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FINITE-DIFFERENCE  SOLUTION  OF  POISSON'S 

EQUATION  IN  RECTANGLES  OF  ARBITRARY  SHAPE 

J.   BARKLEY  ROSSER 

1.     Introduction.       We  consider  the  problem  of  getting  an 

approximation  of  reasonably  good  accuracy  by  finite-difference 

methods  for  the  function  u(x,y)  which  satisfies  Poisson's  equation 

(1.1)      V2 u(x,y)  = f(x,y) 

inside  a  rectangle    R   ,  and  satisfies  various  boundary  conditions  on 

the  boundary  of    R  .       When  f(x,y)   =  0,   (1 .1 )    reduces  to  Laplace's 

equation,  and  the  problem  is  appreciably  simpler. 

        This  problem  has  been  much  studied.  A  common  approach  is  to 

cover    R    exactly  with  a  mesh  or  grid  of  squares  of  side    h  ,  after 

which  one  can  replace     ( 1 . 1 )      by  a  finite-difference  approximation 

involving  values  of  u(x,y)   at  the  grid  points.     One  then  tries  to 

solve  this  finite-difference  analogue  of    (1.1)    to  a  suitable  degree 

of  accuracy.     In  order  to  employ  this  approach,  the  ratio  of  the 

sides  of    R    must  be  rational;  otherwise  one  cannot  cover    R    exactly 

with  a  grid  of  squares.     The  conformal  transformation  method  of 

Papamichael  and  Whiteman [ 3 ] will  lead  more  often  than  not  to  a 

rectangle  in  which  the  ratio  is  not  rational.     Even  when  the  ratio 

is  rational,  there  may  be  difficulties.     Suppose,  from  some 

engineering  problem,  one  is  confronted with  a  rectangle    R    of  base 

six  and  five-eighths  and  height  five  and  seven-eighths.     If  this 
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is   to  be   covered   exactly  with  squares,   there  must  be   53 N    squares 

along  the  base   and  47N    squares   along  a  vertical   side,   where     N     is 

a  positive  integer.     With  such  a  covering,  many  popular  methods 

would  operate  at  less  than  maximum  efficiency. 

         Accordingly,   we   will   propose   a   method  of  getting  good  accuracy 

for  moderate  labor  for  rectangles  of  arbitrary  shape. 

2.     Formulation  of  the  problem. 

By  rotation,  translation,  and  scaling,  as  needed,  we  can  take 

the  rectangle    R    to  be  that  shown  in  Figure   1.     By  rotating  through 

another  90°  and  translating  and  scaling  again,   if  need  be,  we  can 

assure  that     a  ≥  π.     If    a  =  π,  we  have  a  square,   and  familiar 

approaches  suffice.   So  we  assume     a  >  π. 
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We  consider  first  the  case  of  Dirichlet  boundary  conditions. 

That is, we wish to approximate the  function u(x,y)  which is 

continuous  on  and  inside    R  „  satisfies 

(2.1)     u(x,y)    =    f(x,y) 
2

∇

inside  R, and  on the  sides of   R   satisfies  the  Dirichlet boundary conditions 

(2.2) u(0,y)  = go(y) 0  <  y  <  a 

(2.3) u(π ,y)   = gπ(y) 0  <  y  <  a 

(2.4) u(x,0)  = ho (x)                                   0  <  x  <  π 

(2.5) u(x,a)  =    h a (x)  0  <  x  <  π. 
 

        Because  we  seek  a    u(x,y)  which  is  continuous  on    R  ,  as  well 

as  inside,  we  are  thereby  assuming  that  go  (y)  and gπ  (y)  are 
  
continuous  for  0  ≤  y ≤  a,  that  ho  (x)  and ha  (x)  are  continuous 
 

for  0  ≤  x  ≤    π,    and  that 

(2.6) go(0)  =  ho(0), 

(2.7) go (a)  =  ha( 0 ) ,  
  

(2.8)    gπ (0)   =  ho (π ) ,  
  

(2.9)     gπ(a)  =  ha(π) .  

In   any   reasonable   problem,   there  will  be  only  a  finite  number 

of  discontinuities  of  the  boundary  values  around  the  boundary  of  R  , 

and  these  will  be  jump  discontinuities  at  worst;  that  is,  as  the 

point  of    discontinuity  is  approached  from  different  directions, 

u(x,y)  will  approach  finite  limits  which  are  different.  We shall  
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indicate  how,   if  there  are  a  finite  number  of  jump  discon- 

tinuities  around  the  boundary  of    R,  we  can  replace  the  problem 

by  one  in  which  there  are  fewer  points   of  discontinuity.   By 

repeating   this  reduction,  we   are   finally  brought  to  a  problem, 

in  which  there  are  no  points  of  discontinuity. 

        Consider   first   the   case   in   which   there   is   a   jump  discontinuity 

at  a  corner.     We  shall  illustrate  by  treating  the  case  in  which  the 

discontinuity  is  at  the  upper  right  hand  corner.   Very  minor  modifi- 

cations  are  required  to  handle  other  corners,  but  the  reader  can 

work  these  out  with  little  effort. 

          It  is  essential  that,   in  "removing"  the  discontinuity  at  the 

upper  right  hand  corner,  we  do  not  introduce  additional  discontinuities 

elsewhere.     We shall consider  in  detail  the  case  in  which  there  is 

only  one  discontinuity,   and  it  is  at  the  upper  right  hand  corner, 

and  shall  show  how  to  "remove"  this  so  as  to  produce  a  situation 

in  which  there  are  no  discontinuities.     It  will  be  clear  that  in 

the  more  general  case  the  procedure  will  "remove"  the  discontinuity 

at  the  upper  right  hand  corner  without  introducing  additional 

discontinuities  elsewhere. 

         So  let   us   assume   that   go (y)    and   gπ   (y)    are   continuous   for 

0  ≤  y  ≤  a, that  ho (x)   and  ha (x)   are  continuous  for  0  ≤  x  ≤  π   , 

that   (2.6),   (2.7),   and   (2 .8 )    hold,  but  that   (2 .9 )    fails.     We 

introduce  the  function 

     u * (x,y)   = Q  arctan 
ya
x

−
−π

  u(x ,y ) ,     ,

where     

                       Q=  
π
2

  (gπ (a) – ha (π) )  . 
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Then  u*  (x,y)   satisfies   ( 2 . 1 )    inside    R     (that   is, 

       u
2

∇ *)(x,y)   =  f (x, y) 

holds  inside    R   ),   and  on  the   sides  of    R     satisfies  the  boundary 

conditions 

                     u * (0,y)  =  Q  arctan 
ya −

π
  

+  go(y)                             0  <  y  <  a 

 
         u*  (π .y)   = gπ(y)                                                         0  <   y <  a 

 

            u *  (x,0)   = Q arctan
a

x−π
 + ho   (x)                           0  < x  <  π 

 

                       u*  (x,0)   =  gπ  (a)   -  ha  (π)    +  ha  (x)                    0  <  x  <  π . 
  

          From  the  boundary  conditions  above,  we   see  that  u*   (x,y) 

has   no  discontinuities   as   one   proceeds   around   the   boundary   of     R. 

So,   if  we  know  how  to  handle  such  a  case,   we  can  thereby  get  a 

good  approximation   for  u* (x,y),   from  which  we  can  get  a  good 

approximation  for  u(x4y)  by  the  relation 

            u(x,y)   =  u*   (x,y)   -  Q arctan 
ya
x

−
−π

. 

It   is   clear  that   if  we  had  started  with  a  u(x,y)   with  other 

discontinuities  around  the  boundary  as  well  as  at  the  upper 

right  hand  corner,  then  u*  (x,y)  will  have  one  fewer  discontinuities 

around  the  boundary  of    R    than  u(x,y),   and  a  succession  of  suitable 

reductions   will   bring   us   to   the    case   of   no  discontinuities. 

 The case  of  a  discontinuity   other   than at   a   corner  is  handled 

similarly.     We  shall  illustrate   by  indicating   how  to  handle 
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a  discontinuity  on  the  top  of     R.     We   are  confining  our  attention 

to  the   case   of  jump  discontinuities.   So   suppose  that  0  < p  <  π, 

that  as    x    approaches p   from  the  left  ha  (x)   has  a  limit  ha  (p-o), 

and  that  as     x    approaches p   from  the  right  ha   ( x )    has  a  different 

limit  ha   (p+0).     Let  u(x,y)  be  the  function  for  which  we  wish  to 

"remove"  the  discontinuity   at   x  = p .      We   introduce  the  function 

 

 u*  (x,y)   -    Q  arctan  
ya
x

−
−p

 
  u(x,y) 

where 

 Q  = 
Π
1    (ha   (p+0)   -  h  (p-0)) .  

 

Then  u*  (x,y)   satisfies   ( 2 . 1 )    inside    R    ,    and   on   the  sides   of    R 

satisfies  the  boundary  conditions 

 u*  (0,y)     =     Q arctan   
ya −
ρ

 
 
+    go ( y )                           0  <  y <  a 

 u*  (π ,y)      =   Q arctan   
ya −
π−ρ

   
+  gπ   (y)                           0  <  y  <  a 

 u*  (x,0)     =      Q arctan   
a

x-ρ
   +   h0 (x)                           0 <  x  <  π 

 u*  (x,a)     =
2
1

 (ha  +0) -ha  (ρ+0))   + ha  (x)                        0  <  x < P 

 u *   (x,a)      = 
2
1

 (ha  -0) -ha  (ρ+0))   + ha  (x)
      

              ρ <   x  <   π. 

It   is    clear     that    u*   (x,y)    is   continuous    at    (p,a),    where 

it  has  the  value 

                          
2
1

 (ha  (ρ+0)   + ha  (ρ-0)) . 
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Also,   elsewhere  around  the  boundary  of  R  u*  (x,y)   is  continuous 

wherever   u(x,y)    is;   at   points   of  discontinuity  of  u(x,y)  there 

are   points   of   discontinuity  of   u* (x,y)   of  exactly  similar 

kinds. 

