammar – the one that has to provide propositional interpreta-
tion – cannot steer word grammar in the following sense: if some prop-
erties of words or phrases are asked for, the sentence grammar lacks the
expressive power to tell the word grammar how to provide or check these
properties. We want the sentence grammar to be restrictive somehow, with
less expressive power than unrestricted rewriting systems, for reasons
of computational complexity. The word grammar, however, can easily be
shown to operate in an unrestricted mode: it erases, it adds, it reshuffles
and overrules, by necessity, in a way that we would never allow sentential
combinatorics to operate. Of course we want to derive both a passive parti-
ciple and its adjectival instances from some stem form of a transitive verb,
but the information coming with the stem and feeding into these deriva-
tions has to be manipulated: the combinatorial properties of the participle
and the derived adjectives differ essentially from the properties of other
verb forms. To put it more bluntly, word grammar cannot be based on unifi-
cation – it is based on destruction and reconstruction. This delicate process
is what this chapter is about. Its results are complex symbols stored in a
lexical database, available to the parser and the generator and disclosed
by fast and precise search algorithms. These complex symbols are mole-
cules to the syntactical and semantic chemistry of parsing and generation:
they are self-contained, well-defined and unique clusters of properties and
attributes relevant to sentence grammar. They are signs (Morrill 1994) in
the sense that they combine syntactical and semantic information that is

STORING KNOWLEDGE OF LANGUAGE 231

conservatively exploited by the sentence grammar: it feeds into unification,
but is not altered by serving as such.

The lexicon explicitly specifies all the combinatorial and semantic peculiari-
ties of a language. If a certain verb form comes with a specialized meaning
when combined with a certain preposition, there will be a complex symbol
defining exactly this state of affairs. If that combination has several syntactic
instantiations, there will be a complex symbol for each of these instances. If a
certain preposition in combination with a certain type of noun gives rise to a
specialized meaning on which the noun’s determiner operates, there will be a
complex symbol or a family of complex symbols holding that particular com-
bination. If a certain combination has combinatorial restrictions not common
to its kind, there will be a complex symbol that expresses these restrictions.
The lexicon is constructive and exhaustive: it defines and delivers all phrasal
molecules. At the same time, the lexicon itself is constructed, generated by a
bunch of involved algorithms that account for inheritance and data economy.
These algorithms, the word or phrasal grammar, distribute, add and change
all kinds of grammatical specifications. They create graphs the unification of
which is the final target of sentence grammar. Here is an example of such a
graph: the first person singular main clause template of the separable parti-
cle-preposition-verb combination laat+toe+tot ‘admit (someone) to (some-
thing)’; it is just one of the numerous templates representing the verb form
laat ‘make, do’ in the lexicon. All values that are dependent on other values
in the template and thus occur more than once are in bold face. Some mainly
administrative features are left out.

232 LEXICON

(368) lexical template for laat ... toe ‘admit’

ID:A+B
HEAD:CONCEPT:admit
 PHON:laat
 SLF:admit
 SYNSEM:ETYPE:event
 FLEX:fin
 NUMBER:sing
 PERSON:1
 TENSEOP:at-pres
 VTYPE:bi_trans
PHON:C
PHONDATA:lijnop(laat,A+B,[arg(right(-1),0,D),arg(left(11),

 wh,E),arg(right(-2),6,F), arg(right(0),8,G)],C)
SLF:{{[H&(B+I)#J, K&(B+L)#M, N&(B+O)#P,
 Q@some^R^and(and(quant(R,some), admit~[R], event~[R],
 entails1(R,incr)), Q, entails(R,incr))&(A+B)#S],[],[]},
 and(and(and(theme_of~[S,J],agent_of~[S,P],
 goal_of~[S,M]), attime(S,T)), tense(S,pres))}
SYNSEM:CAT:s
 EXTTH:agent_of~[A+B,P]
 PREDTYPE:nonerg
 SUBQMODE:U
 TENSE:tensed
TYPE:s\0~[np^wh#B+O]/0~[pp^6#B+I,np^0#B+L,part^8#B+V]

ARG: ID:B+I
HEAD:PHON:tot
PHON:F
SLF:H
SYNSEM:CAT:pp
 OBJ:indirobject_of(A+B)
 THETA:theme_of

ARG: ID:B+L
PHON:D
SLF:K
SYNSEM:CASE:obliq
 CAT:np
 OBJ:dirobject_of(A+B)
 THETA:goal_of

ARG: ID:B+O
PHON:E
SLF:N
SYNSEM:CASE:nom
 CAT:np
 FOCUS:focus
 NUMBER:sing
 OBJ:subject_of(A+B)
 PERSON:1
 QMODE:U
 SUBCAT:pron
 THETA:agent_of

ARG: ID:B+V
HEAD:PHON:toe
PHON:G
SYNSEM:CAT:part

STORING KNOWLEDGE OF LANGUAGE 233

The graph’s representation is just for convenience: it might as well be repre-
sented by an unordered list of fully-specified paths, all headed by a node TOP
(see section 3.3.1), or by a figure with labelled edges or vertices.
This graph is generated from two input data: a basic graph for intransitive
particle verbs and some lemma-like specifications for the verbal complex
toe+laten+tot ‘admit’, among which, the concept. The combinatorial category
requires the subject to be left-dislocated and the particle to occur at the right-
hand side of the verb. The head of the constituent is the verb form – 2nd person
singular. The tense is specified as part of the overall Stored Logical Form. The
subject argument is obligatory: its type is part of the category and its yet unin-
stantiated phonology ARG:PHON:E is specified in the value of PHONDATA, the label
heading the linearization data. The concept it represents HEAD:CONCEPT:admit
stems from the input and is integrated in the more extensive cluster of lambda
terms under SLF. This ordering of lambda terms holds the full semantic archi-
tecture for the (sentential) constituent emanating from this graph. The parti-
cle does not contribute to the semantics: no semantic value for the particle toe
would make it to the constituent level, as it has not been integrated in the value
for SLF at top level. The same holds for the obligatory and selected preposition
tot ‘to’. Both the particle and the prepositional object as well as the subject are
specified in the graph, as values of an ARG feature, and these specifications are
open to unification with other graphs. All ARG labels have a unique ID value, for
identification, linking them to the ID at top level, to be instantiated by unifica-
tion, again. Under these labels, all constraints imposed on unification candi-
dates can be specified. Above, the subject is required to be first person and a
focusable pronoun. In the same vein, the subject could have been required to
be animate, for example. This is a way to state that the subject of toe+laten+tot
is animated by its occurring as such, not necessary by lexical specification: uni-
fication is not blocked by one-sided values.
It may be clear from this example that the differences between our lexical
format and the practices in Head-Driven Phrase Structure Grammar (HPSG)
are rather limited. They will be discussed in the next section. The base line
is that in lexical entries – derived lemmas, templates, lexical graphs, complex
symbols – like (368), all grammatical knowledge converges. It is the storage
and the source of grammatical wisdom. With this ambition, the proper bal-
ance in the lexicon can be defined: that the lexical graphs be self-contained
grammatical objects that do not need any other source of information or data
in order to contribute to the formation and interpretation of sentences. This
view implies that all inheritance relations are compiled into the singular lex-
ical graphs: two graphs are lexically related if and only if they share some
values, and there is no other relationship between the graphs of sings and

234 LEXICON

sing than there is between the graphs of sings and walks: they share certain
paths. Moreover, the graphs contain whatever lexical-semantic features play
a role in determining semantic structure, like the qualia and the patterns of
type coercion discussed in Pustejovski (1993). Each lexical graph is an object
in its own right. That mutual independence is an important precondition for
the kind of fast retrieval for the sake of parsing and generation that we will
introduce in section 3.5.

3.1.2 Delilah and HPSG

Head-Driven Phrase Structure Grammar, introduced in Pollard and Sag
(1987), has become the most influential grammatical framework for com-
putational linguistics; there were times when the framework seemed to be
the shortcut for grammar-based computational linguistics. Sag (2003) has it
spring off from an alternative view on generative grammar. This alternative to
derivational generative grammar is constraint-based, not transformational,
and strongly lexicalist. This last feature in particular requires the Delilah
system to be compared to the HPSG approach, which underlies high-standard
parsing systems like LINGO, Alpino and Verbmobil, all available on the inter-
net. The Delilah system has been developed in the light of HPSG.
At the theory’s home site http://hpsg.stanford.edu we find a neat summary
of HPSG’s main ideas. Here is the list, with each idea being shortly described
(from the site) and compared to Delilah.

HPSG is a constraint-based, lexicalist approach to grammatical theory that
seeks to model human languages as systems of constraints. Typed feature struc-
tures play a central role in this modelling. Some of the leading ideas of current
work in HPSG are the following:

Strict Lexicalism
Word structure and phrase structure are governed by partly independent prin-
ciples. Words and phrases are two kinds (subtypes) of sign.

In Delilah, words and phrases are ‘created’, organized, manipulated
and combined by principles which are independent of the (rules of) syntax.
Words and phrases are indistinguishable in the Delilah lexicon, however. All
constraints are imposed and effected in the same manner, whether the con-
straint is of a phonological, syntactic or semantic nature.

STORING KNOWLEDGE OF LANGUAGE 235

Concrete, surface-oriented structures
‘Abstract’ structures (e.g. empty categories and functional projections) are
avoided wherever possible, in favour of ‘minimal’ grammatical structures.

Delilah’s lexicon consists exclusively of phonologically non-null mate-
rial. It may, however, introduce meaningful structures not explicitly licensed
by syntactic units. These structures are not introduced apart from the ‘real’
lexicon, though.

Geometric prediction
The hierarchical organization of linguistic information plays a significant role
in predicting the impossibility of certain kinds of linguistic phenomena.

Delilah’s lexicon is not hierarchically organized in the sense that some
objects depend, or live, on others. Delilah’s signs are directed graphs, and
the only hierarchy in the lexicon originates from this directionality. Gram-
matical processes are not governed by the hierarchy between lexical objects.
The graph’s geometry is not exploited for combinatorial or theoretical issues.

Locality of selection
According the theory of valence articulated in Pollard and Sag (1994), lexical
heads select only for the synsem objects (a kind of syntactico-semantic com-
plex) of their complements, subjects, or specifiers. It follows that category selec-
tion, role assignment, case assignment, head agreement and semantic selection
all obey a particular kind of locality determined by valence selection features.
This is a kind of geometric prediction.

In Delilah, selection is local in the sense that all parameters have to be
part of one single lexical data structure – a template – when selection is acti-
vated. Since information can only be added by a conservative form of unifica-
tion, locality of relevant information is maintained through derivation. Selec-
tion is not restricted to particular objects, though.

A distinction among types of agreement
Agreement phenomena have been classified by Pollard and Sag (1994) as syn-
tactic concord, anaphoric agreement, or pragmatic agreement. Their theory of
indices predicts, inter alia, the absence of case agreement in anaphoric agree-
ment. (...)

This distinction is not exploited in Delilah. Concord is handled by local
unification. Anaphors are resolved by additional post-unification mecha-
nisms. Pragmatic agreement is not within Delilah’s scope.

236 LEXICON

Local encoding of unbounded dependencies
Filler-gap phenomena and other long-distance dependencies are treated not
via grammatical transformations, but rather in terms of certain feature speci-
fications that are present throughout the ‘path’ from filler to gap. This feature-
based theory in essence predicts the existence of grammatical phenomena sen-
sitive to such specifications, i.e. phenomena that occur only within the domain
of unbounded dependency constructions.

In Delilah too, unbounded dependencies are based on lexical specifica-
tions, namely in the lexical categories. Restrictions on the path are accounted for
in the multi-modal combinatory categorial grammar that steers the unification.

Lexical cross-classification
Within HPSG, words are rich in information. Lexical information is not simply
listed, however; rather it is organized in terms of multiple inheritance hierar-
chies and lexical rules that allow complex properties of words to be derived from
the logic of the lexicon. Current research is developing extensions of hierarchi-
cal lexicons that allow lexical rules to be eliminated and linking patterns to be
derived in a general fashion from semantic properties.

Delilah’s lexicon is created by a complex set of rules implementing weak
forms of inheritance and generalization over lexical classes. The final lexicon,
however, is flat, in that every entry is completely independently represented
and unfolded. The hierarchical organization of the data structures themselves,
and their graph-like format in particular, is exploited for dynamic classifica-
tion in parsing and generation. The HPSG approach is certainly anchored in
artificial intelligence (Sag 2003: 303 ff). The Delilah lexicon does not embody
any claim on organization of information beyond its retrieval mechanisms.

Hierarchical cross-classification of grammatical constructions
There are new proposals within HPSG to model constructions, as well as signs,
in terms of feature structures. This allows constructions to be analyzed via mul-
tiple inheritance hierarchies. This in turn provides a way of modeling the fact
that constructions cluster into groups with a ‘family resemblance’ that corre-
sponds to a constraint on a common super-type. This strain of HPSG has thus
coalesced with one conception of ‘Construction Grammar’.

The Delilah lexicon contains all instantiations of all constructions, salve
coverage. All lexical templates are built in the same way, by a complex set of
procedures. These rules respect common ground for the sake of efficiency, but
there is no built-in hierarchy in the resulting lexicon. The family resemblance
between templates is exclusively established by dynamic classification, but
any resemblance can be retrieved that way. The morphological paradigm of a

STORING KNOWLEDGE OF LANGUAGE 237

verb, for example, is no different from the class of second person finite forms
of transitive verbs with a right-hand subject. The way the lexicon is unfolded
does not bear on its internal structure, which is plainly flat.

Obliqueness-based binding theory
Generalizations about constraints on the binding of referentially dependent
elements are stated in terms of relative obliqueness (o-command), rather than
configurational superiority (c-command).

The Delilah binding algorithms use both obliqueness and configura-
tional information. These operate post-derivationally on fully specified gram-
matical graphs.

Linearization theory
Current work in HPSG is exploring modes of serialization which are not based on
the model of traditional phrase structure grammar (where sentences are word
strings defined derivatively in terms of phrase structure). This has implications
for the treatment of discontinuous constituency, allowing even the introduction
of levels of linear syntactic organization that are to some extent dissociated
from the combinatorial relationships among the items serialized.

Delilah’s multimodal categorial grammar is designed for dealing with
discontinuity. In principle, it is capable of handling any form of discontinu-
ous linearization that can be expressed by reference to syntactic categories.
As explained in chapter 1, it is, nevertheless, quite restrictive and fairly rigid.

In general, HPSG focuses on the organization of the lexicon and the signs. It
seeks restrictiveness and linguistic relevance in this domain. Delilah has a
more liberal attitude towards the structure of signs. It seeks restrictiveness
in the rigid, multimodal combinatorial categorial grammar – categorial list
grammar – introduced in chapter 1. The less constrained view on the lexi-
con is mainly motivated by the huge and yet unexplored variation in multi-
word expressions or extended lexical units (Sag et al. 2002, Poß and Van der
Wouden 2005, Poß 2010). They appear in several of the following sections.

3.1.3 Words and worlds: a lexicon is not a dictionary

For computational linguistics with semantic ambitions, the most intriguing
relation to be explored is the distinction between the lexicon and the encyclo-
paedia. For those who assume that knowledge of language must be absorbed
from modeling and inspecting huge corpora, the distinction is hard. Language

238 LEXICON

is definitely not about itself. Texts feeding into automated lexical storages are
about something other than language. Information derived from those texts
is information about how the worlds are caught in phrases by people using
a certain language. One may assume that this is semantics. In our view, it is
not. Semantics is about the preconditions under which language can be used
to capture the worlds. What is actually claimed, and how often, and by whom
is beyond the language’s architecture. The language system is neither defined
nor affected by someone claiming something.
To derive a lexicon on the basis of texts acting as encyclopaedias, then, is
doomed to yield an excerpt of those encyclopaedias. Though intriguing as a
window on the use of language in a certain community, these excerpts can-
not define the language, for the simple reason that what is going to be said or
could be said but is yet unrevealed is as much language as what has actually
been said. Language is the capacity of being meaningful, and the lexicon is the
place where this potency is maintained and vitalized, not buried or mummi-
fied. In exactly this sense, the Semantic Web enterprise (Berners-Lee, Hend-
ler and Lasilla 2001, Shadbolt, Hall and Berners-Lee 2006) differs essentially
from natural-language semantics. Existing knowledge of all kinds is specified
there as a defining characteristic of objects of all kinds. In natural-language
lexicons, however, only the opportunity to refer can be sketched, not its ‘exten-
sion’ on any index.
The lexicon, as we envisage it, can and must contain all constraints and frames
that help to guarantee a sentence’s interpretability in whatever model. The
lexicon does not necessarily contain factual or contingent properties of objects
covered by a concept. Of course they can be added ad libitum, but every addi-
tion will constrain the general applicability of the lexicon, and improve its
applicability within a certain model.
World knowledge – the encyclopaedia – has been widely invoked in computa-
tional linguistics to assure common-sense inference. In particular, it has been
argued that natural-language processing systems should have access to infor-
mation about named entities and normality in order to avoid recognizing or
producing anomalies of the type

(369) The boy that a MIG painted green had been pregnant with almost every iron song
before any donkey.

It is almost standard to notice, though, that this kind of sentence is a perfectly
well- formed and interpretable sentence. Because of that well-formedness
and interpretability, one may judge that my present world is not a model for
that sentence, or accept it as a way of describing the present state of affairs.

STORING KNOWLEDGE OF LANGUAGE 239

Semantically, however, either of them is a fine result – one of the possible
outcomes of an evaluation – and neither evaluation points to a problem of
language. One may observe that her present interpretation of being pregnant
is hard to comply with painted boys having that property or songs being iron.
It is not the lexicon that has to be specific about these qualia: it cannot be so,
unless it is restricted in advance to my little world. Note, however, that these
de re specifications are essentially different from assuming that a predicate,
when applied positively to an argument, imposes some attributes to the argu-
ment. The qualia imposed by combinatory syntax, should be either disjoined
from all other lexical specifications or should not be checked under unifica-
tion, e.g. by labeling them differently. Those selectional features alone can
never be a reason to reject a sentence. Assuming graph unification, however,
it is straightforward to have a predicate impose certain qualia on its argu-
ments, no matter whether these qualia are realistic or not. But most certainly,
a free language generator producing (369) is doing fine.
The lexicon is not the place where normality is defined. The lexicon does not
tell us what the actual world looks like – it is not a genuine encyclopaedia.
The lexicon is the place where virtual semantic space is created – the virtual
semantic space we live by, to use a simple metaphor. The lexicon does not tell
us how it is outside language. At best, it tells us something about language use
and the human imagination – not about truth outside the gates of Eden. The
lexicon does not tell us that pregnancy is reserved to female mammals.
For all kinds of purposes and applications, restrictions on the semantic space
can be imposed on the lexicon, by brute force or by statistical modeling of
normality. There are two basic problems for anomaly regimes, however,
deserving attention. First, we have the finiteness problem. If sentence (370)
is anomalous, each of the sentences in (371) is too. Yet, it seems impossible to
sum up all equivalents to the relevant predicates.

(370) The male regretted being pregnant.
(371) The individual whose chromosome structure was definitely not equivalent to

those of most individuals that may become pregnant regretted being so.
The regular procreator of her dearly beloved oldest daughter regretted being
pregnant.
The male regretted being in a state in which till then only women had turned
out to be.

Secondly, polarity can be used to declare or even define anomaly:

(372) Until now, almost no male has been known to be pregnant.

240 LEXICON

This sentence is a mere this-worldly fact, and it is certainly not more anomalous
than hot snow does not exist. Consequently, judgments on anomaly are post-
interpretational and, therefore, not part of any interpretative device proper.
If normality is not a genuine feature of the lexicon, knowledge of the world is
not a feature of the lexicon either.

3.1.4 Lexical chemistry: cooking the graphs

In the preceding sections, the lexicon was depicted as a database, contain-
ing all the linguistically relevant information. It was claimed that the process
of constructing this database is knowledge-driven: whatever there is to be
known about individual lexical items has to be made explicit, stated and stored
in a general, retrievable way. In combination, the requirements of explicitness
and retrievability lead us to a distributed lexical format, in which no piece of
information is hierarchically ordered above another. Phonological, morpho-
logical, syntactical and semantic information must be available simultane-
ously and must be randomly accessible. Though the data are not unordered
(see section 3.5) they do not dwell in an a priori system. The lexicon consists
of complex symbols and each complex symbol belongs to all classes of symbols
defined by a feature value it carries at the end of its paths; the graph in (368)
is as much related to other graphs with a path SYNSEM:CAT:s as it is related
to other graphs with a path HEAD:PHON:laat or with a path HEAD:SLF:admit.
Consequently, the lexicon consists of some enumeration of complex symbols,
each of which is a completely independent object. The system for enumera-
tion is random in principle, and can be chosen on purely pragmatic grounds
(see sections 3.4 and 3.5).
As a matter of fact, the same holds for the way in which the lexicon is gener-
ated. The Delilah lexicon is produced by an extremely complicated set of rules
that combine ‘classical’ lemma data with canonical graphs and rules defining
the lemma’s offspring. To put it bluntly: all the graphs for all the morphologi-
cal forms of the verb laten ‘let’ are created by applying the rule machinery to
a particular lemma data structure and one or more ‘pre-defined’ canonical
graphs, e.g. for intransitive verbs. Whether two intransitive verbal paradigms
live on the same canonical graph is only a matter of efficiency, not of principle.
At the end of the day, the lexicon is as flat as a pancake.
This strategy brings about the option that inheritance of features and values
is no longer grammatically relevant. Inheritance is a major lexical concept
in HPSG (cf. Sag 2003; ch. 15). It regulates the spread of features and values
throughout the lexicon, and is part of the economy and architecture of the

STORING KNOWLEDGE OF LANGUAGE 241

grammar. If the lexicon is completely spelled out, however, in each and every
painful detail, the lexicon’s history or the way it came into being does not
carry additional information. Even the classical notion of a lemma becomes
obsolete at the level of the lexical database. Whether or not this history is
subject to computational, lexicological or grammatical principles is for the
record, but not relevant for parsing or generation. It certainly makes sense to
scrutinize the process of lexicon formation in order to find regularities there.
However, this creates an expert system for lexicography rather than a mod-
ule of formal grammar. The semantics of constructions, in our view, renders
any hard-boiled principalism redundant. The enormous variety of ill-known
collocational effects overshadows, for the time being, the regimenting effect
of pre-established inheritance hierarchies. As a matter of fact, in many con-
structions hardly anything inherits according to a grammatical pattern. For
example, in the Dutch way-construction an intransitive verb – any unaccusa-
tive intransitive verb – combines with a reflexive pronoun, a way-type noun
phrase and directional pp to create a causative move event where the meaning
of the intransitive verbal head only occurs as the cause, and neither the way
NP – lexically fixed – nor the reflexive – a dependent anaphor – adds to the
meaning (Poß 2010). Similar observations can be made about a variant of the
construction without way. The members of the construction are underlined.

(373) Geen enkele bankier had zich een weg naar de Raad van Bestuur kunnen golfen
No banker had himself a way to the Board of Directors been-able play-golf
‘No banker could have succeeded in moving into the Board of directors by
playing golf’

(374) Geen enkele bankier heeft zich de Raad van Bestuur weten binnen te golfen
No banker has himself the Board of Directors been-able inside to play-golf
‘No banker was able to move into the Board of Directors by playing golf’

The constructions themselves are rare in any corpus, but the classes of con-
structions are manifold (Grégoire 2010). Their variety and lexical construal
are discussed in section 3.4.4. The point here is that sound opportunism in
cooking graphs appears to be called for, rather than esoteric principles of
design. The main principle seems to be that for each construction, only one
lexical element needs an additional entry in the lexicon. This element can be
called the head of the construction: it pays the price and becomes ambiguous.
The other elements of the construction are simply selected, in whatever form
they occur elsewhere.

242 LEXICON

3.2 MODES OF LEXICAL KNOWLEDGE

The lexicon stores knowledge of language – all knowledge needed for process-
ing. As such, the lexicon stores knowledge in all classical domains of grammar:
phonology morphology, syntax, semantics. Moreover, it may contain relevant
information on phonetics and information structure, and even pragmatics –
though we consider pragmatic properties of sentences to be beyond comput-
ability. Furthermore, lexicons can be used as stores for contexts – remarkable
or frequent phrases other than constructions – as is done in the better-written
lexicons, or information on means of use. There is a natural boundary to the
storage: relevance for processing. This keeps the encyclopaedia out, for exam-
ple. It allows for ontological hierarchies to be adopted by the lexicon to the
extent that they play a role in an application, or are addressed in inference.

3.2.1 Phonological form: the one-dimensional grammar

In its present state, the Delilah lexicon contains little phonological informa-
tion. Of course, a fully-fledged lexicon must contain information as to the pho-
nological structure of words and phrases. This information is widely available,
but sound is hard to process on a general platform. Phonology is the lexicon’s
white spot, but its absence is not dramatic for Delilah’s modeling purposes.
As a consequence, the elementary encoding in our system is orthographical.

This being the case, however, phonological form is built by templates lin-
earizing lexical units. It is the surface realization of the syntactic structure.
Every template contains information on the linear ordering of its lexical com-
ponents. The linearization is not completely arranged by unification: rather,
unification instantiates the variables in a program that is executed post-deri-
vationally. Below are the phonologically relevant lines from (368).

MODES OF LEXICAL KNOWLEDGE 243

(375) phonological network in template of laat ... toe ‘admit’

ID:A+B
HEAD:PHON:laat
PHON:C
PHONDATA:lijnop(laat,A+B,[arg(right(-1),0,D),
 arg(left(11),wh,E),arg(right(-2),6,F),
 arg(right(0),8,G)],C)
TYPE:s\0~[np^wh#B+O]/0~[pp^6#B+I,np^0#B+L,part^8#B+V]
...
ARG: ID:B+I

HEAD:PHON:tot
PHON:F
 ...

ARG: ID:B+L
PHON:D
 ...

ARG: ID:B+O
PHON:E
 ...

ARG: ID:B+V
HEAD:PHON:toe
PHON:G
 ...

The feature PHONDATA is valuated by a formula lijnop/4. The predicate oper-
ates on the orthographical representation of the phrase’s head (‘laat’), the
template’s index and a list of specifications on the four arguments, and returns
its value (‘C’) to the attribute PHON. The specifications of the arguments pro-
vide the relevant data: the mode of composition for each of the arguments, its
own ‘phonology’ – yet uninstantiated – and an indication of at which side of
the head and at which relative distance to the head the argument occurs. All
this information on the linearization of arguments is derived from the TYPE
value when the template is constructed.

Even though the phonological value of an argument’s head can be specified
as part of the selective construction – as is the case twice in (375), the argu-
ment’s phonological form itself can be complex. When instantiated, an argu-
ment comes with its own PHONDATA, to be executed in order to establish the
argument’s phonological form. Because of this recursive aspect and because
in the lexicon, the patterns of discontinuity are largely unpredictable, lin-

244 LEXICON

earization cannot catch up with unification in an agenda-driven generation
procedure. Therefore, lijnop/4 can only be executed when all relevant lin-
earization data are available: after the derivation has been completed. The
procedure itself is described in chapter 1 as the operation makestring/3.

As a side effect, the independence of this linearization procedure offers an
opportunity to check the coherence between the recognizing and the generat-
ing grammars. In an ideal world, the linearization result should be equal to the
input string. If not, the linearization procedure must be assumed to have bugs.

3.2.2 Morphology: the combinatoric guide

The lexicon is word-based, rather than morpheme-based. This is a choice of
system. Delilah does not (yet) entertain a morphology, a word grammar. It
specifies, though, systematic morphological variation in order to produce
correct labels for complex symbols. These forms are produced by a set of
rules operating on the orthography of a ‘main’ word and producing all the
forms that can be derived. For verbs, for example, all finite and infinite forms,
including adjectivally and adverbially used ones, are generated. Each of them
is represented orthographically and marked for its role in the verbal para-
digm: its templates will be generated on the basis of that role.

For the verb verbranden, ‘to burn’ the following list of forms will be produced
automatically – not every form, though, is acceptable to every taxpayer.

(376) verbrand: 1person+singular+pres / imperative+singular /
 2person+singular+pres+postverbalsubject / perfective participle /
 passive participle / adjective

 verbrandt: 3p+sg+pres / 2p+sg+pres+preverbalsubject / imp+pl
 verbranden: pl+pres / infinitive / noun
 verbrandde: sg+past
 verbrandden: pl+past
 verbrandend: pres part
 verbrandende: adjective / noun
 verbrandenden: noun
 verbrande: adjective / noun

For each of its labels, each form can be associated with multiple templates,
differing from each other in combinatoric properties. They happen to share
the concept burn, however. Consequently, a mono-concept lemma like ver-
branden may end up with sixty or eighty different templates in its transitive

MODES OF LEXICAL KNOWLEDGE 245

branch. In its unergative reading, the verb will produce a similar number of
templates. In principle, all these templates are different objects. Accidental
similarities caused by situational convergence of different rules are filtered.
As a consequence, every template is a unique attribute-value matrix (avm).
Lexical redundancy is accounted for by the fact that across the lexicon all verb
forms with a certain label are built into complex symbols by a single rule clus-
ter. Instead of defining, e.g., the affix -t in isolation as a present tense morpheme,
the lexicon will treat all verb forms showing this affix with the same ‘2-and-3p-
sg-pres’ module, just as a different module accounts for all participles.

Other categories with morphological variation are instantiated in a compara-
ble way. The rules producing the forms are complex but not deep. They had
better be fed by phonological rather than by orthographical input – that is an
option. The rules producing the templates of the distinct forms, on the other
hand, carry and reflect much of the syntactic subtleties of Dutch. In particu-
lar, all variation in order – including systematic inversion – is encoded by the
lexical rules in all kinds of attributes, like TYPE, PHONDATA, and ARG:SYNSEM, and
as such is distributed over a template. The lexical rules embody the generali-
zation, up to and including exceptions and constructional particularities. In a
finite way, they must express all that can be known about the concatenation of
forms in a particular language. Moreover, these rules express that knowledge
in a very explicit way. Their manipulation of templates – they are real trans-
formations (see section 3.4) – is complex but transparent and reconstructable,
and every piece of knowledge is returned as a particular value to an attribute.

In this sense, the morphological paradigms represent the backbone of the
combinatoric engine; they index the syntax.

3.2.3 Syntax: the unification agenda

3.2.3.1 Categories as data structures

Strictly speaking, Delilah’s categories encode three types of information:

(377) (a) for each phrase or constituent, its proper parts
 (b) for each part, its position relative to the head
 (c) for each part, the conditions under which its category can be composed

246 LEXICON

The way in which this information is derived and used is the subject of chap-
ter 1. Here we consider only how categorial information appears in the lexi-
cal template.
The rules of lexical construal associate every complex symbol with exactly
one category. The category of a template is completely determined by other
attributes. This information is retrieved on construal and assembled in the
data structure that becomes the value of TYPE:

(378) (a) Head\ LFlag~[TopLeft^Modei,..] / RFlag~[TopRight^Modej, ..]
(b) Head\ 0~[TopLeft^Modei, ..] / 0~[TopRight^Modej, ..]

Each of the two lists is finite, with a low cardinality, and may be empty. The
values for Head, TopLeft and TopRight come from a restrictive set of categorial
literals, among which are s, np and vp. The values for Mode are indices, again,
from a restricted set. The sets of categorial literals and of modes are disjoint.
LFlag and RFlag are dynamic indices, defined by the rules of grammar, but in
the lexicon their value is always 0; (378)b reflects the lexical state of a category.

As a matter of fact, the composition modes Modei referred to in (377)c have
little impact on the template’s structure. The modes occur as part of the TYPE
value where they are introduced as indices on argument types. They are
addressed by the rules of syntax – both in parsing and generation – but are
neutral with respect to unification; they are imposed by the constituent but
not specified in the argument’s sign. Consequently, they are not used as con-
straints on unification. Their role is merely to regulate the sequence of unifi-
cations that make up a sentence’s analysis.

The constituent structure itself is reflected in the structure of the template.
For each proper part, the template specifies a sub-graph as a value of an ARG(x)
attribute where x is a unique and identifying index – this index is represented
only when convenient. The sub-graph identifies the constraints imposed on
the argument phrases by the mother construction, among which is a speci-
fication of the argument’s type occurring as a literal in the matrix category.
The relevant part of template (368) is represented below, with the complex
indices on the ARGs, the mode attributes (‘flags’) and the direction/distance
attribute indicated; the latter were left out of the representation in (368).

