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Chapter 1

Introduction

Over the past decade, countless multimedia functionalities have been added to mobile 
devices. For example, front and back video cameras are common features in today’s 
cellular phones. Further, there has been a race to capture, process, and display ever-
higher resolution video, making this an area that vendors emphasize and where they 
actively seek market differentiation. These multimedia applications need fast processing 
capabilities, but those capabilities come at the expense of increased power consumption. 
The battery life of mobile devices has become a crucial factor, whereas any advances in 
battery capacity only partly address this problem. Therefore, the future’s winning designs 
must include ways to reduce the energy dissipation of the system as a whole. Many 
factors must be weighed and some tradeoffs must be made.

Granted, high-quality digital imagery and video are significant components of the 
multimedia offered in today’s mobile devices. At the same time, there is high demand 
for efficient, performance- and power-optimized systems in this resource-constrained 
environment. Over the past couple of decades, numerous tools and techniques have 
been developed to address these aspects of digital video while also attempting to achieve 
the best visual quality possible. To date, though, the intricate interactions among these 
aspects had not been explored.

In this book, we study the concepts, methods, and metrics of digital video. In 
addition, we investigate the options for tuning different parameters, with the goal of 
achieving a wise tradeoff among visual quality, performance, and power consumption. 
We begin with an introduction to some key concepts of digital video, including visual 
data compression, noise, quality, performance, and power consumption. We then discuss 
some video compression considerations and present a few video coding usages and 
requirements. We also investigate the tradeoff analysis—the metrics for its good use, its 
challenges and opportunities, and its expected outcomes. Finally, there is an introductory 
look at some emerging applications. Subsequent chapters in this book will build upon 
these fundamental topics.
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The Key Concepts
This section deals with some of the key concepts discussed in this book, as applicable 
to perceived visual quality in compressed digital video, especially as presented on 
contemporary mobile platforms.

Digital Video
The term video refers to the visual information captured by a camera, and it usually is 
applied to a time-varying sequence of pictures. Originating in the early television  
industry of the 1930s, video cameras were electromechanical for a decade, until  
all-electronic versions based on cathode ray tubes (CRT) were introduced. The analog 
tube technologies were then replaced in the 1980s by solid-state sensors, particularly 
CMOS active pixel sensors, which enabled the use of digital video.

Early video cameras captured analog video signals as a one-dimensional, time-varying  
signal according to a pre-defined scanning convention. These signals would be 
transmitted using analog amplitude modulation, and they were stored on analog video 
tapes using video cassette recorders or on analog laser discs using optical technology. 
The analog signals were not amenable to compression; they were regularly converted to 
digital formats for compression and processing in the digital domain.

Recently, use of all-digital workflow encompassing digital video signals from 
capture to consumption has become widespread, particularly because of the following 
characteristics:

It is easy to record, store, recover, transmit, and receive, or to •	
process and manipulate, video that’s in digital format; it’s virtually 
without error, so digital video can be considered just another data 
type for today’s computing systems.

Unlike analog video signals, digital video signals can be •	
compressed and subsequently decompressed. Storage and 
transmission are much easier in compressed format compared to 
uncompressed format.

With the availability of inexpensive integrated circuits, high-speed •	
communication networks, rapid-access dense storage media, 
advanced architecture of computing devices, and high-efficiency 
video compression techniques, it is now possible to handle 
digital video at desired data rates for a variety of applications 
on numerous platforms that range from mobile handsets to 
networked servers and workstations.

Owing to a high interest in digital video, especially on mobile computing platforms, 
it has had a significant impact on human activities; this will almost certainly continue to 
be felt in the future, extending to the entire area of information technology.
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Video Data Compression
It takes a massive quantity of data to represent digital video signals. Some sort of data 
compression is necessary for practical storage and transmission of the data for a plethora 
of applications. Data compression can be lossless, so that the same data is retrieved upon 
decompression. It can also be lossy, whereby only an approximation of the original signal 
is recovered after decompression. Fortunately, the characteristic of video data is such 
that a certain amount of loss can be tolerated, with the resulting video signal perceived 
without objection by the human visual system. Nevertheless, all video signal-processing 
methods and techniques make every effort to achieve the best visual quality possible, 
given their system constraints.

Note that video data compression typically involves coding of the video data; 
the coded representation is generally transmitted or stored, and it is decoded when a 
decompressed version is presented to the viewer. Thus, it is common to use the terms 
compression/decompression and encoding/decoding interchangeably. Some professional 
video applications may use uncompressed video in coded form, but this is relatively rare.

A codec is composed of an encoder and a decoder. Video encoders are much more 
complex than video decoders are. They typically require a great many more signal-
processing operations; therefore, designing efficient video encoders is of primary 
importance. Although the video coding standards specify the bitstream syntax and 
semantics for the decoders, the encoder design is mostly open.

Chapter 2 has a detailed discussion of video data compression, while the important 
data compression algorithms and standards can be found in Chapter 3.

Noise Reduction
Although compression and processing are necessary for digital video, such processing 
may introduce undesired effects, which are commonly termed distortions or noise. They 
are also known as visual artifacts. As noise affects the fidelity of the user’s received signal, 
or equivalently the visual quality perceived by the end user, the video signal processing 
seeks to minimize the noise. This applies to both analog and digital processing, including 
the process of video compression.

In digital video, typically we encounter many different types of noise. These include 
noise from the sensors and the video capture devices, from the compression process, 
from transmission over lossy channels, and so on. There is a detailed discussion of 
various types of noise in Chapter 4.

Visual Quality
Visual quality is a measure of perceived visual deterioration in the output video compared 
to the original signal, which has resulted from lossy video compression techniques. This is 
basically a measure of the quality of experience (QoE) of the viewer. Ideally, there should be 
minimal loss to achieve the highest visual quality possible within the coding system.

Determining the visual quality is important for analysis and decision-making 
purposes. The results are used in the specification of system requirements, comparison 
and ranking of competing video services and applications, tradeoffs with other video 
measures, and so on.
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Note that because of compression, the artifacts found in digital video are 
fundamentally different from those in analog systems. The amount and visibility 
of the distortions in video depend on the contents of that video. Consequently, the 
measurement and evaluation of artifacts, and the resulting visual quality, differ greatly 
from the traditional analog quality assessment and control mechanisms. (The latter, 
ironically, used signal parameters that could be closely correlated with perceived visual 
quality.)

Given the nature of digital video artifacts, the best method of visual quality 
assessment and reliable ranking is subjective viewing experiments. However, subjective 
methods are complex, cumbersome, time-consuming, and expensive. In addition, they 
are not suitable for automated environments.

An alternative, then, is to use simple error measures such as the mean squared error 
(MSE) or the peak signal to noise ratio (PSNR). Strictly speaking, PSNR is only a measure 
of the signal fidelity, not the visual quality, as it compares the output signal to the input 
signal and so does not necessarily represent perceived visual quality. However, it is the 
most popular metric for visual quality used in the industry and in academia. Details on 
this use are provided in Chapter 4.

Performance
Video coding performance generally refers to the speed of the video coding process: the 
higher the speed, the better the performance. In this context, performance optimization 
refers to achieving a fast video encoding speed.

In general, the performance of a computing task depends on the capabilities of the 
processor, particularly the central processing unit (CPU) and the graphics processing unit 
(GPU) frequencies up to a limit. In addition, the capacity and speed of the main memory, 
auxiliary cache memory, and the disk input and output (I/O), as well as the cache hit 
ratio, scheduling of the tasks, and so on, are among various system considerations for 
performance optimization.

Video data and video coding tasks are especially amenable to parallel processing, 
which is a good way to improve processing speed. It is also an optimal way to keep the 
available processing units busy for as long as necessary to complete the tasks, thereby 
maximizing resource utilization. In addition, there are many other performance-
optimization techniques for video coding, including tuning of encoding parameters. All 
these techniques are discussed in detail in Chapter 5.

Power Consumption
A mobile device is expected to serve as the platform for computing, communication, 
productivity, navigation, entertainment, and education. Further, devices that are 
implantable to human body, that capture intrabody images or videos, render to the brain, 
or securely transmit to external monitors using biometric keys may become available in 
the future. The interesting question for such new and future uses would be how these 
devices can be supplied with power. In short, leaps of innovation are necessary in this 
area. However, even while we await such breakthroughs in power supply, know that some 
externally wearable devices are already complementing today’s mobile devices. 
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Power management and optimization are the primary concerns for all these existing 
and new devices and platforms, where the goal is to prolong battery life. However, many 
applications are particularly power-hungry, either by their very nature or because of 
special needs, such as on-the-fly binary translation.

Power—or equivalently, energy—consumption thus is a major concern. Power 
optimization aims to reduce energy consumption and thereby extend battery life. High-speed 
video coding and processing present further challenges to power optimization. Therefore, we 
need to understand the power management and optimization considerations, methods, and 
tools; this is covered in Chapters 6 and 7.

Video Compression Considerations
A major drawback in the processing, storage, and transmission of digital video is the huge 
amount of data needed to represent the video signal. Simple scanning and binary coding 
of the camera voltage variations would produce billions of bits per second, which without 
compression would result in prohibitively expensive storage or transmission devices.  
A typical high-definition video (three color planes per picture, a resolution of 1920×1080 
pixels per plane, 8 bits per pixel, at a 30 pictures per second rate) necessitates a data rate 
of approximately 1.5 billion bits per second. A typical transmission channel capable 
of handling about 5 Mbps would require a 300:1 compression ratio. Obviously, lossy 
techniques can accommodate such high compression, but the resulting reconstructed 
video will suffer some loss in visual quality.

However, video compression techniques aim at providing the best possible visual 
quality at a specified data rate. Depending on the requirements of the applications, 
available channel bandwidth or storage capacity, and the video characteristics, a variety 
of data rates are used, ranging from 33.6 kbps video calls in an old-style public switched 
telephone network to ~20 Mbps in a typical HDTV rebroadcast system.

Varying Uses
In some video applications, video signals are captured, processed, transmitted, and 
displayed in an on-line manner. Real-time constraints for video signal processing and 
communication are necessary for these applications. The applications use an end-to-end  
real-time workflow and include, for example, video chat and video conferencing, 
streaming, live broadcast, remote wireless display, distant medical diagnosis and surgical 
procedures, and so on. 

A second category of applications involve recorded video in an off-line manner. In 
these, video signals are recorded to a storage device for archiving, analysis, or further 
processing. After being used for many years, the main storage medium for the recorded 
video is shifted from analog video tapes to digital DV or Betacam tapes, optical discs, hard 
disks, or flash memory. Apart from archiving, stored video is used for off-line processing 
and analysis purposes in television and film production, in surveillance and monitoring, 
and in security and investigation areas. These uses may benefit from video signal 
processing as fast as possible; thus, there is a need to speed up video compression and 
decompression processes.
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Conflicting Requirements
The conflicting requirements of video compression on modern mobile platforms 
pose challenges for a range of people, from system architects to end users of video 
applications. Compressed data is easy to handle, but visual quality loss typically occurs 
with compression. A good video coding solution must produce videos without too much 
loss of quality.

Furthermore, some video applications benefit from high-speed video coding. This 
generally implies a high computation requirement, resulting in high energy consumption. 
However, mobile devices are typically resource constrained and battery life is usually the 
biggest concern. Some video applications may sacrifice visual quality in favor of  
saving energy.

These conflicting needs and purposes have to be balanced. As we shall see in the 
coming chapters, video coding parameters can be tuned and balanced to obtain  
such results.

Hardware vs. Software Implementations
Video compression systems can be implemented using dedicated application-specific 
integrated circuits (ASICs), field-programmable gate arrays (FPGAs), GPU-based 
hardware acceleration, or purely CPU-based software.

The ASICs are customized for a particular use and are usually optimized to perform 
specific tasks; they cannot be used for purposes other than what they are designed for. 
Although they are fast, robust against error, yield consistent, predictable, and offer stable 
performance, they are inflexible, implement a single algorithm, are not programmable or 
easily modifiable, and can quickly become obsolete. Modern ASICs often include entire 
microprocessors, memory blocks including read-only memory (ROM), random-access 
memory (RAM), flash memory, and other large building blocks. Such an ASIC is often 
termed a system-on-chip (SoC).

FPGAs consist of programmable logic blocks and programmable interconnects. 
They are much more flexible than ASICs; the same FPGA can be used in many different 
applications. Typical uses include building prototypes from standard parts. For smaller 
designs or lower production volumes, FPGAs may be more cost-effective than an ASIC 
design. However, FPGAs are usually not optimized for performance, and the performance 
usually does not scale with the growing problem size.

Purely CPU-based software implementations are the most flexible, as they run 
on general-purpose processors. They are usually portable to various platforms. 
Although several performance-enhancement approaches exist for the software-based 
implementations, they often fail to achieve a desired performance level, as hand-tuning 
of various parameters and maintenance of low-level codes become formidable tasks. 
However, it is easy to tune various encoding parameters in software implementations, 
often in multiple passes. Therefore, by tuning the various parameters and number of 
passes, software implementations can provide the best possible visual quality for a given 
amount of compression.
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GPU-based hardware acceleration typically provides a middle ground. In these 
solutions, there are a set of programmable execution units and a few performance- and 
power-optimized fixed-function hardware units. While some complex algorithms may 
take advantage of parallel processing using the execution units, the fixed-function units 
provide fast processing. It is also possible to reuse some fixed-function units with updated 
parameters based on certain feedback information, thereby achieving multiple passes 
for those specific units. Therefore, these solutions exhibit flexibility and scalability while 
also being optimized for performance and power consumption. The tuning of available 
parameters can ensure high visual quality at a given bit rate.

Tradeoff Analysis
Tradeoff analysis is the study of the cost-effectiveness of different alternatives to determine 
where benefits outweigh costs. In video coding, a tradeoff analysis looks into the effect of 
tuning various encoding parameters on the achievable compression, performance, power 
savings, and visual quality in consideration of the application requirements, platform 
constraints, and video complexity. 

Note that the tuning of video coding parameters affects performance as well as visual  
quality, so a good video coding solution balances performance optimization with achievable 
visual quality. In Chapter 8, a case study illustrates this tradeoff between performance  
and quality.

It is worthwhile to note that, while achieving high encoding speed is desirable, it may 
not always be possible on platforms with different restrictions. In particular, achieving 
power savings is often the priority on modern computing platforms. Therefore, a typical 
tradeoff between performance and power optimization is considered in a case study 
examined in Chapter 8.

Benchmarks and Standards
The benchmarks typically used today for ranking video coding solutions do not consider 
all aspects of video. Additionally, industry-standard benchmarks for methodology and 
metrics specific to tradeoff analysis do not exist. This standards gap leaves the user guessing 
about which video coding parameters will yield satisfactory outputs for particular video 
applications. By explaining the concepts, methods, and metrics involved, this book helps 
readers understand the effects of video coding parameters on the video measures. 

Challenges and Opportunities
Several challenges and opportunities in the area of digital video techniques have served 
as the motivating factors for tradeoff analysis. 

The demand for compressed digital video is increasing. With the •	
desire to achieve ever-higher resolution, greater bit depth, higher 
dynamic range, and better quality video, the associated computational 
complexity is snowballing. These developments present a challenge 
for the algorithms and architectures of video coding systems, which 
need to be optimized and tuned for higher compression but better 
quality than standard algorithms and architectures.
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Several international video coding standards are now available to •	
address a variety of video applications. Some of these standards 
evolved from previous standards, were tweaked with new coding 
features and tools, and are targeted toward achieving better 
compression efficiency.

Low-power computing devices, particularly in the mobile •	
environment, are increasingly the chosen platforms for video 
applications. However, they remain restrictive in terms of system 
capabilities, a situation that presents optimization challenges. 
Nonetheless, tradeoffs are possible to accommodate goals such as 
preserving battery life.

Some video applications benefit from increased processing •	
speed. Efficient utilization of resources, resource specialization, 
and tuning of video parameters can help achieve faster processing 
speed, often without compromising visual quality.

The desire to obtain the best possible visual quality on any given •	
platform requires careful control of coding parameters and wise 
choice among many alternatives. Yet there exists a void where 
such tools and measures should exist.

Tuning of video coding parameters can influence various video •	
measures, and desired tradeoffs can be made by such tuning. To 
be able to balance the gain in one video measure with the loss in 
another requires knowledge of coding parameters and how they 
influence each other and the various video measures. However, 
there is no unified approach to the considerations and analyses 
of the available tradeoff opportunities. A systematic and in-depth 
study of this subject is necessary.

A tradeoff analysis can expose the strengths and weaknesses of a •	
video coding solution and can rank different solutions.

The Outcomes of Tradeoff Analysis
Tradeoff analysis is useful in many real-life video coding scenarios and applications. 
Such analysis can show the value of a certain encoding feature so that it is easy to 
make a decision whether to add or remove that feature under the specific application 
requirements and within the system restrictions. Tradeoff analysis is useful in assessing 
the strengths and weaknesses of a video encoder, tuning the parameters to achieve 
optimized encoders, comparing two encoding solutions based on the tradeoffs they 
involve, or ranking multiple encoding solutions based on a set of criteria.

It also helps a user make decisions about whether to enable some optional encoding 
features under various constraints and application requirements. Furthermore, a user can 
make informed product choices by considering the results of the tradeoff analysis.
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Emerging Video Applications
Compute performance has increased to a level where computers are no longer used 
solely for scientific and business purposes. We have a colossal amount of compute 
capabilities at our disposal, enabling unprecedented uses and applications. We are 
revolutionizing human interfaces, using vision, voice, touch, gesture, and context. Many 
new applications are either already available or are emerging for our mobile devices, 
including perceptual computing, such as 3-D image and video capture and depth-based 
processing; voice, gesture, and face recognition; and virtual-reality-based education and 
entertainment.

These applications are appearing in a range of devices and may include synthetic 
and/or natural video. Because of the fast pace of change in platform capabilities, and the 
innovative nature of these emerging applications, it is quite difficult to set a strategy on 
handling the video components of such applications, especially from an optimization 
point of view. However, by understanding the basic concepts, methods, and metrics of 
various video measures, we’ll be able to apply them to future applications.

Summary
This chapter discussed some key concepts related to digital video, compression, noise, 
quality, performance, and power consumption. It presented various video coding 
considerations, including usages, requirements, and different aspects of hardware and 
software implementations. There was also a discussion of tradeoff analysis and the 
motivations, challenges, and opportunities that the field of video is facing in the future. 
This chapter has set the stage for the discussions that follow in subsequent chapters.
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Chapter 2

Digital Video Compression 
Techniques 

Digital video plays a central role in today’s communication, information consumption, 
entertainment and educational approaches, and has enormous economic and 
sociocultural impacts on everyday life. In the first decade of the 21st century, the profound 
dominance of video as an information medium on modern life—from digital television to 
Skype, DVD to Blu-ray, and YouTube to Netflix–has been well established. Owing to the 
enormous amount of data required to represent digital video, it is necessary to compress 
the video data for practical transmission and communication, storage, and streaming 
applications.

In this chapter we start with a brief discussion of the limits of digital networks and 
the extent of compression required for digital video transmission. This sets the stage 
for further discussions on compression. It is followed by a discussion of the human 
visual system (HVS) and the compression opportunities allowed by the HVS. Then we 
explain the terminologies, data structures, and concepts commonly used in digital video 
compression.

We discuss various redundancy reduction and entropy coding techniques that 
form the core of the compression methods. This is followed by overviews of various 
compression techniques and their respective advantages and limitations. We briefly 
introduce the rate-distortion curve both as the measure of compression efficiency and 
as a way to compare two encoding solutions. Finally, there’s a discussion of the factors 
influencing and characterizing the compression algorithms before a brief summary 
concludes the chapter.

Network Limits and Compression
Before the advent of the Integrated Services Digital Network (ISDN), the Plain Old 
Telephone Service (POTS) was the commonly available network, primarily to be used 
for voice-grade telephone services based on analog signal transmission. However, 
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the ubiquity of the telephone networks meant that the design of new and innovative 
communication services such as facsimile (fax) and modem were initially inclined toward 
using these available analog networks. The introduction of ISDN enabled both voice 
and video communication to engage digital networks as well, but the standardization 
delay in Broadband ISDN (B-ISDN) allowed packet-based local area networks such as 
the Ethernet to become more popular. Today, a number of network protocols support 
transmission of images or videos using wire line or wireless technologies, having different 
bandwidth and data-rate capabilities, as listed in Table 2-1. 

Table 2-1.  Various Network Protocols and Their Supported Bit Rates

Network Bit Rate

Plain Old Telephone Service (POTS) on 
conventional low-speed twisted-pair copper 
wiring

2.4 kbps (ITU* V.27†), 14.4 kbps (V.17), 
28.8 kpbs (V.34), 33.6 kbps (V.34bis), etc.

Digital Signal 0 (DS 0), the basic granularity  
of circuit switched telephone exchange

64 kbps

Integrated Services Digital Network (ISDN) 64 kbps (Basic Rate Interface), 144 kbps 
(Narrow band ISDN)

Digital Signal 1 (DS 1), aka T-1 or E-1 1.5 – 2 Mbps (Primary Rate Interface)

Ethernet Local Area Network 10 Mbps

Broadband ISDN 100 – 200 Mbps

Gigabit Ethernet 1 Gbps

* International Telecommunications Union.
† The ITU V-series international standards specify the recommendations for vocabulary 
and related subjects for radiocommuncation.

In the 1990s, transmission of raw digital video data over POTS or ISDN was 
unproductive and very expensive due to the sheer data rate required. Note that the raw 
data rate for the ITU-R 601 formats1 is ~165 Mbps (million bits per second), beyond the 
networks’ capabilities. In order to partially address the data-rate issue, the 15th specialist 
group (SGXV) of the CCITT2 defined the Common Image Format (CIF) to have common 
picture parameter values independent of the picture rate. While the format specifies 
many picture rates (24 Hz, 25 Hz, 30 Hz, 50 Hz, and 60 Hz), with a resolution of 352 × 288  
at 30 Hz, the required data rate was brought down to approximately 37 Mbps, which 
would typically fit into a basic Digital Signal 0 (DS0) circuit, and would be practical for 
transmission.

1The specification was originally known as CCIR-601. The standard body CCIR a.k.a. International 
Radio Consultative Committee (Comité Consultatif International pour la Radio) was formed in 
1927, and was superceded in 1992 by the ITU Recommendations Sector (ITU-R).
2CCITT (International Consultative Committee for Telephone and Telegraph) is a committee of the 
ITU, currently known as the ITU Telecommunication Standardization Sector (ITU-T).
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With increased compute capabilities, video encoding and processing operations 
became more manageable over the years. These capabilities fueled the growing 
demand of ever higher video resolutions and data rates to accommodate diverse video 
applications with better-quality goals. One after another, the ITU-R Recommendations 
BT.601,3 BT.709,4 and BT.20205 appeared to support video formats with increasingly 
higher resolutions. Over the years these recommendations evolved. For example, 
the recommendation BT.709, aimed at high-definition television (HDTV), started 
with defining parameters for the early days of analog high-definition television 
implementation, as captured in Part 1 of the specification. However, these parameters 
are no longer in use, so Part 2 of the specification contains HDTV system parameters with 
square pixel common image format.

Meanwhile, the network capabilities also grew, making it possible to address the 
needs of today’s industries. Additionally, compression methods and techniques became 
more refined.

The Human Visual System
The human visual system (HVS) is part of the human nervous system, which is managed 
by the brain. The electrochemical communication between the nervous system and 
the brain is carried out by about 100 billion nerve cells, called neurons. Neurons either 
generate pulses or inhibit existing pulses, and result in a variety of phenomena ranging 
from Mach bands, band-pass characteristic of the visual frequency response, to the 
edge-detection mechanism of the eye. Study of the enormously complex nervous system 
is manageable because there are only two types of signals in the nervous system: one 
for long distances and the other for short distances. These signals are the same for all 
neurons, regardless of the information they carry, whether visual, audible, tactile, or other.

Understanding how the HVS works is important for the following reasons: 

It explains how accurately a viewer perceives what is being •	
presented for viewing.

It helps understand the composition of visual signals in terms •	
of their physical quantities, such as luminance and spatial 
frequencies, and helps develop measures of signal fidelity.

3ITU-R. See ITU-R Recommendation BT. 601-5: Studio encoding parameters of digital television 
for standard 4:3 and widescreen 16:9 aspect ratios (Geneva, Switzerland: International 
Telecommunications Union, 1995).
4ITU-R. See ITU-R Recommendation BT.709-5: Parameter values for the HDTV standards 
for production and international programme exchange (Geneva, Switzerland: International 
Telecommunications Union, 2002).
5ITU-R. See ITU-R Recommendation BT.2020: Parameter values for ultra-high definition television 
systems for production and international programme exchange (Geneva, Switzerland: International 
Telecommunications Union, 2012).
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It helps represent the perceived information by various attributes, •	
such as brightness, color, contrast, motion, edges, and shapes. It 
also helps determine the sensitivity of the HVS to these attributes.

It helps exploit the apparent imperfection of the HVS to •	
give an impression of faithful perception of the object being 
viewed. An example of such exploitation is color television. 
When it was discovered that the HVS is less sensitive to loss of 
color information, it became easy to reduce the transmission 
bandwidth of color television by chroma subsampling.

The major components of the HVS include the eye, the visual pathways to the brain, 
and part of the brain called the visual cortex. The eye captures light and converts it to 
signals understandable by the nervous system. These signals are then transmitted and 
processed along the visual pathways. 

So, the eye is the sensor of visual signals. It is an optical system, where an image 
of the outside world is projected onto the retina, located at the back of the eye. Light 
entering the retina goes through several layers of neurons until it reaches the light-
sensitive photoreceptors, which are specialized neurons that convert incident light energy 
into neural signals.

There are two types of photoreceptors: rods and cones. Rods are sensitive to low light 
levels; they are unable to distinguish color and are predominant in the periphery. They 
are also responsible for peripheral vision and they help in motion and shape detection. As 
signals from many rods converge onto a single neuron, sensitivity at the periphery is high, 
but the resolution is low. Cones, on the other hand, are sensitive to higher light levels 
of long, medium, and short wavelengths. They form the basis of color perception. Cone 
cells are mostly concentrated in the center region of the retina, called the fovea. They 
are responsible for central or foveal vision, which is relatively weak in the dark. Several 
neurons encode the signal from each cone, resulting in high resolution but low sensitivity. 

The number of the rods, about 100 million, is higher by more than an order of 
magnitude compared to the number of cones, which is about 6.5 million. As a result, 
the HVS is more sensitive to motion and structure, but it is less sensitive to loss in color 
information. Furthermore, motion sensitivity is stronger than texture sensitivity; for 
example, a camouflaged still animal is difficult to perceive compared to a moving one. 
However, texture sensitivity is stronger than disparity; for example, 3D depth resolution 
does not need to be so accurate for perception.

Even if the retina perfectly detects light, that capacity may not be fully utilized or the 
brain may not be consciously aware of such detection, as the visual signal is carried by the 
optic nerves from the retina to various processing centers in the brain. The visual cortex, 
located in the back of the cerebral hemispheres, is responsible for all high-level aspects of 
vision. 

Apart from the primary visual cortex, which makes up the largest part of the HVS, the  
visual signal reaches to about 20 other cortical areas, but not much is known about 
their functions. Different cells in the visual cortex have different specializations, and 
they are sensitive to different stimuli, such as particular colors, orientations of patterns, 
frequencies, velocities, and so on.

Simple cells behave in a predictable fashion in response to particular spatial 
frequency, orientation, and phase, and serve as an oriented band-pass filter. Complex 
cells, the most common cells in the primary visual cortex, are also orientation-selective, 
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but unlike simple cells, they can respond to a properly oriented stimulus anywhere in 
their receptive field. Some complex cells are direction-selective and some are sensitive to 
certain sizes, corners, curvatures, or sudden breaks in lines.

The HVS is capable of adapting to a broad range of light intensities or luminance, 
allowing us to differentiate luminance variations relative to surrounding luminance 
at almost any light level. The actual luminance of an object does not depend on the 
luminance of the surrounding objects. However, the perceived luminance, or the 
brightness of an object, depends on the surrounding luminance. Therefore, two objects 
with the same luminance may have different perceived brightnesses in different 
surroundings. Contrast is the measure of such relative luminance variation. Equal 
logarithmic increments in luminance are perceived as equal differences in contrast. The 
HVS can detect contrast changes as low as 1 percent.6

The HVS Models
The fact that visual perception employs more than 80 percent of the neurons in human 
brain points to the enormous complexity of this process. Despite numerous research 
efforts in this area, the entire process is not well understood. Models of the HVS are 
generally used to simplify the complex biological processes entailing visualization and 
perception. As the HVS is composed of nonlinear spatial frequency channels, it can be 
modeled using nonlinear models. For easier analysis, one approach is to develop a linear 
model as a first approximation, ignoring the nonlinearities. This approximate model is 
then refined and extended to include the nonlinearities. The characteristics of such an 
example HVS model7 include the following. 

The First Approximation Model 
This model considers the HVS to be linear, isotropic, and time- and space-invariant. The 
linearity means that if the intensity of the light radiated from an object is increased, the 
magnitude of the response of the HVS should increase proportionally. Isotropic implies 
invariance to direction. Although, in practice, the HVS is anisotropic and its response to 
a rotated contrast grating depends on the frequency of the grating, as well as the angle 
of orientation, the simplified model ignores this nonlinearity. The spatio-temporal 
invariance is difficult to modify, as the HVS is not homogeneous. However, the spatial 
invariance assumption partially holds near the optic axis and the foveal region. Temporal 
responses are complex and are not generally considered in simple models.

In the first approximation model, the contrast sensitivity as a function of spatial 
frequency represents the optical transfer function (OTF) of the HVS. The magnitude of the 
OTF is called the modulation transfer function (MTF), as shown in Figure 2-1. 

6S. Winkler, Digital Video Quality: Vision Models and Metrics (Hoboken, NJ: John Wiley, 2005).
7C. F. Hall and E. L. Hall, “A Nonlinear Model for the Spatial Characteristics of the Human Visual 
System,” IEEE Transactions on Systems, Man, and Cybernatics 7, no. 3 (1977): 161–69.
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The curve representing the thresholds of visibility at various spatial frequencies has 
an inverted U-shape, while its magnitude varies with the viewing distance and viewing 
angle. The shape of the curve suggests that the HVS is most sensitive to mid-frequencies 
and less sensitive to high frequencies, showing band-pass characteristics.

The MTF can thus be represented by a band-pass filter. It can be modeled more 
accurately as a combination of a low-pass and a high-pass filter. The low-pass filter 
corresponds to the optics of the eye. The lens of the eye is not perfect, even for persons 
with no weakness of vision. This imperfection results in spherical aberration, appearing 
as a blur in the focal plane. Such blur can be modeled as a two-dimensional low-pass 
filter. The pupil’s diameter varies between 2 and 9 mm. This aperture can also be 
modeled as a low-pass filter with high cut-off frequency corresponding to 2 mm, while 
the frequency decreases with the enlargement of the pupil’s diameter. 

On the other hand, the high-pass filter accounts for the following phenomenon.  
The post-retinal neural signal at a given location may be inhibited by some of the laterally 
located photoreceptors. This is known as lateral inhibition, which leads to the Mach 
band effect, where visible bands appear near the transition regions of a smooth ramp of 
light intensity. This is a high-frequency change from one region of constant luminance to 
another, and is modeled by the high-pass portion of the filter.

Refined Model Including Nonlinearity 
The linear model has the advantage that, by using the Fourier transform techniques 
for analysis, the system response can be determined for any input stimulus as long as 
the MTF is known. However, the linear model is insufficient for the HVS as it ignores 
important nonlinearities in the system. For example, it is known that light stimulating the 
receptor causes a potential difference across the membrane of a receptor cell,  

Figure 2-1.  A typical MTF plot
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and this potential mediates the frequency of nerve impulses. It has also been determined 
that this frequency is a logarithmic function of light intensity (Weber-Fechner law). 
Such logarithmic function can approximate the nonlinearity of the HVS. However, some 
experimental results indicate a nonlinear distortion of signals at high, but not low, spatial 
frequencies.

These results are inconsistent with a model where logarithmic nonlinearity 
is followed by linear independent frequency channels. Therefore, the model most 
consistent with the HVS is the one that simply places the low-pass filter in front of the 
logarithmic nonlinearity, as shown in Figure 2-2. This model can also be extended for 
spatial vision of color, in which a transformation from spectral energy space to tri-stimulus 
space is added between the low-pass filter and the logarithmic function, and the low-pass 
filter is replaced with three independent filters, one for each band.

Figure 2-2.  A nonlinear model for spatial characteristics of the HVS

The Model Implications 
The low-pass, nonlinearity, high-pass structure is not limited to spatial response, or 
even to spectral-spatial response. It was also found that this basic structure is valid for 
modeling the temporal response of the HVS. A fundamental premise of this model is that 
the HVS uses low spatial frequencies as features. As a result of the low-pass filter, rapid 
discrete changes appear as continuous changes. This is consistent with the appearance 
of discrete time-varying video frames as continuous-time video to give the perception of 
smooth motion. 

This model also suggests that the HVS is analogous to a variable bandwidth filter, 
which is controlled by the contrast of the input image. As input contrast increases, the 
bandwidth of the system decreases. Therefore, limiting the bandwidth is desirable to 
maximize the signal-to-noise ratio. Since noise typically contains high spatial frequencies, 
it is reasonable to limit this end of the system transfer function. However, in practical 
video signals, high-frequency details are also very important. Therefore, with this model, 
noise filtering can only be achieved at the expense of blurring the high-frequency details, 
and an appropriate tradeoff is necessary to obtain optimum system response. 

The Model Applications 
In image recognition systems, a correlation may be performed between low spatial-
frequency filtered images and stored prototypes of the primary receptive area for vision, 
where this model can act as a pre-processor. For example, in recognition and analysis 
of complex scenes with variable contrast information, when a human observer directs 
his attention to various subsections of the complex scene, an automated system based 
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on this model could compute average local contrast of the subsection and adjust filter 
parameters accordingly. Furthermore, in case of image and video coding, this model 
can also act as a pre-processor to appropriately reflect the noise-filtering effects, prior 
to coding only the relevant information. Similarly, it can also be used for bandwidth 
reduction and efficient storage systems as pre-processors.

A block diagram of the HVS model is shown in Figure 2-3, where parts related to the 
lens, the retina, and the visual cortex, are indicated. 

Figure 2-3.  A block diagram of the HVS

In Figure 2-3, the first block is a spatial, isotropic, low-pass filter. It represents the 
spherical aberration of the lens, the effect of the pupil, and the frequency limitation by 
the finite number of photoreceptors. It is followed by the nonlinear characteristic of 
the photoreceptors, represented by a logarithmic curve. At the level of the retina, this 
nonlinear transformation is followed by an isotropic high-pass filter corresponding to the 
lateral inhibition phenomenon. Finally, there is a directional filter bank that represents 
the processing performed by the cells of the visual cortex. The bars in the boxes indicate 
the directional filters. This is followed by another filter bank, represented by the double 
waves, for detecting the intensity of the stimulus. It is worth mentioning that the overall 
system is shift-variant because of the decrease in resolution away from the fovea.8

8M. Kunt, A. Ikonomopoulos, and M. Kocher, “Second -Generation Image-Coding Techniques,” 
Proceedings of the IEEE 73, no. 4 (April 1985): 549–74.
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Expoliting the HVS
By taking advantage of the characteristics of the HVS, and by tuning the parameters 
of the HVS model, tradeoffs can be made between visual quality loss and video data 
compression. In particular, the following benefits may be accrued. 

By limiting the bandwidth, the visual signal may be sampled in •	
spatial or temporal dimensions at a frequency equal to twice the 
bandwidth, satisfying the Nyquist criteria of sampling, without 
loss of visual quality.

The sensitivity of the HVS is decreased during rapid large-scale •	
scene change and intense motion of objects, resulting in temporal 
or motion masking. In such cases the visibility thresholds are 
elevated due to temporal discontinuities in intensity. This can 
be exploited to achieve more efficient compression, without 
producing noticeable artifacts.

Texture information can be compressed more than motion •	
information with negligible loss of visual quality. As discussed 
later in this chapter, several lossy compression algorithms allow 
quantization and resulting quality loss of texture information, 
while encoding the motion information losslessly.

Owing to low sensitivity of the HVS to the loss of color •	
information, chroma subsampling is a feasible technique to 
reduce data rate without significantly impacting the visual quality.

Compression of brightness and contrast information can be •	
achieved by discarding high-frequency information. This would 
impair the visual quality and introduce artifacts, but parameters 
of the amount of loss are controllable.

The HVS is sensitive to structural distortion. Therefore, measuring •	
such distortions, especially for highly structured data such as 
image or video, would give a criterion to assess whether the 
amount of distortion is acceptable to human viewers. Although 
acceptability is subjective and not universal, structural distortion 
metrics can be used as an objective evaluation criterion.

The HVS allows humans to pay more attention to interesting parts •	
of a complex image and less attention to other parts. Therefore, it 
is possible to apply different amount of compression on different 
parts of an image, thereby achieving a higher overall compression 
ratio. For example, more bits can be spent on the foreground 
objects of an image compared to the background, without 
substantial quality impact.
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An Overview of Compression Techniques 
A high-definition uncompressed video data stream requires about 2 billion bits per 
second of data bandwidth. Owing to the large amount of data necessary to represent 
digital video, it is desirable that such video signals are easy to compress and decompress, 
to allow practical storage or transmission. The term data compression refers to the 
reduction in the number of bits required to store or convey data—including numeric, 
text, audio, speech, image, and video—by exploiting statistical properties of the data. 
Fortunately, video data is highly compressible owing to its strong vertical, horizontal, and 
temporal correlation and its redundancy. 

Transform and prediction techniques can effectively exploit the available 
correlation, and information coding techniques can take advantage of the statistical 
structures present in video data. These techniques can be lossless, so that the reverse 
operation (decompression) reproduces an exact replica of the input. In addition, 
however, lossy techniques are commonly used in video data compression, exploiting the 
characteristics of the HVS, which is less sensitive to some color losses and some special 
types of noises.

Video compression and decompression are also known as video encoding and 
decoding, respectively, as information coding principles are used in the compression 
and decompression processes, and the compressed data is presented in a coded bit 
stream format.

Data Structures and Concepts
Digital video signal is generally characterized as a form of computer data. Sensors of 
video signals usually output three color signals–red, green and blue (RGB)—that are 
individually converted to digital forms and are stored as arrays of picture elements 
(pixels), without the need of the blanking or sync pulses that were necessary for analog 
video signals. A two-dimensional array of these pixels, distributed horizontally and 
vertically, is called an image or a bitmap, and represents a frame of video. A time-
dependent collection of frames represents the full video signal. There are five parameters9 
associated with a bitmap: the starting address in memory, the number of pixels per line, 
the pitch value, the number of lines per frame, and the number of bits per pixel. In the 
following discussion, the terms frame and image are used interchangeably. 

Signals and Sampling
The conversion of a continuous analog signal to a discrete digital signal, commonly 
known as the analog-to-digital (A/D) conversion, is done by taking samples of the analog 
signal at appropriate intervals in a process known as sampling. Thus x(n) is called the 
sampled version of the analog signal x

a
(t) if x(n) = x

a
(nT) for some T > 0, where T is known 

as the sampling period and 2π/T is known as the sampling frequency or the sampling rate. 
Figure 2-4 shows a spatial domain representation of x

a
(t) and corresponding x(n).

9A. Tekalp, Digital Video Processing (Englewood Cliff: Prentice-Hall PTR, 1995).
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The frequency-domain representation of the signal is obtained by using the Fourier 
transform, which gives the analog frequency response X

a
(jΩ) replicated at uniform intervals 

2π/T, while the amplitudes are reduced by a factor of T. Figure 2-5 shows the concept.

Figure 2-4.  Spatial domain representation of an analog signal and its sampled version

Figure 2-5.  Fourier transform of a sampled analog bandlimited signal

If there is overlap between the shifted versions of X
a
(jΩ), aliasing occurs because 

there are remnants of the neighboring copies in an extracted signal. However, when there 
is no aliasing, the signal x

a
(t) can be recovered from its sampled version x(n) by retaining 

only one copy.10 Thus if the signal is band-limited within a frequency band − π/T to π/T, 
a sampling rate of 2π/T or more guarantees an alias-free sampled signal, where no actual 
information is lost due to sampling. This is called the Nyquist sampling rate, named after 
Harry Nyquist, who in 1928 proposed the above sampling theorem. Claude Shannon proved 
this theorem in 1949, so it is also popularly known as Nyquist-Shannon sampling theorem.

The theorem applies to single- and multi-dimensional signals. Obviously, compression 
of the signal can be achieved by using fewer samples, but in the case of sampling frequency 
less than twice the bandwidth of the signal, annoying aliasing artifacts will be visible.

10P. Vaidyanathan, Multirate Systems and Filter Banks (Englewood Cliffs: Prentice Hall  
PTR, 1993).
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Common Terms and Notions
There are a few terms to know that are frequently used in digital video. The aspect ratio of 
a geometric shape is the ratio between its sizes in different dimensions. For example, the 
aspect ratio of an image is defined as the ratio of its width to its height. The display aspect 
ratio (DAR) is the width to height ratio of computer displays, where common ratios are 
4:3 and 16:9 (widescreen). An aspect ratio for the pixels within an image is also defined. 
The most commonly used pixel aspect ratio (PAR) is 1:1 (square); other ratios, such 
as 12:11 or 16:11, are no longer popular. The term storage aspect ratio (SAR) is used to 
describe the relationship between the DAR and the PAR such that SAR × PAR = DAR. 

Historically, the role of pixel aspect ratio in the video industry has been very 
important. As digital display technology, digital broadcast technology, and digital 
video compression technology evolved, using the pixel aspect ratio has been the most 
popular way to address the resulting video frame differences. However, today, all three 
technologies use square pixels predominantly. 

As other colors can be obtained from a linear combination of primary colors such 
as red, green and blue in RGB color model, or cyan, magenta, yellow, and black in CMYK 
model, these colors represent the basic components of a color space spanning all colors. 
A complete subset of colors within a given color space is called a color gamut. Standard 
RGB (sRGB) is the most frequently used color space for computers. International 
Telecommunications Union (ITU) has recommended color primaries for standard 
definition (SD), high-definition (HD) and ultra-high-definition (UHD) televisions. These 
recommendations are included in internationally recognized digital studio standards 
defined by ITU-R recommendation BT.601,11 BT.709, and BT.2020, respectively. The sRGB 
uses the ITU-R BT.709 color primaries.

Luma is the brightness of an image, and is also known as the black-and-white 
information of the image. Although there are subtle differences between luminance 
as used in color science and luma as used in video engineering, often in the video 
discussions these terms are used interchangeably. In fact, luminance refers to a linear 
combination of red, green, and blue color representing the intensity or power emitted per 
unit area of light, while luma refers to a nonlinear combination of R ’ G ’ B ’, the nonlinear 
function being known as the gamma function (y = x g, g = 0.45). The primes are used to 
indicate nonlinearity. The gamma function is needed to compensate for properties of 
perceived vision, so as to perceptually evenly distribute the noise across the tone scale 
from black to white, and to use more bits to represent the color information that is more 
sensitive to human eyes. For details, see Poynton.12

Luma is often described along with chroma, which is the color information. As 
human vision has finer sensitivity to luma rather than chroma, chroma information 
is often subsampled without noticeable visual degradation, allowing lower resolution 
processing and storage of chroma. In component video, the three color components are 

11It was originally known as CCIR-601, which defined CB and CR components. The standard body 
CCIR, a.k.a. International Radio Consultative Committee (Comité Consultatif International pour la 
Radio), was formed in 1927, and was superceded in 1992 by the International Telecommunications 
Union, Recommendations Sector (ITU-R).
12C. Poynton, Digital Video and HDTV: Algorithms and Interfaces (Burlington, MA: Morgan 
Kaufmann, 2003).
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transmitted separately.13 Instead of sending R' G' B' directly, three derived components 
are sent—namely the luma (Y') and two color difference signals (B' – Y') and (R' – Y').

While in analog video, these color difference signals are represented by U and V, 
respectively, in digital video, they are known as C

B
 and C

R
 components, respectively. 

In fact, U and V apply to analog video only, but are commonly, albeit inappropriately, 
used in digital video as well. The term chroma represents the color difference signals 
themselves; this term should not be confused with chromaticity, which represents the 
characteristics of the color signals.

In particular, chromaticity refers to an objective measure of the quality of color 
information only, not accounting for the luminance quality. Chromaticity is characterized 
by the hue and the saturation. The hue of a color signal is its “redness,” “greenness,” and 
so on. The hue is measured as degrees in a color wheel from a single hue. The saturation 
or colorfulness of a color signal is the degree of its difference from gray.