           If   u(x,y)  has  a  large  number  of  discontinuities  around 

the  boundary  of    R    ,   the   first   impression  is   that   it   will  be 

a  lot  of  bother  to  "remove"  them  all.     However,  one  is  certainly 

working  with  a  computer,   and  it  is   possible  to  shuffle   off  quite 

a  bit  of  the  bother  onto  the  computer.     Thus,   suppose  that 

there   are   five   discontinuities   along   the   top  at    ρ 1, ρ 2, ρ 3, ρ 4, and  ρ 5. 

One  can  write  a  subroutine  to  handle  a  discontinuity  at p ,  and 

then  successively  input  the  five  parameters   ρ 1 , ρ 2   , ρ 3  , ρ 4  and ρ 5   . 

One  may  prefer  to  retain  the  discontinuities,   and  to  use 

one  of  the  better  known  methods  of  solution,   allotting  time  for 

enough  additional  computation  to  reduce  the  errors  arising  from 

the  discontinuities  to  an  acceptable  size.     To  get  some  idea 

of  the  errors  arising  from  discontinuities  in  the  boundary 

conditions,  the  reader  may  consult  Rosser  [5  ]  . 

To  use  the  methods  of  the  present  paper  with  any  success, 

there  must  be  no  discontinuities  in  the  boundary  conditions 

as  one  proceeds  around    R  .     Indeed,  it  is  probably  desirable 

to  arrange  that  the  boundary  conditions  have  continuous 

derivatives,   except  at  the  corners;   even  there  the  derivatives 

should    have    finite    limits    as   the   corner   is    approached. The 

errors   arising   from   discontinuities   in   the   derivatives  of 

the  boundary  conditions  are  also  discussed  in  Rosser   [5]  . 
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If    there   are  discontinuities   of   the   derivatives   around 

the  boundary,   and  if  after  consulting  Rosser [5] it  is deemed 

advisable  to  "remove"  these  discontinuities,   this  can  be  done 

as   follows, 

         Consider  first  the   steps  outlined  above  taken  to  "remove" 

the  discontinuities   of  the  boundary  conditions  themselves. 

Observe  that  these  will  not  introduce  any  discontinuities 

into  the  derivatives,   except  perhaps  at  the  corners,   and  jumps 

of  the  derivatives  at  the  corners  do  not  cause  any  errors  in 

the  use  of  finite-difference  methods.   So  we  may  assume  that 

the  boundary  conditions  themselves  are  continuous   (perhaps 

because  of  "removal"  of  all  discontinuities),   and  it  is 

discontinuities  of  the  derivatives  that  we  wish  to  "remove", 

one by one. The  method we shall use  should  have, and does have  

the     desirable  attribute  that  it  will  not  reintroduce  discon- 

tinuities  into  the  boundary  conditions  themselves. 

 We  may  take  the  discontinuity .  to  be  at  the  point   (ρ ,a) , 

where  0  <   ρ  <  π.     We  assume  that  as  x  approaches ρ  from  the 

left  
 
has  a  limit  h  ( ρ - 0 )   ,   and  that  as   x   approaches  ρ (x)h'a

'
a

from  the  right  has  a  different  limit. 
   

Let  u(x,y)   be   the (x)h'a 0)(h 'a +ρ

function  which  is   continuous  around  the  boundary  of    R    but 

whose  derivative  of  the  boundary  conditions  around    R     has  the 

indicated  discontinuity  at   (ρ ,a).     We  introduce  the  function 

          u* (x,y) = Q s(x,y)  + u(x,y), 

where 

s(x ,y)   =   (x-ρ)   arctan
2
1

ya
x
+

−
−ρ

 (a-y)log{ (a-y)2    + (ρ-x)2} 
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and 

 
.))0 ( h ' a ) 0( h ' a ( 

π 
1 

Q − − + = ρ ρ 

 

Then u*  (x,y)   satisfies   (2 .1 )    inside     R   ,  and on the  sides  of    R 

satisfies the boundary conditions 

u*(0.,y) =Q  s (0 , s )  +go(y)  0  < y < a 
 

 
u*  (π ,y) =Q s(π ,y)  + gπ(y)     0  < y < a 

 
u*  (x,0) =Q s(x ,0)  +ho   (x)                                                   0  < y < π 

 

             )x(h))0()0(()x(
2
1

)a,x(*u a
'a'a hh +−ρ−+ρρ−=                 0  < y < ρ 

             )x(h))0()0(()x(
2
1

)a,x(*u a
'a'a hh ++ρ−−ρρ−=                  ρ< x < π

       It  is   clear   that   u*  (x,y)  is  continuous   around   the   boundary  of   R . 

Also, 

   )a,x(u
dx
d *

 

 
is  continuous  at  x=ρ,  where  it  has  the  value 

      )0)(ρh'a0)(ρh'a(
2
1

−++  

Elsewhere  around  the  boundary  of    R   ,   except  at  the  corners, 

the  behavior  of  the   derivative   of   the   boundary   conditions,   as 

far   as   continuity   is   concerned,    is   the   same  for  u*  (x,y)   as  for 

u(x,y).     
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By   repetitions   of   a   reduction   such  as  indicated,  we   can 

reduce   to  the  case   in   which   the  boundary  conditions   are 

continuous   around   the   boundary,    and   their   derivatives    are 

continuous   except   at    the   corners.    That    is,  we  can  assure  that 

a,  y      0for       continuous  are              (y)g'
πand,(y)πg,(y)g'

0,(y)0g ==  

  (x)h 'πand,(x)πh,(x)h '0,(x)0h         are   continuous   for   0   ≤  x  ≤  π, 
 
and  (2.6) ,   (2.7),   (2.8),   and   (2.9)   hold. 

Should  the  boundary  conditions  or  their  derivatives  have 

more  complicated  singularities  than  jump  discontinuities,   one 

may  be  able  to  "remove"  them  by  suitable  choices  of  u*  (x,y). 

We  leave  these  difficultues  to  the  ingenuity  of  the  reader. 

3.      Finite—difference  approximations. 

        There   are   finite-difference  approximations  of   various  orders. 

The  higher  order  methods  of  solution,   involving  the  higher  order 

approximations,   can  be   used  only  when  the  function  f(x,y)   which 

appears    in    (2.1)    has   suitable  high  order  smoothness;  that  is 

when  it  is  continuous   and  has  continuous  derivatives  of  suitable 

orders.      Thus  the  reader  must   exercise  discrimination  in  choosing 

which  order  method  to  use.     When  they  can  be  used,  the  high  order 

methods  permit  the  use  of  coarse  meshes.     This  can  greatly  reduce 

the   labor  of  computation. 

          Case  A.     Methods   of  order   2.    Take  M  and  P  positive  integers, 

and  set 

(3.1)                       
M

h
π

= ,

(3.2)                       
p
a

k = .
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Clearly,  one  can  fill  up  the  rectangle    R    exactly  with  MP 

small  rectangles,  each  of  base    h    and  height    k  .    The  corners 

of    the    small    rectangles,     (mh,nk),  are  called  grid  points. 

We  write, 

(3.3) um,n        =  u(mh,nk) . 
 

 Let  us  define  a  5-point  difference  operator  by 

 

Assuming  that  u(x,y)  has  enough  partial  derivatives  to 

justify  doing  so, one can expand  u(x,y) in a double Taylor  series 

about  the  point  (mh,nk)  and   verify   that 

(3.5)     Δ5 um,n    ≅         hk ∇2   u(mh,nk) 
 
 to  within  terms  of  order  h4   +  k4     .   So,  to  get  approximate  values 

for  u(x,y)  at  the  grid  points,  we  approximate  (2.1)  by 

(3.6)     n,m5uΔ =    hk  f(mh,nk), 

and undertake  to  solve  the  resulting  set  of  difference  equations. 

It  is  known  that  there  is  a  unique  set  of  values 
 

n ,mu 
 which 

satisfy  (3.6)  together  with  the  boundary  conditions 

 n,0u = go  (nk) 0 < n < P 

 

 n,u M = gπ(nk)                           0 < n < P 

 0,mu = ho  (mn) 0 < m < M 

 P,mu = ho  (mn) 0 < m < M . 
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hk 

k h 
2 ) u u ( 

k 
h 

) u u ( 
n 
k 

u            (3.4) 
22 

1 n , m nm 1n,mn,1mn,1m n , m5 
+ 

− + + +   = Δ − + − +



If  f(x,y)     is     continuous,    and    the   boundary    conditions    are 
 
Continuous,   then   the   n,mu    will   differ   from   the  um,n      by    amounts 

  
of  the  order  of  h2   +  k2    .     Thus  the  method   of  approximating  um,n

by  solving   (3.6)   for  the   n,mu is  known  as a method  of  order 2. 

In  case  the  boundary  conditions  are  discontinuous,   the 

approximation  will  be  only  of  order   1   near  the  points  of 

discontinuity,   or  even  poorer.   See  the  discussion  in  Rosser  [ 5 ]. 

So,   depending  on  the  order  of  accuracy  required,   it  may  be 

desirable    to    "remove"   discontinuities    of    the   boundary  conditions, 

as   explained   in   the   previous   section. 

If  it  is   f(x,y)   which  is   discontinuous,   one  may  be  able  to 

"remove"    the   discontinuity   by   choosing   a   suitable  u*  (x,y).  The 

possibilities    are    so   varied   that   it   seems  hopeless  to  attempt   a 

catalogue  of   procedures.    If   the   reader   is   both   lucky   and    ingenious, 

he  may  be  able  to  cope  with  the  situation.     Otherwise,  he  must 

be  satisfied  with  an  approximation  of  low  order. 

Given   that   there   is   a   unique   set  of   n,mu
 
which  satisfy 

(3.6)   and  the  boundary  conditions, it   can  be  a  formidable  task 

to  get  good  numerical  approximations   for  these n,mu
 
, particularly 

when  M  and  P  are  large.      The  SOR  and  ADI  methods  which  are 

familiar   for  the   case   h =k   can  be  generalized  to  this   case  with 

reasonable  success..     The  extremely   fast   direct   method  of 

Hockney  [1  ]    is  written  with  the  possibility  that  h   ≠  k  ,    and  so 

is  immediately   available.     Nonetheless,   if  quite   good   accuracy 

is   desired,   so  that  a  fine  mesh   is   required,    the   labor   can  be 

considerable.     So,   if   f(x,y)   and  the  boundary   conditions   are 
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sufficiently  smooth,   it  may  be  desirable  to  use  a  higher 

order  method,   for  which  a  coarser  mesh  will  suffice. 

