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ABSTRACT

It is shown that for the two dimensional Laplace
equation a univariate cubic spline approximation in
either space direction together with a difference
approximation in the other leads to the well-known
nine-point finite-difference formula.

For harmonic problems defined in rectangular
regions this property provides a means of determining
with ease accurate approximations at any point in the
region.




Introduction

The use of spline approximations for partial differential
equations, and their relationship to finite-difference
schemes is considered by Hoskins (1970) and Sakai (1970).

Hoskins considers the two dimensional Poisson equation and shows
that a bivariate cubic Spline approximation leads to a nine-point
difference formula In the more general work of Sakai multi-
dimensional cardinal splines are used for the approximation of
various elliptic and parabolic partial differential equations.

In particular Sakai shows that his spline approximation for the

two dimensional Poisson equation leads to the nine-point difference
formula of Birkhoff, Schultz and Varga (1968). For the heat conduction
equation in one space dimension the Sakai spline approximation
produces a particular case of the difference scheme obtained by
Papamichael and Whiteman (1973) in which a cubic spline approximation
for the space derivative is combined with a difference approximation
for the time derivative.

In the present paper a technique, similar to the above of
Papamichael and Whiteman for heat conduction problems, is developed
for harmonic problems in rectangular domains. In this the domain
is covered with a square mesh, and it is shown that for the two
dimensional Laplace equation a univariate cubic spline approximation
in either space direction together with a standard central difference
approximation in the other leads to the well-known nine-point
difference formula. Solution of the resulting linear difference
system produces a numerical approximation at each of the grid points.

The cubic spline/difference replacement of the Laplace equation is



then used to construct a doubly cubic spline which interpolates
the solution of the discretised harmonic problem. We remark that
the parameters which determine this spline are given at once in
terms of known values at the grid points. Thus, once the finite-
difference solution at the mesh points is determined, the technique
does not require the solution of any other linear system.
Interpolation of harmonic functions is usually required when
conformal transformation methods are used to solve numerically
harmonic boundary value problems which have curved boundaries
and/or contain boundary singularities. In particular the cubic
spline technique described in the present paper may be used in
conjunction with a conformal transformation method which maps
the domain R of the problem onto a rectangle R'. In some
cases the transformed harmonic problem in R’ has a simple
analytic solution which is determined by inspection; see
Whiteman and Papamichael (1972). In general however, a standard
finite-difference technique i1s used to determine the solution
of the transformed problem at the grid points of a finite-difference
mesh covering R’ . The final solution, which is of course required
at particular points of R’ , is then obtained by interpolation
between the known values at the mesh points of R'" . An example
on the use of the cubic spline technique in conjunction with a
conformal transformation method is given in Section 5.

Dirichlet Problems

To establish the relationship between the cubic spline/difference

approximation of Laplace's equation and the nine-point difference



formula we consider the harmonic Dirichlet problem,
Auxy) =0 (x,y) € R, (1)
u(x,y) = f(x,y), (x,y) & .0OR,

In (1) A is the Laplacian operator, R is an open domain

with a rectangular boundary OR so that

RUOR = {(x,y): 0<x<a 0<y<b}

a and b being positive integers, and f(x,y) 1is a given function

continuous on OR.

In order to discretise the problem we cover RUOR with
the square mesh,

(xi, y;) = (h,h), 1 = 0,1, -------- , n ; j = 0,1,....,m,
where nh = a and mh = b, and let U; ; be an approximation to u(x,y)
at the point (x.,y.). We denote by S;(x) the cubic spline interpo-
lating the values of U. . at the jth, j = 1,2,....m - 1, mesh row

and approximate Laplace's equation at the points (Xj,yj) by

1
Mij== 2 Wi =2V 7Y g 2
1 = 1,2, ., n- 1 5 53 = 1,2, .....m - 1,
where M. .= s{(x.). We assume that (2) is also satisfied when

i = 0,n, and thus take

1

Mii= 2 =20 ) ®)

i=0n ;j=12, ...m- 1,

Where f. . =f(X.,Y.) .
1, ] 1]



For the jth, j = 1,2,,..., m - 1, row the results of
Ahlberg, Wilson and Walsh (1967) show that

=07 e

SO My T ML T e
F, -, B
(U. . —ﬁM.. ) (x—x;,)
T e My -
Xir < x<x., 1=12,..,n
Hence,
S'j O 1) :_%MI,J s Mir1 i+1’fl_ =1

Yicrj =Y i

1= 12, ,..., n-1.