Figure 2-6 depicts the chromaticity diagram for the ITU-R recommendation BT.709 
and BT.2020, showing the location of the red, green, blue, and white colors. Owing to 
the differences shown in this diagram, digital video signal represented in BT.2020 color 
primaries cannot be directly presented to a display that is designed according to BT.709; 
a conversion to the appropriate color primaries would be necessary in order to faithfully 
reproduce the actual colors.

Figure 2-6.  ITU-R Recommendation BT.601, BT.709 and BT.2020 chromaticity diagram and 
location of primary colors. The point D65 shows the white point. (Courtesy of Wikipedia)

13Poynton, Digital Video.
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In order to convert R' G' B' samples to corresponding Y ' C
B
C

R
 samples, in general, the 

following formulas are used:
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C
B Y
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C
R Y

K

r g b

B
b

R
r
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= + +

=
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-
-( )

2 1

2 1 	

(Eq. 2-1)

Each of the ITU-R recommendations mentioned previously uses the values of 
constants K

r
, K

g 
, and K

b 
, as shown in Table 2-2, although the constant names are not 

defined as such in the specifications.

Table 2-2.  Constants of R' G' B' Coefficients to Form Luma and Chroma Components

Standard Kr Kg Kb

BT.2020 0.2627 0.6780 0.0593

BT.709 0.2126 0.7152 0.0722

BT.601 0.2990 0.5870 0.1140

It is notable that all of these ITU-R recommendations also define a visible range 
between black and white for the allowed bit depths. For example, according to BT.2020, 
for 10-bit the luma ranges from 64 to 940; the ranges 0 to 3 and 1020 to 1023 are used for 
timing reference, while the ranges 4 to 63 and 941 to 1019 provide foot- and headroom, 
respectively, to accommodate transient black and white signals that may result from 
overshoots of filters. Similarly, BT.601 and BT.709 define the active range of luma between 
16 and 235 for 8-bit video. In the case of 4:2:2 video, values 0 and 255 are reserved for 
synchorization and are forbidded from the visible picture area. Values 1 to 15 and 236 
to 254 provide the relevant foot- and headroom. Table 2-3 gives the signal formats and 
conversion formula used in these recommendations. 
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Table 2-3.  Signal Formats and Conversion Formula in ITU-R Digital Video Studio 
Standards 

Standard Parameter Formula

BT.601 Derivation of 
luminance signal 
EY

¢

E E E EY R G B
¢ ¢ ¢ ¢= + +0 299 0 587 0 114. . .

Derivation of 
color-difference 
signal

E
E E

CB
B Y¢
¢ ¢

=
-

1 772.

 

E
E E

CR
R Y¢
¢ ¢

=
-

1 402.

Quantization of 
RGB, luminance 
and color-
difference signals

D INT ER R
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT EG G
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT EB B
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT EY Y
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT ECB CB
n¢ ¢= +( )×éë ùû
-224 128 2 8

D INT ECR CR
n¢ ¢= +( )×éë ùû
-224 128 2 8

Derivation of 
luminance and 
color-difference 
signals via 
quantized RGB 
signals

D INT D D DY R G B
¢ ¢ ¢ ¢= + +éë ùû0 2126 0 7152 0 0722. . .

D INT D D DCB R G B
¢ ¢ ¢ ¢= - - +æ

è
ç

ö
ø
÷×

0 299

1 772

0 587

1 772

0 886

1 772

2.

.

.

.

.

.

224

219
2 1+é

ë
ê

ù

û
ú

-n

D INT D D DCR R G B
¢ ¢ ¢ ¢= - -æ

è
ç

ö
ø
÷×

0 701

1 402

0 587

1 402

0 114

1 402

22.

.

.

.

.

.

44

219
2 1+é

ë
ê

ù

û
ú

-n

(continued)



Chapter 2 ■ Digital Video Compression Techniques 

26

Table 2-3.  (continued)

Standard Parameter Formula

BT.709 Derivation of 
luminance  
signal EY

¢

E E E EY R G B
¢ ¢ ¢ ¢= + +0 2126 0 7152 0 0722. . .

Derivation of 
color-difference 
signal

E
E E

CB
B Y¢
¢ ¢

=
-

1 8556.

E
E E

CR
R Y¢
¢ ¢

=
-

1 5748.

Quantization of 
RGB, luminance 
and color-
difference signals

D INT ER R
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT EG G
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT EB B
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT EY Y
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT ECB CB
n¢ ¢= +( )×éë ùû
-224 128 2 8

D INT ECR CR
n¢ ¢= +( )×éë ùû
-224 128 2 8

Derivation of 
luminance and 
color-difference 
signals via 
quantized RGB 
signals

D INT D D DY R G B
¢ ¢ ¢ ¢= + +éë ùû0 2126 0 7152 0 0722. . .

D INT D D DCB R G B
¢ ¢ ¢ ¢= - - +æ

è
0 2126

1 8556

0 7152

1 8556

0 9278

1 8556

.

.

.

.

.

.çç
ö
ø
÷

é

ë
ê

× + ù
ûú

-224

219
2 1n

D INT D D DCR R G B
¢ ¢ ¢= - -æ

è
ç

0 7874

1 5748

0 7152

1 5748

0 0722

1 5748
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-224
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(continued)
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In addition to the signal formats, the recommendations also specify the opto-
electronic conversion parameters and the picture characteristics. Table 2-4 shows some 
of these parameters.

Table 2-3.  (continued)

Standard Parameter Formula

BT.2020 Derivation of 
luminance  
signal Y '

Y R G B¢ ¢ ¢ ¢= + +0 2627 0 678 0 0593. . .

Derivation of 
color-difference 
signal

C
B Y

B
¢ ¢ ¢
=

-
1 8814.

C
R Y

R
¢ ¢ ¢
=

-
1 4746.

Quantization of 
RGB, luminance 
and color-
difference signals

D INT RR
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT GG
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT BB
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT YY
n¢ ¢= +( )×éë ùû
-219 16 2 8

D INT CCB B
n¢ ¢= +( )×éë ùû
-224 128 2 8

D INT CCR R
n¢ ¢= +( )×éë ùû
-224 128 2 8

Derivation of 
luminance and 
color-difference 
signals via 
quantized RGB 
signals

D INT D D DY R G B
¢ ¢ ¢ ¢= + +éë ùû0 2627 0 6780 0 0593. . .

D INT D D DCB R G B
¢ ¢ ¢ ¢= - - +æ

è
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ç

0 7373
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1 4746

0 0593
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× + ù
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Note: Here, E
k

'is the original analog signal, D
k

'is the coded digital signal, n is the number of 
bits in the quantized signal, and INT[·] is rounding to nearest integer.
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Table 2-4.  Important Parameters in ITU-R Digital Video Studio Standards

Standard Parameter Value

BT. 601 Chromaticity  
co-ordinates (x, y)

60 field/s: R: (0.63, 0.34), G: (0.31, 0.595),  
B: (0.155, 0.07)
50 field/s: R: (0.64, 0.33), G: (0.29, 0.6),  
B: (0.15, 0.06)

Display aspect ratio 13.5 MHz sampling frequency: 4:3 and 16:9
18 MHz sampling frequency: 16:9

Resolution 4:4:4, 13.5 MHz sampling frequency:
60 field/s: 858 × 720
50 field/s: 864 × 720
4:4:4, 18 MHz sampling frequency:
60 field/s: 1144 × 960
50 field/s: 1152 × 960
4:2:2 systems have appropriate chroma 
subsampling.

Picture rates 60 field/s, 50 field/s

Scan mode Interlaced

Coding format Uniformly quantized PCM, 8 (optionally 10) bits 
per sample

BT. 709 Chromaticity  
co-ordinates (x, y)

R: (0.64, 0.33), G: (0.3, 0.6), B: (0.15, 0.06)

Display aspect ratio 16:9

Resolution 1920×1080

Picture rates 60p, 50p, 30p, 25p, 24p, 60i, 50i, 30psf, 25psf, 24psf

Scan modes Progressive (p), interlaced (i), progressive capture 
but segmented frame transmission (psf)

Coding format Linear 8 or 10 bits per component

BT. 2020 Chromaticity  
co-ordinates (x, y)

R: (0.708, 0.292), G: (0.17, 0.797), B: (0.131, 0.046)

Display aspect ratio 16:9

Resolution 3840 × 2160, 7680 × 4320

Picture rates 120, 60, 60/1.001, 50, 30, 30/1.001, 25, 24, 24/1.001

Scan mode Progressive

Coding format 10 or 12 bits per component
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Chroma Subsampling 
As mentioned earlier, the HVS is less sensitive to color information compared to its 
sensitivity to brightness information. Taking advantage of this fact, technicians developed 
methods to reduce the chroma information without significant loss in visual quality. 
Chroma subsampling is a common data-rate reduction technique and is used in both 
analog and digital video encoding schemes. Besides video, it is also used, for example, 
in popular single-image coding algorithms, as defined by the Joint Photographic Experts 
Group (JPEG), a joint committee between the International Standards Organization (ISO) 
and the ITU-T. 

Exploiting the high correlation in color information and the characteristics of the 
HVS, chroma subsampling reduces the overall data bandwidth. For example, a 2:1 
chroma subsampling of a rectangular image in the horizontal direction results in only 
two-thirds of the bandwidth required for the image with full color resolution. However, 
such saving in data bandwidth is achieved with little perceptible visual quality loss at 
normal viewing distances.

4:4:4 to 4:2:0
Typically, images are captured in the R ' G ' B ' color space, and are converted to the 
Y ' UV color space (or for digital video Y  'C

B
C

R
; in the discussion we use Y ' UV and Y 'C

B
C

R
 

interchangeably for simplicity) using the conversion matrices described earlier. The 
resulting Y 'UV image is a full-resolution image with a 4:4:4 sampling ratio of the Y ', U and 
V components, respectively. This means that for every four samples of Y ' (luma), there 
are four samples of U and four samples of V chroma information present in the image.

The ratios are usually defined for a 4×2 sample region, for which there are four 4×2 
luma samples. In the ratio 4 : a : b, a and b are determined based on the number of chroma 
samples in the top and bottom row of the 4 × 2 sample region. Accordingly, a 4:4:4 image 
has full horizontal and vertical chroma resolution, a 4:2:2 image has a half-horizontal 
and full vertical resolution, and a 4:2:0 image has half resolutions in both horizontal and 
vertical dimensions.

The 4:2:0 is different from 4:1:1 in that in 4:1:1, one sample is present in each row of 
the 4 × 2 region, while in 4:2:0, two samples are present in the top row, but none in the 
bottom row. An example of the common chroma formats (4:4:4, 4:2:2 and 4:2:0) is shown 
in Figure 2-7.
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A subsampling is also known as downsampling, or sampling rate compression.  
If the input signal is not bandlimited in a certain way, subsampling results in aliasing 
and information loss, and the operation is not reversible. To avoid aliasing, a low pass 
filter is used before subsampling in most appplications, thus ensuring the signal to be 
bandlimited.

The 4:2:0 images are used in most international standards, as this format provides 
sufficient color resolution for an acceptable perceptual quality, exploiting the high 
correlation between color components. Therefore, often a camera-captured R'G'B' image  
is converted to Y 'UV 4:2:0 format for compression and processing. In order to convert 
a 4:4:4 image to a 4:2:0 image, typically a two-step approach is taken. First, the 4:4:4 
image is converted to a 4:2:2 image via filtering and subsampling horizontally; then, 
the resulting image is converted to a 4:2:0 format via vertical filtering and subsampling. 
Example filters are shown in Figure 2-8.

Figure 2-7.  Explanation of 4:a:b subsamples
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Figure 2-8.  Typical symmetric finite impulse response (FIR) filters used for 2:1 
subsampling

Table 2-5.  FIR Filter Coefficients of a 2:1 Horizontal and a 2:1 Vertical Filter, Typically 
Used in 4:4:4 to 4:2:0 Conversion

Filter Coefficients

Horiz. 0.0430 0.0000 -0.1016 0.0000 0.3105 0.5000 0.3105 0.0000 -0.1016 0.0000 0.0430

Vert. 0.0098 0.0215 -0.0410 -0.0723 0.1367 0.4453 0.1367 -0.0723 -0.0410 0.0215 0.0098

Norm. 
Freq.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

The filter coefficients for the Figure 2-8 finite impulse response (FIR) filters are given 
in Table 2-5. In this example, while the horizontal filter has zero phase difference, the 
vertical filter has a phase shift of 0.5 sample interval.

Reduction of Redundancy 
Digital video signal contains a lot of similar and correlated information between 
neighboring pixels and neighboring frames, making it an ideal candidate for 
compression by removing or reducing the redundancy. We have already discussed 
chroma subsampling and the fact that very little visual difference is seen because of such 
subsampling. In that sense, the full resolution of chroma is redundant information, and by 
doing the subsampling, a reduction in data rate—that is, data compression—is achieved. 
In addition, there are other forms of redundancy present in a digital video signal. 
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Spatial Redundancy
The digitization process ends up using a large number of bits to represent an image 
or a video frame. However, the number of bits necessary to represent the information 
content of a frame may be substantially less, due to redundancy. Redundancy is defined 
as 1 minus the ratio of the minimum number of bits needed to represent an image to 
the actual number of bits used to represent it. This typically ranges from 46 percent for 
images with a lot of spatial details, such as a scene of foliage, to 74 percent14 for low-detail 
images, such as a picture of a face. Compression techniques aim to reduce the number of 
bits required to represent a frame by removing or reducing the available redundancy.

Spatial redundancy is the consequence of the correlation in horizontal and the 
vertical spatial dimensions between neighboring pixel values within the same picture or 
frame of video (also known as intra-picture correlation). Neighboring pixels in a video 
frame are often very similar to each other, especially when the frame is divided into the 
luma and the chroma components. A frame can be divided into smaller blocks of pixels to 
take advantage of such pixel correlations, as the correlation is usually high within a block. 
In other words, within a small area of the frame, the rate of change in a spatial dimension 
is usually low. This implies that, in a frequency-domain representation of the video frame, 
most of the energy is often concentrated in the low-frequency region, and high-frequency 
edges are relatively rare. Figure 2-9 shows an example of spatial redundancy present in a 
video frame.

Figure 2-9.  An example of spatial redundancy in an image or a video frame

14M. Rabbani and P. Jones, Digital Image Compression Techniques (Bellingham, WA: SPIE Optical 
Engineering Press, 1991).
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The redundancy present in a frame depends on several parameters. For example, the 
sampling rate, the number of quantization levels, and the presence of source or sensor 
noise can all affect the achievable compression. Higher sampling rates, low quantization 
levels, and low noise mean higher pixel-to-pixel correlation and higher exploitable spatial 
redundancy.

Temporal Redundancy
Temporal redundancy is due to the correlation between different pictures or frames in a 
video (also known as inter-picture correlation). There is a significant amount of temporal 
redundancy present in digital videos. A video is frequently shown at a frame rate of more 
than 15 frames per second (fps) in order for a human observer to perceive a smooth, 
continuous motion; this requires neighboring frames to be very similar to each other.  
One such example is shown in Figure 2-10. It may be noted that a reduced frame rate 
would result in data compression, but that would be at the expense of perceptible 
flickering artifact. 

Figure 2-10.  An example of temporal redundancy among video frames. Neighboring video 
frames are quite similar to each other
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Thus, a frame can be represented in terms of a neighboring reference frame and 
the difference information between these frames. Because an independent frame is 
reconstructed at the receiving end of a transmission system, it is not necessary for a 
dependent frame to be transmitted. Only the difference information is sufficient for 
the successful reconstruction of a dependent frame using a prediction from an already 
received reference frame. Due to temporal redundancy, such difference signals are often 
quite small. Only the difference signal can be coded and sent to the receiving end, while 
the receiver can combine the difference signal with the predicted signal already available 
and obtain a frame of video, thereby achieving very high amount of compression. 
Figure 2-11 shows an example of how temporal redundancy is exploited.

Figure 2-12.  An example of reduction of informataion via motion compensation

Figure 2-11.  Prediction and reconstruction process exploiting temporal redundancy

The difference signal is often motion-compensated to minimize the amount 
of information in it, making it amenable to a higher compression compared to an 
uncompensated difference signal. Figure 2-12 shows an example of reduction of 
information using motion compensation from one video frame to another.
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The prediction and reconstruction process is lossless. However, it is easy to 
understand that the better the prediction, the less information remains in the 
difference signal, resulting in a higher compression. Therefore, every new generation 
of international video coding standards has attempted to improve upon the prediction 
process of the previous generation.

Statistical Redundancy
In information theory, redundancy is the number of bits used to transmit a signal 
minus the number of bits of actual information in the signal, normalized to the 
number of bits used to transmit the signal. The goal of data compression is to reduce 
or eliminate unwanted redundancy. Video signals characteristically have various types 
of redundancies, including spatial and temporal redundancies, as discussed above. In 
addition, video signals contain statistical redundancy in its digital representation; that is, 
there are usually extra bits that can be eliminated before transmission.

For example, a region in a binary image (e.g., a fax image or a video frame) can be 
viewed as a string of 0s and 1s, the 0s representing the white pixels and 1s representing 
the black pixels. These strings, where the same bit occurs in a series or run of consecutive 
data elements, can be represented using run-length codes; these codes the address of 
each string of 1s (or 0s) followed by the length of that string. For example, 1110 0000 0000 
0000 0000 0011 can be coded using three codes (1,3), (0,19), and (1,2), representing 3 1s, 
19 0s, and 2 1s. Assuming only two symbols, 0 and 1, are present, the string can also be 
coded using two codes (0,3) and (22,2), representing the length of 1s at locations 0 and 22.

Variations on the run-length are also possible. The idea is this: instead of the original 
data elements, only the number of consecutive data elements is coded and stored, 
thereby achieving significant data compression. Run-length coding is a lossless data 
compression technique and is effectively used in compressing quantized coefficients, 
which contains runs of 0s and 1s, especially after discarding high-frequency information.

According to Shannon’s source coding theorem, the maximum achievable 
compression by exploiting statistical redundancy is given as:

C
average bit rate of the original signal B

average bit
=

( )

rrate of the encoded data H( )

Here, H is the entropy of the source signal in bits per symbol. Although this 
theoretical limit is achievable by designing a coding scheme, such as vector quantization 
or block coding, for practical video frames—for instance, video frames of size 1920 × 1080 
pixels with 24 bits per pixel—the codebook size can be prohibitively large.15 Therefore, 
international standards instead often use entropy coding methods to get arbitrarily close 
to the theoretical limit.

15A. K. Jain, Fundamentals of Digital Image Processing (Englewood Cliffs: Prentice-Hall 
International, 1989).
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Entropy Coding
Consider a set of quantized coefficients that can be represented using B bits per pixel. If 
the quantized coefficients are not uniformly distributed, then their entropy will be less 
than B bits per pixel. Now, consider a block of M pixels. Given that each bit can be one of 
two values, we have a total number of L = 2MB different pixel blocks.

For a given set of data, let us assign the probability of a particular block i occurring 
as p

i
, where i = 0, 1, 2, ···, L − 1. Entropy coding is a lossless coding scheme, where the goal 

is to encode this pixel block using − log
2
p

i
 bits, so that the average bit rate is equal to the 

entropy of the M pixel block: H = ∑ 
i
p

i
(−log

2
p

i
). This gives a variable length code for each 

block of M pixels, with smaller code lengths assigned to highly probable pixel blocks. In 
most video-coding algorithms, quantized coefficients are usually run-length coded, while 
the resulting data undergo entropy coding for further reduction of statistical redundancy.

For a given block size, a technique called Huffman coding is the most efficient and 
popular variable-length encoding method, which asymptotically approaches Shannon’s 
limit of maximum achievable compression. Other notable and popular entropy coding 
techniques are arithmetic coding and Golomb-Rice coding.

Golomb-Rice coding is especially useful when the approximate entropy 
characteristics are known—for example, when small values occur more frequently than 
large values in the input stream. Using sample-to-sample prediction, the Golomb-Rice 
coding scheme produces output rates within 0.25 bits per pixel of the one-dimensional 
difference entropy for entropy values ranging from 0 to 8 bits per pixel, without needing to 
store any code words. Golomb-Rice coding is essentially an optimal run-length code. To 
compare, we discuss now the Huffman coding and the arithmetic coding.

Huffman Coding
Huffman coding is the most popular lossless entropy coding algorithm; it was 
developed by David Huffman in 1952. It uses a variable-length code table to encode 
a source symbol, while the table is derived based on the estimated probability of 
occurrence for each possible value of the source symbol. Huffman coding represents 
each source symbol in such a way that the most frequent source symbol is assigned 
the shortest code and the least frequent source symbol is assigned the longest code. 
It results in a prefix code, so that a bit string representing a source symbol is never 
a prefix of the bit string representing another source symbol, thereby making it 
uniquely decodable.

To understand how Huffman coding works, let us consider a set of four source 
symbols {a

0
, a

1
, a

2
, a

3
} with probabilities {0.47, 0.29, 0.23, 0.01}, respectively. First, a binary 

tree is generated from left to right, taking the two least probable symbols and combining 
them into a new equivalent symbol with a probability equal to the sum of the probablities 
of the two symbols. In our example, therefore, we take a

2
 and a

3
 and form a new symbol 

b
2
 with a probability 0.23 + 0.01 = 0.24. The process is repeated until there is only one 

symbol left.
The binary tree is then traversed backwards, from right to left, and codes are 

assigned to different branches. In this example, codeword 0 (one bit) is assigned to 
symbol a

0
, as this is the most probable symbol in the source alphabet, leaving codeword 
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1 for c
1
. This codeword is the prefix for all its branches, ensuring unique decodeability. 

At the next branch level, codeword 10 (two bits) is assigned to the next probable symbol 
a

1
, while 11 goes to b

2
 and as a prefix to its branches. Thus, a

2
 and a

3
 receive codewords 

110 and 111 (three bits each), respectively. Figure 2-13 shows the process and the final 
Huffman codes.

Figure 2-13.  Huffman coding example

While these four symbols could have been assigned fixed length codes of 00, 01, 
10, and 11 using two bits per symbol, given that the probability distribution is non-
uniform and the entropy of these symbols is only 1.584 bits per symbol, there is room 
for improvement. If these codes are used, 1.77 bits per symbol will be needed instead of 
two bits per symbol. Although this is still 0.186 bits per symbol apart from the theoretical 
minimum of 1.584 bits per symbol, it still provides approximately 12 percent compression 
compared to fixed-length code. In general, the larger the difference in probabilities 
between the most and the least probable symbols, the larger the coding gain Huffman 
coding would provide. Huffman coding is optimal when the probability of each input 
symbol is the inverse of a power of 2.

Arithmetic Coding
Arithmetic coding is a lossless entropy coding technique. Arithmetic coding differs from 
Huffman coding in that, rather than separating the input into component symbols and 
replacing each with a code, arithmetic coding encodes the entire message into a single 
fractional number between 0.0 and 1.0. When the probability distribution is unknown, 
not independent and not identically distributed, arithmetic coding may offer better 
compression capability than Huffman coding, as it can combine an arbitrary number of 
symbols for more efficient coding and is usually adaptable to the actual input statistics.  
It is also useful when the probability of one of the events is much larger than ½. Arithmetic 
coding gives optimal compression, but it is often complex and may require dedicated 
hardware engines for fast and practical execution.



Chapter 2 ■ Digital Video Compression Techniques 

38

In order to describe how arithmetic coding16 works, let us consider an example of 
three events (e.g., three letters in a text): the first event is either a

1
 or b

1
, the second is 

either a
2
 or b

2
, and the third is either a

3
 or b

3
. For simplicity, we choose between only two 

events at each step, although the algorithm works for multi-events as well. Let the input 
text be b

1
a

2
b

3
, with probabilities as given in Figure 2-14.

Figure 2-14.  Example of arithmetic coding

Compression Techniques: Cost-benefit Analysis
In this section we discuss several commonly used video-compression techniques and 
analyze their merits and demerits in the context of typical usages.

Transform Coding Techniques
As mentioned earlier, pixels in a block are similar to each other and have spatial 
redundancy. But a block of pixel data does not have much statistical redundancy and is 
not readily suitable for variable-length coding. The decorrelated representation in the 
transform domain has more statistical redundancy and is more amenable to compression 
using variable-length codes. 

16P. Howard and J. Vitter, “Arithmetic Coding for Data Compression,” Proceedings of the IEEE 82, 
no. 6 (1994): 857–65.
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In transform coding, typically a video frame of size N×M is subdivided into smaller 
n×n blocks, and a reversible linear transform is applied on these blocks. The transform 
usually has a set of complete orthonormal discrete-basis functions, while its goal is to 
decorrelate the original signal and to redistribute the signal energy among a small set of 
transform coefficients. Thus, many coefficients with low signal energy can be discarded 
through the quantization process prior to coding the remaining few coefficients. A block 
diagram of transform coding is shown in Figure 2-15.

Figure 2-15.  A block diagram of transform coding in a transmission system

Discrete Cosine Transform
A discrete cosine transform (DCT) expresses a finite sequence of discrete data points in 
terms of a sum of cosine functions with different frequencies and amplitudes. The DCT is 
a linear, invertible, lossless transform that can very effectively decorrelate the redundancy 
present in a block of pixels. In fact, the DCT is the most efficient, practical transform 
available for this purpose and it approaches the theoretically optimum Karhunen-Loève 
transform (KLT), as very few cosine functions are needed to approximate a typical signal. 
For this reason, the DCT is widely used in video and audio compression techniques. 

There are four representations of the DCT, of which DCT-II17 is the most common 
form:

X k x n
N

n k k N
n

N

( ) ( ) cos , ... , .= +æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
ú = -

=

-

å
0

1 1

2
0 1

p

17K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Aapplications  
(New York: Academic Press, 1990).
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Figure 2-16.  The 64 two-dimensional DCT basis functions for an 8×8 input block 

Here, X
k
 is the transformed DCT coefficient, and x

n
 is the input signal. This one-

dimensional DCT can be separately used vertically and horizontally, one after the other, 
to obtain a two-dimensional DCT. For image and video compression, the DCT is most 
popularly performed on 8×8 blocks of pixels. The 8×8 two-dimensional DCT can be 
expressed as follows:

X u v u v x m n
m u n

m n

( , ) ( ) ( ) ( , ) cos cos=
+( )é

ë
ê

ù

û
ú

+

= =
åå1
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7

0

7
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p 11

16
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ê

ù

û
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Here, u and v are the horizontal and vertical spatial frequencies, 0 £ u, v < 8; a(k) is a 
normalizing factor equal to 1/ 2  for k = 0, and equal to 1 otherwise; x(m, n) is the  
pixel value at spatial location (m,n); and X(u, v) is the DCT coefficient at frequency 
coordinates (u,v).

The DCT converts an 8×8 block of input values to a linear combination of the 64 
two-dimensional DCT basis functions, which are represented in 64 different patterns, as 
shown in Figure 2-16.

Although the transform is lossless, owing to limitations in arithmetic precision of a 
computing system, it may introduce inaccuracies so that the same, exact input may not 
be obtained upon an inverse operation. In order to handle such inaccuracies, standard 
committees often take measures such as defining the IEEE standard 1180, which is 
described later in this chapter.

A signal flow diagram of an eight-point DCT (and inverse DCT) is shown in Figure 2-17,  
representing a one-dimensional DCT, where the input data set is (u

0
, . . . , u

7
), the output 

data set is (v
0
, . . . , v

7
), and (f

0
, . . . , f

7
) are the cosine function-based multiplication factors 

for the intermediate results. There are many fast algorithms and implementations of the 
DCT available in the literature, as nearly all international standards adopt the DCT as the 
transform of choice to reduce spatial redundancy.
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Figure 2-17.  Signal flow graph of eight-point DCT, left to right (and IDCT from right  
to left) 

The DCT can easily be implemented using hardware or software. An optimized 
software implementation can take advantage of single instruction multiple data (SIMD) 
parallel constructs available in multimedia instruction sets such as MMX or SSE.18 
Furthermore, there are dedicated hardware engines available in Intel integrated graphics 
processor based codec solutions.

An example of a block of pixels and its DCT-transformed coefficients is depicted in 
Figure 2-18.

Figure 2-18.  A block of pixels and its DCT transformed version

18S. Akramullah, I. Ahmad, and M. Liou, “Optimization of H.263 Video Encoding Using a Single 
Processor Computer: Performance Tradeoffs and Benchmarking,” IEEE Transactions on Circuits 
and Systems for Video Technology 11, no. 8 (2001): 901–15.
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Quantization

As the DCT is characteristically lossless, it does not provide compression by itself; 
it merely decorrelates the input data. However, the DCT is usually followed by a 
quantization process, which truncates the high-frequency information of the transformed 
data block, exploiting the spatial redundancy present in frames of video. 

A quantizer is a staircase function that maps a continuous input signal or a discrete 
input signal with many values, into a smaller, finite number of output levels. If x is a 
real scalar random variable with p(x) being its probability density function, a quantizer 
maps x into a discrete variable x r i Ni{ , , , }Î = ¼ -0 1 , where each level r

i
 is known as a 

reconstruction level. The values of x that map to a particular x* are defined by a set of 
decision levels {d

i
, i = 0, . . . , N − 1}. According to the quantization rule, if x lies in the 

interval (d
i
, d

i + 1
], it is mapped—that is, quantized to r

i
—which also lies in the same 

interval. Quantizers are designed to optimize the r
i
 and d

i
 for a given p(x) and a given 

optimization criterion.
Figure 2-19 shows an example eight-level nonlinear quantizer. In this example, any 

value of x between (-255, 16] is mapped to -20, similarly any value between (-16, -8] is 
mapped to -11, any value between (-8, -4] is mapped to -6, and so on. This quantization 
process results in only eight nonlinear reconstruction levels for any input value  
between (-255, 255).

Figure 2-19.  An example eight-level nonlinear quantizer

After quantization, an 8×8 transform data block typically reduces from 64 coefficients 
to from 5 to 10 coefficients, and approximately 6- to 12-fold data compression is usually 
achieved. However, note that quantization is a lossy process where the discarded  
high-frequency information cannot be regained upon performing the inverse operation. 
Although the high-frequency information is frequently negligible, that is not always the case. 
Thus, the transform and quantization process usually introduces a quality loss, which is 
commonly known as the quantization noise. All international standards define the transform 
and quantization process in detail and require conformance to the defined process.

In the case of a two-dimensional signal, such as an image or a video frame 
where quantization is usually performed on blocks of pixels, contouring effect is 
produced at the block boundaries because the blocks are transformed and quantized 
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independently; as a result, the block boundaries become visible. This is commonly 
known as the blocking or blocky artifact. Although a coarser quantization level 
would yield a greater data compression, it is worthwhile to note that the coarser the 
quantization level for a signal, the more blocking artifact will be introduced.

Walsh-Hadamard and Other Transforms
The Walsh-Hadamard transform (WHT) is a linear, orthogonal, and symmetric transform 
that usually operate on 2m real numbers. It has only modest decorrelation capability, but 
it is a popular transform owing to its simplicity. The WHT basis functions consist of values 
of either +1 or -1, and can be obtained from the rows of orthonormal Hadamard matrices. 
Orthonormal Hadamard matrices can be constructed recursively from the smallest 2 × 2 
matrix of the same kind, which is a size 2 discrete Fourier transform (DFT), as follows: 
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There are fast algorithms available for computation of the Hadamard transform, 
making it suitable for many applications, including data compression, signal processing, 
and data encryption algorithms. In video-compression algorithms, it is typically used in 
the form of sum of absolute transform differences (SATD), which is a video-quality metric 
used to determine if a block of pixel matches another block of pixel.

There are other less frequently used transforms found in various video-compression 
schemes. Notable among them is the discrete wavelet transform (DWT), the simplest 
form of which is called the Haar transform (HT). The HT is an invertible, linear transform 
based on the Haar matrix. It can be thought of as a sampling process in which rows of the 
Haar matrix act as samples of finer and finer resolution. It provides a simple approach 
to analyzing the local aspects of a signal, as opposed to non-localized WHT, and is very 
effective in algoithms such as subband coding. An example of a 4×4 Haar matrix is this:
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Predictive Coding Techniques
Prediction is an important coding technique. In the receiving end of a transmission 
system, if the decoder can somehow predict the signal, even with errors, it can 
reconstruct an approximate version of the input signal. However, if the error is known 
or transmitted to the decoder, the reconstruction will be a more faithful replica of the 
original signal. Predictive coding takes advantage of this principle. Predictive coding can 
be lossy or lossless. Here are some predictive techniques. 
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Lossless Predictive Coding
By exploiting the spatial redundancy, a pixel can be predicted from its neighbor. As 
the difference between the neighbors is usually small, it is more efficient to encode the 
difference rather than the actual pixel. This approach is called differential pulse code 
modulation (DPCM) technique. In DPCM, the most probable estimates are stored, and 
the difference between the actual pixel x and its most likely prediction x ' is formed. This 
difference, e = x – x ', is called the error signal, which is typically entropy coded using 
variable-length codes. 

To get a better estimate, the prediction can be formed as a linear combination of a 
few previous pixels. As the decoder already decodes the previous pixels, it can use these 
to predict the current pixel to obtain x ', and upon receiving the error signal e, the decoder 
can perform e + x ' to obtain the true pixel value. Figure 2-20 shows the concept. 

Figure 2-20.  An example of two lines of pixels showing DPCM predictor configuration

In the Figure 2-20 example, the current pixel X can be predicted from a linear 
combination of the previously decoded pixels; for example, depending on the correlation, 
X = 0.75A – 0.25B + 0.5C can be a good predicted value for X. The error image usually 
has a reduced variance and much less spatial correlation compared to the original 
image. Therefore, in DPCM, the error image is coded using a variable-length code such 
as the Huffman code or the arithmetic code. This approach yields the desired lossless 
compression.

There are some applications—for instance, in medical imaging—that benefit from 
combining lossless and lossy predictions, mainly to achieve a shorter transmission time. 
However, these applications may tolerate only small quality degradation and very high 
quality reconstructions are expected. In such cases, a low bit-rate version of the image 
is first constructed by using an efficient lossy compression algorithm. Then, a residual 
image is generated by taking the difference between the lossy version and the original 
image, which is followed by a lossless coding of the residual image.
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Lossy Predictive Coding
In order to accommodate a reduced bit rate, some visual quality loss is allowed in 
lossy coding, while greater compression may be achieved by allowing more quality 
degradation. Figure 2-21 shows the general concept of lossy coding, where the original 
image is decomposed and/or transformed to frequency domain, the frequency-domain 
information is quantized, and the remaining information is coded using entropy coding. 

Figure 2-21.  A lossy coding scheme

The decomposition and transformation reduce the dynamic range of the signal 
and also decorrelate the signal, resulting in a form that can be coded more efficiently. 
This step is usually reversible and lossless. However, in the next step, quantization is 
performed, which introduces information loss and consequently quality degradation 
but achieves compression as well. The entropy coding is again a lossless process, but it 
provides some compression by exploiting statistical redundancy. 

Lossy DPCM

In predictive coding, as mentioned earlier in connection with lossless DPCM, a 
prediction or estimate is formed based on a reference, then an error signal is generated 
and coded. However, DPCM schemes can be used in lossy coding as well, resulting in 
lossy predictive coding. 

The reference used for the prediction can be the original signal; however, the 
decoder at the receiving end of the transmission channel would only have the partially 
reconstructed signal based on the bits received so far. Note that the received signal is 
reconstructed from a quantized version of the signal and contains quantization  
noise. Therefore, typically there is a difference between the reconstructed and the  
original signal.

In order to ensure identical prediction at both ends of the transmission channel, the 
encoder also needs to form its predictions based on the reconstructed values. To achieve 
this, the quantizer is included in the prediction loop, as shown in Figure 2-22, which 
essentially incorporates the decoder within the encoding structure.
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Figure 2-22.  A block diagram for lossy DPCM

Temporal Prediction

In addition to the prediction from a neighboring pixel exploiting spatial redundancy, 
prediction may be formed from neighboring frames, exploiting temporal redundancy. 
Since neighboring frames are similar except for the small movement of objects from one 
frame to another, the difference signal can be captured and the residual frame can be 
compensated for the motion. 

When the frame is divided in blocks, each block may move to a different location 
in the next frame. So motion vectors are usually defined for each block to indicate the 
amount of movement in horizontal and vertical dimensions. The motion vectors are 
integers and expressed as mv(x, y); however, motion vectors from a subsampled residual 
frame can be combined with those from the original resolution of the residual frame such 
that the subsampled motion vectors are expressed as fractions. Figure 2-23 illustrates this 
concept, where the final motion vector is 12.5 pixels away horizontally in the current frame 
from the original location (0, 0) in the reference frame; using a half-pixel (or half-pel)  
precision of motion vectors.
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In order to perform motion compensation, motion vectors are determined using 
a process called motion estimation, which is typically done for a 16×16 pixel block or 
picture partitions of other shapes. The motion-estimation process defines a search 
window in the reference frame where a search is performed for the best maching block 
relative to the current block in the current frame. The search window is usually formed 
around the co-located (0, 0) position, which has the same horizontal and vertical co-
ordinates in the reference frame compared to the current block in the current frame. 
However, in some algorithms, the search windows may be formed around a predicted 
motion vector candidate as well. A matching criterion, typically a distortion metric, is 
defined to determine the best match.

This method of block-matching motion estimation is different from a pel-recursive 
motion estimation, which involves matching all the pixels of the frame in a recursive 
manner. Figure 2-24 illustrates an example of a block-matching motion estimation.

Figure 2-23.  Temporal prediction examples
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There are a large number of motion-estimation algorithms available in the literature. 
Block-matching techniques attempt to minimize the distortion metric and try to find 
a global minimum distance between the two blocks within the search area. Typical 
distortion metrics are mean absolute difference (MAD), sum of absolute difference (SAD), 
and sum of absolute transform difference (SATD) involving Haar transform, having 
different computational complexities and matching capabilities. The motion estimation 
is a computationally intensive process—so much so that the encoding speed is largely 
determined by this process. Therefore, the choice of the distortion metric is important in 
lossy predictive video coding.

Additional Coding Techniques
There are additional popular coding algorithms, including vector quantization and 
subband coding. These algorithms are also well known owing to their individual, special 
characteristics.

Figure 2-24.  Block-matching motion estimation
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Vector Quantization
In vector quantization (VQ), a frame of video is decomposed into an n-dimensional 
vector. For example, the Y’C

B
C

R
 components may form a three-dimensional vector, or 

each column of a frame may be used as elements of the vectors forming a w-dimensional 
vector, where w is the width of the frame. Each image vector X is compared to several 
codevectors Y

i
, i = 1, . . ., N, which are taken from a previously generated codebook. 

Based on a minimum distortion criterion, such as the mean square error (MSE), 
the comparison results in a best match between X and Y

k
, the kth codevector. The index 

k is transmitted using log
2
N bits. At the receiving end, a copy of the codebook is already 

available, where the decoder simply looks up the index k from the codebook to reproduce 
Y

k
. Figure 2-25 shows the VQ block diagram. 

Figure 2-25.  A block diagram for vector quantization scheme

Compression is achieved because a codebook with relatively few codevectors is used 
compared to the number of possible codevectors. Although theoretically VQ can achieve 
compression efficiency19 close to the rate-distortion bound, in practice an unreasonably 
large value of n is needed. However, with modest dimensions, sensible compression 
efficiency can still be achieved, using smart training algorithms. A detailed discussion of 
VQ can be found in Rabbani and Jones.20

Subband Coding
In subband coding (SBC) technique, an image is filtered to create a set of images 
called subbands, each with limited spatial frequencies. As each subband has reduced 
bandwidth, a subsampled version of the original image is used for each subband.  

19Compression efficiency refers to the bit rate used for a certain distortion or video quality.
20Rabbani and Jones, Digital Image Compression.
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The process of filtering and subsampling is known as the analysis stage. The subbands are 
then encoded using one or more encoders, possibly using different encode parameters. 
This allows the coding error to be distributed among different subbands so that a visually 
optimal reconstruction can be achieved by performing a corresponding upsampling, 
filtering, and subsequent combining of the subbands. This manner of reconstruction is 
known as the synthesis stage. 

Subband decomposition by itself does not provide any compression. However, 
subbands can be coded more efficiently compared to the original image, thereby 
providing an overall compression benefit. Figure 2-26 shows a block diagram of the 
scheme. Many coding techniques may be used for coding of different subbands, 
including DWT, Haar transform, DPCM, and VQ. An elaborate discussion on SBC can be 
found in Rabbani and Jones.21

Figure 2-26.  A block diagram of a two-dimensional subband coding scheme

21Rabbani and Jones, Digital Image Compression.
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Rate-Distortion Theory 
The source entropy defines the minimum number of bits necessary to encode an image 
or video frame. However, this only applies to lossless encoding. In practice, owing to the 
characteristics of the human visual system, some irreversible visual quality loss can be 
tolerated. The extent of loss can be controlled by adjusting encode parameters such as 
quantization levels. 

In order to determine an acceptable amount of visual degradation for a given 
number of bits, a branch of information theory called the rate-distortion theory was 
developed. The theory establishes theoretical bounds on compression efficiency for lossy 
data compression, according to a fidelity criterion, by defining a rate-distortion function 
R(D) for various distortion measures and source models. The function has the following 
properties:

For a given distortion •	 D, a coding scheme exists for which a rate 
R(D) is obtained with a distortion D.

For any coding scheme, •	 R(D) represents the minimum rate for a 
given distortion D.

•	 R(D) is a convex cup ∪, and continuous function of D.

Figure 2-27 shows a typical rate-distortion function. For distortion-free or visually 
lossless compression, the minimum rate required is the value of R at D = 0, which may be 
equal to or less than the source entropy, depending on the distortion measure.

Figure 2-27.  An example of a rate-distortion curve, and compression efficiencies of typical 
encoders



Chapter 2 ■ Digital Video Compression Techniques 

52

The R(D) bound depends on the source model and distortion measures. Usually 
encoders can achieve compression efficiency closer to R(D) at the expense of higher 
complexity; a better encoder uses a lower rate and tolerates a lower distortion, but 
may have higher complexity compared to another encoder. To determine compression 
efficiency relative to R(D), a two-dimensional Gauss-Markov source image model with 
unity correlation coefficient is often used as a reference. However, for natural image and 
video, finding good source model and suitable distortion criteria that correlate well with 
the human visual system is a topic of active research.

Lossy Compression Aspects
There are several factors that influence and distinguish compression algorithms. These 
factors should be carefully considered while tuning or choosing a compression algorithm 
for a particular usage model. Among these factors are:

•	 Sensitivity to input frame types: Compression algorithms may 
have different compression efficiencies based on input frame 
characteristics, such as dynamic range, camera noise, amount of 
pixel to pixel correlation, resolution, and so on. 

•	 Target bit rate: Owing to limited bandwidth availability, some 
applications may need to adhere to a certain bit rate, but would 
sacrifice visual quality if needed. Compression algorithms usually 
have different sweet spots in the rate-distortion curve, and target 
bit rates outside its sweet spots would result in poor visual quality. 
Some algorithms may not be able to operate below a certain bit 
rate; for example, the AVC algorithm for HD resolution may need 
to use more than 1.5 Mbps for any meaningful visual quality), 
regardless of the spatio-temporal complexity. This bit rate 
corresponds to approximately 500 times compression for a  
1920 × 1080 resolution at 30 fps video. 

•	 Constant bit rate vs. constant quality: Some algorithms are 
more suitable for transmission without buffering, as they operate 
with a constant bit rate. However, they may need to maintain 
the bit rate at the expense of visual quality for complex scenes. 
As video complexity varies from scene to scene, the constant bit 
rate requirement will result in a variable reconstruction quality. 
On the other hand, some algorithms maintain a somewhat 
constant quality throughout the video by allowing a fixed amout 
of distortion, or by adjusting levels of quantization based on 
the scene complexity. In doing so, however, they end up with 
a variable bit rate, which may require adequate buffering for 
transmission. 
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•	 Encoder-decoder asymmetry: Some algorithms, such as vector 
quantization schemes, use a very complex encoder, while the 
decoder is implemented with a simple table look-up. Other 
schemes, such as the MPEG algorithms, need a higher decoder 
complexity compared to vector quantization, but simplify the 
encoder. However, MPEG encoders are typically more complex 
than the decoders, as MPEG encoders also contain complete 
decoders within them. Depending on the end-user platform, 
certain schemes may be more suitable than others for a particular 
application. 

•	 Complexity and implementation issues: The computational 
complexity, memory requirements, and openness to parallel 
processing are major differentiating factors for hardware or 
software implementation of compression algorithms. While 
software-based implementations are more flexible to parameter 
tuning for highest achievable quality and are amenable to future 
changes, hardware implementations are usually faster and  
power-optimized. Appropriate tradeoff is called for depending on  
end-ser platform and the usage model. 