          There   may   be other   cases  in which use of a higher order  method 

is   desirable.     Suppose  one  wishes  to   solve  the  biharmonic  equation 

(3.7)       ∇4   u(x,y)    =  g(x,y)  

inside     R     ,  being  given  the  values  of  u(x,y)   on  the  boundary  (for 

example,   by   (2.2)   through  ( 2 . 5 ) ) ,   the  values  of 

 )y,x(u
x

2

2

∂

∂
 

along  the  vertical   sides,  and  the  values  of 

 )y,x(u2
y

2

∂

∂
 

along  the  top  and  bottom.     By   ( 2 . 2 ) ,   we  have  along  the  left  side 
 

.(y)''0gy)(x,u2
y

2
=

∂

∂
 

Adding  these  to  the  given  values  of 

   )y,x(u
x

2

2

∂

∂
 

along  the  left  side gives  the values  of 

                               ∇2  u (x,y) 
 

along  the  left   side.     That   is,   if  we  define  f(x,y)   by 

(3.8)  f(x,y)   =  ∇2u( x ,y) ,  

then  we  have   determined   f(x,y)   along   the   left  side.     In   a  similar 

way,  we  can  determine  f(x,y)   on  all  the  other  sides.     By   (3.8) 
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and  (3.7),  we  have 

(3.9) ∇2 f(x,y)  = g(x,y) .   

So  f(x,y)   can  be  determined  by  solving  a  Poisson  equation  with 

Dirichlet  boundary  conditions.     As  soon  as  f(x,y)   is  known, 

one  can  determine  u(x,y)  by  solving  (3.8) ,   which  is  the  same  as   (2.1). 

This  is  all  very  well  in  theory,  but  when  one  attempts  to 

get  approximations  for  u(x,y)  on  a  computer  certain  complications 

arise.     First  of  all,  we  must  get  approximations  for  f(x,y) 

from  (3.9).     We  get  these  approximations  at  the  grid  points. 

These  approximations  must  be  stored,   for  use  in  solving  (3.8) 

approximately  by  means  of  (3.6).      If  we  have  a  fine  mesh,  there 

will  be  a  large  number  of  grid  points,  and  the  storage  of  the 

approximations  for  f(x,y)  may  exceed  the  capacity  of  the  high 

speed  memory. 

         A more  serious  point  is  that  if  we  have  solved  (3.9)  to 

order  2  and  wish  to  get  a  solution  of  (3.7)  to  order  2,  we  must 

have  a  solution  of 

   ∇4u(x,y)   =  ∇2 f ( x , y )  

to  order  2.     If  we  are  to  infer  this  from  (3.8) ,   we  must  have 

a  solution  of  (3.8)  to  order 4.     The  alternative  is  to  use 

an  extremely  fine  mesh,   involving  serious  computer  storage  problems, 

to  get  a  solution  of  (38)   with  high  accuracy,  which  is  then  a 

solution  of  (3.7)   only  to  modest,   and  somewhat  indeterminate, accuracy. 

Thus  there  certainly  are  cases  in  which  one  would  wish 

to  consider  the  use  of  higher  order  methods. We  turn  to  some    of  these. 
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Case  B.   Methods  of  order 4.     It  seems  generally  believed 

that  if  one  wishes  to  get  a  method  of  order  greater  than  2,   one 

must  take  h  =  k.     Indeed,  this  assertion  is  made  on  p.260  of 

Fox  [6  ] .     This  may  account  in  good  part  for  the  wide-spread 

acceptance  of  the  belief. 

However, the    belief  is     unjustified.  In   Wirz   [7]   use    is    made 

of  a method  of  order 4  for  which  h  ≠  k. 

To  derive  such  a  method,  we  proceed  as  follows.     Define 
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(3.12)         .
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k2h10
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22
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+

−
=

           Then 

(3.13)      (b  +  2)h2  = A  =  (c  +  2)k2

(3.14)      b  +  c  =  8. 

  

         Let  us  define  a  9 -  Point  difference  operator  by 

(3.15)   ∆9um,n = b(um+l ,n  +  u m-1,n)+c(um,n+1  um,n-1)+(um+1,n+1+ um-1,n+1

                   + um+1,n-1 + um-1,n-1)  -  20um,n  .              

Again  assuming  that  we  can  expand  in  a  double  Taylor  series,  we  get 
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to  within  terms   of  order  h6    +   k6 . 

            By   (2.1)   we  have 

 uxxxx (mh,nk)   +  uxxyy   (mh,nk)   =   fxx     (mh,nk) 
 

 uxxyy (mh,nk)    +    uyyyy        (mh,nk)      =    fyy      (mh,nk)    . 
   

  
If  we  multiply  the   first  by  h2  A/12  and  the   second  by  k2  A/12  and  add, 

we  see  by   (3.10)   that  we  can  write   (3.16)  as 

.)nk,mh(f
12
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)nk,mh(f

12
Ah

)nk,mh(fAu)17.3( yy

2

xx

2

n,m9 ++≅Δ

 

 So,   to  get   approximate  values   for  u(x,y)   at  the   grid  points, 

we  approximate   ( 2 . 1 )    by 

,)nk,mh(f
12

Ak
)nk,mh(f

12
Ah

)nk,mh(fAu)18.3( yy

2

xx

2

n,m9 ++=Δ  

and   undertake   to  solve   the  resulting  set   of  difference  equations. 

These   difference   equations  are   more   complicated   than   (3.6). 

On   the   other   hand,    this  method  is   of  order  4,   and  one  can  use   a 

much   coarser   mesh,  with  many  fewer   grid  points,   to  obtain  the 

same   accuracy.     Whether   this  counterbalances   the  additional 

complication   will  depend  on   the  degree  of  accuracy   required. 
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If    we   are    dealing    with    Laplace's   equation,    in    which    f(x,y)   ≡  0, 

then  the  right  sides  of  both  (3 .6)    and  (3.18)   are  zero.   However, 

even  in  other  cases  the   right   side  of   (3.18)   may  not  "be  much  worse 

than   the   right   side  of   ( 3 . 6 ) .    For   example,   suppose   that   f(x,y)   is 

(3.19)  .)1y()1x(
22

++  

Then 

(3-20)  fxx (x,y)   =      
222

2

))1y()1x((

)y,x(f)1y(

+++

+
 

(3.21) fyy (x,y)   =     
222

2

))1y()1x((

)y,x(f)1x(

+++

+
 

 

 So          
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      .)y,x(f
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2222
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+++

+++
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On    a   computer,   this  would be  only about  twice  as  time 

consuming  to    calculate  as  the term 

         hk  f(x,y) 

which  appears   on  the  right   side  of   (3 .6 ) .      Also,   recall  that  we 

have  a  coarser  mesh,  with  fewer  than  one  fourth  as  many  grid  points, 

perhaps  one  ninth  as  many,   or  even  one  sixteenth.   So  having  to  do 

twice  as  much  calculating  for  each  right  side  is   rather   a   minor   matter. 
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         Actually,   one  can  put  the   right   side  of   (3.18)   in  a  more 

convenient    form.    Recall  that 

 h2 fxx      (mh,nk)  ≅  f (( m+1)h,nk)  +   f((m-l)h,nk)  -   2f(mh,nk)  ,  

 k2fyy     (mh,nk)  ≅  f (mh, (n+1 )k)   +  f(mh,(n-l)k)   -  2 f(mh,nk)   . 
 

So,   in  place  of  (3.18),  we  write 

.}

{

1)k)(n(mh,fk)1)(n(mh,f

nk)h,1)(mfnk)1)h,m(f()nk(m1f82k2h

2k2hm,nu9Δ(3.12)

−+++

−+++
+

=

 

Use   of  (3.6)  would   require the  calculation  of  f(mh,nk) at all 

interior grid points. For (3 .22)  one would have also to calculate 

f(mh,nk) at grid points on the boundary, a rather small additional 

labor. 

 Use  of  (3.22) is  a  method  of order 4, in that the  n,mu   will 
 
differ  from  the  um,n by  amounts  of  the  order  of  h4 +k4  . 
 

 For  the  case h= k formula (3.22) is given  in  Collatz  [8 ] 

as  one  of  the  stencils  in  Table  VI  on  p. 542. 

 Case  C.Methods  of order 6. It  is well known that  if  one 

can  take  h  =  k,   then  the  9  -point  difference  operator  will  lead 

to  a  method  of  order  6. There  is  a  myth  of  some  currency  to 

the  effect  that  this  can  be  done  only  if  f(x,y)   ≡  0.     We  will 

elucidate  the  true  circumstances. 

 Assuming  that  we can take h  =  k, we can  show  by  (2,1)  that 
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to  within  terms  of  order  h8 . One  may  compare  this  with  equation (20.57) 

on  p. 194  of  Forsythe  and  Wasow [2]  ; however, in their equation  the 

term 

   )P(uh
2
1 22

Δ
 

should  be  replaced  by 

    )P(uh
2
1 22

Δ

as  can  be  verified  by  looking  up  the  reference  which  they 

cite  for  the  derivation  of  their  equation   (20 .57) .  

      Thus  we  take 

)nh,mh(f
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as   a  finite     difference     approximation  for   ( 2 .1 ) .       If  we   solve  for 

the  ūm,n       ,  we  have  a  method  of  order  6,   in  that  the  ū m,n       and  the  um,n
   
will  differ  by  amounts  of  the  order  h6   .     Thus  we  can  use  quite  a 

coarse   mesh,  with  yet   fewer  grid   points,   indeed   considerably  fewer. 

If   we   are   dealing   with  Laplace's  equation,   then  the  right   side 

of   (3.24)  will  be zero. However,   as  we   saw  with   (3.18),   the 

matter  is  not  hopeless  even  if  f(x,y)   is  not  identically  zero. 
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If  f(x,y)   happens  to  be  a  reasonable  function  in  closed  form, 

such  as  ( 3 . 1 9 ) s   then  the  right  side  of  (3.24   is  not  too 

burdensome  on  a  computer;  this  is  especially  true  since  we  now 

have  quite  a  coarse  mesh,   so  that  one  needs  to  compute  the 

right  side  of  (3.24)  at  relatively  few  grid  points. 

