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A B S T R A C T  

 

 

It   is  shown  that  for  the  two  dimensional  Laplace 
equation  a  univariate  cubic  spline  approximation  in 
either  space  direction  together  with  a  difference 
approximation  in  the  other  leads  to  the  well-known 
nine-point  finite-difference  formula. 

For  harmonic  problems  defined  in  rectangular 
regions  this  property  provides  a means  of  determining 
with  ease  accurate  approximations  at  any  point  in  the 
region. 

 

 

 



 

2. 

1. Introduction
The  use  of  spline  approximations  for  partial  differential 

equations,  and  their  relationship  to  finite-difference 

schemes  is  considered by  Hoskins   (1970)  and  Sakai  (1970). 

Hoskins  considers  the  two  dimensional  Poisson  equation  and  shows 

 that  a  bivariate  cubic  Spline  approximation  leads  to  a  nine-point 

difference  formula   In  the  more  general  work  of  Sakai  multi-  

dimensional cardinal  splines  are  used  for  the  approximation  of 

various  elliptic  and  parabolic  partial  differential  equations. 

In  particular  Sakai  shows  that   his  spline  approximation  for  the 

two  dimensional  Poisson  equation  leads  to  the  nine-point  difference 

formula  of  Birkhoff,   Schultz  and  Varga  (1968). For  the  heat  conduction 

equation  in  one  space  dimension  the  Sakai  spline approximation 

produces  a particular  case  of  the  difference  scheme  obtained by 

Papamichael  and Whiteman  (1973)  in  which a cubic spline approximation 

for  the  space derivative  is  combined  with  a  difference  approximation 

for  the  t ime  derivative. 

In  the  present  paper  a  technique,   similar  to  the  above  of 

Papamichael  and  Whiteman  for  heat  conduction  problems,   is  developed 

for  harmonic  problems  in  rectangular  domains.     In  this  the  domain 

is  covered  with  a  square  mesh,  and  i t   is  shown  that  for  the  two 

dimensional  Laplace  equation  a  univariate  cubic  spline  approximation 

in  either  space  direction  together  with  a  standard  central  difference 

approximation  in  the  other  leads  to  the  well-known nine-point 

difference  formula.     Solution    of  the  resulting  l inear  difference 

system  produces  a  numerical  approximation  at  each  of  the  grid  points.  

The  cubic  spline/difference  replacement  of  the  Laplace  equation  is 



3. 
then  used  to   construct   a   doubly  cubic    spl ine  which  interpolates  

the  solut ion  of   the    d iscret ised  harmonic  problem.     We  remark  that  

the   parameters   which  determine  this   spl ine  are   g iven  a t   once  in  

terms  of   known  values   a t   the   gr id   points .    Thus,    once  the   f ini te-  

dif ference  solut ion  a t   the   mesh  points   i s   determined,   the   technique 

does  not   require   the   solut ion  of   any  other   l inear   system.  

Interpolat ion  of   harmonic  funct ions  is   usual ly   required  when 

conformal   t ransformation  methods  are   used  to   solve  numerical ly  

harmonic  boundary  value  problems  which  have  curved  boundaries  

and/or   contain   boundary  s ingular i t ies .    In   par t icular   the   cubic  

spl ine  technique  descr ibed  in   the   present   paper   may  be  used  in  

conjunct ion  with   a   conformal   t ransformation  method  which  maps 

the  domain    R    of   the   problem  onto  a   rectangle   R′ .    In   some 

cases   the   t ransformed  harmonic  problem  in     R′     has   a   s imple 

analyt ic   solut ion  which  is   determined  by  inspect ion;    see  

Whiteman  and  Papamichael   (1972) .    In   general   however ,   a   s tandard 

f ini te-difference  technique  is   used  to   determine  the   solut ion 

of   the   t ransformed  problem  a t   the   gr id   points   of   a   f ini te-difference 

mesh  covering  R′   .    The  f inal   solut ion,   which  is   of   course   required 

at   par t icular   points   of     R′   ,   i s   then  obtained by  interpolat ion 

between  the  known  values   a t   the   mesh  points   of   R′   .    An  example 

on  the   use   of   the   cubic   spl ine  technique  in   conjunct ion  with   a  

conformal   t ransformation  method  is   g iven  in   Sect ion  5 .  

2. Dir ichlet   Problems

To  es tabl ish  the   re la t ionship  between  the   cubic   spl ine/difference 

approximation  of   Laplace 's   equat ion  and  the   nine-point   d i f ference 
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formula    we  consider   the   harmonic   Dir ichlet   problem,  

Δ u(x,y)    =   0         ,  (x ,y)    ε   R,  

u(x,y)    =   f (x ,y) ,  (x ,y)    ε     ∂R, 

In   (1)   Δ   i s   the   Laplacian  operator ,   R is  an open domain 

with  a   rectangular   boundary  ∂R  so  that  

 

R ∂R  =   { (x ,y ) :       0  ≤  x  ≤  a,     0  ≤  y  ≤  b}, ∪

 

(1) 

 

a  and  b  being  positive  integers,    and  f(x,y)   is  a  given  function 

continuous  on  ∂R. 