The elimination of the M's in (7), by means of equation (2),

(4)

()

(6)

()



gives the finite-difference equation

Dy Uj =0, i= 1,2, - 157 = 1,2, m - 1, (8)

where Dh 1is the nine-point difference operator defined by

Dy a(x,y) = a{x-h,yth) + 4a(x,y+h) + a(xth,y+h)

+ 4a(x-h,y) - 20a(x,y) + 4a(x+h,y)
+ a(x-h,y-h) + 4a(x,y-h) + a(x+h,y-h).

We now let Ti(y) be the cubic spline interpolating the
values U; ; at the ith, i - 1,2,....,n - 1, mesh column and

approximate Laplace's equation at (Xi,yj) by

1
i =2 Wiy 220 a Vi) ©)
1= 1,2,...., n— 1 ;37 = 12,..., m — 1,
where Ni; = T"i(y.). Then, corresponding to (3), (4) and (7)
respectively, we have
1
Nij = 2Ty =2+ fgy ) (10)



(yj—y)3 (y—yj_1)3
iMW=Nii1 —e i 6h
2 y:—Yy
h J
+ (Ui,j—l 6 1,]—1) h
2 y-y:
h 1
Uu. ——N..)—~+2> 11
+(1,J 61,1) h ’ (D
Yj_1£Y<Y , J=12,....m,
and
U..,-2U0..+0U.,j+1
h h 1,1 1,] 1’
N1 PN e N T h
(12)

The elimination of the N's in (12), by means of (9), gives again

the equation (8). It is thus shown that the cubic spline/difference
replacements (2) and (9) to the Laplace equation both produce the
well-known nine-point difference approximation (8) which has local

truncation error of order h® ; see e.g. Forsythe and Wasow (1960, p.194) .

Cubic Spline Interpolation.

The application of (8) at each internal mesh point, together
with the boundary conditions of (1), leads to a positive definite
diagonally dominant linear system of {(n-1)x(m-1)} equations which
is solved for the unknowns U;; , i = 1)n - I, j = 1()m - 1.
Formulae (2)- (U) and (9)- (11) then produce the cubic splines
S;.(x) and T;.(y) which approximate respectively the solution u(x,y;)



at the jth mesh row and the solution u(x;,y) at the ith

mesh column.

We note that,

Dy Sj (x) = DyU (xy;) = 0,
(13)

Xi1) < x <xj,1=23,...,n-1;3=23,... m-2,

and, (14)

Dy Ti (y) = Dun U(xi,y) = 0,

Vi-t Sy<y; ,j=23,...,n-1; j= 2,3,....,m-2,

These follow at once from (4), (11) and (8) since,

DM ;i =-'"/*{DhUijy -2Dy Ui +D, Uijs; } = 0,

DiNi ;i  =- "4 {DyUi1; - 2DyU;i; + Dy Uisy i} =0 ,
1=23,.....n-2 ; j— 1,2,. ..., m- 1.

We now describe a method for interpolating the solution of (1)

at any point (x,y)e R. For this we let r; ; be the square

rii= {(x,¥): Xi1< X < X3, ¥ <y <y}

i=1,2....n,;j=1,2,.....m,



and consider three procedures, each dealing with a different
part of R.

Procedure 1,

Used for (x,y)erij , 1 - 1,2,...., n :j=23...., m - 1,
We determine the six values
Ti'l (y + kh) ’ k = - 15051 9

Ti (y + kh),
and hence, using the approximations of Section 2, we calculate U(x,y)
from the cubic spline interpolating the values U(x;,y), i- 0,1,2,....n.

Thus, we take (see equation (4)),

U(X,Y) = Ql (X,Y)

3 3
~ (xi—x) (X_Xi—l)
MO My T
h2 (xi - X)
+ (T, - TM 1) T
h x i)
R
(x,y) € 1ij,
where
Mi(y) = - r ATe (h) - 2Ti(y) + T (),
with

To(y) = f(0,y) and Tu(y) = f(a,y).



We note that , 10.

Qi (xy;) =8 (x) and Qi (xi,y) = Ti(y).

Procedure 1II.