There  is  merit  in  deriving  something  more  analogous  to 

(3.22),   though  we  cannot  do  quite  as  well  this  time.  We  note  that 

(3.25) f(x+h,y+h)  +  f(x,y+h)  +   f(x-h,y+h)  +   f(x+h,y) 

           -  8  f(x,y)  +   f(x-h,y)   +  f(x+h,y-h)   +  f(x,y-h) 

)y,x(f
2

h
)y,x(f

4
h

)y,x(fh3)hy,hx(f xxyy

4
4

4
22

+∇+∇≅−−+  

to  vithin  terms  of  order  h6.   So  we  can  get  the  following  analogue 

for  (3.22)

{
15

2
h

nm,u9Δ(3.26) =      82 f(mh,nh)  +  f((m+1)h,(n+1)h)  +  f(mh,(n+1)h) 

 + f ( ( m - l ) h , ( n + 1 ) h )   +   f((m+1)h,nh) + f((m-l)h,nh) + f((m+1)h,(n-l)h) 

 +  f(mh,(n-l)h)   +  f((m-1)h,(n-l)h) .)nh,mh(f
2

10

4
h3} ∇+

As   with   (3.24,  use  of  (3.26)    gives   a   method   of   order   6. 

If  f(x,y)   is  something  like  (3 .19 ) ,   the  right  side  of  (3.26)  would 

be  much  simpler  to  compute  than  the  right  side  of  (3.24).   Indeed, 

if  f(x,y)   is  (3.19),  then 

 ,
)y,x(f

1
)y,x(f

2
=∇

so  that  computation  of  the  right  side  of  (3.26)  would  involve  little 

more  computer  time  than  the  computation  of  the  right  side  of  (3.6).  
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The   formula  (3.26)    is  given  in  Col  atz   [8]   as  one  of  the 

stencils  in  Table  VI  on  p.   543. 

As   an  indication  of  the   advantage  of  (3 .26) ,    suppose  we  are 

trying  to  solve  (3 .7 ) .   If  we  wish  a  solution  of  (3-7)   to  order  4, 

we  must  get  a  solution  of   (3.9)    to  order 4  and  then  a  solution 

of   (3.8)   to  order  6. So we use (3 .22)    to  get  an  approximate  solution 

for  (39).     Accordingly,  we  can  use  a  coarse  enough  mesh  that 

storage  of  our  approximations  for  f(mh,nh)   is  not  a  problem.  We 

then  undertake  to get   an  approximate  solution for (3.8)  by  use  of  ( 3 .26 ) .  

As  we  have  stored  approximations  for  f(mh,nh),  we  can  fill  in  all 

of  the  right  side  of   (3.26)   except  the  term 

 

 .)nh,mh(f
10
h3 2

4

∇

However,   by  (3.9)   this  is  given   (to  quite  high  order)   by 

 .)nh,mh(g
10
h3

4

So  we  can  proceed  to  an  approximate   solution  of  (3.8)   to  order  6. 

By   (3.9),   this   is  a  solution  of   (3 .7 )    to  order  4. 

            It  could  be  the  case  that  we  have  f(x,y)   given  in  tabular 

form,  with  no  ready  means  to  approximate 

 .)nh,mh(f
10
h3 2

4

∇

So  we   seek  a  formula  to  approximate  the  right  side  of   (3.23) 

exclusively  in  terms   of  values  of  f (x ,y ) .  

          We   observe   that   while   we   would   wish  to  restrict  the  left 

side  of   (3.23)   to  involve  values  of  um,n at  only  the   familiar 
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9  grid  points,  there  is  no  need  for  a  similar  restriction 

on  the  right   side.     We  note  further  that 

)nh,h)2m((f
12
1

)nh,h)2m((f
3
4

)nh,mh(f
2
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)nh,h)1m((f
3
4

)nh,h)2m((f
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)nh,mh(fh xx
2

−−−+
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to  terms  of  order  h6  .     By  using  this,  and  the  corresponding 

relation  for  fyy    (mh,nh),   in  (3.26),   we  see  that  we  can  take 
 

(3.27)
120

2h
nm,u9Δ =  {476f(mh,nh)  + 56(f (( m+1 )h,nh)  + f((m-1)h,nh) 

    + f(mh,(n+1)h) + f(mh,(n-1)n)) + 8(f ((m+1)h,(n+1 )h) 

                              + f ( (m-1)h , (n+1)h)   + f (( m+1)h,(n-1) h) 

                              + f ((m- l )h , (n - l )h ) ) -3 ( f ((m+2)h,nh)+f(( m-2)h,nh) 

                              + f (mh,(n+2)h)   + f(mh,(n-2)h))} 

as  a  finite-difference  approximation  for  (2 .1)   to  get  a  method  of 

order  6. 

Quite   clearly,  the  right   side  of   (3.27)    is   not   the   only   possible 

choice.     There  may  be  others   which,  for some  reason or other,  are 

more  advantageous.       As  alternatives  are  easily  found,  we  leave 

it  to  the  reader  to  choose  which  one  pleases  him  best. 

We  turn  to  a  more  troublesome  matter.     Clearly   (3.27)   cannot 

be  used  at  grid  points  which  are   only a distance   h   from the  

boundary (unless  values of  f(x,y)  outside  the  boundary  are 

available).     For  such  grid  points  we  will  have  to  use  a  "stencil" 
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on  the  right   side  of  (3 .27)    which  is  not  centered  on  the  point 

(mh,nh).     One  can  use  the  off  center  difference  approximation 
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which  is  correct  to  within  terms  of  order  h6   ,  to  modify  (3.26).  

However,   this  uses  six  consecutive  grid  points  in  the  x-direction. 

One  wonders  if  one  one  could  avoid  having  to  go  so  far  in  the  x-direction 

if  one  would  use   additional  points  above  and  below  those  indicated. 

When  one  has  to  deal  with  the  grid  point  nearest  a  corner,   one  must 

use  the  off  center  difference  approximation  in  both  the  x-direction 

and  the  y-direction.   It  would  seem  that  by  using  additional  points, 

one  should  not  have  to  go  so  far  from  the  principal  grid  point. 

         This  is  not  the  case.     We   shall  give  an  analysis  which  shows 

this,    and   illuminates   the    question   of   more  general  difference 

approximations  in  two  dimensions. 

        We    start    by    seeking   a   positive  integer  S  and  coefficients 

am,n (-1   ≤  m  ≤  S,     -1   ≤  n  ≤   S)   such  that 
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to  within  terms  of  order  h6  . 

          Because    the   right    side    is   invariant   under   interchange of 
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x  and  y,   if  we  find  a  set  of  am,n which  satisfy   (3.28)-so 
  
would  ā m,n      ,  where  we  define  

         ām,n    =an,m .

Then,    equally,   we   could   replace   am,n            in  (3.28)   by 

                        
2
1 ( am,n    +    ām,n    ).

So  we  might  as  well  assume  from  the  start  that 

(3.29) am,n =   an,m  .

 

            Assuming  that  we  can  expand  f(x,y)   in  a  double  Taylor  series 

about  the  point   (x,y)   we  have 

(3.30)    )nhy,mhx(fa n,m
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to  within  terms  of  order  h6  ,  where 

(3.31)         Krs   = .anm n,m
ssrs
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 If  we  write 
 

(3.32)        ∑
−=

=
s

1m
,nm,anA

then  because  of  (3.29)  we  have 

(3.33)         ∑
−=

==
s
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By   ( 3 . 3 0 ) ,    If  we  are  to   satisfy   (3.28)   we  must  have 

(3.34) K00   =    6

 
(3.35) K10    =    K01   =  0 

 
(3.36) K20     =     K02  =    

 
(3.37) K30   =    K03  =  ° 

 
(3.38) 

K40 =     k04 =   
5
2

 
(3.39) K50  =     K05  =  0 

 By  (3.33),   this   is  a   set  of   six   simultaneous   linear  equations 

for  the  An   .     They  have  no  solution  unless  S  ≥   4.   So  we  take  S  = 4, 
  
and  find  the   solution 
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Analogously,   if  we  write 
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then  to  satisfy   (3.28)    we  must  have 
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(0  ≤  r  ≤  4). 

 

This   set  of  5  equations  has  the   solution 
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We  write 

(3.42)           C n   = ∑
−=

s

1m
n,m

2
.am

 Then,  to  satisfy  (3.28)  we  would  have 

(3.43)   C-1+  C0  +  C1   +  C2  +  C3  +  C4    =     1 

(3.44) - C-1+  C1   + 2C2  +  3C3  + 4Ck     =     0 

(3.45)   C-1+  C1   + 4C2  +  9C3  +  16C4   =  
15
4

 

(3.46) - C_1+  C1   +  8C2  +  27C3  +  64C4= 0. 

These  have  the   solution 
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 It  can  be  seen  that  satisfaction  of  the  equations   (3.34- (3.39), 

(3.41),   and  (3.43)   -   (3.46)   is  sufficient  as  well  as  necessary 

for  the  satisfaction  of  (3.28).     This  we  have  accomplished,  and 

with  three  parameters,  B0,   C0   ,  and  C4  ,   at  our  disposal. 
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There  is   still  -the question   how   to   choose  -the   am,n   to 
give  the   desired  values  of  the  An   ,  Bn   ,   and  Cn   .        If  we  specify 
values  of  the  An   ,   Bn      and  Cn  ,  then  (3 .32) ,  (3.40) ,  and   (3.42) 

are  a  set   of   18   simultaneous   linear  equations  for  the  am,n 
.

In  view  of   ( 3 . 2 9 ) ,   there  are  21   distinct   am,n   ,   so  that  we  have 

more  unknowns  than  equations.      Since  we  can  produce  one   solution 

by   using   the   off   center   difference  approximation  in  both  the 

x—direction  and  the  y—direction,   it   follows   that   there  is  a 

whole   family  of  solutions.     We  will  show  how  to  find  others  of 

these   solutions. 

       We   choose   arbitrarily 

 a-1,4 = a4, -1 = 0 

      a 0,4  = a4,0  =  0 

       a1,4  =  a4,1  =  0 

     a2,4  = a4,2  =  0 

      a3,4  =  a4,3  = 0  . 