In  order  to  discretise  the  problem we  cover  RU∂R  with 

the  square  mesh, 

(xi ,  y j)    =   (ih,jh),    i   =  0,1,   -------- ,    n   ;    j    =  0,1,. . . . ,m, 

where  nh  =  a  and  mh  =  b,   and  let  Ui ,  j   be  an  approximation  to  u(x,y) 

at  the  point   (x.,y.).    We  denote  by  Sj  (x)   the  cubic  spline  interpo- 

lating  the  values  of  U.    .    at   the  j th,   j    =   1,2,. . . ,m  -   1,   mesh  row 

and  approximate  Laplace's   equation  at  the  points   (xi ,yj)    by 

           ,)1j,iUj,i2U1j,i(U2h

1
j,iM ++−−−=       (2)

i   =   1,2,   . . . . ,    n-   1    ;    j    =   1,2,   . .  . .  ,m  -   1,  

where  M.    .=  (x.).      We  assume  that   (2)   is  also  satisfied  when js ′′

i   =  0,n,     and  thus  take 

             ,)1j,ifj,i2f1j,i(f2h

1
j,iM ++−−=                                                                   (3) 

i  =  0,n   ;  j  =  1,2,   ....,m  -   1, 
 

.)jY,if(Xj,ifWhere =
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For  the  j th,   j    =   1,2,, . . . ,   m  -   1,   row  the  results  of 
Ahlberg,  Wilson  and  Walsh  (1967)   show  that 

6h

3)1ix(x
j,iM

6h

3x)i(x
j,1iM(x)jS −−

+
−

−=

 

h
)xx(

)M
6

hU( i
j,1i

2

j,1i
−

−+ −−  

h
)xx(

)M
6

hU( 1i
j,i

2

j,i
−−

−                                (4) 

 

xi-1  ≤  x  ≤  x.   ,   i  =  1,2,...., n. 

 

Hence, 

,
h

j,iUj,1iU

j,1iM
6
h

j,iM
3
h)i(x'

jS
−+

++−−=+                                                          (5) 

i   =  0,1,. .  .  ,n  —  1, 

,
h

j,1iUj,iU

j,1iM
6
h

ji,M
3
h)i(x'

jS −−
+−+=−                                                            (6) 

 

i  =  1,2,   ....,  n, 

so  that  continuity  of  the  first  derivatives  implies 

 

          ,
h

j,1iUj,i2Uj,1iU

j,1iM
6
h

ji,M
3

2h
j,1iM

6
h ++−−

=+++−                                        (7) 

i   =   1,2,   , .  .  .  ,    n-1. 

 The  elimination  of  the  M' s  in  (7) ,   by  means  of  equation  (2),  
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gives  the  finite-difference  equation 

 

Dh  Ui, j   =  0,     i  =   1,2, ................ ,n  -   1  ;  j  =   1,2,................... ,m  -   1, 

 

(8) 

 

where  Dh   is  the  nine-point  difference  operator  defined  by 

Dh  a(x,y)   =  a{x-h,y+h)   +  4a(x,y+h)   +  a(x+h,y+h) 

                         +     4a(x-h,y)   -   20a(x,y)   +  4a(x+h,y) 

+  a(x-h,y-h)   +  4a(x,y-h)   +  a(x+h,y-h).  

We  now  le t   T i (y)   be   the   cubic   spl ine  interpolat ing  the  
values   Ui ,  j     a t   the   i th ,   i   -    1 ,2 , . . . . ,n   -   1 ,   mesh  column  and 
approximate   Laplace 's   equat ion  a t    (x i ,y j )   by 

          ,)j1,iUji,2Uj1,i(U2h

1
ji,N ++−−−=                                            (9) 

i  =   1,2,....,   n  —   1   ;   j   =   1,2, . ... ,  m  —   1, 

 where  Ni, j   =  T"i(y.).       Then,   corresponding  to   (3),   (4)   and  (7) 

respectively,  we  have 

                ,)j1,ifji,2fj1,i(f2h

1
ji,N ++−−−=                                                                (10) 

           i   =  1,2,   . . . . ,   n -  1   ;   j   = 0,  m, 



  7.    

6h

3)1jy(y

ji,N
6h

3y)j(y

1ji,N(y)iT −−
+

−

−=  

 

h

yjy
)1ji,N

6

2h
1ji,(U

−

−−−+  

 

(11)                       ,
h

1jyy
)ji,N

6

2h
ji,(U −−

−+

                                                                                                jYY1jY ≤≤−   ,      J=1,2,…,m, 

                                                                                                                             

                     and 

          
h

1j,iUji,2U1ji,U
1I,JN

6
h

ji,N
3
h21ji,N

6
h ++−−

=+++−  

                                                                                                                      (12) 

         j   =  1,2,. . . .  ,  m-1. 
 

The  elimination  of the  N's  in  (12),  by means  of  (9),  gives  again 

the  equation  (8).  It  is  thus  shown  that  the  cubic  spline/difference 

replacements  (2)  and  (9)  to  the  Laplace  equation both produce  the 

well-known  nine-point  difference  approximation  (8)  which has  local 

truncation  error  of  order  h6   ;   see  e.g.  Forsythe  and  Wasow   (1960,  p.194) . 

 

 

3. Cubic  Spline  Interpolation.

The  application  of  (8)  at  each  internal  mesh  point,  together 

with  the  boundary  conditions  of  (1),  leads  to  a positive  definite 

diagonally  dominant  linear  system  of  {(n-l)x(m-l)}  equations  which 

is  solved  for  the  unknowns  Ui,  j   ,  i  =  1(l)n  -  1,  j  =  1(l)m  -  1. 

Formulae  (2)- (U)  and  (9)- (11)  then produce  the  cubic  splines 

Sj.(x)  and Ti.(y)  which  approximate  respectively  the  solution  u(x,yj) 
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at  the  jth  mesh  row  and  the  solution  u(xi ,y)  at  the  ith 

mesh  column. 