Used for (x.y)eri; . 1 = 23..., n - 1 :3=1.2...., m.
The value of U(x,y) is obtained by interchanging the roles of
x and y in the technique of Procedure I. Thus, we determine the six
values
Si.i (x + kh) ,
k = - 1,0,1,
Sj (x + kh) ,

and hence calculate U(x,y) from

U(XaY) = Q2(X>Y)

(yj—y)3 ¥ -y, 1)3
—Nj_1 (%) oh + N . (x) oh
h2 (y_] -y)
S 00 - N )
RPN R Akl = U
j 6 i h R
where,
Ni(x) = - '"W{Si(x-h) - 28;(x) + S;(x+h)} |,
with

So (x) = f(x,0) and S, (x) = f(x,b).

Again we note that,

Q(x,y ) = Sij(x) and Q:(x,y) = Ti(y).



11
The functions Q; (x,y) and Q. (x,y) are bicubic in each
mesh square r; ;j of the rectangles

R = {(x,y): 0 <x <a h<y<b-h} ,

and

R, = {(x,y): h<x<a-h, 0<y<b},

respectively. By use of the continuity properties of S;(x) and

T; (y), it can be shown that Q; (x,y) is in C* (R;) and Q;(x ,y) is in
C* (Ry). (By the terminology of Ahlberg et al.(1967, P-235) C", (R)
is the family of functions F(x,y) on R whose n th order partial
derivatives, involving no more than r th order differentiation with
respect to a single variable, exist and are continuous.) It follows
that Q; (x,y) and Q; (x,y) are "simple double cubic splines" interpo-
lating the values U;; at the mesh points of R; and R, respectively;

see Ahlberg et al. (1967, p.235-39). Also, it can be shown that,

Ql (Xay) = QZ(Xay)a (X9Y) e RiNR; D

and, by means of (13) and (14), that

(15)
Dy U(x,y) = 0, (x,y) e r1i,
i=34,....,n -2 ;3 =234...m - 2.
Procedure III .
Used for (x,y)e rij .. i =1mn ;] = 1.,m.

We assume that (15) holds for (x,y) € R;NR, and use this

nine-point formula to express U(x,y) in terms of values that



can be interpolated by means of Procedure 1 or II. Thus, if
(x,y) = (ph,gh) € r; , i = 1n;j= 1m,

we take
Up.q = - (4Up+a,q + Ups2a,q )

- (4Up,q+f5 - 20Up+a, q+ B + 4Up+2a, qt+ B )

3

- (Up,q+2B + 4Up+a, q+28 + Up+2a, q+28 )

where Uy ¢ = U(kh,th) and o« = 1 when i = 1, a = - 1 when 1 =

= n’
B= 1 when j = 1 and B ~ - 1 when j = m.
To summarize the above we note that the value U(x,y) approxi-

mating the solution u(x,y) at any point (X,y) € R may be calculated

by using,
(a) Procedure I, if (x.,y) &€ R; ,
(b) Procedure II, if (x,y)e r1ij, 1 = 2,3,...,0n - I; j = 1 ,m,
(¢) Procedure III, if (x,y) €rij, 1= 1,n ;j = 1,m,
or by using,
(a) Procedure II, if (x,y) & Ra,
(b) Procedure I, if (x,y) € rij, 1 = 1,n; j =23, ....,m-1,
(¢) Procedure III, if (x,y)e rij, 1= 1,n ; j = 1l,m.

Since when (x,y) ¢ RiNR,, Q; (x,y) = Qa2(x,y), it is clear that for

any (x,y) € R both the above two methods produce the same result.

For (x,y) € Ry u R, approximations to au(X’Y)m
X

ay be

12.



determined from,

2 2
oU(x, 0Q.(x,y) (x. —Xx) x-x.4)
3 BT M) M () e
o0x 0x 1 2h 1 2h
2 2
h 1 h 1
-(T,_; () - TM 1) P (T, () - TMi(Y)) e
if (x,y) € rij 1ije Ry, and from.
oU(x,y) 9Q,(x.y) (yj—y)3 (y—yj_l)3
s = =-N. (x)—+N. x)———
ox ox j-1 6h ] 6h
. h2 Yj -y ! h2 ! (y -
- (Sj—l x) - ?N -1 (x)) h + (SJ (x) - TNJ (x))
if (x,y) €1 , 1= 2,3, -—-m-mmmmmmmee ,n-1;j=1m In (17)

N’ (x) = hiz (S! (eh)- 28! (x) + S! (cHh)}

and S{.(x) is found by differentiating (4) with respect to x.