•	 Error resilience: Compressed data is usually vulnerable to 
channel errors, but the degree of susceptibility varies from one 
algorithm to another. DCT-based algorithms may lose one or 
more blocks owing to channel errors, while a simple DPCM 
algorithm with variable-length codes may be exposed to the loss 
of an entire frame. Error-correcting codes can compensate for 
certain errors at the cost of complexity, but often this is cost-
prohitive or does not work well in case of burst errors. 

•	 Artifacts: Lossy compression algorithms typically produce 
various artifacts. The type of artifacts and its severity may vary 
from one algorithm to another, even at the same bit rate. Some 
artifacts, such as visible block boundaries, jagged edges, ringing 
artifacts around objects, and the like, may be visually more 
objectionable than random noise or a softer image. Also, the 
artifacts are dependent on nature of the content and the viewing 
condition. 

•	 Effect of multi-generational coding: Applications such as video 
editing may need multiple generations of coding and decoding, 
where a decoded output is used as the input to the encoder again. 
The output from the encoder is a second-generation compressed 
output. Some applications support multiple such generations of 
compression. Some compression algorithms are not suitable for 
multi-generational schemes, and often result in poor quality after 
the second generation of encoding the same frame. 
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•	 System compatibility: Not all standards are available on all 
systems. Although one of the goals of standardization is to obtain 
use of common format across the industry, some vendors may 
emphasize one compression algorithm over another. Although 
standardization yields commonly acknowledges formats such 
as AVC and HEVC, vendors may choose to promote similar 
algorithm such as VC-1, VP8, or VP9. Overall, this is a larger issue 
encompassing definitions of technologies such as Blu-ray vs. 
HD-DVD. However, compatibility with the targeted eco-system 
is a factor worthy of consideration when choosing a compression 
solution. 

Summary
We first discussed typical compression requirements for video transmission with various 
networks. This was followed by a discussion of how the characteristics of the human 
visual system provide compression opportunities for videos. Then, aiming to familiarize 
the reader with various video compression methods and concepts, in particular the most 
popular technologies, we presented various ways to perform compression of digital video. 
We explained a few technical terms and concepts related to video compression. Then we 
presented the various compression techniques targeted to reducing spatial, temporal, 
and statistical redundancy that are available in digital video. We briefly described 
important video coding techniques, such as transform coding, predictive coding, vector 
quantization, and subband coding. These techniques are commonly employed in 
presently available video-compression schemes. We then introduced the rate-distortion 
curve as the compression efficiency metric, and as a way of comparing two encoding 
solutions. Finally, we presented the various factors that influence the compression 
algorithms, the understanding of which will facilitate choosing a compression algorithm.



55

Chapter 3

Video Coding Standards

The ubiquity of video has been possible owing to the establishment of a common 
representation of video signals through international standards, with the goal of 
achieving common formats and interoperability of products from different vendors.

In the late 1980s, the need for standardization of digital video was recognized, 
and special expert groups from the computer, communications, and video industries 
came together to formulate practical, low-cost, and easily implementable standards for 
digital video storage and transmission. To determine these standards, the expert groups 
reviewed a variety of video data compression techniques, data structures, and algorithms, 
eventually agreeing upon a few common technologies, which are described in this 
chapter in some detail.

In the digital video field, many international standards exist to address various 
industry needs. For example, standard video formats are essential to exchange digital 
video between various products and applications. Since the amount of data necessary 
to represent digital video is huge, the data needs to be exchanged in compressed 
form—and this necessitates video data compression standards. Depending on the 
industry, standards were aimed at addressing various aspects of end-user applications. 
For example, display resolutions are standardized in the computer industry, digital 
studio standards are standardized in the television industry, and network protocols 
are standardized in the telecommunication industry. As various usages of digital video 
have emerged to bring these industries ever closer together, standardization efforts have 
concurrently addressed those cross-industry needs and requirements. In this chapter we 
discuss the important milestones in international video coding standards, as well as other 
video coding algorithms popular in the industry.
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Overview of International Video Coding Standards
International video coding standards are defined by committees of experts from 
organizations like the International Standards Organization (ISO) and the International 
Telecommunications Union (ITU). The goal of this standardization is to have common 
video formats across the industry, and to achieve interoperability among different 
vendors and video codec related hardware and software manufacturers.

The standardization of algorithms started with image compression schemes such as 
JBIG (ITU-T Rec. T82 and ISO/IEC 11544, March 1993) for binary images used in fax and 
other applications, and the more general JPEG (ITU-T Rec. T81 and ISO/IEC 10918-1), 
which includes color images as well. The JPEG standardization activities started in 1986, but 
the standard was ratified in 1992 by ITU-T and in 1994 by ISO. The main standardization 
activities for video compression algorithms started in the 1980s, with the ITU-T H.261, 
ratified in 1988, which was the first milestone standard for visual telecommunication. 
Following that effort, standardization activities increased with the rapid advancement 
in the television, film, computer, communication, and signal processing fields, and with 
the advent of new usages requiring contributions from all these diverse industries. These 
efforts subsequently produced MPEG-1, H.263, MPEG-2, MPEG-4 Part 2, AVC/H.264, 
and HEVC/H.265 algorithms. In the following sections, we briefly describe the major 
international standards related to image and video coding.

JPEG
The JPEG is a continuous-tone still image compression standard, designed for 
applications like desktop publishing, graphic arts, color facsimile, newspaper wirephoto 
transmission, medical imaging, and the like. The baseline JPEG algorithm uses a  
DCT-based coding scheme where the input is divided into 8×8 blocks of pixels. Each block 
undergoes a two-dimensional forward DCT, followed by a uniform quantization. The 
resulting quantized coefficients are scanned in a zigzag order to form a one-dimensional 
sequence where high-frequency coefficients, likely to be zero-valued, are placed later 
in the sequence to facilitate run-length coding. After run-length coding, the resulting 
symbols undergo more efficient entropy coding.

The first DCT coefficient, often called the DC coefficient as it is a measure of the 
average value of the pixel block, is differentially coded with respect to the previous block. 
The run length of the AC coefficients, which have non-zero frequency, are coded using 
variable-length Huffman codes, assigning shorter codewords for more probable symbols. 
Figure 3-1 shows the JPEG codec block diagram.
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H.261
H.261 is the first important and practical digital video coding standard adopted by the 
industry. It is the video coding standard for audiovisual services at p×64 kbps, where  
p = 1, . . ., 30, primarily aimed at providing videophone and video-conferencing services 
over ISDN, and unifying all aspects of video transmission for such applications in a single 
standard.1 The objectives include delivering video at real time, typically at 15–30 fps, with 
minimum delay (less than 150 ms). Although a successful standard providing industry-wide 
interoperability, common format, and compression techniques, H.261 is obsolete and is 
rarely used today.

In H.261, it is mandatory for all codecs to operate at quarter-CIF (QCIF) video 
format, while the use of CIF is optional. Since the uncompressed video bit rates for CIF 
and QCIF at 29.97 fps are 26.45 Mbps and 9.12 Mbps, respectively, it is extremely difficult 
to transport these video signals using an ISDN channel while providing reasonable video 
quality. To accomplish this goal, H.261 divides a video into a hierarchical block structure 
comprising pictures, groups of blocks (GOB), macroblocks (MB), and blocks. A macroblock 
consists of four 8×8 luma blocks and two 8×8 chroma blocks; a 3×11 array of macroblocks, 
in turn, constitutes a GOB. A QCIF picture has three GOBs, while a CIF picture has 12. 
The hierarchical data structure is shown in Figure 3-2.

Figure 3-1.  Baseline JPEG codec block diagram

1M. L. Liou, “Overview of the px64 kbit/s Video Coding Standard,” Communications of the ACM 
34, no. 4 (April 1991): 60–63.
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Figure 3-3.  Block diagram of the source encoder of ITU-T H.261

Figure 3-2.  Data structures of the H.261 video multiplex coder

The H.261 source coding algorithm is a hybrid of intra-frame and inter-frame coding, 
exploiting spatial and temporal redundancies. Intra-frame coding is similar to baseline 
JPEG, where block-based 8×8 DCT is performed, and the DCT coefficients are quantized. 
The quantized coefficients undergo entropy coding using variable-length Huffman codes, 
which achieves bit-rate reduction using statistical properties of the signal.

Inter-frame coding involves motion-compensated inter-frame prediction and 
removes the temporal redundancy between pictures. Prediction is performed only in 
the forward direction; there is no notion of bi-directional prediction. While the motion 
compensation is performed with integer-pel accuracy, a loop filter can be switched into 
the encoder to improve picture quality by removing coded high-frequency noise when 
necessary. Figure 3-3 shows a block diagram of the H.261 source encoder.
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MPEG-1
In the 1990s, instigated by the market success of compact disc digital audio, CD-ROMs 
made remarkable inroads into the data storage domain. This prompted the inception of 
the MPEG-1 standard, targeted and optimized for applications requiring 1.2 to 1.5 Mbps 
with video home system (VHS)-quality video. One of the initial motivations was to fit 
compressed video into widely available CD-ROMs; however, a surprisingly large number 
of new applications have emerged to take advantage of the highly compressed video with 
reasonable video quality provided by the standard algorithm. MPEG-1 remains one of 
the most successful developments in the history of video coding standards. Arguably, 
however, the most well-known part of the MPEG-1 standard is the MP3 audio format 
that it introduced. The intended applications for MPEG-1 include CD-ROM storage, 
multimedia on computers, and so on. The MPEG-1 standard was ratified as ISO/IEC 
11172 in 1991. The standard consists of the following five parts:

1.	 Systems: Deals with storage and synchronization of video, 
audio, and other data.

2.	 Video: Defines standard algorithms for compressed  
video data.

3.	 Audio: Defines standard algorithms for compressed  
audio data.

4.	 Conformance: Defines tests to check correctness of the 
implementation of the standard.

5.	 Reference Software: Software associated with the standard as 
an example for correct implementation of the encoding and 
decoding algorithms.

The MEPG-1 bitstream syntax is flexible and consists of six layers, each performing a 
different logical or signal-processing function. Figure 3-4 depicts various layers arranged 
in an onion structure.
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MPEG-1 is designed for coding progressive video sequences, and the recommended 
picture size is 360×240 (or 352×288, a.k.a. CIF) at about 1.5 Mbps. However, it is not 
restricted to this format, and can be applied to higher bit rates and larger image sizes. 
The intended chroma format is 4:2:0 with 8 bits of pixel depth. The standard mandates 
real-time decoding and supports features to facilitate interactivity with stored bitstreams. 
It only specifies syntax for the bitstream and the decoding process, allowing sufficient 
flexibility for the encoder implementation. Encoders are usually designed to meet 
specific usage needs, but they are expected to provide sufficient tradeoffs between coding 
efficiency and complexity.

The main goal of the MPEG-1 video algorithm, as in any other standard, is to achieve 
the highest possible video quality for a given bit rate. Toward this goal, the MPEG-1 
compression approach is similar to that of H.261: it is also a hybrid of intra- and  
inter-frame redundancy-reduction techniques. For intra-frame coding, the frame is 
divided into 8×8 pixel blocks, which are transformed to frequency domain using  
8×8 DCT, quantized, zigzag scanned, and the run length of the generated bits are coded 
using variable-length Huffman codes.

Temporal redundancy is reduced by computing a difference signal, namely the 
prediction error, between the original frame and its motion-compensated prediction 
constructed from a reconstructed reference frame. However, temporal redundancy 
reduction in MPEG-1 is different from H.261 in a couple of significant ways:

MPEG-1 permits bi-directional temporal prediction, providing •	
higher compression for a given picture quality than would be 
attainable using forward-only prediction. For bi-directional 
prediction, some frames are encoded using either a past or a 
future frame in display order as the prediction reference. A block 

Figure 3-4.  Onion structure of MPEG-1 bitstream syntax
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of pixels can be predicted from a block in the past reference 
frame, from a block in the future reference frame, or from the 
averge of two blocks, one from each reference frame. In bi-
directional prediction, higher compression is achieved at the 
expense of greater encoder complexity and additional coding 
delay. However, it is still very useful for storage and other off-line 
applications.

Further, MPEG-1 introduces half-pel (a.k.a. half-pixel) accuracy •	
for motion compensation and eliminates the loop filter. The 
half-pel accuracy partly compensates for the benefit provided by 
the H.261 loop filter in that high-frequency coded noise does not 
propagate and coding efficiency is not sacrificed.

The video sequence layer specifies parameters such as the size of the video frames, 
frame rate, bit rate, and so on. The group of pictures (GOP) layer provides support for 
random access, fast search, and editing. The first frame of a GOP must be intra-coded 
(I-frame), where compression is achieved only in the spatial dimension using DCT, 
quantization, and variable-length coding. The I-frame is followed by an arrangement 
of forward-predictive coded frames (P-frames) and bi-directionally predictive coded 
frames (B-frames). I-frames provide ability for random access to the bitstream and for fast 
search (or VCR-like trick play, such as fast-forward and fast-rewind), as they are coded 
independently and serve as entry points for further decoding.

The picture layer deals with a particular frame and contains information of the frame 
type (I, P, or B) and the display order of the frame. The bits corresponding to the motion 
vectors and the quantized DCT coefficients are packages in the slice layer, the macroblock 
layer, and the block layer. A slice is a contiguous segment of the macroblocks. In the event 
of a bit error, the slice layer helps resynchronize the bitstream during decoding. The 
macroblock layer contains the associated motion vector bits and is followed by the block 
layer, which consists of the coded quantized DCT coefficients. Figure 3-5 shows the MPEG 
picture structure in coding and display order, which applies to both MPEG-1 and MPEG-2.

Figure 3-5.  I/P/B frame structure, prediction relationships, coding order, and display order
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MPEG-2
MPEG-2 was defined as the standard for generic coding of moving pictures and associated 
audio. The standard was specified by a joint technical committee of the ISO/IEC and 
ITU-T, and was ratified in 1993, both as the ISO/IEC international standard 13818 and as 
the ITU-T Recommendation H.262.

With a view toward resolving the existing issues in MPEG-1, the standardization 
activity in MPEG-2 focused on the following considerations:

Extend the number of audio compression channels from 2 •	
channels to 5.1 channels.

Add standardization support for interlaced video for broadcast •	
applications.

Provide more standard profiles, beyond the Constrained •	
Parameters Bitstream available in MPEG-1, in order to support 
higher-resolution video contents.

Extend support for color sampling from 4:2:0, to include  •	
4:2:2 and 4:4:4.

For MPEG standards, the standards committee addressed video and audio compression, 
as well as system considerations for multiplexing the compressed audio-visual data. In 
MPEG-2 applications, the compressed video and audio elementary streams are multiplexed 
to construct a program stream; several program streams are packetized and combined to 
form a transport stream before transmission. However, in the following discussion, we will 
focus on MPEG-2 video compression.

MPEG-2 is targeted for a variety of applications at a bit rate of 2 Mbps or more, with 
a quality ranging from good-quality NTSC to HDTV. Although widely used as the format 
of digital television signal for terrestrial, cable, and direct-broadcast satellite TV systems, 
other typical applications include digital videocassette recorders (VCR), digital video 
discs (DVD), and the like. As a generic standard supporting a variety of applications 
generally ranging from 2 Mbps to 40 Mbps, MPEG-2 targets a compression ratio in the 
range of 30 to 40. To provide application independence, MPEG-2 supports a variety of 
video formats with resolutions ranging from source input format (SIF) to HDTV. Table 3-1 
shows some typical video formats used in MPEG-2 applications.

Table 3-1.  Typical MPEG-2 Paramters

Format Resolution Compressed Bit Rate (Mbps)

SIF 360×240 @ 30 fps 1.2 – 3

ITU-R 601 720×480 @ 30 fps 5 – 10

EDTV 960×480 @ 30 fps 7 – 15

HDTV 1920×1080 @ 30 fps 18 – 40
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The aim of MPEG-2 is to provide better picture quality while keeping the 
provisions for random access to the coded bitstream. However, it is a rather difficult 
task to accomplish. Owing to the high compression demanded by the target bit rates, 
good picture quality cannot be achieved by intra-frame coding alone. Contrarily, the 
random-access requirement is best satisfied with pure intra-frame coding. This dilemma 
necessitates a delicate balance between the intra- and inter-picture coding. And this 
leads to the definition of I, P, and B pictures, similar to MPEG-1. I-frames are the least 
compressed, and contain approximately the full information of the picture in a quantized 
form in frequency domain, providing robustness against errors. The P-frames are 
predicted from past I- or P-frames, while the B-frames offer the greatest compression by 
using past and future I- or P-frames for motion compensation. However, B-frames are the 
most vulnerable to channel errors.

An MPEG-2 encoder first selects an appropriate spatial resolution for the signal, 
followed by a block-matching motion estimation to find the displacement of a 
macroblock (16×16 or 16×8 pixel area) in the current frame relative to a macroblock 
obtained from a previous or future reference frame, or from their average. The search 
for the best matching block is based on the mean absolute difference (MAD) distortion 
criterion; the best matching occurs when the accumulated absolute values of the pixel 
differences for all macroblocks are minimized. The motion estimation process then 
defines a motion vector representing the displacement of the current block’s location 
from the best matched block’s location. To reduce temporal redundancy, motion 
compensation is used both for causal prediction of the current picture from a previous 
reference picture and for non-causal, interpolative prediction from past and future 
reference pictures. The prediction of a picture is constructed based on the  
motion vectors.

To reduce spatial redundancy, the difference signal—that is, the prediction error—is 
further compressed using the block transform coding technique that employs the  
two-dimensional orthonormal 8×8 DCT to remove spatial correlation. The resulting 
transform coefficients are ordered in an alternating or zigzag scanning pattern before 
they are quantized in an irreversible process that discards less important information. In 
MPEG-2, adaptive quantization is used at the macroblock layer, allowing smooth bit-rate 
control and perceptually uniform video quality. Finally, the motion vectors are combined 
with the residual quantized coefficients, and are transmitted using variable-length Huffman 
codes. The Huffman coding tables are pre-determined and optimized for a limited range  
of compression ratios appropriate for some target applications. Figure 3-6 shows an 
MPEG-2 video encoding block diagram.
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The bitstream syntax in MPEG-2 is divided into subsets known as profiles, which 
specify constraints on the syntax. Profiles are further divided into levels, which are sets 
of constraints imposed on parameters in the bitstream. There are five profiles defined in 
MPEG-2:

Main: Aims at the maximum quality of standard definition •	
pictures.

Simple: Is directed to memory savings by not interpolating •	
pictures.

SNR scalable: Aims to provide better signal-to-noise ratio on •	
demand by using more than one layer of quantization.

Spatially scalable: Aims to provide variable resolution on •	
demand by using additional layers of weighted and reconstructed 
reference pictures.

High: Intended to support 4:2:2 chroma format and full •	
scalability.

Figure 3-6.  The MPEG-2 video encoding block diagram
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Within each profile, up to four levels are defined:

Low: Provides compatibility with H.261 or MPEG-1.•	

Main: Corresponds to conventional TV.•	

High 1440: Roughly corresponds to HDTV, with 1,440 samples  •	
per line.

High: Roughly corresponds to HDTV, with 1,920 samples per line.•	

The Main profile, Main level (MP @ ML) reflects the initial focus of MPEG-2 with 
regard to entertainment applications. The permitted profile-level combinations are: 
Simple profile with Main level, Main profile with all levels, SNR scalable profile with Low 
and Main levels, Spatially scalable profile with High 1440 level, and High profile with all 
levels except Low level.

The bitstream syntax can also be divided as follows:

Non-scalable syntax: A super-set of MPEG-1, featuring extra •	
compression tools for interlaced video signals along with variable 
bit rate, alternate scan, concealment motion vectors, intra-DCT 
format, and so on.

Scalable syntax: A base layer similar to the non-scalable syntax •	
and one or more enhancement layers with the ability to enable 
the reconstruction of useful video.

The structure of the compressed bitstream is shown in Figure 3-7. The layers are 
similar to those of MPEG-1. A compressed video sequence starts with a sequence header 
containing picture resolutions, picture rate, bit rate, and so on. There is a sequence 
extension header in MPEG-2 containing video format, color primaries, display resolution, 
and so on. The sequence extension header may be followed by an optional GOP header 
having the time code, which is subsequently followed by a frame header containing 
temporal reference, frame type, video buffering verifier (VBV) delay, and so on. The frame 
header can be succeeded by a picture coding extension containing interlacing, DCT 
type and quantizer-scale type information, which is usually followed by a slice header 
to facilitate resynchronization. Inside a slice, several macroblocks are grouped together, 
where the macroblock address and type, motion vector, coded block pattern, and so on 
are placed before the actual VLC-coded quantized DCT coefficients for all the blocks in a 
macroblock. The slices can start at any macroblock location, and they are not restricted to 
the beginning of macroblock rows.
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Since the MPEG-2 base layer is a super-set of MPEG-1, standard-compliant decoders 
can decode MPEG-1 bitstreams providing backward compatibility. Furthermore, MPEG-2 
is capable of selecting the optimum mode for motion-compensated prediction, such 
that the current frame or field can be predicted either from the entire reference frame or 
from the top or bottom field of the reference frame, thereby finding a better relationship 
of the fields. MPEG-2 also adds the alternate scanning pattern, which suits interlaced 
video better than the zigzag scanning pattern. Besides, a choice is offered between linear 
and nonlinear quantization tables, and up to 11 bits DC precision is supported for intra 
macroblocks. These are improvements on MPEG-1, which does not support nonlinear 
quantization tables and provides only 8 bits of intra-DC precision. At the same bit rate, 
MPEG-2 yields better quality than MPEG-1, especially for interlaced video sources. 
Moreover, MPEG-2 is more flexible for parameter variation at a given bit rate, helping a 
smoother buffer control. However, these benefits and improvements come at the expense 
of increased complexity.

Figure 3-7.  Structure of MPEG-2 video bitstream syntax
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H.263
H.263 defined by ITU-T is aimed at low-bit-rate video coding but does not specify 
a constraint on video bit rate; such constraints are given by the terminal or the 
network. The objective of H.263 is to provide significantly better picture quality than 
its predecessor, H.261. Conceptually, H.263 is network independent and can be used 
for a wide range of applications, but its target applications are visual telephony and 
multimedia on low-bit-rate networks like PSTN, ISDN, and wireless networks. Some 
important considerations for H.263 include small overhead, low complexity resulting 
in low cost, interoperability with existing video communication standards (e.g., H.261, 
H.320), robustness to channel errors, and quality of service (QoS) parameters. Based on 
these considerations, an efficient algorithm is developed, which gives manufacturers the 
flexibility to make tradeoffs between picture quality and complexity. Compared to H.261, 
it provides the same subjective image quality at less than half the bit rate.

Similar to other standards, H.263 uses inter-picture prediction to reduce temporal 
redundancy and transform coding of the residual prediction error to reduce spatial 
redundancy. The transform coding is based on 8×8 DCT. The transformed signal is 
quantized with a scalar quantizer, and the resulting symbol is variable length coded 
before transmission. At the decoder, the received signal is inverse quantized and inverse 
transformed to reconstruct the prediction error signal, which is added to the prediction, 
thus creating the reconstructed picture. The reconstructed picture is stored in a frame 
buffer to serve as a reference for the prediction of the next picture. The encoder consists 
of an embedded decoder where the same decoding operation is performed to ensure the 
same reconstruction at both the encoder and the decoder.

H.263 supports five standard resolutions: sub-QCIF (128×96), QCIF (176×144), CIF 
(352×288), 4CIF (704×576), and 16CIF (1408×1152), covering a large range of spatial 
resolutions. Support for both sub-QCIF and QCIF formats in the decoder is mandatory, 
and either one of these formats must be supported by the encoder. This requirement is a 
compromise between high resolution and low cost.

A picture is divided into 16×16 macroblocks, consisting of four 8×8 luma blocks 
and two spatially aligned 8×8 chroma blocks. One or more macroblocks rows are 
combined into a group of blocks (GOB) to enable quick resynchronization in the event of 
transmission errors. Compared to H.261, the GOB structure is simplified; GOB headers 
are optional and may be used based on the tradeoff between error resilience and coding 
efficiency.

For improved inter-picture prediction, the H.263 decoder has a block motion 
compensation capability, while its use in the encoder is optional. One motion vector 
is transmitted per macroblock. Half-pel precision is used for motion compensation, in 
contrast to H.261, where full-pel precision and a loop filter is used. The motion vectors, 
together with the transform coefficients, are transmitted after variable-length coding. The 
bit rate of the coded video may be controlled by preprocessing or by varying the following 
encoder parameters: quantizer scale size, mode selections, and picture rate.

In addition to the core coding algorithm described above, H.263 includes four 
negotiable coding options, as mentioned below. The first three options are used to 
improve inter-picture prediction, while the fourth is related to lossless coding. The coding 
options increase the complexity of the encoder but improve picture quality, thereby 
allowing tradeoff between picture quality and complexity.
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•	 Unrestricted motion vector (UMV) mode: In the UMV mode, 
motion vectors are allowed to point outside the coded picture 
area, enabling a much better prediction, particularly when a 
reference macroblock is partly located outside the picture area 
and part of it is not available for prediction. Those unavailable 
pixels would normally be predicted using the edge pixels instead. 
However, this mode allows utilization of the complete reference 
macroblock, producing a gain in quality, especially for the smaller 
picture formats when there is motion near the picture boundaries. 
Note that, for the sub-QCIF format, about 50 percent of all the 
macroblocks are located at or near the boundary.

•	 Advanced prediction (AP) mode: In this optional mode, the 
overlapping block motion compensation (OBMC) is used for luma, 
resulting in a reduction in blocking artifacts and improvement 
in subjective quality. For some macroblocks, four 8×8 motion 
vectors are used instead of a 16×16 vector, providing better 
prediction at the expense of more bits.

•	 PB-frames (PB) mode: The principal purpose of the PB-frames 
mode is to increase the frame rate without significantly increasing 
the bit rate. A PB-frame consists of two pictures coded as one unit. 
The P-picture is predicted from the last decoded P-picture, and 
the B-picture is predicted both from the last and from the current 
P-pictures. Although the names “P-picture” and “B-picture” are 
adopted from MPEG, B-pictures in H.263 serve an entirely different 
purpose. The quality of the B-pictures is intentionally kept low, in 
particular to minimize the overhead of bi-directional prediction, 
while such overhead is important for low-bit-rate applications. 
B-pictures use only 15 to 20 percent of the allocated bit rate, but 
result in better subjective impression of smooth motion.

•	 Syntax-based arithmetic coding (SAC) mode: H.263 is 
optimized for very low bit rates. As such, it allows the use of 
optional syntax-based arithmetic coding mode, which replaces 
the Huffman codes with arithmetic codes for variable-length 
coding. While Huffman codes must use an integral number of 
bits, arithmetic coding removes this restriction, thus producing a 
lossless coding with reduced bit rate.

The video bitstream of H.263 is arranged in a hierarchical structure composed of the 
following layers: picture layer, group of blocks layer, macroblock layer, and block layer. 
Each coded picture consists of a picture header followed by coded picture data arranged as 
group of blocks. Once the transmission of the pictures is completed, an end-of-sequence 
(EOS) code and, if needed, stuffing bits (ESTUF) are transmitted. There are some optional 
elements in the bitstream. For example, temporal reference of B-pictures (TRB) and the 
quantizer parameter (DBQUANT) are only available if the picture type (PTYPE) indicates a 
B-picture. For P-pictures, a quantizer parameter PQUANT is transmitted.
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The GOB layer consists of a GOB header followed by the macroblock data. The first 
GOB header in each picture is skipped, while for other GOBs, a header is optional and 
is used based on available bandwidth. Group stuffing (GSTUF) may be necessary for a 
GOB start code (GBSC). Group number (GN), GOB frame ID (GFID), and GOB quantizer 
(GQUANT) can be present in the GOB header.

Each macroblock consists of a macroblock header followed by the coded block data. 
A coded macroblock is indicated by a flag called COD; for P-pictures, all the macroblocks 
are coded. A macroblock type and coded block pattern for chroma (MCBPC) are present 
when indicated by COD or when PTYPE indicates an I-picture. A macroblock mode 
for B-pictures (MODB) is present for non-intra macroblocks for PB-frames. The luma 
coded block pattern (CBPY), and the codes for the differential quanitizer (DQUANT) and 
motion vector data (MVD or MVD

2-4
 for advanced prediction), may be present according 

to MCBPC. The CBP and motion vector data for B-blocks (CBPB and MVDB) are present 
only if the coding mode is B (MODB). As mentioned before, in the normal mode a 
macroblock consists of four luma and two chroma blocks; however, in PB-frames mode 
a macroblock can be thought of as containing 12 blocks. The block structure is made up 
of intra DC followed by the transform coefficients (TCOEF). For intra macroblocks, intra 
DC is sent for every P-block in the macroblock. Figure 3-8 shows the structure of various 
H.263 layers.

Figure 3-8.  Structure of various layers in H.263 bitstream
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MPEG-4 (Part 2)
MPEG-4, formally the standard ISO/IEC 14496, was ratified by ISO/IEC in March 1999  
as the standard for multimedia data representation and coding. In addition to video  
and audio coding and multiplexing, MPEG-4 addresses coding of various two- or  
three-dimensional synthetic media and flexible representation of audio-visual scene and 
composition. As the usage of multimedia developed and diversified, the scope of MPEG-4 
was extended from its initial focus on very low bit-rate coding of limited audio-visual 
materials to encompass new multimedia functionalities.

Unlike pixel-based treatment of video in MPEG-1 or MPEG-2, MPEG-4 supports 
content-based communication, access, and manipulation of digital audio-visual objects, 
for real-time or non-real-time interactive or non-interactive applications. MPEG-4 offers 
extended functionalities and improves upon the coding efficiency provided by previous 
standards. For instance, it supports variable pixel depth, object-based transmission, and 
a variety of networks including wireless networks and the Internet. Multimedia authoring 
and editing capabilities are particularly attractive features of MPEG-4, with the promise 
of replacing existing word processors. In a sense, H.263 and MPEG-2 are embedded in 
MPEG-4, ensuring support for applications such as digital TV and videophone, while it is 
also used for web-based media streaming.

MPEG-4 distinguishes itself from earlier video coding standards in that it introduces 
object-based representation and coding methodology of real or virtual audio-visual 
(AV) objects. Each AV object has its local 3D+T coordinate system serving as a handle 
for the manipulation of time and space. Either the encoder or the end-user can place an 
AV object in a scene by specifying a co-ordinate transformation from the object’s local 
co-ordinate system into a common, global 3D+T co-ordinate system, known as the scene 
co-ordinate system. The composition feature of MPEG-4 makes it possible to perform 
bitstream editing and authoring in compressed domain.

One or more AV objects, including their spatio-temporal relationships, are 
transmitted from an encoder to a decoder. At the encoder, the AV objects are compressed, 
error-protected, multiplexed, and transmitted downstream. At the decoder, these objects 
are demultiplexed, error corrected, decompressed, composited, and presented to an end 
user. The end user is given an opportunity to interact with the presentation. Interaction 
information can be used locally or can be transmitted upstream to the encoder.

The transmitted stream can either be a control stream containing connection setup, 
the profile (subset of encoding tools), and class definition information, or be a data 
stream containing all other information. Control information is critical, and therefore it 
must be transmitted over reliable channels; but the data streams can be transmitted over 
various channels with different quality of service.

Part 2 of the standard deals with video compression. As the need to support various 
profiles and levels was growing, Part 10 of the standard was introduced to handle such 
demand, which soon became more important and commonplace in the industry than 
Part 2. However, MPEG-4 Part 10 can be considered an independent standardization 
effort as it does not provide backward compatibility with MPEG-4 Part 2. MPEG-4 Part 10, 
also known as advanced video coding (AVC), is discussed in the next section.

MPEG-4 Part 2 is an object-based hybrid natural and synthetic coding standard. 
(For simplicity, we will refer to MPEG-4 Part 2 simply as MPEG-4 in the following 
discussion.) The structure of the MPEG-4 video is hierarchical in nature. At the top layer 
is a video session (VS) composed of one or more video objects (VO). A VO may consist of 
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one or more video object layers (VOL). Each VOL consists of an ordered time sequence 
of snapshots, called video object planes (VOP). The group of video object planes (GOV) 
layer is an optional layer between the VOL and the VOP layer. The bitstream can have any 
number of the GOV headers, and the frequency of the GOV header is an encoder issue. 
Since the GOV header indicates the absolute time, it may be used for random access and 
error-recovery purposes.

The video encoder is composed of a number of encoders and corresponding 
decoders, each dedicated to a separate video object. The reconstructed video objects are 
composited together and presented to the user. The user interaction with the objects such 
as scaling, dragging, and linking can be handled either in the encoder or in the decoder.

In order to describe arbitrarily shaped VOPs, MPEG-4 defines a VOP by means of 
a bounding rectangle called a VOP window. The video object is circumscribed by the 
tightest VOP window, such that a minimum number of image macroblocks are coded. 
Each VO consists of three main functions: shape coding, motion compensation, and 
texture coding. In the event of a rectangular VOP, the MPEG-4 encoder structure is similar 
to that of the MPEG-2 encoder, and shape coding can be skipped. Figure 3-9 shows the 
structure of a video object encoder.

Figure 3-9.  Video object encoder structure in MPEG-4

The shape information of VOP is referred to as the alpha plane in MPEG-4. The 
alpha plane has the same format as the luma and its data indicates the characteristics of 
the relevant pixels, whether or not the pixels are within a video object. The shape coder 
compresses the alpha plane. Binary alpha planes are encoded by modified  
content-based arithmetic encoding (CAE), while gray-scale alpha planes are encoded  
by motion-compensated DCT, similar to texture coding. The macroblocks that lie 
completely outside the object (transperant macroblocks) are not processed for the 
motion or texture coding; therefore, no overhead is required to indicate this mode, since 
this transperancy information can be obtained from shape coding.
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Motion estimation and compensation are used to reduce temporal redundancies. 
A padding technique is applied on the reference VOP that allows polygon matching 
instead of block matching for rectangular images. Padding methods aim at extending 
arbitrarily shaped image segments to a regular block grid by filling in the missing data 
corresponding to signal extrapolation such that common block-based coding techniques 
can be applied. In addition to the basic motion compensation technique, unrestricted 
motion compensation, advanced prediction mode, and bi-directional motion 
compensation are supported by MPEG-4 video to obtain a significant improvement in 
quality at the expense of very little increased complexity.

The intra and residual data after motion compensation of VOPs are coded using a 
block-based DCT scheme, similar to previous standards. Macroblocks that lie completely 
inside the VOP are coded using a technique identical to H.263; the region outside the 
VOP within the contour macroblocks (i.e., macroblocks with an object edge) can either 
be padded for regular DCT transformation or can use shape adaptive DCT (SA-DCT). 
Transperant blocks are skipped and are not coded in the bitstream.

MPEG-4 supports scalable coding of video objects in spatial and temporal domains, 
and provides error resilience across various media. Four major tools, namely video packet 
re-synchronization, data partitioning, header extension code, and reversible VLC, provide 
loss-resilience properties such as resynchronization, error detection, data recovery, and 
error concealment.

AVC
The Advanced Video Coding (AVC), also known as the ITU-T H.264 standard  
(ISO/IEC 14496-10), is currently the most common video compression format used in 
the industry for video recording and distribution. It is also known as MPEG-4 Part 10. 
The AVC standard was ratified in 2003 by the Joint Video Team (JVT) of the ITU-T Video 
Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) 
standardization organizations. One of the reasons the AVC standard is so well known is 
that it is one of the three compression standards for Blu-ray (the others being MPEG-2 
and VC-1), and it is also widely used by Internet streaming applications like YouTube and 
iTunes, software applications like Flash Player, software frameworks like Silverlight, and 
various HDTV broadcasts over terrestrial, cable, and satellite channels.

The AVC video coding standard has the same basic functional elements as previous 
standards MPEG-4 Part 2, MPEG-2, H.263, MPEG-1, and H.261. It uses a lossy predictive, 
block-based hybrid DPCM coding technique. This involves transform for reduction of 
spatial correlation, quantization for bit-rate control, motion-compensated prediction 
for reduction of temporal correlation, and entropy encoding for reduction of statistical 
correlation. However, with a goal of achieving better coding performance than previous 
standards, AVC incorporates changes in the details of each functional element by 
including in-picture prediction, a new 4×4 transform, multiple reference pictures, 
variable block sizes, and a quarter-pel precision for motion compensation, a deblocking 
filter, and improved entropy coding. AVC also introduces coding concepts such as 
generalized B-slices, which supports not only bidirectional forward-backward prediction 
pair but also forward-forward and backward-backward prediction pairs. There are several 
other tools, including direct modes and weighted prediction, defined by AVC to obtain a 
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very good prediction of the source signal so that the error signal has a minimum energy. 
These tools help AVC perform significantly better than prior standards for a variety of 
applications. For example, compared to MPEG-2, AVC typically obtains the same quality 
at half the bit rate, especially for high-resolution contents coded at high bit rates.

However, the improved coding efficiency comes at the expense of additional 
complexity to the encoder and decoder. So, to compensate, AVC utilizes some methods to 
reduce the implementation complexity—for example, multiplier-free integer transform 
is introduced where multiplication operations for the transform and quantization are 
combined. Further, to facilitate applications on noisy channel conditions and error-prone 
environments such as the wireless networks, AVC utilizes some methods to exploit error 
resilience to network noise. These include flexible macroblock ordering (FMO), switched 
slice, redundant slice methods, and data partitioning.

The coded AVC bitstream has two layers, the network abstraction layer (NAL) and 
video coding layer (VCL). The NAL abstracts the VCL data to help transmission on a variety 
of communication channels or storage media. A NAL unit specifies both byte-stream and 
packet-based formats. The byte-stream format defines unique start codes for the applications 
that deliver the NAL unit stream as an ordered stream of bytes or bits, encapsulated in 
network packets such as MPEG-2 transport streams. Previous standards contained header 
information about slice, picture, and sequence at the start of each element, where loss of these 
critical elements in a lossy environment would render the rest of the element data useless. 
AVC resolves this problem by keeping the sequence and picture parameter settings in 
the non-VCL NAL units that are transmitted with greater error-protection. The VCL unit 
contains the core video coded data, consisting of video sequence, picture, slice, and 
macroblock.

Profile and Level
A profile is a set of features of the coding algorithm that are identified to meet certain 
requirements of the applications. This means that some features of the coding algorithm 
are not supported in some profiles. The standard defines 21 sets of capabilities, targeting 
specific classes of applications. 

For non-scalable two-dimensional video applications, the following are the 
important profiles:

•	 Constrained Baseline Profile: Aimed at low-cost mobile and 
video communication applications, the Constrained Baseline 
Profile uses the subset of features that are in common with the 
Baseline, Main, and High Profiles.

•	 Baseline Profile: This profile is targeted for low-cost applications 
that require additional error resiliency. As such, on top of the 
features supported in the Constrained Baseline Profile, it has 
three features for enhanced robustness. However, in practice, 
Constrained Baseline Profile is more commonly used than 
Baseline Profile. The bitstreams for these two profiles share the 
same profile identifier code value.



Chapter 3 ■ Video Coding Standards

74

•	 Extended Profile: This is intended for video streaming. It has 
higher compression capability and more robustness than Baseline 
Profile, and it supports server stream switching.

•	 Main Profile: Main profile is used for standard-definition digital 
TV broadcasts, but not for HDTV broadcasts, for which High 
Profile is primarily used.

•	 High Profile: It is the principal profie for HDTV broadcast and for 
disc storage, such as the Blu-ray Disc storage format.

•	 Progressive High Profile: This profile is similar to High profile, 
except that it does not support the field coding tools. It is intended 
for applications and displays using progressive scanned video.

•	 High 10 Profile: Mainly for premium contents with 10-bit per 
sample decoded picture precision, this profile adds 10-bit 
precision support to the High Profile.

•	 High 4:2:2 Profile: This profile is aimed at professional 
applications that use interlaced video. On top of the High 10 
Profile, it adds support for the 4:2:2 chroma subsampling format.

•	 High 4:4:4 Predictive Profile: Further to the High 4:2:2 Profile, 
this profile supports up to 4:4:4 chroma sampling and up to  
14 bits per sample precision. It additionally supports lossless 
region coding and the coding of each picture as three separate 
color planes.

In addition to the above profiles, the Scalable Video Coding (SVC) extension defines 
five more scalable profiles: Scalable Constrained Baseline, Scalable Baseline, Scalable 
High, Scalable Constrained High, and Scalable High Intra profiles. Also, the Multi-View 
Coding (MVC) extension adds three more profiles for three-dimensional video—namely 
Stereo High, Multiview High, and Multiview Depth High profiles. Furthermore, four intra-
frame-only profiles are defined for professional editing applications: High 10 Intra, High 
4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles.

Levels are constraints that specify the degree of decoder performance needed for a 
profile; for example, a level designates the maximum picture resolution, bit rate, frame 
rate, and so on that the decoder must adhere to within a profile. Table 3-2 shows some 
examples of level restrictions; for full description, see the standard specification.2

2ITU-T Rec. H.264: Advanced Video Coding for Generic Audiovisual Services (Geneva, 
Switzerland: International Telecommunications Union, 2007).
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Table 3-2.  Examples of Level Restrictions in AVC

Level Max Luma 
samples/ 
second

Max  
Macro-
blocks/ 
second

Max Number 
of Macro-
blocks

Max video 
bit rate, 
kbps 
(Baseline, 
Extended, 
Main)

Max video 
bit rate, 
kbps 
(High)

Examples 
(width × height 
@ frames per 
second)

1 380,160 1,485 99 64 80 176×144@15

1.1 768,000 3,000 396 192 240 320×240@10

1.2 1,536,000 6,000 396 384 480 352×288@15

1.3 3,041,280 11,880 396 768 960 352×288@30

2 3,041,280 11,880 396 2,000 2,500 352×288@30

2.1 5,068,800 19,800 792 4,000 5,000 352×576@25

2.2 5,184,000 20,250 1,620 4,000 5,000 720×480@15

3 10,368,000 40,500 1,620 10,000 12,500 720×480@30,

720×576@25

3.1 27,648,000 108,000 3,600 14,000 17,500 1280×720@30

3.2 55,296,000 216,000 5,120 20,000 25,000 1280×720@60

4 62,914,560 245,760 8,192 20,000 25,000 1920×1080@30

4.1 62,914,560 245,760 8,192 50,000 62,500 2048×1024@30

4.2 133,693,440 522,240 8,704 50,000 62,500 2048×1080@60

5 150,994,944 589,824 22,080 135,000 168,750 2560×1920@30

5.1 251,658,240 983,040 36,864 240,000 300,000 4096×2048@30

5.2 530,841,600 2,073,600 36,864 240,000 300,000 4096×2160@60

Picture Structure
The video sequence has frame pictures or field pictures. The pictures usually comprise 
three sample arrays, one luma and two chroma sample arrays (RGB arrays are supported 
in High 4:4:4 Profile only). AVC supports either progressive-scan or interlaced-scan, 
which may be mixed in the same sequence. Baseline Profile is limited to progressive scan. 

Pictures are divided into slices. A slice is a sequence of a flexible number of 
macroblocks within a picture. Multiple slices can form slice groups; there is macroblock 
to slice group mapping to determine which slice group includes a particular macroblock. 
In the 4:2:0 format, each macroblock has one 16×16 luma and two 8×8 chroma sample 
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arrays, while in the 4:2:2 and 4:4:4 formats, the chroma sample arrays are 8 ×16 and  
16 ×16, respectively. A picture may be partitioned into 16×16 or smaller partitions with 
various shapes such as 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4. These partitions are used for 
prediction purposes. Figure 3-10 shows the different partitions.

Figure 3-10.  Macroblock and block partitions in AVC

Coding Algorithm
In the AVC algorithm, the encoder may select between intra and inter coding for various 
partitions of each picture. Intra coding (I) provides random access points in the bitstream 
where decoding can begin and continue correctly. Intra coding uses various spatial 
prediction modes to reduce spatial redundancy within a picture.  In addition, AVC defines 
inter coding that uses motion vectors for block-based inter-picture prediction to reduce 
temporal redundancy. Inter coding are of two types: predictive (P) and bi-predictive (B). 
Inter coding is more efficient as it uses inter prediction of each block of pixels relative 
to some previously decoded pictures. Prediction is obtained from a deblocked version 
of previously reconstructed pictures that are used as references for the prediction. The 
deblocking filter is used in order to reduce the blocking artifacts at the block boundaries. 
Motion vectors and intra prediction modes may be specified for a variety of block 
sizes in the picture. Further compression is achieved by applying a transform to the 
prediction residual to remove spatial correlation in the block before it is quantized. The 
intra prediction modes, the motion vectors, and the quantized transform coefficient 
information are encoded using an entropy code such as context-adaptive variable length 
codes (CAVLC) or context adaptive binary arithmetic codes (CABAC). A block diagram of 
the AVC coding algorithm, showing the encoder and decoder blocks, is presented  
in Figure 3-11.
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Intra Prediction
In the previous standards, intra-coded macroblocks were coded independently without 
any reference, and it was necessary to use intra macroblocks whenever a good prediction 
was not available for a predicted macroblock. As intra macroblocks use more bits than the 
predicted ones, this was often less efficient for compression. To alleviate this drawback—
that is, to reduce the number of bits needed to code an intra picture—AVC introduced 
intra prediction, whereby a prediction block is formed based on previously reconstructed 
blocks belonging to the same picture. Fewer bits are needed to code the residual signal 
between the current and the predicted blocks, compared to the coding the current  
block itself.