We  note  that, 

 

Dh Sj (x)  =  DhU (x,yj)  =  0 ,                                                 

                              (13) 

xi-1  ≤  x  ≤ xi  ,  i = 2,3 , . . .  , n - 1 ; j = 2,3 , . . . ,m - 2, 

 

and , 

Dh Ti (y)   =  Dh U(xi ,y)   =  0, 

 
yj - 1   ≤  y ≤  y j   ,  j  = 2,3, .  .  .  ,  n-1 ;   j  =  2,3,….,m-2, 

  

(14) 

These  follow  at  once  from  ( 4 ) ,    (11)  and  (8)   since, 

DhMi ,  j      = - 1/h
2{Dh Ui , j - 1    -  2Dh Ui ,  j   + Dh Ui , j + 1  } =  0  ,  

 

i  = 1,2,…..,  n - 1   ;  j  =2,3,….. ,m - 2, 

and, 

DhNi ,  j      = - 1/h
2{DhUi - 1 , j   -  2DhUi  j    + Dh Ui + 1 , j}     = 0   ,  

 

i  = 2,3,. . . . ,n-2  ;   j  —  1,2, .  …, m -  1. 
 

We  now  describe  a  method  for  interpolating  the  solution  of  (1) 

at  any  point  (x,y)ε   R.  For  this  we  let  r i ,  j   be  the  square 

 

ri, j =  {(x,y):  xi-1 ≤  x  ≤  xi, yj-1  ≤ y  ≤  yj}   

i=1,2….,n , ; j=1,2,…..,m,       
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and  consider  three  procedures,  each  dealing  with  a  different 
part  of  R. 

Procedure    I ,  

Used  for  (x,y) ε  r i ,  j   ,     i   -    1,2,. . . . ,n   ;   j   =  2,3,. . . . ,m  -   1,  
 

        We  determine the six values 

Ti - 1  (y  + kh)     ,  k  =  -  1,0,1  ,  

                               Ti  (y  +  kh), 
and  hence,  using  the  approximations  of  Section  2,  we  calculate  U(x,y) 

from     the  cubic  spline    interpolating  the   values  U(xi ,y),         i -  0,1,2,...,n. 

Thus,  we  take  (see  equation  (4)) , 

U(x,y)   =  Q1 (x,y) 

6h

3)1ix(x
i(y)M

6h

3x)i(x
(y)1iM −−

+
−

−=  

h

x)i(x
(y))1iM

6

2h(y)1i(T
−

−−−+  

,
h

)1ix(x
(y))iM

6

2h
i(y)(T −−

−+  

(x,y)  ε   r i  , j  ,  

where 

Mi  (y)  =  -  2

1
h

  {Ti  (y-h)  -   2Ti (y)  +  Ti (y+h)}, 

  

with 

T0(y)   =  f(0,y)   and  Tn(y)  =  f(a,y).  



We  note  that ,  

Q1  (  x,yj  )    =  Sj    (x)   and  Q1  (xi  ,y)  =  Ti (y) .  

Procedure  II .  

Used  for  (x,y) ε  r i  , j    ,    i   =  2,3 , . . . ,n  -    1   ;   j   =  1,2,. . . . ,m. 
The  value  of  U(x,y)   is  obtained  by  interchanging  the  roles  of 

x  and  y  in  the  technique  of  Procedure  I .      Thus,  we  determine  the  six 

values 

Si - 1   (x  +  kh)   ,  

k  =  -   1,0,1, 
Sj  (x  +  kh)      ,  

 

and  hence  calculate  U(x,y)   from 

U(x,y)  =  Q2(x,y) 

3

6h

)1jy(y
(x)jN

6h

3y)j(y
(x)1jN −−

+
−

−=  

h

y)j(y
(x))1jN

6

2h(x)1j(S
−

−−−+  

,ji,ry)(x,,
h

)1jy(y
(x))jN

6

2h(x)j(S ∈
−−

−+  

where, 

N j  (x)   =  -   1 /h
2{S j  (x-h)   -   2Sj (x)   +  S j  (x+h)}   ,  

 

with 

S0  (x)   =  f(x,0)   and  S m   (x)  =  f(x ,  b).  
  

Again  we  note  that,  

Q2 (x ,y  )   =  S j  (x)   and  Q2 (x ,y)  =  Ti (y) . 
 

10. 
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The  functions  Q1 (x,y)   and  Q2   (x,y)   are  bicubic   in  each 

mesh   square  r i  , j    of   the   rectangles 

 

R1  =  {(x,y):   0  ≤   x  ≤   a,   h ≤   y ≤   b - h}   ,  

and 

R2 = {(x,y):   h ≤  x ≤  a -  h,  0 ≤  y ≤  b}, 
 

respectively.     By  use  of  the  continuity  properties  of  Sj  (x)   and 

Tj (y),  it  can  be  shown  that  Q1 (x ,y)   is  in  C4
2  (R1 )   and  Q2 (x ,y)   is  in 

C4
2 (R2).     (By  the  terminology  of  Ah l be r g   et  al.(l967,  P-235)   C n 

r (R) 

is  the  family  of   functions   F(x ,  y)  on  R  whose   n th  order   partial 

der iva t ives ,   involv ing   no   more   than  r  th   o rder   d i f fe ren t ia t ion   wi th  

respect  to  a  single  variable,  exist  and  are  continuous.)     It   follows 

that  Q1 (x,y)   and  Q2 (x,y)  are  "simple  double  cubic  splines"  interpo- 

lating  the  values  Ui,j   at  the  mesh  points  of  R1    and  R2    respectively; 

see  Ahlberg  et  al .    (1967,  p.235-39).  Also,   i t   can  be  shown  that,  

 

Q1 (x,y)  =  Q2(x,y),  (x,y) ε   R1∩R2 ,  

 

and,  by means  of  (13)  and  (14),  that 

 

Dh U(x,y)   =  0, (x,y) ε    r i  , j  ,                          

(15) 

i   =  3,4, . . . .  ,n  -   2   ;   j   =  3, 4,. . .  . ,m  -  2.  