To determine an approximation to au(aX, y)
X

at a point

(x,y)e rjj i= 1,n ; j = 1,m, we note that
Dh 8u(X7 y) — 0’ (X7y) Sri 7j
ox

1=34,...n-2;j)]=34 ..m-2

we assume that formula (18) holds for any (x,y)e RiNR, and use it,

ou(x,y)

X

as in Procedure III, to express in terms of values that

13.

(16)

(17)

yj—l)

h

(18)



14.
can be calculated by means of (16) and (17).

) ) ou(x, ) ) ..
Approximations to % are determined in a similar
X

manner from,

aU(X, y) _ aQ 2 (X: Y)
ox oy

aU(X, y) _ an(X’ Y)

, if(x, e R ., ,
(X, y) ) oy oy

if (x,y) € r1ij , 1 =1mn;j = 23,....om - 1,

and by using,

oux, y)

D
h 0Xx

= 0, if(x, y) € r.

Mixed Boundary Value Problems

To illustrate the application of the technique to mixed

boundary value problems we consider the problem (1) but on the
side

OR" = {(0,y): 0 <y <b}

of OR we replace the Dirichlet boundary condition by a Neumann
condition. Thus, we consider the harmonic problem,

Au(x,y) = 0 , (x,y)e R,
ou #
% = g(Y)a (Xay)s oR ) (19)

u(Xay) = f(xa}I)a (Xay)g aR - aR* 5



15.
where g(y) is a given function continuous on OR”

All approximations and results of Section 2 still hold
except (3) for which we have ,

1
Mo = v (Uo j-1 - 2Uo j + Uo jj+1) (20)
and,
M, = hiz (fajor = 2faj + faje) > j=12,...,m-1,
where the U, j,j = I(1)m - 1, are not known and must be determined.

The boundary condition (19) is approximated at the point
(0,y.) by

S(0) = g, j=12,... m- 1,

or, on using (5), by

h h Vi, Yo ey
Mo ML T ey
The elimination of the M's in (21), by means of (2) and (20),
gives the finite-difference equation
2U, j+1 + Uijer - 10U, 5 + 4U, ; + 2U, 5.1 + Up jo1 = 6hg;, (22)

j=1,2,.....m - 1 |
approximating the solution of the problem at the boundary points

(0,y;). The approximation (22) has local truncation error of



16.

4 . . . . . .
order h and is eauivalent to using the difference approximation

b
12h

Uy "V ) 74U - Uy )+ Uy = Uy b
for the derivative in (19), in conjunction with the nine-point
formula applied at the point (0,yj) .

The application of (22) at the (m - 1) boundary points
(0,y), j = 1(1) m - 1, and of the nine-point formula at the
internal mesh points leads to a linear system of nx(m - 1) equations
which is solved for the unknowns U; ;,i = 0(1)n - 1;j = I(1)m - 1.
The technique of Section 3 is then used to interpolate
U(x,y) at any point (x,y)e RUOR™ from the values U; j at the mesh
points. However, for (x,y)e 11 , I e R , the determination of
U(x,y) from the double cubic spline Q;(x,y) requires the knowledge
of

To(y) = U(0,y)

and

M, (y) = -hiz{Um,y-m - 2U(0,y) + U(0,y+h)} .

Since T; (y) is not defined for i =0, the unknowns U(0,y) and
M, (y) are determined as follows.

The boundary condition (19) is approximated at the point
(0,y) by

P g(y)



or, on using (16),by

h 2 2

h
3 Me® - M) T )~ U, y) = he).

Equation (23) together with

h2 2 2

BM @) 2 M) My () - UL ) 2T ()~ Ty () = O,

then gives the two relations

2
3U(0,y) = /eh®Mi(y) + hTMxy) £5T) (y) - 2Ta(y) - he(y),

and

3h°M, (y) = -5h°M(y) - h*Ma(y) -6T(7) + 6Ta(y) - 6hg(y),

which express the unknowns U(0,y) and M, (y) in terms of values
that can be determined from the cubic splines T; (y) and T, (y).

We remark that (24), which follows at once from the construction
of Q; (x,y) and can be verified easily by means of (14), is the

continuity relation which shows that

an(Xl_aY) B an(Xl"'aY)

0Xx 0X

The application of the technique to problems with Neumann

conditions on any of the other three sides of OR is clear.