The size of an intra prediction block for the luma samples may be 4×4, 8×8, or 
16×16. There are several intra prediction modes, out of which one mode is selected and 
coded in the bitstream. AVC defines a total of nine intra prediction modes for 4×4 and 
8×8 luma blocks, four modes for a 16×16 luma block, and four modes for each chroma 
block. Figure 3-12 shows an example of intra prediction modes for a 4×4 block. In this 
example, [a, b, . . ., p] are the predicted samples of the current block, which are predicted 
from already decoded left and above blocks with samples [A, B, . . ., M]; the arrows show 
the direction of the prediction, with each direction  indicated as a intra prediction mode 
in the coded bitstream. For mode 0 (vertical), the prediction is formed by extrapolation 

Figure 3-11.  The AVC codec block diagram
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of the samples above, namely [A, B, C, D]. Similarly for mode 1 (horizontal), left samples 
[I, J, K, L] are extrapolated. For mode 2 (DC prediction), the average of the above and left 
samples are used as the prediction. For mode 3 (diagonal down left), mode 4 (diagonal 
down right), mode 5 (vertical right), mode 6 (horizontal down), mode 7 (vertical left), and 
mode 8 (horizontal up), the predicted samples are formed from a weighted average of the 
prediction samples A—M.

Inter Prediction
Inter prediction reduces temporal correlation by using motion estimation and 
compensation. As mentioned before, AVC partitions the picture into several shapes from 
16×16 down to 4×4 for such predictions. The motion compensation results in reduced 
information in the residual signal, although for the smaller partitions, an overhead of bits 
is incurred for motion vectors and for signaling the partition type.

Intra prediction can be applied to blocks as small as 4×4 luma samples with up to a 
quarter-pixel (a.k.a. quarter-pel) motion vector accuracy. Sub-pel motion compensation 
gives better compression efficiency than using integer-pel alone; while quarter-pel 
is better than half-pel, it involves more complex computation. For luma, the half-pel 
samples are generated first and are interpolated from neighboring integer-pel samples 
using a six-tap finite impulse response (FIR) filter with weights (1, -5, 20, 20, -5, 1)/32. 
With the half-pel samples available, quarter-pel samples are produced using bilinear 
interpolation between neighboring half- or integer-pel samples. For 4:2:0 chroma,  
eighth-pel samples correspond to quarter-pel luma, and are obtained from linear 
interpolation of integer-pel chroma samples. Sub-pel motion vectors are differentially 
coded relative to predictions from neighboring motion vectors. Figure 3-13 shows the 
location of sub-pel predictions relative to full-pel.

Figure 3-12.  An example of intra prediction modes for a 4×4 block ( few modes are  
shown as examples)
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For inter prediction, reference pictures can be used from a list of previously 
reconstructed pictures, which are stored in the picture buffer. The distance of a reference 
picture from the current picture in display order determines whether it is a short-term or 
a long-term reference. Long-term references help increase the motion search range by 
using multiple decoded pictures. As a limited size of picture buffer is used, some pictures 
may be marked as unused for reference, and may be deleted from the reference list in a 
controlled manner to keep the memory size practical.

Transform and Quantization
The AVC algorithm uses block-based transform for spatial redundancy removal, as the 
residual signal from intra or inter prediction is divided into 4×4 or 8×8 (High profile only) 
blocks, which are converted to transform domain before they are quantized. The use 
of 4×4 integer transform in AVC results in reduced ringing artifacts compared to those 
produced by previous standards using fixed 8×8 DCT. Also, multiplications are not 
necessary at this smaller size. AVC introduced the concept of hierarchical transform 
structure, in which the DC components of neighboring 4×4 luma transforms are grouped 
together to form a 4×4 block, which is transformed again using a Hadamard transform for 
further improvement in compression efficiency.

Both 4×4 and 8×8 transforms in AVC are integer transforms based on DCT.  
The integer transform, post-scaling, and quantization are grouped together in the 
encoder, while in the decoder the sequence is inverse quantization, pre-scaling, and 
inverse integer transform. For a deeper understanding of the process, consider the  
matrix H below.

H
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Figure 3-13.  Locations of sub-pel prediction
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A 4×4 DCT can be done using this matrix and the formula: X = HFHT, where HT is 
the transpose of the matrix H, F is the input 4×4 data block, and X is the resulting 4×4 
transformed block. For DCT, the variables a, b, and c are as follows:

a b c= = æ
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ö
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8

, ,cos cos
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The AVC algorithm simplifies these coefficients with approximations, and still 
maintains orthogonaity property by using:

a b c= = = ×
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Further simplification is made to avoid multiplication by combining the transform 
with the quantization step, using a scaled transform X = ĤFĤT ⊗ SF, where,
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and SF is a 4×4 matrix representing the scaling factors needed for orthonormality, and ⊗ 
represents element-by-element multiplication. The transformed and quantized signal Y 
with components Y

i,j
 is obtained by appropriate quantization using one of the 52 available 

quantizer levels (a.k.a. quantization step size, Qstep) as follows:

Y X round
SF

Qstep
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In the decoder, the received signal Y is scaled with Qstep and SF as the inverse 
quantization and a part of inverse transform to obtain the inverse transformed block X′ 
with components X′

i ,j
:

X Y Q SF Where i ji j i j step ij' , ,, ,= £ £ ×-1 0 3

The 4×4 reconstructed block is: F H X Hv
T

v' ' ,=    where the integer inverse transform 
matrix is given by:
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In addition, in the hierarchical transform approach for 16×16 intra mode, the 4×4 
luma intra DC coefficients are further transformed using a Hadamard transform:

H =
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In 4:2:0 color sampling, for the chroma DC coefficients, the transform matrix is as 
follows:

H =
-
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1 1
1 1

In order to increase the compression gain provided by run-length coding, two scanning 
orders are defined to arrange the quantized coefficients before entropy coding, namely 
zigzag scan and field scan, as shown in Figure 3-14. While zigzag scanning is suitable for 
progressively scanned sources, alternate field scanning helps interlaced contents.

Figure 3-14.  Zigzag and alternate field scanning orders for 4×4 blocks

Entropy Coding
Earlier standards provided entropy coding using fixed tables of variable-length codes, 
where the tables were predefined by the standard based on the probability distributions 
of a set of generic videos. It was not possible to optimize those Huffman tables for specific 
video sources. In contrast, AVC uses different VLCs to find a more appropriate code for each 
source symbol based on the context characteristics. Syntax elements other than the residual 
data are encoded using the Exponential-Golomb codes. The residual data is rearranged 
through zigzag or alternate field scanning, and then coded using context-adaptive variable 
length codes (CAVLC) or, optionally for Main and High profiles, using context-adaptive 
binary arithmetic codes (CABAC). Compared to CAVLC, CABAC provides higher coding 
efficiency at the expense of greater complexity.
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CABAC uses an adaptive binary arithmetic coder, which updates the probability 
estimation after coding each symbol, and thus adapts to the context. The CABAC entropy 
coding has three main steps:

•	 Binarization: Before arithmetic coding, a non-binary symbol 
such as a transform coefficient or motion vector is uniquely 
mapped to a binary sequence. This mapping is similar to 
converting a data symbol into a variable-length code, but in this 
case the binary code is further encoded by the arithmetic coder 
prior to transmission.

•	 Context modeling: A probability model for the binarized symbol, 
called the context model, is selected based on previously encoded 
syntax element.

•	 Binary arithmetic coding: In this step, an arithmetic coder 
encodes each element according to the selected context model, 
and subsequently updates the model.

Flexible Interlaced Coding
In order to provide enhanced interlaced coding capabilities, AVC supports macroblock-
adaptive frame-field (MBAFF) coding and picture-adaptive frame-field (PAFF) coding 
techniques. In MBAFF, a macroblock pair structure is used for pictures coded as frames, 
allowing 16×16 macroblocks in field mode. This is in contrast to MPEG-2, where field 
mode processing in a frame-coded picture could only support 16×8 half-macroblocks. In 
case of PAFF, it is allowed to mix pictures coded as complete frames with combined fields 
with those coded as individual single fields.

In-Loop Deblocking
Visible and annoying blocking artifacts are produced owing to block-based transform 
in intra and inter prediction coding, and the quantization of the transform coefficients, 
especially for higher quantization scales. In an effort to mitigate such artifacts at the 
block boundaries, AVC provides deblocking filters, which also prevents propagation of 
accumulated coded noise.

A deblocking filter is not new; it was introduced in H.261 as an optional tool, and had 
some success in reducing temporal propagation of coded noise, as integer-pel accuracy  
in motion compensation alone was insufficient in reducing such noise. However, in 
MPEG-1 and MPEG-2, a deblocking filter was not used owing to its high complexity. 
Instead, the half-pel accurate motion compensation, where the half-pels were obtained 
by bilinear filtering of integer-pel samples, played the role of smoothing out the  
coded noise.

However, despite the complexity, AVC uses a deblocking filter to obtain higher 
coding efficiency. As it is part of the prediction loop, with the removal of the blocking 
artifacts from the predicted pictures, a much closer prediction is obtained, leading to 
a reduced-energy error signal. The deblocking filter is applied to horizontal or vertical 
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Error Resilience
AVC provides features for enhanced resilience to channel errors, which include NAL 
units, redundant slices, data partitioning, flexible macroblock ordering, and so on. Some 
of these features are as follows:

•	 Network Abstraction Layer (NAL): By defining NAL units, 
AVC allows the same video syntax to be used in many network 
environments. In previous standards, header information was 
part of a syntax element, thereby exposing the entire syntax 
element to be rendered useless in case of erroneous reception 
of a single packet containing the header. In contrast, in AVC, 
self-contained packets are generated by decoupling information 
relevant to more than one slice from the media stream. The 
high-level crucial parameters, namely the Sequence Parameter 
Set (SPS) and Picture Parameter Set (PPS), are kept in NAL units 
with a higher level of error protection. An active SPS remains 
unchanged throughout a coded video sequence, and an active 
PPS remains unchanged within a coded picture.

•	 Flexible macroblock ordering (FMO): FMO is also known as slice 
groups. Along with arbitrary slice ordering (ASO), this technique 
re-orders the macroblocks in pictures, so that losing a packet 
does not affect the entire picture. Missing macroblocks can be 
regenerated by interpolating from neighboring reconstructed 
macroblocks.

Figure 3-15.  Deblocking along vertical and horizontal boundaries in macroblock

edges of 4×4 blocks. The luma filtering is performed on four 16-sample edges, and the 
chroma filtering is performed on two 8-sample edges. Figure 3-15 shows the deblocking 
boundaries.
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•	 Data partitioning (DP): This is a feature providing the ability 
to separate syntax elements according to their importance into 
different packets of data. It enables the application to have 
unequal error protection (UEP).

•	 Redundant slices (RS): This is an error-resilience feature in AVC 
that allows an encoder to send an extra representation of slice 
data, typically at lower fidelity. In case the primary slice is lost 
or corrupted by channel error, this representation can be used 
instead.

HEVC
The High Efficiency Video Coding (HEVC), or the H.265 standard (ISO/IEC 23008-2),  
is the most recent joint video coding standard ratified in 2013 by the ITU-T Video 
Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) 
standardization organizations. It follows the earlier standard known as AVC or H.264, also 
defined by the same MPEG and VCEG Joint Collaborative Team on Video Coding  
(JCT-VC), with a goal of addressing the growing popularity of ever higher resolution 
videos, high-definition (HD, 1920 × 1080), ultra-high definition (UHD, 4k × 2k), and 
beyond. In particular, HEVC addresses two key issues: increased video resolution and 
increased use of parallel processing architectures. As such, HEVC algorithm has a design 
target of achieving twice the compression efficiency achievable by AVC.

Picture Parititioning and Structure
In earlier standards, macroblocks were the basic coding building block, which contains a 
16×16 luma block, and typically two 8×8 chroma blocks for 4:2:0 color sampling. In HEVC, 
the analogous structure is the coding tree unit (CTU), also known as the largest coding 
unit (LCU), containing a luma coding tree block (CTB), corresponding chroma CTBs, and 
syntax elements. In a CTU, the luma block size can be 16×16, 32×32, or 64×64, specified 
in the bitstream sequence parameter set. CTUs can be further partitioned into smaller 
square blocks using a tree structure and quad-tree signaling. 

The quad-tree specifies the coding units (CU), which forms the basis for both 
prediction and transform. The coding units in a coding tree block are traversed and 
encoded in Z-order. Figure 3-16 shows an example of ordering in a 64×64 CTB.
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Figure 3-16.  An example of ordering of coding units in a 64×64 coding tree block

A coding unit has one luma and two chroma coding blocks (CB), which can be 
further split in size and can be predicted from corresponding prediction blocks (PB), 
depending on the prediction type. HEVC supports variable PB sizes, ranging from 
64×64 down to 4×4 samples. The prediction residual is coded using the transform unit 
(TU) tree structure. The luma or chroma coding block residual may be identical to the 
corresponding transform block (TB) or may be further split into smaller transform blocks. 
Transform blocks can only have square sizes 4×4, 8×8, 16×16, and 32×32. For the 4×4 
transform of intra-picture prediction residuals, in addition to the regular DCT-based 
integer transform, an integer transform based on a form of discrete sine transform (DST) 
is also specified as an alternative. This quad-tree structure is generally considered the 
biggest contributor for the coding efficiency gain of HEVC over AVC.

HEVC simplies coding and does not support any interlaced tool, as interlaced 
scanning is no longer used in displays and as interlaced video is becoming substantially 
less common for distribution. However, interlaced video can still be coded as a sequence 
of field pictures. Metadata syntax is available in HEVC to allow encoders to indicate that 
interlace-scanned video has been sent by coding one of the following:

Each •	 field (i.e., the even or odd numbered lines of each video 
frame) of interlaced video as a separate picture

Each interlaced frame as an HEVC coded picture•	

This provides an efficient method of coding interlaced video without 
inconveniencing the decoders with a need to support a special decoding process for it.
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Profiles and Levels
There are three profiles defined by HEVC: the Main profile, the Main 10 profile, and 
the Still picture profile, of which currently Main is the most commonly used. It requires 
4:2:0 color format and imposes a few restrictions; for instance, bit depth should be 8, 
groups of LCUs forming rectangular tiles must be at least 256×64, and so on (tiles are 
elaborated later in this chapter in regard to parallel processing tools). Many levels are 
specified, ranging from 1 to 6.2. A Level-6.2 bitstream could support as large a resolution 
as 8192×4320 at 120 fps.3

Intra Prediction
In addition to the planar and the DC prediction modes, intra prediction supports 33 
directional modes, compared to eight directional modes in H.264/AVC. Figure 3-17 shows 
the directional intra prediction modes.

Figure 3-17.  Directional intra prediction modes in HEVC

Intra prediction in a coding unit exactly follows the TU tree such that when an intra 
coding unit is coded using an N×N partition mode, the TU tree is forcibly split at least 
once, ensuring a match between the intra coding unit and the TU tree. This means that 
the intra operation is always performed for sizes 32×32, 16×16, 8×8, or 4×4. Similar to 
AVC, intra prediction requires two one-dimensional arrays that contain the upper and 
left neighboring samples, as well as an upper-left sample. The arrays are twice as long as 
the intra block size, extending below and to the right of the block. Figure 3-18 shows an 
example array for an 8×8 block.

3ITU-T Rec. H.265: High Efficiency Video Coding (Geneva, Switzerland: International 
Telecommunications Union, 2013).
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Figure 3-18.  Luma intra samples and prediction structure in HEVC

Inter Prediction
For inter-picture prediction, HEVC provides two reference lists, L0 and L1, each with 
a capacity to hold 16 reference frames, of which a maximum of eight pictures can be 
unique. This implies that some reference pictures will be repeated. This would facilitate 
predictions from the same picture with different weights.

Motion Vector Prediction

Motion vector prediction in HEVC is quite complex, as it builds a list of candidate motion 
vectors and selects one of the candidates from the list using an index of list that is coded 
in the bitstream. There are two modes for motion vector prediction: merge and advanced 
motion vector prediction (AMVP). For each prediction unit (PU), the encoder decides 
which mode to use and indicates it in the bitstream with a flag. The AMVP process uses 
a delta motion vector coding and can produce any desired value of motion vector. HEVC 
subsamples the temporal motion vectors on a 16×16 grid. This means that a decoder only 
needs to allocate space for two motion vectors (L0 and L1) in the temporal motion vector 
buffer for a 16×16 pixel area.



Chapter 3 ■ Video Coding Standards

88

Motion Compensation

HEVC specifies motion vectors in a quarter-pel granularity, but uses an eight-tap filter 
for luma, and a four-tap eighth-pel filter for chroma. This is an improvement over the 
six-tap luma and bilinear (two-tap) chroma filters defined in AVC. Owing to the longer 
length of the eight-tap filter, three or four extra pixels on all sides are needed to be 
read for each block. For example, for an 8×4 block, a 15×11 pixel area needs to be read 
into the memory, and the impact would be more for smaller blocks. Therefore, HEVC 
limits the smallest prediction unit to be uni-directional and larger than 4×4. HEVC 
supports weighted prediction for both uni- and bi-directional PUs. However, the weights 
are always explicitly transmitted in the slice header; unlike AVC, there is no implicit 
weighted prediction.

Entropy Coding
In HEVC, entropy coding is performed using Context-Adaptive Binary Arithmetic 
Codes (CABAC) at the CTU level. The CABAC algorithm in HEVC improves upon that 
of AVC with a few minor enhancements. There are about half as many context-state 
variables as in AVC, and the initialization process is much simpler. The bitstream syntax 
is designed such that bypass-coded bins are grouped together as much as possible. 
CABAC decoding is inherently a sequential operation; therefore, parallelization or fast 
hardware implementation is difficult. However, it is possible to decode more than one 
bypass-coded bin at a time. This, together with the bypass-bin grouping, greatly facilitates 
parallel implementation in hardware decoders.

In-loop Deblocking and SAO
In HEVC, two filters could be applied on reconstructed pixel values: the in-loop deblocking 
(ILD) filter and the sample adaptive offset (SAO) filter. Either or both of the filters can be 
optionally applied across the tile- and slice-boundaries. The in-loop deblocking filter in 
HEVC is similar to that of H.264/AVC, while the SAO is a new filter and is applied following 
the in-loop deblock filter. 

Unlike AVC, which deblocks at every 4×4 grid edge, in HEVC, deblocking is 
performed on the 8×8 grid only. All vertical edges in the picture are deblocked first, 
followed by all horizontal edges. The filter itself is similar to the one in AVC, but in the 
case of HEVC, only the boundary strengths 2, 1, and 0 are supported. With an 8-pixel 
separation between the edges, there is no dependency between them, enabling a highly 
parallelized implementation. For example, the vertical edge can be filtered with one 
thread per 8-pixel column in the picture. Chroma is only deblocked when one of the PUs 
on either side of a particular edge is intra-coded.

As a secondary filter after deblocking, the SAO performs a non-linear amplitude 
mapping by using a lookup table at the CTB level. It operates once on each pixel of the 
CTB, a total of 6,144 times for each 64×64 CTB. (64×64 + 32×32 + 32×32 = 6144). For each 
CTB, a filter type and four offset values, ranging from -7 to 7 for 8-bit video for example, 
are coded in the bitstream. The encoder chooses these parameters with a view toward 
better matching the reconstructed and the source pictures.
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Parallel Processing Syntax and Tools
There are three new features in the HEVC standard to support enhanced parallel 
processing capability or to modify the structure of slice data for purposes of packetization.

Tiles

There is an option to partition a picture into rectangular regions called tiles. Tiles are 
independently decodable regions of a picture that are encoded with some shared header 
information. Tiles are specified mainly to increase the parallel processing capabilities, although 
some error resilience may also be attributed to them. Tiles provide coarse-grain parallelism at 
picture and sub-picture level, and no sophisticated synchronization of threads is necessary for 
their use. The use of tiles would require reduced-size line buffers, which is advantageous for 
high-resolution video decoding on cache-constrained hardware and cheaper CPUs.

Wavefront Parallel Processing 

When wavefront parallel processing (WPP) is enabled, a slice is divided into rows of CTUs. 
The first row is processed in a regular manner; but processing of the second row can be 
started only after a few decisions have been made in the first row. Similarly, processing 
of the third row can begin as soon as a few decisions have been made in the second row, 
and so on. The context models of the entropy coder in each row are inferred from those in 
the preceding row, with a small fixed processing lag. WPP provides fine-grained parallel 
processing within a slice. Often, WPP provides better compression efficiency compared to 
tiles, while avoiding potential visual artifacts resulting from the use of tiles.

Slice Segments and Dependent Slices 

A sequence of coding tree blocks is called a slice. A picture constituting a video frame 
can be split into any number of slices, or the whole picture can be just one slice. In turn, 
each slice is split up into one or more slice segments, each in its own NAL unit. Only the 
first slice segment of a slice contains the full slice header, and the rest of the segments 
are referred to as dependent slice segments. As such, a decoder must have access to 
the first slice segment for successful decoding. Such division of slices allows low-delay 
transmission of pictures without paying any coding efficiency penalty that would have 
otherwise incurred owing to many slice headers. For example, a camera can send out a 
slice segment belonging to the first CTB row so that a playback device on the other side 
of the network can start decoding before the camera sends out the next CTB row. This is 
useful in low-latency applications such as video conferencing.

International Standards for Video Quality
Several standards for video quality have been specified by the ITU-T and ITU-R 
visual quality experts groups.  Although they are not coding standards, they are worth 
mentioning as they relate to the subject of this book. Further, as the IEEE standard 1180 
relates to the accuracy of computation of the common IDCT technology used in all the 
aforementioned standards, it is also briefly described here.
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VQEG Standards
In 1997, a small group of video quality experts from the ITU-T and ITU-R study groups 
formed the Visual Quality Experts Group (VQEG), with a view toward advancing the 
field of video quality assessment. This group investigated new and advanced subjective 
assessment methods and objective quality metrics and measurement techniques.

VQEG took a systematic approach to validation testing that typically includes several 
video databases for which objective models are needed to predict the subjective visual 
quality, and they defined the test plans and procedures for performing objective model 
validation. The initial standard was published in 2000 by the ITU-T Study Group 9 as 
Recommendation J.144, but none of the various methods studied outperformed the 
well-known peak signal to noise ratio (PSNR). In 2003, an updated version of J.144 was 
published, where four objective models were recommended for cable television services. 
A mirror standard by the ITU-R Study Group 6 was published as ITU-R Recommendation 
BT.1683 for baseband television services.

The most recent study aimed at digital video and multimedia applications, known 
as Multimedia Phase I (MM-I), was completed in 2008. The MM-I set of tests was used 
to validate full-reference (FR), reduced reference (RR), and no reference (NR) objective 
models. (These models are discussed in Chapter 4 in some detail.) Subjective video 
quality was assessed using a single-stimulus presentation method and the absolute 
category rating (ACR) scale, where the video sequences including the source video are 
presented for subjective evaluation one at a time without identifying the videos, and are 
rated independently on the ITU five-grade quality scale. A mean opinion score (MOS) 
and a difference mean opinion score (DMOS) were computed, where the DMOS was 
the average of the arithmetic difference of the scores of processed videos compared to 
the scores of the source videos, in order to remove any hidden reference. The software 
used to control and run the VQEG multimedia tests is known as AcrVQWin.4 (Details 
of subjective quality assessment methods and techniques are captured in ITU-T 
Recommendations P.910, P.912, and so on, and are discussed in Chapter 4.)

IEEE Standard 1180-1990
Primarily intended for use in visual telephony and similar applications where the 8x8 
inverse discrete cosine transform (IDCT) results are used in a reconstruction loop, the 
IEEE Standard 1180-19905 specifies the numerical characteristics of the 8x8 IDCT. The 
specifications ensure the compatibility between different implementations of the IDCT.  
A mismatch error may arise from the different IDCT implementations in the encoders 
and decoders from different manufacturers; owing to the reconstruction loop in the system, 

4K. Brunnstrom, D. Hands, F. Speranza, and A. Webster, “VQEG Validation and ITU 
Standardization of Objective Perceptual Video Quality Metrics,” IEEE Signal Processing  
(May 2009):96-101; software available at www.acreo.se/acrvqwin.
5The IEEE Standard Board, IEEE Standard Specifications for the Implementations of 8x8 Inverse 
Discrete Cosine Transform (New York, USA: Institute of Electrical and Electronics Engineers, 1991).

http://www.acreo.se/acrvqwin
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the mismatch error may propagate over the duration of the video.  Instead of restricting 
all manufacturers to a single strict implementation, the IEEE standard allows a small 
mismatch for a specific period of time while the video is refreshed periodically using the 
intra-coded frame—for example, for ITU-T visual telephony applications, the duration  
is 132 frames.

The standards specify that the mismatch errors shall meet the following 
requirements:

For any pixel location, the peak error •	 (ppe) shall not exceed 1  
in magnitude.

For any pixel location, the mean square error •	 (pmse) shall not 
exceed 0.06.

Overall, the mean square error •	 (omse) shall not exceed 0.02.

For any pixel location, the mean error •	 (pme) shall not exceed 
0.015 in magnitude.

Overall, the mean error •	 (ome) shall not exceed 0.0015 in magnitude.

For all-zero input, the proposed IDCT shall generate  •	
all-zero output.

Overview of Other Industry Standards  
and Formats
In addition to the international standards defined by the ISO, the ITU, or the Institute 
of Electrical and Electronics Engineers (IEEE), there are standards well known in the 
industry. A few of these standards are described below.

VC-1
Initially developed as a proprietary video format by Microsoft, the well-known VC-1 
format was formally released as the SMPTE 421M video codec standard in 2006, defined 
by the Society of Motion Pictures and Television Engineers (SMPTE). It is supported by 
Blu-ray, currently obsolete HD-DVD, Microsoft Windows Media, Microsoft Silverlight 
framework, Microsoft X-Box 360, and Sony PlayStation 3 video game consoles, as well as 
various Windows-based video applications. Hardware decoding of VC-1 format is available 
in Intel integrated processor graphics since second-generation Intel (R) Core (TM)  
processor (2011) and in Raspberry Pi (2012).

VC-1 uses the conventional DCT-based design similar to the international standards, 
and supports both progressive and interlaced video. The specification defines three 
profiles: Simple, Main, and Advanced, and up to five levels. Major tools supported by 
each profile are shown in Table 3-3.
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Table 3-3.  VC-1 Profiles and Levels

Profiles Levels Maximum 
Bit Rate 
(kbps)

Resolution @ Frame rate Tools

Simple Low 96 176 × 144 @ 15 (QCIF) Baseline intra frame 
compression; variable 
sized, 16-bit and 
overlapped transform; 
four motion vectors per 
macroblock; quarter 
pixel luma motion 
compensation

Medium 384 240 × 176 @ 30,

352 × 288 @ 15 (CIF)

Main Low 2,000 320 × 240 @ 24 (QVGA) In addition to Simple 
profile:

Start codes; quarter-
pixel chroma motion 
compensation; extended 
motion vectors; 
loop filter; adaptive  
quantization; B-frames; 
dynamic resolution 
change; intensity 
compensation; range 
adjustment

Medium 10,000 720 × 480 @ 30 (480p30),

720 × 576 @ 25 (576p25)

High 20,000 1920 × 1080 @ 30 (1080p30)

Advanced L0 2,000 352 × 288 @ 30 (CIF) In addition to Main 
profile:

GOP layer; field and 
frame coding modes; 
display metadata

L1 10,000 720 × 480 @ 30 (NTSC-SD),

720 × 576 @ 25 (PAL-SD)

L2 20,000 720 × 480 @ 60 (480p60),

1280 × 720 @ 30 (720p30)

L3 45,000 1920 × 1080 @ 24 (1080p24),

1920 × 1080 @ 30 (1080i30),

1280 × 720 @ 60 (720p60)

L4 135,000 1920 × 1080 @ 60 (1080p60),

2048 × 1536 @ 24
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VP8
With the acquisition of On2 Technologies, Google became the owner of the VP8 video 
compression format. In November 2011, the VP8 data format and decoding guide was 
published as RFC 63866 by the Internet Engineering Task Force (IETF). The VP8 codec library 
software, libvpx, is also released by Google under a BSD license. VP8 is currently supported 
by Opera, FireFox, and Chrome browsers, and various hardware and software-based video 
codecs, including the Intel integrated processor graphics hardware.

Like many modern video compression schemes, VP8 is based on decomposition 
of frames into square subblocks of pixels, prediction of such subblocks using previously 
constructed blocks, and adjustment of such predictions using a discrete cosine transform 
(DCT), or in one special case, a Walsh-Hadamard transform (WHT). The system aims to 
reduce data rate through exploiting the temporal coherence of video signals by specifying 
the location of a visually similar portion of a prior frame, and the spatial coherence 
by taking advantage of the frequency segragtion provided by DCT and WHT and the 
tolerance of the human visual system to moderate losses of fidelity in the reconstituted 
signal. Further, VP8 augments these basic concepts with, among other things, 
sophisticated usage of contextual probabilities, resulting in a significant reduction in data 
rate at a given quality.

The VP8 algorithm exclusively specifies fixed-precision integer operations, 
preventing the reconstructed signal from any drift that might have been caused by 
truncation of fractions. This helps verify the correctness of the decoder implementation 
and helps avoid inconsistencies between decoder implementations. VP8 works with 8-bit 
YUV 4:2:0 image formats, internally divisible into 16×16 macroblocks and 4×4 subblocks, 
with a provision to support a secondary YUV color format. There is also support of an 
optional upscaling of internal reconstruction buffer prior to output so that a reduced-
resolution encoding can be done, while the decoding is performed at full resolution. 
Intra or key frames are defined to provide random access while inter frames are predicted 
from any prior frame up to and including the most recent key frame; no bi-directional 
prediction is used. In general, the VP8 codec uses three different reference frames for 
inter-frame prediction: the previous frame, the golden frame, and the altref frame to 
provide temporal scalability.

VP8 codecs apply data partitioning to the encoded data. Each encoded VP8 frame 
is divided into two or more partitions, comprising an uncompressed section followed by 
compressed header information and per-macroblock information specifying how each 
macroblock is predicted. The first partition contains prediction mode parameters and 
motion vectors for all macroblocks.  The remaining partitions all contain the quantized 
DCT or WHT coefficients for the residuals.  There can be one, two, four, or eight DCT/
WHT partitions per frame, depending on encoder settings. Details of the algorithm can be 
found in the RFC 6386.

6J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, and Y. Xu, “VP8 Data Format and 
Coding Guide, RFC 6386,” November 2011, retrieved from http://datatracker.ietf.org/doc/
rfc6386/.

http://datatracker.ietf.org/doc/rfc6386/
http://datatracker.ietf.org/doc/rfc6386/
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An RTP payload specification7 applicable to the transmission of video streams 
encoded using the VP8 video codec has been proposed by Google. The RTP payload 
format can be used both in low-bit-rate peer-to-peer and high-bit-rate video 
conferencing applications. The RTP payload format takes the frame partition boundaries 
into consideration to improve robustness against packet loss and to facilitate error 
concealment. It also uses advanced reference frame structure to enable efficient error 
recovery and temporal scalability. Besides, marking of the non-reference frames is done 
to enable servers or media-aware networks to discard appropriate data as needed.

The IETF Internet Draft standard for browser application programming interface 
(API), called the Web Real Time Communication (WebRTC),8 specifies that if VP8 is 
supported, then the bilinear and the none reconstruction filters, a frame rate of at least 
10 frames per second, and resolutions ranging from 320×240 to 1280×720 must be 
supported. Google Chrome, Mozilla, FireFox, and Opera browsers support the WebRTC 
APIs, intended for browser-based applications including video chatting. Google Chrome 
operating system also supports WebRTC.

VP9
The video compression standard VP9 is a successor to the VP8 and is also an open 
standard developed by Google. The latest specification was released in February 2013 
and is currently available as an Internet-Draft9 from the IETF; the final specification is not 
ratified yet. The VP9 video codec is developed specifically to meet the demand for video 
consumption over the Internet, including professional and amateur-produced video-on-
demand and conversational video content.  The WebM media container format provides 
royalty-free, open video compression for HTML5 video, by primarily using the VP9 codec, 
which replaces the initially supported codec VP8.

The VP9 draft includes a number of enhancements and new coding tools that have 
been added to the VP8 codec to improve the coding efficiency.  The new tools described 
in the draft include larger prediction block sizes up to 64×64, various forms of compound 
inter prediction, more intra prediction modes, one-eighth-pixel motion vectors, 8-tap 
switchable sub-pixel interpolation filters, improved motion reference generation and 
motion vector coding, improved entropy coding including frame-level entropy adaptation 
for various symbols, improved loop filtering, the incorporation of the Asymmetric 
Discrete Sine Transform (ADST), larger 16×16 and 32×32 DCTs, and improved frame-level 
segmentation. However, VP9 is currently under development and the final version of the 
VP9 specification may differ considerably from the draft specification, of which some 
features are described here.

7P. Westin, H. Lundin, M. Glover, J. Uberti, and F. Galligan, “RTP Payload Format for VP8 Video,” 
Internet draft, February 2014, retrieved from http://tools.ietf.org/html/draft-ietf-
payload-vp8-11.
8C. Bran, C. Jennings, J. M.Valin, “WebRTC Codec and Media Processing Requirement,” Internet 
draft, March 2012, retrieved from http://tools.ietf.org/html/draft-cbran-rtcweb-
codec-02.
9A. Grange and H. Alvestrand, “A VP9 Bitstream Overview,” Internet draft, February 2013, 
retrieved from http://tools.ietf.org/html/draft-grange-vp9-bitstream-00.

http://tools.ietf.org/html/draft-ietf-payload-vp8-11
http://tools.ietf.org/html/draft-ietf-payload-vp8-11
http://tools.ietf.org/html/draft-cbran-rtcweb-codec-02
http://tools.ietf.org/html/draft-cbran-rtcweb-codec-02
http://tools.ietf.org/html/draft-grange-vp9-bitstream-00
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Picture Partitioning 
VP9 partitions the picture into 64 × 64 superblocks (SB), which are processed in raster-
scan order, from left to right and top to bottom. Similar to HEVC, superblocks can be 
subdivided down to a minimum of 4×4 using a recursive quad-tree, although 8×8 block 
sizes are the most typical unit for mode information. In contrast to HEVC, however, the 
slice structure is absent in VP9.

It is desirable to be able to carry out encoding or decoding tasks in parallel, or to use 
multi-threading in order to effectively utilize available resources, especially on resource-
constrainted personal devices like smartphones. To this end, VP9 offers frame-level 
parallelism via the frame_parallel_mode flag and two- or four-column based tiling, while 
allowing loop filtering to be performed across tile boundaries. Tiling in VP9 is done in 
vertical direction only, while each tile has an integral number of blocks. There is no data 
dependency across adjacent tiles, and any tile in a frame can be processed in any order. 
At the start of every tile except the last one, a 4-byte size is transmitted, indicating the size 
of the next tile. This allows a multi-threaded decoder to start a particular decoding thread 
by skipping ahead to the appropriate tile. There are four tiles per frame, facilitating data 
parallelization in hardware and software implementations.

Bitstream Features
The VP9 bitstream is usually available within a container format such as WebM, which 
is a subset of the Matroska Media Container. The container format is needed for random 
access capabilities, as VP9 does not provide start codes for this purpose. VP9 bitstreams 
start with a key frame containing all intra-coded blocks, which is also a decoder reset 
point. Unlike VP8, there is no data partitioning in VP9; all data types are interleaved in 
superblock coding order. This change is made to facilitate hardware implementations. 
However, similar to VP8, VP9 also compresses a bitstream using an 8-bit non-adaptive 
arithmetic coding (a.k.a. bool-coding), for which the probability model is fixed and 
all the symbol probabilities are known a priori before the frame decoding starts. Each 
probability has a known default value and is stored as a 1 byte data in the frame context. 
The decoder maintains four such contexts, and the bitstream signals which one to 
use for the frame decode. Once a frame is decoded, based upon the occurrence of 
certain symbols in the decoded frame, a context can be updated with new probability 
distributions for use with future frames, thus providing limited context adaptability.

Each coded frame has three sections:

•	 Uncompressed header: Few bytes containing picture size, loop-
filter strength, etc.

•	 Compressed header: Bool-coded header data containing the 
probabilities for the frame, expressed in terms of differences from 
default probability values.

•	 Compressed frame data: Bool-coded frame data needed to 
reconstruct the frame, including partition information, intra 
modes, motion vectors, and transform coefficients.
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In addition to providing high compression efficiency with reasonable complexity, 
the VP9 bitstream includes features designed to support a variety of specific use-
cases involving delivery and consumption of video over the Internet. For example, for 
communication of conversational video with low latency over an unreliable network, it is 
imperative to support a coding mode where decoding can continue without corruption 
even when arbitrary frames are lost.  Specifically, the arithmetic decoder should be 
able to continue decoding of symbols correctly even though frame buffers have been 
corrupted, leading to encoder-decoder mismatch.

VP9 supports a frame level error_resilient_mode flag to allow coding modes where a 
manageable drift between the encoder and decoder is possible until a key frame is available 
or an available reference picture is selected to correct the error. In particular, the following 
restrictions apply under error resilient mode while a modest performance drop is expected:

At the beginning of each frame, the entropy coding context •	
probabilities are reset to defaults, preventing propagation of 
forward or backward updates.

For the motion vector reference selection, the co-located motion •	
vector from a previously encoded reference frame can no longer 
be included in the reference candidate list.

For the motion vector reference selection, sorting of the initial •	
list of motion vector reference candidates based on searching the 
reference frame buffer is disabled.

The VP9 bitstream does not offer any security functions.  Integrity and confidentiality 
must be ensured by functions outside the bistream, although VP9 is independent of 
external objects and related security vulnerabilities.

Residual Coding
If a block is not a skipped block (indicated at 8×8 granularity), a residual signal is 
coded and transmitted for it. Similar to HEVC, VP9 also supports different sizes (32×32, 
16×16, 8×8, and 4×4) for an integer transform approximated from the DCT. However, 
depending on specific characteristics of the intra residues, either or both the vertical and 
the horizontal transform pass can be ADST instead. The transform size is coded in the 
bitstream such that a 32×16 block using a 8×8 transform would have luma residual made 
up of a 4×2 grid of 8×8 transform coefficients, and the two 16×8 chroma residuals, each 
consisting of a 2×1 grid of 8×8 transform coefficients.

Transform coefficients are scanned starting at the upper left corner, following a 
“curved zig-zag” pattern toward the higher frequencies, while transform blocks with 
mixed DCT/DST use a scan pattern skewed accordingly.10 However, the scan pattern is 
not straightforward and requires a table lookup. Furthermore, each transform coefficient 
is coded using bool-coding and has several probabilities associated with it, resulting 
from various parameters such as position in the block, size of the transform, value of 
neighboring coefficients, and the like.

10P. Kapsenberg, “How VP9 Works: Technical Details and Diagrams,” Doom9’s forum, October 8, 2013, 
retrieved from http://forum.doom9.org/showthread.php?p=1675961.

http://forum.doom9.org/showthread.php?p=1675961
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Inverse quantization is simply a multiplication by one of the four scaling factors for 
luma and chroma DC and AC coefficients, which remain the same for a frame; block-level 
QP adjustment is not allowed. Additionally, VP9 offers a lossless mode at frame level 
using 4×4 Walsh-Hadamard transform.

Intra Prediction
Intra prediction in VP9 is similar to the intra prediction method in AVC and HEVC, and 
is performed on partitions the same as are the transform block partitions. For example, a 
16×8 block with 8×8 transforms will result in two 8×8 luma prediction operations. There 
are 10 different prediction modes: the DC, the TM (True Motion), vertical, horizontal, and 
six angular predictions approximately corresponding to the 27, 45, 63, 117, 135, and 153 
degree angles. Like other codecs, intra prediction requires two one-dimensional arrays 
that contain the reconstructed left and upper pixels of the neighboring blocks. For block 
sizes above 4×4, the second half of the horizontal array contains the same value as the last 
pixel of the first half. An example is given in Figure 3-19.

Figure 3-19.  Luma intra samples, mode D27_PRED

Inter Prediction
Inter prediction in VP9 uses eighth-pixel motion compensation, offering twice the 
precision of most other standards. For motion compensation, VP9 primarily uses one 
motion vector per block, but optionally allows a compound prediction with two motion 
vectors per block resulting in two prediction samples that are averaged together. 
Compound prediction is only enabled in non-displayable frames, which are used as 
reference frames.11 VP9 allows these non-displayable frames to be piggy-backed with a 
displayable frame, together forming a superframe to be used in the container.

11It is possible to construct a low-cost displayable frame from such references by using 64×64 
blocks with no residuals and (0, 0) motion vectors pointing to this reference frame.
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VP9 defines a family of three 8-tap filters, selectable at either the frame or block level 
in the bitstream:

8-tap Regular: An 8-tap Lagrangian interpolation filter•	

8-tap Sharp: A DCT-based interpolation filter, used mostly around •	
sharper edges

8-tap Smooth (non-interpolating): A smoothing non-•	
interpolating filter, in the sense that the prediction at integer 
pixel-aligned locations is a smoothed version of the reference 
frame pixels

A motion vector, points to one of three possible reference frames, known as the Last, 
the Golden, and the AltRef frames. The reference frame is applied at 8×8 granularity—for 
example, two 4×8 blocks, each with their own motion vector, will always point to the same 
reference frame.

In VP9, motion vectors are predicted from a sorted list of candidate reference motion 
vectors. The candidates are built using up to eight surrounding blocks that share the same 
reference picture, followed by a temporal predictor of co-located motion vector from 
the previous frame. If this search process does not fill the list, the surrounding blocks are 
searched again but this time the reference doesn’t have to match. If this list is still not full, 
then (0, 0) vectors are inferred.

Associated with a block, one of the four motion vector modes is coded:

NEW_MV: This mode uses the first entry of the prediction list •	
along with a delta motion vector which is transmitted in the 
bitstream.

NEAREST_MV: This mode uses the first entry of the prediction  •	
list as is.

NEAR_MV: This mode uses the second entry of the prediction  •	
list as is.

ZERO_MV: This mode uses (0, 0) as the motion vector value.•	

A VP9 decoder maintains a list of eight reference pictures at all times, of which three 
are used by a frame for inter prediction. The predicted frame can optionally insert itself 
into any of these eight slots, evicting the existing frame. VP9 supports reference frame 
scaling; a new inter frame can be coded with a different resolution than the previous 
frame, while the reference data is scaled up or down as needed. The scaling filters 
are 8-tap filters with 16th-pixel accuracy. This feature is useful in variable bandwidth 
environments, such as video conferencing over the Internet, as it allows for quick and 
seamless on-the-fly bit-rate adjustment.
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Loop Filter
VP9 introduces a variety of new prediction block and transform sizes that require 
additional loop filtering options to handle a large number of combinations of boundary 
types.  VP9 also incorporates a flatness detector in the loop filter that detects flat regions 
and varies the filter strength and size accordingly.

The VP9 loop filter is applied to a decoded picture. The loop filter operates on 
a superblock, smoothing the vertical edges followed by the horizontal edges. The 
superblocks are processed in raster-scan order, regardless of any tile structure that may be 
signaled. This is different from the HEVC loop filter, where all vertical edges of the frame 
are filtered before any horizontal edges. There are four different filters used in VP9 loop 
filtering: 16-wide, 8-wide, 4-wide, and 2-wide, where on each side of the edge eight, four, 
two, and one pixels are processed, respectively. Each of the filters is applied according 
to a threshold sent in the frame header. A filter is attempted with the conditions that the 
pixels on either side of the edge should be relatively smooth, and there must be distinct 
brightness difference on either side of the edge. Upon satisfying these conditions, a filter 
is used to smooth the edge. If the condition is not met, the next smaller filter is attempted. 
Block sizes 8×8 or 4×4 start with the 8-wide or smaller filter.