 

Procedure  III .

Used  for   (x,y) ε   r i  , j    . ,    i   =  1,n  ;   j   =  1,m. 
 

We  assume  that  (15)  holds  for  (x,y) ε   R1∩R2     and  use  this 

nine-point  formula  to  express  U(x,y)   in  terms  of  values  that 
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can  be  interpolated  by  means  of  Procedure  1  or  II.      Thus,   if  

(x,y)  =  (ph,qh)   ε   r i , j      ,      i   =  1,n  ;   j   =   1,m, 

 

we  take 

 

Up,q      =  -  (  4UP +α , q  + Up + 2α , q  )  

 

-   (4Up , q + ß   -   20Up +α ,  q +  ß  + 4Up + 2α ,  q +  ß  )  

 

-   (Up , q + 2 ß + 4Up +α ,  q + 2 ß  + Up + 2α ,  q + 2 ß  )    ,  

 

where  Uk ,  ℓ   = U(kh,ℓh)  and  α   =  1  when  i   =  1,  α   =  -   1  when  i   =  n, 

β  =    1  when  j   =  1   and  β   =   -   1  when  j   =  m. 
To  summarize  the  above  we  note  that  the  value  U(x,y)  approxi- 

mating  the   solution  u(x,y)  at  any  point  (x,y)   ε   R  may  be   calculated 

by  using, 

(a) Procedure  I ,    if   (x.,y)  ε   R1  ,  

(b)  Procedure  I I ,   i f   (x ,y)ε   r i , j ,    i   =   2 ,3 , . . . ,n   -   1 ;   j   =   1  ,m,  

(c) Procedure  III,    if   (x,y)   ε   r i  , j  ,    i   =   1 ,n   ;   j    =   1 ,m, 

or  by  using, 

(a) Procedure  II,    if   (x,y)   ε   R2, 

(b) Procedure  I ,   if   (x,y)   ε   r i , j  ,   i   =   1 ,n;  j   = 2,3,  . .  . .  ,m -1, 

(c) Procedure  III,   if   (x,y) ε    r i , j  ,    i  =  1,n  ;   j   =  1,m. 

  

  Since  when  (x,y) ε   R1∩R2 ,  Q1 (x,y)  =  Q2(x,y),    i t   is  clear  that  for 

 any  (x,y)  ε   R   both  the  above  two  methods  produce  the  same  result.  

bemay
x

y)u(x,
∂

∂  For  (x,y)  ε   R1  ∪  R2  approximations  to 
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determined  from,

  ,
h
1(y))iM

6

2h(y)i(T
h
1(y))1iM

6

2h(y)1i(T −+−−−−  

if  ( x , y )  ε  ri ,j,  ri ,j ε  R1,  and  from. 

 

 

 

if  ( x ,y )  ε  ri-j   ,  i  =  2,3, --------------- ,  n  -  1   ;  j  =  1 ,m.  In  (17) 

jN ′  (X)  =  - 2h

1   {  (x-h)-  2jS ′ jS ′  (x)  +  jS ′  (x+h)}  , 

and  .(x)  is  found  by    differentiating (4)  with  respect   to  x. jS ′

To  determine  an  approximation  to 
x

yxu
∂

∂ ),(  at  a  point 

(x,y)ε  ri ,j  i =  1 ,n  ;  j  =  1 ,m,  we  note  that 

 (x,y)  ε ri ,j                                                                                    (18) 

 

i  =  3,4,.... ,n  -  2  ;  j  =  3,4,   ... ,m  -  2. 

 we  assume  that  formula  (18)  holds  for  any  (x,y)ε  R1∩R2     and use  it,

as  in  Procedure  III,  to  express   
x

y)u(x,
∂

∂  in  terms  of values  that 

 

2

2h

)1ix(x
(y)iM

2h

2x)i(x
(y)1iM

x

y)(x,1Q

x
y)U(x, −−

+
−

−−=
∂

∂
=

∂
∂  

(16) 

(17)
3

6h

)1-jy(y
(x)jN

6h

3y)j(y
(x)1-jN

x

y)(x,2Q

x
y)U(x,

∂

−
′+

−
′−=

∂

∂
=

∂  

,
h

)1jy(y
(x))jN

6

2h(x)jS(
h

yjy
(x))1jN

6
h2(x)1jS( −−

′−′+
−

−′−−′−  

,0
x

y)u(x,
hD =

∂
∂  
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can  be  calculated  by means  of  (16)  and  (17). 

 

manner  from, 

 

if   (x,y) ε   r i  , j      ,     i   =  1,n  ;   j   =  2,3,. . . ,m  -  1,  

 

and  by  using, 

 

4.        Mixed  Boundary  Value  Problems

To  il lustrate  the  application  of the  technique  to mixed 
boundary value  problems  we  consider  the  problem  (1)  but  on  the 
side 

∂R*  =  {(0,y):   0  <  y  <  b  } 

 

of ∂R we  replace  the  Dirichlet  boundary  condition by  a Neumann 
condition.  Thus,  we  consider  the  harmonic  problem, 

Δu(x,y)  =  0  ,  (x,y)ε  R ,  

                 g(y),
x

y)u(x,
=

∂
∂                                            (x,y)ε ∂R*   , 

 

 

 

(19) 

u(x,y)  =  f(x,y),                                        (x,y)ε  ∂R  - ∂R*  , 

Approximations  to  
x

y)u(x,
∂

∂ are determined in a similar 

,
y

y)(x,1Q

y
y)U(x,,2Ry)if(x,,

y

y)(x,2Q

x
y)U(x,

∂

∂
=

∂
∂

∈
∂

∂
=

∂
∂  

m.1,jn;1,i,ji,ry)if(x,0,
x

y)U(x,
hD ==∈=

∂
∂
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where  g(y)  is  a  given  function  continuous  on  ∂R*  .  