MODES OF LEXICAL KNOWLEDGE 247

(379) syntactical network in template laat ... toe ‘admit’

ID:A+B
...
TYPE:s\0~[np^wh#B+O]/0~[pp^6#B+I,np^0#B+L,part^8#B+V]
...
ARG: ID:B+I

SYNSEM:[... CAT:pp ... DIR:right(1)...FLAG:6] ...

ARG: ID:B+L
SYNSEM:[.. CAT:np .. CASE:obliq .. DIR:right(5) .. FLAG:0]

ARG: ID:B+O
SYNSEM:[... CAT:np ... DIR:left(11) ...FLAG:wh] ...

ARG: ID:B+V
SYNSEM:[... CAT:part ...DIR:right(10)...FLAG:8] ...

These argument sub-graphs are the proper target of unification, to the extent
that the unification of two templates is defined as an essentially antisymmet-
ric operation.

(380) Two templates T1 and T2 unify iff there is a sub-template ARG(x):T3 of T1, and T2
and T3 are compatible.

Whether or not two templates are selected for unification is decided by rules
of grammar which are also antisymmetric by nature. Thus, unification is the
main process of natural language grammar, according to Kayne (1994).

3.2.3.2 Features and values

If we assume that unification of templates is basically antisymmetric, an argu-
ment’s attribute-value matrix in a lexical template generally specifies two
regimes: it states which feature-value pairs the mother construction imposes
on the argument and it states which values the argument, when instantiated,
is supposed to deliver to the construction values. All and only specifications
to these effects are needed in the sub-avm. The nature of the value indicates
its function: if it is a variable, the feature is delivered, and if it is a constant, the
feature is imposed. Delivered values will also occur outside the sub-avm. As
an example, take the lexical template for the simple intransitive werkt ‘works’
with just one (subject) argument specified. In that sub-avm, every feature is

248 LEXICON

indicated for being imposed (↓) or delivering (↑); a few redundant bookkeep-
ing features have been left out.

(381) lexical template of werkt ‘works’ with mood of features specified

ID:A+B
HEAD:CONCEPT:work
 PHON:werkt
 SLF:work
 SYNSEM:ETYPE:event
 FLEX:fin
 NUMBER:sing
 PERSON:3
 TENSEOP:at-pres
 VTYPE:nonacc
PHON:C
PHONDATA:lijnop(werkt,A+B,[arg(right(-10),0,D)],C)
SLF:{{[E&(B+F)#G,H@some^I^and(and(quant(I,some),work~[I],
 event~[I], entails1(I,incr)), H,
 entails(I,incr))&(A+B)#J],[], []},
 and(and(agent_of~[J,G], attime(J,K)), tense(J,pres))}
SYNSEM:CAT:s
 EXTTH:agent_of~[A+B,G]
 PREDTYPE:nonerg
 SUBQMODE:L
 TENSE:tensed
TYPE:s\0~[]/0~[np^0#B+F]
ARG:ID:B+F
 PHON:D ↑
 SLF:E ↑
 SYNSEM:CASE:nom ↓
 CAT:np ↓
 NUMBER:sing ↓
 OBJ:subject_of(A+B) ↓
 PERSON:3 ↓
 QMODE:L ↑
 THETA:agent_of ↓

The interaction of imposed and delivered features indicates the minimum
and maximum of the class of features that have to be specified in the lexi-
con. A template does not need more specification than what can be imposed
on it, and a template must not be less specific than what it is supposed to
deliver. As an example: for an NP-template to be unified with (381) it does
not need to be specified for the imposed features, but it must come with val-
ues for the features to be delivered. As a consequence, an NP-template needs
to have only phonological content (PHON) and underspecified semantics (SLF)
to qualify as an argument.

MODES OF LEXICAL KNOWLEDGE 249

Knowledge of syntax amounts to specifying agreement in a proper balance
of imposed and delivering features. Moreover, it assumes an antisymmetrical
relationship between the construction itself – imposing values – and the con-
stitutive parts – delivering values. The lexicon is phrasal, and organized by
constructions.

3.2.4 Semantics: ultimate knowledge of language

3.2.4.1 Use of Concepts

Talking about the meaning of words, no dictum is more relevant than Frege’s
famous arithmetical statement:

(382) Nur im Zusammenhange eines Satzes bedeuten die Wörter etwas
 Only in the frame of a sentence words mean something
 (G. Frege. Grundlagen der Arithmetik (§ 62))

The proper translation may lead us into debates on in- en extensionality
beyond the scope of this work. The quintessence, however, is that the denota-
tion of words and phrases lives on the propositions in which they are framed,
and not the other way round. All there is to the meaning of words in isolation,
e.g. in a lexicon, is abstract and non-derivable. In a Carnapian approach to
intensionality, words in isolation at best represent a function that delivers a
referent when the word is used (in the framework of a sentence) to refer in
a particular world. Unfortunately, human beings are excellent in recognizing
reference and in converging on reference, but extremely poor in checking, not
to speak of computing the Carnapian function underlying that referentiality.
That is, we do not have the slightest problem in understanding your sentence

(383) That man is drinking a beer

even without checking what you mean by man, drink or beer and without hav-
ing to agree with you on these intensionals. In fact, we understand your sen-
tence, even if we turn out to disagree strongly on any concept used. People
hardly ever check each other’s concepts. And if they do, there will be a debate
or a miscommunication.

Intensional functions are hard to define, for two reasons: we need other unde-
fined intensional functions, and we do not know whether our function is cor-
rect – if we had a criterion here – and what it covers. Lexicographers tend to

250 LEXICON

compensate for that by shifting meaning from the function definition to the
labels of relations between undefined concepts: synonymy, antinomy, hyperon-
omy and so on. The problem is, however, that these relations are extensional.
A chair may be a piece of furniture in many situations but it is not so by defini-
tion – there is no intrinsic linguistic relationship between the two concepts,
just as there is no intrinsic linguistic relationship between the concepts whale
and mammal, drink and eat, love and hate, city and capital; the only relation-
ship between the pairs is that in your particular world some phenomena may
be both or neither or just one of them. Or, to put it in other words, the junc-
tions in (384) are neither ungrammatical nor un-interpretable; but we must
assume that the brain behind the sentences does not take roses to be flowers.

(384) John brought her roses and flowers.
 John will bring her roses or flowers.

Neither is the next sentence false by definition:

(385) This rose is not a flower.

Yet, most lexicons will state that a rose is a flower – and there is a certain ten-
dency among the living ones to see it that way. Generally, what is a rose will
be referred to as a flower, but that is a statement of extension. It belongs in
the encyclopaedia of the normal world conceived by a headmaster, but it does
not express knowledge of language beyond its truthful use in the accidental
world we live in.

Even though we may assume that anyone using rose or love applies some
intensional function, there is no good reason to assume that we can define that
function intensionally, as shared knowledge of language users: there are quite
a few nouns we use felicitously without knowing their encyclopaedic status.
Categorizing them conceptually would not express knowledge of language,
not even knowledge of language use, but knowledge of this-wordly normality.

The intensional gap we can observe in language use may even be considered
to be the engine of reference. When we say something in a certain situation,
we refer to a state of affairs that has never been referred to before. We do so
by using words from a finite set. If their intension were to be fixed, we might
miss the novelty of the concept. This, of course, is the message of Lakoff and
Johnson (1980): meaning shifts along cognitive patterns like love is war. The
shift is not random, but its peculiarities are unpredictable.

MODES OF LEXICAL KNOWLEDGE 251

Frege’s statement (382) raises the question how words can get meaning
amidst a complex network of interdependent phrases. The answer here is
that structure conveys the message, and that structure is induced by func-
tional elements. The structural elements in (383) are that, is and a. They are
not even concepts: their meaning is fixed, but far from trivial and not easy to
reconstruct. Yet, for functional terms, a lexical meaning can be established, as
Montague (1972) showed.

For all other terms, however, all that can be said is that they represent some
concept. This concept is beyond rigid formalization. This is not meant to
disqualify heroic approaches to explain and capture lexical variation like
Mel’čuk’s explanatory combinatorial lexicon (e.g. Mel’čuk and Zholkovsky
1984), Sowa’s conceptual graphs (Sowa 1984), Pustejowski’s type coercion
(Pustejowski 1993), Gärdenfors’ conceptual spaces (Gärdenfors 2000) and
many other efforts by semanticists, lexicologists and lexicographers through
the ages. The point is that neither the properties of concepts an sich nor
the relations between concepts are computable in any interesting sense.
The source of this intractability is that the semantic properties of words or
phrases are undecidable. For every non-trivial property P that is claimed to
be semantically relevant to a word W, each of the following statements is true:

• we cannot tell whether P is relevant to W in all (relevant) contexts in
which W is used meaningfully;

• we cannot tell whether there are other properties Q that might be
semantically relevant to W in some context in which W is meaningfully
used;

• we cannot tell whether such properties P and Q are independent;
• we cannot tell whether P is a characteristic property of W.

And ‘we cannot tell‘ means that there is no empirical practice to validate P, in
exactly the sense in which Chierchia and McConnell-Ginet (2000: ch. 1) refer to
the empirical domain of semantics: converging judgements of language users.
We may gather converging judgements on lexical meaning in specified con-
texts. But an old observation is that any noun N that is claimed to be character-
ized by a property P may be used meaningfully in a sentence which amounts to
Some N is not P. Therefore, even a converging judgement on P for N in a context
neither limits nor characterizes N. What we can do, though, is measure its use
and qualify its ‘normality’ or default-value based on this. Even for this purpose,
however, we may run into circular traffic: at a certain moment some seman-
tic grounding must be supplied, of the same nature that we are after. In this
respect, it is wise to realize that vagueness, meaning transition and metaphori-

252 LEXICON

cal meaning is not exceptional; rather, it is the rule. As for vagueness, it must
be stressed that not only predicates for which some metric exists are vague,
but all predicates are: verbs, nouns, adverbs, and adjectives. The paradoxes
discussed and analyzed in Van Deemter (2009) are perfectly general.

As a matter of fact, Chaffin and Herrmann (1988) argue correctly that the
sets of relations with which conceptual networks can be built themselves
require independent empirical justification – that is different from empiri-
cal validation, which was denied to lexical semantics mentioned earlier. We
do not believe that it is the computational linguists’ task to try and define
these networks, although one may exploit computational tools to describe
the way they are used. For all sorts of applications in specific domains or
for specific purposes, the elementary concept may be substituted by more
elaborated objects, like ontologies or lemmas from an encyclopaedia. Alter-
natively, concepts themselves can be seen as a molecular structure of seman-
tic atoms, in the spirit of Wierzbicka’s Natural Semantic Metalanguage (e.g.
Goddard 2002). Such an enterprise is also beyond computational modelling
of natural language. It amounts to implementing a theory of lexical mean-
ing. In the same vein, Ebeling’s (1978) complex theory of signs and semantic
features may appeal to structuralist linguists, but his following dictum may
prevent computational lexicographers from trying to implement it with finite
resources: even the most subtle semantic aspect can be described as a feature
of something (Ebeling 1978: 109).

The concept-field in Delilah’s lexicon is, as a consequence of this reflection,
valuated with a link, a label or a hook, rather than by content. The lexicon is
semantically and conceptually open.
Note, however, that synonymy is a decision not on concepts, but on language.
Two phrases may mean the same, even when that meaning is not trivially
given. This intensional synonymy is rather the exception, as it seems. At least,
it is not wise to mix ontologies and meaning.

3.2.4.2 Types and lambdas

The Empirical Domain of Semantics, which Chierchia and McConnell-Ginet
(2000) refer to, comprises those semantic properties that relate to proposi-
tions and, more generally, the way in which words and phrases combine into
verificational statements. It is only natural that the semantic categories in this
domain are closely connected to syntax. We have to assume that shared inter-
pretations – another way to introduce empiricism – are induced by overt and
covert syntax, to the extent that the judgements converge: if interpretations

MODES OF LEXICAL KNOWLEDGE 253

are stable and shared, they cannot be accidents. Compositionality is the name
of the game: the meaning of a phrase is a function of its construction and the
meaning of its parts. In order to model compositionality properly, however,
the construction of a phrase, the semantic contributions of its parts and the
way meanings combine must be made explicit. The ingredients for the com-
positional bakery are stored and labelled in the lexicon: categories, types and
functions or, better, types relating categories to functions. If they have not
been lexically declared, they will not appear anywhere.
Type theory, when it is applied to natural-language analysis, provides exactly
the coherence of form and meaning that underlies the empirical dimension of
natural- language semantics. Types index functions, and functions we need in
order to construct the semantic network prompted by a sentence. The basic
pattern is given below. If two syntactical units of categories A and B combine
and produce a unit of category C, then C means the composition of two func-
tions fτ(A) and gτ(B). Here t(X) is the type corresponding to X and composition
passes into application if the type of the secondary function in the composi-
tion is the domain of the primary function: fτ(A) ∘ gτ(B) := fτ(A) (gτ(B)) iff τ(A) =
<τ(B), σ>. Moreover, given the types of A and B, only one of the two composi-
tions can be valid: fτ(A) ∘ gτ(B) is defined iff τ(B) = <α,β> and τ(A) = <β,σ> and
α ≠ σ. Thus, the types maintain – if not embody – the fundamental antisym-
metry of syntax (Kayne 1994); see also chapter 1.

(386) (a) C (b) fτ(A) ∘ gτ(B) (c) gτ(B) ∘ fτ(A)

 A B fτ(A) gτ(B) fτ(A) gτ(B)

Every template in the lexicon containing a combinatorial category comes with
a semantic type, but the relation between categories and types is not func-
tional: categories are not exclusive for types, nor types for categories. There-
fore, the type of a phrase is defined and decided in the lexicon. A phrase is of
a certain type only if the phrases’ template gives rise to that type.

Yet, semantic typing in the Delilah lexicon is implicit rather than explicit.
Two reasons justify this obscurantism:

• not every syntactic argument is reflected in the meaning of its phrase;
• the syntax is rigid (see chapter 1), but the frozen syntactical combina-

torics do not necessarily reflect the associated composition.

The first argument for implicit typing relates to the abundance of phrases the
syntax of which does not reflect their semantic structure. To put it clearly: the

254 LEXICON

kick in to kick the bucket heads a transitive construction, but the correspond-
ing function is not applied to the meaning of the bucket. Explicit typing would
have to be overruled explicitly, which makes no sense.

The second argument is of a systematic nature. Functions are modelled by
sets, as a function from A-objects to B-objects is a homomorphism from set
A into set B. So, functions themselves form sets, since they can be arguments
to functions typed otherwise. From algebra we know that each member of a
set can be identified by its unique ultra-filter: the set of subsets containing
that particular individual. That ultra-filter is a function again, of a predictable
type: if the individual is of type α, its ultra-filter on the domain of objects of
type α is of type <<αt>t>, for t typing the boolean values. In the Lambek-calcu-
lus of type-logical grammar (Moortgat 1988), this is an instance of a general
theorem called type raising or type lifting.

For semantic purposes, but not for syntactic combinatorics, it can be useful
to exploit the ultra-filter, rather than the original function. Montague (1972)
exploited higher-order functions with flexible combinatorics to deal with scope
variation. In the Delilah grammar, the higher order functions are exploited
to prepare constituent meanings for the scoping algorithm (see chapter 2).
Nominal objects in particular are syntactically ‘eaten’ by their non-nominal
licensers, like verbs, but semantically the objects scope over the licensor’s
meaning in order to allow for scope variation between its arguments. More
bluntly, a subject is a syntactic argument to its verb, but semantically the divi-
sion of labour is reversed: the subject is the primary type in a composition
with the verb. This incongruency is deep and essential: an eventive verb may
assign a theta-role to its subject, syntactically, but the subject’s algebra deter-
mines whether (or not) some individual bears the relation expressed by the
theta-role to that event: no woman holds the agent position in (387) but no
woman was the agent of song singing if the sentence is true.

(387) No woman sang a song

In order to solve the paradox, generative syntactic theory assumes that the
subject phrase does not carry the theta role, but heads a chain of positions of
which the theta role’s position is the tail. Assuming the lack of correspond-
ence between syntactical and semantic structure to be real, nevertheless, the
normal categorization and typing of a transitive verb and its arguments runs
as follows.

MODES OF LEXICAL KNOWLEDGE 255

(388) syntactic categories
 finite transitive verb: s\np/np or t\e/e
 subject: np or e
 object: np or e
 semantic types
 transitive verb: <e<et>> λ-term: λxe.λye.Reet(xe,ye)
 subject: <<et>t> λ-term: λPet. ℘ett(Pet)
 object: <<et>t> λ-term: λPet. ℛett(Pet)

Clearly, the arguments’ types are lifted in the sense explained above, in order
to allow for them to be composed with the verb. Lifting here is not deductive
and procedural, as in standard categorial grammar (e.g. Moortgat 1988), but
lexical and declarative and, thus, not recursive.

In our system, the higher-order functions are in the store of the lower func-
tion, and the arguments are in the store of the head, as explained in chapter 2.
Consequently, the lexical template(s) of a construction’s head specify

• its syntactic arguments, in a path with label ARG(X+Y+Z):...
• their syntactic categories, in the path ARG(X+Y+Z):SYNSEM:CAT:...
• their λ-term (generally as a variable), in the path ARG(X+Y+Z):SLF:...
• for every argument’s λ-term:

* its position in the stores at Stored Logical Form, i.e. a position in
the value in the path SLF:{{[...] ...}, ...}

* the variable in the body of SLF to which the λ-term is converted.

Below are the relevant lines from template (368).

256 LEXICON

(389) syntactic-semantic network of template laat ... toe ‘admit’

ID:A+B
...
SLF:{{[H&(B+I)#J, K&(B+L)#M, N&(B+O)#P,
 Q@some^R^and(and(quant(R,some),admit~[R],event~[R],
 entails1(R,incr)),Q,entails(R,incr))&(A+B)#S],[],[]},
 and(and(and(theme_of~[S,J],agent_of~[S,P],goal_of~[S,M]),
 attime(S,T)),tense(S,pres))}
...
TYPE:s\0~[np^wh#B+O]/0~[pp^6#B+I,np^0#B+L,part^8#B+V]

ARG: ID:B+I
SLF:H
SYNSEM:CAT:pp
...

ARG: ID:B+L
SLF:K
SYNSEM:CAT:np
...

ARG: ID:B+O
SLF:N
SYNSEM:CAT:np
...

ARG: ID:B+V
HEAD:PHON:toe
SLF:nosem
SYNSEM:CAT:part

The relevant chunks of knowledge are in bold. The top SLF contains the follow-
ing information. The λ-term that interprets the agentive argument internally
converts to – or: is bound to bind – the variable P in the body. The λ-term that
interprets the thematic np-argument internally converts to the variable J in
the body. The semantic contribution introduced by the pp-phrase and likely to
be equal to the meaning of the complement of the (semantically neglectable)
preposition, internally converts to the variable M. No semantic contribution
of the particle is envisaged at top level. Moreover, the event quantifier itself is
made explicit and stored, binding the variable S. This quantifier is introduced
by the phrase itself, as an argument to its finite head, the body, which specifies
the semantic space inherent in the verb’s finiteness; from a morphological
point of view, the verb is taken to be an argument of the inflection.

MODES OF LEXICAL KNOWLEDGE 257

The implicit typing of the λ-terms in (389) is expressed in the following way:
the type of the meanings K and N above is that of an ultra-filter on the indi-
viduals to be assigned to the variables M and P, respectively. Implicitly, M and
P are of type e, marking the semantic arguments of the event admit. As a con-
sequence, both K and N are of type <<et>t>. In the same vein, the body of the
top SLF – italicized in (389) – represents a quadruple abstraction over the
variables M, P, J and S, the last one being internally ‘bound’: the body is of type
<e<e<e<e,t>>>>. Lambda abstraction is not made explicit in the representa-
tions, since lambda conversion cannot be executed properly under Prolog
(Pereira and Shieber 1987). In standard notation, however, template (389)
would look like this, with essential types specified.

(390) syntactic-semantic network of template laat ... toe ‘admit’ (normalized)

ID:A+B
...
SLF:{{[λH.ℋ(H) > J,

 λZ.℘(Z) > M,
λR.ℛ(R) > P,
λQt.∃Re.admit~[R] & event~[R] & entails1(R,incr))& Q
& entails(R,incr)) > S],[],[]},
λSe.λJe.λPe.λMe.(theme_of~[S,J] & agent_of~[S,P]
goal_of~[S,M]) & attime(S,T))& tense(S,pres))t

 }
...
TYPE:s\0~[np^wh#B+O]/0~[pp^6#B+I,np^0#B+L,part^8#B+V]

ARG: ID:B+I
SLF:H
SYNSEM:CAT:pp
...

ARG: ID:B+L
SLF:λZ<et>.℘<ett>(Z)
SYNSEM:CAT:np
...

ARG: ID:B+O
SLF:λR<et>.ℛ<ett>(R)
SYNSEM:CAT:np
...

ARG: ID:B+V
HEAD:PHON:toe
SLF:nosem
SYNSEM:CAT:part
...

258 LEXICON

The relevant composition protocol supporting the necessary β-conversions,
which in the Delilah system is applied post-derivationally (see chapter 2),
is as follows, for appropriate terms of type <<αβ>β> and <αnβ>, respectively:

(391) λP.℘(P)<αββ> ∘ λx1. ...λxn. R(x1, ... xn)<αnβ> ⇒
λx1. ...λxn-1. ℘<αββ> (λxn. R(x1, ... xn)<αβ>)<αn-1β>.

Thus, the Delilah lexicon provides well-typed but underspecified semantic
structures, to be instantiated by unification. These structures carry the final
propositional content. In this sense, knowledge of the meaning of a sentence
is established lexically, by means of combinatory semantic categories.

3.2.5 Information Structure: to the limits of decidability

According to Frege’s dictum in the preceding section, the sentence is the main
theatre of meaning: effective meanings in natural language are propositions;
whenever an expression means something, it is interpreted as a proposition.
Propositions are analyzed, from the very dawn of semantics, in terms of truth
and validity. This point of view has proven extremely fruitful. It brought us to
syllogistic logic, intensionality and generalized quantifiers, to mention just a
few landmarks. Yet, sentences in natural language – the prototypical propo-
sitions – connect to other sentences in a much more complicated way than
by mere juxtaposition. First of all, the context of a sentence determines and
delimits all kinds of model indices like time, reference, modality and focus.
Second, it may also provide the proper semantic contribution of phrases, as
in the case of tense and anaphora. Still, it is wise to realize that the question
whether or not a sentence fits into a certain context may be undecidable, for
the simple reason that a context cannot exclude any continuation. Not every
continuation may be felicitous, but a continuation of a context is only uninter-
pretable if the continuation is syntactically elliptical, and the context does not
provide a proper filler.

(392) context
 John is walking the dog
 continuation
 And me a book, sometimes. (*)

In all other cases, the propositional interpretation of a continuation may not
be a proper update to the context from a cognitive point of view, but we can tell
so only after (partial) interpretation. Contextual anomaly presupposes inter-

UNIFICATION: POWERING GRAMMAR CONSERVATIVELY 259

pretation. Whether or not a particular sentence updates the context properly,
is beyond computation, though. Interpretation would require the set of contin-
uations to be enumerable. The consequence is that it makes no sense to enrich
the lexicon with information for selecting or testing proper continuation. As
far as we can see, informational ‘ungrammaticality’ at text level – inappropri-
ateness – cannot be defined in any interesting, i.e. finite manner.
Information structure that can be encoded, however, is the grammatical sub-
strate to focus. It comes in two forms: certain (relative) positions have focus
by default, and certain phonological units are too weak to occur in those posi-
tions. For example, in Dutch the position at the left periphery of the finite
constituent – SPEC-CP in generative terms – is in focus when not occupied
(or blocked) by a subject (Zwart 1993). Non-subject constituents occurring in
that peripheral position can be marked as being focalized. In the Delilah cat-
egorial grammar, this position is detected. Combinatory categories are speci-
fied in the lexical templates. As a consequence, focus is predicted lexically for
non-subject constituents in left-peripheral position. At the same time, phono-
logically weak pronouns must be prevented from occurring in that position.
They are lexically marked as non-focal. So, they do not unify in that position,
in parsing or in generation.

Yet, the amount of information structure to be captured explicitly in the lexi-
con is small. It is not nearly enough to cover the needs of discourse analysis.
For example, at the level of the lexicon, a general decision whether a certain
anaphor is bounded within the sentence is out of reach. By now, there are many
strategies for detecting antecedents and ranking the candidates (for an over-
view, see Mitkov et al. 2001), but none of these relies on lexical information.

3.3 UNIFICATION: POWERING GRAMMAR CONSERVATIVELY

3.3.1 Procedures and specifications

A template – the lexical data structure we exploit – is basically a list of prop-
erties of phrases that are interpreted as constraints on their combinatorial
use. When we state that a phrase is of category np, this statement restricts
its occurrence to those positions which require or allow for an np. When a

260 LEXICON

construction imposes a category to one of its proper parts, this statement
restricts the choice of candidates for that proper part. In our system, these
constraints are put to work by a process called unification. Sag (2003: 56) has
an interesting footnote on the difference between constraints and unification:

Theories of the sort we describe in this book are sometimes called ‘unifica-
tion based’ but this term is misleading. Unification is a method (i.e. a proce-
dure) for solving sets of identity constraints. But it is the constraints them-
selves that constitute the theory, not a procedure we might use with them.
Hence, we will refer to the theory of grammar we develop, and the class of
related theories, as ‘constraint-based’, rather than ‘unification-based’.

The almost classic division between representations and processes seems to
be at stake here. The author chooses to have the representations prevail in
characterizing the approach. From our point of view, however, the process
too is an important part of the message. As a matter of fact, we choose and
present the constraints in such a way that they can be resolved by unification,
by graph unification, to be precise. We consider unification to be the name of
the game played in combinatorial grammar. It embodies an important logi-
cal or algebraic device: negation or complementation. The logic of feature
structures leaves no room for ‘normal’ negation or complementation. In the
logic for feature systems as presented in Kasper and Rounds (1990), classi-
cal negation does not occur. The main reason for this is that a feature struc-
ture is – at best – a partial description, by definition. To negate, in a classical
way, either the occurrence of a feature or a value to it amounts to express-
ing complete knowledge of the object that the feature structure describes.
Complete knowledge, though, is not something any linguist should pretend
to have. When, for example, we specify that thing is valued ‘inanimate’ for
the feature animacy, we claim that there are occurrences of the word where
it has or expresses that value. It is an existential statement. To use negation
here would be universal: under no circumstances is the word ‘animate’ as for
animacy. We can hardly claim to have access to this kind of certainty, as the
word can occur in infinitely many contexts. Universal statements about prop-
erties of words or phrases in all possible contexts are beyond computation or
experience anyway. Those statements would be essentialist or intensional.
Rounds (1997) argues that Carpenter (1992) deals with negative valuation
by typing feature structures. Carpenter, however, must assume that the fea-
ture structures themselves are organized and can be typed – an assumption
apt for HPSG as in Sag (2003), but not for our purposes. In our view, the con-
straints subject to unification do not impose a theory of language; in a certain

UNIFICATION: POWERING GRAMMAR CONSERVATIVELY 261

sense, our constraints are tools, rather than principles. They are just indices:
handles to get things ordered properly.
When no complementation is available in the matter, the complementation
must be in the procedure, in order to acquire a decent logic for our grammar.
Unification offers this Boolean procedure. If two ‘positive’ objects meet under
unification, their lack of being complemented is lifted by the openness of the
question of subsumption: can the one be subsumed under the other? That is,
we cannot tell whether or not a certain value or a certain feature must or can-
not be assigned to a certain structure, but we cán tell whether or not a certain
structure is compatible with another as it is. To put the matter in yet another
perspective: unification does to feature structure what – in Frege’s famous
words – the proposition does to words: it creates a meaningful environment.
Outside the gates of unification, a feature structure does not mean a thing.

This said, the operation mode of unification – basically a very fundamental
mathematical procedure – must be defined. Firstly, we define a weakly con-
nected directed acyclic graph by assuming a set of labels L for the vertices
connected by directed edges such that:

(393) Connected graph
(a) every vertex is labelled by exactly one label
(b) there is exactly one vertex without incoming edge (top: rootedness)
(c) there is a class of vertices without outgoing edges (bottom)
(d) two vertices are connected by one edge at most
(e) every bottom is labelled by a term

Clearly, a weakly connected acyclic graph can be represented as a finite set of
paths from the top vertex to a bottom, where a path is a tree with a labelled top
and a labelled bottom and in between nodes with exactly one in- and exactly
one out-going edge. The weakly connected acyclic graph is equivalent to a for-
est of path-like labelled trees. This justifies our representation as a template,
with every bottom spelled out even when occurring in more than one path. In
this vein, template (390) has an idempotent representation as a set of paths,
partially given below; bottoms are underlined.

262 LEXICON

(394) representation graph of laat ... toe ‘admit’ as a set of paths

TOP→ID→A+B,
...
TOP→SLF→{{[λH.ℋ(H) > J,

λZ.℘(Z) > M,
λR.ℛ(R) > P,
λQt.∃Re.admit~[R] & event~[R] & entails1(R,incr))& Q &
entails(R,incr)) > S],[],[]},
λSe.λJe.λPe.λMe.(theme_of~[S,J] & agent_of~[S,P] &
goal of~[S,M]) & attime(S,T))& tense(S,pres))t

 },
...
TOP→TYPE→s\0~[np^wh#B+O]/0~[pp^6#B+I,np^0#B+L,part^8#B+V],
..
TOP→ARG(B+I)→SLF→λH<et>.ℋ<ett>(H),
TOP→ARG(B+I)→SYNSEM→CAT→pp,
..
TOP→ARG(B+L)→SLF→λZ<et>.℘<ett>(Z),
TOP→ARG(B+L)→SYNSEM→CAT→np,
..
TOP→ARG(B+O)→SLF→λR<et>.ℛ<ett>(R),
TOP→ARG(B+O)→SYNSEM→CAT→np,
...
TOP→ARG(B+V)→HEAD→PHON→toe,
TOP→ARG(B+V)→SLF→nosem,
TOP→ARG(B+V)→SYNSEM→CAT→part,
...

In our grammar, unification is an antisymmetric process: in every case of uni-
fication, a graph is projected on a well-defined weakly connected directed
acyclic sub-graph labelled arg(ument) of another graph, and this process is
not reversible. In (394), the paths starting with TOP:ARG(B+I)determine such
a subgraph: the subgraph governed by that path. For the unification test itself,
however, there is no hierarchy between the graphs involved. The definition of
unification of feature value graphs, in terms of path unification, follows below.
A path is a finite, directed sequence of labels, starting at the top node and end-
ing with a value term; it is indicated as P→α, where α is the value term at a bot-
tom vertex. The symbol ‘=’ means ‘equal to’, while ‘⊔’ stands for ‘unifies with’.

(395) Unification G1⊍G2 of connected graphs G1 and G2
(a) the unification G1⊍G2 of G1 and G2 consists of all paths P→α⊔β for P→α in G1

and P→β in G2, where α⊔β exists, and of all paths R→σ in G1 or G2 for which
no path R→τ exists in the other set.

(b) the unification G1⊍G2 of G1 and G2 fails when there exist paths P→α in G1 and
P→β in G2, but α⊔β does not exist.

UNIFICATION: POWERING GRAMMAR CONSERVATIVELY 263

(c) α⊔β exists iff either α is a variable or α = β, or α = f(a) and β = f(b), and a⊔b
exists

(d) if α is a variable, α⊔β = β.
(e) if α = β, α⊔β = α.

Even though our unification is steered in an antisymmetrical manner by
the grammar, the resulting graph is subsumed by both of the operanda: the
resulting feature structure G1⊍G2 is at least as informative as each of the
original ones (Rounds 1997): it subsumes the originals. Since every combina-
tory process comes with unification of complex symbols, failure of unifica-
tion amounts to local ungrammaticality, or denial of the hypothesis that two
phrases combine.