         As  A4    =   1/40,   we  conclude  by   (3 .32)    that 

             .
40
1

a 4,4 =

 

Then  by   (3.40) 

               B4 =10
1

 , 
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so  that 

               

.
2
1

B

1B
1B
2
1

B
10
1

B

3

2
1
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1
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=
−=

=

−=−

 

 

Also,  by   (3.42) 

 .
5
2

C4 =  

 
We  arbitrarily  choose 
 
 

 ,
3
1

C 0 =  

 
and  infer

             

.5
7

C
5
8

C
15
4

C
3
1

C

3

2

1

1

−=

=

−=

=−

 

Using   the   values   of   A3   ,   B3   ,   and   C3     that  we  have  determined, 

(3.32),   (3.40),   and   (3 .42)    are  three  linear  equations  involving 

am,3        ( -1 ≤ m ≤ 4 ) .        We  have  already  determined  a4,3    .   We 

arbitrarily  set 

            a3,3    =     0 

            a2,3   =     a3,2  = 0 . 
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We  then  have  three  equations  in  three  unknowns.     Solving  gives 

   

.20
19

13,a1,3a
4
5

3,0a0,3a
20
9

13,a1,3a

−=−=−

==−

−=−=−

 

 Using  the  values  of  A2   ,B2,and  C2    that  we  have  determined,   (3.32), 

(3.40),  and  (342)  are  three  linear  equations  for  the  six 

quantities  am,2     (  -1   ≤  m  ≤  4).     Two  of  the  six  quantities  have   

been  already  determined.  We  arbitrarily  set 

           a2,2    =    0 

and  solve  for  the  other  three,  getting 

   

.
10
13

2,1a1,2a

4
5

2,0a0,2a

10
3

12,a1,2a

==−

−==−

=−=−

 

 

We    consider    the    quantities am-1      (-1  ≤ m ≤  4).     Three have 
 

been  determined  already.     The  values  of A1  ,  B1    and  C1.  give 
  

three  equations  for  the  others,  and we  determine 

   

.
6
7

1,1a

3
10

01,a0,1a

12
23

11,a1,1a

=

−=−=−

=−=−

 

We   now   know   four   of   the   six   quantities   a m,0        (   -1   ≤  m  ≤  4). 

So  we  have  three  equations  for  the  two  unknowns  a-1,0       and   a0,0    . 

Fortunately,  one  of  the  equations  is  dependent  on  the  other  two. 
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This  had  been  anticipated  from  an  analysis   of  the  matrix 

of  the   coefficients.     So  we  determine 

        a-1,0   =   a0,-1 
12
31

−  

                               a0,0      =  
120

1337
 

                  

Finally,   we  have  three  equations  for  a -1,1.        .     Again  there  is 

dependency,  and  we  get 

         a-1,-l  .
15
91

It   appears   that,   in   general,   one   can   choose   the  am,4       at  will, 

subject  to  the  condition  that  their  sum A4   be  1/40.     Use  of  the 

off  center  difference   approximation   in  both   the   x-direction   and   the 

y-direction  amounts  to  choosing 

          a-1,4 = a1,4 = a2,4 = a3,4 = a4,4  = 0 

  .
40
1

0,4a =  

Having  chosen  the  am,4      ,  we  will  have  determined  B4   and  C4 .     This 

then  fixes  the  Bn   ,  but  leaves  C0 at  our  disposal.     With  an 
  
arbitrary  choice  of  the  am,4,      one  will  likely  not  have  the 
 
dependencies  which  we  exploited  above.     However,  by  proceeding 

first  to  the  am,3    ,  then   to  the  am,2,      and  so  on,   it   is   a  modest   
labor  to   express   all  the  am,n as  linear  combinations  of 

C0  ,  a3,3   ,  a2,2      ,   and  a2,2       .     In  the  process,  one  will  likely  derive 

certain  relationships  between  these  quantities,   so  that  at  the 

end   one   will   probably   have   all  the  other  am,n    expressed    in   terms 
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of  C0.     It  seems  not  worthwhile  to  explore  the  details  any 

further  at  this  point. 

 We  noted  earlier  that  if  the  principal  grid  point  is  at  a 

distance    h    from  the  left  edge,  but  further   than   that   from  the 

top  or  bottom,  then  one  can  use  the   off   center   difference  approxi- 

mation  in  the  x-direction.     We  use  the  methods  given  above  to 

see  if  one  can  get  a  "stencil"  which  does  not  extend  as  far  as 

six  grid  points  in  the  x-direction.     It   turns   out   that   one   cannot, 

but  we  will  present  the  analysis  anyhow,   since  it  shows  how  to 

generate  all  possible  "stencils". 

 Without  causing  confusion, we  can  use the  same  letters  as  before, 

but  with  slightly  altered  denotations. 

 So  for  our  am,n we  will now have  - 2 ≤ m ≤ 2 , -1 ≤  n  ≤  S. 
   

In  place  of  (3 .29) ,   we  will  have 

(3.4)              am,m =      a-m,n 
.  

All  summations  on    m    should  be  from  -2  to  + 2 .     Specifically, 

this  change  should  be  made  in  (3.30),   (3 .31) ,    (3.32),   (3.40) ,   and 

(3.42).     In  (3.33)  the  term  Kro    should  be  omitted. 

As  before,  we  see  that  we  must  have  S  > 4.    Taking  S  = 4, 

we  get  the  same  values  of  An    as  before. 
 

          By  (3.47)  and  (3 .40) ,   we  have  Bn   =  0  for  all  n.     Thus  (3.4l) 

is      trivially    satisfied. 

           We  get  the  same  determination   as   before   for   the   Cn   . 
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      Finally,   we   write 

(3.48)  ∑
−=

=
2

2m
.nm,a

4
mnD

         We  must  have 

(3.49) D-1   +  D0  +  D1   +  D2   +  D3  +  D4   =   
5
2

 
 

(3-50) -D_1   +  D1   +  2D2  +  3D3  +  4D4  =  0. 

           Given  the  An  ,  Bn  ,  and  Cn   ,  there  is  no  question  how  to  
determine  the  am,n       .     We  have  immediately 
 

,
6

DC4
aa

,
24

CD
aa

nn
n,1n,1

nn
n,2,n2

−
==

−
==

−

−

 
 
    a 0,n   =  An   -  2a 1 , n        -    2a 2 , n      .

 Thus  we  can  easily  determine  sets  of  am,n

 In  view  of  these  developments,  we  see  that  it  is  entirely 

practical   to   get   an   approximation   of   order   6   for   the  solution  of 

Poisson's  equation,   provided  one   can   take   h  =  k.     Also   there   are 

cases  where  it  is  desirable  to  get  an  approximation  of  order  6. 

So  it  would  be  quite  useful  to  have  the  possibility  of  taking 

h  =  k.     We  shall  show  how  this  can  be  done  even  if   a/π  is   irrational. 

4.     The  case  h  =  k.     As  before,   we  take 

(4.1)            ,
π

h
M

=  
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where  M  is  a  positive  integer.     We  take     N     to  be  the 

integer  part  of    a πM .     ;      in  symbols 

(4. 2)           ⎥⎦

⎤
⎢⎣

⎡
π

=
M

N
a

 . 

Then 

(4.3)             Nh    ≤     a, 

(4.4)        (N  +  1)  h  >  a. 

         If 

(4.5)              Nh  =  a, 

then  we  can  fill  up  the  rectangle    R    exactly  with  MN  squares  of 

side  h.     That  is,  we  have  immediately  available  the  case  h  =  k,   and 

the  9-point  difference  approximation  leads  to  the  well  known 

method  of  order  6  which  we  discussed  in  the  previous   section. 

So  we  are  interested  only  in  the  case 

      Nh  <  a. 

We  could  assume  this,   but   it   is  not  required  for  the  analysis 

which  follows.     If  we  should  have   (4 .5 )    holding,  then  some  of  the 

steps  of  the   subsequent  analysis  would  be  quite  trivial  but  not 

incorrect  in  any  way. 

         We  begin  by  defining 

(4.6)                           b  -  Nh 

(4.7)                           c = a - b = a -   Nh . 
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We  take  Rb    to  be  the  rectangle  with  corners   (0,0),   (0,b), 

(π , 0 ) ,    and  (π ,b ) ,   and  take  Rc    to  he  the  rectangle  with  corners 

(0,c),   (0,a),   (π , C )    and  (π ,a) .  

        We  choose  hb   (x)   to  be  a  function  such  that 

                     hb  (0)   =  g0 (b)   

                  hb(π)   =  gπ (b)  . 

The  better  we  can  choose  hb  (x)  to  approximate u(x,b),  the more 

we  can  curtail  certain  computations  later.     With   the   limited 

information  available  at  this  stage,  we  content  ourselves  with  taking 

      .))(h)b(g(
x

))0(h)b(g()
x

1()x(h)x(h aπa0ab π−
π

+−
π

−+=  

 
       We  take  ub  (x,y)   to  be  the  function  which  is  continuous  on 
 
and  inside  Rb    satisfies   ( 2 .1 )    inside  Rb   and  on  the  sides  of   

Rb    satisfies  the  boundary  conditions 

(4.8) ub(0,y)  =  g0(y) 0  ≤.  y ≤  b 

(4.9) ub(π,y)   =  gπ(y) 0  ≤  y ≤  b 

(4.10) u b ( x , 0 )    =  h0(x) 0  <_  x  <_  π 

(4.11) u b ( x , b )    =  h b ( x )  0 ≤  x  ≤  π   . 

We  take  uc  (x,y)   to  be  the  function  which  is  continuous  on  and  
inside  Rc  ,   satisfies   ( 2 ,1 )    inside  Rc.  and  on  the  sides  of  Rc    

satisfies   the  boundary  conditions 
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(4.12)                uc(0,y)    =        g0(y)                 c   ≤  y  ≤  a 

(4.13)         uc(π,y)    =        gπ (y)    c   ≤  y  ≤  a 

(4.14)        uc(x,c)     =        ub (x,c)    0  ≤   x  ≤ π 

(4.15)               uc(x,a)      =        ha (x)     0  ≤  x  ≤  π   . 
  