Segmentation
In general, the segmentation mechanism in VP9 provides a flexible set of tools that can 
be used in a targeted manner to improve perceptual quality of certain areas for a given 
compression ratio. It is an optional VP9 feature that allows a block to specify a segment 
ID, 0 to 7, to which it belongs. The frame header can convey any of the following features, 
applicable to all blocks with the same segment ID:

•	 AltQ: Blocks belonging to a segment with the AltQ feature may 
use a different inverse quantization scale factor than blocks in 
other segments. This is useful in many rate-control scenarios, 
especially for non-uniform bit distribution in foreground and 
background areas.

•	 AltLF: Blocks belonging to a segment with the AltLF feature may 
use a different smoothing strength for loop filtering. This is useful 
in application specific targeted smoothing of particular set of 
blocks.

•	 Mode: Blocks belonging to a segment with an active mode feature 
are assumed to have the same coding mode. For example, if skip 
mode is active in a segment, none of the blocks will have residual 
information, which is useful for static areas of frames.

•	 Ref: Blocks belonging to a segment that have the Ref feature 
enabled are assumed to point to a particular reference frame 
(Last, Golden, or AltRef). It is not necessary to adopt the 
customary transmission of the reference frame information.
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•	 EOB: Blocks belonging to a segment with the coefficient end of 
block (EOB) marker coding feature may use the same EOB marker 
coding for all blocks belonging to the segment. This eliminates 
the need to decode EOB markers separately.

•	 Transform size: The block transform size can also be indicated 
for all blocks in a segment, which may be the same for a segment, 
but allows different transform sizes to be used in the same frame.

In order to minimize the signaling overhead, the segmentation map is differentially 
coded across frames. Segmentation is independent of tiling.

Summary
This chapter presented brief overviews of major video coding standards available in the 
industry. With a view toward guaranteeing interoperability, ease of implementation, and 
industry-wide common format, these standards specified or preferred certain techniques 
over others. Owing to the discussions provided earlier in this chapter, these predilections 
would be easy to understand. Another goal of the video coding standards was to address 
all aspects of practical video transmission, storage, or broadcast within a single standard. 
This was accomplished in standards from H.261 to MPEG-2. MPEG-4 and later standards 
not only carried forward the legacy of success but improved upon the earlier techniques 
and algorithms.

Although in this chapter we did not attempt to compare the coding efficiencies 
provided by various standards’ algorithms, such studies are available in the literature; 
for example, those making an interesting comparison between MPEG-2, AVC, WMV-9, 
and AVS.12 Over the years such comparisons—in particular, determination of bit-rate 
savings of a later-generation standard compared to the previous generation, have become 
popular, as demonstrated by Grois et al.13 in their comparison of HEVC, VP9, and AVC 
standards.

12S. Kwon, A. Tamhankar, and K. Rao, “Overview of H.264/ MPEG-4 Part 10,” Journal of Visual 
Communication and Image Representation 17 (April 2006): 186–216.
13D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar, “Performance Comparison of H.265/
MPEG-HEVC, VP9, and H.264/MPEG-AVC Encoders,” Proceedings of the 30th Picture Coding 
Symposium. (San Jose, CA, USA:Institute of Electronics and Electrical Engineers, 2013).
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Chapter 4

Video Quality Metrics

Quality generally indicates excellence, and the universal societal norm is to strive for the 
highest achievable quality in most fields. However, in case of digital video, a measured, 
careful approach is taken to allow some deficit in quality that is not always discernible by 
typical viewers. Such concessions in perceivable visual quality make room for a valuable 
accomplishment in terms of compression.

Video quality is a characteristic of a video signal passed through a transmission 
or processing system, representing a measure of perceived degradation with respect to 
the original source video. Video processing systems usually introduce some distortions 
or artifacts in the video signal, but the amount involved may differ depending on 
the complexity of the content and the parameters chosen to process it. The variable 
degradation may or may not be perceivable or acceptable to an end user. In general,  
it is difficult to determine what would be an acceptable quality for all end users. However, 
it remains an important objective of video quality evaluation studies. So understanding 
various types of visual degradations or artifacts in terms of their annoyance factors, and 
the evaluation of the quality of a video as apparent to the end user, are very important.

In this chapter, we first focus on the careful and intentional information loss due 
to compression and the resulting artifacts. Then we discuss the various factors involved 
in the compression and processing of video that influence the compression and that 
contribute to visual quality degradation.

With these understandings, we move toward measuring video quality and discuss 
various subjective and objective quality metrics to measure with particular attention 
to various ITU-T standards. The discussions include attempts to understand relative 
strengths and weaknesses of important metrics in terms of capturing perceptible 
deterioration. We further discuss video coding efficiency evaluation metrics and some 
example standard-based algorithms.

In the final part of this chapter, we discuss the parameters that primarily impact 
video quality, and which parameters need to be tuned to achieve good tradeoffs beween 
video quality and compression speed, the knowledge of which is useful in designing 
some video applications. Although some parameters are dictated by the available system 
or network resources, depending on the application, the end user may also be allowed to 
set or tune some of these parameters.
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Compression Loss, Artifacts, and Visual Quality
Compression artifacts are noticeable distortions in compressed video, when it is 
subsequently decompressed and presented to a viewer. Such distortions can be present 
in compressed signals other than video as well. These distortions are caused by the 
lossy compression techniques involved. One of the goals of compression algorithms 
is to minimize the distortion while maximizing the amount of compression. However, 
depending on the algorithm and the amount of compression, the output has varying levels 
of diminishing quality or introduction of artifacts. Some quality-assessment algorithms 
can distinguish between distortions of little subjective importance and those objectionable 
to the viewer, and can take steps to optimize the final apparent visual quality.

Compression Loss: Quantization Noise
Compression loss is manifested in many different ways and results in some sort of visual 
impairment. In this section we discuss the most common form of compression loss and 
its related artifact, namely the quantization noise.

Quantization is the process of mapping a large set of input values to a smaller 
set—for example, rounding the input values to some unit of precision. A device or an 
algorithmic function that performs the quantization is called a quantizer. The round-off 
error introduced by the process is referred to as quantization error or the quantization 
noise. In other words, the difference between the input signal and the quantized signal is 
the quantization error.

There are two major sources of quantization noise in video applications: first, 
when an analog signal is converted to digital format; and second, when high-frequency 
components are discarded during a lossy compression of the digital signal. In the 
following discussion both of these are elaborated.

Quantization of Samples
The digitization process of an image converts the continuous-valued brightness 
information of each sample at the sensor to a discrete set of integers representing 
distinct gray levels—that is, the sampled image is quantized to these levels. The entire 
process of measuring and quantizing the brightnesses is significantly affected by sensor 
characteristics such as dynamic range and linearity. Real sensors have a limited dynamic 
range; they only respond to light intensity between some minimum and maximum 
values. Real sensors are also non-linear, but there may be some regions over which they 
are more or less linear, with non-linear regions at either end.

The number of various levels of quantizer output is determined by the bits available 
for quantization at the analog-to-digital converter. A quantizer with n bits represents  
N = 2n levels. Typical quantizers use 8-bits, representing 256 gray levels usually numbered 
between 0 and 255, where 0 corresponds to black and 255 corresponds to white. However, 
10-bit or even 16-bit images are increasingly popular. Using more bits brings the ability 
to perform quantization with a finer step size, resulting in less noise and a closer 
approximation of the original signal. Figure 4-1 shows an example of a 2-bit or four-level 
quantized signal, which is a coarse approximation of the input signal, and a 3-bit or  
eight-level quantized signal, representing a closer approximation of the input signal.
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In the case of an image, the difference between the true input brightness of a pixel and  
the corresponding brightness of the digital level represents the quantization error for that  
pixel. Quantization errors can take positive or negative values. Note that quantization levels  
are equally spaced for uniform quantization, but are irregularly spaced for non-uniform  
(or non-linear) quantization. If the quantization levels are equally spaced with a step size b,  
the quantization error for a digital image may be approximated as a uniformly distributed 

signal with zero mean and a variance of 
b2

12
.

Such uniform quantizers are typically memoryless—that is, the quantization level for 
a pixel is computed independently of other pixels.

Frequency Quantization
In frequency quantization, an image or a video frame undergoes a transform, such as 
the discrete cosine transform, to convert the image into the frequency domain. For an 
8×8 pixel block, 64 transform coefficients are produced. However, lossy compression 
techniques such as those adopted by the standards as described in Chapter 3, perform 
quantization on these transform coefficients using a same-size quantization matrix, 
which typically has non-linear scaling factors biased toward attenuating high-frequency 
components more than low-frequency components. In practice, most high-frequency 
components become zero after quantization. This helps compression, but the high-
frequency components are lost irreversibly. During decompression, the quantized 
coefficients undergo inverse quantization operation, but the original values cannot be 
restored. The difference between the original pixel block and the reconstructed pixel 
block represents the amount of quantization error that was introduced. Figure 4-2 
illustrates the concept.

Figure 4-1.  Quantized signals with different bit resolution
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The quantization matrix is the same size as the block of transform coefficients, 
which is input to the quantizer. To obtain quantized coefficients, an element-by-element 
division operation is performed, followed by a rounding to the nearest integer. For 
example, in Figure 4-2, quantization of the DC coefficient (the upper left element) by 
doing round(1260/16) gives the quantized coefficient 79. Notice that after quantization, 
mainly low-frequency coefficients, located toward the upper left-hand corner, are 
retained, while high-frequency coefficients have become zero and are discarded before 
transmission. Reconstruction is performed by multiplying the quantized coefficients by 
the same quantization matrix elements. However, the resultant reconstruction contains 
the quantization error as shown in Figure 4-2.

Usually quantization of a coefficient in a block depends on how its neighboring 
coefficients are quantized. In such cases, neighborhood context is usually saved and 
considered before quantizing the next coefficient. This is an example of a quantizer with 
memory.

It should be noted that the large number of zeros that appear in the quantized 
coefficients matrix is not by accident; the quantization matrix is designed in such a way 
that the high-frequency components–which are not very noticeable to the HVS–are 
removed from the signal. This allows greater compression of the video signal with little or 
no perceptual degradation in quality.

Color Quantization
Color quantization is a method to reduce the number of colors in an image. As the HVS 
is less sensitive to loss in color information, this is an efficient compression technique. 
Further, color quantization is useful for devices with limited color support. It is common 
to combine color quantization techniques, such as the nearest color algorithm, with 

Figure 4-2.  Quantization of a block of transform coefficients
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dithering–a technique for randomization of quantization error–to produce an impression 
of more colors than is actually available and to prevent color banding artifacts where 
continuous gradation of color tone is replaced by several regions of fewer tones with 
sudden tone changes.

Common Artifacts
Here are a few common artifacts that are typically found in various image and video 
compression applications.

Blurring Artifact
Blurring of an image refers to a smoothing of its details and edges, and it results from 
direct or indirect low-pass filter effects of various processing. Blurring of an object 
appears as though the object is out of focus. Generally speaking, blurring is an artifact 
the viewer would like to avoid, as clearer, crisper images are more desirable. But 
sometimes, blurring is intentionally introduced by using a Gaussian function to reduce 
image noise or to enhance image structures at different scales. Typically, this is done 
as a pre-processing step before compression algorithms may be applied, attenuating 
high-frequency signals and resulting in more efficient compression. This is also useful in 
edge-detection algorithms, which are sensitive to noisy environments. Figure 4-3 shows 
an example of blurring.

Figure 4-3.  An example of blurring of a frequency ramp. Low-frequency areas are barely 
affected by blurring, but the impact is visible in high-freqeuncy regions

Motion blur appears in the direction of motion corresponding to rapidly moving 
objects in a still image or a video. It happens when the image being recorded changes 
position (or the camera moves) during the recording of a single frame, because of either 
rapid movement of objects or long exposure of slow-moving objects. For example, motion 
blur is often an artifact in sports content with fast motion. However, in sports contents, 
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motion blur is not always desirable; it can be inconvenient because it may obscure the 
exact position of a projectile or athlete in slow motion. One way to avoid motion blur is 
by panning the camera to track the moving objects, so the object remains sharp but the 
background is blurred instead. Graphics, image, or video editing tools may also generate 
the motion blur effect for artistic reasons; the most frequent synthetic motion blur is 
found when computer-generated imagery (CGI) is added to a scene in order to match 
existing real-world blur or to convey a sense of speed for the objects in motion. Figure 4-4 
shows an example of motion blur.

Deinterlacing by the display and telecine processing by studios can soften images, 
and/or introduce motion-speed irregularities. Also, compression artifacts present in 
digital video streams can contribute additional blur during fast motion. Motion blur has 
been a more severe problem for LCD displays, owing to their sample-and-hold nature, 
where a continuous signal is sampled and the sample values are held for a certain time 
to eliminate input signal variations. In these displays, the impact of motion blur can be 
reduced by controlling the backlight.

Block Boundary Artifact
Block-based lossy coding schemes, including all major video and image coding 
standards, introduce visible artifacts at the boundaries of pixel blocks at low bit rates.  
In block-based transform coding, a pixel block is transformed to frequency domain using 
discrete cosine transform or similar transforms, and a quantization process discards 
the high-frequency coefficients. The lower the bit rate, the more coarsely the block is 
quantized, producing blurry, low-resolution versions of the block. In the extreme case, 
only the DC coefficient, representing the average of the data, is left for a block, so that the 
reconstructed block is only a single color region.

Figure 4-4.  An example of motion blur
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The block boundary artifact is the result of independently quantizing the blocks 
of transform coefficients. Neighboring blocks quantize the coefficients separately, 
leading to discontinuities in the reconstructed block boundaries. These block-boundary 
discontinuities are usually visible, especially in the flat color regions such as the sky, 
faces, and so on, where there are little details to mask the discontinuity. Compression 
algorithms usually perform deblocking operations to smooth out the reconstructed block 
boundaries, particularly to use a reference frame that is free from this artifact. Figure 4-5 
shows an example of block boundary artifact.

Figure 4-5.  An example of block boundary artifact

This artifact is so common that many names are popularly used for it. Although the 
discontinuities may or may not align with the boundaries of macroblocks as defined in 
the video and image coding standards, macroblocking is a common term for this artifact. 
Other names include tiling, mosaicing, quilting, and checkerboarding.
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Ringing Artifact
Ringing is unwanted oscillation of an output signal in response to a sudden change in 
the input. Image and video signals in digital data compression and processing are band 
limited. When they undergo frequency domain techniques such as Fourier or wavelet 
transforms, or non-monotone filters such as deconvolution, a spurious and visible 
ghosting or echo effect is produced near the sharp transitions or object contours. This is 
due to the well-known Gibb’s phenomenon—an oscillating behavior of the filter’s impulse 
response near discontinuities, in which the output takes higher value (overshoots) or lower 
value (undershoots) than the corresponding input values, with decreasing magnitude 
until a steady-state is reached. The output signal oscillates at a fading rate, similar to a bell 
ringing after being struck, inspiring the name of the ringing artifact. Figure 4-6 depicts the 
oscillating behavior of an example output response showing the Gibb’s phenomenon.  
It also depicts an example of ringing artifact in an image.

Figure 4-6.  An example of ringing artifact
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Aliasing Artifacts
Let us consider a time-varying signal x(t) and its sampled version x(n) = x(nT), with 
sampling period T >0. When x(n) is downsampled by a factor of 2, every other sample 
is discarded. In the frequency (w) domain, the Fourier transform of the signal X(e jw) 
is stretched by the same factor of 2. In doing so, the transformed signal can in general 
overlap with its shifted replicas. In case of such overlap, the original signal cannot be 
unambiguously recovered from its downsampled version, as the overlapped region 
represents two copies of the transformed signal at the same time. One of these copies  
is an alias, or replica of the other. This overlapping effect is called aliasing. Figure 4-7 
shows the transform domain effect of downsampling, including aliasing.

Figure 4-7.  Transform domain effect of downsampling, causing aliasing

In general, aliasing refers to the artifact or distortion resulting from ambiguous 
reconstruction of signals from its samples. Aliasing can occur in signals sampled in 
time—for instance, digital audio—and is referred to as temporal aliasing. Aliasing can 
also occur in spatially sampled signals—for instance, digital images or videos—where it  
is referred to as spatial aliasing.

Aliasing always occurs when actual signals with finite duration are sampled. This 
is because the frequency content of these functions has no upper bound, causing their 
Fourier transform representation to always overlap with other transformed functions.  
On the other hand, functions with bounded frequency content (bandlimited) have infinite 
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duration. If sampled at a high rate above the so-called Nyquist rate, the original signal can 
be completely recovered from the samples. From Figure 4-7, it is clear that aliasing can be 

avoided if the original signal is bandlimited to the region | |w
p

<
M

, where M is the 

downsampling factor. In this case, the original signal can be recovered from the 
downsampled version using an upsampler, followed by filtering.

Jaggies

Popularly known as jaggies, this common form of aliasing artifact produces visible stairlike 
lines where there should be smooth straight lines or curves in a digital image. These stairs 
or steps are a consequence of the regular, square layout of a pixel. With increasing image 
resolution, this artifact becomes less visible. Also, anti-aliasing filters are useful in reducing 
the visibility of the aliased edges, while sharpening increases such visibility.

Figure 4-8 shows examples of aliasing artifacts such as jaggies and moiré patterns.

Figure 4-8.  Examples of aliasing artifacts

Moiré Pattern

Due to undersampling of a fine regular pattern, a special case of aliasing occurs in the 
form of moiré patterns. It is an undesired artifact of images produced by various digital 
imaging and computer graphics techniques—for example, ray tracing a checkered 
surface. The moiré effect is the visual perception of a distinctly different third pattern, 
which is caused by inexact superposition of two similar patterns. In Figure 4-8, moiré 
effect can be seen as an undulating pattern, while the original pattern comprises a closely 
spaced grid of straight lines.

Flickering Artifacts
Flicker is perceivable interruption in brightness for a sufficiently long time (e.g., around  
100 milliseconds) during display of a video. It is a flashing effect that is displeasing to  
the eye. Flicker occurs on old displays such as cathode ray tubes (CRT) when they are 
driven at a low refresh rate. Since the shutters used in liquid crystal displays (LCD) for 
each pixel stay at a steady opacity, they do not flicker, even when the image is refreshed.
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Jerkiness

A flicker-like artifact, jerkiness (also known as choppiness), describes the perception of 
individual still images in a motion picture. It may be noted that the frequency at which 
flicker and jerkiness are perceived is dependent upon many conditions, including 
ambient lighting conditions. Jerkiness is not discernible for normal playback of video at 
typical frame rates of 24 frames per second or above. However, in visual communication 
systems, if a video frame is dropped by the decoder owing to its late arrival, or if the 
decoding is unsuccessful owing to network errors, the previous frame would continue 
to be displayed. Upon successful decoding of the next error-free frame, the scene on the 
display would suddenly be updated. This would cause a visible jerkiness artifact.

Telecine Judder

Another flicker-like artifact is the telecine judder. In order to convert the 24 fps film 
content to 30 fps video, a process called telecine, or 2:3 pulldown, is commonly applied. 
The process converts every four frames of films to five frames of interlaced video. Some 
DVD or Blu-ray players, line doublers, or video recorders can detect telecine and apply a 
reverse telecine process to reconstruct the original 24 fps video content. Figure 4-9 shows 
the telecine process.

Figure 4-9.  The telecine process

Notice that by the telecine process two new frames B/C and C/D are created, that 
were not part of the original set of source frames. Thus, the telecine process creates a 
slight error in the video signal compared to the original film frames. This used to create 
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the problem for films viewed on NTSC television that they would not appear as smooth 
as when viewed in a cinema. This problem was particularly visible during slow, steady 
camera movements that would appear slightly jerky when telecined.

Other Image Artifacts
There are several other artifacts commonly observed in compressed video. Some of these 
are discussed below. Figure 4-10 shows examples of various image artifacts.

Figure 4-10.  Examples of various image artifacts

Corruption due to Transmission Error

Owing to transmission errors in the compressed bitstream ,visible corruption may be 
observed in the reconstructed signal. Transmission errors can also disrupt the bitstream 
parsing, leading to partially decoded pictures or decoded pictures with missing blocks. 
In case of gross errors, decoders may continue to apply updates to the damaged picture 
for a short time, creating a ghost image effect, until the next error-free independently 
compressed frame is available. Ghosting is a common artifact in open-air television signals.

Image Noise

The camera sensor for each pixel contains one or more light-sensitive photodiodes that 
convert the incoming light into electrical signals, which is processed into the color value 
of the pixel in an image. However, this process is not always perfectly repeatable, and 
there are some statistical variations. Besides, even without incident light, the electrical 
activity of the sensors may generate some signal. These unwanted signals and variations 
are the sources of image noise. Such noise varies per pixel and over time, and increases 
with the temperature. Image noise can also originate from film grain.

Noise in digital images is most visible in uniform surfaces, such as in skies and 
shadows as monochromatic grain, and/or as colored waves (color noise). Another type of 
noise, commonly called hot pixel noise, occurs with long exposures lasting more than a 
second and appears as colored dots slightly larger than a single pixel. In modern cameras, 
however, hot pixel noise is increasingly rare.
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Factors Affecting Visual Quality
Visual artifacts resulting from loss of information due to processing of digital video signals 
usually degrade the perceived visual quality. In addition to the visual artifacts described 
above, the following are important contributing factors that affect visual quality.

•	 Sensor noise and pre-filtering: Sensor noise, as mentioned 
above, is an undesirable by-product of image capture that affects 
visual quality. Not only is the noise itself visually disturbing, but 
its presence also impacts subsequent processing, causing or 
aggravating further artifacts. For example, pre-filtering is typically 
done after an image is captured but before encoding. In the 
pre-filtering stage, aliasing or ringing artifacts can occur; these 
artifacts would be visible even if lossless encoding is performed.

•	 Characteristics of video: Visual quality is affected by digital  
video characteristics including bit depth, resolution, frame rate, 
and frame complexity. Typical video frames use 8 bits for each 
pixel component, while premium quality videos allocate 10 to  
16 bits. Similarly, high-definition video frames are four to six 
times as large as standard-definition video frames, depending 
on the format. Ultra-high-definition videos exhibit the highest 
quality owing to their 24 to 27 times higher pixel resolutions than 
their standard-definition counterparts.

Frame rate is another important factor; although the HVS can 
perceive slow motion at 10 frames per second (fps) and smooth 
motion at 24 fps, higher frame rates imply smoother motion, 
especially for fast-moving objects. For example, a moving ball may 
be blurry at 30 fps, but would be clearer at 120 fps. Very fast 
motion is more demanding–wing movements of a hummingbird 
would be blurry at 30 fps, or even at 120 fps; for clear view of such 
fast motion, 1000 fps may be necessary. Higher frame rates are 
also used to produce special slow-motion effects. One measure 
of the complexity of a frame is the amount of details or spatial 
business of the frame. Artifacts in frames with low complexity and 
low details are generally more noticeable than frames with higher 
complexity.

The spatial information (detail) and temporal information 
(motion) of the video are critical parameters. These play a 
crucial role in determining the amount of video compression 
that is possible and, consequently, the level of impairment that 
is suffered when the scene is transmitted over a fixed-rate digital 
transmission service channel.
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•	 Amount of compression: For compressed digital video the 
amount of compression matters because compression is usually 
achieved by trading off visual quality. Highly compressed 
video has lower visual quality than lightly compressed video. 
Compression artifacts are noticeable and can be annoying 
for low-bit-rate video. Also, based on available bits, different 
amounts of quantization may have been done per block and per 
frame. The impact of such differences can be visible depending 
on the frame complexity. Furthermore, although compression 
techniques such as chroma subsampling take advantage of the 
HVS characteristics, premium contents with 4:4:4 chroma format 
have better visual quality compared to 4:2:0 contents.

•	 Methods of compression: Lossless compression retains all the 
information present in the video signal, so it does not introduce 
quality degradation. On the other hand, lossy compression aims to 
control the loss of quality by performing a careful tradeoff between 
visual quality and amount of compression. In lossy compression, 
selection of modes also influences the quality. In error-prone 
environments such as wireless networks, intra modes serve as a 
recovery point from errors at the expense of using more bits.

•	 Multiple passes of processing: In off-line video applications 
where real-time processing is not necessary, the video signal may 
undergo multiple passes. Analyzing the statistics of the first pass, 
parameters can be tuned for subsequent passes. Such techniques 
usually produce higher quality in the final resulting signals. 
However, artifacts due to various processing may still contribute 
to some quality loss.

•	 Multiple generations of compression: Some video applications 
may employ multiple generations of compression, where a 
compressed video signal is decompressed before compressing 
again with possibly different parameters. This may result in 
quality degradation owing to the use of different quantization 
maps for each generation. Typically, after the second generation 
visual quality deteriorates dramatically. To avoid such quality 
loss, robust design of quantization parameters is necessary.

•	 Post-production: Post-production effects and scene cuts can 
cause different portions of the encoded video sequence to have 
different quality levels.

Video Quality Evaluation Methods and Metrics
Video quality is evaluated for specification of system requirements, comparison of 
competing service offerings, transmission planning, network maintenance, client-based 
quality measurement, and so on. Several methods have been proposed in the literature 
to address the quality evaluation problem for various usages. With many methods and 
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algorithms available, the industry’s need for accurate and reliable objective video metrics 
has generally been addressed by the ITU in several recommendations, each aiming 
toward particular industries such as standard- and high-definition broadcast TV.

The standardization efforts are being extended with the progress of modern 
usages like mobile broadcasting, Internet streaming video, IPTV, and the like. 
Standards address a variety of issues, including definitions and terms of reference, 
requirements, recommended practices, and test plans. In this section, we focus on 
the definitions, methods, and metrics for quality-evaluation algoithms. In particular, 
Quality of Experience (QoE) of video is addressed from the point of view of overall user 
experience—that is, the viewer’s perception—as opposed to the well-known Quality  
of Service (QoS) measure usually employed in data transmission and network 
performance evaluation. 

There are two approaches to interpreting video quality:

The first approach is straightforward; the actual visual quality •	
of the image or video content is determined based on subjective 
evaluation done by humans.

In the second approach is synonymous with the signal fidelity •	
or similarity with respect to a reference or perfect image in some 
perceptual space. There are sophisticated models to capture the 
statistics of the natural video signals; based on these models, 
objective signal fidelity criteria are developed that relate video 
quality with the amount of information shared between a 
reference and a distorted video signal.

In the following discussion, both subjective and objective video quality metrics are 
presented in detail.

Subjective Video Quality Evaluation
Video processing systems perform various tasks, including video signal acquisition, 
compression, restoration, enhancement, and reproduction. In each of these tasks, aiming 
for the best video quality under the constraints of the available system resources, the 
system designers typically make various tradeoffs based on some quality criteria. 

An obvious way of measuring quality is to solicit the opinion of human observers 
or subjects. Therefore, the subjective evaluation method of video quality utilizes human 
subjects to perform the task of assessing visual quality. However, it is impossible to 
subjectively assess the quality of every video that an application may deal with. Besides, 
owing to inherent variability in quality judgment among human observers, multiple 
subjects are usually required for meaningful subjective studies. Furthermore, video 
quality is affected by viewing conditions such as ambient illumination, display device, 
and viewing distance. Therefore, subjective studies must be conducted in a carefully 
controlled environment.

Although the real perceptual video quality can be tracked by using this technique, the 
process is cumbersome, not automatable, and the results may vary depending on the viewer, 
as the same visual object is perceived differently by different individuals. Nevertheless,  
it remains a valuable method in providing ground-truth data that can be used as a reference 
for the evaluation of automatic or objective video quality-evaluation algorithms.
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Objective algorithms estimate a viewer’s perception, and the performance of an 
algorithm is evaluated against subjective test results. Media degradations impact the 
viewers’ perception of the quality. Consequently, it is necessary to design subjective tests 
that can accurately capture the impact of these degradations on a viewer’s perception. 
These subjective tests require performing comprehensive experiments that produce 
consistent results. The following aspects of subjective testing are required for accurate 
evaluation of an objective quality algorithm:

Viewers should be naïve and non-expert, representing normal •	
users whose perception is estimated by the objective quality 
models. These viewers vote on the subjective quality as instructed 
by the test designer. However, for specific applications, such as 
new codec developments, experienced voters are more suitable.

The number of voters per sample should meet the subjective •	
testing requirements as described in the appropriate ITU-T 
Recommendations. Typically a minimum of 24 voters is 
recommended.

To maintain consistency and repeatability of experiments, and to •	
align the quality range and distortion types, it is recommended 
that the experiments contain an anchor pool of samples that best 
represent the particular application under evaluation. However, 
it should be noted that even when anchor samples are used, a 
bias toward different experiments is common, simply because it 
is not always possible to include all distortion types in the anchor 
conditions.

Study group 9 (SG9) of ITU-T developed several recommendations, of which 
the Recommendation BT. 500-131 and the P-series recommendations are devoted to 
subjective and objective quality-assessment methods. These recommendations suggest 
standard viewing conditions, criteria for the selection of observers and test material, 
assessment procedures, and data analysis methods. Recommendations P.9102 through 
P.9133 deal with subjective video quality assessment for multimedia applications. Early 
versions, such as Rec. P.910 and P.911,4 were designed around the paradigm of a fixed 
video service for multimedia applications. This paradigm considers video transmission 
over a reliable link to an immobile cathode ray tube (CRT) television located in a quiet 
and nondistracting environment, such as a living room or office. To accommodate new 
applications, such as Internet video and distribution quality video, P.913 was introduced.

1ITU-R Recommendation BT.500-13: Methodology for the Subjective Assessment of the Quality of 
Television Pictures (Geneva, Switzerland: International Telecommunications Union, 2012).
2ITU-T Recommendation P.910: Subjective Video Quality Assessment Methods for Multimedia 
Applications (Geneva, Switzerland: International Telecommunications Union, 2008).
3ITU-T Recommendation P.913: Methods for the Subjective Assessment of Video Quality, Audio 
Quality and Audiovisual Quality of Internet Video and Distribution Quality Television in Any 
Environment (Geneva, Switzerland: International Telecommunications Union, 2014).
4ITU-T Recommendation P.911: Subjective Audiovisual Quality Assessment Methods for Multimedia 
Applications (Geneva, Switzerland: International Telecommunications Union, 1998).
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Ratified in January 2014, Recommendation P.913 describes non-interactive 
subjective assessment methods for evaluating the one-way overall video quality, audio 
quality, and/or audio-visual quality. It aims to cover a new paradigm of video—for 
example, an on-demand video service, transmitted over an unreliable link to a variety of 
mobile and immobile devices located in a distracting environment, using LCDs and other 
flat-screen displays. This new paradigm impacts key characteristics of the subjective test, 
such as the viewing environment, the listening environment, and the questions to be 
answered. Subjective quality assessment in the new paradigm asks questions that are not 
considered in the previous recommendations. However, this recommendation does not 
address the specialized needs of broadcasters and contribution quality television.

The duration, the number and type of test scenes, and the number of subjects are 
critical for the interpretation of the results of the subjective assessment. P.913 recommends 
stimuli ranging from 5 seconds to 20 seconds in duration, while 8- to 110-second 
sequences are highly recommended. Four to six scenes are considered sufficient when 
the variety of content is respected. P.913 mandates that at least 24 subjects must rate each 
stimulus in a controlled environment, while at least 35 subjects must be used in a public 
environment. Fewer subjects may be used for pilot studies to indicate trending.

Subjective Quality Evaluation Methods and Metrics
The ITU-T P-series recommendations define some of the most commonly used methods 
for subjective quality assessment. Some examples are presented in this section.

Absolute Category Rating

In the absolute category rating (ACR) method, the quality judgment is classified 
into several categories. The test stimuli are presented one at a time and are rated 
independently on a category scale. ACR is a single-stimulus method, where a viewer 
watches one stimulus (e.g., video clip) and then rates it. ACR methods are influenced 
by the subject’s opinion of the content—for example, if the subject does not like the 
production of the content, he may give it a poor rating. The ACR method uses the 
following five-level rating scale:

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

A variant of the ACR method is ACR with hidden reference (ACR-HR). With ACR-HR, 
the experiment includes a reference version of each video segment, not as part of a 
pair but as a freestanding stimulus for rating. During the data analysis the ACR scores 
are subtracted from the corresponding reference scores to obtain a differential viewer 
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(DV) score. This procedure is known as hidden reference removal. The ACR-HR method 
removes some of the influence of content from the ACR ratings, but to a lesser extent than 
double-stimulus methods, which are discussed below.

Degradation Category Rating

Also known as the double-stimulus impair scale (DSIS) method, the degradation category 
rating (DCR) presents a pair of stimuli together. The reference stimulus is presented first, 
followed by a version after it has undergone processing and quality degradation. In this 
case, the subjects are asked to rate the impairment of the second stimulus with respect to 
the reference. DCR is minimally influenced by the subject’s opinion of the content. Thus, 
DCR is able to detect color impairments and skipping errors that the ACR method may 
miss. However, DCR may have a slight bias, as the reference is always shown first.  
In DCR, the following five-level scale for rating the relative impairment is used:

5 Imperceptible

4 Perceptible but not annoying

3 Slightly annoying

2 Annoying

1 Very annoying

Comparison Category Rating

The comparison category rating (CCR) is a double-stimulus method whereby two 
versions of the same stimulus are presented in a randomized order. For example, half of 
the time the reference is shown first, and half the time it is shown second, but in random 
order. CCR is also known as the double-stimulus comparison scale (DSCS) method. 
It may be used to compare reference video with processed video, or to compare two 
different impairments. CCR, like DCR, is minimally influenced by the subject’s opinion 
of the content. However, occasionally subjects may inadvertently swap their rating in 
CCR, which would lead to a type of error that is not present in DCR or ACR. In CCR, the 
following seven-level scale is used for rating.

-3 Much worse

-2 Worse

-1 Slightly worse

0 The same

1 Slightly better

2 Better

3 Much better
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SAMVIQ

Subjective assessment of multimedia video quality (SAMVIQ) is a non-interactive 
subjective assessment method used for video-only or audio-visual quality evaluation, 
spanning a large number of resolutions from SQCIF to HDTV. The SAMVIQ methodology 
uses a continuous quality scale. Each subject moves a slider on a continuous scale 
graded from zero to 100. This continuous scale is annotated by five quality items linearly 
arranged: excellent, good, fair, poor, and bad.

MOS

The mean opinion score (MOS) is the most common metric used in subjective video 
quality evaluation. It forms the basis of the subjective quality-evaluation methods, and it 
serves as a reference for the objective metrics as well. Historically, this metric has been 
used for decades in telephony networks to obtain the human user’s view of the quality 
of the network. It has also been used as a subjective audio-quality measure. After all the 
subjects are run through an experiment, the ratings for each clip are averaged to compute 
either a MOS or a differential mean opinion score (DMOS).

The MOS provides a numerical indication of the perceived quality from the 
user’s point of view of the received media after it has undergone compression and/or 
transmission. The MOS is generally expressed as a single number in the range from 1 to 5, 
where 1 is the lowest perceived quality, and 5 is the highest perceived quality. MOS is used 
for single-stimulus methods such as ACR or ACR-HR (using raw ACR scores), where the 
subject rates a stimulus in isolation. In contrast, the DMOS scores measure a change in 
quality between two versions of the same stimulus (e.g., the source video and a processed 
version of the video). ACR-HR (in case of average differential viewer score), DCR, and 
CCR methods usually produce DMOS scores.

Comparing the MOS values of different experiments requires careful consideration of 
intra- and inter-experimental variations. Normally, only the MOS values from the same test 
type can be compared. For instance, the MOS values from a subjective test that use an ACR 
scale cannot be directly compared to the MOS values from a DCR experiment. Further, even 
when MOS values from the same test types are compared, the fact that each experiment is 
slightly different even for the same participants leads to the following limitations:

A score assigned by subject is rarely always the same, even when •	
an experiment is repeated with the same samples in the same 
representation order. Usually this is considered as a type of noise 
on the MOS scores.

There is a short-term context dependency as subjects are •	
influenced by the short-term history of the samples they have 
previously scored. For example, following one or two poor 
samples, subjects tend to score a mediocre sample higher. 
If a mediocre sample follows very good samples, there is a 
tendency to score the mediocre sample lower. To average out 
this dependency, the presentation order should be varied for the 
individual subjects. However, this strategy does not remove the 
statistical uncertainty.
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The mid-term contexts associated with the average quality, the •	
quality distribution, and the occurance of distortions significantly 
contribute to the variations between subjective experiments. For 
example, if an experiment is composed of primarily low-quality 
samples, people tend to score them higher, and vice versa. This 
is because people tend to use the full quality scale offered in an 
experiment and adapt the scale to the qualities presented in the 
experiment. Furthermore, individual distortions for less frequent 
samples are scored lower compared to experiments where  
samples are presented more often and people become more 
familiar with them.

The long-term dependencies reflect the subject’s cultural •	
interpretation of the category labels, the cultural attitude to 
quality, and language dependencies. For example, some people 
may have more frequent experiences with video contents than 
others. Also, the expectations regarding quality may change over 
time. As people become familiar with digital video artifacts, it 
becomes part of their daily experience.

Although these effects cause differences between individual experiments, they 
cannot be avoided. However, their impacts can be minimized by providing informative 
instructions, well-balanced test designs, a sufficient number of participants, and a mixed 
presentation order.

Objective Video Quality Evaluation Methods and Metrics
Video quality assessment (VQA) studies aim to design algorithms that can automatically 
evaluate the quality of videos in a manner perceptually consistent with the subjective 
human evaluation. This approach tracks an objective video-quality metric, which is 
automatable, and the results are verifiable by repeated execution, as they do not require 
human field trial. However, these algorithms merely attempt to predict human subjective 
experience and are not perfect; they will fail for certain unpredictable content. Thus, the 
objective quality evaluation cannot replace subjective quality evaluation; they only aid as 
a tool in the quality assessment. The ITU-T P.14015 presents a framework for the statistical 
evaluation of objective quality algorithms regardless of the assessed media type.

In P.1401, the recommended statistical metrics for objective quality assessment need 
to cover three main aspects—accuracy, consistency, and linearity—against subjective 
data. It is recommended that the prediction error be used for accuracy, the outlier ratio or 

5ITU-T Recommendation P.1401: Methods, Metrics and Procedures for Statistical Evaluation, 
Qualification and Composition of Objective Quality Prediction Models (Geneva, Switzerland: 
International Telecommunications Union, 2012).
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the residual error distribution for consistency, and the Pearson correlation coefficient for 
linearity. The root mean square of the prediction error is given by:
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where N is the number of samples and N-1 ensures an unbiased estimator for the RMSE.
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An objective video or image quality metric can play a variety of roles in video 
applications. Notable among these are the following:

An objective metric can be used to dynamically monitor and •	
adjust the quality. For example, a network digital video server 
can appropriately allocate, control, and trade off the streaming 
resources based on the video quality assessment on the fly.

It can be used to optimize algorithms and parameter settings of •	
video processing systems. For instance, in a video encoder, a quality 
metric can facilitate the optimal design of pre-filtering and bit-rate 
control algorithms. In a video decoder, it can help optimize the 
reconstruction, error concealment, and post-filtering algorithms.

It can be used to benchmark video processing systems and •	
algorithms.

It can be used to compare two video systems solutions.•	

Classification of Objective Video Quality Metrics
One way to classify the objective video quality evaluation methods is to put them into 
three categories based on the amount of reference information they require: full reference 
(FR), reduced reference (RR), and no reference (NR). These methods are discussed below. 
The FR methods can be further categorized as follows:

Error sensitivity based approaches•	

Structural similarity based approaches•	

Information fidelity based aproaches•	

Spatio-temporal approaches•	
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Saliency based approaches•	

Network aware approaches•	

These approaches are discussed in the following subsections. Further, an example 
metric for each approach is elaborated.

Full Reference

A digital video signal undergoes several processing steps during which video quality 
may have been traded off in favor of compression, speed, or other criteria, resulting in a 
distorted signal that is available to the viewer. In objective quality assessment, the fidelity 
of the distorted signal is typically measured. To determine exactly how much degradation 
has occurred, such measurements are made with respect to a reference signal that is 
assumed to have perfect quality. However, the reference signal may not be always available.

Full-reference6 (FR) metrics measure the visual quality degradation in a distorted 
video with respect to a reference video. They require the entire reference video to 
be available, usually in unimpaired and uncompressed form, and generally impose 
precise spatial and temporal alignment, as well as calibration of luminance and color 
between the two videos. This allows every pixel in every frame of one video to be directly 
compared with its counterpart in the other video.

Typically, the fidelity is determined by measuring the distance between the reference 
and the distorted signals in a perceptually meaningful way. The FR quality evaluation 
methods attempt to achieve consistency in quality prediction by modeling the significant 
physiological and psychovisual features of the HVS and using this model to evaluate 
signal fidelity. As fidelity increases, perceived quality of the content also increases. 
Although FR metrics are very effective in analysis of video quality, and are very widely 
used for analysis and benchmarking, the FR metrics’ requirement that the reference be 
accessible during quality evaluation at the reconstruction end may not be fulfilled in 
practice. Thus, their usefulness may become limited in such cases.

Reduced Reference

It is possible to design models and evaluation criteria when a reference signal is not 
fully available. Research efforts in this area generated the various reduced-reference7 
(RR) methods that use partial reference information. They extract a number of features 
from the reference and/or the distorted test video. These features form the basis of the 
comparison between the two videos, so that the full reference is not necessary. This 
approach thus avoids the assumptions that must be made in the absence of any reference 
information, while keeping the amount of reference information manageable.

6ITU-T Recommendation J.247: Objective Perceptual Multimedia Video Quality Measurement  
in the Presence of a Full Reference (Geneva, Switzerland: International Telecommunications Union, 
2009).
7ITU-T Recommendation J.246: Perceptual Visual Quality Measurement Techniques for Multimedia 
Services over Digital Cable Television Networks in the Presence of a Reduced Bandwidth Reference 
(Geneva, Switzerland: International Telecommunications Union, 2008).
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No Reference

No-reference (NR) metrics analyze only the distorted test video without depending on an 
explicit reference video. As a result, NR metrics are not susceptible to alignment issues. 
The main challenge in NR approaches, however, is to distinguish between the distortions 
and the actual video signal. Therefore, NR metrics have to make assumptions about the 
video content and the types of distortions.

Figure 4-11 shows typical block diagrams of the FR and the NR approaches.

Figure 4-11.  Reference-based classification examples: FR and NR approaches

An interesting NR quality measurement algorithm is presented in Wang et al.8 This 
algorithm considers blurring and blocking as the most significant artifacts generated 
during the JPEG compression process, and proposes to extract features that can be used 
to reflect the relative magnitudes of these artifacts. The extracted features are combined 
to generate a quality prediction model that is trained using subjective experimental 
results. It is expected that the model would be a good fit for images outside the 
experimental set as well. While such algorithms are interesting in that an assessment can 
be made solely on the basis of the available image content without using any reference, 
it is always better to use an FR approach when the reference is available, so the following 
discussion will focus on the various FR approaches.

The problem of designing an objective metric that closely agrees with perceived 
visual quality under all conditions is a hard one. Many available metrics may not account 
for all types of distortion corrupting an image, or the content of the image, or the strength 
of the distortion, yet provide the same close agreement with human judgments. As such 

8Z. Wang, H. R. Sheikh, and A. C. Bovik, “No-Reference Perceptual Quality Assessment of JPEG 
Compressed Images,” Proceedings of International Conference on Image Processing 1, (2002): 
477-80.
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this remains an active research area. Several FR approaches have been taken in the quest 
for finding a good solution to this problem. Some of these approaches are presented in 
the following sections.

Error Sensitivity Based Approaches
When an image or video frame goes through lossy processing, a distorted image or video 
frame is produced. The amount of error or the distortion that is introduced by the lossy 
process determines the amount of visual quality degradation. Many quality-evaluation 
metrics are based on the error or intensity difference between the distorted image and 
the reference image pixels. The simplest and most widely used full-reference quality 
metric is the mean squared error (MSE), along with the related quantity of peak signal-to-
noise ratio (PSNR). These are appealing because they are simple to calculate, have clear 
physical meanings, and are mathematically convenient in the context of optimization. 
However, they are not very well matched to perceived visual quality.

In error sensitivity based image or video quality assessment, it is generally assumed 
that the loss of perceptual quality is directly related to the visibility of the error signal. 
The simplest implementation of this concept is the MSE, which objectively quantifies the 
strength of the error signal. But two distorted images with the same MSE may have very 
different types of errors, some of which are much more visible than others. In the last 
four decades, a number of quality-assessment methods have been developed that exploit 
known characteristics of the human visual system (HVS). The majority of these models 
have followed a strategy of modifying the MSE measure so that different aspects of the 
error signal are weighted in accordance with their visibility. These models are based on a 
general framework, as discussed below.

General Framework

Figure 4-12 depicts a general framework of error sensitivity based approaches of image 
or video quality assessment. Although the details may differ, most error sensitivity based 
perceptual quality assessment models can be described with a similar block diagram.