Though unification is computationally expensive (but see Kešelj and Cercone
(2002) for efficient techniques), the handling of (lexical) graphs themselves is
liberal and relaxed. For example, one can add an edge to a lexical graph with-
out any overall consequences. It is not necessary to add that edge to other
graphs in the same class. In the same vein, edges can be removed without
any overall consequences. Changing lexical graphs will have impact on only
particular unifications. Since ‘our’ unification is conservative in that it nei-
ther destroys nor adds information on the fly and is governed by categories,
the impact of extending or delimiting a lexical graph or a class of graphs can
be predicted by inspection of the lexicon. As will be explained in section 3.5,
this is easily done. Moreover, redundancy in the lexical specifications can be
checked: a path P→X in a graph G of category C is redundant if no lexical graph
has an argument subgraph of category C in which path P is specified.
Thus, control over the sets of lexical graphs is assured. Unification is effective,
and therefore it is the backbone of every ambitious grammar automation. In
this respect, it is important to observe that in Delilah unification for parsing
and generation is applied in a conservative and non-destructive way. Paths in
a graph are not destroyed by unification for parsing or generation purposes.
Unification leaves grammatical control to the lexicon, where the graphs are
built and stored. Every single grammatical feature is guided from the lexi-
con; nothing happens outside its gates. The conservativity of unification is the
anchor of grammatical lexicalism: for all information to be stored in the lexi-
con in a sensible way, we must make sure that no information is added during
grammar application and no information is destroyed. We will see, though,
that in constructing the lexicon unification – almost by necessity – must be
applied destructively. In this sense, the mode of unification (conservative vs.
destructive) is characteristic for the mode of the system: dynamic on-line

264 LEXICON

operations come with conservative unification; off-line the lexical database
is built destructively.

3.3.2 Problems with re-entrance

Consider the two graphs in (396), assuming that the graph in (a) must unify
its subgraph G with the graph in (b); the arrows indicate lexically imposed
constraints.

(396) (a) G1: [.... [G slf: Y ↓, cat:xp ↓, ...[...slf:Y ↓ ...]] ...]
 (b) G2: [............slf: f(X),cat:xp, ...[...slf:X ...]]

Clearly, both X and f(X) will unify with Y, leading to an irresolvable instantia-
tion loop: Y = X and Y = f(X), so X = f(X) = f(f(f..f(X)..)), ad infinitum. Though
the problem is general for our form of re-entrance – variable linking within
the same graph (see e.g. Bouma 1993) – we concentrate on the feature for the
value for the Stored Logical Form. This feature typically has logically complex
values (see section 3.2.4.2 and chapter 2).
The situation in (396) is not marginal: recurrence of a variable meaning at
a higher level as in (b) is standard, and identification of lower and higher
meanings as in (a) is typical for templates where the syntactical head does
not contribute to meaning, e.g. lexically selected PPs or infinitival construc-
tions with a purely functional complementizer. Moreover, we allow embed-
ded constraints without restriction, as in the (a) template, to account for
extended lexical units with specialized meanings. Still, we can argue that
the additional requirement of co-categorization in (396) makes the clash
unlikely; recall that every unifiable graph is categorized by definition, and
therefore co-categorization is a precondition to unification. This being the
case, the two templates in (396) show essentially different semantic depend-
encies within the same syntactical category. In normal combinatorial busi-
ness, this is unlikely, since it runs counter to compositionality. But we must
allow for zero-semantic phrases of any category, in which case nothing can be
excluded. So, for the sake of argument, let us assume that (396)(a) requires
a normal instantiation by a graph of category XP, and a non-compositional
graph of that category is offered for unification. Now, the instantiation prob-
lem seems inevitable upon checking unifiability.

There are a few ways out. First, we may interpret the occurrence of the loop as
failed unification. This is certainly in accordance with the remark on compo-
sitionality made above. Second, we can build in an occurrence check in these

THE MAKING OF THE LEXICON 265

cases, which is costly in terms of computational complexity. Third, we could
impose the restriction on lexical templates that embedding of semantic con-
ditions is not allowed – a kind of head feature principle as in HPSG (Sag 2003);
it renders at least one of the two structures in (396) lexically illegal. This line
contradicts our liberal attitude with respect to feature structures, to block as
few collocational effects as possible. Fourth, we could not allow for ‘eta-con-
version’ in unification – the unification of two variables – but instead delay
unification until at least one variable is instantiated (blocking; see Bouma and
Van Noord 1994). But then we submit the syntax to unification, whereas we
want the syntax to steer unification.
Reviewing the possibilities, we prefer the first option. The kind of clash in
(396) is interpreted as failed unification, since the (semantic) networks in
the two graphs differ essentially. However, we do not have to choose between
options at all, because experiments do not demonstrate the problem. As a
consequence, unification can be defined as elegantly as (395).

3.4 THE MAKING OF THE LEXICON

3.4.1 Organizing lexical knowledge:
no lemmas – economy vs flexibility

The main characteristic of our lexicon is its flatness. It is a huge pancake,
without external hierarchy. In particular, our lexicon is not organized by lem-
mas. Every word and every phrase occurs in all its individual glory without
being subsumed under other levels of organization. For example, every finite
form of a verb occurs in the lexicon with as many different graphs as it has
combinatorial or semantic variants. This family of graphs is unordered, and
so is the even larger class of graphs linked to other forms of that verb. The
price to pay for this simple final structure is a complex set of rules for cook-
ing the pancake. In this chapter, we describe the problems and the solutions
of this off-line module.

Much of our knowledge of language is invested and exploited in the way the
lexicon is generated. Although in the operational lexicon for parsing and gen-
eration lemma structure is not preserved, knowledge about lexical dependen-

266 LEXICON

cies, familiarity, generalizations and inheritance is compiled into the underly-
ing generative system. The particular organization of this system, however,
does not express principled knowledge of language. As a relatively simple
example, consider the class of noun flections in Dutch. In general, a Dutch
noun has a standard and a diminutive form, in both a singular and a plural
edition. Also in general, we do not semantically distinguish between plu-
ral and singular forms – for the argument see Cremers (2002) – but we do
semantically distinguish standard from diminutive. Plurals and singulars dif-
fer categorially: plurals in Dutch may be full noun phrases, singulars can be
so only if they are non-countable. Not every diminutive derives its meaning
from the standard form. Many plural forms are semantically indistinguish-
able from the singular. On the other hand, bare plurals – being NPs – must be
differentiated from plural nouns – complements to quantifiers or determin-
ers – and moreover, may have both a generic and an indefinite interpretation.
Consequently, in our lexicon, the plural form mannen ‘men’ will come with
at least three distinct templates, as listed below: a template as a noun with
predicative semantics, a template as an NP with generic semantics and a tem-
plate as an NP with indefinite semantics. In the latter two, a phonologically
empty argument carries the noun meaning. This argument sub-graph is not
specified for type, and therefore not open to syntax-driven unification. The
crucial differential values are italicized.

(397) lexical template of noun mannen ‘men’

ID:A+B
HEAD:CONCEPT:man
 PHON:mannen
 SLF:man
PHON:C
PHONDATA:lijnop(mannen,A+B,[],C)
SLF:{{[],[],[]},D@man~[D]}
SYNSEM:AGGR:count
 CAT:n
 GENDER:nneut
 NUMBER:plur
 REFMODE:nontime
 SEX:male
TYPE:n\0~[]/0~[]

THE MAKING OF THE LEXICON 267

(398) lexical template of generic plural np mannen ‘men’

ID:A+B
HEAD:CONCEPT:man
 PHON:mannen
 SLF:man
PHON:C
PHONDATA:lijnop(mannen,A+B,[],C)
SLF: {{[{{[],[],[]},D@man~[D]}$E&(B+99)#F],[],[]},

G@some^E^and(quant(E,gen), and(F,entails1(E,decr)),
and(G,entails(E,incr)))}

SYNSEM:AGGR:count
 CAT:np
 FUNCR:incr
 GENDER:nneut
 NUMBER:plur
 QMODE:def
 REFMODE:nontime
 SEX:male
 SUBCAT:noun
TYPE:np\0~[]/0~[]
ARG:ID:B+99
 SLF:{{[],[],[]},D@man~[D]}

(399) lexical template of indefinite plural np mannen ‘men’

ID:A+B
HEAD:CONCEPT:man
 PHON:mannen
 SLF:man
PHON:C
PHONDATA:lijnop(mannen,A+B,[],C)
SLF:{{[{{[],[],[]},D@man~[D]}$E&(B+F)#G],[],[]},
 H@some^E^and(quant(E,some),and(G,entails1(E,incr)),
 and(H,entails(E,incr)))}
SYNSEM:AGGR:count
 CAT:np
 FREEARGS:no
 FUNCR:incr
 GENDER:nneut
 NUMBER:plur
 QMODE:indef
 REFMODE:nontime
 SEX:male
TYPE:np\0~[]/0~[]
ARG:ID:B+F
 SLF:{{[],[],[]},D@man~[D]}

Of course, these lemmas are produced by some mechanism, with some gen-
erality and some specificity. Below are a few scenarios for generating the

268 LEXICON

nominal graphs. In the top-down procedure, inheritance can be maximalized:
independently of any particular noun, there is a general template for nouns,
which is modified by a generation function in order to produce a dedicated
graph for a particular instance of a particular noun. In the bottom-up proce-
dure, no inheritance frame is pre-defined: we have a function that produces
dedicated templates. This function, however, must embody the general prop-
erties of nouns in a dynamic manner. Between bottom and top – dubbed ‘left
corner’ – there are several pre-defined templates, but they do not necessarily
have any interesting common kernel that characterizes the category.

(400) Top-down
Define one single noun graph GN. Determine for each noun Nm all its instances In.
Determine per Ij the set of particular features Fk. Apply for each Ni, for each Ij and
for each Fl a function σ from graphs, nouns, instances and feature sets to graphs:
GN, i, j, l = σ(GN, Ni, Ij, Fl).

(401) ‘Left-corner’
Define a set of noun graphs {Gp| Gp is a graph of category n}. Determine for each
noun Nm all its instances In. Per Ij, determine the set of particular features Fk. Apply
for each Ni, for each Ij and for each Fl a function σ from graphs, nouns, instances
and feature sets to graphs: Gp, i, j, l = σ(Gp, Ni, Ij, Fl).

(402) Bottom-up
Determine for each noun Nm all its instances In. Per Ij, determine the set of par-
ticular features Fk. Apply for each Ni, for each Ij and for each Fl a function τ from
nouns, instances and feature sets to graphs: Gi, j, l = τ(Ni, Ij, Fl).

The three strategies vary with respect to the integrity of lexical data struc-
tures. Under strategy (402) all data structures – lexical graphs – are created
from scratch. Once created, they remain unaffected; even under unification,
no information is destroyed. The functions that create the dedicated graphs
contain functionally complete knowledge of the grammar of nouns.
Under the top-down strategy (400) the general template may have default val-
ues for certain features that can be overruled by the dedicated constructor
functions. One can even conjecture that for a ‘mother template’ to be an inter-
esting focus of nominal aspects, it must contain specifications that not every
noun in each of its instances will maintain – default values are nothing more
than that (cf. Bouma 1993). To state that the typical noun has a certain feature
value is to state that some particular nouns may differ. Or, in different terms,
the set of feature values that all nouns share is uninterestingly small. There-
fore, the top-down strategy is either trivial, starting from an almost empty
template, or destructive, as the template will contain information that is not

THE MAKING OF THE LEXICON 269

valid for all nouns. For the top-down strategy to be effective, it must allow the
destroying of pre-specified paths in the top template.
The intermediate strategy seeks a balance between information destruction
and sensible inheritance. It is really a matter of economy because both main-
tainability and linguistic transparency are at stake. If all information can be
discarded in the course of the lexicon’s construction, we may lose track of the
level of grammatical knowledge invested in the pre-defined templates. If little
or no information is shared between graphs of the same class, maintenance
(adaptation, debugging, extension, ...) of the lexicon will get tough. Moreover,
the construction functions for the dedicated graphs are among the most com-
plex ones in the whole processing system (see below). Because they control
vital parts of the attribute-value matrices and operate at the crossroads of
generality and specialty, they too must be kept maintainable and adjustable.
In the intermediate strategy of (401), the number of graphs underlying the
generation of the lexicon is a matter of pragmatics, not of principle.
In the case of nouns, there is little grammar to help us to decide between either
a basic template for singular count nouns and another for singular abstracts,
or just one for both. In other cases, economy is more helpful. Every intransi-
tive verb V in Dutch participates in a structure zich een ongeluk V, ‘oneself
an accident V’ meaning ‘to V very intensively’. Even without your calculator
it is evident that creating one basic frame in which the intransitive verb is
inserted and in which the crucial semantic dependencies are pre-established
is much more effective than building every dedicated graph with this frame
from scratch. Yet, both strategies will do the job.

The basic components of our lexicon can be summarized as follows:

(403) (a) a finite set of basic templates or graphs
 (b) for each word a list of particular feature values with respect to one or
 more basic templates
 (c) a set of rules, applying (b) to (a).

Actually, the particular specifications of a word can also be constructed
as graphs. Ultimately, then, the sets (403)(a) and (b) may coincide – the
lexicon is practically handmade, in that case. But descriptive economy may
come in. A finite verb form, for example, lives on both properties of the
individual form and on properties of the finiteness construction. It would
be redundant to mix these two constructions over and over again in new
unique graphs. Therefore, we had better take either a verb template to be
modified with finiteness or a basic finite template to be enriched with ver-
bal specifications – the nature of this choice will be discussed below. Set

270 LEXICON

(403)(c) contains the rules for performing these modifications. These apply
a destructive form of unification called adaptation:

(404) Adaptation
The adaptation of a (basic) graph B to a specific graph C is the connected graph
B[C] that unifies the largest subgraph B’ of B that unifies with C, and C. That is:
B[C] = B’⊍C.

Typically, B does not subsume the resulting graph B[C]: if B does not equal
B’, B contains information that is ‘overwritten’ in B[C]. Moreover, the specific
graph C is typically dynamic, in that it is not stored and applied by general
adaptation but it is imposed on the basic graph in a rule-like fashion: adap-
tation of one graph to another is a very precarious process, with all kinds
of procedural implicatures too subtle to leave to a one-size-fits-all process.
The use of rules to overrule or overwrite default specifications establishes the
operational antisymmetry of the adaptation procedure.

Adaptation is the off-line constructor of the pancake lexicon – the flat com-
piled-out lexicon where every item is an object equal to all others. Moreover,
adaptation offers a metric for lexical redundancy: the number of paths that
are actually overwritten in constructing the lexicon – the overall sum of the
differences between B and B’ in definition (404) – can be compared to the
overall number of specifications in the specific graphs C, i.e. the union of set
(403)(b). The metric may operationalize the notion of default value.

3.4.2 General and special: everything as a graph

From the point of view of complex symbols or signs, it is not easy to decide
whether a finite verb primarily represents finiteness or its verbal semantics.
As a matter of fact, in the grammar of the Germanic languages, for example, the
double nature of the finite verb is a major source of syntactical complexity: the
structural position for finite inflection and the position of the verb are not nec-
essarily adjacent. Morphologically, in these languages the verb provides the
free morpheme, and finiteness is suffixed. But the morphological difference
is combinatorially quite uninteresting: the bound morpheme is the functional
element and it determines the main syntactical position of the word.
In a flat lexicon like the one we pursue, where every single word occurs in
its own right, there is little compelling reason to derive the finite verb from
its verbal root rather than deriving it from the finite basic construction, for
example. There is a practical reason for choosing the de-verbal option, how-

THE MAKING OF THE LEXICON 271

ever: the verbal root is not predictable, whereas the bound morpheme comes
from a closed class, and the irregularities in the verbal paradigms are easier to
connect to the verbal roots than to the finite morphemes. Moreover, the finite
form may inherit its basic valence and its thematic structure from the verbal
root, so that not all syntactical features are determined by its finiteness.
Therefore, we derive finite forms by adapting a verbal basic template to a
set of constraints inducing finiteness. The procedure is adaptation and not
just unification, because at least the combinatorial category must be updated
in the transition from infinite to finite signs: at least the category value is
destructively adapted.
In a certain sense, this manoeuvre is upside down, as we apply general rules
– imposing the templates of finiteness – to the more or less special attributes
of a particular verbal template. The unprincipled trade-off that characterizes
the in-between approach to lexical derivation shows up in (401): the special
information contained in the verbal root’s graph is overruled by more gen-
eral, finite ‘defaults’.
The same kind of decision we made with respect to de-verbal adjectival and
nominal forms applies to the participles. First, a participle is encoded or ‘signed’
as a verbal derivative, and then its adjectival and nominal instances are pro-
duced by complex instances of adaptation: the process is inevitably destructive.

Below you will find the prerequisites of production for a standard verbal par-
adigm.

(405) (a) there is a lemma specifying
• a non-empty graph of characteristic attribute-values for that verb
• the address of one or more basic templates to be adapted by these charac-

teristic values
• a (possibly empty) list of deviant morphonological instances of the verb

(b) there is a set of retrievable basic templates, elements of which the lemma can
refer to

 (c) there is a set of rules producing the morphonological paradigm of the verb
 (d) there is a set of classes of rules each of which

• specifies a characteristic attribute-value matrix for every particular in-
stance of the verbal paradigm

• adapts each of the templates referred to in the lemma, after adaptation to
the lemma characteristics, to the attribute-value matrices for the particular
instance

(e) there is a set of classes of rules each of which
• specifies a characteristic attribute-value matrix for a particular de-verbal

instance
• adapts a particular matrix of a particular instance of the verb to this char-

acteristic attribute-value matrices

272 LEXICON

This scheme of prerequisites does not fully reflect the actual organization of
the lexical module, but it identifies the main agents in the production of a
verbal paradigm in the present Delilah architecture; similar schemes can be
drawn up for nouns, adjectives and other categorial paradigms. The agents
in the process could even be designed differently: the ‘functional’ matrices
applied by the rules could just as well be independent initial templates like
the ones mentioned in (b). This would lead to the following architecture.

(406) (a) for each lemma L introducing verbal paradigm V, specifying a paradigm-
 specific template TP

 (b) for each template TV to which L refers
 (c) for each morphonological instance M of V
 (d) for each template TM specifying a particular function of M
 (e) there is a function σ(TP, TV, TM, T) adapting TP to TV and TM to a final
 template T

Thus, we have a fully constructional approach, in which every grammatical
specification is a retrievable template, and in which only one rule is called for,
namely adaptation. There are templates not only for transitive verbs, but also
for second person singular present finite forms with inversed subject, passive
participles occurring as predicative adjuncts, nominalized generic plurals of
present participles, and so on. This may be a desirable architecture of the lexi-
cal component: every grammatical object is a template, subject to adaptation.
Unfortunately, however, the functions σ of (406)(e) may have to vary largely
with these functional templates TV. When applying destructive modes of uni-
fication, it is unlikely – to say the least – that you will be able to use a one-
size-fits-all adaptation strategy. Rather, every adaptation will require its own
provisos, in particular with respect to the combinatory categories. Thus, under
set-up (406) we still stick with a – possibly large – number of construction-spe-
cific adaptation rules: a set that may hardly be distinguishable from the present
complexes which are referred to in (405)(d) and (e), to be discussed below.

3.4.3 The rules that make the language

Adaptation of graphs, templates or matrices is a powerful off-line process. It is
almost too strong to apply on-line, as its destructive nature might be a threat
to compositionality. For example, it does not impose a principled antisym-
metrical relationship between the graphs involved, as is the case with unifica-
tion in the way it is applied in Delilah. As a constructional tool in building
the lexicon, however, it is very useful. It provides compactness and generality,

THE MAKING OF THE LEXICON 273

and its finite product can be submitted to all kinds of well-formedness checks.
Yet, adaptation itself is too coarse to be applied without additional steering.
Just as syntax guides unification, adaptation is controlled by rules that specify
constraints on the merge of graphs per category and subcategory. Since these
rules compile knowledge of the structure of language, we will sketch their
operation in this section by scrutinizing the making of the full paradigm of a
simple transitive verb, slaan ‘to beat’.

The root of the paradigm is manually specified as an instance of relation
lemma/5.

(407) lemma(
 slaan, /* naming some root form of the paradigm */
 verb, /* identifying the rule set to which the lemma is submitted */
 [transitive_verb, transitive_verb_with_small_clause],
 /* listing the basic templates for the paradigm */
 [head:phon:slaan, head:concept:beat, head:sem:beat,
 head:synsem:etype:event, arg(10):synsem:theta:agent_of,
 arg(1):synsem:theta:theme_of],

/* specifying the particular paths for this paradigm with
respect to the basic templates listed in the third argument */

 [pressing12:sla, pressing23:slaat, pastsing:sloeg,
 pastplur:sloegen, participle:geslagen]).
 /* specifying (orthographically) ‘irregular’ (strong) forms of
 the paradigm */

The lemma exclusively contains otherwise non-predictable properties of the
slaan paradigm: it may occur in a sentence with a resultative small clause; it is
an event rather than a state; its subject is an agent and its object a theme; more-
over it entertains a few particular finite and infinite forms. Even at this elemen-
tary level, other decisions could have been made: the small-clause extension
could be generalized to a default property of all transitive verbs; events may
have agents as subjects by default; the forms might be predictable from tracing
slaan to Indo-European verb classes. Clearly, every alternative choice would be
reflected in the basic templates. Moreover, lemma/5’s third argument consists
of a template in the form of a number of paths, to which the verbal templates
named transitive_verb and transitive_verb_with_small_clause are adapted.

Because slaan is addressed as a verb, the construction of its paradigm is
submitted to the class of verb-specific rules. This class is controlled by a
single predicate lemmalist/2, which simply takes the lemma and produces
a set of final templates, the full paradigm. The paradigm exists only in the

274 LEXICON

output of this predicate. As soon as the output set is adapted in the lexicon,
the paradigm is lost.
Lemmalist/2 performs the following operations:

(408) (a) it computes all different word forms in the paradigm
 (sla, slaat, sloeg, sloegen, slaand, slaande, geslagen);
 (b) for each template T in the lemma, it creates a basic instantiation BT by
 adapting it to the particular values of slaan;
 (c) for every single finite and infinite form, it calls a class of rules adapting
 the basic instantiations BT into final templates;
 (d) it calls a class of rules adapting some non-finite final templates into
 all de-verbal adjectival and nominal final templates.

The morphological component is not essential to our system, but economi-
cal. Although inflection is regular in general, the component deals with some
mean properties of Dutch orthography. Its main function is reducing the num-
ber of forms that have to be listed in the (hand-made) lemmas.
The rules creating the finite forms are among the most complex of the whole
system. In our combinatorial grammar, finite forms introduce the sentential
category (see chapter 1). Therefore, all order variation at the top level of a
sentence, including processes like left dislocation and inversion, has to be
accounted for in the finite categories – it must be specified somewhere any-
way. Moreover, Dutch is a verb-second language, which implies that main
sentences and embedded sentences have different word orders, different
combinatorial categories and, therefore, different finite ‘heads’. Furthermore,
main sentences come in three different semantic types. In addition, indefinite
subjects may come with ‘spooky’ er. Although this number is partly an arte-
fact of the grammar formalism we chose, a simple finite instance of a transi-
tive verb like first person singular present sla is the phonological content of
at least twenty-two final templates. All these final templates are adaptations
of the basic templates, imposed and controlled by the rules for finiteness.
They determine the sentential type, the combinatorial category, the order of
arguments, their modes and their side effects. To follow the different stages,
consider first the basic template for simple transitive verbs, with many vari-
ables to indicate the internal network.

THE MAKING OF THE LEXICON 275

(409) basic template transitive verbs

ID:Top+ID
HEAD:PHON:_X
 SLF:Main
 SYNSEM:ETYPE:Etype
 FLEX:infin
 VTYPE:transacc
SLF:{{[SemS&(ID+ID1)#A,
 SemO&(ID+ID2)#B,
 EStructure@some^E^and(quant(E, some), Main~[E],
 Etype~[E], entails1(E, incr),
 and(EStructure, entails(E,incr))) &(Top+ID)#EV], [],[]},
 Time@and(and(Stheta~[EV,A], Otheta~[EV,B]),
 attime(EV, Time)) }
SYNSEM:CAT:vp
 EVENTVAR:EV
 EXTTH:Stheta~[Top+ID, A]
 PREDTYPE:nonerg
 TENSE:untensed
ARG: ID:ID+ID1

PHON:_Subj
SYNSEM:OBJ:subject_of(Top+ID)
 THETA:Stheta
SLF:SemS
..

ARG: ID:ID+ID2
PHON:_Obj
SYNSEM:CASE:obliq
 CAT:np
 DIR:left(1)
 FLAG:0
 OBJ:dirobject_of(Top+ID)
 THETA:Otheta
SLF:SemO
..

All terms starting with a capital are variables. The values for the cases of sub-
ject and object are fixed by default. The target type of the basic template is set
to VP and its tense to untensed, but that is fairly arbitrary.

One of the many final templates generated by the finite rules is the following,
representing the first person singular present of a simple transitive verb in
main (yes/no) questions. Its format is slightly different from the basic tem-
plate’s format – the former is generated, the latter is handmade. Paths and/or
values changed (not instantiated) or added are italicized.

276 LEXICON

(410) lexical template sla ‘beat’ 1st person sg pres, main question

ID:A+B
HEAD:CONCEPT:beat
 PHON:sla
 SLF:beat
 SYNSEM:ETYPE:event
 FLEX:fin
 NUMBER:sing
 PERSON:1
 TENSEOP:at-pres
 VTYPE:transacc
PHON:C
PHONDATA:lijnop(sla,A+B,[arg(right(-10),0,D),

 arg(right(-1),0,E)],C)
SLF:{{[F&(B+G)#H, I&(B+J)#K,
 L@some^M^and(quant(M,some),beat~[M],event~[M],

entails1(M,incr),and(L,entails(M,incr)))
&(A+B)#N],[],[]},
quest$$and(and(and(agent_of~[N,H],
theme_of~[N,K]),attime(N,O)),tense(N,pres))}

SYNSEM:CAT:q
 EVENTVAR:N
 EXTTH:agent_of~[A+B,H]
 PREDTYPE:nonerg
 SUBQMODE:P
 TENSE:tensed
TYPE:q\0~[]/0~[np^0#B+G,np^0#B+J]

ARG: ID:B+G
PHON:D
SLF:F
SYNSEM:CASE:nom
 CAT:np
 NUMBER:sing
 OBJ:subject_of(A+B)
 PERSON:1
 QMODE:P
 SUBCAT:pron
 THETA:agent_of

ARG: ID:B+J
PHON:E
SLF:I
SYNSEM:CASE:obliq
 CAT:np

 DIR:left(1)
 FLAG:0

 OBJ:dirobject_of(A+B)
 THETA:theme_of

THE MAKING OF THE LEXICON 277

One can see, for example, that the top-level semantics SLF is instantiated,
whereas agreement features of the subject are added. Most combinatorial
specifications are added or introduced by adaptation. The combinatorial TYPE
and the PHONDATA (the linearization information) are absent in the basic tem-
plate (409): they can only be added as the last step towards finalization. It is
important to note that (409) does not subsume (410) but that (410) is an adap-
tation of (409) to (a) the lemma-specifications of (407) and (b) the following
template for the first-person-singular-present-transitive-main question:

(411) basic template 1st person sg pres main question

ID:A+B
HEAD:SLF:MAIN
 SYNSEM:FLEX:fin

NUMBER:sing
PERSON:1
TENSEOP:at_pres

PHON:C
PHONDATA:lijnop(Main,A+B,[arg(right(-10),0,D)],C)
SLF:{{[S&(B+F)#G,H@some^I^and(and(quant(I,some),
 event~[I, Main], entails1(I,incr)), H, entails(I,incr))
 &(A+B)#J], [], []}, quest$$and(and(Extth~[J,G],
 attime(J,K)), tense(J,at_pres))}
SYNSEM:CAT:q
 EVENTVAR:N
 EXTTH:Extth~[A+B, G]
 SUBQMODE:P
 TENSE:tensed

ARG: ID:B+F
PHON:D
SLF:S
SYNSEM:CASE:nom

 CAT:np
 OBJ:subject_of(A+B)
 PERSON:1
 QMODE:P
 SUBCAT:pron
 THETA:Extth

That is, the rule of finiteness creating the final template (410) may also be
seen as one of the many instances of the adaptation relation σ/4 referred to
in (406)(e).
Lemmalist/2 also produces all relevant de-verbal templates, according to
(408)(d), apart from the many finite and infinite templates in the slaan para-
digm. Among others, it feeds the templates establishing the passive participle

278 LEXICON

geslagen ‘beaten’ to a class of rules that create final templates for each of the
following combinatorial varieties of the participle:

(412) de geslagen munt ‘the stroken coin’ attributive adjective
de achthoekig geslagen munt ‘the octagonal stroken coin’

attributive adjective with resultative small clause
de door de staat geslagen munten ‘the by the state stroken coins’
 attributive adjective with agentive pp
de door de staat achthoekig geslagen munten

‘the by the state octagonal stroken coins’
 attributive adjective with agentive pp and resultative small clause
een geslagene ‘a beaten (one)’ singular noun
alle geslagene ‘all beaten (ones)’ plural noun
alle geslagenen ‘all beaten (ones)’ plural noun for human beings
de munt bleek eenmaal geslagen pijnlijk te ontwaarden
 ‘the coin appeared once stroken to devaluate painfully’

 ...

In a lexicalist approach, all these forms must be made available and retriev-
able. In the Delilah set-up, they result from a complex, partly destructive,
adaptation of verbal and combinatorial or functional templates. This choice
is, again, pragmatic. For constructions like nominalizations – the classical case
for lexicalism in generative grammar – we have chosen to introduce them as
such, rather than to derive them by adaptation from verbal templates; the
choice is reasoned in Reckman (2009). Adaptation may become too complex
or too intrinsic to be viable.

The two sets of rule classes in (405)(d) and (e) differ from each other in that
the (d) classes take pre-final graphs and deliver final graphs, where the (e)
classes take a final graph and adapt it into another final graph. The (d) classes,
for example, produce the final finite templates out of raw material. The (e)
classes produce final adjectival and nominal templates out of fully-specified
participle templates, which remain part of the final pancake lexicon. The dis-
tinction, again, is pragmatic rather than theoretical. In fact, no aspect of the
set-up (405) is mandatory: the single defining feature of our lexicon is its pan-
cake outcome. All inheritance hierarchy and all differences between general
and particular specifications are exclusively exploited in the off-line genera-
tion of the lexicon, not in its surface structure. At the end of the day, all graphs
in the lexicon are equal and independent of each other.

THE MAKING OF THE LEXICON 279

3.4.4 The constructive lexicon

The lexicon – of any natural language – abounds in extended lexical units (elus):
phrases with specialized meanings or combinatorics. And if everything is a
graph, so is an extended lexical unit. Poß (2010) extensively discusses the
variation in syntactical, morphological and of course semantic respect. Here
we discuss the Delilah implementation of the so-called way-construction in
Dutch, as an illustration of the handling of complex elus. An instance men-
tioned before is repeated here, now with mandatory parts of the construction
italicized:

(413) Geen enkele bankier had zich een weg naar de Raad van Bestuur kunnen golfen
 No banker had himself a way to the Board of Directors been-able play-golf
 ‘No banker could have succeeded in moving into the Board of Directors by
 playing golf’

We assume that Dutch has a verbal pattern of the following kind:

(414) subject + intransitive verb + reflexive pronoun + NP with ‘way’-like nominal
head and an attributive directional PP

Its meaning can be summarized as:

(415) Subject is verb-ing in order to arrive at the complement of the preposition in the
directional PP

The main linguistic characteristics of the construction are these:

(416) (a) every intransitive eventive verb is eligible;
 (b) the construction is causative: the verb itself is not providing the main
 event of the construction; rather, the verb is instrumental;
 (c) although the verb is intransitive, a reflexive anaphor occurs in an
 object-type position; its semantic contribution may be restricted to
 stressing the causative nature of the construction;
 (d) the head of the way-NP is lexically fixed but semantically irrelevant; it
 may just contribute to the causative interpretation; its proper
 semantics do not play a role;
 (e) the complement of the preposition is lexically open, just like the
 subject; it provides an essential parameter of the interpretation;
 (f) the determiner of the way-NP coincides with the top-level event
 marking; it is a singular indefinite, and it may carry the possible
 negation: it is either a or no.

280 LEXICON

These constructions have to be accounted for in a semantic lexicon of Dutch. In
general, elus require choosing one of the words involved as a hook. As our lexi-
con will contain only fully-specified and independent objects, in the Delilah
system this choice concerns only the adaptation of templates, not their final
ordering or embedding in the lexicon. In the matter of the way-construction,
the construal is fairly easy: because the syntactic head is the verb – its inflec-
tion determines the combinatorial potential of the whole – the best choice is to
introduce the constructions as lemmas of every candidate verb. To this end, our
lexicon contains the template (417), comparable to the general verbal template
for transitivity (409); its main semantic specifications are underlined.