All  approximations  and  results  of  Section  2  stil l   hold 
except  (3)     for  which  we  have ,  

M0 , j   =  -
2

1
h

   (U0  , j - 1    -   2Uo  , j    +  Uo  , j + 1) ,  

 

(20) 

and, 

Mn ,  j   =  -
2

1
h

 (fn , j - 1   -   2fn , j   +  fn , j + 1)  ,   j  = 1,2 ,  .  .  .  ,  m-1 ,  

 

where  the  Uo  , j  ,  j   =   1(1)m  -   1,    are  not  known  and  must  be  determined. 

The  boundary  condition  (19)  is  approximated  at  the  point 
(0, y.)  by 

 

S'j (0)  =  gj , j  =  1,2, . . . ,m  -  1, 

 

or,  on  using  (5),  by 

(21) 

.jg
h

j0,Uj1,U

j1,M
6
h

j0,M
3
h

=
−

+−−

The elimination of the M's  in  (21),  by  means  of  (2)   and  (20), 

gives  the  finite-difference  equation 

          2Uo  , j + 1   + U1 , j + 1   -   10Uo  , j   +  4U1  , j   +  2Uo  , j - 1   +  U1  , j - 1   =  6hgj ,                      (22) 

                                                                         j  =  1,2,. . . .  ,m  -  1   ,  
approximating  the  solution  of  the  problem  at  the  boundary  points 

( 0 ,  yj  ) .     The  approximation  (22)  has  local  truncation  error  of 
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order  h4     and  is   equivalent  to  using  the  difference  approximation 
 

)},1j1,U1j1,(U)j1,Uj1,4(U)1j1,U1j1,{U
12h

1
−−−−+−−++−−+  

 

fo r   the   der iva t ive   in   (19) ,   in   conjunc t ion   wi th   the   n ine-poin t  

formula  applied  at  the  point   (0,yj) .  

The   appl ica t ion   o f   (22)    a t   the    (m  -    1 )   boundary   po in ts  

( 0 ,  y ) ,    j   =   1 (1)  m  -   1,   and  of  the  nine-point  formula  at  the 

internal  mesh  points  leads  to  a  l inear  system  of  nx(m  -   1)   equations 

which  is  solved  for  the  unknowns  Ui  , j  ,  i   =  0(1)n  -    1 ;  j   =  1(1)m  -  1.  

The  technique  of  Section  3  is  then           used  to  interpolate 

U(x,y)    a t   any  point    (x ,y)ε   R U ∂R*  f rom  the  values   Ui  , j   a t   the   mesh 

points.  However, for (x,y)ε  r1 , j  ,  r1 , j   ε  R ,  the determination of 

U(x,y) from the double cubic spline Q1(x,y) requires the knowledge 

of 

To(y)  =  U(0,y) 

and 

Mo (y)   =  -  
2

1
h

{U(0,y-h)  -   2U(0,y)   +  U(0,y+h)} .  

 

Since  Ti (y)   is  not  defined  for  i   = 0,   the  unknowns  U(0,y)   and 
Mo  (y)   are  determined  as  follows. 

The  boundary  condition  (19)   is  approximated  at  the  point 
(0,y)   by 

g(y)
x

y)(0,1Q
=

∂

∂
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or,    on  using   (l6),by 

hg(y).y)U(0,(y)1T(y)1M
6

2h(y)0M
3

2h
=−+−− (23) 

Equation  (23)  together  with 

0,(y)2T(y)12Ty)U(0,(y)2M
6

2h(y)1M
3

2h2(y)0M
6

2h
=−+−++  (24) 

then  gives  the  two  relations 

3U(0,y)  = 7/6h2M1(y)   + 
3

2h M2(y)   + 5T1 (y)  -   2T2(y)  -   hg(y),  

and 

3h2Mo (y)   =  -5h2M1(y)  -   h2M2(y)  -6T1(7)  +  6T2(y)  -   6hg(y), 
 

which  express    the     unknowns  U(0,y)   and  Mo  (y)   in  terms  of  values 

that  can  be  determined  from  the  cubic  splines  T1 (y)  and  T2  (y).  

We  remark  that   (24),  which  follows  at  once  from  the  construction 

of  Q1  (x,y)   and  can  be  verified  easily  by  means  of  (14) ,    is  the 

continuity  relation  which  shows  that 

 

 
x

y),1(x1Q

x

y),1(x1Q

∂

+∂
=

∂

−∂
 

 

The  application  of  the  technique  to  problems  with  Neumann 

conditions  on  any  of  the  other  three  sides  of  ∂R  is  clear.  
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5.      Numerical  Results,  

Problem  1,   (Dirichlet  Problem) 

 

Δu(x,y)  =  0, (x,y)ε   R, 

u(x,y)  =  cosxsinhy, (x,y)ε   ∂R, 

 

where,        R U  ∂R   =  {(x,y)  :   0  ≤   x  ≤   1,     0  ≤   y  ≤   1}  .  

 

A  square  mesh  of  size  h  =  0.2  is  used.  The  finite-difference 

solution  computed   by  applying the  nine-point  formula  at  the  interior 

mesh  points,  

(0.2i,   0.2j)   ,  i   =  1(1)4     ;      j   =  1(1)4   ,  

 

is  accurate  to  eight  significant  figures. 