Figure 4-12.  General framework of error sensitivity based approaches
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In Figure 4-12, the general framework includes the following stages:

•	 Pre-processing: In this stage, known malformations are 
eliminated and the images are prepared so as to perform a fair 
comparison between the distorted image and the reference 
image. For example, both images are properly scaled and aligned. 
If necessary, a color space conversion or gamma correction may 
be performed that is more appropriate for the HVS. Further, a  
low-pass filter simulating the point spread function of the eye 
optics may be applied. Additionally, both images may be modified 
using a non-linear point operation to simulate light adaptation.

•	 Channel Decomposition: The images are typically separated 
into subbands or channels that are sensitive to particular spatial 
and temporal frequency, as well as orientation. Some complex 
methods try to closely simulate neural responses in primary 
visual cortex, while others simply use DCT or wavelet transforms 
for channel decomposition.

•	 Contrast Sensitivity Normalization: The contrast sensitivity 
function (CSF) describes the sensitivity of the HVS to different 
spatial and temporal frequencies that are present in the visual 
stimulus. The frequency response of the CSF is typically 
implemented as a linear filter. Some older methods weigh the 
signal according to CSF in a stage before channel decomposition, 
but recent methods use CSF as a base-sensitivity normalization 
factor for each channel.

•	 Error Normalization: The presence of one image component 
may decrease or mask the visibility of another, nearby image 
component, which is in close proximity in terms of spatial 
or temporal location, spatial frequency, or orientation. Such 
masking effect is taken into account when the error signal in 
each channel is calculated and normalized. The normalization 
process weighs the error signal in a channel by a space-varying 
visibility threshold. For each channel, the visibility threshold is 
determined based on the channel’s base-sensitivity, as well as 
the energy of the reference or distorted image coefficients in a 
spatial neighborhood, either within the same channel or across 
channels. The normalization process expresses the error in terms 
of just noticeable difference (JND) units. Some methods also 
consider the effect of saturation of the contrast response.
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•	 Error Pooling: In this final stage, the normalized error signals 
are combined to a single value. To obtain the combined value, 
typically the Minkowski norm is calculated as follows:
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where e
i,j

 is the normalized error of the jth spatial coefficient in 
the ith frequency channel, and b is a constant with typical values 
between 1 and 4.

Limitations

Although error sensitivity based approaches estimate the visibility of the error signal 
by simulating the functional properties of the HVS, most of these models are based 
on linear or quasilinear operators that have been characterized using restricted and 
simplistic stimuli. In practice, however, the HVS is a complex and highly non-linear 
system. Therefore, error sensitivity based approaches adopt some assumptions and 
generalizations leading to the following limitations:

•	 Quality definition: As error sensitivity based image or video 
quality assessment methods only track the image fidelity, 
lower fidelity does not always mean lower visual quality. The 
assumption that visibility of error signal translates to quality 
degradation may not always be valid. Some distortions are 
visible, but are not so objectionable. Brightening an entire image 
by globally increasing the luma value is one such example. 
Therefore, image fidelity only moderately correlates with  
image quality.

•	 Generalization of models: Many error-sensitivity models are 
based on experiments that estimate the threshold at which a 
stimulus is barely visible. These thresholds are used to define 
error-sensitivity measures such as the contrast sensitivity 
function. However, in typical image or video processing, 
perceptual distortion happens at a level much higher than 
the threshold. Generalization of near-threshold models in 
suprathreshold psychophysics is thus susceptible to inaccuracy.
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•	 Signal characteristics: Most psychophysical experiments 
are conducted using relatively simple patterns, such as spots, 
bars, or sinusoidal gratings. For example, the CSF is typically 
obtained from threshold experiments using global sinusoidal 
images. However, real-world natural images have much 
different characteristics from the simple patterns. Therefore, the 
applicability of the simplistic models may be limited in practice.

•	 Dependencies: It is easy to challenge the assumption used in 
error pooling that error signals in different channels and spatial 
locations are independent. For linear channel decomposition 
methods such as the wavelet transform, a strong dependency 
exists between intra- and inter-channel wavelet coefficients of 
natural images. Optimal design of transformation and masking 
models can reduce both statistical and perceptual dependencies. 
However, the impact of such design on VQA models is yet to be 
determined.

•	 Cognitive interaction: It is well known that interactive visual 
processing such as eye movements influences the perceived 
quality. Also, cognitive understanding has a significant impact on 
quality. For example, with different instructions, a human subject 
may give different scores to the same image. Prior knowledge of 
or bias toward an image, attention, fixation, and so on may also 
affect the evaluation of the image quality. However, most error 
sensitivity based image or video quality assessment methods 
do not consider the cognitive interactions as they are not well 
understood and are difficult to quantify.

Peak Signal-to-Noise Ratio

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the 
maximum possible power of a signal and the power of distorting noise that affects the 
quality of its representation after compression, processing, or transmission. Because 
many signals have a very wide dynamic range (ratio between the largest and smallest 
possible values of a changeable quantity), the PSNR is usually expressed in terms of 
the logarithmic decibel (dB) scale. The PSNR does not always perfectly correlate with a 
perceived visual quality, owing to the non-linear behavior of the HVS, but as long as the 
video content and the codec type are not changed, it is a valid quality measure,9 as it is a 
good indicator of the fidelity of a video signal in a lossy environment.

Let us consider a signal f that goes through some processing or transmission and is 
reconstructed as an approximation f̂ , where some noise is introduced. Let f

m
 is the peak 

or maximum signal value; for n-bit representation of the signal f
m

 = 2n − 1. For example, in 

9Q. Huynh-Thu, and M. Ghanbari, “Scope of Validity of PSNR in Image/Video Quality 
Assessment,” Electronic Letters 44, no. 13 (2008): 800–801.
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case of an 8-bit signal f
m

 = 255, while for a 10-bit signal, f
m

 = 1023. PSNR, as a ratio of signal 
power to the noise power, is defined as follows:

PSNR
f

MSE
m=10 10
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	 (Equation 4-3)

where the mean square error (MSE) is given by:

MSE
N

f fi i
i

N

= -
=
å1 2

1

( ) 	 (Equation 4-4)

where N is the number of samples over which the signal is approximated. Similarly,  
the MSE for a two-dimensional signal such as image or a video frame with width M and 
height N is given by:
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where f( i, j) is the pixel value at location (i, j) of the source image, and ˆ( , )f i j  is the 
corresponding pixel value in the reconstructed image. PSNR is usually measured for an 
image plane, such as the luma or chroma plane of a video frame.

Applications
PSNR has traditionally been used in analog audio-visual systems as a consistent quality 
metric. Digital video technology has exposed some limitations in using the PSNR as a 
quality metric. Nevertheless, owing to its low complexity and easy measurability, PSNR is 
still the most widely used video quality metric for evaluating lossy video compression or 
processing algorithms, particularly as a measure of gain in quality for a specified target bit 
rate for the compressed video. PSNR is also used in detecting the existence of frame drops 
or severe frame data corruption and the location of dropped or corrupt frames in a  
video sequence in automated environments. Such detections are very useful in 
debugging and optimization of video encoding or processing solutions. Furthermore, 
PSNR is extensively used as a comparison method between two video coding solutions  
in terms of video quality.

Advantages
PSNR has the following advantages as a video quality metric.

PSNR is a simple and easy to calculate picture-based metric. •	
PSNR calculation is also fast and parallelization-friendly—for 
example, using single instruction multiple data (SIMD) paradigm.

Since PSNR is based on MSE, it is independent of the direction  •	
of the difference signal; either the source or the reconstructed 
signal can be subtracted from one another yielding the same 
PSNR output.

f̂

f̂
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PSNR is easy to incorporate into practical automated  •	
quality- measurement systems. This flexibility makes it amenable 
to a large test suite. Thus, it is very useful in building confidence 
on the evaluation.

The PSNR calculation is repeatable; for the same source and •	
reconstructed signals, the same output can always be obtained. 
Furthermore, PSNR does not depend on the width or height of the 
video, and works for any resolution.

Unlike cumbersome subjective tests, PSNR does not require •	
special setup for the environment.

PSNR is considered to be a reference benchmark for developing •	
various other objective video-quality metrics.

For the same video source and the same codec, PSNR is a •	
consistent quality indictor, so it can be used for encoder 
optimization to maximize the subjective video quality and/or the 
performance of the encoder.

PSNR can be used separatelyfor luma and chroma channels. Thus, •	
variation in brightness or color between two coding solutions can 
be easily tracked. In order to determine which solution uses more 
bits for a given quality level, such information is very useful.

The popularity of PSNR is not only rooted in its simplicity but  •	
also its performance as a metric should not be underestimated.  
A validation study conducted by the Video Quality Experts Group 
(VQEG) in 2001 discovered that the nine VQA methods that it 
tested, including some of the most sophisticated algorithms at 
that time, were “statistically indistinguishable” from the PSNR.10

Limitations
Common criticisms for PSNR include the following.

Some studies have shown that PSNR poorly correlates with •	
subjective quality.11

PSNR does not consider the visibility differences of two different •	
images, but only considers the numerical differences. It does not 
take the visual masking phenomenon or the characteristics of 
the HVS into account–all pixels that are different in two images 
contribute to the PSNR, regardless of the visibility of the difference.

10Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video 
Quality Assessment, 2000, available at www.vqeg.org.
11B. Girod, “What's Wrong with Mean Squared Error?” in Visual Factors of Electronic Image 
Communications, ed. A. B. Watson, (Cambridge, MA: MIT Press, 1993): 207–20.

http://www.vqeg.org/
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Other objective perceptual quality metrics have been shown  •	
to outperform PSNR in predicting subjective video quality in 
specific cases.12

Computational complexity of the encoder in terms of execution •	
time or machine cycles is not considered in PSNR. Nor does it 
consider system properties such as data cache size, memory 
access bandwidth, storage complexity, instruction cache size, 
parallelism, and pipelining, as all of these parameters contribute 
to coding complexity of an encoder. Therefore, the comparison of 
two encoders is quite restricted when PSNR is used as the main 
criteria.

PSNR alone does not provide sufficient information regarding •	
coding efficiency of an encoder; a corresponding cost measure 
is also required, typically in terms of the number of bits used. 
In other words, saying that a certain video has a certain level of 
PSNR does not make sense unless the file size or the bit rate for 
the video is also known.

PSNR is typically averaged over a frame, and local statistics •	
within the frame are not considered. Also, for a video sequence, 
the quality may vary considerably from scene to scene, which 
may not be accurately captured if frame-based PSNR results are 
aggregated and an averge PSNR is used for the video sequence.

PSNR does not capture temporal quality issues such as frame •	
delay or frame drops. Additionally, PSNR is only a source coding 
measure and does not consider channel coding issues such as 
multi-path propagation or fading. Therefore, it is not a suitable 
quality measure in lossy network environment.

PSNR is an FR measure, so reference is required for quality •	
evaluation of a video. However, in practice, an unadulterated 
reference is not generally available at the reconstruction end. 
Nevertheless, PSNR remains effective and popular for evaluation, 
analysis, and benchmarking of video quality.

Improvements on PSNR
Several attempts have been made in literature to improve PSNR. Note that visibility of 
a given distortion depends on the local content of the source picture. Distortions are 
usually more objectionable in plain areas and on edges than in busy areas. Thus, it is 
possible to model the visual effect of the distortion itself in a more sophisticated way than 

12ITU-T Recommendation J.144: Objective Perceptual Video Quality Measurement Techniques for 
Digital Cable Television in the Presence of a Full Feference (Geneva, Switzerland: International 
Telecommunications Union, 2004).
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simply measuring its energy, as done in PSNR. For example, a weighting function may 
be applied in frequency domain, giving more weight to the lower-frequency components 
of the error than to the higher-frequency components. A new measure, named just 
noticeable difference (JND), has been defined by Sarnoff in 2003, based on a visual 
discrimination mode.13

Moving Picture Quality Metric

PSNR does not take the visual masking phenomenon into consideration. In other words, 
every single pixel error contributes to the decrease of the PSNR, even if this error is not 
perceptible. This issue is typically addressed by incorporating some HVS models. In 
particular, two key aspects of the HVS, namely contrast sensitivity and masking, have 
been intensively studied in the literature. The first phenomenon accounts for the fact 
that a signal is detected by the eye only if its contrast is greater than some threshold. 
The sensitivity of the eye varies as a function of spatial frequency, orientation, and 
temporal frequency. The second phenomenon is related to the human vision response 
to a combination of several signals. For example, consider a stimulus consisting of the 
foreground and the background signals. The detection threshold of the foreground is 
modified as a function of the contrast from the background.

The moving picture quality metric (MPQM)14 is an error-sensitivity based spatio-
temporal objective quality metric for moving pictures that incorporates the two HVS 
characteristics mentioned above. Following the general framework shown in Figure 4-12, 
MPQM first decomposes an original video and a distorted version of it into perceptual 
channels. A channel-based distortion measure is then computed, accounting for contrast 
sensitivity and masking. After obtaining the distortion data for each channel, the data is 
combined over all the channels to compute the quality rating. The resulting quality rating 
is then scaled from1 to 5 (from bad to excellent). MPQM is known to give good correlation 
with subjective tests for some videos, but it also yields bad results for others.15 This is 
consistent with other error-sensitivity based approaches.

The original MPQM algorithm does not take chroma into consideration, so a 
variant of the algorithm called the color MPQM (CMPQM) has been introduced. In this 
technique, first the color components are converted to RGB values that are linear with 
luminance. Then the RGB values are converted to coordinate values corresponding to a 
luma and two chroma channels. This is followed by the analysis of each component of 
the original and error sequence by a filter bank. As the HVS is less sensitive to chroma, 
only nine spatial and one temporal filter is used for these signals. The rest of the steps are 
similar to those in MPQM.

13J. Lubin, “A Visual Discrimination Mode for Image System Design and Evaluation,” in Visual 
Models for Target Detection and Recognition, ed. E. Peli, (Singapore: World Scientific Publishers, 
1995): 207–20.
14C. J. Branden-Lambrecht, and O. Verscheure, “Perceptual Quality Measure using a  
Spatio-Temporal Model of the Human Visual System,” in Proceedings of the SPIE 2668 (San Jose, 
CA: SPIE-IS&T, 1996): 450–61.
15See http://www.irisa.fr/armor/lesmembres/Mohamed/Thesis.pdf.

http://www.irisa.fr/armor/lesmembres/Mohamed/Thesis.pdf
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Structural Similarity Based Approaches
Natural image signals are highly structured. There are strong dependencies among the 
pixels of natural images, especially when they are spatially adjacent. These dependencies 
carry important information about the structure of the objects in a visual scene. The 
Minkowski error metric used in error sensitivity based approaches does not consider 
the underlying structure of the signal. Also, decomposition of image signal using linear 
transforms, as done by most quality measures based on error sensitivity, do not remove 
the strong dependencies. Structural similarity based quality assessment approaches try 
to find a more direct way to compare the structures of the reference and the distorted 
signals. Based on the HVS characteristic that human vision reacts quickly to structural 
information in the viewing field, these approaches approximate the perceived image 
distortion using a measure of structural information change. The Universal Image Quality 
Index (UIQI)16 and the Structural Similarity Index (SSIM) 17 are two examples of this 
category. For a deeper understanding, the SSIM is discussed below in detail.

Structural Similarity Index

Objective methods for assessing perceptual image quality attempt to measure the visible 
differences between a distorted image and a reference image using a variety of known 
properties of the HVS. Under the assumption that human visual perception is highly 
adapted for extracting structural information from a scene, a quality assessment method 
was introduced based on the degradation of structural information.

The structural information in an image is defined as those attributes that represent 
the structure of objects in a scene, independent of the luminance and contrast. Since 
luminance and contrast can vary across a scene, structural similarity index (SSIM) 
analysis only considers the local luminance and contrast. As these three components are 
relatively independent, a change in luminance or contrast of an image would not affect 
the structure of the image.

The system block diagram of the structural similarity index based quality assessment 
system is shown in Figure 4-13.

16Z. Wang, and A. C. Bovik, “A Universal Image Quality Index,” IEEE Signal Processing Letters 9, 
no. 3 (March 2002): 81–84.
17Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From 
Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing 13, no. 4  
(April 2004): 600–12.
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As shown in Figure 4-13, the system consists of two nonnegative spatially aligned 
image signals x and y. If one of the signals has perfect quality, then the similarity measure 
can serve as a quantitative measurement of the quality of the second signal. The system 
separates the task of similarity measurement into three comparisons: luminance, 
contrast, and structure.

Luminance is estimated as the mean intensity (m) of the image. The luminance 
comparison function l(x,y) is a function of the mean intensities m

x
and m

y
 of images x and 

y, and can be obtained by comparing their mean intensities. Contrast is estimated as 
the standard deviation (s) of an image. The contrast comparison function c(x,y) then 
reduces to a comparison of s

x
 and s

y
. In order to perform the structure comparison, the 

image is first normalized by dividing the singal by its own standard deviation, so that both 
images have unit standard deviation. The structure comparison s(x,y) is then done on 
these normalized signals (x − m

x
)/s

x
 and (y − m

y
)/s

y
. Combining the results of these three 

comparisons yields an overall similarity measure::

S x y f l x y c x y s x y( , ) ( ( , ), ( , ), ( , )).= 	 (Equation 4-6)

The similarity measure is designed to satisfy the following conditions:

Symmetry: •	 S(x, y) = S(y, x)

Boundedness: •	 S(x, y) £ 1

Unity maximum: •	 S(x, y) = 1 if and only if x = y (in discrete 
representations, x y i Ni i= " =, , ,1 .)

The luminance comparison function is defined as):

l x y
C

C
x y

x y

( , ) =
+

+ +

2 1

2 2
1

m m
m m

	 (Equation 4-7)

Figure 4-13.  Block diagram of the SSIM measurement system
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Here, the constant C
1
 is introduced to avoid instability when m

x
2 + m

y
2 is close to 

zero. Specifically, C
1
 is chosen as: C

1
 = (K

1
L)2, where L is the dynamic range of the pixel 

values (e.g., 255 for 8-bit grayscale pixels), and the constant K1 1<<  is a small constant. 
Qualitatively, Equation 4-7 is consistent with Weber’s law, which is widely used to 
model light adaptation or luminance masking in the HVS. In simple terms, Weber’s 
law states that the HVS is sensitive to the relative luminance change, and not to the 
absolute luminance change. If R represents the relative luminance change compared 
to the background luminance, the distorted signal mean intensity can be substituted by 
m

y
 = (1 + R)m

x
 and Equation 4-7 can be rewritten as ():

l
R

R
C

x

( , )
( )

( )
x y =

+

+ + +

2 1

1 1 2 1
2m

	 (Equation 4-8)

For small values of C
1
 with respect to m

x
2 , l(x,y) = f (R), which is consistent with 

Weber’s law.
The contrast comparison function takes a similar form ():

c
C

C
x y

x y

( , )x y =
+

+ +
2 2

2 2
2

s s
s s

	 (Equation 4-9)

where C
2
 = (K

2
L)2, and K2 1<< . Note that with the same amount of contrast change  

Ds  = s
y
 − s

x
, this measure is less sensitive to a high-base contrast than a low-base contrast. 

This is consistent with the contrast-masking feature of the HVS.
Structure comparison is conducted after luminance subtraction and variance 

normalization. Specifically, the two unit vectors (x − m
x
)/s

x
 and (y − m

y
)/s

y
, are associated 

with the structure of the two images. The correlation between these two vectors can 
simply and effectively quantify the structural similarity. Notice that the correlation 
between (x − m

x
)/s

x
 and (y − m

y
)/s

y
 is equivalent to the correlation coefficient between x 

and y. Thus, the structure comparison function is defined as follows: 

s x y
C

C
xy

x y

( , )=
+
+

s
s s

3

3

	 (Equation 4-10)

As in the luminance and contrast measures, a small constant C
3
 is introduced for 

stability. In discrete form, s
xy

can be estimated as :

s m mxy i x i y
i

N

N
x y=

-
- -

=
å1

1 1

( )( ) 	 (Equation 4-11)

The three comparisons of Equations 4-8, 4-9, and 4-10 are combined to yield the 
resulting similarity measure SSIM between signals x and y:

SSIM l x y c x y s x y( , ) [ ( , )] [ ( , )] [ ( , )]x y = a b g 	 (Equation 4-12)

where a > 0, b > 0, and g  > 0 are parameters used to adjust the relative importance of the 
three components.
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The expression is typically used in a simplified form, with a = b = g  = 1 and C
3
 = C

2
/2:

SSIM
C C

C C
x y xy

x y x y

( , )
( )( )

( )( )
x y =

+ +
+ + + +

2 21 2

2 2
1

2 2
2

m m s
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	 (Equation 4-13)

The UIQI6 is a special case of SSIM with C
1
 = C

2
 = 0. However, it produces unstable 

results when either (m
x

2 + m
y

2) or (s
x

2 + s
y

2) is very close to zero.

Information Fidelity Based Approaches
Images and videos generally involve natural scenes, which are characterized using 
statistical models. Most real-world distortion processes disturb these statistics and make 
the image or video signals unnatural. This observation led researchers to use natural 
scene statistics (NSS) models in conjunction with a distortion (channel) model to quantify 
the information shared between a distorted and a reference image, and to show that 
this shared information is an aspect of signal fidelity that relates well with visual quality. 
Although in contrast to the HVS error-sensitivity and the structural approaches, the 
statistical approach, as used in an information-theoretic setting, does not rely on any 
HVS parameter, or constants requiring optimization, it still yields an FR QA method that 
is competitive with state-of-the-art QA methods. The visual information fidelity (VIF) is 
such an information-fidelity based video quality assessment metric.

Visual Information Fidelity

Visual Information Fidelity18 (VIF) is an information theoretic criterion for image 
fidelity measurement based on NSS. The VIF measure quantifies the information that 
could ideally be extracted by the brain from the reference image. Then, the loss of this 
information to the distortion is quantified using NSS, HVS and an image distortion 
(channel) model in an information-theoretic framework. It was found that visual quality 
of images is strongly related to relative image information present in the distorted image, 
and that this approach outperforms state-of-the-art quality-assessment algorithms. 
Further, VIF is characterized by only one HVS parameter that is easy to train and optimize 
for improved performance.

VIF utilizes NSS models for FR quality assessment, and models natural images in the 
wavelet domain using the well-known Gaussian Scale Mixtures (GSM). Wavelet analysis of 
images is useful for natural image modeling. The GSM model has been shown to capture 
key statistical features of natural images, such as linear dependencies in natural images.

Natural images of perfect quality can be modeled as the output of a stochastic 
source. In the absence of any distortions, this signal passes through the HVS before 
entering the brain, which extracts cognitive information from it. For distorted images, it is 
assumed that the reference signal has passed through another distortion channel before 
entering the HVS.

18H. R. Sheikh and A. C. Bovik, “Image Information and Visual Quality,” IEEE Transactions on 
Image Processing 15, no. 2 (2006): 430–44.
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The distortion model captures important, and complementary, distortion types: 
blur, additive noise, and global or local contrast changes. It assumes that in terms of their 
perceptual annoyance, real-world distortions could roughly be approximated locally 
as a combination of blur and additive noise. A good distortion model is one where 
the distorted image and the synthesized image look equally perceptually annoying, 
and the goal of the distortion model is not to model image artifacts but the perceptual 
annoyance of the artifacts. Thus, even though the distortion model may not be able to 
capture distortions such as ringing or blocking exactly, it may still be able to capture their 
perceptual annoyance. However, for distortions other than blur and white noise— for 
example, for low-bit-rate compression noise—the model fails to adequately reproduce 
the perceptual annoyance.

The HVS model is also described in the wavelet domain. Since HVS models are 
duals of NSS models, many aspects of HVS are already captured in the NSS description, 
including wavelet channel decomposition, response exponent, and masking effect 
modeling. In VIF, the HVS is considered a distortion channel that limits the amount 
of information flowing through it. All sources of HVS uncertainty are lumped into one 
additive white Gaussian stationary noise called the visual noise.

The VIF defines mutual informations I C E sN N N( ; | )
 

 and I C F sN N N( ; | )
 

 to be the 
information that could ideally be extracted by the brain from a particular subband in the 
reference and the distorted images, respectively. Intuitively, visual quality should relate 
to the amount of image information that the brain could extract from the distorted image 
relative to the amount of information that the brain could extract from the reference 
image. For example, if the brain can extract 2.0 bits per pixel of information from the 
distorted image when it can extract 2.1 bits per pixel from the reference image, then most 
of the information has been retrieved and the corresponding visual quality should be very 
good. By contrast, if the brain can extract 5.0 bits per pixel from the reference image, then 
3.0 bits per pixel information has been lost and the corresponding visual quality should 
be very poor.

The VIF is given by:

VIF
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N j N j N j
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	 (Equation 4-14)

where the sum is performed over the subbands of interest, and 


C N j,  represent N elements 
of the random field Cj that describes the coefficients from subband j, and so on.

The VIF has many interesting properties. For example, VIF is bounded below by zero, 
indicating all information is lost in the distortion channel. If a test image is just a copy 
of itself, it is not distorted at all, so the VIF is unity. Thus, VIF is always in the range [0,1]. 
Interestingly, a linear contrast enhancement of the reference image that does not add 
noise to it will result in a VIF value larger than unity, thereby signifying that the enhanced 
image has a superior visual quality to the reference image. This is a unique property not 
exhibited by other VQA metrics.
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Spatio-Temporal Approaches
Traditional FR objective quality metrics do not correlate well with temporal distortions 
such as frame drops or jitter. Spatio-temporal approaches are more suitable for video 
signals as they consider the motion information between video frames, thereby capturing 
temporal quality degradation as well. As a result, these algorithms generally correlate well 
with the HVS. As an example of this approach, the spatio-temporal video SSIM (stVSSIM) 
is described.

Spatio-Temporal Video SSIM

Spatio-temporal video SSIM19 (stVSSIM) algorithm is a full-reference VQA algorithm 
based on the motion-based video integrity evaluation20 (MOVIE) algorithm. MOVIE 
utilizes a multi-scale spatio-temporal Gabor filter bank to decompose the videos and to 
compute motion vectors. However, MOVIE has high computational complexity, making 
practical implementations difficult. So, stVSSIM proposes a new spatio-temporal metric 
to address the complexity issue. The stVSSIM algorithm was evaluated on VQEG’s full-
reference data set (Phase I for 525 and 625 line TV signals) and was shown to perform 
extremely well in terms of correlation with human perception.

For spatial quality assessment, stVSSIM uses the single-scale structural similarity 
index (SS-SSIM) as it correlates well with human perception of visual quality. For 
temporal quality assessment, stVSSIM extends the SS-SSIM to the spatio-temporal 
domain and calls it SSIM-3D. Motion information is incorporated in the stVSSIM using a 
block-based motion estimation algorithm, as opposed to optical flow, as used in MOVIE. 
Further, a method to completely avoid block motion estimation is introduced, thereby 
reducing computational complexity.

For spatial quality assessment, SS-SSIM is computed on a frame-by-frame basis. 
The spatial-quality measure is applied on each frame and the frame-quality measure is 
computed using the percentile approach. As humans tend to rate images with low-quality 
regions with greater severity, using a percentile approach would enhance algorithm 
performance. So, Percentile-SSIM or P-SSIM is applied on the scores obtained for each 
frame. Specifically, the frame-quality measure is:

S SSIM iframe
i

=
Î
å1

| |
( )

j j
	 (Equation 4-15)

where the set of the lowest 6 percent of SSIM values from the frame and SSIM(i) the  
SS-SSIM score is at pixel location i.

The spatial score for the video is computed as the mean of the frame-level scores and 
is denoted as S

video
.

19A. K. Moorthy and A. C. Bovik, “Efficient Motion Weighted Spatio-Temporal Video SSIM Index,” 
in Proceedings of SPIE-IS&T Electronic Imaging 7527 (San Jose, CA: SPIE-IS&T, 2010): 1–9.
20K. Seshadrinathan and A. C. Bovik, “Motion-based Perceptual Quality Assessment of Video,” in 
Proceedings of the SPIE 7240 (San Jose, CA: SPIE-IS&T, 2009): 1–12.
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Temporal quality evaluation utilizes three-dimensional structural similarity  
(SSIM-3D) for a section of the video and performs a weighting on the resulting scores 
using motion information derived from motion vectors. In this case, a video is viewed 
as a three-dimensional signal. If x and y are the reference and the distorted video, a 
volume section is defined around a pixel location (i,j,k) with spatial dimensions (a, b) 
while the volume temporally encompasses g  frames. Here, (i,j) correspond to the spatial 
location and k corresponds to the frame number. The SSIM-3D is then expressed as a 3-D 
extension of the SSIM as follows:

SSIM
C C

D
x i j k y i j k x i j k y i j k

x
3

1 22 2
=

+ +( )( )
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	 (Equation 4-16)

To compute the 3-D mean m, the variance s 2, and the co-variance s
xy

, the sections 
x and y are weighted with a weighting factor w for each dimension (i,j,k). The essence 
of stVSSIM is evaluating spatio-temporal quality along various orientations at a pixel, 
followed by a weighting scheme that assigns a spatio-temporal quality index to that 
pixel. The weighting factor depends on the type of filter being used—one out of the four 
proposed spatio-temporal filters (vertical, horizontal, left, and right).

To incorporate motion information, block motion estimation is used, where motion 
vectors are computed between neighboring frames using the Adaptive Rood Pattern Search 
(ARPS) algorithm operating on 8×8 blocks. Once motion vectors for each pixel (i,j,k) are 
available, spatio-temporal SSIM-3D scores are weighted. To avoid weighting that uses 
floating point numbers, a greedy weighting is performed. In particular, the spatio-temporal 
score at pixel (i,j,k) is selected from the scores produced by the four filters based on the type 
of filter that is closest to the direction of motion at pixel (i,j,k). For example, if the motion 
vector at a pixel were (u,v) = (0,2), the spatio-temporal score of that pixel would be the 
SSIM-3D value produced by the vertical filter. If the motion vector is equidistant from two of 
the filter planes, the spatio-temporal score is the mean of the SSIM-3D scores of the two filters. 
In case of zero motion, the spatio-temporal score is the mean of all four SSIM-3D values.

The temporal score for the video is computed as the mean of the frame-level scores 
and is denoted as T

video
. The final score for the video is given by S

video
 × T

video
.

Saliency Based Approaches
Quality-assessment methods suitable for single images are also typically used for video. 
However, these methods do not consider the motion information of the video sequence. 
As a result, they turn out to be poor evaluation metrics for video quality. In addition, most 
VQA algorithms ignore the human visual attention mechanism, which is an important 
HVS characteristic.

Human eyes usually focus on edges with high-contrast or salient areas that 
are different from their neighboring areas. Recognizing this fact, saliency based 
approaches of video quality evaluation treat the distortion occuring in the salient areas 
asymmetrically compared to that occuring in other areas. One such approach is SVQA.21

21Q. Ma, L. Zhang, and B. Wang, “New Strategy for Image and Video Quality Assessment,” Journal 
of Electronic Imaging 19, no. 1 (2010): 1–14.
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Saliency-based Video Quality Assessment

In a saliency based video quality-assessment (SVQA) approach, a spatial saliency map is 
extracted from reference images or video frames using a fast frequency domain method 
called the phase spectrum of quaternion Fourier transform (PQFT). When the inverse Fourier 
transform is taken of an image phase spectrum, salient areas are easily recognizable.  
The saliency map is used as weights to adjust other objective VQA criteria, such as PSNR, 
MSSIM, VIF, and so on. Similarly, temporal weights are determined from adjacent frames.

Given a reference image and a corresponding distorted image, the saliency map 
of the reference image can be obtained using the PQFT. Then, an improved quality 
assessment index, called the saliency-based index (S-index), is determined by weighting 
the original index by the saliency map. For example, if p

i
 is the luma value of the i th pixel 

in the salient area, the pixel saliency weight w
i
 is given by the following:

w
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( ) 	 (Equation 4-17)

where b is a small constant to keep w
i
 > 0, and M and N are the width and height of the 

image, respectively. Therefore, this weighting takes into account the non-salient areas 
as well. However, pixels in the salient area have large weights. Using these weights, the 
saliency-based PSNR (SPSNR) is written as:
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	 (Equation 4-18)

Thus, the distortion of pixels in the salient area is given more importance than pixels 
in other areas. Saliency-based MSSIM (SMSSIM) and saliency-based VIF (SVIF) are also 
defined in a similar manner.

As SVQA deals with video signals instead of images only, the following 
considerations are taken into account:

HVS is sensitive to motion information, but less sensitive to •	
the background. Therefore, distortion of moving objects is very 
important. SVQA differentiates between a fixed camera and a 
moving camera while locating a moving object.

As frames are played out in real time, human eyes can only pay •	
attention to a much smaller area in an image, compared to when 
looking at a fixed image. This is considered in intraframe weights.

Due to •	 motion masking effect, visual sensitivity is depressed 
during large-scale scene changes or rapid motion of objects. 
Therefore, frames should be weighted differently based on motion 
masking. This is considered in interframe weights.

Considering spatio-temporal properties of video sequences, •	
saliency weights in both spatial and temporal domains contribute 
to the final quality index.
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In SVQA, the intraframe weight uses PQFT to calculate the saliency map for pixels 
with non-zero motion. Non-zero motion is represented as the difference image between 
two adjacent video frames. This establishes the first consideration of moving objects. 
In a short interval, the saliency map is allowed to have a square area of processing, 
thus addressing the second consideration. As the interframe weight is based on motion 
masking, the third consiration for weighting is also addressed. Finally, it is noteworthy 
that both intraframe weight and interframe weight are considered together in SVQA. 
Figure 4-14 shows the SVQA framework.

Figure 4-14.  The SVQA framework

According to Figure 4-14, the flow of SVQA is as follows:

1.	 The reference and distorted video sequences are divided into 
frames. Each sequence is composed of n images: D

1
 to D

n
 for 

distorted frames, R
1
 to R

n
 for reference frames, as shown on 

the upper part of Figure 4-14.

2.	 Considering camera shift, where all pixels are moving,  
a binary function is defined to detect such motion. If the 
luma difference between pixels co-located in adjacent 
frames exceeds a threshold, a movement is detected. If the 
movement is detected for all pixels, a camera movement is 
understood; otherwise, object movement is considered on a 
static background. The quaternion for a frame is constructed 
as a weighted combination of motion information and three 
color channel information.
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3.	 The saliency map (SM) is calculated for each reference video 
frame using the PQFT with motion, denoted as SM

1
to SM

n
.

4.	 Based on the SM, the intraframe weights (w
1
, …, w

n
) are 

calculated for n frames.

5.	 The frame quality FQ
i
 is calculated for the ith frame using any of 

the saliency-based metrics such as SPSNR, SMSSIM, or SVIF.

6.	 Based on the SM, the interframe weights (e
1
, …, e

n
) are 

calculated for n frames.

7.	 The SVQA index, the measure of quality of the entire video is 
calculated using the following equation:

SVQA
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	 (Equation 4-19)

where n is the number of video frames.

Network-Aware Approaches
The objective video quality metrics such as PSNR neither perfectly correlate with 
perceived visual quality nor take the packet loss into account in lossy network 
environments such as multihop wireless mesh networks. While PSNR and similar metrics 
may work well for evaluating video quality in desktop coding applications and streaming 
over wired networks, remarkable inaccuracy arises when they are used to evaluate video 
quality over wireless networks. 

For instance, in a wireless environment, it could happen that a video stream with a 
PSNR around 38dB (typically considered medium-high quality in desktop video coding 
applications) is actually perceived to have the same quality as the original undistorted 
video. This is because wireless video applications typically use the User Datagram 
Protocol (UDP), which does not guarantee reliable transmissions and may trade packet 
loss for satisfying delay requirements. Generally, in wireless local area networks (WLAN) 
consisting of unstable wireless channels, the probability of a packet loss is much higher 
than that in wired networks. In such environments, losing consecutive packets may cause 
the loss of an entire frame, thereby degrading the perceived video quality further than in 
desktop video coding applications.

Modified PSNR

Aiming to handle video frame losses, Modified PSNR (MPSNR) was proposed.22 Two 
objective metrics are derived based on linear regression of PSNR against subjective MOS. 

22A. Chan, K. Zeng, P. Mohapatra, S.-J. Lee, and S. Banerjee, “Metrics for Evaluating Video 
Streaming Quality in Lossy IEEE 802.11 Wireless Networks,” Proceedings of IEEE INFOCOM, 
(San Diego, CA: March 2010): 1–9.
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The first metric, called PSNR-based Objective MOS (POMOS), predicts the MOS from 
the mean PSNR, while achieving a correlation of 0.87 with the MOS. The second metric, 
called Rate-based Objective MOS (ROMOS), adds streaming network parameters such as 
the frame loss rate, and achieves a higher correlation of 0.94 with the MOS.

Frame losses are prevalent in wireless networks, but are not accounted for in the 
traditional PSNR calculations. Due to packet losses during streaming, a frame can be 
missing, which is typically unrecognizable by a human viewer. However, a missing 
frame causes the wrong frame to be compared against the original frame during PSNR 
calculation. Such off-position comparisons result in low PSNR values. A straightforward 
way to fix this is to introduce timing information into the source video. But such 
modification of source video is undesirable.

To determine if any frame is missing, an alternative approach is to match the frame 
with the original frame. The algorithm assumes that the sum of PSNRs of all frames 
is maximized when all frames are matching, and it uses this sum to determine the 
mismatching frame. In particular, MPSNR matches each frame in a streamed video to  
a frame in the reference video so that the sum of PSNR of all frame pairs is maximized.  
A moving window is used to determine the location of the matching frame. If frame j  
in the streamed video matches frame k belonging to the window in the reference video,  
it is considered that the frames (k-j) are missing. A frame in the streamed video need 
only be compared with, at most, g frames in the reference video, where g is the number of 
frames lost.

In addition to PSNR, the MPSNR measures the following video streaming 
parameters:

Distorted frame rate (•	 d): the percentage of mismatched frames in 
a streaming video.

Distorted frame PSNR (•	 dPSNR): the mean PSNR value of all the 
mismatched frames.

Frame loss rate (•	 l): the percentage of lost frames in a streaming 
video. It is calculated by comparing the total number of frames in 
the received streamed video with that in the reference video.

Once the corresponding frames in a streamed video and the reference video are 
matched, and the PSNR of each frame in the streamed video is calculated, all the above 
parameters are readily available.

In the MPSNR model, this method of matching is applied to a training set of videos, 
and the average PSNR for a window W is calculated. Experimental results show that the 
average PSNR exhibits a linear relationship with subjective MOS. Therefore, a linear 
model of the average PSNR can be used to predict the MOS score. The linear model is 
given as:

POMOS average PSNR= +0 8311 0 0392. . ( ) 	 (Equation 4-20)
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Note that average PSNR is used in this model. Since the average PSNR of a perfectly 
matching frame is infinity (or a very high value), it affects the prediction of MOS. To 
mitigate this problem, another linear model is proposed that does not use the PSNR 
values:

ROMOS
d

dPSNR
l= - -4 367 0 5040 0 0517. . . . 	 (Equation 4-21)

Noise-Based Quality Metrics
An interesting approach to quality evaluation is to evaluate the noise introduced instead 
of the signal fidelity.

Noise Quality Measure

In the noise quality measure23 (NQM), a degraded image is modeled as an original image 
that has been subjected to linear frequency distortion and additive noise injection. 
These two sources of degradation are considered independent and are decoupled into 
two quality measures: a distortion measure (DM) resulting from the effect of frequency 
distortion, and a noise quality measure (NQM) resulting from the effect of additive noise.

The NQM is based on a contrast pyramid and takes into account the following:

The variation in contrast sensitivity with distance, image •	
dimensions, and spatial frequency

The variation in the local brightness mean•	

The contrast interaction between spatial frequencies•	

The contrast masking effects•	

For additive noise, the non-linear NQM is found to be a better measure of visual 
quality than the PSNR and linear quality measures.

The DM is computed in three steps. First, the frequency distortion in the degraded 
image is found. Second, the deviation of this frequency distortion from an all-pass 
response of unity gain (no distortion) is computed. Finally, the deviation is weighted by 
a model of the frequency response of the HVS, and the resulting weighted deviation is 
integrated over the visible frequencies.

Objective Coding Efficiency Metrics
Measuring coding efficiency is another way to look at the tradeoff between visual quality 
and bit-rate cost in video coding applications. In this section we discuss the popular BD 
metrics for objective determination of coding efficiency.

23N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image Quality 
Assessment Based on a Degradation Model,” IEEE Transactions on Image Processing 9,  
no. 4 (April 2000): 636–50.
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BD-PSNR, BD-SSIM, BD-Bitrate

Bjøntegaard delta PSNR24 (BD-PSNR) is an objective measure of coding efficiency of 
an encoder with respect to a reference encoder. It was proposed by Gisle Bjøntegaard 
in April 2001 in the Video Coding Expert Group’s (VCEG) meeting. BD-PSNR considers 
the relative differences between two encoding solutions in terms of number of bits 
used to achieve a certain quality. In particular, BD-PSNR calculates the average PSNR 
difference between two rate-distortion (R-D) curves over an interval. This metric is a 
good indication of visual quality of encoded video, as it considers the cost (i.e., bits used) 
to achieve a certain visual quality of the decoded video, represented by the popular 
objective measure PSNR. Improvements to the BD-PSNR model can be performed by 
using log

10
(bitrate) instead of simply the bit rate when plotting R-D data points, resulting 

in straighter R-D curves and more uniformly spaced data points across the axes.
BD-PSNR uses a third order logarithmic polynomial to approximate a given R-D 

curve. The reconstructed distortion in PSNR is given as:

D D r a br cr drPSNR = = + + +( ) 2 3 	 (Equation 4-22)

where r = log(R), R is the output bit rate, and a, b, c, and d are fitting parameters.
This model is a good fit to R-D curves and there is no problem with singular 

points, as could have happened for a model with (r + d) in the denominator. The above 
equation can be solved with four R-D data points obtained from actual encoding, and 
the fitting parameters a, b, c, and d can be determined. Thus, this equation can be used 
to interpolate the two R-D curves from the two encoding solutions, and the delta PSNR 
between the two curves can be obtained as:

BD PSNR
r r

D r D r dr
H L
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r
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where r
H

 = log(R
H

), r
L
 = log(R

L
) are the high and low ends, respectively, of the output bit 

rate range, and D
1
(r) and D

2
(r) are the two R-D curves.

Similarly, the interpolation can also be done on the bit rate as a function of SNR:

r a bD cD dD= + + +2 3 	 (Equation 4-24)

where r = log(R), R is the output bit rate, a, b, c, and d are fitting parameters, and D is 
the distortion in terms of PSNR. From this the BD-bit rate can be calculated in a similar 
fashion as is done for PSNR above:

BD Bit rate
D D

r r dD
H L

D

D

L

H

=
-

-ò
1

2 1( ) 	 (Equation 4-25)

24B. Bjøntegaard, Calculation of Average PSNR Differences between RD curves (VCEG-M33) 
(Austin, TX: ITU-T VCEG SG16 Q.6, 2001).
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Therefore, from BD-PSNR calculations, both of the following can be obtained:

Average PSNR difference in dB over the whole range of bit rates•	

Average bit rate difference in percent over the whole range of PSNR•	

If the distortion measure is expressed in terms of SSIM instead of PSNR,  
BD-SSIM can be obtained in the same manner. BD-PSNR/BD-SSIM calculation depends 
on interpolating polynomials based on a set of rate-distorion data points. Most 
implementations of BD-PSNR use exactly four rate-distortion data points for polynomial 
interpolation, resulting in a single number for BD-PSNR.

Advantages
BD metrics have the advantage that they are compact and in some sense more accurate 
representations of the quality difference compared to R-D curves alone. In case of a 
large number of tests, BD metrics can readily show the difference between two encoding 
solutions under various parameters. Further, BD metrics can consolidate results from 
several tests into a single chart, while showing video quality of one encoding solution 
with respect to another; these presentations can effectively convey an overall picture of 
such quality comparisons.

Limitations
The BD metrics are very useful in comparing two encoding solutions. However, for  
ultra-high-definition (UHD) video sequences, the BD metrics can give unexpected 
results.25 The behavior appears owing to polynomial curve-fitting and the high-frequency 
noise in the video sequences. Standard polynomial interpolation is susceptible to Runge’s 
phenomenon (problematic oscillation of the interpolated polynomial) when using  
high-degree polynomials. Even with just four data points (third degree polynomial), some 
interpolated curves see oscillation that can result in inaccurate BD-PSNR evaluations.

Alternative interpolation methods such as splines reduce the error caused by 
Runge’s phenomenon and still provide curves that fit exactly through the measured 
rate-distortion data points. There are video examples where using piecewise cubic 
spline interpolation improves the accuracy of BD-PSNR calculation by nearly 1 dB over 
polynomial interpolation.