All intransitive verbs, i.e. their lemma-specifications, are adapted to this tem-
plate, in addition to the other basic templates to which they are linked. The
verbal rules discussed in the preceding section also apply to the outcome of
this adaptation, yielding the full spectrum of finite and infinite forms. As a con-
sequence, the pancake lexicon will also contain, among many other instances
of the verbal paradigms for lachen ‘to laugh’, the form (418) – with the same
network in bold as in (417), and where DIR and FLAG values of the arguments
were used to compose the syntactical TYPE.

Template (418) represents the way-construction with lachen as it occurs in
embedded sentences, in finite past singular form, as in:

(419) Wij wisten niet dat de bisschop zich een weg naar het Vaticaan lachte
 ‘We did not know that the bishop laughed himself a way into the Vatican’
 We did not know that the bishop made it into the Vatican by laughing

The template occurs in the lexicon on a par with all other templates derived
from lachen. Its presence there, as an independent and fully-equipped combi-
natorial object, is an immediate consequence of the lexicon’s pancake ‘archi-
tecture’. Moreover, many more constructions with verbal heads have to be
compiled out – a clear overview of collocations per verb or per head is not
available. In its final edition, then, the lexicon will contain many millions of
such objects. Such a lexicon is viable only if it can be disclosed efficiently for
parsing and generation tasks. The access to this type of lexicon is the theme
of the next section.

THE MAKING OF THE LEXICON 281

(417) basic template for Dutch way-construction

ID:Top+ID
HEAD:PHON:_X
 SYNSEM:CONCEPT:Main
 ETYPE:Etype
 FLEX:infin
 SLF:Main
SLF: { { [SemS&(ID+ID1)#A, SemPPNP&(ID3+ID4)#C,
 EStructure@some^E^and(quant(E, Quant), Main~[E],
 Etype~[E], entails1(E, FuncL),
 and(EStructure, entails(E, FuncR)))&
 (Top+ID)#EV],[],[]},
 Time@and(and(Stheta~[EV,A], some^EE^and(quant(EE,some),
 and(and(event(EE), move(EE)), theme_of(EE, A)),
 goal_of~[EE, C], entails1(EE, incr), cause(E, EE)),
 entails(EE, incr)), attime(EV,Time)) }
SYNSEM:CAT:vp
 EVENTVAR:EV
 EXTTH:Stheta~[Top+ID, A]
 PREDTYPE:nonerg
 TENSE:untensed

ID:ID+ID1+10
PHON:_Subj
SLF:SemS
SYNSEM:NUMBER:Number
 OBJ:subject_of(Top+ID)
 PERSON:Person
 THETA:Stheta

ID:ID+ID2+1
PHON:_Obj
SLF:{_Stores0, _@Quant^_^_}
SYNSEM:CASE:obliq
 CAT:np
 DIR:left(2)
 FLAG:0
 FUNCL:FuncL
 FUNCR:FuncR
 NUMBER:sing
 PERSON:3
 QMODE:indef
 THETA:theme_of

ARG: ID:ID2+_ID4+1
HEAD:CONCEPT:road
SYNSEM:CAT:n
 NUMBER:sing

ID:ID+_ID5+3
PHON:_Reflex
SLF:_RefSem
SYNSEM:CASE:obliq
 CAT:np
 DIR:left(3)
 FLAG:0
 FOCUS:nonfocus
 NUMBER:Number
 PERSON:Person
 PRON:refl
 SUBCAT:pron

ID:ID+ID3+2
HEAD:CONCEPT:towards
PHON:_PP
SLF:_SemPP
SYNSEM:CASE:obliq
 CAT:pp
 DIR:left(1)
 FLAG:0
 THETA:goal_of

ARG: ID:ID3+ID4+1
SLF:SemPPNP
SYNSEM:CAT:np

ARG:

ARG:

ARG:

ARG:

282 LEXICON

(418) lexical template for lachte ‘laughed’ as head of the way-construction

ID:A+B
HEAD:CONCEPT:laugh
 PHON:lachte
 SLF:laugh
 SYNSEM:ETYPE:event
 FLEX:fin
 NUMBER:sing
 PERSON:C
 TENSEOP:at-past
 VTYPE:transacc
PHON:D
PHONDATA:lijnop(lachte,A+B,[arg(left(1),0,E),arg(left(3),0,F),
 arg(left(10),0,G),arg(left(11),wh,H)],D)
SLF:{{[I&(B+J)#K, L&(M+N)#O, P@some^Q^and(quant(Q,R),laugh~[Q],
 event~[Q], entails1(Q,S), and(P,entails(Q,T)))&(A+B)#U],[],[]},
 and(and(and(experiencer_of~[U,K],some^V^and(quant(V,some),
 and(and(event(V),move(V)),theme_of(V,K)),goal_of~[V,O],
 entails1(V,incr),cause(Q,V)),entails(V,incr)),attime(U,W)),
 tense(U,past))}
SYNSEM:CAT:s_vn
 EVENTVAR:U
 EXTTH:experiencer_of~[A+B,K]
 PREDTYPE:nonerg
 SUBQMODE:X
 TENSE:tensed
TYPE:s_vn\0~[pp^0#B+M, np^0#B+Z, np^0#B+Y, np^0#B+J]/0~[]

ARG: ID:B+J
PHON:G
SLF:I
SYNSEM:CASE:nom
 CAT:np
 NUMBER:sing
 OBJ:subject_of(A+B)
 PERSON:C
 QMODE:X
 THETA:experiencer_of

 ARG: ID:B+Y
PHON:F
SLF:B1
SYNSEM:CASE:obliq
 CAT:np
 FOCUS:nonfocus
 NUMBER:sing
 PERSON:C
 PRON:refl
 SUBCAT:pron

ARG: ID:B+Z
PHON:H
SLF:{C1,D1@R^E1^F1}
SYNSEM:CASE:obliq
 CAT:np
 FOCUS:nonfocus
 FUNCL:S
 FUNCR:T
 NUMBER:sing
 PERSON:3
 QMODE:indef
 THETA:theme_of

ARG: ID:Z+G1
HEAD:CONCEPT:road
SYNSEM:CAT:n
 NUMBER:sing

 ARG: ID:B+M
HEAD:CONCEPT:towards
PHON:E
SLF:A1
SYNSEM:CASE:obliq
 CAT:pp
 THETA:goal_of

ARG: ID:M+N
SLF:L
SYNSEM:CAT:np

THE MAKING OF THE LEXICON 283

3.4.5 The lexicon is local

In the development of grammatical theory, the idea that grammatical rela-
tions must be restrictive is fundamental. Not every observed dependency as
such qualifies a grammatical construct. Generative grammar almost lives by
restrictivity, although it started out by widening the concept of rule of gram-
mar by introducing transformations. Yet, the quest for conditions on trans-
formations is still a fine way to describe the grammar programme of the
generative ‘enterprise’. The most impressive results have been in the field of
locality: no rule of grammar relates items over a random structure, or: if two
elements are interdependent, it is always possible to finitely characterize the
path between them. In early generative grammar, this resulted in the condi-
tion on transformations that essential variables not be involved.
Sag (2003: ch. 16.6) repeats the message for HPSG in a very strict way: no con-
struction has access to its daughter’s daughters, and that is not just handy but
fundamental. It is, for example, ‘a striking fact about human languages’ that they
do not exhibit verbs that select for case in their verbal complement. So concepts
of locality like this keep grammatical descriptions within the borders of theo-
retical relevance, restricting the notion possible (grammar of a) language.
Still, under a fundamental lexicalist approach to grammar, a less restrictive
but more intrinsic notion of locality than Sag’s access principle presents itself.
If all grammatical relations were made explicit in the lexicon and the lexicon
consisted of fully-specified combinatoric objects, all grammatical relations
would be localized because they were lexical. Of course, we are free to make
lexical graphs as complex as necessary to accommodate all dependencies, but
complexity does not interfere with specificity. The only variables occurring in
a lexical graph are terms at the end of a path. Every path is rooted, the graph
is connected and directed, paths cannot be made recursive, and every graph is
finitely traversable. In our system, the unit of locality is the lexical graph, in all
its variety. That is, every interesting grammatical relationship can be specified
within the borders of a single lexical graph. That, too, might be seen as a strik-
ing fact about human languages. This is what makes languages computable.

284 LEXICON

3.5 DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND
SPEED FOR SEMANTIC GENERATION

3.5.1 The enterprise

As was said before, Delilah adheres to the ‘gnostic’ approach to computa-
tional linguistics: the view that explicit knowledge of language can be assem-
bled, formalized and exploited. As the system focuses on semantics and the
full specification of logical form, it must operate on a high level of grammati-
cal and lexical fine-grainedness. As a consequence, Delilah’s lexicon is both
detailed and large. It is generated on the basis of a restricted number of ‘pre-
defined’, underspecified, generic templates, e.g. for transitive verbs or abstract
nouns, representing minimal default graphs for all kinds of lexical types (see
section 3.1.4). These templates can also be considered as constructions in the
sense of Croft (2001). The templates formulate important generalizations
about lexical relations, meanings and syntactical behaviour of phrases. This
class of templates is flexible, and defined by practical and empirical consid-
erations. A particular template is produced by specifying differences with
respect to a more general template. In this sense, every template itself defines
a lemma. A set of rules produces the lemma from the generic template(s), by
inheritance, and the specified difference list. From this lemma, another set of
rules produces graphs for all the marked instances – morphological or other-
wise – of the lemma. The lexicon, a set of ‘lexical entries’, thus hinges on three
components: a set of generic templates, a set of lemma difference specifica-
tions and a complex set of rules (see (403)). Data management, then, is done
on a higher level than in a traditional database.
The lemmas or lexical entries are completely defined by HPSG-style feature-
value specifications (Sag et al. 2003 and section 3.1.2). Lemmas are com-
plex symbols, and can be represented by Attribute Value Matrices (avms), or
Direct Acyclic Graphs (dags). Typically, they have a different number of fea-
tures. A lemma may or may not specify a certain value for a certain feature.
Besides atoms and numbers, values can be complex structures themselves,
defining sub-graphs. A lemma will contain sub-graphs for semantically and/
or syntactically related phrases. Unification, as defined in (395), will apply to
these sub-graphs, that is, two graphs A and B unify whenever B unifies with
a designated sub-graph of A, in which case A is called primary and B second-
ary. By definition, the primary graph constrains the secondary graph in every
relevant aspect: morphologically, syntactically and semantically. This way,

DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND SPEED FOR SEMANTIC GENERATION 285

the Delilah lemma is a natural way of expressing collocational effects, from
weak combinatory effects to rigid combinations. In fact, every lemma defines
the domain for collocational effects. The lemma essentially separates con-
straints on sub-phrases of a structure from properties of the overall phrase.
Inheritance, information sharing and co-indexing are specified by using the
same variable as a value at different places in the graph. These places can be
treated as pointers to the same memory location, rather than as identically
valued contents. By definition, a graph is underspecified in the sense that not
necessarily every possible or even actual value is lexically instantiated.
Section 3.4.2 describes the lexicon as a collection of explicitly defined, spelled-
out, unrelated, and autonomous linguistic entities, containing all the neces-
sary linguistic knowledge that is needed to properly use the word (form) in a
language. By ‘unrelated’ we mean that the entities are stored independently
of each other: there is no external hierarchy, and there are no imposed para-
digms. By ‘autonomous’ we mean that entities, once retrieved, are operated
independently of each other. A different approach is followed in Cornetto,
which defines a combinatorial and relational, i.e. implicit, network on word
level for Dutch (Vossen et al. 2007). In Delilah such an information network,
including, for example, collocations, has been ‘compiled away’, yielding real
linguistic entities to start with, e.g. for generation purposes.
The following examples will give an idea of the lexicon’s size and growth, and
demonstrate the storage and access problem of a large computational lexi-
con. Adding the lemma for hij ‘he’ means adding 1 lexical entry, while adding
the lemma for gelopen ‘walked’ (past. part.) means adding at least 19 entries;
adding the lemma for heeft ‘has’ (3rd.pers. pres. sing. aux) means adding at
least 133 entries; and adding the whole class of forms for the simple intransi-
tive verb verven ‘to paint’ means adding 226 entries. Clearly, the fully written-
out specification of lexical entries introduces an exponential storage factor.
These figures are to be interpreted relatively and do not mean anything by
themselves. They reflect the current draft state of the lexicon. Furthermore,
for Delilah’s grammar-driven generation component, efficient access to the
lexicon is crucial, because a word form should be produced only when its lexi-
cal specification matches certain constraints specified by the grammar and by
the generation algorithm. It has been observed that searching and finding lex-
ical entries is the main business of the generator. Therefore, efficient access
methods are required for retrieval, with the ability to search and match com-
plex lexical graphs and lexical constraints, which is hard. Finally, we devel-
oped our system in Prolog (Clocksin and Mellish 1984) for historical reasons.
We implemented as many standards as possible, including ISO Prolog (Deran-
sart et al. 1996; Clocksin and Mellish 2003), and refrained from using closed-

286 LEXICON

source libraries or third-party packages. This approach has yielded (almost)
portable software. As a consequence, we are faced with the problem of imple-
menting a fast and large-scale lexicon from a Prolog environment.

3.5.2 Two models

Lexicons may be modelled in different ways; here, we are focussing on com-
putational models. The question whether linguistic information is stored cen-
trally in the brain or rather in a distributed way is not addressed here. Neither
is the question whether lexical entries are available in pre-compiled format,
or get ‘unfolded’ on demand. A computational lexicon can be stored either
in the internal, working memory of the computer, or in external, secondary
memory, i.e. on a hard disk. Storing the lexicon in internal memory implies
loading all lexical entries. Access to data structures in internal memory is usu-
ally very fast. Working memory, however, cannot be extended beyond a few
gigabytes, which is not large enough for our purposes, while extension by vir-
tual memory gives bad performance. The enormous proportions of the lexi-
con, let alone its foreseen expansion, and the limitations of current hardware
rule out the option of storing it in internal memory. Storage of the lexicon
externally does not pose a problem spacewise, but is slower and harder to
access. As the lexicon is of a static nature, once it has been generated a full-
featured database management system, including update facilities, is unnec-
essary. We can restrict ourselves to implementing a lexicon as a saved set of
‘read-only’ lexical entries, and provide efficient access methods for at least
the most important features used by the generator, being the syntactical type,
the semantic concept, and the word form.
The lexicon, built as a collection of lexical entries, can be regarded as a set
of records in a database. There are a number of database models for data-
base management. The Relational Model (Codd 1970) is based on two parts
of mathematics: first-order predicate logic and the theory of relations. It is
data-based and well-known from relational database management systems
(RDBMS). As the programming language Prolog is based on the Relational
Model, it seems straightforward to consider this model in more detail. Alter-
natively, the Object-Oriented Model (Meyer 1997) is investigated, because it
was noted that a lexical entry in our system resembles the notion of ‘object’
in the OO Model. It can be called a ‘linguistic object’ in this model. A linguis-
tic object stores data (lexical specification), and methods (procedures, e.g.
for linearization). The OO Model is knowledge-based. Furthermore, the OO
Model is often recommended when there is a need for high performance pro-

DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND SPEED FOR SEMANTIC GENERATION 287

cessing of complex data, e.g. binary multimedia objects. The OO Model is well-
known from graphical user interfaces (‘point-and-click devices’), while object
database management systems (ODBMS) are emerging.
Prolog – our programming vehicle – is itself relationally oriented rather than
facilitating object orientation, but this feature did not influence the choice
made. We assume that we can use the Prolog language as a powerful query to
a relational Prolog database and apply Prolog’s declarative semantics to the
OO paradigm as well.

3.5.2.1 The Relational Model

The Relational Model was the first formal database model, solidly founded on
well-understood mathematical principles and explained by Date (2003). It
was invented in those days when computer memory was scarce and expensive.
A relational database consists of a number of relations (often called tables), in
which all data is stored. Each relation is a set of tuples that all contain the same
attributes (the horizontal rows, often called records). A tuple is an unordered
set of attribute values (the vertical columns, often called fields). An n-tuple is
an unordered set of n attributes. An attribute is an ordered pair of an attribute
name and a type name. Attributes are accessed by name, instead of by their
position in the tuple. All of the attribute values (values in the same column)
should be in the same domain, that is, they should be a valid value for the
data type of the attribute, and they should obey the same constraints. Data
types must be scalar, like an integer or a string, and cannot be compound, like
a graph. Constraints provide a way of restricting the data that can be stored,
either in tuples or in attributes. A relation is said to be n-ary iff it consists of a
set of n-tuples. A special kind of constraint is a key. A key is an m-tuple of an
n-ary relation, where m < n, which enforces the uniqueness of the combina-
tion of the m attribute values for each tuple. Key values are usually kept in an
index table or hash table, which is stored in internal memory for fast access.
By using keys, storage of duplicate data is prevented. The chance of dupli-
cate data is further reduced by applying a set of normalization rules to the
database structure. A ‘relvar’ (relational variable) is a named variable ranging
over the set of tuples; as the result of a query, a subset of the set of tuples can
be assigned to it, including the empty set.

The lexical entries of our lexicon are complex, non-atomic data structures.
The Relational Model only allows atomic data types. It would be possible to
pre-compile them into flat strings, which are atomic. Generally, however, flat-
tening structured information is not a good idea when it comes to retrieval on
the basis of some highly detailed substructure.

288 LEXICON

Lexical entries are directed acyclic graphs (dags), recursive data struc-
tures. Although it would be possible to pre-compile all feature-value paths
of a dag to a number of tuples in different tables by means of a recursive
procedure, it would be impossible to retrieve them since a relational data-
base system does not provide for recursive processing (Hirao 1990). On the
other hand, when we regard the lexicon as knowledge, and mark Delilah
as a knowledge-based system, we can linearize and store the graphs in a
relational database, and use the powerful processing of recursion for infer-
ences by Prolog. It is possible to successfully and easily store objects in a
relational database (called ‘Object-Relational mapping’) by following a step-
by-step procedure (Ambler 2000). A disadvantage is that quite a number of
tables might be involved as graphs typically hold large numbers of features,
while for semantic generation complete lexical specifications are required.
Pre-compiling a lexical entry for a noun will typically yield a different num-
ber of tuples (in just as many tables) from pre-compiling a verbal entry. The
top level, a main table, which is to represent complete lexical entries, has
to span all the tuples transferring them into one large main tuple, in which
each attribute represents a path, and where the attribute’s value is either the
value of the path or an ID that links to another table. This implies that there
will be more than one top level, one table for each combination of attributes,
and consequently more than one main table. As we do not want to impose a
restriction on the internal dependencies of a graph, there is no restriction on
the recursion depth of features. Consequently, the number of different main
tables can be large in practice and infinite in theory. For practical purposes,
e.g. retrieval by Delilah’s generator component, more than one main table
means decreasing performance with orders of magnitude. Because of this,
lexical entries cannot be regarded as single, homogeneous relations in the
Relational Model; they cannot be retrieved as such.
Furthermore, lexical entries use variables, e.g. to co-index as yet unknown
information between nodes in the graph. The Relational Model does not
allow attribute values to be variables. A variable is not an atomic constant,
and therefore not distinguishable from other values of the same attribute.
As a consequence, an attribute that has a variable in its data domain cannot
be indexed, which could lead to bad overall performance of the database. It
would be possible to pre-compile variables into constants, and to de-com-
pile them during retrieval. Calling meta-predicates, however, is generally
rather time-consuming.
We conclude that the Relational Model, although appreciated for its economic
storage, cannot efficiently accommodate (logic) variables, recursive features,
and, consequently, the top level. Despite its efficient access, the Relational

DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND SPEED FOR SEMANTIC GENERATION 289

Model does not meet high-performance demands on complex (recursive)
data structures. The Relational Model is inappropriate for our purposes.

3.5.2.2 The Object-Oriented Model

In the Object-Oriented Model, information and control are represented in
the form of interacting ‘objects’, as is well-known from the Object-Oriented
Programming (OOP) paradigm. An object can be seen as a little information
processor. It accepts commands (called ‘messages’) from other objects, pro-
cesses data by executing procedures (called ‘methods’) that are stored in
the object, and sends commands to other objects (called ‘message passing’)
to be executed by those objects. It operates like a neuron in the brain, or a
router in a computer network. By keeping data (properties) and procedures
(operations) together in one local unit, an object holds all characteristics
related to some concept. This implies that an object is a complex data struc-
ture. An object is independent of other objects; it has its own ID and its own
role. These characteristics make an object attractive for representing ‘behav-
iour’. OOP, then, is modelling a problem by distinguishing different (abstract)
levels of objects (called ‘classes’ and ‘subclasses’, which are kept in a ‘class
hierarchy’), and defining their cooperation and interactions. A class defines
the general characteristics of a concept in terms of the problem domain. An
object is a particular instance of a class, from which it inherits all proper-
ties and methods, and to which it may add its own information, or overwrite
inherited information. Inheritance may be seen as an ‘is-a’ relationship. Mul-
tiple inheritance means inheriting from more than one independent class,
thereby combining properties and methods. Classes are the structuring ele-
ments (modules) in OOP, which hide the details of the code to be accessed by
objects that stem from other classes.

Our linguistic objects are generated by deriving information from (one or
more) generic classes of templates – ‘constructions’ – and by adding local
information. After their creation, linguistic objects are independent of generic
classes or other objects. This fits nicely in the OOP concept of objects that are
constructed by a specialized ‘constructor’ method and by inheriting informa-
tion from multiple classes. Our linguistic object, a complex, recursive graph,
can easily be mapped onto an OOP object, which is a complex data structure.
Shared variables, in fact, stand for a unification procedure, deferred until
runtime. Encoding them by an OOP method is straightforward. Linguistic
objects are independent information units, and, thus, uniquely identifiable, as
are OOP objects. This makes an object, including all properties and methods,
accessible by one ID, which is very important for efficient storage and access

290 LEXICON

by data-intensive processes such as semantic generation. ISO Prolog terms,
being complex data types, are well equipped to represent OOP objects, includ-
ing shared and singleton variables, recursion, and unique identification.
On the other hand, as linguistic objects are built from classes, and any com-
binatory difference is compiled out as a difference between objects, objects
may differ from each other minimally, yielding a significant amount of overlap
between objects, and introducing an exponential space factor. For example,
the linguistic objects for the 2nd and 3rd person of a regular verb differ only
in the person and phonological features.
Linguistic objects can adopt different states when they get involved in some
linguistic process, like generation. When we talk about storing linguistic
objects, we mean saving only their initial state. Objects whose states have
been saved are called ‘persistent’.
We conclude that the Object-Oriented Model provides a natural environment
for representing linguistic objects. It does not suffer from the drawbacks of
the Relational Model with respect to data modelling, and potentially facilitates
fast access by unique identifiers. Its data redundancy is a small price to pay,
given the considerable decrease in the price/performance ratio of hard disks
each year. Future developments in runtime file (de-)compression techniques,
as demonstrated on the level of the operating system, or the application, e.g.
Java, might weaken this disadvantage. Prolog’s term data type is suitable to
represent linguistic data objects.

3.5.2.3 Object-Oriented Databases

An Object-Oriented database is a database which stores objects as created
and modelled in OOP. Or, more strictly, an OO database system must satisfy
two criteria: it should be a DBMS, and it should be an object-oriented system,
i.e., to the extent possible, it should be consistent with the current crop of
object-oriented programming languages (Atkinson et al. 1989).
OO databases arose after it was discovered that relational databases lacked
high-performance processing on complex data structures like graphs. In the
Relational Model, complex data, split and stored in several tables, have to
be retrieved by searching these tables and combining pieces of data (called
‘joining’ in relational jargon), while in the Object-Oriented Model, a complete
object is retrieved by its ID in one operation. In the Relational Model, the rela-
tional database is accessed by a declarative query language, typically SQL,
which needs a procedural interpretation at runtime. The declarative query
language permits general-purpose queries and transforms them into efficient
retrieval procedures. In the Object-Oriented Model, lacking a standard query
language, the OO database is accessed by means of a pre-compiled pointer

DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND SPEED FOR SEMANTIC GENERATION 291

mechanism, which can be regarded as an optimized query answerer. In our
application of a computational lexicon for semantic generation, we do need
specialized queries, e.g. on syntactical type, semantic concept, and word form.
Hence, an OO database is appropriate.

We come to the conclusion that, as our lexicon is static after it has been derived
from generic templates, we do not need a full-blown object database manage-
ment system (ODBMS) for persistent storage, but we can limit ourselves to
implementing a simpler OO lexicon, containing fully-specified lexical entries, for
retrieval only. We can represent objects by Prolog’s native term data type, and
manage them by Prolog’s execution mechanism and pre-compiled pointers.

3.5.2.4 An example

We illustrate the operation of the generator by the following simplified exam-
ple. In categorial grammar, a category consists of a head, and zero or more
arguments to its left and/or right side. For generation purposes, the category
can be regarded as an agenda. The generation algorithm keeps heads already
produced in an unordered list, and arguments still to be produced in a stack.
It handles them by inserting and deleting elements from an arbitrary posi-
tion or from the top of the stack. It starts with a random semantic concept,
and finds one of its realizations in the lexicon. The head of its category is
inserted in the list. The arguments are shifted onto the stack, in reverse order.
Each argument is produced either by reduction of some head in the list, or by
reduction of a new category to be found in the lexicon. The topmost argument
of the stack is replaced by the arguments of the new category, or removed
completely, when it does not have arguments of its own. When the argument
stack is empty, there are two possibilities. When the heads list does not con-
sist of exactly one of the sentential categories s (‘sentence’) or q (‘query’),
the lexicon is consulted for a category that has the non-sentential category
as an argument. Its head is inserted in the heads list, while its arguments are
shifted onto the argument stack. If not, the algorithm stops. Categories, being
complex symbols, are unified with each reduction step. The following exam-
ple demonstrates the procedure, in line with (224).
1. search for random concept; find betekenissen ‘meanings’, cat=n; heads={n},

args={}
2. search for random entry with argument n; find diepe ‘deep’, cat=np/n
3. reduce arg n with head n in step 1; insert head np; heads={np}, args={}
4. search for random entry with arg np; find ontdekt ‘discovers’, cat=s\np1/np2
5. reduce arg np2 with head np in step 3; insert head s; shift arg np1; heads={s},

args={np1}

292 LEXICON

6. search for random entry with head np; find die ‘that’, cat=np/n
7. reduce arg np1 with head np in step 6; shift arg n; heads={s}, args={n}
8. search for random entry with head n; find Nederlander ‘Dutchman’, cat=n
9. reduce arg n with head n in step 8; heads={s}, args={}

Linearization information, kept in the complex symbols, is applied, yielding
the final sentence die Nederlander ontdekt diepe betekenissen ‘that Dutchman
discovers deep meanings’.

3.5.3 Methods

We will describe methods that store our linguistic objects as objects in an OO
lexicon, and methods, some borrowed from the Relational Model, that retrieve
these objects efficiently and fast. The methods have been implemented in ISO
Prolog. They should obey the Resource Principle, which is stated as: “Deploy
working memory when performance is the key factor, and deploy external
memory when storage is the main aspect”. This principle is a practical phras-
ing of the insights that working memory will never be large enough to hold
our current and planned number of linguistic objects, and that working mem-
ory is needed for real computation tasks, like semantic generation, and of the
facts that working memory is faster than external memory, and that external
disk space is abundant and cheap. We refrain from implementing interfaces
to third-party products, e.g. the (semi-commercial) Berkeley DB library for
external storage of terms (SICS 2014), or the Objects Package in SICStus Pro-
log (SICS 2014), because we prefer ‘light’, compatible, and manageable inter-
faces that are portable to other platforms.

3.5.3.1 Direct access and index tables

The ‘Edinburgh’ Prolog standard (Clocksin and Mellish 1984) offers sequen-
tial read and write access to files. On average, searching a record, given its
number, out of N records will take time that is proportional to N/2. Although
this is still efficient in complexity terms, for big N, however, searching will
take an unacceptable amount of time. In ISO Prolog, the concept of a file has
been improved on, and been replaced by the concept of a ‘stream’. A stream
is a file with random access, which means that each byte in the file can be
located in constant time.
An index table is a table relating unique, simplex values to the positions, or
context, where these values can be found. In our case, this translates to a table
per feature that relates each feature’s value to all occurrences of objects con-

DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND SPEED FOR SEMANTIC GENERATION 293

taining that particular feature with that particular value. Internally, Prolog
uses ‘first-argument indexing’ to locate the correct clause, given its first argu-
ment, which must be constant. This technique is not part of ISO Prolog, but
it is regarded as an essential facility for interpreting Prolog programs effi-
ciently, to be compared with the ‘array’ data type in other programming lan-
guages. It is implemented in every professional Prolog system on the market.
An index table can be simply implemented by a collection of clauses, where
each clause’s first argument encodes the feature’s values.
A fast lexicon for semantic generation hinges on the stream concept and
indexing techniques.

3.5.3.2 Caching

Internal (working) memory can be accessed much faster than external mem-
ory. Applications often need the same data again and again. This has led to the
development of cache memories. A disk cache is a storage mechanism in work-
ing memory that keeps the most recently read data plus the data of adjoining
sectors in a buffer. As soon as the application asks for some data, the buffer is
consulted first, saving access time to the hard disk. When the required data
does not fit in the buffer, an extra disk access is necessary. To exploit disk cach-
ing, the data must be ordered in a way that corresponds to a relevant search
criterion. Disk caching might be implemented at the application level or at the
operating system level, or both. Caching at the application level, as advocated
by Ceri et al. (1989), runs counter to the Resource Principle.

3.5.3.3 Hashing and compression

Hashing (Knuth 1973) is a method that converts an arbitrary, complex value
to a simplex one (the ‘hash’ or ‘key’) by applying a hash function to it. Typi-
cally, hashing converts to an integer, because it is the most economical data
type, and the easiest for a computer program to use. A hash value enables the
use of an index table. Searching for an object in a collection of N objects, given
an unhashed value of some constraint, will take O(N) comparison operations.
When the value is hashed, and the objects are indexed on the constraint by
applying one and the same hash function onto their values, searching an
arbitrary object only takes O(1) time, assuming that the index table can be
directly accessed. This is easy to implement in Prolog systems that can do
first-argument indexing.
As each piece of data ever to be searched for is fixed, the lexicon is a collec-
tion of ‘static search sets’. For such sets, a ‘perfect hash function’ (PHF) can
be designed that is a function that will never assign the same hash value to

294 LEXICON

different data structures. However, depending on the complexity of the data
structure, the hash can exceed the range of the integer data type on some
computer platforms. A ‘near perfect hash function’ takes the integer range
into account, but allows for duplicates (‘collisions’). Duplicates increase space
and time complexity. A 64-bit platform extends the integer range by several
orders of magnitude compared to a 32-bit platform, enabling a PHF to be
used, yielding zero collisions.
Number grouping is a compression technique which replaces a set of adja-
cent integers by a range starting with the lowest number and ending with the
highest number. The space complexity for a range is constant instead of linear
for a set of numbers. The time complexity for determining the subset of two
ranges is constant, while it is linear for intersecting ordered sets.

3.5.4 Creating and accessing the object lexicon

The object lexicon, including retrieval methods, is generated by an off-line
process which is not subjected to the Resource Principle. During generation,
the objects are checked for well-formedness and validity. We will not describe
the creation of the linguistic objects here; see section 3.4. Once they have been
created, they are linearized into a series of bytes, and stored as Prolog terms
in an output stream. We might store them in XML format as well, to make the
lexicon application-independent.
A persistent object can be seen as a variable-length ‘record’, a concept from
the Relational Model. The implicit ‘record number’ acts as the object’s ID. The
physical address of the object’s first byte is kept in an external access table. The
object lexicon and the access table have the same – large – number of entries.
Storing them externally is in agreement with the Resource Principle. The
access table holds records of a fixed size. As a consequence, it can be addressed
by a function in working memory mapping an object with ID=N to the physical
address of the Nth entry in the access table. The information to be found there
in its turn refers to the physical location of the Nth object in the object stream.
Thus, objects are retrieved by ID via an indirect addressing scheme in constant
time, at the cost of accessing the disk one more time, of one function in work-
ing memory, and of one auxiliary access table in external memory. Prolog’s
built-in read predicate loads the objects as native Prolog terms.
Efficient data structures are the basis for efficient algorithms. Therefore, the
objects need to be ordered by some criterion. A parser would benefit from an
ordering on the phonological field for lexical look-up and tagging purposes,
and would exploit a disk cache by accessing all objects with the same sur-

DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND SPEED FOR SEMANTIC GENERATION 295

face form using a buffered read operation. A generator would benefit from
an ordering on the most frequently used deep constraint for handling the
agenda. As our semantic generator picks only one carefully selected object at
a time, physical ordering does not seem to be beneficial. However, physical
ordering by a criterion corresponds to a very compact index table for that cri-
terion, because each entry can be represented by a range. Working memory
is saved this way and intersection operations are sped up. It turns out that a
physical ordering on syntactic type will prove helpful to the semantic genera-
tor. This exemplifies that a lexicon to be deployed both for a parser and for a
generator needs to meet differing requirements. As the class of syntactical
types is much smaller than the class of surface forms, a physical ordering on
the former will yield fewer but bigger ranges, and as a consequence, a more
compact index table than an ordering on the latter, saving more memory, in
line with the Resource Principle.