17.

(23)

24)



18.
Numerical Results,

Problem 1, (Dirichlet Problem)

Au(x,y) = 0, (x,y)e R,
u(x,y) = cosxsinhy, (x,y)e OR,
where, RUOGR = {(x,y) : 0 < x <1, 0<y < 1}
A square mesh of size h = 0.2 is used. The finite-difference

solution computed by applying the nine-point formula at the interior

mesh points,
(0.21, 0.23) , 1= 114 ; j=1H4 ,
is accurate to eight significant figures.

Numerical results obtained by the cubic spline technique

at the points

(0.11, 0.1j) , i= 119 ; j=112)9 ,
are given in Table 1. They are compared with:
(i) values computed from the analytic solution
and,
(i) values obtained by interpolating the results at the mesh
points using the bivariate interpolation formula,

= _q(q -1 p(p — 1)
F(x, + ph, yi+ gh) = TFi’j_1 + TFi_l’j

2 2 - 2q +1
+(+pg-p° —q )Fi,j"'p(p 2q ) i+1,]

qq =2p +1
¥ > Fijer TP Fig 410 (25)

lpl<1. lagl<1,



of Abramowitz and Stegun (1965, eqn.25.2.67). Formula (25),

which determines an approximation F (x,y) to F(x,y)

In terms

values of F(x,y) at six grid points of a square mesh, has

truncation error

ep.q = F(xi+ phyy; + qh) - F (x; + phy; + qh) ,

of order h® . However, when F(x,y) is harmonic and p = q

order of the truncation error rises to h* . In particular with,

F(x,y) = u(x,y) = cosx sinh y ,

and h = 0.2,
4
ey 192 - 1h4 82u2:O.5 10 ~% cosx sinhy
2 32 ox “ 0y
whereas,
3
e Q - 1—h3 a—uz ~0.5 10 3 cosx coshy.
0,5 16 oy 3

The last two equations explain why the results obtained
use of (25) at the points,

(0.11, 0.1j) , i= 1(2) 95 j = 1(2) 9,

are much more accurate than those obtained at the points,

0.2i, O.1) , i= 14 ;:j= 1(2)9.

Problem 2 (Mixed Boundary Value Problem)

Au(x,y) = 0, (x,y) e R,
oux, y) _ *
e cosh vy, (x, y) e 0R ,
u(x,y) = sin x cosh vy, (x,y) € OR - R,

"by the

of

V2

the

19.



where 20.

oR* = {(0y) + 0 <y < 1}
and,
R UOR = {(x,y) 0<x<1;0<y<1}.
A square mesh of size h = 0.2 is used. The finite-difference

solution computed by applying the nine-point formula at the
interior mesh points,

(0.21 , 0.2j5) i = 1(H4d ; j = 1(1}14,
and formula (22) at the boundary points

(0, 0.2)) , j - 1(1)4,

is accurate to five significant figures.
Numerical results obtained by the cubic spline technique

at the points
(0.11 , 0.1j) , 1 =019 ; ;3 = 1(2)9,

are given in Table 2 and are compared with values computed
from the analytic solution.

To illustrate the use of the cubic spline technique in
conjunction with a conformal transformation method we consider

the following harmonic problem.

Problem 3.
Au(x,y) = 0, (x,y)e R,
u(x,y) = 1, (x,y)e ORy,
u(x,y) = 0, (x,y)e ORa,

where R is the semi-circular open domain

R = {(xy): xX>+y < 1, |x <1, y> 0}



21.
with boundary OR = OR; U 0OR, where,

ORI = {(xy) : x> +y =1, jx| < 1,y >0} ,

and 6R, = ABC- {(x,0) : |x| < 1}

b

with A = (1,0), B = (0,0) and C =(-1,0).

The three successive conformal transformations,

2
1+ w
2 - ) 26)
¢ - 1_12 , @7
and
1
' 1 142 _1 (28)
v wre b
N

where sn denotes the Jacobian elliptic sine and K(t//2) is the

complete elliptic integral of the first kind with modulus 1/V2,

are used to map G = RUGR in the w = x + iy - plane onto the square

G'= RUOR ~ {(§,n) : o<& , <1} ,

in the w = & + in- plane with

w —plane| w' —plane

I
A ——>» (0,0),

B—» (0,),
cT— > (1,0).