We  recall  that  we  are  assuming  that  u(x,y)  has  continuous 

boundary   conditions  around  the  rectangle     R.        If  it  had  not  been 

so,  we  would  have  replaced  u(x,y)   by  some u** (x,y)   for  which  it 

is  so,  as  explained  in  Section  2.     By  our   definition  of  hb   (x),  we 

see  that  u b ( x , y )    has  continuous  boundary  conditions  around  the 

rectangle  Rb  .     Then   it  follows  by  ( 4 . 1 4 )    that  the  same  holds  for 
 

uc   (x,y)    relative   to   the   rectangle   Rc .  This   is  why  in   (4.8)   through 

(4.15)   we  can  use  ≤  rather  than  <. 

 By  (4.1)   and  ( 4 . 6 )   we  can  fill  up  the  rectangle Rb exactly 

with  MN  squares  of  side  h.     Thus  we  can  use  the  familiar  9-point 

difference   approximation  to   get   accurate  approximations   for  ub  (x,y) 

inside  Rb    at  the  grid  points   (mh,nh).     From  these,  we  can  get 

accurate  approximations  for  u b ( m h , c ) .     By   ( 4 . 1 4 )    these  are  part 

of  the  boundary  values  for  uc  (x ,y ) .      Thus  it  is  necessary  to 

determine  them  to  order  h6  .     By  the  principle  of  the  maximum,   it 

is  also  sufficient.     For   a   given  m,  the  point   (mh,c)   is  on  a 

vertical  grid  line.     Thus  one  can  determine  ub  (mh,c)   to  order 

h6    by  using  a  high  order  interpolation  formula  in  one  dimension 
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on  the  values   at  the  six  grid  points   (mh,0) ,    (mh,h), 

(mh,2h),   (mh,3h),   (mh,4h),   and  (mh,5h).   Although  the  spline 

function  interpolation  method  of  Papamichael  and  Whiteman  [4 ] 

is   simpler  and  more  convenient,   it   likely  does  not  give  the  needed 

accuracy. 

         By   (4.14),   this   gives   us  good  approximations  to  uc  (x,c)   at 

x  =  h,  2h,…,   (M-1)h.     By  (4 .1 )    and  ( 4 . 7 )   we  can  fill  up  the 

rectangle  Rc     exactly  with  MN  squares  of  side  h.   Thus  we  can  use 

the  familiar  9-point  difference  approximation  to  get  accurate 

approximations  for  uc  (x,y)   inside  Rc    at  the  grid  points   (mh,c+nh). 

Then  we  can  get  accurate  approximations  for  uc  (mh,b)  by  the 

method  mentioned  earlier. 

 We  define  Rbc  to  be  the  rectangle  which  is  the  intersection 

of   the   rectangles   Rb    and  Rc  .     In  Rbc  , the   function  uc  (x,y)  - ub (x,y) 

is  harmonic.     Also,  it  is  zero  along  the  bottom  and  along  the 

two  vertical  sides.     So  on  and  inside  Rbc    we  have 
 

∑
∞

= −
−

=−
1r

bc xrsin
)cb(rsinh
)cy(rsinh

ar)y,x(u)y,x(u)16.4(  

 
where 

{ } .dxxrsinπ
0 b)(x,bub)(x,cu

π
2

ra(4.17) ∫ −=  
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Clearly   the   | ar |   are  bounded  by 

(4. 18)       2    max     │uc  (x,b)   -  ub  (x,b) | 

        0≤x≤π 
 

           We  recall  (see   (4.11))  that 

        ub(x,b)  =  hb(x)  . 

Presumably  uc(x,b)   is  fairly  close  to  u(x,b).     If  also  we  were 

lucky  enough  to  choose  hb(x)   fairly  close  to  u(x,b),  then  by 

(4.18)   the   ar    will  be   fairly  small.     This   will   save  computational 

effort  later. 

         On  and  inside  R  define 

,xrsin
arsinh

)ya(rsinh
ba)y,x(v)19.4(

1r
rr∑
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=

−
=  

 
where 
 

,
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           On  and  inside  Rb define 

38. 



(4.21)       u(x,y)   =  ub(x.y)   +  v(x,y)

      .xrsin
)cb(rsinh
)cy(rsinh

a
1r

r∑
∞

= −
−

+  

 We   see  that  u(x,y)   is  continuous  on  and  inside  the 

rectangle   Rb  ,   satisfies   (2 .1)    inside   rb  ,   and  on  three  sides 

satisfies  the  boundary  conditions   (4.8),   (4.9),  and  (4.10). 

By   (4.16),  we  see that,  on and inside Rbc      we have  

(4.22)     u(x,y)  =  uc (x,y)   + v(x,y). 

We  use   (4.22)   to  define  u(x»y)   for  the  rest  of  the  rectangle 

R c .     Then  u(x,y)   is  continuous  on  and  inside  the  rectangle  Rc   , 
  
satisfies  (2.1)   inside  Rc  ,  and  on  three  sides  satisfies  the 

boundary  conditions   (4.12),    (4.13),  and  (4.15). 

 Thus  we  see  that  u(x,y)   is  exactly  the  function  u(x,y)  that 

we  were  seeking   to  obtain. 

 We  have  obtained  accurate  approximations  for  ub(x,y)   and 

uc   (x,y)   at   various   grid   points.     If   M  is  of  reasonable  size, 

then  c  is  small,   since  0≤c<h   by   (4.7),    (4.3),    and   (4.4).     As 

a   is   greater   than   π,  and   b=a-c  by  (4 .7 ) ,   we  see   that   the  series 

on  the  right  of  (4.19)   is  rapidly  convergent  for  0≤y≤a.     Also, 

the   series  appearing   on   the  right  of  (4 .21)    is  rapidly  convergent 

for   small   y,   certainly   for  0<y<h.     If   in  addition  the  ar    are  all 
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quite   small   (see   ( 4 . 1 8 ) ) ,    then  very  few  terms   of  the  series 

are  needed  to  get  high  accuracy.      So,   using  the  known 

approximations   for   ub(mh,nh)   with    the   spline   function   method 

of  Papamichael  and  Whiteman  [4],   we  can  get  approximate 

values  for  u(x,y)   for  small  y  by   ( 4 . 2 1 ) .      For  all  other 

values  of  y,  we  can  use  the  known  approximations  for 

uc   (mn,   c  +  nh)   with  the   spline   function   interpolation   method  

of   Papamichael   and   Whiteman  [4]  to  get  approximate  values 

for  u(x,y)   by   ( 4 . 2 2 ) .  

          The  calculation  of  the  a    presents  no  problem.     Not  more 

than   four   or   five   will   be  required;   fewer   if   the  ar    are  all 

small.     Observe   that  the  values  of  u b ( x , b )    are  given  by   (4.11). 

Also,  we  had  got  accurate  approximations  for  uc  (mh,  b).     So 

we  can  use  a  numerical  quadrature  formula  to  calculate  the  ar

by   (4.17). 

 CAUTION.  If  r  is  not  fairly  small  compared  to  N,  then 

there  will  be  fairly  few  abscissa  points   in  each  cycle  of 

sin  r  x  in   ( 4 . 1 7 ) ;    in   such   case   the  usual   quadrature   formulas 

are  not  trustworthy.     One  can  get  twice,   or  four  times,   or 

eight  times,   as  many  abscissa  points   by   interpolating   to  get 

approximations    for uc   (x,b)   at  the  additional   abscissa   points 

(recall   that   ub  (x,b)    is   given  by   ( 4 . 1 1 ) ) .       For   this   interpolation 

one   can   either   use  a  high   order  one  dimensional  interpolation 

formula  on  the  values  uc   (0,b),  uc   (h,b),  uc   (2h,b),  . . . ,   or  one 
 

can   use   the   spline   function   interpolation   method   of   Papamichael 
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and   Whiteman   [4].      However,    before   using   the   latter,   one    should 

check   if  it   gives   sufficiently  high  accuracy.     We  need  high 

accuracy  for  only  the  first  one  or  two  of  the  ar   .     Perhaps  by 

the  time  we  need  to  interpolate  additional  points   for  use  with 

the  quadrature  formula,   the  needed  accuracy  will  be  low  enough 

that  one  can  use  splines.      In  any  case,   one  should  increase  the 

number  of  abscissa  points,   as  needed,   to  the  point  where  one 

can  use  a  quadrature  formula  with  assurance. 

          One    should   keep   in   mind   the   very  rapid  convergence  of 

the    series     appearing    on    the    right    of    (4.19)    and    (4.21).     Thus, 

while  we  probably  require  full  accuracy  for  a1   ,  we  need  less  for 

a2,   still  less  for  a3,   down  to  hardly  any  for  a5,   and  probably 

none  at   all  for  a6,   a7   ,   ....     However,   attention  should  be 

given  to  be   sure  there  are  enough   abscissa  points   to  give  such 

accuracy   as  is  needed.     Also,   by   a  little   foresight  in  the 

choice  of  N,   one  can  arrange   that,   after   increasing   the  number 

of  abscissa  points   if  needed,   one  can  use  a  high  order 

quadrature  formula,  like  Bode's   Rule,   for  example. 

5.       Possible  curtailment  of  the  calculation. 

          In  case   f(x,y)   is  not   aero,   we   have   had  to   calculate   the 

right   side  of   (3.26),    or   something   of   the   sort,  at  one   set  of 

grid   points   to  calculate  ub   (mh,nh),    and   at   a   different   set  of 

grid   points   to   calculate  uc  (mh,   c  +  nh).     It    would    be   desirable 

if    we    could   eliminate   the  second   set  of  calculations  of  the 
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right   side   of   (3.26).   In some  cases   we   can. 

        Suppose   that    g0   (y) ,    gπ    (y) ,   and   f(x,y)    are   given   in    such 

forms    that   they   can    be     continued   up  to  y  =   (N  +   1 )h.   In  that 

case,   we  redefine 

(5.1)    b  =   (N  +   l)h 

(5.2)    c  =  a  -  Nh  =  a  +  h  -  b. 

With     the  new  b  and    c    (the  new  c   is   the    same    as   the   old   one), 

we  define  Rb.    and   Rc   as  before,   we  take  nb  (x)    as   before,   and 

Ub  (x,y)   as   before.     Note  that    now  ub  (x,y)   is   defined  in  a 

region  which  contains  R,   and  which   therefore   contains  Rc . 