3.5.4.1 Creating and accessing index tables for concept,
type and phonology

For semantic generation, we require maximum performance on the retrieval
of linguistic objects, specified by constraints on the features for semantic con-
cept, syntactical type, and word form. For each linguistic object, its concept,
type, and phonological features are stored in three auxiliary index tables in
working memory. If an entry does not exist, it is created and added to the
index table, together with the object’s ID. If an entry already exists, only the
ID is added. Number grouping is applied to the ordered (sub)sets of IDs as
far as possible. Each combinatory type is hashed into a unique string instead
of into an integer, because, theoretically, types are unlimited in size, which
may yield too many collisions. Each word form and each semantic concept
is hashed to a (non-unique) integer by applying a near-perfect hash function
to their letters. The hash value is kept as small as possible by taking the let-
ter frequency in Dutch into account (https://onzetaal.nl/taaladvies/advies/
letterfrequentie-in-het-nederlands). This method is a variant of Huffman cod-
ing (Huffman 1952). Provisions are made for handling collisions which result
from lexical ambiguities. In general, retrieving all IDs of objects that satisfy
either the concept, type, or phonology constraint takes O(1) time, when first-
argument indexing is applied by the Prolog system to the respective index
tables, and zero disk accesses. The index tables have a space complexity that
is a linear function with a small factor – due to number grouping – of the
number of templates. The index table on the feature that is used for ordering
the objects has a space complexity that is a linear function of the number of

296 LEXICON

the feature’s values. Three index tables are kept in working memory for fast
access, in accordance with the Resource Principle.

3.5.4.2 Creating and accessing a meta-index table

Additionally, the semantic generator may select objects that are specified by
constraints on other features. We do not demand maximum performance
on queries of this kind. For each linguistic object, each value of each feature
ever to be retrieved (not being concept, type or phonology) is stored, with its
full path, in one auxiliary index table in working memory. This ‘meta-index
table’ spans more than one feature. The IDs of all objects that specify the same
value for some feature are grouped by number and stored in a metadata table,
which is a stream. Additionally, the set of IDs of objects that do not specify
any value for the feature is calculated and stored. The storage address for
each feature-value pair is kept in the meta-index table. Retrieval of all IDs of
objects that match one of these constraints takes O(1) time, when first-argu-
ment indexing is applied by the Prolog system, and one extra disk access. The
space complexity of the meta-index table is a linear function of the number of
unique feature-value combinations, occupying only a fraction of the working
memory, consistent with the Resource Principle.

3.5.4.3 General retrieval

Retrieval of linguistic objects is performed by executing a search task, speci-
fied by one or more constraints. When the search task is a graph – typically,
an argument subgraph of some object involved in the semantic generation
process – it is flattened into a series of constraints (paths). Each constraint is
looked up in the appropriate index table. We distinguish between strict and
liberal constraints, which demand objects to match the constraint explicitly,
or allow objects that are unspecified for the constraint, respectively. Liberal
constraints follow from graphs that allow under-specification. If a strict con-
straint is a restriction on semantic concept, syntactical type, or word form,
the set of IDs of the objects satisfying the constraint is found immediately in
the respective index tables. For other features, including liberal constraints,
the set of IDs is found after issuing an extra disk access to the metadata table.
In all cases, a constraint is replaced by a set of ID numbers corresponding to
objects that are not inconsistent with the constraint. The objects that satisfy
all constraints are identified by IDs that result from intersecting all sets of IDs.
As the sets of IDs are ordered, determining their intersection is a linear func-
tion of the size of the biggest set. The function factor can be very small when
ranges are involved, because only the edges of a range need to be inspected.

DISCLOSING THE LEXICON: OBJECT-ORIENTATION AND SPEED FOR SEMANTIC GENERATION 297

In general, however, the ranges get fragmented after a few intersection opera-
tions. Only the IDs in the resultant set of IDs may be accessed and loaded. The
semantic generator randomly picks one of the IDs. Disk access is performed
only for this ID, in order to locate and retrieve a complete linguistic object for
further processing.
By applying directly accessible pre-compiled access and index tables, search-
ing is reduced to looking up, giving a great performance boost; this contrasts
with Prolog’s own depth-first backtracking search algorithm, which is ineffi-
cient. In summary, finding one object, given its record number, takes O(1) time
and one disk access. Finding the set of IDs of objects satisfying a constraint
on concept, type, or phonology only, takes O(1) time and zero disk accesses.
Finding the set of IDs of objects satisfying some other constraint takes O(1)
time and one disk access. Finding the set of IDs of objects that satisfy N arbi-
trary constraints takes O(N) time and zero disk accesses.

3.5.5 Perspectives

The sum of all external index and external auxiliary tables is at present under
5 % of the total (externally stored) lexicon, measured in bytes. In the future
we will explore how our way of organizing access to the stored lexicon can be
maintained when the lexicon increases in orders of magnitude. It is expected
that Prolog’s internal management of huge numbers of index clauses is chal-
lenged with respect to access times. We leave that technical matter to com-
piler builders. More importantly, the lexicon, although it may take very large
proportions, always stays finite. As the indexing tables are derived from the
full-blown lexicon, there is always the possibility of having sufficient working
memory available for accommodating them. Further, we want to investigate
to what extent cognitive insights are reflected by this organization of the lexi-
con – a question which would not have been raised if we had applied standard
techniques or third-party products.

298 LEXICON

3.6 THE LEXICON WHILE PARSING

In the Delilah system, parsing is a process with three distinct ordered stages.
Firstly, a chart parser or a backtrack parser determines the optimal analysis
of the sentence in compliance with the categorial syntax. This is the combina-
torial stage. Secondly, unification is exploited to combine graphs following the
pattern of the syntactical combinatorics. This is the unification stage. Thirdly,
the stored logical form is compiled out: the semantic stage.
The lexicon as a database is called for in the first and the second stages. In the
combinatorial stage, syntactical categories are collected and tested for each
word. These categories are specified in every lexical graph. For the combi-
natorics to work properly it is not mandatory but it is certainly efficient to
maintain a register of combinatorial categories per word form, as an index to
the lexicon. Note that the relationship between combinatorial categories and
lexical graphs is not bijective: distinct graphs may share word forms and cat-
egories. In the first stage, the categorial index is the only emanation of the lex-
icon that is required. One or more syntactical analyses are chosen and these
are transferred to the second stage.

In the second stage, every selected analysis is taken as a guide to unification.
In bottom-up mode, appropriate graphs are taken from the lexicon and tested
for unification. The lexical graphs are selected by their phonological and syn-
tactical/combinatorial properties only. Successful unifications are stored
in parallel, if necessary. At this stage, it is mandatory to keep track of argu-
ment subtemplates which are candidates for unification at certain points in
the derivation. A transitive verb, for example, has two nominal arguments,
and subject and object had better not be confused in unification. For this pur-
pose, argumentative subtemplates (marked ARG) are uniquely indexed, and
this index is reflected in the combinatoric category. For example, in (418) the
index of the subject-argument reenters in the combinatoric category and in
the Stored Logical Form; the index is highlighted in the following excerpt:

THE LEXICON WHILE PARSING 299

(420) re-entering

ID:A+B
...
SLF:{{[I&(B+J)#K,
 L&(M+N)#O,
 P@some^Q^and(quant(Q,R),laugh~[Q],event~[Q],
 entails1(Q,S),and(P,entails(Q,T)))&(A+B)#U],[],[]},
 and(and(and(experiencer_of~[U,K],
 some^V^and(quant(V,some, and(and(event(V),move(V)),
 theme_of(V,K)),goal_of~[V,O],entails1(V,incr),cause(Q,V)),
 entails(V,incr)),attime(U,W)),tense(U,past))}
...
TYPE:s_vn\0~[pp^0#B+M, np^0#B+Z, np^0#B+Y,np^0#B+J]/0~[]

ARG: ID:B+J
 PHON:G
 SLF:I
 SYNSEM:CASE:nom
 CAT:np
 NUMBER:sing
 OBJ:subject_of(A+B)
 PERSON:C
 QMODE:X
 THETA:experiencer_of

The indices are variables in lexical templates, but become instantiated under
unification. They are pairs of natural numbers N1+N2: N1 is the second mem-
ber of the higher index, N2 the first index of embedded arguments. Hence,
chains of instantiated indices represent argument structure for the sake of
anaphor resolution. In this way, the bookkeeping device of indexing argumen-
tative subtemplates provides additional structural information.

When parsing, access to the lexicon is in real time. Every graph that may be
useful is identified and found instantaneously, as described in the preceding
section. The lexicon is supposed to be complete and indexed when parsing
starts. As soon as a parse is selected on syntactical grounds, the relevant tem-
plates from the lexicon are retrieved and ordered according to the derivation
of the chosen parse. Each template is selected on the basis of its phonological
head – the value HEAD:PHON in the template – and its combinatorial category –
the value of TYPE. These values are fixed in every lexical template. The phono-
logical head corresponds exactly to the word form occurring in the sentence
that is being parsed. The category corresponds exactly to the combinatory
category that is applied for that word by the syntax in the present deriva-

300 LEXICON

tion. Below is the parse scheme of a simple three-word sentence. The relevant
combinatory categories at word level are in bold face.

(421) Parsing Jeroen wil werken ‘Jeroen wants to work’
(a) for all words in the sentence, retrieve their syntactic categories and

make a chart
(b) choose the optimal parse(s) from the chart:

 1-3+s\wh~[]/1~[] jeroen wil werken
 1-1+np\0~[]/0~[] jeroen
 2-3+s\0~[np^wh]/1~[] wil werken
 2-2+s\0~[np^wh]/0~[vp^6] wil
 3-3+vp\0~[]/0~[] werken

(c) retrieve all lexical templates
 [... HEAD:PHON:werken... TYPE:vp\0~[]/0~[] ...]
 [... HEAD:PHON:wil... TYPE:s\0~[np^wh]/0~[vp^6] ...]
 [... HEAD:PHON:jeroen... TYPE:np\0~[]/0~[] ...]
(d) try to unify, according to the parse tree(s) of stage (b)
 1. every retrieved werken template with every retrieved wil template
 2. every unification resulting from step 1 with every retrieved jeroen
 template
(e) select the optimal unification result

Many of the lexical templates, though retrieved by their heads, will intro-
duce constructions in the sense that the category and the template invoke
other constituents, like the wil templates in (421). The procedure up to the
selection of the optimal unification result is indifferent to whether the final
semantics of these templates is compositional or not. Since every template
carries its semantic receipt with it, unification is all that counts. For exam-
ple, the light verb form heb ‘have’ of type s\0~[np^wh]/0~[np^0] introducing
the be hungry construction unifies with the fully-fledged template for the
NP honger ‘hunger’: its semantics comes along but is not represented at the
top level. Step (421)(c), therefore, is perfectly general: in all cases, the con-
straints of phonology and applied combinatoric category suffice to retrieve
all and only the relevant templates.

THE THREE DUALS OF GRAMMAR 301

4. GRAMMAR:
the reward of incompleteness

4.1 THE THREE DUALS OF GRAMMAR

The insight implicitly emerging from the previous chapters is that structure
and meaning are non-compliant in a fundamental and principal way. The
insight lies sheltered under the idea that, somehow, interpretation of well-
formed sentences and assignment of well-formed sentences to given mean-
ings must be computable, even if the ultimate semantic representation is no
longer the result of derivation. The present chapter, however, sails under a
different perspective. Here, we try to find out what the overall characteristics
of the resulting formal system turn out to be. Here, grammar will be identified
as incomplete per se, in a logical, almost Gödelian sense. Logical incomplete-
ness will be acknowledged as a valuable feature of formal grammar, and as a
mark of soundness. In order to ensure computability however, the lexicon will
once more be constructed as a treasury of oracles that connect structures to
meanings. As a main line, this chapter argues that constituents cannot derive
entailments, or the other way round. Hence, some true statements about the
relationship between a structured sentence and its interpretation cannot be
proven within grammar. This particular gap between truisms about form and
meaning and theorems on this relationship constitutes the incompleteness
of the grammar. Moreover, the chapter says that logical incompleteness is a
desirable property of formal grammar. Grammars that do not enjoy incom-
pleteness are bound to underspecify syntax, semantics, or both.

In daily linguistics, syntax and semantics are different games, to almost every
grammarian. Across frameworks, and also in the Delilah system, syntax iden-
tifies and manipulates constituents. Constituents are the sentence’s proper
parts and are taken to be complex bundles of properties – they are complex

302 GRAMMAR

symbols or signs. Their interaction is modeled by a certain comparison of
these bundles: unification. Sentential semantics is about the identification of
entailments, or semantic consequences – Aristotle’s heritage. The semantic
contributions of constituents are taken to be functions; they are composed in
order to provide the logical base for entailments.

Talking about a grammar as a whole, we have to deal with three duals. Firstly,
we have to account for the balance between syntax and semantics, the arts of
grammar. Secondly, we have to compare the modes of operation of syntax and
semantics, to wit, unification of signs and composition of functions, respec-
tively. Thirdly, we must evaluate the relationship between the objects of syn-
tax and semantics: constituents and entailments. The present chapter is on
the clash between the arts, the operation modes and the objects of grammar
as a formal system. There is no doubt, however, that the theatre of the clash is
restricted to grammar, and does not extend to human language.

4.2 THE CONSERVATIVITY OF SYNTAX

4.2.1 The yield of syntax

Syntax serves a few good purposes. Firstly, it defines the proper parts of well-
formed phrases, marking their roles: the constituents. Undoubtedly, they are the
keys to grasping language. Secondly, syntax labels constituents, by classifying
constituents into equivalence classes, the categories. Thirdly, syntax provides
the linearization regime, inevitable since languages consist only of meaningful
sequences of symbols. And, finally, syntax provides some grouping or storage
of semantic terms: an underspecified semantic representation (cf. Bunt 2008).
Below, you will find a picture of a syntactical derivation, which sketches the
simultaneous computation of strings, categories and types and meanings.

For rules of grammar C concatenates A and B and E infixes D in C and a data
triple <string | category::type| meaning>, the derivation of a discontinuous
string acdb of category E is schematized by

THE CONSERVATIVITY OF SYNTAX 303

(422)

acdb | E∷γ | λy.λx.φδβγ(ξδ)(ψβ)

ab | C∷<β,γ> | λy.λx.φδβγ(ξδ)cd | D∷β | ψβ

a | A∷<δ,<β,γ>> | λyδ.λxβ.φγ b | B∷δ | ξδ

In every step in the derivation, linear order, categories and types and stor-
age of meaning are taken care of. This is why syntax deserves our permanent
affection and attention.

4.2.2 The restrictedness of unification

Syntax determines constituency by unifying complex symbols or signs. Unifi-
cation is a well-defined operation (see e.g. Pereira and Shieber 1987) checking
the compatibility of graphs or terms by seeking to create one graph or term out
of two. Without loss of generality, below, we restrict our attention to graphs.
In the grammar of natural language, applying unification makes sense if four
conditions apply:
(a) binarity: unification is an operation involving two graphs, yielding a

derived graph in case of success
(b) locality: everything that is worth unifying is specified in the operanda
(c) antisymmetry or strong typing: for each two signs, there is a unique way
 of integrating two signs
(d) recursion: the output of one round of unification is the input of another.

Binarity is an economic principle. The unification of more than a pair of graphs
is costly and possibly undecidable. Nothing in natural language calls for such
a complication. Locality has to guarantee that all relevant information is avail-
able and can be exploited at crucial moments in the derivation of the cover-
ing structure. It is a principle of information transfer. Antisymmetry ensures
different roles for each graph in the unification. These roles are in the graphs
themselves, as part of the specification; therefore, these graphs are strongly
typed: the type of a graph determines its role in a unification check-up. Recur-
sion, finally, expresses that unification is all there is to syntax – the outcome

304 GRAMMAR

of one unification is the input of another instance of the same process. Below,
the process is illustrated as the generalization of two structures; the process
was discussed extensively in chapter 3 (cf. (395)).

(423) Unification of complex signs

 a:X

 e:f

 a:X

 a:b
 c:d

 a:b

 e:f
 a:b
 c:d

⊔ =

One structure checks another by binarity and antisymmetry. The checking
graph has a relevant substructure which is specified for features e and a. The
first has value f, the second is undetermined or variable. The value of a in the
substructure is bound to the value of a at the top level of the checking struc-
ture; this relationship reflects locality. The secondary structure – the one to
be checked – is specified for features a and c, with definite values b and d
respectively. The specifications for the substructure and the secondary struc-
ture are compatible: e:f and c:d do not affect each other, both occurring in
just one sign, and the value X of a in the checking sign is instantiated by b in
the secondary sign. Because no incompatibilities arise, the resulting unified
structure specifies all information in one new graph, which is open to unifi-
cation with other graphs, by recursion. The resulting structure is at least as
specific as either of the two operands.

As described here, unification is a standard tool in all lexicalist approaches to
grammar (e.g. Sag, Wasow and Bender 2003, Bouma 1993, Kay and Fillmore
1999). These approaches differ mainly as to the embedding and organization
of unification and – of course – the nature and the logic of the features speci-
fied. Unification, as Sag et al. note, is not the theory of grammar – it is its chariot.

THE CONSERVATIVITY OF SYNTAX 305

4.2.3 The generality of unification

Syntax is both constructive and conservative. It specifies how phrases com-
bine to make new phrases in such a way that the phrases entering the combi-
nation survive as proper parts in the whole. In syntax, phrases are preserved
under combinatorics. Syntax does not delete – it builds. For that reason, the
logic of categorial grammar, for example, is intuistionistic, constructionist
and resource-sensitive (Van Benthem 1991). For that reason, syntax does not
have a complement type of operation. One cannot nullify structure.

Combining phrases syntactically amounts to checking their properties, find-
ing some linearization and computing the properties of the whole out of the
properties of the proper parts. It is an essential feature of all major syntacti-
cal frameworks that the combinatorics does not create structure independ-
ent of information carried by the operands. This is even true for those syn-
taxes that embody theories of language, like minimalism (Chomsky 1995).
The definition of its single (or main) syntactical process merge is like (424)
rather than like (425), according to Chomsky (1995), Collins and Stabler
(2011) and Stabler (2010).

(424) merge(a, b) = {b, {a, b}}
(425) merge(a, b) = {g, {a, b}}.

The result of combining two things syntactically is projected from the objects
combined, to wit, a and b. The resulting structure is not projected out of the
blue. It is not surprising, then, that independently formulated phrase structure
grammars with production rules have an equivalent formulation in a more lex-
icalist framework, like categorial type logic: if a category A expands to B and C
according to some phrase structure grammar, one can equivalently state that
members of category B map category C to category A, making the category B
combinatorially obsolete. Phrase structure rule (426) expresses the very same
syntactical information expressed by functional application rule (427).

(426) j A y → j B C y
(427) j A y ⇐ j A/C C y

In (426), the top label A is not necessarily associated with the daughters’
labels. In (427), the top label is introduced by one of the daughters, by defini-
tion. The relation between phrase structure grammars and categorial or type-
logical grammars has been studied since Bar-Hillel (1953). Pentus (1993)
proved the (weak) equivalence of context-free phrase structure grammar and

306 GRAMMAR

the Lambek-calculus – restrictions of type-0 grammars and of type-logical
grammars respectively. The mapping between minimalistic and categorial
grammar has been studied by Retoré and Stabler (2004) and Vermaat (1999).
What matters here is that in (424) and (427), the top node – the new con-
stituent, the unification, the whole – does not introduce new information. The
labeling of the new constituent comes with its proper parts.

Grammars do not describe the manipulation of categories, though, but the
manipulation of richly structured phrases, containing all kinds of informa-
tion. Let us call these phrases of a certain category complex symbols or signs,
as was suggested by, among others, Friedman and Bredt (1968), Gazdar,
Klein, Pullum and Sag (1985), Morrill (1994), and many others. Under that
view, common to almost all present approaches to syntax, rules of grammar
with formalizations like (424) or (427) specify how complex symbols arise
from other complex symbols. Linguistic theories differ considerably – though
not fundamentally – in the specification of complex symbols, as to the nature
and the amount of information stored in the complex symbols, and as to the
alleged impact of the representations. Discourse representation theory (Kamp
and Reyle 1993), for example, is much more specific on anaphoric effects than
are other approaches to grammar. Yet, the basic process that lives on all these
resources is unification. Unification is a costly, but finite procedure to check
point by point whether the requirements that one constituent imposes on
its linguistic environment are met by candidates for that environment. The
division of labour between the signs is that one sign specifies conditions for
the other, while the other specifies values in the checking sign. If all relevant
specifications match point by point, the unification succeeds. If one specifica-
tion runs counter to the other, unification fails. If specifications do not inter-
fere, they go along with the process. Information is neither destroyed, nor left
behind. At most, some general information is replaced by more specific infor-
mation of the same sort. In particular, if A is a constituent of B and unified
with it, subsequent unification of B with another constituent cannot destroy
the position of A with respect to B. Essentially, the unification of A and B is at
least as informative or specific as both components; it is conservative.

Note that unification does not impose any restriction on the nature of the
constraints. It is important to see that even semantic information can be
checked and transferred this way. However, the level of semantic representa-
tion that can be reached by applying unification is by conjecture exactly the
level that is called underspecified semantics in computation (Bunt 2008). It is
a kind of storage of typed semantic contributions where the ultimate inter-

THE CONSERVATIVITY OF SYNTAX 307

action between these contributions is not specified. Similar approaches to
delayed application have been proposed by Cooper (1983), Janssen (1986),
Bos (2001), Copestake et al. (2005) and Jäger (2005).

Syntax is conservative, because all its aims can be fully achieved by unifica-
tion and unification does not destroy any information. Successful unification
yields a conservative merge of complex symbols. Information is added to
other information; no information is lost. Not all information will be available
at all levels of embedding, but that is not the point: information is not expelled
by other information, and the level of specificity is monotonously increasing:
with each unification new information comes in. For this reason, we can call
syntax an additive process. It is the grammatical instantiation of addition and
union. It defines an algebra in which the smaller units are ordered below the
larger ones. If two complex signs unify, both define proper constituents of the
resulting phrase. In the following, the symbol ⊑ reads as ‘is a constituent of ‘;
this notion is antisymmetric.

(428) If A and B are complex signs and A ⊔ B is their unification, then
 both A ⊑ A ⊔ B and B ⊑ A ⊔ B.

Lemma (428) we call additivity for syntax, as it compares syntax to set union
and partial (transitive, antisymmetric) ordering over sets, as well as to addi-
tion over ℝ+ and its ordering:

(429) If A and B are positive real numbers and A + B is their addition, then
 both A ≤ A+B and B ≤ A+B.
 If A and B are sets and A ∪ B is their union, then
 both A ⊆ A ∪ B and B ⊆ A ∪ B.

In additivity for syntax, the empty complex symbol is the unit, but the grammar
will never schedule the empty complex symbol for unification, as it does not
represent any syntactical object. The syntactical representation of a sentence
with constituents A1 An is therefore (...(A1 ⊔ A2) ⊔ ⊔ An) or ∐i=1..n

 Ai. It
represents a conservative and preserving merge of information, scheduled by
rules of grammar.

308 GRAMMAR

4.3 THE DESTRUCTIVITY OF SEMANTICS

4.3.1 Divorcing constituents and entailments

Natural language semantics west of the Indus starts with Aristotle. The Orga-
non describes how two independent sentences logically determine a third
one. Here is, as an example, the syllogism dubbed Cesaro, combining a nega-
tive (e), a universal (a) and an existential (o) quantifier. A negated existen-
tially quantified sentence and a universal quantified sentence jointly entail
an existentially quantified sentence with predicate negation. The conclusion
takes its predicate negation from the negative quantifier in the first premise,
its left predicate or middle term from the second premise, the positive ver-
sion of its right predicate from the first premise, and its quantifier out of the
syntactical blue. The abstract syntactical structure in Germanic languages for
this syllogism is indicated below.

(430) No humans have hooves [dp Q2 P] M
 All horses have hooves [dp Q1 S] M

 ∴ Some horses are not humans [dp Q3 S] Q2-P

The conclusion is entailed by the premises – one cannot consistently assert
the premises and deny the conclusion. That is, all speakers of a language will
confirm that they cannot think of a situation in which the following complex
description in their language would be true, that is, in which it could be any-
thing other than a desperate expression of nonsense.

(431) No humans have hooves and all horses have hooves but some horses are humans.

Natural languages – even Piraĥa, we must assume – share these syllogistic
three-tuples, because all languages have the partial ordering coming with a
universal quantifier (Zwarts 1983) and they have negation, and that should
do. In most languages, these quantifiers are conservative, restricting the
domain of quantification to the nominal property, and go with that property
syntactically, rather than bridging between the expressions of that property.
And in all languages, the single conclusion is built from several syntactically
specified but unrelated constituents. Despite all mediaeval classifications of
syllogisms in term of subjects, predicates and midterms, however, Aristotle’s
is not a theory on the syntax-semantics interface. From the constituent struc-
ture of the premises one cannot predict the conclusion. From the conclusion

THE DESTRUCTIVITY OF SEMANTICS 309

one cannot deduce the structure of the premises. The relationship between
constituency and entailment is very loose. It is not possible to map constitu-
ents and entailments functionally.
From its very inception as a field of empirical study, semantics went beyond
syntax.

4.3.2 Entailments as products of composition and deduction

Semantics is invasive and destructive, and its operations may not even be
computable (Lasersohn 2009). The semantic representation of a sentence
has to take care of all those properties of a sentence that are not determined,
or are under-determined, by its structure. It does so by bringing certain terms
under control of operators outside that term, thereby affecting the independ-
ence of the semantic contribution of the term per se. The intensional inde-
pendence of the term is reduced to denotational dependency when the term
is absorbed in the proposition. That is what the ‘extra-grammatical’ meaning
postulates of Montague (1971) are about. The destructive nature of semantic
composition emanates in two related but distinguishable phenomena: sco-
pal control – affecting the interpretation of operator-sensitive terms – and
phrasal or structural ambiguity – the fact that one syntactical structure may
come with several distinct interpretations. Scopal control changes the way
in which a phrase contributes to the meaning of the whole. Ambiguity of the
kind that occurs in many extended lexical units where a certain grouping may
or may not introduce a specialized reading can overrule the individual lexical
elements completely: in one reading of John kicked the bucket, there is neither
a bucket, nor does any kicking occur. To the extent that syntactical structure
and categorization is unaffected by the outcome of the interpretation, scopal
control and ambiguity turn semantic terms into dynamic warriors, striving
after reign instead of just preserving part-of-ness, as in syntax. If two terms
φ and ψ each contain an operator, and if these two operators can dominate
each other, the possible relations between the operators have to be checked
when φ and ψ are applied to each other. If a phrase [A B] in X A B Y can con-
tribute, for example, the application of the meaning of A to the meaning of B,
it has to be checked whether it had not rather contribute some other mean-
ing, not arising from functional application. A classic example here is the way
construction (Goldberg 1995). In Dutch (cf. Poß 2010), intransitive verbs can
productively introduce a causative construction when combined with expres-
sions of path and direction and a reflexive – this construction was already
mentioned in sections 3.1.4 and 3.4.4. Informally, a Dutch intransitive verb

310 GRAMMAR

V creates a fully-fledged paradigm {V+reflex+een weg naar DP}, meaning: by
V-ing achieve to end up in DP. Here, we repeat a slightly modified example
from chapter 3, with intransitive golfen ‘play golf’ as verbal head.

(432) Elke bankier had zich een weg naar een Raad van Bestuur kunnen golfen
 Every banker had himself a way to some Board of Directors been-able play-golf

‘Every banker could have succeeded in moving into some Board of Directors by
playing golf’

Note that instead of golfen, any other intransitive verb could occur, maintain-
ing the interpretative framework. In this sentence, [een weg naar een Raad van
Bestuur] is a constituent. Whether and, if yes, how this constituent contributes
to the meaning of the whole, and also whether both occurrences of een are
interpreted as quantifiers at all, entertaining scopal relations with the univer-
sal quantifier and modal, for example, completely depends on the details of the
construction’s embedding, and the way the relevant meanings are stored.
The interpretation of a sentence is both kingmaker and exterminator. The
semantic representation of a sentence – its Logical Form (LF) – is accountable
for all and only its entailments. Among grammarians, this concept of Logi-
cal Form has already been revealed in Higginbotham (1985). Entailments are
the logical consequences of a sentence, that is: those consequences that are
independent of the context of utterance or knowledge of the world. That is
why they live in the domain of grammar. Entailments are intensionalized or
necessitated implications, induced by knowledge of language. Aristotle’s syl-
logisms are the prototypical examples of entailments. The semantic repre-
sentation of All human beings are mortal and Socrates is a human being must
be such that from their conjunction the proposition Socrates is mortal can be
derived with purely formal, logical manipulations. For a sentence like (433),
the semantic representation must be such that each of the independent sen-
tences in (434) can be derived from it, by logical manoeuvres and grammar
alone. At the same time, the semantic representation or logical form must
resist the deduction of any of the sentences in (435).

(433) Not every farmer beat his donkey
(434) Some farmer owned a donkey

Some donkey was not beaten
Some donkey that relates to a farmer was not beaten
Some farmer did not beat a donkey that was related to him
Someone did not beat
Some creature was not beaten
Some donkey was not beaten by any farmer to whom it relates
...

THE DESTRUCTIVITY OF SEMANTICS 311

(435) No donkey was beaten
Every donkey was beaten
Some donkey was not beaten by any farmer
…

The sentences in (434) are simultaneous consequences of (433). Of course,
these consequences are relative to some well-defined calculus of propositions.
To be a semantic consequence is to be derivable by some logic. The formal
tendency in modern semantics is motivated only by the fact that formal log-
ics and algebras provide mechanic deduction: the theory of grammar needs
these mechanics to justify the inevitability of entailments observed by Aristo-
tle. Therefore, the logical form of a sentence can be defined with respect to its
entailments. Its ideology is captured by the following statements, requesting
some consistent logic.

(436) Logical Form of S
The logical form of a sentence S is that representation ⟦S⟧ for which a logic L
exists such that S entails P iff ⟦S⟧ ⊨L ⟦P⟧ and ⟦S⟧ ⊢L ⟦P⟧

(437) Meaning of S
The meaning of a sentence S is the conjunction of its entailments derivable from
its Logical Form

These definitions have several edges. Firstly, they relate logical form to linguis-
tic empiricism. Entailments are those aspects of sentential meaning on which
language users converge. Entailments, therefore, are sentences, not formulas.
With his syllogisms, Aristotle did not discover new cognition – he just made
explicit the oldest insights of talking heads. Human beings may disagree on
the meanings of words, but entailment is a decidable property among linguis-
tic laymen, as is claimed correctly by Chierchia and McConnell-Ginet (2000).
Secondly, the statements define a lower bound to logical form. It invokes for-
mal reasoning to connect entailments to logical form, by assuming that some
entailments are so elementary that they do not have any other entailments
themselves. Logical form must be so rich that formal deduction of entailments
is possible, according to some logic.
Thirdly, we can use (436) and (437) to define an upper bound to the notion
of entailment. Entailments are those propositions that are connected to sen-
tences by judgements of language users. We assume that language users only
have (linguistic) judgements about propositions that are conceptually – say,
lexically – related to the base. Few language users are likely to acknowledge
entailments outside the lexical realm of the base – only the trained logicians
among them are in danger of doing so. We assume that all the material in entail-

312 GRAMMAR

ments of a sentence is delivered by the lexical components of the sentence.
Every entailment is built completely from semantic material available in the
sentence. Because of this – quite realistic – restriction, we can neglect entail-
ments produced by purely logical combinatorics, like the logical equivalence of
p and p & p, p → p, p & (p ∨ ¬p) and so on. We define an entailment of A as the
shortest representative of its logical equivalence class within A’s lexical realm.