22.

Thus the combined effect of (26) , (27) and (28) is to transform

the original problem in G into the problem

Av(En) =0 , ,n)e R,
(&.n) (&.n) 29)
v(§n) =1, (§&n)e R} ,
v(£,n) =0 , (&,n)e ORY
in G'= R UOR'; where OR'= OR'; UJdR, and
OoR'1 = {(&0) : 0 < & < 1} OR, = OR'" - OR|
Full computational details for the implementation of the above
conformal transformation method are given in Whiteman and
Papamichael (1972).
The boundary values of the transformed problems have jump
discontinuities at the corners (0,0) and (1,0) of OR'. A detailed
discussion on techniques for removing such discontinuities from
the boundary conditions of harmonic problem, in rectangular
regions is given by Rosser (1973). In the present case we
introduce the harmonic function
2 € 1 - ¢ (30)
V(e,n) = v(eg,n) — —{arctan( —) + arctan( )},
n n
and instead of (29) we consider the problem
Av(éan) =0 ’ (é,l’l)g R’ (31)
V(% n) = -1 ’ (éan)g aRl'a
V(£,n) = f(&n), (En)e IR,
where
f(e,m) = —z{arctan( i) + arctan( 1= 8)}.
T n



23.

The nine-point formula is used to determine approximations

~

Vij to the solution of (31) at the mesh points

3

(0.2i,0.2j) , i=1()1+ . j=1(1) 4,

of a square mesh, of size h= 0.2, covering G'. The solution
of the original problem is of course required in R. To determine
an approximation to this solution at a specific point P = (x,y) ¢ R,

P is mapped into the point p' e R’. Since p' will not in general be

a point of the finite-difference mesh covering G’ , the cubic spline

technique is used to compute an approximation to V(p' ) in terms of

5

the known values \N/ij at the mesh points in G'. An approximation to

u(P) = v (p') 1is then found by means of (30).

Numerical approximations to u(x,y) obtained by using the
conformal transformation method (CTM) in conjunction with the
cubic spline technique are given in Table 3. The results are

given at the points,
(0.1i ,0.13) , 1 =019 ; j = 1(2)9,

of the quadrant

2

{(xy) : x>+

<1, x>0, y>0} ,

of R and are compared with

(i) values computed from the analytic solution,

u(x,y) = arctan{2y/(1 -x* -y* )},
and,

(1) values computed by using formula (25) to interpolate

the finite-difference approximations \N/i j in G'.

9



We remark that when a square mesh of size h = 0.1
is used to determine the finite-difference solution of
(31) and to perform the cubic spline interpolation in G’ , the
approximations U(x,y) to u(x,y) computed at the points of
Table 3 are such that
lu(x,y) - u(x,y)] <2 x 10°.



At each point the
numbers represent:

(1) Upper entry:
Value computed, by

Spline Interpolation

(i))Middle entry:
Value computed from

the Analytic Solution

(ii1) Lover entry:
Value computed by
using Interpolation

Formula 25.

0.7

0.5

0.3

0.1

1.021361

1.006051

0.980663

0.945481

0.900848

0.847217

0.785119

0.715178

0.638074

1.021388
1.021342

0.754789

1.006055
1.006723

0.743459

0.980669
0.980624

0.724697

0.945485
0.946112

0.698699

0.900853
0.900811

0.665714

0.847221
0.847357

0.626084

0.785123
0.785086

0.580192

0.715181
0.715656

0.528508

0.638093
0.638062

0.471540

0.754794
0.754761

0.518489

0.743463
0.744053

0.510706

0.724703
0.724670

0.497817

0.698702
0.699257

0.479959

0.665720
0.665689

0.457300

0.626086
0.626277

0.430077

0.580197
0.580170

0.398552

0.528510
0.528930

0.363049

0.471543
0.471521

0.323916

0.518492
0.518470

0.302997

0.510708
0.511244

0.298449

0.497821
0.4 97800

0.290917

0.479961
0.480464

0.280481

0.457304
0.457284

0.267239

0.430079
0.430333

0.251330

0.398556
0.398538

0.232908

0.363051
0.363432

0.212160

0.323918
0.323903

0.189292

0.302999
0.302987

0.099662

0.298450
0.298954

0.098170

0.290919
0.290908

0.095692

0.280482
0.280955

0.092259

0.267242
0.267231

0.087904

0.251331
0.251659

0.082671

0.232910
0.232901

0.076611

0.212161
0.212519

0.069787

0.189293
0.189285

0.062262

0.099666
0.099658

0.098170
0.097671

0.095693
0.095685

0.092260
0.091791

0.087905
0.087897

0.082671
0.082155

0.076612
0.076605

0.069787
0.069432

0.062265
0.062259

0.1

0.2

0.3
TABLE 1

0.4

0.5

0.6

0.7

0.8

0.9 1.0




At each point the
numbers represent:

(1) Upper entry:
Value computed by
Spline Interpolation

(i1) Lower entry:

Value computed from
the Analytic Solution,

0.9

0.7

0.5

0.3

0.1

0

0.000000 0.143062 0.284708 0.423503 0.558067 0O.687054  0.809178 0.923214 1.028029 1.122545
0.000000 [0.143070 [0.284710 |0.423506 [0.558070 |0.687058 |0.809181 |0.923220 |1.028033 |1.122575
-0.000004 [0.125304 [0.249361 [0.370923 |0.488783 [0.601754 |0.708718 [0.808595 ]0.900399 |0.983202
0.000000 {0.125308 [0.249364 |0.370928 (0.488786 [0.601760 |0.708722 [0.808602 |0.900403 |0.983208
-0.000004 [0.112571 |0.224022 10.333232 |0.439115 [0.540607  0.636702 10.726430 |0.808906 |0.883294
0.000000 [0.112575 [0.224025 |0.333236 (0.439118 |0.540612  |0.636706 |0.726437 |0.808909 [0.883300
-0.000003 {0.104357 [0.207674 |0.308915 |0.4 07071 |0.5401157 (0.59024 [0.673420 ]0.74 9877 |0.818837
0.000000 [0.104360 [0.207677 ]0.308919 10.407074 [0.501162  ]0.590243 |0.673426 |0.749880 |0.818842
0.000000 [0.100328 ]0.199662 [0.196997 ]0.391365 (0.4 81821 [0.567466 [0.647437 [0.720943 10.787225
0.000000 [0.100333 [0.199664 [0.296999 [0.391367 [0.4 81825 [0.567468 10.647441 |0.720946 |0.787247
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

TABLE 2.




A TABLE 3 .
At each point the numbers
were computed from;
Y [0.933048 0.936548  0.947070 0.964668  0.989390 (i) Upper entry: CTM
and Cubic Spline Interpolation.
0.9 {0.933049 [0.936549 [0.947071 [0.964669 [0.989391 o _
0.932845 [0.936650 [0.947007 |0.964195 [0.988604 (ii) Middle entry: Analytic
Solution.
0.777599 |0.781623 [0.793802 |0.814450 |0.844039 [0.883101 0.932049  0.990906 (iii) Lover entry: CTM
and Interpolation Formula (25).
0.7 10.777600 [0.781624 [0.793804 [0.814453 [0.844042 [0.883102 [0.932050 |0.990906
0.777724 10.782069 [0.793932 0.814371 [0.843836 [0.882845 [0.931798 [0.990701
0.5 10.590334 |0.594428 |0.606946 [0.628611 [0.660658 [0.704830 [0.763263 |0.838057  0.930249
0.590334 [0.594428  |0.606947 0628613  |0.660660 |0.704833  [0.763269  |0.838064  |0.930252
0.590285 [0.594386  [0.606917 0.628622 [0.660775 [0.705133  |0.763553  |0.838015  [0.929809
0 0371093 [0.374329 0384354 |0.402145 |0.429551 |0.469692 [0.527631  [0.611167 [0.730782 (894857
: 0.894863
0371094 (0374334 |0.384359 0402147 0429553 |0.469708 |0.527662 |0.611200 |0.730803 |)'co4188
0370909 [0.374392 |0.384217 |0.401971 [0.429615 [0.469804 |0.527675 |0.611050  [0.730423 |
0.126906 |0.128156  [0.132089 [0.139202  [0.150529 |0.168035 |0.195649 0242178  |0330453
0.1 0.533457
0.126902 [0.128162  [0.132096  0.139209  [0.150533 [0.168045 [0.195695 0.242238  [0.330499 [0.533475
0.126880 [0.128021  [0.132744 [0.139110  [0.150448 [0.168123  [0.195759 0.242282 [0.330466 [0.533287
>
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LC
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