Numerical  results  obtained by  the  cubic  spline  technique 

at  the  points 

 

(  0.1i,   0.lj)   ,         i   =  1(1)9    ;     j   =  1(2)9  ,  

 

        are  given  in  Table  1.    They  are  compared with: 

(i)     values  computed from the  analytic  solution 

and, 

(ii)   values  obtained by  interpolating the  results  at   the mesh 

points  using  the  bivariate  interpolation  formula, 

j1,iF
2

1)p(p
1ji,F

2
1)q(qqh)jyph,i(xF~ −

−
+−

−
=++  

j1,iF
2

1)2qp(p
ji,)F2q2ppq(1 +

+−
+−−++  

(25)               ,1j1,iF pq1ji,F
2

1)2pq(q
++++

+−
+

 

     |  p |  < 1.   |  q |  < 1,  
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of  Abramowitz   and  Stegun   (1965,   eqn.25.2.67).      Formula   (25), 

which  determines   an  approximation F~  (x,y)   to   F(x,y)   in  terms   of 

values  of  F(x,y)   at    six  grid  points   of  a  square  mesh,   has 

truncation  error 

             ep ,  q     =  F(xi  +  ph,yj    +  qh)   -  F~  (xi    +  ph,yj   +   qh)   ,  

 

of  order  h3   .       However,   when  F(x,y)   is   harmonic   and  p  =   q  =   ½   the 

order   of  the  truncation  error  rises  to  h4   .      In  particular  with, 

F(x,y)   =  u(x,y)   =  cos x  sinh  y   ,  

and  h  =   0.2, 

sinhycosx 4100.52y2x

u44h
32
1Ω

2
1,2

1e −=
∂∂

∂
−  

 

whereas, 

 coshy.cosx  310  0.53y

u33h
16
1Ω

2
10,

e −−=
∂

∂
−  

The  last  two   equations  explain    why  the  results  obtained  "by  the 
use  of  (25)   at  the  points,  

(0.11,   0.1j)   ,    i   =   1(2)  9  5   j    =   1 (2)  9  ,  
 

are  much  more  accurate  than  those  obtained  at  the  points,  

(0.2i,    O.lj)    ,      i   =   1(1)4   ;   j   =   1(2)9. 

 

Problem  2   (Mixed  Boundary  Value  Problem) 

Au(x,y)   =   0   ,  (x,y) ε  R    ,  

,*Ry)(x,                                      y,cosh  
x

y)u(x, ∂∈=
∂

∂

u(x,y)   =  sin x cosh   y, (x,y) ε  ∂R - ∂R* ,  



where 

∂R*  =   {(0,y)   :     0   <  y   <   1}      ,  

and, 

R  U ∂R  =    { (x ,y )    :0  ≤  x  ≤  1 ;0  ≤  y  ≤  1} .  

 

A  square  mesh  of  size  h  =  0.2  is  used.     The  finite-difference 

solution  computed    by  applying  the  nine-point   formula  at  the 

interior  mesh  points,  

(0.2i   ,    0.2j)    ,       i    =   1(1)4   ;    j    =   1(1}4, 

and  formula   (22)   at   the  boundary  points 

 

(0,  0.2j)    ,    j    -    1(1)4, 

 

is  accurate  to  five   significant  figures. 

Numerical  results  obtained  by  the  cubic   spline  technique 

at  the  points 

(0.1i   ,    0.1j)   ,         i   =  0(1)9   ;    j    =   1(2)9, 

 

are  given  in  Table  2  and  are  compared  with  values   computed 

from  the  analytic   solution. 

To   i l lustrate  the  use  of  the   cubic   spline  technique   in 

conjunction  with  a   conformal  transformation  method  we   consider 

the  following  harmonic  problem. 

Problem  3.

Δu(x,y)   =  0, (x,y)ε  R, 

u(x,y)    =    1,  (x,y)ε  ∂R1, 

u(x,y)   =     0,  (x,y)ε  ∂R2, 

 

where  R   is   the   semi-circular  open   domain 

R  =  {(x,y)  :     x2  +  y2  <   1   ,    |x |    <   1,   y  >  0}   ,  

20. 
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with  boundary     ∂R  =   ∂R1 U ∂R2       where, 

∂R1   =  {(x,y)  :     x2  +  y2  =   1   ,    jx|    <   1,  y  >  0}   ,   

 
and ∂R2   =  ABC -  {(x,0)  :     |x |    <   1}   , 

with    A   =   ( 1 , 0 ) ,   B   =   ( 0 , 0 )    a n d   C   = ( - 1 , 0 ) .  

 

The  three  successive  conformal  transformations, 

(26) 

and 

),
2

1,2
1

(t1sn
)

2
1k(

1w                       −=′
                                                       (28)

w h e r e  s n  d e n o t e s  t h e  J a c o b i a n  e l l i p t i c  s i n e  a n d  K ( t / / 2 )  i s  t h e  

c o m p l e t e  e l l i p t i c  i n t e g r a l  o f  t h e  f i r s t  k i n d  w i t h  m o d u l u s  1 / √ 2 ,  

are  used  to  map  G  =  R U ∂R  in  the  w  =  x  +  iy  -   plane  onto  the  square 

                           =  ∂  G ′ R′ U R′ =  {(ξ ,  n)  :    o ≤  ξ   ,   ≤  1}    ,  

in  the      =  ξ   +  in -   plane  with w′

         planewplanew −′−  

A                      (0,0), 

,
2

w1
w1z

⎭
⎬
⎫

⎩
⎨
⎧

−
+

=

z1
1t
−

=         ,                                                                                         (27) 

                                                              B                     (0,1), 

                                                              C                        (1,0). 
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Thus  the  combined  effect  of  (26)   ,  (27)   and  (28)   is  to  transform 

the  original  problem  in    G    into  the  problem 

 

Δv(ξ ,n)   =  0   , (ξ ,n) ε  R ′   , 

v (ξ , n )    =   1   , ( ξ , n ) ε  1R ′∂    , 

v ( £ , n )   =  0   , (ξ ,n)ε   2R ′∂   , 

 

in  =   U ∂G ′ R′ R′ 2     where     ∂ =   ∂R′ R′ 1   U ∂ R′ 2       and 
 

∂ R′ 1      =   {(ξ ,0)   :        0  <   ξ    <   1}   ,         ∂ 2R′  =   ∂ R′   -     ∂    1R′

Full  computational  details  for  the  implementation  of  the  above 

conformal  transformation  method  are  given  in  Whiteman  and 

Papamichael   (1972).  