A sentence entails all of its entailments simultaneously. As a matter of fact,
definition (436) gives rise to the following conjecture:

(438) If P1, … Pn are all entailments of S, the logical form ⟦S⟧ is equivalent to the conjunc-
tion ⟦P1⟧ & & ⟦Pn ⟧

Since entailments may be complex propositions themselves, the explicit con-
junction of all entailments will be redundant. Still, the shorter and more eco-
nomical representation is basically conjunctive. That is, if every ⟦Pi⟧ itself is
spelled out as a conjunction p & ... & pn, the representation ⟦S⟧ is the conjunction
of all those propositions pj that occur in the representation of at least one Pi.
The logical form, then, is a kind of conjunctive union of all entailments. The idea
that logical form is basically conjunctive is advocated by Pietroski (2006, 2011)
from a purely linguistic point of view, and by Reckman (2009) from a compu-
tational-linguistic point of view. It is advocated and integrated in the Delilah
semantics in chapter 2 of this monograph as Flat Logical Form.

For the logical form to be the source of all entailments, it combines semantic
contributions of phrases by applying one meaning to another, bringing one
semantic contribution under the logical influence of another. In particular,
semantic contributions can be excluded from inference by wrapping them into
intensional domains, or be made referential dependent upon other semantic
terms. Even if a phrase is a proper part of a sentence, its semantic contribu-
tion to the sentence might be non-existent, mutilated or only partial. In exactly
this sense, semantic combinatorics is multiplicative and selective. It behaves like
intersection, in accumulating interpretative conditions on the individual terms.
From the consideration above and the conjunctive nature of the logical form,
it follows immediately that the notion of semantic consequence ⥽ induces
an antisymmetric and transitive ordering between the logical form and any
entailments of the sentence; in the definition, “. ⥽ .” abbreviates the conjunc-
tion of “. ⊨ .” and “. ⊢.”.

(439) If ⟦S⟧ is the logical form of S and S entails P, then ⟦S⟧ ⥽ ⟦P⟧

THE DESTRUCTIVITY OF SEMANTICS 313

In this ordering, the whole – the conjunction of entailments – is ordered
‘below’ the proper part – the individual entailment. Its antisymmetry follows
from the restriction mentioned above, that entailments are built from lexical
material in the sentence and that they are the ‘shortest’ representatives of
their equivalence class.
With respect to the ordering, it is of some importance to note that the notion
of semantic consequence is not conservative in the sense in which unification
is (cf. (423)). In particular, extension of the logical form of a sentence does not
preserve semantic consequences the way extension of the syntactical form
preserves constituency.

(440) Non-preservation of semantic consequences
If ⟦S⟧ is the logical form of S, S entails P and ⟦S⟧ ⥽ ⟦P⟧, there are embeddings
S ⊔ E of S such that ⟦S ⊔ E⟧ ⥽ ⟦P⟧ is not valid.
If PS is {P|⟦S⟧ ⥽ ⟦P⟧} and QE is {Q|⟦E⟧ ⥽ ⟦Q⟧}, then RS⊔E ⊆ (PS ∪ QE)

Among these syntactically conservative embeddings that do not preserve
semantic consequences we place all those phrases which are called plugs in
the literature on presuppositions and their projections. A ready example is a
propositional frame introduced by an intensional verb, taking a proposition
as its complements. Embedding a proposition under an intensional verb may
not preserve its presuppositions, which would have been entailed otherwise.
Even more transparent is the operation of disjoining sentences: whatever is
entailed by S is not entailed by S or P unless it is also entailed by P. For this
reason – a conservative embedding of the whole does not preserve entail-
ments – the ordering imposed by the notion of entailment is the opposite of
the ordering imposed by constituency.

The conjunction of entailments of a sentence is not projected from its syntac-
tic structure. Nothing in the syntax gives rise to flat representations. What is
more, not every constituent, not even every constituent at a certain level of
derivation, gives rise to any particular entailment. An argument of a verb, for
example, does not induce any entailments of its own, although it is generally
the prototypical constituent. Quite the opposite is true. Entailments – test-
able entailments – are almost exclusively produced by combining the seman-
tic contributions of several constituents. In order to produce entailments, the
semantic contributions of constituents apply to each other. The agenda for
these applications is dictated by the constituent structure – the syntax – but
the outcome is not dictated by syntax. The result of applying two semantic
contributions to each other is solely defined by their internal structure, since
the application itself – mostly modeled by lambda conversion – is too gen-

314 GRAMMAR

eral to calibrate entailments. Since Montague (1972), we have been taking
the lambda terms themselves as introducing enough structure to guarantee a
structured outcome.

Therefore, we must assume that some non-conservative but very restrictive
process of applying semantic contributions is active in order to produce the
conjunction of entailments. This process is functional composition.

(441) If fi is the lambda term associated with constituent ci of S, i.e. fi = ⟦ci⟧, there is some
protocol according to which the composition ∏i=1..n fi or (... (f1 ∘ f2) ∘ ... ∘ fn) is
arranged such that the result of applying that protocol to the composition is the
logical form ⟦S⟧.

The protocol that is assumed accounts for both the syntactical structure and
the invariants of the underspecified semantic representation. Being sensitive
to syntactical structure as well as the underspecified semantic representa-
tion, the protocol embodies the compositionality of interpretation. Since
constituents and entailments do not match, the protocol accounting for the
relationship between the two is neither a syntactic nor a semantic computa-
tion, and it is not restrictive at all. Such a protocol was alluded to in chapter 2,
taking care of the transformation of Stored Logical Form into Applied Logical
Form and Flat Logical form. Note however that the conjunctive result of the
composition is not caused by the protocol, but to the internal structure of the
applied terms themselves. The result of the composition is a product, with all
kinds of terms restricting each other. The nature of this composition is best
understood by considering that an entailment cannot be traced back to a con-
stituent and that all entailments are simultaneously entailed by the whole.

4.4 THE DENIAL OF STRUCTURE

In the previous section, interpretation was defined as a procedure to extract
the necessarily underspecified semantic representation from the unified syn-
tactical structure, to identify the contributions per constituent and to apply
these contributions to each other. The result must be a conjunction of propo-
sitions – the entailments. This leads to the following overall characterization
of the ‘syntax-semantics interface.’ The interpretation of an additive constitu-
ent structure implies the multiplication of the interpretation of the constitu-

THE DENIAL OF STRUCTURE 315

ents, by the protocol referred to in (441); the latter ‘spells out’ a conjunction
of propositions, by pure

(442) Interpretation
⟦((...(A1 ⊔ A2) ⊔ ⊔ An) ⟧ ⇒ (...(⟦A1⟧ ⊓ ⟦A2⟧) ⊓ ⟦An⟧) ⇔ p1 & ... & pk

It shows that the interpretation inverts the additive algebraic structure of
syntactical form – the additive, conservative, highly structured unification of
complex signs – into the multiplicative logical form – an invasive, flat chaining
of small clauses, conjoining to fully-fledged entailments.
The directionality of the interpretation process does not mean that in gram-
mar the inverse process does not exist. In fact, we identified the process of
generating sentences from independent meanings as a form of ‘backpropaga-
tion’ of this kind; the operation is referred to by the sign《.》.

(443) Generation
《p1 & ... & pk 》 ⇒ 《(...(⟦A1⟧ ⊓ ⟦A2⟧) ⊓ ⟦An⟧) 》⇒

(...(《An》⊔《A2》) ... ⊔《A1》)

Given some simultaneous semantic constraints, generation retrieves some
composition of meanings compatible with these constraints and a unifica-
tion of the associated complex symbols. This picture is misleading, however,
in that functional composition is not procedurally ‘in-between’ the conjunc-
tion of entailments and unificational structure. Rather, the composition arises
from unification, and is supposed to convert to the original conjunction. Gen-
eration is about finding out whether there is some composition to provide the
original, structure-independent conjunction.

(442) and (443) define the grammatical cycle from form to meaning and back
as the consecutive application of the operations ⟦. ⟧ and 《.》. The first opera-
tion assigns meanings to forms; the second assigns forms to meanings. Their
composition is antimorphic: it maps addition onto multiplication and vice
versa. That is what negation does in the calculus of propositions, according to
the De Morgan laws, or what complementation does on sets.

(444) ¬(p ∨ q) ↔ ¬p & ¬q
 −(A ∪ B) = −A ∩ −B

Negation and complementation are both antimultiplicative and antiadditive.
Neither syntax nor semantics, however, are complete Boolean algebras, host-
ing both upward and downward operations and complementation. At best,

316 GRAMMAR

syntax and semantics are monoids, generated by one operation. Syntax is
defined by a conservative, addition-type operation (say: concatenation-by-
unification), for which complementation is not defined. Semantics is defined
by an invasive, multiplication-type operation – function composition – for
which complementation and identity are defined. Interpretation is some
mapping from one additive monoid onto another multiplicative monoid.
Thus, interpretation, like negation and complementation, is antiadditive.
That is why we can say that semantics accounting for inference denies uni-
fication structure, while observing compositionality. In the same vein, gen-
eration is antimultiplicative, by letting structure negate meaning. Because
generation is even less understood than interpretation, for the rest of this
chapter we will stick with interpretation.

Let us refer to (442) as the antiadditivity of full interpretation. The antimorph
nature of full interpretation has consequences for various approaches to
natural-language grammar and natural-language processing. The main con-
sequence is this. The concepts with which we structure syntax are quintes-
sentially different from the concepts that buy us semantic inference. There is
no monotony when going from unification to entailments, or the other way
round: from meanings to sentences. This affects shallow processing, for exam-
ple. Shallow processing with ambitions beyond tagging phrases lives on the
idea that somehow aspects of meaning arise from counting and recounting
and modeling co-occurrences. The means by which we can make educated
guesses on the form of sentences up to the identification of referential objects,
however, cannot be monotonously extended to cover entailments. They serve
different algebras. The antimorphism of full interpretation also affects those
grammatical theories that appeal to deep syntactical operations for meaning
to come about, like the ‘classical’ theory of logical form in generative grammar.

4.5 THE MISMATCH OF STRUCTURE AND MEANING

The idea that the meaning of a sentence is determined by its construction is
generally attributed to Frege, but wrongly so, according to Janssen (1983). Yet,
as a mathematician, Frege must have been well aware that the reference of a
complex phrase somehow lives on the way in which its parts contribute to that
reference, and that this contribution is delivered by syntax. For it makes little
sense to assume that the referential potential of a sentence is not somehow

THE MISMATCH OF STRUCTURE AND MEANING 317

dependent on its construction. This does not imply, however, that the building
blocks of syntactical construal match with the jewels of semantics. As a matter
of fact, it is not difficult to show that in many constructions entailments and
constituents diverge seriously. A main source of incongruence is type incon-
gruence: entailments are propositions, but most constituents do not project
propositional meanings. Take, for example, DPs. Most DPs have meanings that
are only remotely related to propositions. Nominalizations, however, may
introduce propositions, which can even be entailed. Below, three examples of
embedded nominalizations in the relatively independent subject position are
given, with an infinite scheme for a proposition projected by it.

(445) The destruction of the city by the enemy is solicited by our own army.
(446) The king welcomed the destruction of the city by the enemy as a blessing.
(447) The destruction of the city by the enemy was finally avoided by a simple trick.
(448) The enemy destruct-X the city.

For two reasons, a possible entailment based on the nominalization is not
independent. Firstly, all virtual entailments based on the nominalized sub-
ject need tense, which can only be derived from scrutinizing the tense and
the aspect of the matrix. And, secondly, if tense and aspect can be borrowed
for some enemy-destroying-city-type of proposition, the veridicality profile
of the matrix completely determines whether this proposition – or even its
denial – is factually entailed. Therefore, not even a propositionally inclined DP
projects ‘its’ entailments autonomously.

In this section, we will consider three constructions in which the mismatch of
constituents and entailments is evident, although sentences and propositions
seem to be available. In exception phrases, entailments pop up which almost
look opaque if one focuses on the lexical material. In comparatives, entail-
ments are suppressed that seem almost inevitable. In ellipsis, entailments are
evident without constituency available to carry that load. It is not accidental
that these sample constructions are all related to coordination. Recall that
entailments are somehow – covered – coordinates of logical form. When the
syntactical configuration gives rise to its own explicit coordination, the clash
between form and meaning can hardly be overlooked. In Cremers (1993a), it
was argued that the procedures for reconstructing free explicit coordination
are in fact meta-grammatical (see also section 1.7.4).

318 GRAMMAR

4.5.1 The mismatch in exception phrases

In exception phrases, the referent of a constituent that is licensed by an excep-
tion-like coordinator is somehow set apart with respect to a predication. They
come in two modes. Either the constituent is excluded from predication over
a class, or the constituent is included in the predication. Here are Dutch exam-
ples of the first (exclusive) and the second (inclusive) mode, respectively.

(449) Op een historische roman na heb ik Marie haar boeken allemaal gelezen
 ‘except for a historical novel have I Marie her books all read’
 I read all Mary’s books with the exception of a historical novel.
(450) Henk heeft behalve met Dylan (ook) veel opgetreden met The Boss
 ‘Henk has except with Dylan (also) much performed with The Boss’
 Apart from Dylan, Henk (also) performed a lot with The Boss

Exception phrases have some intriguing syntactical-semantic details. The set
of items that can introduce the excepted constituent is limited. Often, they
look like prepositions, but semantically, they behave like coordinators. In
particular, they are sensitive to the polarity of one constituent in the main
clause, which acts as a counterpart to the constituent that is excepted. If
this constituent is upward entailing with respect to its internal domain, the
exception phrase is interpreted inclusively. Otherwise – for example when the
counterpart is a universally quantified phrase – the exception phrase is inter-
preted exclusively. In both modes, the exception phrases can occur in almost
all positions in which adverbial adjuncts can occur, without change of mean-
ing, though with possible consequences for information structure. Moreover,
the complement to the excepting operator can be an elliptical phrase, which
complicates the analysis considerably. Both the positional freedom and the
elliptical option are demonstrated below.

(451) Ik heb geen filosoof alcohol durven schenken, behalve Arie wijn.
 ‘I have no philosopher alcohol dare present, except Arie wine’
 I did not dare to present alcohol to any philosopher, except for wine to Arie
(452) Ik heb behalve Arie wijn geen filosoof alcohol durven schenken.
(453) Behalve Arie wijn heb ik geen filosoof alcohol durven schenken.
(454) Ik heb, behalve Arie wijn, geen filosoof alcohol durven schenken.

To appreciate the mismatch between constituency and entailments, we focus
on a simple exception sentence in an exclusive mode, assuming some bracket-
ing which indicates syntactic form while abstracting from the labelling. The
structured alternatives are listed in (455) - (456), with the except phrase
occurring post-verbally, pre-verbally and adnominally, respectively.

THE MISMATCH OF STRUCTURE AND MEANING 319

(455) Alle filosofen waren dronken behalve Socrates.
 All philosophers were drunk except for Socrates.
(456) [[[Alle filosofen] [waren dronken]] [behalve Socrates]]
(457) [[Behalve Socrates] [waren [alle filosofen] [dronken]]]
(458) [[[Alle filosofen] [behalve Socrates]] [waren dronken]]

Each of the syntactical alternatives has three prominent entailments, pre-
sented here in Dutch.

(459) [[Niet alle filosofen] [waren dronken]]
 Not all philosophers were drunk
(460) [Socrates [was [een filosoof]]
 Socrates was a philospher
(461) [Socrates [was [niet] dronken]]
 Socrates was not drunk

In former days, one could have maintained that for the simple reason that
three differently structured sentences share their semantics, the three sen-
tences must have a common syntactical ground. In modern syntax, this reduc-
tion would involve some operations like extraction-from-DP or insertion-into-
DP, which hardly have an independent motivation and require a serious
complication of the combinatorial equipment, beyond control. In any case,
the common derivation would be inspired by semantic similarities, not by
syntactic processes – there are no other structures in which a proper part of a
DP (as in (458)) ends up or begins as a leftmost specifier (as in (457)), with-
out semantic consequences.
Since it is unlikely, therefore, that in serious syntax the three options are in
each other’s derivations, we had better look at the projection of the syntax on
the entailments. Note, firstly, that none of the entailments is entailed by the
matrix sentence (without the exception phrase) clause alone. The constituent
Alle filosofen waren dronken, though a proposition as such, does not give rise
to any independent entailment. This already shows that being a constituent,
or even being a constituent of the right type at top level, is not a sufficient
condition for providing entailments.
Constituency is not even a necessary condition for a phrase to provide, or to
contribute to, an entailment. Scrutinizing the major parts of the entailments,
it is evident that none of the following phrases quintessentially occurring in
the entailments can be derived syntactically from proper constituents of the
original, for example by reversed unification or decomposition. The following
constituents of the entailments are syntactically untraceable.

320 GRAMMAR

(462) Niet alle filosofen not all philosophers
was niet dronken was not drunk
was een filosoof was a philosopher
niet not

Remarkably, none of the immediate entailments can be constructed as an
amalgam of proper constituents of one of the entailing sentences. As a conse-
quence, we can safely state that there is no transparent relation between con-
stituents of an exception sentence and its prominent, non-trivial entailments.

4.5.2 The mismatch in comparatives

Comparatives are common constructions among the languages of the world.
Though the syntactical variety is huge and subtle at the same time, the char-
acteristic overall pattern can be captured by a configuration in which some-
thing is predicated over something with a certain degree that is implicitly
compared to the degree to which the predicate applies to something else.
It is a common feature of comparatives that there is only one explicit grade
phrase in the sentence which is in a construction with some comparison
particle. The second grade phrase is predominantly absent – a phenomenon
known as subdeletion. The interpretation of these constructions, however,
involves three propositions: the original graded predication, the secondary
graded predication and the proposition containing the comparison (Von
Stechow 1984). Below you will find the syntactical and semantic schemes of
a simple Dutch example:

(463) [[... grade1...predication1] [comparison phrase ... predication2]]
 [[Jan wandelt sneller] [dan Kees fietst]]
 Jan walks faster than Kees bikes
(464) ⟦grade1 predication⟧ and ⟦grade2 predication⟧ and ⟦comparsion of grades⟧ ≈

⟦John walks at a certain level of speed⟧ and
⟦Kees bikes at a certain level of speed⟧ and
⟦the level of speed at which John walks is higher than the level of speed at which
Kees bikes⟧

The most intriguing aspect of comparatives is that neither of the two sen-
tences – elliptic or full – involved is entailed as it stands. The first sentence
contains an expression of grade – in the example above, a morpheme – that
is not part of the proposition induced as an entailment by that first sentence.
The sentence does not entail that Jan walks fast. The second sentence does
not contain a grade expression but it is not entailed either. The third proposi-

THE MISMATCH OF STRUCTURE AND MEANING 321

tion is a derivative of the relation that the comparison phrase imposes on the
degrees to its left and its right – present or not – but is as such not projected
by any major constituent of the original sentence. The fact that three differ-
ent propositions are entailed by the construction and that these entailments
are partly induced by sentential-looking proper parts of the constructions
underlines the analysis of comparatives as coordination, rather than subor-
dination, by Hendriks (1995) and others.
For some comparative constructions, it is even difficult to maintain that they
have an underlying clausal structure.

(465) You are better than no one (and no one is better than you)
(from Bob Dylan’s To Ramona)

This line is meaningful – expressing that everybody is at least as good you
are – but no clausal extension is.

(466) # You are better than no one is / has ever been / could ever be

The meaningful occurrence of the negative quantifier complies with Hoekse-
ma’s (1983) observation that non-clausal comparatives do not license negative
polarity items, where clausal comparatives do. Notwithstanding its non-clausal
syntax, its interpretation still involves a conjunction of comparison clauses.

(467) ⟦You are better than no one⟧ = ⟦you are good to some degree⟧ and ⟦everybody is
good to at least that degree⟧

Clearly, the second clause cannot be derived by syntax from the than phrase.

What we observe here is that there is some evident underlying sentential
structure in the construction, but that these sentences quintessentially deviate
from entailments in syntactically almost inaccessible but semantically promi-
nent ways. The deviation is even more prominent in simple adjectival predica-
tion. Sentence (468) entails neither that Jan is smart nor that Marie is rich.

(468) [[Jan is slimmer] dan [Marie rijk is]]
‘Jan is smarter than Marie rich is’
Jan is smarter than Marie is rich

The incongruence between sentential structure and entailments – proposi-
tional by nature – is not an accidental feature of comparatives in Germanic
languages. It is widespread, and it is even a defining property of the construc-

322 GRAMMAR

tion in the languages of the world. Here too, syntax almost misleads seman-
tics, and semantics contains few clues as to syntactical structure.

4.5.3 The mismatch in ellipsis

Gapping is the prototypical source of incomplete sentences, interpretable
only in heavily conditioned, language-dependent verbal contexts. The verbal
context is typically provided by coordination-like ordering. If these condi-
tions are met, the interpretation is perfect. Here are some typical examples of
gapped structures, indicated by italic type.

(469) Ik weet dat de jongens geen boeken willen en de meisjes geen films
‘I know that the boys no books want and the girls no movies’
I know that the boys don’t want books and the girls don’t want movies

(470) Komt Henk vandaag met de trein? Nee, morgen en met de fiets
‘Comes Henk today with the train? No, tomorrow and with the bike’
Does Henk come by train today? No, tomorrow, and by bike

(471) Niemand heeft voor Aruba gekozen, en bijna iedereen voor Bonaire
‘Nobody has for Aruba chosen, and almost everyone for Bonaire’

 Nobody choose Aruba, and nearly everyone Bonaire

In the study of grammar, numerous analyses have been proposed to ensure
that the non-sentential proposition could be reconstructed. In Neijt (1980),
gapping was even hailed as a specimen of core syntax. Thereafter, ellipsis was
completely ignored by grammarians, or treatments were proposed with ad
hoc mechanisms, culminating in a dedicated licensing construction in Mer-
chant (2001). The interpretative approach of Dalrymple, Pereira and Shieber
(1991) goes beyond syntax in order to stress interpretability. The problem
with syntactical reconstruction is that the missing parts of the ellipsis are not
available as a constituent – this was the basic observation that made Neijt
(1980) move from reconstructing elided material to defining the relationship
between remnants. The real problem is that normal syntax cannot provide
constituency because anything can be a remnant, in particular parts that are
not or even cannot be a target for reconstruction rules, like non-finite verbs.

(472) Kees is naar Amsterdam gefietst, en Jan gelopen.
‘Kees is to Amsterdam biked-PART and Jan walked-PART.
Kees biked to Amsterdam and Jan walked.

In sentences like these, any effort to produce a structure that can provide the
interpretation for the second sentence by general syntax is in vain. Such an

THE MISMATCH OF STRUCTURE AND MEANING 323

effort is bound to call upon dirty operations on non-constituents, as there are
not enough moves available to save the day. Yet, language users do not have
serious problems in interpreting ellipsis. And because explicit and implicit
conjunction is a very generous source of ellipsis, language users do not have
problems computing entailment. Every speaker of Dutch will recognize that
(472) entails both propositions in

(473) Kees is naar Amsterdam gefietst.
(474) Jan is naar Amsterdam gelopen.

The second entailment clearly stems from the elliptical phrase. It is equally
clear, however, that the entailed proposition is not provided by unificational
syntax.

4.5.4 A conjecture on the interface

An open-minded look at the four types of examples of the separation of con-
stituency and entailment and numerous other mismatches leads to the idea
that this separation is neither incidental nor accidental. We might conjecture
that, except for some full sentences, constituents do not project any entail-
ment, and that entailments cannot be traced back to a non-sentential con-
stituent. This conjecture is made explicit below.

(475) Dissociation conjecture
If A is a proper constituent of S and S entails P then ⟦A⟧ does not entail P and P is
not equivalent to ⟦A⟧.

With a proper constituent we mean every constituent that is not a full sen-
tence, implicitly or explicitly coordinated with other full sentences. The con-
jecture excludes any naive mapping of structure on meaning, of syntax on
semantics and of unification on composition. It says that ultimately decent
grammar does not enjoy compositionality.
According to (475), meaning does not come for free with quantifier move-
ment and the like. Syntactical operations may get us somewhere, but not to
the semantic finish. For deep interpretation, grammar has to get rid of struc-
ture. According to (475), the syntax-semantics interface calls for methods
beyond merge, unification, feature checking, and the like. These methods may
be type-0 in the Chomsky hierarchy, and not subject to elegant principles of
locality, economy, type-shifting, binding or whatever. They may appeal to that
part of cognition that is beyond strong artificial intelligence, to pick up on

324 GRAMMAR

Roger Penrose’s (1989) lead: they may be computable, but this computation
does not necessarily reflect established principles of grammar. In that sense,
(475) conjectures that syntax and semantics are not functionally related
but, rather, they are complementary branches of linguistic analysis. To get to
meaning, you have to go beyond unification. To compute entailments, forget
about constituency.

4.6 THE LEXICON AS AN ORACLE: THE CASE OF BEHALVE

In the preceding sections, and even in all the preceding chapters, it was argued
that syntax and semantics, unification and composition cannot carry the full
load of deriving linguistic truisms. Again, we will invoke the lexicon to pro-
vide the bits and pieces of the final theorems – those truisms that explicitly
connect texts by dubbing one text an entailment of the other. In addition, we
need algorithms which live neither on unspecific unification nor on nervous,
typed composition to assemble the bits and pieces offered by the lexicon as
input into the final act of constructing meaning as the simultaneous presence
of relevant entailments.
The idea that the lexicon stores specific linguistic knowledge is quite com-
mon among computational and other linguists. This view can even be called
traditional: the lexicon/constructicon contains all information that cannot be
derived by other means or is unpredictable. The idea that the lexicon feeds
detailed semantic structure into the derivation can be traced back to Mon-
tague (1972), the protagonist of event semantics for verbs, and – for broad-
minded lovers of history – to Russell’s theory of definite descriptions. The
essence of storing rich, very rich semantic structure in the lexicon is that it
does not interfere with type-logical complexity – the semantic contribution of
a phrase is type-driven but not type-structured. A verb, for example, can come
with extensive aspectual and pre-suppositional structure, but it may also
introduce a simple property. An achievement will bring with it more semantic
material than a simple event verb (see, e.g. Arsenijevic 2006). Below you will
find the semantic representation that Arsenijevic (2006) claims for sentences
with perfective telic verbs, like John has pushed the cart to the shop. It involves
at least three states, connected by relations between propositions.

THE LEXICON AS AN ORACLE: THE CASE OF BEHALVE 325

(476)
State0.1

John

State0.2

the car

add_to0,
at

the shop

add_to+/–
 push

State+/–.2

the car

sum

VP

QP

the car

State0

the shopadd_to0,
 at

quantifier/Ø

add_to0
intersect

Let us now focus on a few of those elements that, like no other, influence the inferential
structure of a sentence: the functional heads. Montague (1972) awoke linguistics by as-
signing (477) to the simple determiner the.

(477) λ℘<ssett> λℜ<ssett>∀x<se> [℘{x} ⇒ ℜ{x}].

The determiner was stored as a function of type <<ssett, ssett>, t>, that is, a
relationship between properties-in-intension, introducing a partial ordering
– as an implication or subsumption of sets – in the semantic structure of any
sentence which it was part of.
In the same vein, we might ask what a functional head like behalve ’except’
must look like in order to ensure the entailment pattern for exclusive read-
ings that was established in section 4.5.1. It is repeated here.

(478) Behalve Socrates waren alle filosofen dronken
 Except for Socrates, all philosophers were drunk

 entails
Socrates was een filosoof Socrates was a philosopher
 and
Niet alle filosofen waren dronken Not all philosophers were drunk
 and
Socrates was niet dronken Socrates was not drunk

326 GRAMMAR

All of these entailments are induced by the exception phrase or, better, by its
head behalve. None of the entailments, however, can be traced back to any sin-
gle constituent. Therefore, we must rely on behalve‘s lexical specification for
providing the entailment pattern: if the constituent structure cannot identify
entailments, the functions-to-be-composed must do so. The phrasal semantics
is the only input to the identification of entailments when syntax and unifica-
tion cannot deliver. The three entailments of exclusive behalve are tantamount
to conjuncts at the high-level logical form of a sentence governed by behalve.
In order to specify the entailment pattern as a part of the lexical semantics, we
have to determine some essential anchors in the sentential structure. First,
it must be noted that the complement of behalve needs some co-typed coun-
terpart in the matrix. This counterpart must be downward entailing with
respect to its internal domain for behalve to get an exclusive reading. Moreo-
ver, the internal domain itself is needed for its contribution to a predicative
statement about the complement of the exception phrase. Also, the negation
of the main clause’s quantificational structure must be constructable, and
this again may depend on the semantics of the counterpart phrase. Secondly,
temporal and aspectual characteristics of the main clause must be isolated
and targeted in order to get the aspects of the entailments right. Thirdly, the
semantics of behalve must guarantee the simultaneous validity of at least
the three entailments; they are in conjunction with each other. Summariz-
ing, the semantics of exclusive behalve in the constructicon for Dutch must
informally be as follows.

(479) Behalve denotes that function f from a proposition P and an object B to
propositions such that
if P is equivalent to R(S), R is of type of B and equivalent to Q(N) with Q
downward entailing in N,
then f(P, B) is the conjunction of

 (i) the denial of P
 (ii) the denial of the application of B to S
 (iii) the assertion that B is N according to the tense of P

The definition assumes that in the main sentence the semantics of the coun-
terpart to behalve’s complement is detectable. Its detection, however, will
require some non-unificational algorithm, although the detection must be
syntactically valid: the counterpart is supposed to be a proper constituent of
the main clause to which the behalve phrase has been attached. The detec-
tion, therefore, requires some post-derivational inspection of the structure.
Seen in this way, part of the semantics of behalve is a dedicated algorithm to
determine the target constituent. In the formulation above, this algorithm

THE INCOMPLETENESS OF GRAMMAR 327

– too dirty to spell out here – is absorbed in the if-clause. It is as double-
layered as Pythian talk.
More formally, the semantics of exclusive behalve can be stated this way:

(480) fbehalve-exc(Qβα(Nβ)(S)ατ, Bα) = B(N) & not(Q(N)(S)) & not(B(S))

When fully applied, the composition of this function with relevant meanings
in its environment yields a conjunction of logical forms. One may hope that a
generator can turn these logical forms into decent Dutch, or decent Swahili,
for that matter. If so, the constructicon helps to overcome the predictable and
built-in limits of good grammar.

4.7 THE INCOMPLETENESS OF GRAMMAR

Gödel’s Incompleteness Theorem is both a fairy tale and rocket science. It
repositions human intellectual analysis and understanding. It says that we
are able to understand some very complex processes, without being able
to fully compile them, to abstract from them completely. In his criticism of
claims amounting to the perspective of creating extra-human supra-intelli-
gence, Penrose (1989) over and over refers to Gödel’s magnificent result, and
with good reason: a system cannot prove its consistency, even if we know that
it is consistent. And what is best: Gödel proved this to be the case – at least he
convinced human intellect.

This chapter is not about turning grammar into mathematics. There is always
that quotation from Daniel Kehlmann’s Die Vermessung der Welt “Measur-
ing the World” according to which Gauss tells Wilhelm von Humboldt, who
claims to be a researcher too, that linguists long for mathematics but are not
smart enough and deal with home-cooked poor logic. Still, grammar running
on computers is a formal system of the type that is subject to Gödel’s Incom-
pleteness Theorem. It is, however, dealing with more complicated, multi-
layered and more intensional objects than numbers. It is crucial to Gödel’s
Incompleteness that the class of theorems beyond proof of rejection is well-
defined, and intrinsically restricted. Gödel actually proved that in arithmetic
a two-place predicate X is a proof of Y introduces inconsistency. He proved
that for a system to be consistent certain theorems are bound to be beyond
computation. He proved that the set of arithmetically provable sentences

328 GRAMMAR

is a proper subset of the set of arithmetic truisms, and that the difference
between these is well-defined.

For computational grammar, that is, for grammar that operates by computa-
tion unsupervised, certain theorems conflict with the internal mechanisms
of grammar. Certain theorems are incompatible with doing syntax syntacti-
cally and semantics semantically. Our suggestion is that these theorems are
exactly those that connect the yield of syntax to the yield of semantics. Let
us write [S] for the syntactical analysis or the constituent structure of a sen-
tence S, according to everything that syntax buys us. Let us assume that we
have a decent calculus of entailments – we do not have such a calculus yet,
but there is no reason why we could not find one – and let us simply call the
relevant relation entails. Then we can state the incompleteness of grammar
as the incompatibility of a statement about entailment between structured
sentences with both unification and composition.