         Instead  of  defining  uc   (x,y)  as  before,  we  will   define 

w(x,y)   as   the   function   which   is   continuous   on   and   inside  Rc  , 

is    harmonic   inside   Rc   ,   is   zero  on   three   sides   of   R c  ,  and  on 

the   top  of   Rc    satisfies  the  boundary  condition 

(5.3) w(x,a)     =    ha (x)   -    ub  (x,a)      0≤x≤π. 

         If  now  we  define 

(5.4) uc(x,y)   =  ub(x,y)   +  w(x,y) 

on  and  inside  Rc   ,   then  uc   (x,y)   satisfies  the   same  conditions 

as  before.      Also,   on  and  inside  Rc     we  will  have 
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(5.5)      uc  ( x,y)   -   ub  (x,y)  =  w(x,y)     
 

 ∑
∞

= −
−

=
1r

r xrsin
)ca(rsinh
)cy(rsinh

a    

 
            where 
 

{ } .dxxrsinπ
0 a)(x,bu(xahπ

2ra(5.6) ∫ −= )

As  with  b,  the  new  ar     are   a   trifle   different   from  the  old. 

 We  define  v(x,y)   as  before,   except  that  now  we  take 
 
 

)ca(rsinh
crsinh

b)7.5( r −
=  

         Then, on  and  inside  R,  u(x,y)  is  given  by   (4.21)  while, 

on and inside Rc , u(x,y) would be given by (4 .22) ,  which in 

view  of  ( 5 . 4 ) ,    had  better  be  written  as 

(5.8) u(x,y)   =  ub(x,y)   +  w(x,y)   +  v(x,y). 

            As  before,   (4 .21)    is  suitable  for  computation  for  small 

y,    while    (5.8)   is   suitable   for  computation  for c≤y≤a,. 

 With  this  approach,  the  computational  details  are  as 

follows.     As   before,  we   use   the   9-point    difference   approximation 

to  get  approximations  for  u b ( x , y )    at   the   grid   points    (mh,nh). 
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Then a suitable interpolation formula will give accurate 

approximations for ub (mh,a). Then we can use the 9-point 

difference approximation to get approximations for w(x,y) 

at the grid points  (mh, c + nh) ; see (5 .3 ) . However, now 

we are determining w(x,y) to be harmonic, and so avoid 

having   to  calculate  the  right side of (3.26) at a new set 

of  grid  points. 

        As  before, we  must  calculate  approximations for a few 

of  the  ar      but  the  details  are  quite  similar. 

 One  difficulty  that arises is that we will now be using 

(5.8)   instead  of   (4.22)   to  calculate  values  of  u(x,y).     It 

is  inconvenient  that  our  approximate  values  for u b ( x , y ) and 

w(x,y)  which  appear  on  the  right  of   ( 5 . 8 ) ,    are  known  at 

different    grid   points.     However,   by   storing   a   suitable 

subroutine  for  interpolation  in  the  computer,   the   matter  can 

be  dealt  with.     In  any  given  situation,   one  would have to 

determine  if  the  extra  interpolations  are  less  or  more  effort 

than  calculating  the  right  side  of  (3.26)  at  an  additional 

set  of  grid  points. 

6.       Tests  for  accuracy. 

 One advantage of using  the 9-point difference approximation 

when  one  can  exactly  fill  up  the  ractangle  with  squares  is  that 

one  can  make  a  first  calculation,  for  less  than  a  quarter  of  the 
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calculating  effort,  with  squares  twice  as  large  on   a  side, 

and  then  repeat  with  the  smaller  squares.     Because  the  error 

is  of  the  order  of  h6   ,   one  can  get  an  estimate  of  the  error. 

This  can   be   done  with   the   present  procedure  by   choosing 

M  divisible  by  2.     If  N  is  not  divisible  by  2,  the  values  of 

b  and  c  which  are  used  with  the  squares  of  side  2h  will not 

be  the  same  as  those  which  are  used  with  the  squares  of  side 

h.     However,  this  does  not  matter. 

        One  dividend  that  will  accrue  from making  an  initial 

calculation  with  squares  of  side  2h  is  that   from   this  calculation 

one  can  derive  a  very  good  approximation  to  take  for  hb (x). 

Then,   for  the  calculation  with  squares  of  side  h,   the  ar    will 

be  very  small,  so  that  not  more  than  two  or  three  of  them 

will  be  needed. 

7.       Neumann  boundary  conditions. 

        Suppose  we  have  the  same  rectangle  R,  and  impose  on 

u(x,y)  the  same  conditions  as  before,   except  that  on  top  of 

the   rectangle  R  we  specify  values  to   be   taken  by  uy   (x,a). 

That  is  we  replace  (2.5)   by  the  Neumann  condition 

(7.1) uy  (x,a)  -  ka  (x) 0<X<π. 
 

We  postpone  to  the  latter  part  of  the  section  a  discussion 
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of  how  one  would  handle  this  in  the  case   in  which  a/π   is 

rational,    so  that   one   can  fill   up   R   exactly   with   squares 

of  side  h.      For  the  moment,   let  us  assume  that  this  can  be 

done,   and  explain  how  to  generalize  to  the  case   in  which 

a/π  is   irrational. 

 We    proceed  very  nearly  as   in  Section  4.     Instead   of   the 

definition  given  there  of  hb   ( x ) ,    we  use 

(7.2)       .(b)πg
π
x

(b)0g)
π
x

(1(x)bh +−=  

We   take   ub  (x,y)   as   before,   but    for  uc  (x,y)   we   replace   (4.15) 

by  the  analogue  of   ( 7 . 1 ) ,    namely 

.πx0(x)aka)(x,cu
y

(7.3) <<=
∂
∂

 

Everything  now  goes  the   same,   down  to  the  definition  of 

v (x ,y ) .      Let  us  pause  a  moment,   and  think  what  we  require  of 

v ( x , y ) .       Clearly  it   should  be  harmonic,   so  that  u(x,y),   as 

defined   in  part  by   ( 4 . 2 l )    and  in  part  by   ( 4 . 2 2 ) ,    will   satisfy 

(2.1)   inside  R.     Also,   we  wish  v(x,y)   to  be   zero  on  the 

vertical   sides   of   R,   so  that    there   u(x,y)   will   satisfy   the 

proper  boundary  conditions.   Also,  on  the  bottom  of  R,   we 

must  have 
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crsinh
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so  that  by   (4.21)   u(x,y)   will   satisfy  the  right  boundary 

conditions  on  the  bottom  of  R.     Finally,   looking   at   (4.22), 

we  see  that   if  u(x,y)   is  to  satisfy  the  right   boundary 

conditions  on  the  top  of  R,   we  must  have 

(7.5) vy  (x,a)   =  0 0<x<π. 
 

All   these   conditions   can   be   met  by  simply  replacing  the  factor 

  
arsinh

)ya(rsinh −
 

in   the   definition   of   v(x,y)   by 

  .
arcosh

)ya(rcosh −
  

 
 In  this  case,   since  it   is  unlikely  that   (7.2)   makes 

hb   (x)   come  out   very  close  to   u(x,b),  we  cannot   count  on  the 

ar    being    particularly    small,   so   that    two   or   three   more  of  them 

might   have   to   be   calculated.     It  might   be   better  to   turn   the 

rectangle   R   upside   down  and   proceed  as  follows. 
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Consider  next  the  case  in  which  the  Neumann  condition 

is  at  the  bottom  of  R.     That  is,  u(x,y)   satisfies   (2.2), 

(2.3),  and  (2.5),  but   ( 2 . 4 )    is  replaced  by 

(7.6) uy  (x,0)  =  ko  (x) 0<X<Π. 

Again,  we   proceed   nearly  as  in   Section 4.     We  can  now 

take  hb  (x)   the  same  as  in  Section  4,  which  should  lead  to 

smaller  values  of  the  ar   ,   so  that  we  can  get  by  with  calculating 

fewer  of  then.     For  the  definition  of  ub  (x ,y) ,   we  replace 

(4.10)  by  the  analogue  of  ( 7 . 6 ) ,  namely 

.πx0(x)oko)(x,bu
y

(7.7) <<=
∂
∂  

We  take  uc (x,y)  as  in Section  4,  and continue the  same down to 

the  definition  of  v ( x , y ) .      A  key  requirement   is  that  u(x,y), 

as  defined  by   ( 4 . 2 1 ) ,    shall  satisfy  the  proper  boundary 

conditions  at  the  bottom  of  R.     In  Section 4,  this  required 

that 

xrsinc)r(bSinh
c)yr(sinh

ra
1r

y)v(x,(7.8)
−
−

∑
∞

=
+  

should  be  zero  when  y=0.     This  was  accomplished  by  the  proper 
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choice  of  the  br   .     Now  we  must   assume  that  the  partial 

derivative  of   (7.8)   with  respect  to  y  shall  be  zero  when 

y=0.     Again,   this   is   accomplished  by  the  proper  choice  of 

the  br  ;    specifically  we  now  take 

.
arcosh
crcosh

c)(brsinh
arsinh

rb(7.9)
−

=  

All  else  remains  the   same. 

Next  consider  the   case   in  which  there  are  Neumann 

conditions  both  at  the  top  and  the  bottom  of  R.     That   is, 

u(x,y)   satisfies   (2.2)   and   (2.3),   but   (2.4)   is  replaced  by 

(7.6)   and  (2.5)   is   replaced  by   (7.l).     We  proceed  much  as 

in  Section  4.     In  the  definition   of  ub  (x,y)   we  replace   (4.10) 

by   (7.7),   and  in  the   definition  of  uc   (x,y)   we  replace   (4.15) 

by   (7.3).   We  define  hb  (x)  by  (7.2).      It   is  then  easily 

verified   that   we   should   replace 

                
arsinh

y)r(asinh −  

in  the  definition  of  v(x,y)   by 

arcosh
y)(arcosh −  
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and  define 

.
arsinh
crcosh

c)(brsinh
arcosh

rb(7.10)
−

=

 

  One  can  of  course  have  Neumann  conditions  on  one  or  both 

of  the  vertical  sides.     Let  us  consider  first  the  case  in  which 

there  are  Neumann  conditions  on  both  vertical   sides,  but 

Dirichlet  conditions  at  the  top  and  bottom.     Rotation  by  90° 

would  reduce  this  to  the  case  just  considered.     However,   this 

is  not   desirable,   since  we  would  then  lose  the  qualification 

that  the  height  is  greater  than  the  base.     It  was  this  that 

assured  the  rapid  convergence  of  the  Fourier  series    in  (4.19) 

and   (4.21). 