When oscillation occurs from polynomial interpolation, the resulting BD-PSNR 
calculation can be dramatically skewed. Figure 4-15 shows the polynomial interpolation 
problem in rate-PSNR curves from two sample encoding. The charts show the difference 
between polynomial interpolation and cubic spline interpolation and the BD-PSNR 
values using each method.

25 Sharp Corporation, “On the Calculation of PSNR and Bit Rate Differences for the SVT Test 
Data,” ITU SG16, Contibution 404, April 2008, available at http://www.docstoc.com/docs/ 
101609255/On-the-calculation-of-PSNR-and-bit-rate-differences-for-the-SVT-test.

http://www.docstoc.com/docs/101609255/On-the-calculation-of-PSNR-and-bit-rate-differences-for-the-SVT-test
http://www.docstoc.com/docs/101609255/On-the-calculation-of-PSNR-and-bit-rate-differences-for-the-SVT-test
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The average PSNR and bit rates correlate very closely between the two encoders, 
indicating that the BD-PSNR value achieved using polynomial interpolation would not be 
an accurate representation of the quality difference between the two encoders.

Additionally, BD-PSNR does not consider the coding complexity, which is a critical 
problem for practical video applications, especially for those on handheld devices whose 
computational capability, memory, and power supply are all limited. Such limitations 
are addressed by considering a generalized BD-PSNR metric that includes complexity in 
addition to rate and distortion. The generalized metric is presented in the next section.

Generalized BD-PSNR

The Generalized BD-PSNR26 (GBD-PSNR) is a coding efficiency measure developed by 
generalizing BD-PSNR from R-D curve fitting to rate-complexity-distortion (R-C-D) 
surface fitting. GBD-PSNR involves measurement of coding complexity, R-C-D surface 
fitting, and the calculation of differential PSNR between two R-C-D surfaces.

In general, coding complexity is multi-dimensional and requires consideration of 
several factors, including the computational complexity measured by executing time 
or machine cycles, data cache size, memory access bandwidth, storage complexity, 
instruction cache size, parallelism, and pipelining. However, in practice, it is difficult to 
simultaneously account for all these dimensions. A widely used alternative is the coding 
time on a given platform. Not only does it indicate the computational complexity, but 
it also partially reflects the contributions from other complexity dimensions such as 
memory access in the coding process.

Figure 4-15.  Polynomial interpolation issue in R-D curves

26X. Li, M. Wien, and J.-R. Ohm, “Rate-Complexity-Distortion Evaluation for Hybrid Video 
Coding,” Proceedings of IEEE International Conference on Multimedia and Expo, (July 2010): 
685–90.
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In order to perform R-C-D surface fitting, the R-C-D function is defined as follows: 

Definition 4-1. The rate-complexity-distortion function 
D(R, C) is the infimum of distortion D such that the rate-
complexity-distortion triplet (R, C, D) is in the achievable 
rate-complexity-distortion region of the source for a given rate-
complexity pair (R, C).

Therefore, D(R, C) is non-increasing about R and C, respectively. Similar to convex 
R-D function, the R-C-D function is convex as well. Based on these properties, D(R, C) 
can be approximated using an exponential model. To obtain a good tradeoff between 
accuracy and fitting complexity while keeping backward compatibility with  
BD-PSNR, D(R, C) is approximated as:

D R C a r a r a r a a c a c( , ) = + + + + +0
3

1
2

2 3 4
2

5 	 (Equation 4-26)

where, a
0
, . . . , a

5
 are fitting parameters, r = log(r), c = log(C), R is the output bit rate, C is the 

coding complexity, and D is the distortion in terms of PSNR. To fit an R-C-D surface with 
this equation, at least six (R, C, D) triplets from actual coding are necessary. However, in 
practice, a higher number of (R, C, D) triplets will lead to a better accuracy. Typically 20 
data points are used to fit such a surface.

Similar to BD-PSNR, the average differential PSNR between two R-C-D surfaces can 
be calculated as:
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where DP
GBD

 is the GBD-PSNR, D
1
(r, c) and D
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(r, c) are the two fitting functions for the 

two R-C-D surfaces, r
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, and C

L
 which 

bound the overlapped R-C region from the actual coding results.
Due to the complexity nature of some algorithms, the two R-C-D surfaces may have 

no R-C intersection. In this extreme case, the GBD-PSNR is undefined.

Limitations
The dynamic range of coding complexity covered by GBD-PSNR is sometimes limited. 
This happens when the coding complexity of the two encoders are so different that there 
is only a relatively small overlapped region by the two R-C-D surfaces.

Also, the coding complexity is platform and implementation dependent. Although 
GBD-PSNR shows a good consistency over different platforms, slightly different  
GBD-PSNR value may still be obtained on different platforms.

Examples of Standards-based Measures
There are a few objective quality measures based on the ITU-T standards.
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Video Quality Metric

The video quality metric (VQM)27 is an objective measurement for perceived video 
quality developed at the National Telecommunications and Information Administration 
(NTIA). Owing to its excellent performance in the VQEG Phase 2 validation tests, the 
VQM methods were adopted by the American National Standards Institute (ANSI) as a 
national standard, and by ITU as ITU-T Rec. J. 144.28 The VQM measures the perceptual 
effects of video impairments, including blurring, jerkiness, global noise, block distortion, 
and color distortion, and combines them into a single metric. The testing results show 
that VQM has a high correlation with subjective video quality assessment.

The algorithm takes a source video clip and a processed video clip as inputs and 
computes the VQM in four steps:

1.	 Calibration: In this step the sampled video is calibrated in 
preparation for feature extraction. The spatial and temporal 
shift, the contrast and the brightness offset of the processed 
video are estimated and corrected with respect to the  
source video.

2.	 Quality Features Extraction: In this step, using a mathematical 
function, a set of quality features that characterize perceptual 
changes in the spatial, temporal, and color properties are 
extracted from spatio-temporal subregions of video streams.

3.	 Quality Parameters Calculation: In this step, a set of quality 
parameters that describe perceptual changes in video quality 
are computed by comparing the features extracted from the 
processed video with those extracted from the source video.

4.	 VQM Calculation: VQM is computed using a linear 
combination of parameters calculated from the  
previous steps.

VQM can be computed using various models based on certain optimization criteria. 
These models include television model, video conferencing model, general model, 
developer model, and PSNR model. The general model uses a linear combination of 
seven parameters. Four of these parameters are based on features extracted from spatial 
gradients of the luma component, two parameters are based on features extracted from 
the vector formed by the two chroma components, and the last parameter is based on 
contrast and absolute temporal information features, both extracted from the luma 
component. Test results show a high correlation coefficient of 0.95 between subjective 
tests and the VQM general model (VQMG).27

27M. Pinson, and S. Wolf, “A New Standardized Method for Objectively Measuring Video Quality,” 
IEEE Transactions on Broadcasting 50, no. 3 (September 2004): 312–22.
28ITU-T Recommendation J.144: Objective Perceptual Video Quality Measurement Techniques for 
Digital Cable Television in the Presence of a Full Reference (Geneva, Switzerland: International 
Telecommunications Union, 2004).
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ITU-T G.1070 and G.1070E

The ITU Recommendation G.107029 is a standard computational model for quality of 
experience (QoE) planning. Originally developed for two-way video communication, 
G.1070 model has been widely used, studied, extended, and enhanced. In G.1070, the 
visual quality model is based on several factors, including frame rate, bit rate, and packet-
loss rate. For a fixed frame rate and a fixed packet-loss rate, a decrease in bit rate would 
result in a corresponding decrease in the G.1070 visual quality. However, a decrease in 
bit rate does not necessarily imply a decrease in quality. It is possible that the underlying 
video content is of low complexity and easy to encode, and thus results in a lower bit rate 
without corresponding quality loss. G.1070 cannot distinguish between these two cases.

Given assumptions about the coding bit rate, the frame rate, and the packet-loss rate, 
the G.1070 video quality estimation model can be used to generate an estimate, typically 
in the form of a quality score, of the perceptual quality of the video that is delivered to 
the end user. This score is typically higher for higher bit rates of compressed videos, and 
lower for lower bit rates of compressed videos.

To calculate the G.1070 visual quality estimate, a typical system includes a data 
collector or estimator that is used to analyze the encoded bitstream, extract useful 
information, and estimate the bit rate, frame rate, and packet-loss rate. From these 
three estimates, a G.1070 Video Quality Estimator computes the video quality estimate 
according to a function defined in Section 11.2 of Rec. G.1070.

Although the G.1070 model is generally suitable for estimating network-related 
aspects of the perceptual video quality, such as the expected packet-loss rate, information 
about the content of the video is generally not considered. For example, a video scene 
with a complex background and a high level of motion, and another scene with relatively 
less activity or texture, may have dramatically different perceived qualities even if they are 
encoded at the same bit rate and frame rate. Also, the coding bit rate required to achieve 
high-quality coding of an easy scene may be relatively low. Since the G.1070 model 
generally gives low scores for low-bit-rate videos, this model may unjustifiably penalize 
such easy scenes, notwithstanding the fact that the perceptual quality of that video scene 
may actually be high. Similarly, the G.1070 score can overestimate the perceptual quality 
of video scenes. Thus, the G.1070 model may not correlate well with subjective quality 
scores of the end users.

To address such issues, a modified G.1070 model, called the G.1070E was 
introduced.30 This modified model takes frame complexity into consideration, and 
provides frame complexity estimation methods. Based on the frame complexity, bit-rate 
normalization is then performed. Finally, the G.1070 Video Quality Estimator uses the 
normalized bit rate along with the estimated frame rate and packet-loss rate to yield the 
video quality estimate.

29ITU-T Recommendation G.1070: Opinion Model for Video-Telephony Applications (Geneva, 
Switzerland: International Telecommunications Union, 2012).
30B. Wang, D. Zou, R. Ding, T. Liu, S. Bhagavathi, N. Narvekar, and J. Bloom, “Efficient Frame 
Complexity Estimation and Application to G.1070 Video Quality Monitoring,” Proceedings of 2011 
Third International Workshop on Quality of Multimedia Experience (2011): 96–101.
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The G.1070E is a no-reference compressed domain objective video-quality 
measurement model. Experimental results show that the G.1070E model yields a higher 
correlation with subjective MOS scores and can reflect the quality of video experience 
much better than G.1070.

ITU-T P.1202.2

The ITU-T P.1202 series of documents specifies models for monitoring the video 
quality of IP-based video services based on packet-header and bitstream information. 
Recommendation ITU-T P.1202.231 specifies the algorithmic model for the higher-resolution 
application area of ITU-T P.1202. Its applications include the monitoring of performance 
and quality of experience (QoE) of video services such as IPTV. The Rec. P.1202.2 and has 
two modes: Mode 1, where the video bitstreams are parsed and not decoded into pixels, 
and Mode 2, where the video bitstreams are fully decoded into pixels for analyzing.

The Rec. P.1202.2 is a no-reference video-quality metric. An implementation of the 
algorithm has the following steps:

1.	 Extraction of basic parameters such as frame resolution, frame 
level quantization parameter, frame size, and frame number.

2.	 Aggregation of basic parameters into internal picture level to 
determine frame complexity.

3.	 Aggregation of basic parameters into model level to obtain 
video sequence complexity, and quantization parameter at 
the video sequence level.

4.	 Quality estimation model to estimate the MOS as:

P MOS f frame QP frame resolution frame size frame numbe. . ( , , ,1202 2 = rr)  

(Equation 4-28)

Studies have found that the P.1202.2 algorithm’s estimated MOS has similar Pearson 
linear correlation coefficient and Spearman ranked order correlation coefficient to VQEG 
JEG’s (Joint Effort Group) estimated MOS, which uses the following linear relationship:32

VQEG JEG MOS frame QP= - ´ +0 172 9 249. . 	 (Equation 4-29)

However, both of these results are worse than MS-SSIM. It is also found that P.1202.2 
does not capture compression artifacts well.

31ITU-T Recommendation P.1202.2: Parametric Non-intrusive Bitstream Assessment of Video Media 
Streaming Quality – Higher Resolution Application Area (Geneva, Switzerland: International 
Telecommunications Union, 2013).
32L. K. Choi, Y. Liao, B. O'Mahony, J. R. Foerster, and A. C. Bovik, “Extending the Validity Scope 
of ITU-T P.1202.2,” in Proceedings of the 8th International Workshop on Video Processing and 
Quality Metrics for Consumer Electronics (Chandler, AZ: VPQM, 2014), retrieved from  
www.vpqm.org.

http://www.vpqm.org/
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Therefore, an improved FR MOS estimator is proposed based on MS-SSIM. 
In particular, an MS-SSIM-based remapping function is developed. The resulting 
estimated MOS is a function of MS-SSIM and the frame parameters, such as frame level 
quantization parameter, frame size, frame type, and resolution. The algorithm first 
performs devices and content analysis, followed by spatial complexity computation.

Then, a non-linear model fitting is performed using logistic function. These results, 
along with the MS-SSIM values, are provided to the MOS estimator to calculate the 
estimated MOS. Experimental results show that for a set of tests, the estimated MOS has 
a Pearson correlation coefficient >0.9 with MOS, which is much better than that given by 
MS-SSIM (0.7265).

Measurement of Video Quality
We elaborate on important considerations for video quality measurement, for both 
subjective and objective measurements. Further, for clarity we discuss the objective 
measurements from typical application point of view.

Subjective Measurements
The metrics used in subjective measurement are MOS and DMOS. However, after 
obtaining the raw scores, they cannot be directly used. To eliminate bias, the following 
measurement procedure is generally used.

Let s
ijk

 denote the score assigned by subject i to video j in session k. Usually, two 
sessions are held. In the processing of the raw scores, difference scores d

ijk
 are computed 

per session by subtracting the quality assigned by the subject to a video from the quality 
assigned by the same subject to the corresponding reference video in the same session. 
Computation of difference scores per session helps account for any variability in the use 
of the quality scale by the subject between sessions. The difference scores are given as:

d s sijk ijk ij k= - ref . 	 (Equation 4-30)

The difference scores for the reference videos are 0 in both sessions and are 
removed. The difference scores are then converted to Z-scores per session:
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z dijk ijk ik ik= - m s 	 (Equation 4-33)

where N
ik

 is the number of test videos seen by subject i in session k.
Every subject sees each test video in the database exactly once, either in the first 

session or in the second session. The Z-scores from both sessions are then combined to 
create a matrix {z

ij
}. Scores from unreliable subjects are discarded using the procedure 

specified in the ITU-R BT.500-13 recommendation.
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The distribution of the scores is then investigated. If the scores are normally 
distributed, the procedure rejects a subject whenever more than 5 percent of scores 
assigned by that subject fall outside the range of two standard deviations from the mean 
scores. If the scores are not normally distributed, the subject is rejected whenever more 
than 5 percent of his scores fall outside the range of 4.47 standard deviations from the 
mean scores. However, in both situations, subjects who are consistently pessimistic or 
optimistic in their quality judgments are not eliminated.

The Z-scores are then linearly rescaled to lie in the range [0,100]. Finally, the DMOS 
of each video is computed as the mean of the rescaled Z-scores from the remaining 
subjects after subject rejection.

Objective Measurements and Their Applications
Objective measurements are very useful in automated environments—for example, in 
automated quality comparison of two video encoder solutions. Figure 4-16 shows the 
block diagram of a typical encoder comparison setup using full-reference objective 
video-quality metrics.

Figure 4-16.  An example of a typical encoder comparison setup using FR objective  
quality metrics

Several factors need to be considered for such an application using full reference 
objective video quality metrics:

The source and distorted videos need to be aligned in time so that •	
the same video frame is compared for quality.

The same decoder implementation should be used, eliminating •	
any measurement variability owing to the decoding process.
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To ensure a fair comparison, the encoder parameters must be the •	
same or as close as possible.

No pre-processing is assumed before the encoding process. •	
Although it is possible to use a pre-processing step before each 
encoder, in that case the same pre-processor must be used.

Notice that such a setup can take advantage of automation and use an enormous set 
of video clips for comparison of different encoder implementations, thus exposing the 
strengths and weaknesses of each encoder under various workload complexities. Such 
source comparisons without considering network or channel errors are ideal for a fair 
comparison. However, in practical applications, such as mobile video recording using two 
different devices, where the recorded videos are stored and decoded before computing 
objective quality metrics, quality comparison should be done in similar environments as 
much as possible. For example, in wireless network environment, the packet-loss rate or 
bit-error rate should be similar.

Objective measures are also extensively used to determine frame drops in video 
applications. For example, as the (distorted) video is consumed, frame drops can be 
detected if the PSNR between the source and the distorted video is tracked frame by 
frame. In low-distortion environments, the consumed video would reasonably match the 
source; so the PSNR would also be a typical number (e.g., 25–40 dB) depending on the 
lossy characteristics of the various channels that introduce errors. However, in case of a 
frame drop, the wrong frame would be compared against the source, and a very low PSNR 
would be obtained, indicating the frame drop. This effect is exaggerated when the video 
contains frequent scene changes.

The same concept can be applied to detect sudden low-quality frames with 
corruption or other artifacts in a video. Such corruption can happen owing to network 
errors or encoder issues. But a sudden drop in PSNR or other objective measures can 
indicate the location of the corruption in the video in an automated environment.

Parameters to Tune
In visual communication applications, video codecs are one of the main sources of 
distortions. Since video decoders must follow certain specifications as defined by 
various standards, decoders generally do not significantly contribute to video-quality 
degradation. However, encoders are free to design and implement algorithms to control 
the amount of compression and thereby the amount of information loss depending 
on various considerations for system resources, application requirements, and the 
application environment. Therefore, in the video-encoding applications, there are several 
parameters that dictate the amount of information loss and thus influence the final video 
quality. Some of these parameters are adjustable at the algorithm level by the system 
architects; some are tunable by the implementors, while few parameters are usually 
available to the users for tuning.
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Parameters that Impact Video Quality
It is very important to understand the impact of the following parameters on final visual 
quality, particularly for benchmarking, optimization, or comparative analysis of the video 
encoding solutions.

•	 Number of lines in the vertical display resolution: High-
definition television (HDTV) resolution is 1,080 or 720 lines. In 
contrast, standard-definition digital television (DTV) is 480 lines 
(for NTSC, where 480 out of 525 scanlines are visible) or 576 lines 
(for PAL/SECAM, where 576 out of 625 scanlines are visible). 
For example, the so-called DVD quality is standard definition, 
while Blu-ray discs are high definition. An encoder may choose 
to reduce the resolution of the video as needed, depending on 
the available number of bits and the target quality level. However, 
recent encoders typically process the full resolution of video in 
most applications.

•	 Scanning type: Digital video uses two types of image scanning 
pattern: progressive scanning or interlaced scanning. Progressive 
scanning redraws all the lines of a video frame when refreshing 
the frame, and is usually denoted as 720p or 1080p, for example. 
Interlaced scanning draws a field—that is, every other line of the 
frame at a time—so the odd numbered lines are drawn during the 
first refresh operation and then the remaining even numbered 
lines are drawn during a second refreshing. Thus, the interlaced 
refresh rate is double that of the progressive referesh rate. 
Interlaced scanned video is usually denoted as 480i or 1080i, for 
example.

Movement of object makes a difference in perceived quality of 
interlaced scanned video. On a progressively scanned display, 
interlaced video yields better quality for still objects in frames 
owing to the higher refresh rate, but loses up to half of the 
resolution and suffers combing artifacts when objects in a frame 
is moving. Note that combing artifacts only occur when two fields 
are woven together to form a single frame and then displayed 
on a progressive display. Combing artifacts do not occur when 
interlaced content is shown on an interlaced display and when 
different deinterlacing algorithms such as bob are used for display 
on progressive monitors.

In practice, two interlaced fields formulate a single frame because 
the two fields consisting of the odd and even lines of one frame 
are temporally shifted. Frame pulldown and segmented frames 
are special techniques that allow transmitting full frames by 
means of interlaced video stream. For appropriate reconstruction 
and presentation at the receiving end of a transmission system, 
it is necessary to track whether the top or bottom field is 
transmitted first.
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•	 Number of frames or fields per second (Hz): In Europe, 
50 Hz television broadcasting system is more common, while 
in the United States, it is 60 Hz. The well-known 720p60 format 
is 1280×720 pixels, progressive encoding with 60 frames per 
second (60 Hz). The 1080i50/1080i60 format is 1920×1080 pixels, 
interlaced encoding with 50/60 fields, (50/60 Hz) per second. 
If the frame/field rate is not properly maintained, there may 
be visible flickering artifact. Frame drop and frame jitter are 
typical annoying video-quality issues resulting from frame-rate 
mismanagement.

•	 Bit rate: The amount of compression in digital video can be 
controlled by allocating a certain number of bits for each second’s 
worth of video. The bit rate is the primary defining factor of 
video quality. Higher bit rate typically implies higher quality 
video. Efficient bit allocation can be done by taking advantage 
of skippable macroblocks and is based on the spatio-temporal 
complexity of macroblocks. The amount of quantization is also 
determined by the available bit rate, thereby highly impacting the 
blocking artifact at transform block boundaries.

•	 Bit-rate control type: The bit-rate control depends on certain 
restrictions of the transmission system and the nature of the 
application. Some transmission systems have fixed channel 
bandwidth and need video contents to be delivered at a constant 
bit rate (CBR), while others allow a variable bit rate (VBR), where 
the amount of data may vary per time segment. CBR means 
the decoding rate of the video is constant. Usually a decoding 
buffer is used to keep the decoded bits until a frame’s worth of 
data is consumed instantaneously. CBR is useful in streaming 
video applications where, in order to meet the requirement of 
fixed number of bits per second, stuffing bits without useful 
information may need to be transmitted.

VBR allows more bits to be allocated for the more complex 
sections of the video, and fewer bits for the less complex sections. 
The user specifies a given subjective quality value, and the encoder 
allocates bits as needed to achieve the given level of quality. 
Thus a more perceptually consistent viewing experience can be 
obtained using VBR. However, the resulting compressed video still 
needs to fit into the available channel bandwidth, necessitating a 
maximum bit rate limit. Thus, the VBR encoding method typically 
allows the user to specify a bit-rate range indicating a maximum 
and/or minimum allowed bit rate. For storage applcations, VBR is 
typically more appropriate compared to CBR.

In addition to CBR and VBR, the average bit rate (ABR) encoding 
may be used to ensure the output video stream achieves a 
predictable long-term average bit rate.
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•	 Buffer size and latency: As mentioned above, the decoding 
buffer temporarily stores the received video as incoming bits that 
may arrive at a constant or variable bit rate. The buffer is drained 
at specific time instants, when one frame’s worth of bits are taken 
out of the buffer for display. The number of bits that are removed 
is variable depending on the frame type (intra or predicted 
frame). Given that the buffer has a fixed size, the bit arrival rate 
and the drain rate must be carefully maintained such that the 
buffer does not overflow or be starved of bits. This is typically 
done by the rate control mechanism that governs the amount of 
quantization and manages the resulting frame sizes. If the buffer 
overflows, the bits will be lost and one or more frames cannot be 
displayed, depending on the frame dependency. If it underflows, 
the decoder would not have data to decode, the display would 
continue to show the previously displayed frame, and decoder 
must wait until the arrival of a decoder refresh signal before the 
situation can be corrected. There is an initial delay between 
the time when the buffer starts to fill and the time when the 
first frame is taken out of the buffer. This delay translates to the 
decoding latency. Usually the buffer is allowed to fill at a  
level between 50 and 90 percent of the buffer size before the 
draining starts.

•	 Group of pictures structure: The sequence of dependency of 
the frames is determined by the frame prediction structure. 
Recall from Chapter 2 that intra frames are independently coded, 
and are usually allocated more bits as they typically serve as 
anchor frames for a group of pictures. Predicted and bi-predicted 
frames are usually more heavily quantized, resulting in higher 
compression at the expense of comparatively poor individual 
picture quality. Therefore, the arrangement of the group of picture 
is very important. In typical broadcast applications, intra frames 
are transmitted twice per second. In between two intra frames, 
the predicted and bi-predicted frames are used so that two bi-
predicted frames are between the predicted or intra reference 
frames. Using more bi-predicted frames does not typically 
improve visual quality, but such usage depends on applications. 
Note that, in videos with rapidly changing scenes, predictions 
with long-term references are not very effective. Efficient 
encoders may perform scene analysis before determining the 
final group of pictures structure.

•	 Prediction block size: Intra or inter prediction may be performed 
using various block sizes, typically from 16×16 down to 4×4. For 
efficient coding, suitable sizes must be chosen based on the 
pattern of details in a video frame. For example, an area with finer 
details can benefit from smaller prediction block sizes, while a flat 
region may use larger prediction block sizes.
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•	 Motion parameters: Motion estimation search type, search area, 
and cost function play important roles in determining visual quality. 
A full search algorithm inspects every search location to find the 
best matching block, but at the expense of very high computational 
complexity. Studies have suggested that over 50 percent of the 
encoding computations are spent in the block-matching process. 
The number of computations also grows exponentially as the search 
area becomes larger to capture large motions or to accommodate 
high-resolution video. Further, the matching criteria can be selected 
from techniques such as sum of absolute difference (SAD) and sum 
of absolute transformed differences (SATD). Using SATD as the 
matching criteria provides better video quality at the expense of 
higher computational complexity.

•	 Number of reference pictures: For motion estimation, one or 
more reference pictures can be used from lists of forward or 
backward references. Multiple reference pictures increase the 
probability of finding a better match, so that the difference signal 
is smaller and can be coded more efficiently. Therefore, the 
eventual quality would be better for the same overall number of 
bits for the video. Also, depending on the video content, a frame 
may have a better match with a frame that is not an immediate or 
close neighbor. This calls for long-term references.

•	 Motion vector precision and rounding: Motion compensation 
can be performed at various precision levels: full-pel, half-pel, 
quarter-pel, and so on. The higher the precision, the better the 
probability of finding the best match. More accurate matching 
results in using fewer bits for coding the error signal, or 
equivalently, using a finer quantization step for the same number 
of bits. Thus quarter-pel motion compensation provides better 
visual quality for the same number of bits compared to full-pel 
motion compensation. The direction and amount of rounding 
are also important to keep sufficient details of data, leading to 
achieving a better quality. Rounding parameters usually differ 
based on intra or inter type of prediction blocks.

•	 Interpolation method for motion vectors: Motion vector 
interpolation can be done using different types of filters. Typical 
interpolation methods employ a bilinear, a 4-tap, or a 6-tap filter. 
These filters produce different quality of the motion vectors, 
which leads to differences in final visual quality. The 6-tap filters 
generally produce the best quality, but are more expensive in 
terms of processing cycles and power consumption.
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•	 Number of encoding passes: Single-pass encoding analyzes and 
encodes the data on the fly. It is used when the encoding speed is 
most important—for example, in real-time encoding applications. 
Multi-pass encoding is used when the encoding quality is 
most important. Multi-pass encoding, typically implemented 
in two passes, takes longer than single-pass, as the input data 
goes through additional processing in each pass. In multi-pass 
encoding, one or more initial passes are used to collect the video 
characteristics data, and a final pass uses that data to achieve 
uniform quality at a specified target bit rate.

•	 Entropy coding type: Entropy coding type such as CABAC or 
CAVLC does not generally impact video quality. However, if there 
is a bit-rate limit, owing to the higher coding efficiency, CABAC 
may yield better visual quality, especially for low-target bit rates.

Tradeoff Opportunities
Video encoders usually have tunable parameters to achieve the best possible quality or 
the best possible encoding speed for that encoder. Some parameters allow the encoder 
to analyze the input video and collect detailed information of the characteristics of the 
input video. Based on this information, the encoder makes certain decisions regarding 
the amount of compression to perform or the encoding mode to be used. Often, 
multiple passes are used for the analysis and subsequent encoding. Thus, the encoder 
is able to compress the video efficiently and achieve the best possible quality for the 
given algorithm. However, such analysis would require time and would slow down the 
encoding process. Further, the analysis work would increase the power consumption of 
the encoding device. Therefore, sometimes tuning of the certain parameters to adapt to 
the given video characteristics is not attempted in order to increase performance, or to 
meet system resource constraints. Rather, these parameters use pre-defined values for this 
purpose, thereby reducing analysis work and aiming to achieve the best possible speed.

Most of the parameters mentioned in the above section that affect visual quality 
also affect the encoding speed. To achieve a good tradeoff between quality and speed 
for a given video encoder, several parameters can be tuned. Although not all parameters 
listed here are tunable by the end user, depending on the encoder implementation, some 
parameters may be exposed to the end-user level.

•	 Bit rate, frame rate, resolution: Videos with high bit rate, 
frame rate, and resolution usually take longer to encode, but 
they provide better visual quality. These parameters should be 
carefully set to accommodate the application requirement. For 
example, real-time requirements for encode and processing may 
be met on a certain device with only certain parameters.

•	 Motion estimation algorithm: There are a large number of  
fast-motion estimation algorithms available in the literature, all of 
which are developed with a common goal: to increase the speed 
of motion estimation while providing reasonable quality. Since 
motion estimation is the most time-consuming part of video 
encoding, it is very important to choose the algorithm carefully.
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•	 Motion search range: For best quality, the motion search 
range should be set to a high value so that large motions can be 
captured. On the other hand, the larger the search window, the 
more expensive is the search in terms of amount of computation 
to be done. So, a large search area directly impacts the 
encoding speed, memory bandwidth, frame latency, and power 
consumption. In addition, the large motion vectors would require 
more bits to encode. If the difference signal between a source 
block and the predicted block has substantial energy, it may be 
worthwhile to encode the block in intra-block mode instead of 
using the large motion vectors. Therefore, a tradeoff needs to be 
made between the search parameters and coding efficiency in 
terms of number of bits spent per decibel of quality gain.

•	 Adaptive search: To achieve better quality, often the motion 
search algorithms can adapt to the motion characteristics of 
the video and can efficiently curb the search process to gain 
significant encoding speed. For example, in order to accelerate 
motion search, an algorithm can avoid searching the stationary 
regions, use switchable shape search patterns, and take advantage 
of correlations in motion vectors. Thus, encoding speed can be 
increased without resorting to suboptimal search and without 
sacrificing visual quality.

•	 Prediction types: Predicted and bi-predicted frames introduce 
various levels of computational complexity and generally 
introduce visual quality loss in order to achieve compression. 
However, they also provide visually pleasing appearance of 
smooth motion. Therefore, prediction type of a frame is an 
important consideration in tradeoffs between quality and 
encoding speed.

•	 Number of reference frames: Mutiple reference frames can 
provide better visual quality than single reference frames, but 
computing motion vectors from multiple references are more 
time-consuming. In resource constrained environment, such 
parameters are important factors in tradeoff considerations.

•	 Transform mode and partition size: A block may use 8×8 or 
4×4 sizes for the transform and various partition sizes for the 
prediction. On some platforms, processing four 4×4 blocks may 
be slower than processing one 8×8 block. However, depending 
on the amount of details available in the video, such decision 
may impact the visual quality, as 4×4 partitions have better 
adaptability to finer details.
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•	 Skip conditions: A block can be skipped if it meets certain 
criteria. Better skip decisions can be made based on analysis of 
the quantized transform coefficients characteristics compared to 
simple heuristics, resulting in better quality. But a large amount of 
computation is necessary to adopt such complex algorithms. It is 
a clear tradeoff opportunity for resource-constrained devices.

•	 Deblocking filter parameters: Encoding speed is usually 
sensitive to deblocking filter parameters. Performing strong 
deblocking slows the encoding, but depending on the content 
and the amount of blocking artifact, it may provide significantly 
better visual quality.

Summary
This chapter discussed visual quality issues and factors impacting the perceptual quality 
of video to a human observer. First, we studied the various compression and processing 
artifacts that contribute to visual quality degradation, and various factors that affect  
visual quality in general. Next, we discussed various subjective and objective quality 
evaluation methods and metrics with particular attention to various ITU-T standards.  
We discussed several objective quality evaluation approaches in detail. These approaches 
are based on various factors: error-sensitivity, structural similarity, information fidelity, 
spatio-temporal, saliency, network awareness, and noise. We also discussed video coding 
efficiency evaluation metrics and some examples of standard-based algorithms.

In the final part of this chapter, we covered about the encoding parameters 
that primarily impact video quality. Tuning some parameters offer good tradeoff 
opportunities beween video quality and compression speed. These include bit rate, frame 
rate, resolution, motion estimation parameters, Group of Pictures structure, number of 
reference frames, and deblocking filter parameters. Some of these parameters may be 
available to the end user for tuning.
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Chapter 5

Video Coding Performance

During the period between the 1980s to early 2000s, desktop PCs were the main 
computing platforms, with separate components such as the CPU, chipset, and discrete 
graphics cards. In this period, integrated graphics was at its infancy starting with the 
Intel (R) 810 (TM) chipset, mainly targeting the low-cost market segment, and power 
consumption was not typically a concern. CPU speed was the overarching differentiator 
between one generation of platforms and the next. Consequently, when the  
micro-architecture of a CPU was being designed, one of the key questions was how to 
achieve higher performance. The traditional way to achieve that was to keep increasing 
the clock speed. However, growth in transistor speed had been approaching its physical 
limits, and this implied that the processor clock speed could not continue to increase.  
In the past few years, the maximum CPU speeds for desktops and tablets began to plateau 
and are now ranging between 3—3.5 and 1.5—2 GHz, respectively. With the advent of 
platforms with smaller form factors, keeping the processor frequency limited has become 
the new norm, while focus has shifted toward lowering the system power consumption 
and toward more efficient utilization of available system resources.

Digital video applications require huge amounts of processing. Additionally, real-time 
processing and playback requirements mandate certain capabilities and performance 
levels from the system. Only a couple of decades ago, real-time video encoding was 
possible only by using high-performance, special-purpose hardware or massively parallel 
computing on general-purpose processors, primarily in noncommercial academic 
solutions. Both hardware and software needed careful performance optimization and 
tuning at the system and application level to achieve reasonable quality in real-time video. 
However, with the tremendous improvement in processor speed and system resource 
utilization in recent years, encoding speed at higher orders of magnitude, with even better 
quality, can be achieved with today’s processors.
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This chapter starts with a brief discussion of CPU clock speed and considers why 
indefinite increases in clock speed are impractical. The discourse then turns to motivations 
for achieving high video coding speed, and the tradeoffs necessary to achieve such 
performance. Then we discuss the factors affecting encoding speed, performance bottlenecks 
that can be encountered, and approaches to optimization. Finally, we present various 
performance-measurement considerations, tools, applications, methods, and metrics.

CPU Speed and its Limits
The following are the major reasons the CPU clock speed cannot continue to increase 
indefinitely:

High-frequency circuits consume power at a rate that increases •	
with frequency; dissipating that heat becomes impossible at a 
certain point. In 2001, Intel CTO Pat Gelsinger predicted, “Ten 
years from now, microprocessors will run at 10 GHz to 30 GHz.”  
But for their proportional size, “these chips will produce as much 
heat as a nuclear reactor.”1 Heat dissipation in high-frequency  
circuits is a fundamental problem with normal cooling 
technologies, and indefinite increases in frequency is not feasible 
from either economic or engineering points of view.

Contemporary power-saving techniques such as clock gating and •	
power gating do not work with high-frequency circuits. In clock 
gating, a clock-enable is inserted before each state element such 
that the element is not clocked if the data remains unchanged. 
This saves significant charge/discharge that would be wasted 
in writing the same bit, but it introduces an extra delay into 
the critical clock path, which is not suitable for high-frequency 
design. In power gating, large transistors act as voltage sources for 
various functional blocks of the processor; the functional blocks 
can potentially be turned off when unused. However, owing to 
the extra voltage drop in power-gating transistors, the switching 
speed slows down; therefore, this technique is not amenable to 
high-frequency design, either.

Transistors themselves have reached a plateau in speed. While •	
transistors are getting smaller, they are not getting much faster. To 
understand why, let’s consider the following fact from electronics: 
a thinner gate dielectric leads to a stronger electric field across 
the transistor channel, enabling it to switch faster. A reduction in 
transistor gate area means that the gate could be made thinner 
without adversely increasing the load capacitance necessary to 
charge up the control node to create the electric field. However, 

1M. Kanellos, “Intel CTO: Chip heat becoming critical issue,” CNET News, February 5, 2001. Available 
at news.cnet.com/Intel-CTO-Chip-heat-becoming-critical-issue/2100-1040_3-252033.html.

http://news.cnet.com/Intel-CTO-Chip-heat-becoming-critical-issue/2100-1040_3-252033.html
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at 45 nm process technology, the gate dielectric was already 
approximately 0.9 nm thick, which is about the size of a single 
silicon-dioxide molecule. It is simply impossible to make this any 
thinner from the same material. With 22 nm, Intel has made use 
of the innovative tri-gate technology to combat this limitation. 
Further, changing the gate dielectric and the connection material 
helped increase the transistor speed but resulted in an expensive 
solution. Basically, the easy scaling we have had in the 1980s and 
1990s, when every shrink in transistor size would also lead to 
faster transistors, is not available anymore.

Transistors are no longer the dominant factor in processor •	
speed. The wires connecting these transistors are becoming the 
most significant delay factor. As transistors become smaller, the 
connecting wires become thinner, offering higher resistances and 
allowing lower currents. Given the fact that smaller transistors 
are able to drive less current, it is easy to see that the circuit path 
delay is only partially determined by transistor switching speed. 
To overcome this, attempts are made during chip design to route 
the clock and the data signal on similar paths, thus obtaining 
about the same travel time for these two signals. This works 
effectively for data-heavy, control-light tasks such as a fixed-
function video codec engine. However, the design of general-
purpose microprocessors is complex, with irregular interactions 
and data travels to multiple locations that do not always follow 
the clock. Not only are there feedback paths and loops but there 
are also control-heavy centralized resources such as scheduling, 
branch prediction, register files, and so on.  Such tasks can be 
parallelized using multiple cores, but thinner wires are required 
when processor frequencies are increased.

Motivation for Improvement
In the video world, performance is an overloaded term. In some literature, encoder 
performance refers to the compression efficiency in terms of number of bits used to 
obtain certain visual quality level. The average bit rate savings of the test encoder 
compared to a reference encoder is reckoned as the objective coding performance 
criterion. Examples of this approach can be found in Nguen and Merpe2 and Grois et al.3 
From another view, encoder performance means the encoding speed in frames per 

2T. Nguen and D. Marpe, “Performance Analysis of HEVC-Based Intra Coding for Still Image 
Compression,” in Proceedings of 2012 Picture Coding Symposium (Krakow, Poland: IEEE, 2012), 233–36.
3D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar, “Performance Comparison of H.265/
MPEG-HEVC, VP9, and H.264/MPEG-AVC Encoders,” in Proceedings of the 30th Picture Coding 
Symposium (San Jose, CA: IEEE, 2013), 394–97. Although this paper mentions software run 
times in addition to bit rate savings, the encoder implementations are not optimized and cannot be 
objectively compared.
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second (FPS). In this book, we adopt this latter meaning. We also note that FPS may be 
used for different purposes. A video clip generally has an associated frame rate in terms 
of FPS (e.g., 24 or 30 FPS), which means that the clip is supposed to be played back in real 
time (i.e., at that specified FPS) to offer the perception of smooth motion. However, when 
the compressed video clip is generated, the processing and compression tasks can be 
carried out many times faster than real time; this speed, also expressed in FPS, is referred 
to as the encoding speed or encoder performance. Note that in some real-time applications 
such as video conferencing, where the video frames are only consumed in real time, an 
encoding speed faster than real time is not necessary but is sufficient, as faster processing 
allows the processor to go to an idle state early, thereby saving power.

However, there are several video applications and usages where faster than real-time 
processing is desirable. For example: 

Long-duration video can be compressed in a much shorter time. •	
This is useful for video editors, who typically deal with a large 
amount of video content and work within specified time limits.

Video archiving applications can call for compressing and storing •	
large amount of video, and can benefit from fast encoding.

Video recording applications can store the recorded video in •	
a suitable compressed format; the speedy encoding allows 
concurrently running encoding and/or non-encoding tasks to 
share processing units.

Converting videos from one format to another benefits from fast •	
encoding. For example, several DVDs can be simultaneously 
converted from MPEG-2 to AVC using popular video coding 
applications such as Handbrake.

Video transcoding for authoring, editing, uploading to the •	
Internet, burning to discs, or cloud distribution can take 
advantage of encoding as fast as possible. In particular, by using 
multiple times faster than real-time encoding, many cloud-
based video distribution-on-demand services can serve multiple 
requests simultaneously while optimizing the network bandwidth 
by packaging together multiple bitstreams for distribution.

Video transrating applications can benefit from fast encoding. •	
Cable, telecommunications, and satellite video distribution is 
often made efficient by transrating a video to a lower bit rate, 
thereby accommodating more video programs within the same 
channel bandwidth. Although the overall delay in a transrating 
and repacketization system is typically constant and only 
real-time processing is needed, speedup in the transrating and 
constituent encoding tasks is still desirable from the point of view 
of scheduling flexibility and resource utilization.
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Typical video applications involve a series of tasks, such as video data capture; 
compression, transmission, or storage; decompression; and display, while trying 
to maintain a constant overall system delay. The delay introduced by the camera 
and display devices is typically negligible; quite often, the decoding, encoding, and 
processing times become the performance focus. Among these, the decoding tasks are 
usually specified by the video standards and they need a certain number of operations 
per second. But the magnitude of computation in video encoding and processing tasks 
exceeds by a large margin the computational need of the decoding tasks. Therefore, 
depending on the application requirements, the encoding and processing tasks are 
usually more appropriate candidates for performance optimization, owing to their 
higher complexities.

In particular, video encoding requires a large number of signal processing 
operations—on the order of billions of operations per second. Fortunately, video 
compression can easily be decomposed into pipelined tasks. Within the individual tasks, 
the video data can be further disintegrated in either spatial or temporal dimensions 
into a set of independent sections, making it suitable for parallel processing. Taking 
advantage of this property, it is possible to obtain faster than real-time video encoding 
performance by using multiple processing units concurrently. These processing units 
may be a combination of dedicated special-purpose fixed-function and/or  
programmable hardware units. The advantage of specialized hardware is that it 
is usually optimized for specific tasks, so that those tasks are accomplished in a 
performance- and power-optimized manner. However, programmable units provide 
flexibility and do not become obsolete easily. Performance tuning for programmable 
units are also less expensive than the dedicated hardware units. Therefore, efficiently 
combining the specialized and programmable units into a hybrid solution can deliver  
an order of magnitude greater than real-time performance, as offered by the recent  
Intel (R) Core (TM) and Intel (R) Atom (TM) CPUs, where the heavy lifting of the 
encoding tasks is carried out by the integrated graphics processing units (GPU).

Performance Considerations
In video encoding and processing applications, performance optimization aims 
to appropriately change the design or implementation to improve the encoding 
or processing speed. Increasing the processor frequency alone does not yield the 
best-performing encoding solution, and as discussed before, there is a limit to such 
frequency increase. Therefore, other approaches for performance enhancement 
need to be explored. Note that some techniques implement the necessary design 
or implementation changes relatively cheaply, but others may need significant 
investment. For example, inexpensive approaches to obtaining higher performance 
include parallelization of encoding tasks, adjusting schedules of the tasks, optimization 
of resource utilization for individual tasks, and so on. It is interesting to note that 
higher performance can also be achieved by using more complex dedicated-hardware 
units, which in turn is more expensive to manufacture. A general consideration 
for performance optimization is to judiciously choose the techniques that would 
provide the highest performance with lowest expense and lowest overhead. However, 
depending on the nature of the application and available resources, it may be necessary 
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to accommodate large dollar expenditures to provide the expected performance.  
For example, a bigger cache may cost more money, but it will likely help achieve certain 
performance objectives. Thus, the tradeoffs for any performance optimization must be 
well thought out.

Usually performance optimization is not considered by itself; it is studied together 
with visual quality and aspects of power consumption. For instance, a higher CPU or GPU 
operating frequency will provide faster encoding speed, but will also consume more energy. 
A tradeoff between energy consumed and faster encoding speed is thus necessary at the 
system design and architectural level.  For today’s video applications running on resource-
constrained computing platforms, a balanced tradeoff can be obtained by maximizing the 
utilization of available system resources when they are active and putting them to sleep 
when they are not needed, thereby achieving simultaneous power optimization.

However, note that higher encoding speeds can also be achieved by manipulating 
some video encoding parameters such as the bit rate or quantization parameters. By 
discarding a large percentage of high-frequency details, less information remains to be 
processed and the encoding becomes faster. However, this approach directly affects the 
visual quality of the resulting video. Therefore, a balance is also necessary between visual 
quality and performance achieved using this technique.