(481) Incompleteness of grammar
For [S] and [P] being consistent analyses of S and P respectively, and if S entails P
means that their logical forms are related by ⟦S⟧ ⥽ ⟦P⟧,
the proposition [S] entails [P] can neither be proven nor disproven by unification
or composition.

The idea is that syntactical means – based on unification – are insufficient and
inadequate to identify [P] as an entailment, and that semantic means – based
on composition – are insufficient and inadequate to reconstruct [S] as an
entailer of [P]. From a processing point of view, syntax is not strong enough
to bring us to entailments, and composition is too invasive to bring us back
to form. Together, they do not suffice to span the grammatical cycle mechani-
cally. Since a homomorphism between unification and composition cannot be
constructed, an attempt to prove theorems of the form [S] entails [P] is bound
to fail. This failure identifies the class of theorems as filling the gap between
grammatical statements that can be deduced and linguistic truisms that can-
not. S may entail P, but [S] entails [P] cannot be proven by grammatical means.
It is essential to acknowledge that incompleteness (481) is not a defect of
grammar, but rather an asset. It qualifies the art of interpreting natural lan-
guage in one of those domains that can be formalized without expanding
to a totalitarian, holistic philosophy of everything. Though language is eve-
rything, not everything is language, Van Benthem claimed, and he is right.
Even the grammar of natural language cannot justify itself. It is not the last
word on how it is. The grammarian and her constructicon will always be
needed for the final touch.

THE FRUIT OF INCOMPLETENESS 329

4.8 THE FRUIT OF INCOMPLETENESS

Several strategies are known for repairing the non-monotony of syntax and
semantics and, thus, for avoiding incompleteness. Here are four ways to free
your favourite grammar from incompleteness.

(482) (1) stick with underspecified semantics
(2) abstract from logical form

 (3) abstract from constituent structure
 (4) abstract from grammar

The first strategy is practised in HPSG and Head-Driven Construction Gram-
mar (Boas and Sag 2012) and part of a well-defined computational model.
The second strategy is shared by Generative Grammarians and Construction
Grammarians; it is not confessed, but just practiced. Montagovianists and
Lambek-style Categorial Grammar coined the third strategy structural com-
pleteness. The fourth strategy is common in Bayesian processing, as a sur-
vival strategy for robust parsing.

One way of implementing the third strategy is enriching syntactical deriva-
tion, up to mimicking lambda conversion in the syntax. This was practiced by
Montague (1972), and – on a more principled basis – by many categorial gram-
marians after him (Moortgat 1988, Carpenter 1997, Morrill 1994 and 2011,
Hendriks 1993). Under this strategy, syntactical derivation is made respon-
sible for scoping effects and other forms of semantic dependency. It leads to
the blurring of syntactical structure and derivation, based on the structural
completeness of certain categorial calculi: if a sentence can be proven to be
interpretable, it is so under any bracketing or grouping of constituents. By
structural completeness, many derivational options are created that have no
effect at all on constituency or linear order. The result is spurious ambiguity,
which has to be fought afterwards (Dowty 1988). Yet, the distribution of cases
and roles in Every man loves some women is not affected by which women
are loved by which man in a model for that sentence. The strategy to flexibi-
lize the derivation makes syntactical structure obsolete. It relinquishes the
beautiful and intriguing linguistic generalization that syntactical structure is
essentially independent of denotation – the autonomy of syntax, a major fact
about natural language as a cognitive system. P and notP do not differ as fun-
damentally in syntax as they do in semantics.

330 GRAMMAR

The other real strategy to deal with the antimorphic tension between struc-
ture and interpretation is to be satisfied with underspecified semantics: that
level of semantic specificity that can be reached by pure unification. This is
the dominant attitude among deep processing computationalists (Copestake
et al. 2005, Bunt 2008, Egg 2010), and maybe among logical-form theore-
ticians. It refrains from invading the syntax, and it keeps the grammar as a
clean and computable as possible. Like Egg (2010), Boas and Sag (2012:95)
even sees advantages to it:

“Scope underspecification is the heart and soul of M(inimal) R(ecursion)
S(emantics), which was originally developed for computational purposes.
Scope resolution ... is a difficult and currently unsolved research problem.
Hence, having semantic representations that do not require full scope reso-
lution is a significant advantage in much computational work, e.g. machine
translation. However, ..., it may be useful in psycholinguistics, as well.”

Underspecified semantics avoids incompleteness, but does not identify lin-
guistic meaning as an independent object in its own right, living in a realm
in which syntax is no longer needed. It adheres to a representation that is
meaningful only in relation to a syntax-semantics interface. Underspecified
semantics does not present a logic, with computable operations on meaning.
Underspecification implies raising the question whether meaning exists.

In generative grammar and construction grammar, the nature of logical
form is not a big thing. Croft (2001:212), for example, presents the semantic
scheme for a Tzotzil sentence as a graphic map of the annotated sentence
on some predication-like sequence, without accounting for the details of the
mapping. Construction grammarians tend to represent aspects of meaning
in graphics, giving little attention to compositional or formal matters. With
the possible exceptions of highly theoretical approaches like those of Kracht
(2004) and Stabler (1992), generative grammarians only rarely pay tribute to
the precise derivation of generalized logical form. It is unlikely, however, that
generative grammarians would consider logical form trivial. Broekhuis and
Dekkers (2000) suggest that in a grammar model with split derivation for
phonological and logical form, the former but not the latter may be subject to
optimalization, thereby maintaining the ‘classic’ set of parameters and prin-
ciples for logical form. In neither grammatical tradition are the semantic rep-
resentations chosen (pictures, graphs, formulas) explicitly linked to constitu-
ent structure. Logical form is mostly anecdotic, derived stepwise. Of course,
incompleteness is avoided this way, but logical form as a product of grammar

THE FRUIT OF INCOMPLETENESS 331

is not achieved. Again, independent identification of a semantic object is not
sought after. Quite the contrary, grammarians of generative and construc-
tional persuasions give the impression that they do not consider linguistic
meaning as an independent object.

In Bayesian approaches to natural language processing, it is becoming more
and more accepted to claim that grammar as such can be circumvented (e.g.
Frank, Bod and Christiansen 2012). In this realm, grammar is at best a neces-
sary evil, and particular grammatical specifications as such are hardly a topic
of debate. The journals of computational linguistics are mostly about process-
ing on the basis of some given annotation, and not about which grammatical
annotation best serves computational goals. As a consequence, the internal
organization of the grammar is seen as external to processing. Incomplete-
ness in the sense of (481) stays out of sight.

It pays to see the struggle for computing towards and from meaning as the
price for incompleteness. Paying this price frees syntax from semantic over-
load, and frees semantics from contingent syntactical bookkeeping. It pre-
vents us from computing distinct syntactical derivations to accommodate
purely semantic diversity. It makes semantics transparent, as it does not have
to reflect syntactical accidents. Syntax brings meaning to a certain point –
Stored Logical Form, as we called it in chapter 2. After that point, syntax is
only exploited by meta-algorithms to compute fully specified meaning, but
syntax is no longer in charge. In this sense, the overall computational proper-
ties of grammar are beyond the properties of syntax. The meaning of a sen-
tence is Cognition with a capital. The fact that human beings are able to act
as if sentences are meaningful marks an astonishing convergence of biologi-
cal and social evolution. Yet, the fact that we dynamically assign meanings
to sequences of symbols does not mean that this competence is modeled by
computable mappings (Lasersohn 2009). We had better acknowledge that
one single formal system couldn’t operate on all levels of explanation of our
linguistic minds. This is an instance of the paradox that Gödel discovered:
systems of knowledge are formal and consistent only if they are not holistic
and totalitarian. If artificial intelligence is bound to stay within the limits of
mathematics, grammar certainly is too. Grammar, even computational gram-
mar, can compute a lot, but not everything that is true of grammatical objects.
The study of language is not witchcraft but normal business, after all.

332 GRAMMAR

REFERENCES

Ades, A. and M. Steedman. On the Order of words. Linguistics and Philosophy
4. 1982. pp 517-558

Aho, A.V. Indexed grammars: An extension of the context-free grammars. Jour-
nal of the ACM 15. 1968. pp 641-671

Ajdukiewicz, K. Die syntaktische Konnexität. Studia Philosophica 1. 1935. pp
1-27

Alshawi, H. (ed.) The Core Language Engine. The MIT Press. 1992
Alshawi, H., D. Carter, M. Rayner, and B. Gambäck. Translation by Quasi Logical

Form Transfer, Proceedings of the 29th Annual Meeting of the Association for
Computational Linguistics. ACL. 1991. pp 161–168

Ambler, S.W. Mapping objects to relational databases, IBM DeveloperWorks
Magazine. 2000

Aronoff, M. In the beginning was the word. Language 83:4. 2008. pp 803-830
Arsenijević, B. Inner aspect and telecity. LOT. 2006
Asher, N. Reference to Abstract objects in Discourse. Kluwer. 1993
Atkinson, M., F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik

(1989). The Object-Oriented Database System Manifesto, Proceedings of
the First International Conference on Deductive and Object-Oriented Data-
bases. Kyoto. Elsevier Science Publishers. 1990. pp 223-240

Bach, E. Problominalization, Linguistic Inquiry 1. 1970. p 121
Bach, E. The algebra of events. Linguistics and Philosophy 9. 1986. pp 5-16
Baldridge, J. and G.-J.M. Kruijff. Multi-Modal Combinatory Categorial Gram-

mar. Proceedings of 10th Annual Meeting of the European Association for
Computational Linguistics. Budapest. 2003. pp 211-218

Bar-Hillel, Y. A Quasi-Arithmetical Notation for Syntactic Description. Lan-
guage 29. 1953. pp 47-58

Bar-Hillel, Y., C. Gaifman, and E. Shamir. On Categorial and Phrase Structure
Grammars. Bulletin of the Research Council of Israel, 9F. 1960. pp 1-16

THE FRUIT OF INCOMPLETENESS 333

REFERENCES

Ades, A. and M. Steedman. On the Order of words. Linguistics and Philosophy
4. 1982. pp 517-558

Aho, A.V. Indexed grammars: An extension of the context-free grammars. Jour-
nal of the ACM 15. 1968. pp 641-671

Ajdukiewicz, K. Die syntaktische Konnexität. Studia Philosophica 1. 1935. pp
1-27

Alshawi, H. (ed.) The Core Language Engine. The MIT Press. 1992
Alshawi, H., D. Carter, M. Rayner, and B. Gambäck. Translation by Quasi Logical

Form Transfer, Proceedings of the 29th Annual Meeting of the Association for
Computational Linguistics. ACL. 1991. pp 161–168

Ambler, S.W. Mapping objects to relational databases, IBM DeveloperWorks
Magazine. 2000

Aronoff, M. In the beginning was the word. Language 83:4. 2008. pp 803-830
Arsenijević, B. Inner aspect and telecity. LOT. 2006
Asher, N. Reference to Abstract objects in Discourse. Kluwer. 1993
Atkinson, M., F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik

(1989). The Object-Oriented Database System Manifesto, Proceedings of
the First International Conference on Deductive and Object-Oriented Data-
bases. Kyoto. Elsevier Science Publishers. 1990. pp 223-240

Bach, E. Problominalization, Linguistic Inquiry 1. 1970. p 121
Bach, E. The algebra of events. Linguistics and Philosophy 9. 1986. pp 5-16
Baldridge, J. and G.-J.M. Kruijff. Multi-Modal Combinatory Categorial Gram-

mar. Proceedings of 10th Annual Meeting of the European Association for
Computational Linguistics. Budapest. 2003. pp 211-218

Bar-Hillel, Y. A Quasi-Arithmetical Notation for Syntactic Description. Lan-
guage 29. 1953. pp 47-58

Bar-Hillel, Y., C. Gaifman, and E. Shamir. On Categorial and Phrase Structure
Grammars. Bulletin of the Research Council of Israel, 9F. 1960. pp 1-16

334 REFERENCES

Barwise, J. and R. Cooper. Generalized Quantifiers and Natural Language. Lin-
guistics and Philosophy 4:1. 1981. pp 159-219

Bennis, H. Gaps and Dummies. Foris. 1986
Berners-Lee, T.B., J. Hendler and O. Lasilla. The Semantic Web. Scientific Amer-

ican. 2001
Bloom, P. How children learn the meaning of words. CUP. 2002
Boas, H. C. and I.A. Sag. Sign Based Construction grammar. CSLI. 2012
Bobrow, D., C. Condoravdi, R. Crouch, V. de Paiva, L. Karttunen, T. H. King, R. Nairn,

L. Price, and A. Zaenen. Precision focused Textual inference. Proceedings of the
workshop on textual entailment and Paraphrasing. ACL. 2007. pp 16-21

Bos, J. DORIS 2001: Underspecification, Resolution and Inference for Dis-
course Representation Structures. In: Blackburn, P. and M. Kohlhase (eds).
ICoS-3. Inference in Computational Semantics. Buxton. 2001. pp 117– 124

Bos, J. Underspecification and resolution in Discourse Semantics. Universität
des Saarlandes. 2002

Bos, J. Computational Semantics in Discourse: Underspecification, Resolution,
and Inference. Journal of Logic, Language and Information 13:2. 2004. pp
139–157

Bos, J. and K. Merkert. When logical inference helps determining textual
entailment (and when it doesn’t). Proceedings 2nd Pascal RTE Challenge
Workshop. 2006

Bouma, G. Nonmonotonicity and Categorial Unification Grammar. Rijksuniver-
siteit Groningen. 1993

Bouma, G. and G. van Noord. Adjuncts and the processing of lexical rules. Pro-
ceedings 15th Conference on Computational Linguistics. 1994

Bouma, G. and G. van Noord. Word Order Constraints on Verb Clusters in Ger-
man and Dutch. 1996 http://odur.let.rug.nl/~vannoord/papers/complex.pdf.

Bouma, G., G. van Noord, and R. Malouf. Alpino: Wide-coverage Computa-
tional Analysis of Dutch. Computational Linguistics in the Netherlands 2000.
Rodopi. Amsterdam. 2001

Brandt Corstius, H. Computer-taalkunde. Coutinho. 1978
Broekhuis, H. and J. Dekkers. The minimalist program and optimality theory.

Derivations and Evaluations. In: Dekkers, J. et al. (eds). Optimality theory:
Phonology, Syntax and Acquisition. OUP. 2000. pp 386-422

Bunt, H. Semantic underspecification: which technique for which purpose?
In: Bunt, H. and R. Muskens (eds). Computing meaning, Volume 3. Springer.
2008. pp 55-85

REFERENCES 335

Buszkowski, W. Compatibility of a categorial grammar with an associated
category system. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, 28. 1982. pp 229-237

Carpenter, B. The logic of type feature structures. CUP. 1992
Carpenter, B. Type-Logical Semantics. MIT Press. 1997
Carroll, J., A. Copestake, D. Flickinger, and V. Poznànski. An Efficient Chart Gen-

erator for (semi-)Lexicalist Grammars. In: Proceedings of the 7th European
Workshop on Natural Language Generation (EWNLG’99), 1999. pp 86-95

Carrouges, M. Les machines célibataires. Alfieri. 1975
Ceri, S., G. Gottlob, and G. Wiederhold. Efficient Database Access from Prolog,

IEEE Transactions on Software Engineering 15(2), 1989. pp 153-164
Chaffin, R. and D.J. Herrmann. The nature of semantic relations: a comparison

of two approaches. In: Evans, M.W. (ed). Relational models of the lexicon.
CUP. 1988. pp 289-335

Chamberlin, D.D. and R.F. Boyce. SEQUEL: A Structured English Query Lan-
guage. Proceedings of the 1974 ACM SIGFIDET Workshop on Data Descrip-
tion, Access and Control. Association for Computing Machinery. 1974. pp
249-264

Chambers, N., D. Cre, T. Grenager, D. Hall, C. Kiddon, B. MacCartney, M. de
Marneffe, D. Ramage, E. Yeh, and C. Manning. Learning Alignments and Lev-
eraging Natural Logic. Proceedings of the workshop on textual entailment
and Paraphrasing. ACL. 2007. pp 165-170

Chierchia, G. and S. McConnell-Ginet. Meaning and Grammar. MIT Press. 2000
Chomsky, N. Remarks on Nominalization. In: Jacobs, R. and P. Rosenbaum (eds).

Readings in English Transformational Grammar. Ginn. 1970. pp 184-221
Chomsky, N. Lectures on Government and Binding. Foris. 1981
Chomsky, N. The Minimalist program. MIT Press. 1995
Clocksin, W.F. and C.S. Mellish. Programming in Prolog, 2nd ed. Springer-Ver-

lag, Berlin. 1984
Clocksin, W.F. and C.S. Mellish. Programming in Prolog Using the ISO Standard.

Springer. 2003
Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Communi-

cations of the ACM 13(6). 1970. pp 377–387
Collins, C. and E. Stabler. A formalization of minimalist syntax. Ms. 2011. http://

ling.auf.net

Cooper, R. Quantification and Syntactic Theory. Reidel. 1983

336 REFERENCES

Cooper, R., D. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspers, H. Kamp,
D. Milward, M. Pinkal, M. Poesio, and S. Pulman. Using the Framework. LRE
62-051. 1996

Copestake, A. and D. Flickinger. An Open Source Grammar Development Envi-
ronment and Broad-coverage English Grammar Using HPSG. Proceedings of
the 2nd International Conference on Language Resources and Evaluation. 2000

Copestake, A., D. Flickinger, C. Pollard, and I.A. Sag. Minimal Recursion Seman-
tics: An Introduction. Research on Language and Computation 3:4. 2005. pp
281-332

Cormack, A. and N. Smith. Where is a sign merged? GLOT International 4:6.
1999. p. 20

Cremers, C. On two types of infinitival complementation in Dutch. In: Heny, F.
and B. Richards (eds). Linguistic Categories: Auxiliaries and related Puzzles.
Volume 1. Reidel. 1983. pp 169-221

Cremers, C. Over een lineaire kategoriale ontleder. TABU 19: 2. 1989. pp 76-85
Cremers, C. On parsing coordination categorially. PhD thesis. Leiden Univer-

sity. 1993a
Cremers, C. Coordination as a Parsing Problem. In: Sikkel, K. and A. Nijholt

(eds.). Proceedings of the 6th Twente Workshop on Language Technology
(TWLT6, ACL/SIGPARSE). 1993b. pp 139-143

Cremers, C. A Note on Categorial Grammar, Disharmony and Permutation. In:
Proceedings EACL 1999. ACL. 1999. pp 273-274

Cremers, C. (‘n) Betekenis berekend. Nederlandse Taalkunde 7:4. 2002. pp
375-395

Cremers, C. Why plurality does not mean a thing. In: Bogaards, P., J. E. C. V.
Rooryck and P. J. Smith (eds.). Quitte ou Double Sens. Articles sur l’ambiguïté
offerts à Ronald Landheer. Rodopi. 2002

Cremers, C. Modal Merge and Minimal Move for Dislocation and Verb Cluster-
ing. Research on Language and Computation 2:1. 2004. pp 87-103

Cremers, C. NL from Logic: Connecting Entailment and Generation. In: Aloni,
M., H. Bastiaanse, T. de Jager, and K. Schulz (Eds). Logic, Language and
Meaning. Springer. 2010. pp 94-103

Cremers, C. and M. Hijzelendoorn, Counting Coordination Categorially, Compu-
tation and Language archive, 1996 http://arxiv.org/abs/cmp-lg/9605011

Cremers, C. and M. Hijzelendoorn. Pruning Search Space for Parsing Free
Coordination in Categorial Grammar. Proceedings 5th International Work-
shop on Parsing Technologies (IWPT97, ACL/SIGPARSE). 1997a. pp 42-53

REFERENCES 337

Cremers, C. and M. Hijzelendoorn. Filtering Left Dislocation Chains in Pars-
ing Categorial Grammar. In: Landsbergen, J., J. Odijk, K. van Deemter, and
G. Veldhuijzen van Zanten (eds.). Papers from the 7th CLIN Meeting. 1997b.
pp 41-56

Cremers, C. and H. Reckman. Exploiting logical forms. In: Verberne, S., H. van
Halteren, and P.A. Coppen (eds). Computational Linguistics in the Nether-
lands 2007. LOT, 2008. pp 5-21

Croft, W. Radical Construction Grammar. OUP. 2001
Crouch, R. and J. van Genabith. Context Change, Underspecification and the

Structure of Glue Language Derivations. In: Dalrymple, M. (ed.). Semantics
and Syntax in lexical Functional Grammar: the Resource Logic Approach.
MIT Press. 1999. pp 117-190

Daelemans, W. and A. van den Bosch. Memory-Based Language Processing.
CUP. 2005

Dalrymple, M., F. Pereira, and S. Shieber. Ellipsis and higher-order unification.
Linguistics and Philosophy 14. 1991. pp 399-453

Dalrymple, M., A. Kehler, J. Lamping, and V. Saraswat. The semantics of
resource sharing in lexical-functional grammar. Proceedings 7th EACL.
1995. pp 31-38

Date, C.J. Introduction to Database Systems. 8th ed. Addison-Wesley. 2003
Davidson. D. The logical form of action sentences. In: Rescher, N. (ed.). The

logic of decision and action. University of Pittsburgh Press. 1967
De Hoop, H. Case Configurations and NP Interpretation. Rijksuniversiteit Gro-

ningen. 1992
De Vries, M.H., M.H. Christiansen, and K.M. Petterson. Learning Recursion:

Multiple Nested and Crossed Dependencies. Biolinguistics 5:1-2. 2011. pp
10-35 http://cnl.psych.cornell.edu/pubs/2011-dcp-bioling.pdf.

Dekker, P. Transsentential meditations; ups and downs in dynamic semantics.
Universiteit van Amsterdam. 1993

Den Besten, H., J. Rutten, T. Veenstra, and J. Veld. Verb Raising, Extrapositie en
de Derde Constructie. Unpublished. University of Amsterdam. 1988

Deransart, P., A. Ed-Dbali, and L. Cervoni. Prolog: The Standard, Springer-Ver-
lag. 1996

Diesing, M. and E. Jelinek. Distributing arguments. Natural Language Seman-
tics 3:2. 1995. pp 123-176

338 REFERENCES

Dowty, D. Type raising, functional composition, and non-constituent coordi-
nation. In: Oehrle, R. et al (eds). Categorial grammars and natural language
structures. Kluwer. 1988. pp 153-198

Ebeling, C.L. Syntax and Semantics. Brill. 1978
Ebert, C. Formal Investigations of Underspecified Representations. University

of London. 2005
Egg, M. Semantic Underspecification. Language and Linguistics Compass 4:3.

2010. pp 166-181
Eisner, J. Efficient Normal-Form parsing for Combinatory Categorial Gram-

mar. In: Proceedings of the 34th Annual Meeting of the ACL. 1996. pp 79-86
Everaert, M. and H. van Riemsdijk. The Blackwell Companion to Syntax. Black-

well. 2006
Evers, A. The Transformational Cycle in Dutch and German. Universiteit Utre-

cht. 1976
Fannee, M. Over het implementeren van het coördinatie-algoritme in de Chart-

parser van Delilah. MSc. thesis, Dept. of Linguistics, Leiden University. 2006
Flynn, M. A Categorial Theory of Structure Building. In: Gazdar, G., E. Klein and

G.K. Pullum. Order, Concord and Constituency. Foris. 1983. pp 139-174
Flickinger, D., A. Copestake, and I. Sag. HPSG Analysis of English. In: A. Wahl-

ster (ed). Verbmobil. Foundations of Speech-to-Speech technology. Springer.
2000. pp 254-263

Fodor, J.D. and I. Sag. Referential and Quantificational Indefinites. Linguistics
and Philosophy 5:3. 1982. pp 355-398

Frank, A. and U. Reyle. Principle-based semantics for HPSG. Arbeitspapiere des
Sonderforschungsbereich 340. Universität Stuttgart. 1994

Frank, S.L., R. Bod, and M.H. Christansen. How hierarchical is language use?
Proceedings of the Royal Society B. doi:10.1098/rspb2012.1741

Friedman, J. and T. H. Bredt. Lexical Insertion in transformational Grammar.
Technical Report, Stanford University. 1968

Gärdenfors, P. Conceptual Spaces: The geometry of Thought. MIT Press. 2000
Gardner, M. Logic Machines and Diagrams. McGraw-Hill. 1958
Gazdar, G. Applicability of indexed grammars to natural languages. CSLI. 1985
Gazdar, G., E. Klein, G. Pullum, and I. Sag. Generalized Phrase Structure Gram-

mar. Blackwell. 1985
Goldberg, A. E. Constructicons. A constructicon grammar approach to argu-

ment structure. Uni. Chicago Press. 1995

REFERENCES 339

Goddard, C. The search for the shared semantic core of all languages. In: God-
dard, C. and A. Wierzbicka (eds). Meaning and Universal grammar – Theory
and Empirical Findings. Volume 1. John Benjamins. 2002. pp 5-40

Grégoire, N. DuELME: a Dutch electronic lexicon of multiple word expres-
sions. Language Resources and Evaluation 44:1-2. 2010. pp 23-39

Grootveld, M. Parsing coordination generatively. Holland Institute of Linguis-
tics. 1994

Hankamer, J. and I. Sag. Deep and Surface Anaphora. Linguistic Inquiry 7. 1976.
pp 391-428

Harbusch, K. and G. Kempen. Elleipo: A module that computes coordinative
ellipsis for language generators that don’t. EACL-2006. Conference Compan-
ion. EACL. pp 115-118

Harrison, M. A. Introduction to Formal Language Theory. Addison-Wesley,
Reading, 1978

Hauser, M.D. and W.T. Fitch. What are the uniquely human components of the
language faculty? In: Christiansen, M.H. and S. Kirby (eds.). Language Evo-
lution. OUP. 2003. pp 158-181

Heim, I. and A. Kratzer. Semantics in Generative Grammar. Blackwell. 1998
Heine, B. and T. Kuteva. The Genesis of Grammar. A reconstruction. OUP. 2007
Hendriks, H. Studied Flexibility. University of Amsterdam. 1993
Hendriks, P. Comparatives and categorial grammar. Rijksuniversiteit Gronin-

gen. 1995
Hepple, M. The grammar and processing of order and dependency. Edinburg.

1990
Hepple, M. A Compilation-Chart Method for Linear Categorial Deduction. Pro-

ceedings Coling 1996. Center for Sprogteknologi, Copenhagen. 1996
Hepple, M. and G. Morrill. Parsing and derivational equivalence. In: Proceed-

ings of the 4th Conference of the EACL. 1989. pp 10-18
Higginbotham, J. On Semantics. Linguistic Inquiry 16:4. 1985. pp 547–593
Higginbotham, J. Linguistic theory and Davidson’s program in semantics. In:

Le Pore. E. (ed.). Truth and Interpretation. Blackwell. 1986. pp 29-48
Hirao, T. (1990). Extension of the relational database semantic processing

model. IBM Systems Journal 29(4). pp 539-550
Hoeksema, J. Negative polarity and the comparative. Natural Language and

Linguistic Theory 1. 1983. pp 403-434
Hoeksema, J. Categorial Morphology. Rijksuniversiteit Groningen. 1984

340 REFERENCES

Hoeksema, J. The Semantics of Non Boolean “and”. Journal of Semantics 6:1.
1988. pp 19-40

Hoeksema, J. and R. Janda. Implications of Process Morphology for Categorial
Grammar. In: Oerhle, D., E. Bach, and D. Wheeler (eds), Categorial Grammar
and natural Language. Kluwer. 1988. pp 199-248

Hollebrandse, B. and T. Roeper. Recursion and propositional exclusivity. Unpub-
lished. 2007

Honcoop, M. Dynamic Excursions on Weak Islands. Universiteit Leiden. 1998
Hopcroft, J.E., R. Motwani, and J.D. Ullman. Introduction to Automata Theory,

Languges and Compuation. Addison Wesley. 2001
Houtman, J. Coordination and Constituency. Rijksuniversiteit Groningen. 1994
Huffman, D.A. A Method for The Construction of Minimum Redundancy Codes,

Proceedings of the Institute of Radio Engineers 40(9). 1952. pp 1098-1101
Huijbregts, M.A.C. Overlapping Dependencies in Dutch. Utrecht Formal Papers

in Linguistics. 1976
Icke, V. The Force of Asymmetry. CUP. 1995
Jackendoff, R. Foundations of Language. OUP. 2002
Jacobson, P. Comment ‘Flexible Categorial Grammars.’ In: Levine, R. (ed.). For-

mal grammar: theory and implementation. OUP. 1991. pp 129 - 167
Jäger, G. On the Generative Capacity of Multi-modal Categorial Grammars.

Research on Language and Computation 1. 2003. pp 105-125
Jäger, G. Anaphora and Type-logical Grammar. Springer. 2005
Janssen, T.M.V. Foundations and applications of Montague Grammar. CWI. 1986
Janssen, T.M.V. Compositionality. In: Van Benthem, J. and A. ter Meulen (eds).

Handbook of Logic and Language. North Holland. 1997. pp 417-474
Jaspers, D. Operators in the Lexicon. Leiden University. 2005
Jech, T.J. About the Axiom of Choice. In: Barwise, J. (ed). Handbook of Math-

ematical Logic. North Holland Pub Cy. 1977. pp 345-370
Johannesen, J. B. Coordination, OUP. 1997
Joshi, A.K. How much context-sensitivity is necessary for characterizing struc-

tural descriptions: Tree adjoining grammars. In: Dowty, D., L. Karttunen,
and A. Zwicky (eds.), Natural language parsing: Psychological, computa-
tional and theoretical perspectives. CUP. 1985. pp 206-250

Joshi, A.K., K. Vijay-Shanker, and D. Weir. The Convergence of Mildly Context-
Sensitive Grammar Formalisms. In: P. Sells, S.M. Shieber, and T. Wasow
(eds.), Foundational Issues in Natural Language Processing. MIT Press,
1991. pp 31 - 82

REFERENCES 341

Kamp, H. and U. Reyle. From Discourse to Logic. Springer. 1993
Karttunen, L. Radical lexicalism. CSLI. 1986
Kasami, T. An efficient recognition and syntax algorithm for context-free lan-

guages. Air Force Cambridge Research Laboratory. 1965
Kasper, R. and W. Rounds. The logic of unification grammar. Linguistics and

philosophy 13. 1990. pp 33-58
Kay, M. The MIND system. In: Rustin, R. (ed). Natural Language Processing.

Algorithmics Press. 1973. pp 155-188
Kay, Martin. Algorithm schemata and data structures in syntactic processing.

In: Grosz, Barbara J., Karen Sparck Jones, and Bonnie Lynn Weber (eds.),
Readings in Natural Language Processing, Morgan Kaufmann, Los Altos,
California, 1980, pp 35-70

Kay, M. Unification Grammars. Xerox. 1981
Kay, P. and C. Fillmore. Grammatical constructions and linguistic generaliza-

tions: The what’s X doing Y? construction. Language 75. 1999. pp 1–33
Kayne, R.S. The Antisymmetry of Syntax. MIT Press. 1994
Kempen, G. Clausal coordination and coordinative ellipsis in a model of the

speaker. Linguistics. 2008
Kešelj, V. and N. Cercone. A Graph Unification Machine for NL Parsing. Univ of

Waterloo. 2002
Khalaily, S. One Syntax for All Categories – Merging Nominal Atoms in Multiple

Adjunction Categories. Holland Institute of Linguistics. 1997
Kneale, W. and M. Kneale. The Development of Logic. OUP. 1962
Knuth, D. The Art of Computer Programming, Volume 3: Sorting and Searching.