The  boundary  values  of  the  transformed  problems  have  jump 

discontinuities  at  the  corners   (0,0)   and  (1,0)   of  ∂ R′ .   A  detailed 

discussion  on  techniques  for  removing  such  discontinuities  from 

the  boundary  conditions  of  harmonic  problem,    in  rectangular 

regions  is  given  by  Rosser  (1973).     In  the  present  case  we 

introduce  the  harmonic  function 

 

 

 

 

(29) 

)},
η
ε1arctan()

η
ε{arctan(

π
2v(V( −

+−= )n,ε)n,ε (30) 

and  instead  of  (29)  we  consider  the  problem 

 

where

ΔV(ξ,n)  =  0     , 
  
V(ξ n)   =    -  1   , 
 
V(£,n)   =  f(ξ,n),

(ξ,n)ε R' 
 , 
(ξ,n)ε    ∂ 1R′ , 
 
(ξ,n)ε    ∂ 2R′ , 
     

 

(31) 

)}.
η
ε1arctan()

η
ε{arctan(

π
2 ,f( −

+−=ε )η



 
The  nine-point  formula  is  used  to  determine  approximations 

ji,V~  to  the  solution  of  (31)   at  the  mesh  points 

( 0 .2 i , 0 . 2 j )    ,     i  =  1(1)1+     ;     j  =  1 ( 1 )  4 ,  
 

of  a  square  mesh,  of  size  h =   0.2,  covering  G ′ .     The  solution 

of  the  original  problem  is  of  course  required  in  R.     To  determine 

an  approximation  to  this  solution  at  a  specific  point  P  =  (x,y) ε  R, 

P  is  mapped  into  the  point   ε   p′ R′ .    Since  p′   will   not  in  general  be 

a  point  of  the  finite-difference  mesh  covering  G ′  ,    the  cubic  spline 

technique  is  used  to  compute  an  approximation  to  V( p′  )     in  terms  of 

the  known  values ji,V~  at  the  mesh  points  in  G ′  .    An  approximation   to 

u(P) =  v (  )     is  then  found  by means  of  (30). p′

Numerical  approximations  to  u(x,y)  obtained  by  using  the 

conformal  transformation  method  (CTM)  in  conjunction  with the 

cubic  spline  technique  are  given  in  Table  3.     The  results  are 

given  at  the  points,  

 

       (0.li   ,0.1j)     ,      i   =  0(1)9    ;      j   =  1(2)9, 

 

of  the  quadrant 

               

              { (x,y)  :     x2  +  y2    <  1,      x  >  0,    y  >  0}   , 

 

of  R  and  are  compared  with 

(i)    values  computed  from the  analytic  solution,  

 

u(x,y)  =  arctan{2y/(1  -x2   -y2  )}, 

and, 

            (i i)      values  computed  by  using  formula  (25)  to  interpolate 

the  finite-difference  approximations .Gin   ji,V~ ′  

23. 



We   remark  that  when  a  square  mesh  of  size  h  =   0. 1 

 is   used    to    determine  the    finite-difference   solution    of 

(31)   and  to  perform  the  cubic   spline   interpolation   in  G   ,  the ′

approximations   U(x,y)   to  u(x,y)   computed  at  the  points   of 

Table  3   are   such  that 

|u(x,y)   -   u(x,y)|    ≤   2  x   10- 6 .  



 

 

 

At  each  point  the 
numbers  represent: 

(i)  Upper  entry: 
Value  computed,  by 
Spline  Interpolation 

(ii)Middle  entry: 
Value  computed  from 
the  Analytic  Solution 

( i i i )   Lover  entry: 
Value  computed  by 
using  Interpolation 

Formula  25. 

 

   y 

0.9 

 

 

0.7 
 

 

 

0.5 

 

 

0.3 
 

 

 

0.1 

 

  1.021361 1.006051 0.980663 0.945481 0.900848 0.847217 0.785119 0.715178 0.638074 

 

 1.021388
 1.021342 
  
0.754789 

1.006055
1.006723
 
0.743459

0.980669 
0.980624 

 
0.724697 

0.945485
0.946112 
 
0.698699 

0.900853
0.900811 
 
0.665714 

0.847221
0.847357 
 
0.626084 

0.785123 
0.785086 
 
0.580192 

0.715181
0.715656 
 
0.528508 

0.638093 
0.638062 
 
0.471540 

 

0.754794 
0.754761 

 
0.518489

0.743463
0.744053

 
0.510706

0.724703
0.724670 

 
0.497817 

0.698702
0.699257

 
0.479959

0.665720
0.665689 

 
0.457300

0.626086
0.626277 

 
0.430077

0.580197 
0.580170 

 
0.398552 

0.528510
0.528930 

 
0.363049 

0.471543 
0.471521 

 
0.323916 

 

0.518492
0.518470 

 
 

0.302997

0.510708
0.511244

 
 

0.298449

0.497821
0.4 97800 

 
 

0.290917

0.479961
0.480464

  
  

0.280481

0.457304
0.457284 

 
  

0.267239

0.430079
0.430333 

 
 

0.251330

0.398556 
0.398538 

 
 