 So  we  assume  that   ( 2 . 4 )    and  ( 2 . 5 )    hold,  but  that   (2.2) 

and  (2.3)  are  replaced  by 

(7.11)       ux  (o,y)  =  jo   (y) 0<y<a 

 
(7.12)        ux(π,y)   =  jπ(y) 0<y<a. 

 We  proceed  analogously  to  Section 4,   except  that  we  use 

cosines  instead  of  sines  throughout.     Because  it   is  desirable 

to  have  ux  (x,y)   continuous  around  the  boundary  we  define 
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.))('
ah(b)π(j

2π

2x(b))oj(0)'
a(h2π)(x

2π
1(x)ah(x)bh(7.13) π−+−−+=  

We  define  ub  ( x ,y )    and  uc  (x,y)   as  in  Section  4,  except 

that  they  now  have  Neumann  conditions  on  their  vertical  sides. 

We  replace  (4.16)  and  (4 .17 )   by 

xrcosc)r(bsinh
c)r(ysinh

0r
ray)(x,buy)(x,cu(7.14)

−
−

∑
∞

=
=−  

Where 

{ }

{ } dx.xrcosb)(x,bub)(x,cu
π

0
2πra(7.16)

dxb)(x,bub)(x,cu
π

0π
1

0a(7.15)

−=

−=

∫

∫
 

When  r=0,  we  define 

.
cb
cy

c)r(bsinh
c)r(ysinh

−
−=

−
−  

Exactly  analogous  changes  are  made  in  (4.19)  and  (4.21). 

If,  in  addition  to  the  Neumann  conditions  on  the  vertical 

sides,  we  replace  one  or  both  of  the  Dirichlet  conditions  on 

the  top  or  bottom by  Neumann  conditions,  we  can  modify  the 
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procedure  just   outlined  quite  analogously  to  the  way  in which 

we  modified  the  procedure  of  Section  4  earlier  in   this  section. 

It  will  he  noted  that  we  are  allowing  the  possibility  of 

Neumann  conditions  on  all  four  sides.     In  this  case,  the 

solution  is  not  unique.     However,   any  two  solutions  differ  by 

a  constant.     The  procedure  outlined  produces  one  of  the 

infinity  of  solutions. 

To  handle  the  case  of  a  Dirichlet  condition  on  the  left 

side  and  a  Neumann  condition  on  the  right   side,  we  replace 

sin  r  x  by 

,x
2
1rsin ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −  

with  suitable  related  changes.     To  handle  the  case  of  a 

Dirichlet   condition  on  the  right   side  and  a  Neumann  condition 

on  the  left  side,  we  replace sin r x by 

,x
2
1rcon ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −  

When  we  had  Dirichlet  conditions  on  all  sides,  we  were 

at   some  pains  in  Section  2  to  ensure  that  these  would  be 

continuous  all around the  boundary,   and  that  they  would  have 

continuous  derivatives  except  for  jumps  at  the  corners.     This 
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assured   that   the   first   partial  derivatives of  u(x,y)   would  be 

continuous  throughout.    When  there  are  Neumann  conditions  on 

some  sides,  attention  must  be  paid  to  the  continuity  of  the 

first  partial  derivatives  around  the  boundary.     As  far  as  the 

parts  of  the  boundary  where  there  are  Dirichlet  conditions, 

the  procedures  given  in  Section  2  for  the  "removal"  of 

discontinuities  are  still  applicable.     They  do  not  introduce 

discontinuities  of  u(x,y)   or  its  partial  derivatives  at  other 

spots;  indeed,   at   the  points   where  a  discontinuity  of  u(x,y) 

or  one  of  its  partial  derivatives  is  being  "removed",  the 

attendant   discontinuity   in  the  other  partial  derivative  is 

also  "removed". 

We  turn  our  attention  to  the  "removal"  of  jump  discontinuities 

in  the  Neumann  conditions.     Suppose  we  have  the  condition 

(7.1)  along  the  top  of  R,  and  ka  (x)   is  discontinuous. 

Specifically,   let  0  <  p   <  π,   and  let  the  limits  ka  ( p-0)  and 

ka  (p+0)  exist  and  be  different.     We  introduce  the  function 

u*  (x,y)  =  Q  s(x,y)   +  u(x,y) 

Where 

⎭
⎬
⎫

⎩
⎨
⎧ −+−−−

−
−−= 2x)(ρ2y)(alogx)(ρ

2
1

ya
xρarctana)(yy)s(x,  
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and 

0)).(ρak0)(ρa(kπ
1Q −−+=  

The  other  sort  of  discontinuity  that  might  occur  would 

be   in  case 

.(0)ak(a)'
og ≠  

We   introduce   the   function 

u*  (x,y)   =  Q  s(x,y)   +  u(x,y) 

where 

⎭
⎬
⎫

⎩
⎨
⎧ +−+−−= 2x2y)(alogx2

1
x

yaarctana)(yy)s(x,  

and 

.)(a)'
og(0)a(kπ

2Q −=  

We   consider  finally  how  to  handle  the  case   in  which  the 

        54. 



rectangle  has  a  rational  ratio  of  the  sides,  and  we  have  filled 

it  exactly  with  squares  of  side  h,   and  wish  to  approximate 

u(x,y)   at  the  grid  points.     At  interior  grid  points,  we  can  use 

(3.26) ,    (3.27),   or  something  of  the  sort.     On  boundaries  where 

there  are  Dirichlet  boundary  conditions,   we  assign m,nu
 
the 

specified  value.  This  leaves  only  the  boundary  points  where 

there  is  a  Neumann  condition  to  be  dealt  with. Suppose, for 

example,  that  the  condition  (7.11)  holds  on  the  left  side  of 

R.     We  note  that 

y)5h,f(x5
1y)4h,f(x4

5y)3h,f(x3
10

y)2h,5f(xy)h,5f(xy)f(x,60
137y)(x,xhf17)(7.

+++−++

+−++−=
 

holds  to  within  terms  of  order  h6  .     If  we  take  x  =  0  and  y  =  nh, 

we  get  by  (7.11) 

.5,mu5
1

4,mu4
5

3,mu3
10

2,mu5

1,mu50,mu~
60

137(mh)
o

hj(7.18)

+−+−

+−=

 

One  could  use  a  higher  order  formula  than   ( 7 . 1 7 ) ,   but  it 

probably  suffices.     A  heuristic  argument  for  this  is  as  follows. 

By  the  principle  of  the  maximum,   if  we  wish  to  determine 
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interior  points  to  order  h6 , it  is  sufficient to determine 

the boundary points  to order  h6 .  However, if the interior 

points  are  given  to  order  h6  ,   ( 7 . l 8 )   will  determine 0,mu to 

order  h6   . 

Use  of  (7.18)  with   (3.26)   or  (3.27)   results  in  a  rather 

messy  matrix  of  coefficients  of  the  .nm,u
  
However,   one  is 

probably  using  such  a  coarse mesh  that  this  matrix   would  be 

less  than  100  x  100,  perhaps  even  less  than  50  x  50.     If  so, 

probably  the  quickest  method  of  solution  is  to  use  the   standard 

computer  routine  for  solving  simultaneous  linear  equations.     If 

this  is  done,  it  does  not  matter  if  the  matrix  is  messy  or  not. 

If  it  happens  that  one  is  solving  the  Laplace  equation, 

with  f(x,y) ≡  0,  and  has  a zero  normal  derivative  along  one 

side,   say  jo  (y)   ≡  0,  one  can  use  the  reflection  principle  to 

replace  (7.18)  by  something  which  seems  conceptually  simpler. 

However,   it  involves  three  boundary  grid  points  and  three  interior 

points,   and  so  is  probably  about  as  much  bother  on  a  computer 

as   (7.18),  which  also  involves  six  grid  points. 

If  one  has  Neumann  conditions  on  one  or  more  sides,   and 

so  is  using  (7.18),  one  might  consider  the  following  procedure, 

which  would  bypass  the  treatment  in  Section 4  altogether. 

Almost  always,  there  is  at  least  one  side  with  Dirichlet 

conditions.     By  rotating  and  relinquishing  the  qualification 
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a  >   π,   if  need  be,   we  can   arrange  to  have  Dirichlet 

conditions  on  top.      If,   in  the   notation  of  Section 4,   we  have 

0  <  c.<  h,   the  difficulty  is  that  we  have  no  good  way  to 

write   down  an  equivalent   of   (3 .26)    for  the  values  of  u(x,y) 

at   the  row  of  grid  points   (mh , Nh),   1≤m≤M-1.     As   a 

substitute,   write   down   (3.26)   for  the   9-point   formula 

centered  at   (mh,a-h).      It   involves  values   of  u(x,y)   at 

( (m-1)h,    a-h),   ((m-1)h,   a-2h),   (mh,   a-h),   (mh,   a-2h), 

((m+1)h,   a-h),   ((m+l)h,   a-2h),   as  well  as   at  the  boundary 

points   ((m-l)h,   a),   (mh,   a),  and  ((m+l)h,   a),  where   u(x,y) 

is  known.     Nov,   by  a  high  order  one  dimensional  interpolation 

formula,   we  can  write  each  of  u(rh,   a-h)   and  u(rh,  a-2h), 

approximately  as  a  linear   combination  of  u(rh,   nh)   for  n  ≤ N; 

we  do  this  for  r  =  m-1,   r  = m,   and  r  =  m+1.      So  we  get  a 

formula  involving  u(rh,   Nh),   u(rh,   ( N - l ) h ) ,    etc.,   for 

r  =  m-1,  m,   m+1,   which  we   can  use   in  place  of   (3.26). 

Probably  interpolation  of  order   seven  should  be  used.     This 

might  make  it   impossible  for  us  to  use   as   coarse  a  mesh  as 

we  otherwise  could.     However,   if  we  are  having  to  deal  with  a 

messy  matrix  anyhow,   because  of  the  Neumann  conditions,   the 

idea  might  be  worth  considering. 
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