Addison-Wesley, Reading MA. 1973
Koller, A. and S. Thater. An improved redundancy elimination algorithm for

underspecified representations. Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th annual meeting of the
ACL. 2006. pp 409–416

Komagata, N. Efficient Parsing for CCGs with Generalized Type-Raised Cat-
egories. Proceedings 5th International Workshop on Parsing Technologies
(IWPT97, ACL/SIGPARSE). 1997. pp 135-146

Komagata, Nobo N., Nobo N. Komagata, I.S. Kulick, and R. Prasa. A Computa-
tional Analysis of Information Structure using Parallel Expository Texts in
English and Japanese. Univ. of Pennsylvania. 1999

König, E. Der Lambek-Kalkül. Eine Logik für lexikalische Grammatiken. Univer-
sität Stuttgart. 1990

342 REFERENCES

Kracht, M. The Mathematics of Language. Mouton de Gruyter. 2004
Krifka, M. Four Thousand Ships Passed through the Lock: Object-Induced

Measure Functions on Events. Linguistics and Philosophy 13. 1990. pp 487-
520

Kripke, S. Naming and Necessity. In: Davidson, D. and G. Harman (eds). Seman-
tics of natural language. Reidel. 1972

Lakoff, G. and M. Johnson. Metaphors we live by. Chicago Univ Press. 1980
Lambek, J. The mathematics of sentence structure. American Mathematical

Monthly 64:3. 1958. pp 154-170
Lasersohn, P. Compositional Interpretation. In: Hinrichs, E. and J. Nerbonne

(eds). Theory and Evidence in Semantics. CSLI. 2009. pp 133-158
Levelt, W. Speaking: from intonation to articulation. The MIT Press. 1989
Levinson, S.C. Presumptive Meanings. The MIT Press. 2000
Link, G. The Logical Analysis of Plural and Mass Terms: A Lattice Theoretical

Approach. In: Bäuerle, R., C. Schwarze and A. von Stechow (eds). Meaning,
Use and the Interpretation of language. Walter de Gruyter. 1983. pp 302-323

Marcus, G. The Algebraic Mind. MIT Press. 2003
Marcus, M. A Theory of Syntactic Recognition for Natural Language. MIT Press.

1980
Maxwell, J. T. and R. M. Kaplan. The interface between phrasal and functional

constraints. Computational Linguistics 19:4. 1993. pp 571–590
McCawley, J.D. Concerning the base component of a transformational gram-

mar. Foundations of language 4. 1968. pp 243-269
McHale, B. Poetry as Prothesis. Poetics Today 21:1. 2000. pp 1-32
Mel’čuk, I. and A. Zholkovsky. Explanotory Combinatorial Dictionary of Mod-

ern Russian. Wiener Slawistischer Almanach. 1984
Merchant, J. The syntax of silence: Sluicing, Islands and the Theory of Ellipsis.

OUP. 2001
Meyer, B. Object-Oriented Software Construction. Prentice Hall. 1997
Mitkov, R., S. Lappin, and B. Boguraev. Introduction to the Special issue on

Computational Anaphora resolution. Computational Linguistics 27:4. 2001.
pp 473-477

Montague, R. The Proper Treatment of Quantification in Ordinary English. In:
Davidson, D. and G. Harman (eds). Semantics of Natural Languages. Reidel.
1972

Moortgat, M. Categorial Investigations. Foris. 1988

REFERENCES 343

Moortgat, M. Categorial Type Logics. In: Van Benthem, J. and A. ter Meulen
(eds). Handbook of Logic and Language, pp 93-177. Elsevier and The MIT
Press. 1997

Morley, M. Homogeneous sets. In: Barwise, J. (ed.). Handbook of Mathematical
Logic. North Holland Pub Cy. 1977. pp 181-196

Morrill, G. Type Logical Grammar. Categorial Logic of Signs. Kluwer. 1994
Morrill, G. Categorial grammar: logical syntax, semantics and processing. OUP.

2011
Munn, A. Topics in the syntax and semantics of coordinate structure. Univer-

sity of Maryland. 1993
Neijt, A. Gapping. A contribution to sentence grammar. Foris. 1980
Parsons, T. Underlying states and time travel. In: Higginbotham, J. et al. (eds).

Speaking of Events. OUP. 2000. pp 81-93
Partee, B. H. Syntactic categories and semantic type. In: Rosner, M. and R.

Johnson (eds). Computational linguistics and formal semantics. CUP. 1992.
pp 97-126

Partee, B. and M. Rooth. Generalized Conjunction and Type Ambiguity. In:
Bäuerle, R., C. Schwarze and A. von Stechow. Meaning, Use, and the Inter-
pretation of Language. De Gruyter. 1983. pp 361-383

Payne, J. Complex phrases and complex sentences. In: Shopen, T. (ed.). Lan-
guage typology and syntactic description: complex constructions. Volume 2.
CUP. 1985

Penrose, R. The Emperor’s New Mind. OUP. 1989
Pentus, M. Lambek Grammars are Context Free, Proceedings of the Eighth

Annual IEEE Symposium on Logic in Computer Science. 1993. pp 429-433
Pereira, F.C.N. and D.H.D. Warren. Parsing as Deduction. Proceedings 21st

Annual Meeting of the ACL. MIT, Cambridge. MA. 1983
Pereira, F.C.N and S.M. Shieber. Prolog and Natural language Analysis. CSLI.

1987
Pietroski, P. Events and Semantic Architecture. OUP. 2006
Pietroski, P. Minimal semantic instructions. In: C. Boeckx (ed). The Oxford

handbook of linguistic minimalism. 2011. pp 472-498
Poeder, J. Over de verwerking van extra-grammaticale invoer door een natuur-

lijke-taalverwerkingssysteem. MSc. Thesis, Leiden University. 1994
Pollard, C. Generalized Phrase Structure Grammar, Head Grammars and Natu-

ral Languages. Stanford University. 1984

344 REFERENCES

Pollard, C. and I.A. Sag. Information-Based Syntax and Semantics. Volume 1:
Fundamentals. CSLI. 1988

Pollard, C. and I.A. Sag. Head-Driven Phrase Structure Grammar. The Univer-
sity of Chicago Press. 1994

Poß, M. Under Construction. LOT. 2010
Poß, M. and T. van der Wouden. Extended Lexical Units in Dutch. In: Van der

Wouden, T., M. Poß, H. Reckman, and C. Cremers (eds). Computational Lin-
guistics in the Netherlands 2004. LOT. 2005

Postma, G.J. Zero Semantics. HIL. 1995
Pullum, G.K. and G. Gazdar. Natural languages and context-free languages. Lin-

guistics and Philosophy 4:4. 1982. pp 471-504.
Pustejovski, J. The Generative Lexicon: A Theory of Computational Lexical

Semantics. MIT Press. 1993
Ramchand, G. First phase syntax. Ms. Oxford University. 2002
Ramsay, A. Extended Graph Unification. 1989
Reckman, H. Flat but not shallow. PhD. Leiden University. 2009
Reckman, H. and C. Cremers. Concepts across categories. Proceedings ICoS-

5. pp 97-106. 2006 http://www.aclweb.org/anthology-new/W/W06/W06-
3910.pdf

Reinhart, T. Quantifier scope: how labor is divided between QR and choice
functions. Linguistics and Philosophy 20. 1997. pp 335-397

Reiter, E. and R. Dale. Building Applied Natural Language Generation Systems.
Natural Language Engineering 3. 1997. pp 57-87

Retoré, C. and E. Stabler. Generative grammars in resource logic. Research on
Language & Computation 2:1. 2004. pp 3-25

Roorda, D. Resource-logics: proof-theoretical investigations. Univ. of Amster-
dam. 1991

Rosetta, M.T. Compositional Translation. Kluwer. 1994
Ross, J.R. Constraints on Variables in Syntax. MIT. 1967
Rounds, W.C. Feature Logics. In: Van Benthem, J. and A. ter Meulen (eds). Hand-

book of Logic and Language. Elsevier and MIT Press. 1997. pp 475-535
Rozwadowska, B. Derived Nominals. In: Everaert, M. and H. van Riemsdijk (eds).

The Blackwell Companion to Syntax. Volume II. Blackwell. 2006. pp 24-55
Russell, B. The Philosophy of Logical Atomism. University of Minnesota,

Department of Philosophy. 1949 (Reprinted as: Russell’s Logical Atomism.
Fontana/Collins. 1972)

REFERENCES 345

Ruys, E.G. Unexpected Wide-Scope Phenomena. In: Everaert, M. and H. van
Riemsdijk (eds). The Blackwell Companion to Syntax. Volume V. Blackwell.
2006. pp 175-228

Sag, I.A., T. Baldwin, F. Bond, A. Copestake, and D. Flickinger. Multiword expres-
sions: A pain in the Neck for NLP. Proceedings of the 3rd International Con-
ference on Intelligent Text Processing and Computational Linguistics. 2002.
pp 1–15

Sag, I.A., T. Wasow, and E.M. Bender. Syntactic Theory. A Formal Introduction.
CSLI. 2003

Scha, R. Distributive, Collective and Cumulative Quantification. In: Groenendijk,
J., T.M.V. Janssen and M. Stokhof (eds). Formal Methods in the Study of Lan-
guage. Univ of Amsterdam. 1981. pp 483-512

Schein, B. Plurals and Events. MIT Press. 1993
Seuren, P.A.M. Western Linguistics. An Historical Introduction. Blackwell. 1998
Seuren, P.A.M. The natural logic of language and cognition. Pragmatics 16:1.

2006. pp 103-138
Shadbolt, N., W. Hall, and T.B. Berners-Lee. The Semantic Web revisited. IEEE

Intelligent Systems. 2006
Shieber, S. M. Separating Linguistic Analysis from Linguistic Theories, In:

Reyle, U. and C. Rohrer (eds). Natural Language Parsing and Linguistic The-
ory. Reidel. 1988. pp 33-68

Shieber, S. M. The Problem of Logical-Form Equivalence. Computational Lin-
guistics 19:1, 1993. pp 179-190

SICS. Documentation for SICStus Prolog 4. http://sicstus.sics.se/documenta-
tion.html. 2014

Sowa, J. Conceptual structures: Information processes in Mind and Machine.
Addison-Wesley. 1984

Stabler, E. P. The logical approach to syntax: foundations, specifications, and
implementations of theories of government and binding. MIT Press. 1992

Stabler, E. P. Varieties of crossing dependencies: structure dependence and
mild context sensitivity. Cognitive Science 28. 2004. pp 699-720

Stabler, E.P. Computational perspectives on minimalism. In: C. Boekx (ed).
Handbook of Linguistic Minimalism. OUP. 2010. pp 616-641

Steedman, M. Gapping as Constituent Coordination. Linguistics and Philoso-
phy 13:2. 1990. pp 207-264

Steedman, M. Surface Structure and Interpretation. MIT Press. 1996
Steedman, M. The Syntactic Process. The MIT Press. 2000

346 REFERENCES

Szabolcsi, A. Strong vs. Weak Islands. In: Everaert, M. and H. van Riemsdijk
(eds.). The Blackwell Companion to Syntax. Volume IV. Blackwell. 2006. pp
479-531

Szabolcsi, A. and M. den Dikken. Islands. Glot International 4:6. 1999. pp 3-8
Tatu, M. and D. Boldovan. COGEX at RTE3. Proceedings of the workshop on tex-

tual entailment and Paraphrasing. ACL. 2007. pp 22-27
Turner, R. Two Issues in the Foundation of Semantic Theory. In: Chierchia, C.,

B. H. Partee, and R. Turner (eds). Properties, Types and Meaning. Volume 1.
Kluwer. 1989. pp 63-84

Van ‘t Veer, M. Solve.pl. Unpublished paper. Leiden University, Dpt. of Linguis-
tics. 2007.

Van Benthem, J. Questions about quantifiers. Journal of Symbolic Logic 49:2.
1984. pp 443-466

Van Benthem, J.F.A.K. Essays in Logical Semantics. Reidel. 1986
Van Benthem, J.F.A.K, Language in Action. North-Holland. 1991
Van Deemter. K. Not exactly: In praise of vagueness. OUP, 2010
Van de Woestijne, C.E. A formal characterisation of the Delilah system. MSc.

thesis, LIACS, Leiden University. 1999
Van Dreumel, S. and P.-A. Coppen. Surface analysis of the verbal cluster in

Dutch. Linguistics 41:1. 2003. pp 53-81
Van Noord, G. Reversibility in natural language processing.Rijksuniversiteit

Utrecht. 1993
Van Noord, G. FSA utilities: A toolbox to manipulate finite-state automata. In:

Automata Implementation. Springer. 1997. pp 87-108
Van Riemsdijk, H. A Case Study in Syntactic Markedness: The Binding Nature of

Prepositional Phrases. The Peter de Ridder Press. 1978
Verkuyl, H.J. On the compositional nature of the aspects. Reidel. 1972
Verkuyl, H.J. A theory of aspectuality. CUP. 1993
Verkuyl, H.J. Binary Tense. CSLI. 2008
Vermaat, W. Controlling Movement: Minimalism in a deuctive perspective. Utre-

cht University. 1999
Vijay-Shanker, K. and D. J. Weir. Polynomial Time Parsing of Combinatory Cat-

egorial Grammars. Proceedings of the 28th Meeting of the ACL. 1990. pp 1-8
Von Stechow, A. Comparing semantic theories of comparison. Journal of

Semantics 3. 1984. pp 1-77

REFERENCES 347

Vosse, Th. and G. Kempen. Syntactic structure assembly in human parsing: a
computational model based on competetive inhibition in a lexicalist gram-
mar. Cognition 75. 2000. pp 105-143

Vossen, P., K. Hofmann, M. de Rijke, E. Tjong Kim Sang, and K. Deschacht
(2007). The Cornetto Database: Architecture and User-Scenarios. Proceed-
ings of 7th Dutch-Belgian Information Retrieval Workshop DIR, University
of Leuven. 2007. pp 89-96

Wahlster, W. (ed.) Verbmobil: Foundations of Speech-To-Speech Translation.
Springer. 2000

Wetzer, H. Nouniness and verbiness: a typological study of adjectival predica-
tion. Nijmegen University. 1995

Wheeler, D.W. Aspects of a categorial theory of phonology. Univ of Massachu-
setts at Amherst. 1981

White, M. and J. Baldridge. Adapting Chart Realization to CCG. Proceedings
Ninth European Workshop on Natural Language Generation. Budapest. 2003

Williams, W.C. Selected Essays of William Carlos Williams. New Directions.
1969

Winter, Y. Flexibility principles in Boolean Semantics. MIT press. 2001
Wittenburg, K. Natural Language Parsing with Combinatory Categorial Gram-

mar in a Graph-Unification-Based Formalism. Univ. of Texas, Austin. 1986
Wurmbrand, S. Verb Clusters, Verb Raising and Restructuring. In: M. Everaert

and H. van Riemsdijk (eds). The Blackwell Companion to Syntax. Volume V.
Blackwell. 2006. pp 229-344

Younger, D.H. Recognition and parsing of context-free languages in time n3.
Information and Control 10(2). 1967. pp 189-208

Zinn, Peter. Categoriale Grammatica’s en de Chomsky-hiërarchie. Een onder-
zoek naar de kracht van verschillende categoriale grammatica’s. MSc. thesis,
Dept. of Computer Science, Leiden University. 1993

Zwart, J.W. Dutch Syntax. A Minimalist Approach. Rijksuniversiteit Groningen.
1993

Zwarts, F. Negatief polaire uitdrukkingen I. Glot 4:1. 1982
Zwarts, F. Determiners: a relational perspective. In: Ter Meulen, A.G.B. (ed),

Studies in Modeltheoretic Semantics. Foris. 1983. pp 37-62
Zwarts, F. Categoriale grammatica en algebraïsche semantiek. Rijksuniversi-

teit Groningen. 1986

348 TABLE OF CONTENTS

INDEX

INDEX 349

INDEX

A

adjacency · 51, 62, 119, 127, 129, 144
adjuncts · 6, 31-32, 61, 86, 88, 90-93, 108,

122-123, 131, 181, 272, 318
algebra · 5, 21, 25, 41, 53, 57-58, 60, 110,

140-141, 144, 168-169, 182, 188, 190-
191, 254, 307
additivity · 307
multiplicativity · 57

algorithm · 17, 106, 113-115, 123, 126-
131, 135-137, 141, 147-149, 151, 160,
170, 172-173, 198, 210, 220, 224, 254,
285, 291, 297, 326

anaphora · 29, 112, 157, 166-167, 180,
258

antimorphism · 316
argument list · 40, 47-51, 56, 68, 71-89,

91-92, 95, 97-99, 103-104, 119-122,
141

associativity · 130-132
asymmetry · 6, 50, 68-70, 84, 227
attribute-value matrix · 199, 245, 247,

271
automorphism · 122
auxiliary inversion · 85
axiom · 52-53, 63, 65, 92, 109, 119, 178,

180-181, 189

B

binarity · 303-304

C

collocational effects · 241, 265, 285
comparative · 321

complex symbol · 143, 149, 220, 231, 240,
246, 307

compositional complexity · 205-206
compositionality · 15, 19, 22, 26, 110-111,

154-156, 170-171, 174, 205, 218, 253,
264, 272, 314, 316, 323

compression · 290, 293-294
computability · 5, 12-16, 19, 22, 92, 141,

197, 242, 301
computation · 12-13, 16, 19-20, 28-29, 47,

62, 72, 75, 79, 83, 106, 115, 135, 155,
171, 197, 213, 259-260, 292, 302, 306,
314, 324, 327-328

computational linguistics · 12, 21-22, 114-
115, 197, 203, 234, 237-238, 284, 331

concatenation · 19-20, 31, 34, 54, 140-
142, 144, 193, 245, 316

conjunction · 12, 16, 20, 23, 107-109,
111-114, 136-137, 161, 174, 191, 194,
209, 214, 217, 226, 310-315, 321, 323,
326-327

conservativity · 8, 263, 302
constituency · 31, 70, 74, 130, 138-139,

237, 303, 309, 313, 317-318, 322-324,
329

constructicon · 22, 324, 326-328
coordination · 6, 32, 94, 106-115, 119,

136-137, 139, 317, 321-322
crossing dependency · 77, 98

D

database · 7, 22, 229-230, 240-241, 264,
284, 286-288, 290-291, 298

data structure · 126, 235, 240, 246, 259,
289, 294

deduction · 8, 53, 56-58, 64-65, 92, 105,
124, 196, 309-311

350 INDEX

Delilah · 7, 12, 22, 30-32, 35, 41, 43, 71,
74-75, 82, 84, 91, 103, 105-106, 115,
133-135, 138-139, 145, 151, 154, 158,
160, 162, 167, 170-172, 174-175, 183,
189, 195, 197-199, 203-204, 207-208,
217-218, 220, 224, 234-237, 240, 242,
244-245, 252-254, 258-259, 263, 272,
278-280, 284-285, 288, 298, 301, 312

derivability · 52, 64-65, 67
determinism · 141, 226
disambiguation · 128, 203
discontinuity · 5-6, 25, 31-32, 55, 62-63,

73, 75, 78, 87, 92, 94-100, 103-106,
134, 139, 144, 237, 243

E

ellipsis · 8, 32, 112-114, 137, 157, 317,
322-323

embedding
extensional · 175
intensional · 158, 160, 171, 175, 222

entailment · 7, 15, 157-158, 163, 196,
210-211, 213-215, 217, 219-220, 226-
227, 309, 311-314, 317, 319-320, 323-
326, 328

essential separation · 191, 193-195
event · 29, 31, 36, 154-155, 157, 159-162,

173, 176-177, 179, 181-195, 200-201,
208-209, 212-213, 215, 221, 224, 232,
241, 248, 254, 256-257, 262, 273, 276-
277, 279, 281-282, 299, 324

exception phrase · 318-319, 326
extended lexical unit · 190, 204-205, 207,

279
extraction · 55, 75, 90, 319
extraposition · 93

F

features · 35, 62, 100-101, 121, 151, 158,
198, 200, 219, 231, 234-235, 239-240,
248-249, 252, 268, 271, 277, 284, 286,
288, 290, 295-296, 304

finite verb · 31-32, 35, 38, 43, 184, 200,
269-270

G

generalized quantifiers · 18, 21, 168-169,
211, 258

generator · 11, 13, 17-18, 23, 138, 144-
145, 149, 151, 174, 218, 220-221, 223,
226, 228, 230, 239, 285-286, 288, 291,
295-297, 327

grammar · 1, 5-9, 12-16, 20-23, 26-31,
33-34, 39, 41-45, 48-53, 55-62, 65-66,
69-71, 73-75, 77, 84, 91-92, 94, 97,
100-106, 108, 112, 114-115, 118-122,
125-132, 134, 138-139, 141-144, 149-
151, 155-156, 170, 196-199, 203-204,
214, 220-221, 223, 230-231, 234, 236-
237, 241-242, 244, 246-247, 254-255,
259-263, 268-270, 274, 278, 283, 285,
291, 301-307, 310-311, 315-316, 322-
324, 327-331
categorial grammar · 16, 21, 23, 31,

42-43, 55, 58, 61, 65, 69-70, 94, 100,
105, 108, 114, 118, 127, 130, 134,
170, 196, 223, 236-237, 255, 259,
291, 305-306

categorial list grammar · 73, 237
Chomsky hierarchy · 6, 28, 61, 114,

124-125, 323
Construction Grammar · 203, 236, 329
context-free grammar · 119
Discourse Representation Theory · 156
formal grammar · 22-23, 28, 50, 203,

241, 301
generative capacity · 6, 119-125, 129,

197
GPSG · 70
HPSG · 7, 35, 70, 114, 199, 203, 233-

234, 236-237, 240, 260, 265, 283-
284, 329

MCSL · 124-126
meta-grammatical · 317
minimalism · 100, 305
Montague Grammar · 157-158, 199
natural semantic metalanguage · 154
TAG · 203

grammatical cycle · 315, 328
graph · 7, 22, 35, 37, 199, 217, 220, 225-

226, 228, 231, 233-236, 239-240, 246,
260-264, 266, 268-271, 278-279, 283-
285, 287-289, 296, 298-299, 303-304

INDEX 351

H

hashing · 293
higher-order · 46, 93, 158, 165, 170, 254-

255
homomorphism · 23, 57-58, 144, 254, 328

I

incompleteness · 8, 171, 301, 327-331
incompleteness theorem · 327

infinitive pro participio · 81
intensionality

de dicto · 177-178
de re · 177-178, 239

islands · 32-33, 75-76, 79, 82, 90, 129,
131, 210, 222

L

lambda calculus · 19, 57, 70, 105
lambda conversion · 20, 257, 313, 329
lambda term · 105, 194, 199, 204, 314
language processing · 12, 115, 197, 203,

210, 214, 220, 238, 316, 331
lemma · 20, 64-65, 71, 119, 233, 240-241,

244, 265, 271-274, 277, 280, 284-285
lexicalist hypothesis · 230
lexicon · 7-8, 16, 21-23, 25-27, 34-35, 43,

45, 71, 80, 82, 89-92, 102, 118, 120-
123, 130, 132, 134-135, 143, 151, 154-
155, 160, 184, 191, 193, 197, 200, 203,
206-208, 214, 219-220, 223-225, 231,
233-246, 248-249, 251-253, 258-259,
263, 265-266, 269-270, 272, 274, 278-
280, 283-288, 291-295, 297-299, 301,
324

linearization · 6, 41, 46, 51, 56-57, 59, 61,
68-70, 77, 95, 98-100, 102, 138, 140,
143-145, 147, 233, 237, 242-244, 277,
286, 302, 305

linear ordering · 40, 69, 138-139, 242
linguistic engineering · 15
locality · 75, 129, 235, 283, 303-304, 323
logic · 5, 11-12, 41, 56-58, 61, 100, 105,

109-110, 117, 145, 153, 157, 160, 162-
163, 169-172, 180, 196, 198, 209, 213-

214, 217, 220, 222, 236, 258, 260-261,
286, 288, 304-305, 311, 327, 330

logical form · 7, 22, 132-133, 135, 138,
149, 157, 160, 179-180, 186, 190, 195-
198, 205, 208, 210-214, 218-220, 222,
225-227, 284, 298, 310-317, 326, 329-
330
applied logical form · 161, 172, 176,

197-198, 208-214, 217, 228
flat logical form · 172, 176-177, 197-

198, 208-222, 224-228
normal logical form · 176
stored logical form · 36, 132, 135, 159,

172, 184, 197-199, 201-210, 217-
219, 226, 228, 232-233, 240, 248,
255-257, 266-267, 275-277, 281-
282, 298-299

M

meaning · 1, 6, 8, 12-16, 18-23, 26-27, 29,
34, 109-112, 130, 153-160, 168, 170-
171, 184, 189, 196-197, 199, 203-206,
208, 211, 215, 218-220, 222, 229-231,
241, 249-254, 256, 258, 264, 266, 269,
279, 301-303, 309-312, 315-318, 323-
324, 330-331

meta-index · 296
model · 12, 14-15, 18, 29, 52-53, 63, 70,

91, 96, 99, 115, 153, 157, 175, 178,
190-191, 223, 229, 234, 236-238, 253,
258, 286-287, 329-330

morphology · 171, 227, 242, 244
movement · 32, 63, 87, 100, 118, 139, 323
multiplicative · 57, 312, 315-316

N

negation · 13, 57-58, 60, 162, 188-189,
210, 260, 279, 308, 315-316, 326

nominal constituent · 27, 42, 168, 184
nominalization · 317

352 INDEX

O

object-oriented · 194, 290
operator · 40, 48, 54, 75, 118, 139, 162,

173-174, 186, 200, 209, 214, 222, 309,
318

P

parser · 6, 16-18, 23, 42, 115, 126-134,
136, 144, 149-151, 197, 220, 230, 294-
295, 298
backtracking · 126, 133, 150-151, 219,

221, 228, 297
bottom-up · 127-128, 132-133, 228,

268, 298
chart · 74, 92, 115, 126-133, 135-136,

298, 300
polynomial time · 123-127, 137
top-down · 127-128, 228, 268-269

partial recursive functions · 16
pluractionality · 190-191, 195
post-derivational · 17, 134-135, 158, 160,

167, 171, 210, 326
probabilistic · 127-128
Prolog · 80, 118, 123, 138-139, 143, 181,

257, 285-288, 290-297
pronouns · 32-33, 90, 121-122, 144, 185,

259
proposition · 14, 17, 19, 23, 52-53, 60,

63-64, 111-112, 145, 153-155, 157,
168, 175-179, 188, 207, 211, 215, 258,
261, 309-310, 313, 317, 319-320, 322-
323, 326, 328

Q

qualia · 234, 239
quantification · 6, 58, 157, 159-163, 165,

167, 169-170, 178-181, 185-187, 189-
190, 195, 224, 308

R

recursion · 5, 19-20, 25, 28-29, 33-34, 51,
139, 150, 171, 288, 290, 303-304

referentiality · 29, 181, 187-188, 249

relational database · 286-288, 290
resource sensitivity · 92, 109
robustness · 128, 130, 132-134, 136

S

scope · 6, 13, 17, 106, 139, 153, 160, 166-
167, 170, 172-174, 178-182, 186, 188-
189, 194-195, 198-199, 210-212, 222,
226, 235, 249, 254, 330

semantics · 8, 14-16, 20-22, 34, 43, 66,
108, 110, 117, 128, 131-132, 135, 138,
145, 156-158, 160, 162, 168, 171-172,
179, 182-184, 188, 190-191, 195-197,
199, 203-204, 206-207, 212-213, 217-
222, 224, 230, 233, 238, 241-242, 248,
251-253, 258, 266, 270, 277, 279, 284,
287, 300-302, 306, 308-309, 311-312,
314-317, 319, 322-324, 326-331

Skolemization · 6, 180-181, 186-189
small clause · 89, 174, 214, 273, 278
spurious ambiguity · 20, 128, 130-132,

135, 329
stack · 40, 45, 51, 71-72, 80, 87, 89, 92,

118, 121-122, 124, 150, 165, 291
string algebra · 57
syntax · 5-6, 8, 15, 19, 21-22, 25, 28-31,

33-35, 37-39, 41, 43-46, 54-55, 57, 60,
62, 70-71, 74, 84, 90, 92, 102, 114-117,
122-123, 128, 133, 138-139, 151, 157,
166, 171, 179, 185, 190, 196-199, 203,
218-222, 230, 234, 239, 242, 245-246,
249, 252-253, 265-266, 273, 298-299,
301-303, 305-309, 313-316, 319, 321-
324, 326, 328-331

syntax-semantics interface · 157, 218,
308, 314, 323, 330

T

template · 35-39, 42, 49, 82, 143, 146-
149, 173, 184, 192, 199, 202-203, 231-
232, 235, 242-243, 245-248, 253, 255-
257, 259, 261, 264, 266-269, 271-277,
280-282, 284, 299-300
subtemplate · 38-39

tense · 36, 49, 147, 157, 159-161, 176-
177, 184-185, 202, 208-209, 221-222,

INDEX 353

227, 232-233, 245, 248, 256-258, 262,
275-277, 282, 299, 317, 326

truth-functional · 13, 177-178
Turing machine · 14, 28
type · 16-19, 22, 27, 31, 36-38, 42-43,

45-47, 50, 52-55, 58-59, 68-69, 71-72,
79, 89-92, 94, 99-101, 105-106, 108-
111, 117-119, 122, 124, 126-127, 129-
130, 132-135, 137, 144, 146, 150-151,
154, 156, 165, 167, 169, 172, 175, 178,
180-181, 183-184, 189, 192, 200-201,
204, 228, 231, 233-234, 236, 238, 241,
246, 251, 253-254, 257-258, 266, 274-
275, 279-280, 286-287, 290-291, 293-
297, 300, 302-303, 305-306, 316-317,
319, 322-327
cancellation · 39-41, 47-56, 66, 70,

72-73, 76, 79, 82, 84, 87-89, 91, 95,
102, 109, 118, 120-122, 141-142,
144, 146-147, 150-151, 221

cancellation mode · 39-40, 89, 95, 121,
142

count invariance · 65, 109, 119, 123,
129

disharmonic composition · 54, 56, 93
flag · 38, 40-41, 48-49, 65, 68, 72-79,

81-86, 88-89, 91, 95, 98-99, 103-104,
118-119, 121, 187, 275-276

left rule · 52
merge mode · 41, 45, 48-50, 66, 68, 76,

79-82, 87, 91, 97, 102, 117, 122, 140
primary category · 39-41, 46, 48-49, 54,

59, 68-69, 72, 75-89, 91-92, 95-99,
103-105, 122-123, 140, 145

right rule · 52
secondary category · 39-40, 46, 48-49,

54, 56, 68-69, 72, 75-79, 81-92,
96-99, 103-104, 117, 122, 129, 140-
141

type coercion · 234, 251

U

unbounded dependencies · 236
undecidable · 187, 211, 213, 251, 258,

303
underspecification · 6, 133, 137, 170-172,

206-207, 212, 221-223, 225, 330
unification · 7-8, 22-23, 34-35, 37-44,

133-134, 139, 143-147, 149, 157, 170,
196, 198-199, 205, 207, 217, 220, 222-
223, 230-231, 233, 235-236, 239, 242,
244-247, 258, 260-266, 268, 270-273,
289, 298-300, 302-307, 313, 315-316,
319, 323-324, 326, 328, 330
graph unification · 199, 217, 239, 260

V

verbal constituent · 27
verb cluster · 30, 76, 81, 85, 90, 125, 129,

131
verb-second · 31, 43, 87, 274
veridicality · 317

W

wh · 36, 38, 72-75, 80, 82-84, 87-88, 92,
100, 103-104, 118, 121-122, 125, 129,
131, 140-143, 146, 202, 232, 243, 247,
256-257, 262, 282, 300

word order · 43, 70, 121, 221
worst case · 105, 126

	Cover
	ACKNOWLEDGEMENTS
	0. INTRODUCTION
	0.1 A language machine
	0.2 Language and computability
	0.3 The book

	1. SYNTAX: the game of recursion and discontinuity
	1.1 The need for syntax
	1.2 Forms of Dutch
	1.3 The task for syntax
	1.4 The logic and the algebra of lists, flags, types and modes
	1.5 The calculi
	1.6 The case for Dutch
	1.7 The grammar of discontinuity and coordination
	1.8 Parsing the syntax
	1.9 Generating by syntax: agendas and linearization

	2. SEMANTICS: the game of scope and intensionality
	2.1 The ways of meaning
	2.2 The forms of meaning
	2.3 Scope and specification
	2.4 Intensionality and semantic dependency
	2.5 Events and states: reification of predication
	2.6 Exploiting logical form for parsing
	2.7 Generating from logic

	3. LEXICON: the language’s encyclopaedia and database
	3.1 Storing knowledge of language
	3.2 Modes of lexical knowledge
	3.3 Unification: powering grammar conservatively
	3.4 The making of the lexicon
	3.5 Disclosing the lexicon: object-orientation and speed for semantic generation
	3.6 The lexicon while parsing

	4. GRAMMAR: the reward of incompleteness
	4.1 The three duals of grammar
	4.2 The conservativity of syntax
	4.3 The destructivity of semantics
	4.4 The denial of structure
	4.5 The mismatch of structure and meaning
	4.6 The lexicon as an oracle: the case of 'behalve'
	4.7 The incompleteness of grammar
	4.8 The fruit of incompleteness

	REFERENCES
	INDEX