0.232908

0.363051
0.363432 

 
 

0.212160

0.323918 
0.323903 

 
 

0.189292

 

0.302999
0.302987 

 
 

0.099662

0.298450
0.298954

 
 

0.098170

0.290919
0.290908 

 
 

0.095692 

0.280482
0.280955

 
 

0.092259

0.267242
0.267231 

 
 

0.087904 

0.251331
0.251659 

 
 

0.082671

0.232910 
0.232901 

 
 

0.076611 

0.212161 
0.212519 

 
 

0.069787 

0.189293 
0.189285 

 
 

0.062262 

 

0.099666 
0.099658 
 
 
 

0.098170
0.097671

 
 
 

0.095693 
0.095685 
 
 
 

0.092260
0.091791 

 
 
 

0.087905
0.087897 

 
 
 

0.082671 
0.082155 

 
 
 

0.076612 
0.076605 

 
 
 

0.069787
0.069432 

 
 
 

0.062265 
0.062259 
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At  each  point  the 
numbers  represent: 

(i)  Upper  entry: 
Value  computed  by 
Spline  Interpolation 

(ii)  Lower  entry: 
Value  computed  from 
the  Analytic  Solution, 
 

 

0.9 

0.7 

0.5 

0.3 

0.1 

 

0.000000 0.143062 0.284708 0.423503 0.558067 O.687054 0.809178 0.923214 1.028029 1.122545 

0.000000 
 
 
-0.000004

0.143070 
 
 
0.125304 

0.284710 
 
 
0.249361 

0.423506
 
 
0.370923 

0.558070 
 
 
0.488783 

0.687058 
 
 
0.601754 

0.809181
 
 
0.708718

0.923220 
 
 
0.808595 

1.028033 
 
 
0.900399 

1.122575 
 
 
0.983202 

0.000000 
 
 
 
-0.000004

0.125308
 
 
 
0.112571

0.249364 
 
 
 
0.224022

0.370928
 
 
 
0.333232

0.488786 
 
 
 
0. 439115

0.601760 
 
 
 
0.540607

0.708722
 
 
 
0.636702

0.808602 
 
 
 
0.726430

0.900403 
 
 
 
0.808906

0.983208 
 
 
 
0.883294 

0.000000 
 
 
-0.000003

0.112575
 
 
0.104357 

0.224025 
 
 
0.207674 

0.333236
 
 
0.308915 

0.439118 
 
 
0.4 07071 

0.540612 
 
 
0.5401157 

0.636706
 
 
0.59024 

0.726437 
 
 
0.673420 

0.808909 
 
 
0.74 9877 

0.883300 
 
 
0.818837 

0.000000 
 
 
 
0.000000

0.104360 
 
 
 
0.100328

0.207677 
 
 
 
0.199662

0.308919
 
 
 
0.196997

0.407074 
 
 
 
0.391365 

0.501162 
 
 
 
0.4 81821

0.590243
 
 
 
0.567466

0.673426 
 
 
 
0.647437

0.749880 
 
 
 
0.720943

0.818842 
  
 
 
0.787225 

0.000000 0.100333 0.199664 0.296999 0.391367 0.4 81825 0.567468 0.647441 0.720946 0.787247 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0    
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(i)  Upper  entry:    CTM 
and Cubic  Spline  Interpolation. 

 

 

  TABLE    3 

 

0.933048   0.936548        0.947070   0.964668 0.989390     

0.933049 
0.932845 
 
 
0.777599 

0.936549 
0.936650 
 
 
0.781623 

0.947071 
0.947007 
 
 
0.793802 

0.964669 
0.964195 
 
 
0.814450 

0.989391 
0.988604 
 
 
0.844039 

 
 
 
 
0.883101 

 
 
 
 
0.932049 

 
 
 
 
0.990906 

 

Y 

0.9 

 

 

0.7 

 

0.5 

0.777600 
0.777724 
 
0.590334 

0.781624 
0.782069 
 
0.594428 

0.793804 
0.793932 
 
0.606946 

0.814453 
0.814371 
 
0.628611 

0.844042 
0.843836 
 
0.660658 

0.883102 
0.882845 
 
0.704830 

0.932050 
0.931798 
 
0.763263 

0.990906 
0.990701 
 
0.838057 

 
 
 
0.930249 

  

(iii)  Lover  entry:    CTM 
and Interpolation Formula  (25). 

At  each point  the  numbers 
were  computed from; 

(ii)  Middle  entry:  Analytic 
Solution. 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 
 

0.894857
0.894863
0.894188 

 

0.533457
0.533475
0.533287 

 

 

0.3 

 

 

0.1 

 

0.590334 
0.590285 

0.371093 

0.594428 
0.594386 

0.374329 

0.606947 
0.606917 

0.384354 

0.628613 
0.628622 

0.402145 

0.660660 
0.660775 

0.429551 

0.704833 
0.705133 

0.469692 

0.763269 
0.763553 

0.527631 

0.838064 
0.838015 

0.611167 

0.930252 
0.929809 

0.730782 

0.371094 
0.370909 

0.126906 

0.374334 
0.374392 

0.128156 

0.384359 
0.384217 

0.132089 

0.402147 
0.401971 

0.139202 

0.429553 
0.429615 

0.150529 

0.469708 
0.469804 

0.168035 

0.527662 
0.527675 

0.195649   

0.611200 
0.611050 

0.242178 

0.730803 
0.730423 

0.330453 

0.126902 
0.126880 

0.128162 
0.128021 

0.132096 
0.132744 

0.139209 
0.139110 

0.150533 
0.150448 

0.168045 
0.168123 

0.195695  
0.195759   

0.242238 
0.242282 

0.330499 
0.330466 

27. 
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