There are three major ways encoding performance can be maximized for a given 
period of time:

Ensure that available system resources, including the processor •	
and memory, are fully utilized during the active period of the 
workload. However, depending on the workload, the nature of 
resource utilization may be different. For example, an encoding 
application should run at a 100 percent duty cycle of the 
processor. As mentioned earlier, such performance maximization 
can also include considerations for power optimization—for 
example, by running at 100 percent duty cycle for as long as 
necessary and quickly going to sleep afterwards. However, for a 
real-time playback application, it is likely that only a fraction of 
the resources will be utilized—say, at 10 percent duty cycle. In 
such cases, performance optimization may not be needed and 
power saving is likely to be emphasized instead.

Use specialized resources, if available. As these resources •	
are generally designed for balanced performance and power 
for certain tasks, this approach would provide performance 
improvement without requiring explicit tradeoffs.

Depending on the application requirements, tune certain •	
video parameters to enhance encoding speed. However, 
encoding parameters also affect quality, compression, and 
power; therefore, their tradeoffs against performance should be 
carefully considered.
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Maximum Resource Utilization
Applications, services, drivers, and the operating system compete for the important 
system resources, including processor time, physical memory space and virtual address 
space, disk service time and disk space, network bandwidth, and battery power. To 
achieve the best performance per dollar, it is important to maximally utilize the available 
system resources for the shortest period of time possible. Thus, maximum performance 
is obtained at the cost of minimum power consumption. Toward this end, the following 
techniques are typically employed:

•	 Task parallelization: Many tasks are independent of each other 
and can run in parallel, where resources do not need to wait 
until all other tasks are done. Parallelization of tasks makes full 
utilization of the processor. Often, pipelines of tasks can also 
be formed to keep the resources busy during the operational 
period, thereby achieving maximum resource utilization. (Task 
parallelization will be discussed in more detail in a later section.)

•	 Registers, caches, and memory utilization: Optimal use 
of memory hierarchy is an important consideration for 
performance. Memory devices at a lower level are faster to access, 
but are smaller in size; they have higher transfer bandwidth with  
fewer transfer units, but are more costly per byte compared to 
the higher level memory devices. Register transfer operations 
are controlled by the processor at processor speed. Caches 
are typically implemented as static random access memories 
(SRAMs) and are controlled by the memory management unit 
(MMU). Careful use of multiple levels of cache at the system-level 
programs can provide a balance between data access latency and 
the size of the data. Main memories are typically implemented 
as dynamic RAMs (DRAMs), are much larger than the cache, 
but require slower direct memory access (DMA) operations 
for data access. The main memory typically has multiple 
modules connected by a system bus or switching network. 
Memory is accessed randomly or in a block-by-block basis. In 
parallel memory organizations, both interleaved and pipelined 
accesses are practiced: interleaving spreads contiguous memory 
locations into different memory modules, while access memory 
modules are overlapped in a pipelined fashion. Performance of 
data transfer between adjacent levels of memory hierarchy is 
represented in terms of hit (or miss) ratios—that is, the probability 
that an information item will be found at a certain memory 
level. The frequency of memory access and the effective access 
time depend on the program behavior and choices in memory 
design. Often, extensive analysis of program traces can lead to 
optimization opportunities.
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•	 Disk access optimization: Video encoding consists of processing 
large amounts of data. Therefore, often disk I/O speed, memory 
latency, memory bandwidth, and so on become the performance 
bottlenecks rather than the processing itself. Many optimization 
techniques are available in the literature addressing disk access. 
Use of redundant arrays of inexpensive disks (RAID) is a common 
but costly data-storage virtualization technique that controls 
data access redundancy and provides balance among reliability, 
availability, performance, and capacity.

•	 Instruction pipelining: Depending on the underlying processor 
architecture, such as complex instruction set computing 
(CISC) processor, reduced instruction set computing (RISC) 
processor, very long instruction word (VLIW) processor, vector 
supercomputer, and the like, the cycles per instruction are 
different with respect to their corresponding processor clock 
rates. However, to achieve the minimum number of no operations 
(NOPs) and pipeline stalls, and thereby optimize the utilization 
of resources, there needs to be careful instruction pipelining and 
pipeline synchronization.

Resource Specialization
In addition to maximizing the utilization of resources, performance is enhanced by using 
specialized resources. Particular improvements in this area include the following:

•	 Special media instruction sets: Modern processors have 
enhanced instruction sets that include special media 
instructions possessing inherent parallelism. For example, 
to calculate the sum of absolute difference (SAD) for a eight 
16-bit pixel vector, a 128-bit single instruction multiple data 
(SIMD) instruction can be used, expending one load and one 
parallel operation, as opposed to the traditional sequential 
approach where sixteen 16-bit loads, eight subtractions, eight 
absolute-value operations, and eight accumulation operations 
would have been needed. For encoding tasks such as motion 
estimation, such media instructions play the most important 
role in speeding up the compute-intensive task.
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•	 GPU acceleration: Traditionally, video encoding tasks have 
been carried out on multi-core CPUs. Operation-intensive tasks 
such as video encoding often run with high CPU utilization for 
all cores. For higher resolution videos, the CPU can be pushed 
beyond its capability so that the task would not be complete 
in real time. There are several research efforts to employ 
parallelization techniques on various shared-memory and 
distributed-memory platforms to deal with this issue, some of 
which are discussed in the next section. However, it is easy to see 
that to obtain a desirable and scalable encoding solution,  
CPU-only solutions are often not sufficient.

Recent processors such as Intel Core and Atom processors 
offer hardware acceleration for video encoding and processing 
tasks by using the integrated processor graphics hardware. 
While special-purpose hardware units are generally optimized 
for certain tasks, general-purpose computing units are more 
flexible in that they can be programmed for a variety of tasks. 
The Intel processor graphics hardware is a combination of 
fixed-function and programmable units, providing a balance 
among speed, flexibility, and scalability. Substantial attention 
is also paid to optimizing the systems running these graphics 
hardware for low power consumption, thus providing high 
performance with reduced power cost. Thus, using hardware 
acceleration for video encoding and processing tasks is 
performance and power friendly as long as the real-time supply 
of input video data is ensured.

Figure 5-1 shows CPU utilization of a typical encoding session with 
and without processor graphics hardware—that is, GPU acceleration. 
From this figure, it is obvious that employing GPU acceleration not 
only makes the CPU available for other tasks but also increases the 
performance of the encoding itself. In this example, the encoding 
speed went up from less than 1 FPS to over 86 FPS.



Chapter 5 ■ Video Coding Performance

170

Figure 5-1.  CPU utilization of typical encoding with and without GPU acceleration
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Video Parameters Tuning
To tune the video parameters for optimum performance, it is important to understand 
the main factors that contribute to performance, and to identify and address the typical 
performance bottlenecks.

Factors Determining Encoding Speed
Many factors affect the video encoding speed, including system hardware, network 
configurations, storage device types, nature of the encoding tasks, available 
parallelization opportunities, video complexity and formats, and hardware acceleration 
possibilities. Interactions among these factors can make performance tuning complex.

System Configurations

There are several configurable system parameters that affect, to varying degrees, the 
performance of workloads such as the video encoding speed. Some of these parameters 
are the following:

•	 Number of cores: The number of processing CPU and GPU 
cores directly contributes to workload performance. Distributing 
the workload into various cores can increase the speed of 
processing. In general, all the processing cores should be in the 
same performance states for optimum resource utilization. The 
performance states are discussed in Chapter 6 in detail.

•	 CPU and GPU frequencies: The CPU and GPU core and package 
clock frequencies are the principal determining factors for the 
execution speed of encoding tasks. Given that such tasks can 
take advantage of full hardware acceleration, or can be shared 
between the CPU and the GPU, utilization of these resources, 
their capabilities in terms of clock frequencies, the dependences 
and scheduling among these tasks, and the respective data access 
latencies are crucial factors for performance optimization.

•	 Memory size and memory speed: Larger memory size is usually 
better for video encoding and processing tasks, as this helps 
accommodate the increasingly higher video resolutions without 
excessive memory paging costs. Higher memory speed, obviously, 
also significantly contributes to speeding up these tasks.

•	 Cache configurations: Cache memory is a fast memory built 
into the CPU or other hardware units, or located next to it on 
a separate chip. Frequently repeated instructions and data are 
stored in the cache memory, allowing the CPU to avoid loading 
and storing data from the slower system bus, and thereby 
improving overall system speed. Cache built into the CPU itself 
is referred to as Level 1 (L1) cache, while cache residing on a 
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separate chip next to the CPU is called Level 2 (L2) cache. Some 
CPUs have both L1 and L2 caches built in and designate the  
cache chip as Level 3 (L3) cache. Use of L3 caches significantly 
improves the performance of video encoding and processing 
tasks. Similarly, integrated GPUs have several layers of cache. 
Further, recent processors with embedded dynamic random 
access memories (eDRAMs) generally yield 10 to 12 percent 
higher performance for video encoding tasks.

•	 Data access speed: Apart from scheduling delays, data 
availability for processing depends on the non-volatile storage 
speed and storage type. For example, solid-state disk drives 
(SSDs) provide much faster data access compared to traditional 
spinning magnetic hard disk drives, without sacrificing reliability. 
Disk caching in hard disks uses the same principle as memory 
caching in CPUs. Frequently accessed hard-disk data is stored in 
a separate segment of RAM, avoiding frequent retrieval from the 
hard disk. Disk caching yields significantly better performance in 
video encoding applications where repeated data access is quite 
common.

•	 Chipset and I/O throughput: Given that uncompressed video 
is input to the video encoding tasks, nd some processing tasks 
also output the video in uncompressed formats, often I/O 
operations become the bottleneck in these tasks, especially for 
higher resolution videos. In I/O-bound tasks, an appropriately 
optimized chipset can remove this bottleneck, improving overall 
performance. Other well-known techniques to improve the 
efficiency of I/O operations and to reduce the I/O latency include 
intelligent video data placement on parallel disk arrays, disk seek 
optimization, disk scheduling, and adaptive disk prefetching.

•	 System clock resolution: The default timer resolution in 
Windows is 15.625 msec, corresponding to 64 timer interrupts per 
second. For tasks such as video encoding, where all operations 
related to a video frame must be done within the specified time 
frame (e.g., 33 msec for 30 fps video), the default timer resolution 
is not sufficient. This is because a task may need to wait until the 
next available timer tick to get scheduled for execution. Since 
there are often dependences among the encoding tasks, such as 
DCT transform and variable length coding, scheduling these tasks 
must carefully consider timer resolution along with the power 
consumption for optimum performance. In many applications, a 
timer resolution of 1 msec is typically a better choice.
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•	 BIOS: Several performance-related parameters can be adjusted 
from the BIOS; among them are peripheral component 
interconnect express (PCIe) latency and clock gating, advanced 
configuration and power interface (ACPI) settings (e.g., disabling 
hibernation), CPU configuration (e.g., enabling adjacent cache 
line prefetch), CPU and graphics power management control 
(e.g., allowing support for more than two frequency ranges, 
allowing turbo mode, allowing CPU to go to C-states when it is 
not fully utilized [details of C-states are discussed in Chapter 6], 
configuring C-state latency, setting interrupt response time limits, 
enabling graphics render standby), enabling overclocking features 
(e.g., setting graphics overclocking frequency), and so on.

•	 Graphics driver: Graphics drivers incorporate various performance 
optimizations, particularly for hardware-accelerated video 
encoding and processing tasks. Appropriate and updated graphics 
drivers would make a difference in attaining the best performance.

•	 Operating system: Operating systems typically perform many 
optimizations, improving the performance of the run-time 
environments. They also control priorities of processes and 
threads. For example, Dalvik and ART (Android RunTime) are the 
old and new run times, respectively, that execute the application 
instructions inside Android. While Dalvik is a just-in-time (JIT) run 
time that executes code only when it is needed, ART—which was 
introduced in Android 4.4 KitKat and is already available to users—is 
an ahead-of-time (AOT) run time that executes code before it is 
actually needed. Comparisons between Dalvik and ART on Android 
4.4 have shown that the latter brings enhanced performance and 
battery efficiency, and will be available as the default run time for 
devices running Android version 4.5 (Lollipop).

•	 Power settings: In addition to thermal design power (TDP), 
Intel has introduced a new specification, called the scenario 
design power (SDP) since the third-generation Core and Pentium 
Y-processors. While TDP specifies power dissipation under 
worst-case real-world workloads and conditions, SDP specifies 
power dissipation under a specific usage scenario. SDP can be 
used for benchmarking and evaluation of power characteristics 
against specific target design requirements and system cooling 
capabilities. Generally, processors with higher TDP (or SDP) give 
higher performance. Therefore, depending on the need, a user 
can choose to obtain a system with higher TDP. However, on a 
certain platform, the operating system usually offers different 
power setting modes, such as high performance, balanced, or 
power saver. These modes control how aggressively the system 
will go to various levels of idle states. These modes have a 
noticeable impact on performance, especially for video encoding 
and processing applications.
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The Nature of Workloads

The nature of a workload can influence the performance and can help pinpoint 
possible bottlenecks. For example, for video coding applications, the following common 
influential factors should be considered:

•	 Compute-bound tasks: A task is “compute bound” if it would 
complete earlier on a faster processor. It is also considered 
compute bound if the task is parallelizable and can have an 
earlier finish time with an increased number of processors. This 
means the task spends the majority of its time using the processor 
for computation rather than on I/O or memory operations. 
Depending on the parameters used, many video coding tasks, 
such as motion estimation and prediction, mode decision, 
transform and quantization, in-loop deblocking, and so on, may 
be compute bound. Integrated processor graphics, where certain 
compute-intensive tasks are performed using fixed-function 
hardware, greatly helps improve the performance of compute-
bound tasks.

•	 I/O-bound tasks: A task is “I/O bound” if it would complete 
earlier with an increase in speed of the I/O subsystem or the  
I/O throughput. Usually, disk speed limits the performance 
of I/O-bound tasks. Reading raw video data from files for 
input to a video encoder, especially reading higher resolution 
uncompressed video data, is often I/O bound.

•	 Memory-bound tasks: A task is “memory bound” if its rate 
of progress is limited by the amount of memory available 
and the speed of that memory access. For example, storing 
multiple reference frames in memory for video encoding is 
likely to be memory bound. The same task may be transformed 
from compute bound to memory bound on higher frequency 
processors, owing to the ability of faster processing.

•	 Inter-process communication: Owing to dependences, 
tasks running on different processes in parallel often need 
to communicate with each other. This is quite common in 
parallel video encoding tasks. Depending on the configuration 
of the parallel platform, interprocess communication may 
materialize using message passing, using shared memory, 
or other techniques. Excessive interprocess communication 
adversely affects the performance and increasingly dominates 
the balance between the computation and the communication as 
the number of processes grows. In practice, to achieve improved 
scalability, parallel video encoder designers need to minimize 
the communication cost, even at the expense of increased 
computation or memory operations.
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•	 Task scheduling: The scheduling of tasks running in parallel 
has a huge impact on overall performance, particularly on 
heterogeneous computing platforms. Heterogeneous multi-core 
processors with the same instruction set architecture (ISA) are 
typically composed of small (e.g., in-order) power-efficient cores 
and big (e.g., out-of-order) high-performance cores. In general, 
small cores can achieve good performance if the workload 
inherently has high levels of instruction level parallelism (ILP). 
On the other hand, big cores provide good performance if the 
workload exhibits high levels of memory-level parallelism (MLP) or 
requires the ILP to be extracted dynamically. Therefore, scheduling 
decisions on such platforms can be significantly improved by 
taking into account how well a small or big core can exploit the ILP 
and MLP characteristics of a workload. On the other hand, making 
wrong scheduling decisions can lead to suboptimal performance 
and excess energy or power consumption. Techniques are available 
in the literature to understand which workload-to-core mapping is 
likely to provide the best performance.4

•	 Latency: Latency usually results from communication delay 
of a remote memory access and involves network delays, 
cache miss penalty, and delays caused by contentions in split 
transactions. Latency hiding can be accomplished through four 
complementary approaches5: (i) using prefetching techniques 
which brings instructions or data close to the processor before it is 
actually needed, (ii) using coherent caches supported by hardware 
to reduce cache misses, (iii) using relaxed memory consistency 
models that allow buffering and pipelining of memory references, 
and (iv) using multiple-context support that allows a processor to 
switch from one context to another when a long latency operation 
is encountered. Responsiveness of a system depends on latency. 
For real-time video communication applications such as video 
conferencing, latency is an important performance factor, as it 
significantly impacts the user experience.

4K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Scheduling Heterogeneous 
Multi-Cores through Performance Impact Estimation,” in Proceedings of 39th Annual International 
Symposium on Computer Architecture (Portland, OR: IEEE, June 2012), 213–24.
5K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability 
(Singapore: McGraw-Hill, 1993).
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•	 Throughput: Throughput is a measure of how many tasks a 
system can execute per unit of time. This is also known as the 
system throughput. The number of tasks the CPU can handle per 
unit time is the CPU throughput. As system throughput is derived 
from the CPU (and other resource) throughput, when multiple 
tasks are interleaved for CPU execution, CPU throughput is higher 
than the system throughput. This is due to the system overheads 
caused by the I/O, compiler, and the operating system, because 
of which the CPU is kept idle for a fraction of the time. In real-
time video communication applications, the smoothness of the 
video depends on the system throughput. Thus, it is important to 
optimize all stages in the system, so that inefficiency in one stage 
does not hinder overall performance.

Encoding Tools and Parameters

It should be noted that not only do the various algorithmic tasks affect the performance, 
but some video encoding tools and parameters are also important factors. Most of 
these tools emerged as quality-improvement tools or as tools to provide robustness 
against transmission errors. Fortunately, however, they usually offer opportunities for 
performance optimization through parallelization. The tools that are not parallelization 
friendly can take advantage of algorithmic and code optimization techniques, as 
described in the following sections. Here are a few important tools and parameters.

Independent data units
To facilitate parallelization and performance gain, implementations of video coding 
algorithms usually exploit frame-level or group of frame-level independence or divide 
video frames into independent data units such as slices, slice groups, tiles, or wavefronts. 

At the frame level, usually there is little parallelism owing to motion compensation 
dependences. Even if parallelized, because of the varying frame complexities, the 
encoding and decoding times generally fluctuate a lot, thus creating an imbalance 
in resource utilization. Also, owing to dependency structure, the overall latency may 
increase with frame-level parallelization.

A video frame consists of one or more slices. A slice is a group of macroblocks usually 
processed in raster-scan order. Figure 5-2 shows a typical video frame partitioned into 
several slices or groups of slices.

Figure 5-2.  Partitioning of a video frame into slices and slice groups
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Slices were introduced mainly to prevent loss of quality in the case of transmission 
errors. As slices are defined as independent data units, loss of a slice is localized and 
may not impact other slices unless they use the lost slice as a reference. Exploiting 
the same property of independence, slices can be used in parallel for increased 
performance. In an experiment using a typical AVC encoder, it was found that four 
slices per frame can yield a 5 to 15 percent performance gain compared to a single 
slice per frame, depending on the encoding parameters. However, employing slices 
for parallelism may incur significant coding efficiency losses. This is because, to keep 
the data units independent, spatial redundancy reduction opportunities may be 
wasted. Such loss in coding efficiency may be manifested as a loss in visual quality. For 
example, in the previous experiment with AVC encoder, four slices per frame resulted in 
a visual quality loss of ~0.2 to ~0.4 dB compared to a single slice per frame, depending 
on the encoding parameters. Further, a decoder relying on performance gains from 
parallel processing of multiple slices alone may not obtain such gain if it receives a 
video sequence with a single slice per frame.

The concept of slice groups was also introduced as an error-robustness feature. 
Macroblocks belonging to a slice group are typically mixed with macroblocks from other 
slice groups during transmission, so that loss of network packets minimally affects the 
individual slices in a slice group. However, owing to the independence of slice groups, 
they are good candidates for parallelization as well.

In standards after H.264, the picture can be divided into rectangular tiles—that 
is, groups of coding tree blocks separated by vertical and horizontal boundaries. Tile 
boundaries, similarly to slice boundaries, break parse and prediction dependences so 
that a tile can be processed independently, but the in-loop filters such as the deblocking 
filters can still cross tile boundaries. Tiles have better coding efficiency compared to 
slices. This is because tiles allow picture partition shapes that contain samples with a 
potential higher correlation than slices, and tiles do not have the slice header overhead. 
But, similar to slices, the coding efficiency loss increases with the number of tiles, owing 
to the breaking of dependences along partition boundaries and the resetting of CABAC 
probabilities at the beginning of each partition.

In the H.265 standard, wavefronts are introduced to process rows of coding tree blocks 
in parallel, each row starting with the CABAC probabilities available after processing the 
second block of the row above. This creates a different type of dependency, but still provides 
an advantage compared to slices and tiles, in that no coding dependences are broken at row 
boundaries. Figure 5-3 shows an example wavefront.
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The CABAC probabilities are propagated from the second block of the previous 
row without altering the raster-scan order. This reduces the coding efficiency losses and 
results in only small rate-distortion differences compared to nonparallel bitstreams. 
However, the wavefront dependencies mean that all the rows cannot start processing 
at the same time. This introduces parallelization inefficiencies, a situation that is more 
prominent with more parallel processors.

However, the ramping inefficiencies of wavefront parallel processing can be mitigated 
by overlapping the execution of consecutive pictures.6 Experimental results reported by 
Chi et al. show that on a 12-core system running at 3.33 GHz, for decoding of 3840×2160 
video sequences, overlapped wavefronts provide a speedup by a factor of nearly 11, while 
regular wavefronts and tiles provide reasonable speedup of 9.3 and 8.7, respectively.

GOP structure
The encoding of intra-coded (I) pictures, predicted (P) pictures, and bi-predicted (B) 
pictures requires different amounts of computation and consequently has different finish 
times. The pattern of their combination, commonly known as the group of pictures (GOP) 
structure, is thus an important factor affecting the encoding speed. In standards before 
the H.264, I-pictures were the fastest and B-pictures were the slowest, owing to added 
motion estimation and related complexities. However, in the H.264 and later standards, 
I-pictures may also take a long time because of Intra prediction.

Depending on the video contents, the use of B-pictures in the H.264 standard 
may decrease the bit rate by up to 10 percent for the same quality, but their impact on 
performance varies from one video sequence to another, as the memory access frequency 
varies from -16 to +12 percent.7 Figure 5-4 shows the results of another experiment 

6C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, et al., “Parallel Scalability and 
Efficiency of HEVC Parallelization Approaches,” IEEE Transactions on Circuits and Systems for 
Video Technology 22, no. 12 (December 2012): 1827–38.
7J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, et al., “Video Coding with H.264/AVC: 
Tools, Performance and Complexity,” IEEE Circuits and Systems (First Quarter, 2004): 7–28.

Figure 5-3.  Wavefronts amenable to parallel processing; for the starting macroblock 
of a row, CABAC probabilities are propagated from the second block of the previous 
macroblock row
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Figure 5-4.  Effect of B-pictures on quality for a 1280×720 H.264 encoded video sequence 
named park run

comparing the quality achieved by using no B-picture, one B-picture, and two B-pictures. 
In this case, using more B-pictures yields better quality. As a rule of thumb, B-pictures 
may make the coding process slower for a single processing unit, but they can be more 
effectively parallelized, as a B-picture typically is not dependent on another B-picture 
unless it is used as a reference—for instance, in a pyramid structure.
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Bit rate control
Using a constant quantization parameter for each picture in a group of pictures is 
generally faster than trying to control the quantization parameter based on an available 
bit budget and picture complexity. Extra compute must be done for such control. 
Additionally, bit rate control mechanisms in video encoders need to determine the 
impact of choosing certain quantization parameters on the resulting number of bits 
as they try to maintain the bit rate and try not to overflow or underflow the decoder 
buffer. This involves a feedback path from the entropy coding unit back to the bit rate 
control unit, where bit rate control model parameters are recomputed with the updated 
information of bit usage. Often, this process may go through multiple passes of entropy 
coding or computing model parameters. Although the process is inherently sequential, 
algorithmic optimization of bit rate control can be done to improve performance for 
applications operating within a limited bandwidth of video transmission. For example, in 
a multi-pass rate control algorithm, trying to reduce the number of passes will improve 
the performance. An algorithm may also try to collect the statistics and analyze the 
complexity in the first pass and then perform actual entropy coding in subsequent passes 
until the bit rate constraints are met.

Multiple reference pictures
It is easy to find situations where one reference picture may yield a better block matching 
and consequent lower cost of motion prediction than another reference picture. For 
example, in motion predictions involving occluded areas, a regular pattern of using the 
immediate previous or the immediate future picture may not yield the best match for 
certain macroblocks. It may be necessary to search in a different reference picture where 
that macroblock was visible. Sometimes, more than one reference picture gives a better 
motion prediction compared to a single reference picture. This is the case, for example, 
during irregular object motion that does not align with particular grids of the reference 
pictures. Figure 5-5 shows an example of multiple reference pictures being used.

Figure 5-5.  Motion compensated prediction with multiple reference pictures
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To accommodate the need for multiple predictions, in the H.264 and later standards, 
the multiple reference pictures feature was introduced, resulting in improved visual 
quality. However, there is a significant performance cost incurred when performing 
searches in multiple reference pictures. Note that if the searches in various reference 
pictures can be done in parallel, the performance penalty can be alleviated to some extent 
while still providing higher visual quality compared to single-reference motion prediction.

R-D Lagrangian optimization
For the encoding of video sequences using the H.264 and later standards, Lagrangian 
optimization techniques are typically used for choice of the macroblock mode and 
estimation of motion vectors. The mode of each macroblock is chosen out of all 
possible modes by minimizing a rate-distortion cost function, where distortion may 
be represented by the sum of the squared differences between the original and the 
reconstructed signals of the same macroblock, and the rate is that required to encode 
the macroblock with the entropy coder. Similarly, motion vectors can be efficiently 
estimated by minimizing a rate-distortion cost function, where distortion is usually 
represented by the sum of squared differences between the current macroblock and the 
motion compensated macroblock, and the rate is that required to transmit the motion 
information consisting of the motion vector and the corresponding reference frame 
number. The Lagrangian parameters in both minimization problems are dependent on 
the quantization parameter, which in turn is dependent on the target bit rate.

Clearly, both of these minimizations require large amounts of computation. While 
loop parallelization, vectorization, and other techniques can be applied for performance 
optimization, early exits from the loops can also be made if the algorithm chooses to do 
so, at the risk of possible non-optimal macroblock mode and motion vectors that may 
impact the visual quality at particular target bit rates. These parallelization approaches 
are discussed in the next section.

Frame/field mode for interlaced video
For interlaced video, choice of frame/field mode at the macroblock or picture level 
significantly affects performance. On the other hand, the interlaced video quality is 
generally improved by using tools such as macroblock-adaptive or picture-adaptive 
frame/field coding. It is possible to enhance performance by using only a certain pattern 
of frame and field coding, but this may compromise the visual quality.

Adaptive deblocking filter
Using in-loop deblocking filters on reconstructed pictures reduces blocky artifacts. 
Deblocked pictures, therefore, serve as a better-quality reference for intra- and inter-picture 
predictions, and result in overall better visual quality for the same bit rate. The strength of 
the deblocking filters may vary and can be adaptive on the three levels: at the slice level, 
based on individual characteristics of a video sequence; at the block-edge level, based on 
intra- versus inter-mode decision, motion differences, and the presence of residuals in 
the two participating neighboring blocks; and at the pixel level, based on an analysis to 
distinguish between the true edges and the edges created by the blocky artifact. True edges 
should be left unfiltered, while the edges from quantization should be smoothed out.
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In general, deblocking results in bit rate savings of around 6 to 9 percent at medium 
qualities8; equivalently at the same bit rate, the subjective picture quality improvements 
are more remarkable. Deblocking filters add a massive number of operations per frame 
and substantially slow down the coding process. Also, it is difficult to parallelize this task 
because it is not confined to the independent data units, such as slices. This is another 
example of a tradeoff between visual quality and performance.

Video Complexity and Formats

Video complexity is an important factor that influences the encoding speed. More 
complex scenes in a video generally take longer to encode, as more information remains 
to be coded after quantization. Complex scenes include scenes with fine texture details, 
arbitrary shapes, high motion, random unpredictable motion, occluded areas, and so 
on. For example, scenes with trees, moving water bodies, fire, smoke, and the like are 
generally complex, and are often less efficiently compressed, impacting encoding speed 
as well. On the other hand, easy scenes consisting of single-tone backgrounds and 
one or two foreground objects, such as head and shoulder-type scenes, are generally 
prone to better prediction, where matching prediction units can be found early and the 
encoding can be accelerated. These easy scenes are often generated from applications 
such as a videophone, video conferencing, news broadcasts, and so on. Frequent scene 
changes require many frames to be independently encoded, resulting in less frequent 
use of prediction of the frame data. If the same video quality is attempted, only lower 
compression can be achieved. With more data to process, performance will be affected.

Video source and target formats are also important considerations. Apart from the 
professional video contents generated by film and TV studios, typical sources of video 
include smartphones, point-and-shoot cameras, consumer camcorders, and DVRs/
PVRs. For consumption, these video contents are generally converted to target formats 
appropriate for various devices, such as Apple iPads, Microsoft XBoxes, Sony PSx 
consoles, and the like, or for uploading to the Internet. Such conversion may or may not 
use video processing operations such as scaling, denoising, and so on. Thus, depending 
on the target usage, the complexity of operations will vary, exerting different speed 
requirements and exhibiting different performance results.

GPU-based Acceleration Opportunities

Applications and system-level software can take advantage of hardware acceleration 
opportunities, in particular GPU-based accelerations, to speed up the video encoding 
and processing tasks. Either partial or full hardware acceleration can be used. For 
example, in a transcoding application, either the decoding or the encoding part or both, 
along with necessary video processing tasks, can be hardware accelerated for better 
performance. By employing GPU-based hardware acceleration, typically an order of 
magnitude faster than real-time performance can be achieved, even for complex videos.

8Ostermann et al., “Video Coding.”
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Furthermore, hardware-based security solutions can be used for seamless 
integration with hardware-accelerated encoding and processing for overall enhancement 
of the encoding speed of premium video contents. In traditional security solutions, 
security software would occasionally interrupt and slow down long encoding sessions 
running on the CPU. However, by employing hardware-based security, improvements 
can be achieved in both performance and security.

Performance Optimization Approaches
The main video encoding tasks are amenable to performance optimization, usually at the 
expense of visual quality or power consumption. Some of the techniques may have only 
trivial impact on power consumption and some may have little quality impact, yet they 
improve the performance. Other techniques may result in either quality or power impacts 
while improving performance.

Algorithmic optimizations contribute significantly to speeding up the processing 
involved in video encoding or decoding. If the algorithm runs on multi-core or 
multiprocessor environments, quite a few parallelization approaches can be employed. 
Furthermore, compiler and code optimization generally yield an additional degree 
of performance improvement. Besides these techniques, finding and removing the 
performance bottlenecks assists performance optimization in important ways. In  
the context of video coding, common performance optimization techniques include  
the following.

Algorithmic Optimization
Video coding algorithms typically focus on improving quality at the expense of 
performance. Such techniques include the use of B-pictures, multiple-reference 
pictures, two-pass bit rate control, R-D Langrangian optimization, adaptive deblocking 
filter, and so on. On the other hand, performance optimization using algorithmic 
approaches attempt to improve performance in two ways. The first way is by using fast 
algorithms, typically at the expense of higher complexity, higher power consumption, 
or lower quality. Joint optimization approaches of performance and complexity are also 
available in the literature.9 A second way is to design algorithms that exploit the available 
parallelization opportunities with little or no quality loss.10

9J. Zhang, Y. He, S. Yang, and Y. Zhong, “Performance and Complexity Joint Optimization for 
H.264 Video Coding,” in Proceedings of the 2003 International Symposium on Circuits and Systems 
2 (Bangkok: IEEE, 2003), 888–91.
10S. M. Akramullah, I. Ahmad, and M. L. Liou, “Optimization of H.263 Video Encoding Using a 
Single Processor Computer: Performance Tradeoffs and Benchmarking,” IEEE Transactions on 
Circuits and Systems for Video Technology 11, no. 8 (August 2001): 901–15.
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Fast Algorithms
Many fast algorithms for various video coding tasks are available in the literature, 
especially for the tasks that take longer times to finish. For example, numerous fast-motion  
estimation algorithms try to achieve an order of magnitude higher speed compared to a 
full-search algorithm with potential sacrifice in quality. Recent fast-motion estimation 
algorithms, however, exploit the statistical distribution of motion vectors and only search 
around the most likely motion vector candidates to achieve not only a fast performance 
but almost no quality loss as well. Similarly, fast DCT algorithms11 depend on smart 
factorization and smart-code optimization techniques. Some algorithms exploit the fact 
that the overall accuracy of the DCT and inverse DCT is not affected by the rounding off 
and truncations intrinsic to the quantization process.12 Fast algorithms for other video 
coding tasks try to reduce the search space, to exit early from loops, to exploit inherent 
video properties, to perform activity analysis, and so on, with a view toward achieving 
better performance. There are several ways to improve the encoding speed using 
algorithmic optimization.

Fast Transforms

Fast transforms use factorization and other algorithmic maneuvers to reduce the 
computational complexity in terms of number of arithmetic operations needed to rapidly 
compute the transform. Fast Fourier Transform (FFT) is a prime example of this, which 
takes only O(N

 
 log N

 
) arithmetic operations, instead of the O(N 2) operations required in 

the original N
 
-point Discrete Fourier Transform (DFT) algorithm. For large data sets, the 

resulting time difference is huge; in fact, the advent of FFT made it practical to calculate 
Fourier Transform on the fly and enabled many practical applications. Furthermore, 
instead of floating-point operations, fast transforms tend to use integer operations that 
can be more efficiently optimized. Typically, fast transforms such as the DCT do not 
introduce errors so there is no additional impact on the visual quality of the results. 
However, possible improvements in power consumption because of fewer arithmetic 
operations are usually not significant, either.

11E. Feig and S. Winograd, “Fast Algorithms for the Discrete Cosine Transform,” IEEE Transactions 
on Signal Processing 40, no. 9 (September 1992): 2174–93.
12L. Kasperovich, “Multiplication-free Scaled 8x8 DCT Algorithm with 530 Additions,” in 
Proceedings of the SPIE 2419, Digital Video Compression: Algorithms and Technologies  
(San Jose: SPIE-IS&T,  1995),  499–504.
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Fast DCT or its variants are universally used in the video coding standards. In the 
H.264 and later standards, transform is generally performed together with quantization 
to avoid loss in arithmetic precision. Nonetheless, as fast transform is performed on a 
large set of video data, data parallelism approaches can easily be employed to parallelize 
the transform and improve the performance. A data parallel approach is illustrated in the 
following example.

Let’s consider the butterfly operations in the first stage of DCT (see Figure 2.17), 
which can be expressed as:
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(Equation 5-1)

Considering each input u
k 

to be a 16-bit integer, sets of four such inputs can be 
rearranged into 64-bit wide vectors registers, as shown in Figure 5-6. The rearrangement 
is necessary to maintain the correspondence of data elements on which operations are 
performed. This will provide 64-bit wide additions and subtractions in parallel, effectively 
speeding up this section of operations by a factor of 4. Similarly, wider vector registers can 
be exploited for further improved performance.

Figure 5-6.  Data rearrangement in 8-point DCT to facilitate data parallelism
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Fast Intra Prediction

In the H.264 and later standards, in addition to the transform, Intra prediction is used in 
spatial redundancy reduction. However, the Intra frame encoding process has several 
data-dependent and computationally intensive coding methodologies that limit the overall 
encoding speed. It causes not only a high degree of computational complexity but also a 
fairly large delay, especially for the real-time video applications. To resolve these issues, 
based on the DCT properties and spatial activity analysis, Elarabi and Bayoumi13 proposed 
a high throughput, fast and precise Intra mode selection, and a direction-prediction 
algorithm that significantly reduces the computational complexity and the processing run 
time required for the Intra frame prediction process. The algorithm achieves ~56 percent 
better Intra prediction run time compared to the standard AVC implementation (JM 18.2),  
and ~35 to 39 percent better Intra prediction run time compared to other fast Intra 
prediction techniques. At the same time, it achieves a PSNR within 1.8 percent (0.72 dB) of 
the standard implementation JM 18.2, which is also ~18 to 22 percent better than other fast 
Intra prediction algorithms. In another example, using a zigzag pattern of calculating the 
4×4 DC prediction mode, Alam et al.14 has improved both the PSNR (up to 1.2 dB) and the 
run time (up to ~25 percent) over the standard implementation.

Fast Motion Estimation

Block matching motion estimation is the most common technique used in inter-picture 
motion prediction and temporal redundancy reduction. It performs a search to find the 
best matching block in the reference picture with the current block in the current picture. 
The estimation process is typically conducted in two parts: estimation with integer 
pixel-level precision and with fractional pixel-level precision. Often, fractional pixel-level 
motion search is done with half-pixel and quarter-pixel precision around the best integer 
pixel position, and the resulting motion vectors are appropriately scaled to maintain the 
precision.

Motion estimation is the most time-consuming process in the coding framework. 
It typically takes ~60 to 90 percent of the compute time required by the whole encoding 
process, depending on the configuration and the algorithm. Thus, a fast implementation 
of motion estimation is very important for real-time video applications. 

13T. Elarabi and M. Bayoumi, “Full-search-free Intra Prediction Algorithm for Real-Time H.264/
AVC Decoder,” in Signal Processing, Image Processing and Pattern Recognition (Jeju, Korea: 
Springer-Verlag, 2012), 9–16.
14T. Alam, J. Ikbal, and T. Alam, “Fast DC Mode Prediction Scheme for Intra 4x4 Block in 
H.264/AVC Video Coding Standard,” International Journal of Advanced Computer Science and 
Applications 3, no. 9 (2012): 90–94.
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There are many ways to speed up the motion estimation process. These include:

Fewer locations can be searched to find the matching block. •	
However, the problem of how to determine which locations to 
search has been an active area of research for longer than two 
decades, producing numerous fast-motion estimation algorithms. 
If the right locations are not involved, it is easy to fall into local 
minima and miss the global minimum in the search space. This 
would likely result in nonoptimal motion vectors. Consequently, 
a higher cost would be incurred in terms of coding efficiency if 
the block is predicted from a reference block using these motion 
vectors, compared to when the block is simply coded as Intra. 
Thus, the block may end up being coded as an Intra block, and fail 
to take advantage of existing temporal redundancy.

Recent algorithms typically search around the most likely candidates 
of motion vectors to find the matching block. Predicted motion 
vectors are formed based on the motion vectors of the neighboring 
macroblocks, on the trend of the inter-picture motion of an object, 
or on the motion statistics. Some search algorithms use different 
search zones with varying degrees of importance. For example, 
an algorithm may start the search around the predicted motion 
vector and, if necessary, continue the search around the co-located 
macroblock in the reference picture. Experimentally determined 
thresholds are commonly used to control the flow of the search. The 
reference software implementation of the H.264 and later standards 
use fast-search algorithms that depict these characteristics.

Instead of matching the entire block, partial information from the •	
blocks may be matched for each search location. For example, 
every other pixel in the current block can be matched with 
corresponding pixels in the reference block.

A search can be terminated early based on certain conditions •	
and thresholds that are usually determined experimentally. An 
example of such early termination can be found in the adaptive 
motion estimation technique proposed by Zhang et al.,15 which 
improves the speed by ~25 percent for the macroblocks in motion, 
while improves the performance by ~3 percent even for stationary 
macroblocks by checking only five locations. The average PSNR 
loss is insignificant at ~0.1 dB.

Instead of waiting for the reconstructed picture to be available, •	
the source pictures can be used as references, saving the need 
for reconstruction at the encoder. Although this technique 
provides significant performance gain, it has the disadvantage 
that the prediction error is propagated from one frame to the next, 
resulting in significant loss in visual quality.

15D. Zhang, G. Cao, and X. Gu, “Improved Motion Estimation Based on Motion Region Identification,” 
in 2012 International Conference on Systems and Informatics (Yantai, China: IEEE, 2012), 2034–37.
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Motion estimation is easily parallelizable in a data-parallel •	
manner. As the same block-matching operation such as the 
SAD is used on all the matching candidates, and the matching 
candidates are independent of each other, SIMD can easily be 
employed. Further, motion estimation for each block in the 
current picture can be done in parallel as long as an appropriate 
search window for each block is available from the reference 
picture. Combining both approaches, a single program multiple 
data (SPMD)-type of parallelization can be used for each picture.

Using a hierarchy of scaled reference pictures, it is possible •	
to conduct the fractional and integer pixel parts separately in 
parallel, and then combine the results.

In bi-directional motion estimation, forward and backward •	
estimations can be done in parallel.

Fast Mode Decision

The H.264 and later standards allow the use of variable block sizes that opens the 
opportunity to achieve significant gains in coding efficiency. However, it also results 
in very high computational complexity, as mode decision becomes another important 
and time-consuming process. To improve the mode decision performance, Wu et al.16 
proposed a fast inter-mode decision algorithm based on spatial homogeneity and the 
temporal stationarity characteristics of video objects, so that only a few modes are 
selected as candidate modes. The spatial homogeneity of a macroblock is decided based 
on its edge intensity, while the temporal stationarity is determined by the difference 
between the current macroblock and its co-located counterpart in the reference frame. 
This algorithm reduces 30 percent of the encoding time, on average, with a negligible 
PSNR loss of 0.03 dB or, equivalently, a bit rate increment of 0.6 percent.

Fast Entropy Coding

Entropy coding such as CABAC is inherently a sequential task and is not amenable to 
parallelization. It often becomes the performance bottleneck for video encoding. Thus, 
performance optimization of the CABAC engine can enhance the overall encoding 
throughput. In one example,17 as much as ~34 percent of throughput enhancement is 
achieved by pre-normalization, hybrid path coverage, and bypass bin splitting. Context 
modeling is also improved by using a state dual-transition scheme to reduce the critical 
path, allowing real-time ultra-HDTV video encoding on an example 65 nm video encoder 
chip running at 330 MHz.

16D. Wu, F. Pan, K. P. Lim, S. Wu, Z. G. Li, et al.,  “Fast Intermode Decision in H.264/AVC Video 
Coding,” IEEE Transactions on Circuits and Systems for Video Technology 15, no. 6 (July 2005): 
953–58.
17J. Zhou, D. Zhou, W. Fei, and S. Goto, “A High Performance CABAC Encoder Architecture for 
HEVC and H.264/AVC,” in Proceedings of ICIP (Melbourne: IEEE, 2013), 1568–72.
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Parallelization Approaches
Parallelization is critical for enabling multi-threaded encoding or decoding applications 
adapted to today’s multi-core architectures. Independent data units can easily scale 
with the parallel units, whereas dependences limit the scalability and parallelization 
efficiency. Since several independent data units can be found in video data structures, 
their parallelization is straightforward. However, not all data units and tasks are 
independent. When there are dependences among some data units or tasks, there are 
two ways to handle the dependences: by communicating the appropriate data units 
to the right processors, and by using redundant data structure. It is important to note 
that the interprocessor communication is an added overhead compared to a sequential 
(non-parallel, or scalar) processing. Therefore, parallelization approaches are typically 
watchful of the communication costs, sometimes at the expense of storing redundant 
data. In general, a careful balance is needed among the computation, communication, 
storage requirements, and resource utilization for efficient parallelization.

Data Partitioning

The H.264 standard categorizes the syntax elements into up to three different partitions for 
a priority-based transmission. For example, headers, motion vectors, and other prediction 
information are usually transmitted with higher priority than the details of the syntax 
elements representing the video content. Such data partitioning was primarily designed to 
provide robustness against transmission errors, and was not intended for parallelization. 
Indeed, parallel processing of the few bytes of headers and many bytes of detailed video 
data would not be efficient. However, video data can be partitioned in several different 
ways, making it suitable for parallelization and improved performance. Both uncompressed 
and compressed video data can be partitioned into independent sections, so both video 
encoding and decoding operations can benefit from data partitioning.

Data partitioning plays an important role in the parallelization of video encoding. 
Temporal partitioning divides a video sequence into a number of independent 
subsequences, which are processed concurrently in a pipelined fashion. At least a few 
subsequences must be available to fill the pipeline stages. This type of partitioning is thus 
suitable for off-line video encoding.18 Spatial partitioning divides a frame of video into 
various sections that are encoded simultaneously. Since only one frame is inputted at a 
time, this type of partitioning is suitable for online and low-delay encoding applications 
that process video on a frame-by-frame basis. It is clear that parallel encoding of the 
video subsequences deals with coarser grains of data that can be further partitioned 
into smaller grains like a section of a single frame, such as slices, slice groups, tiles, or 
wavefronts.

18I. Ahmad, S. M. Akramullah, M. L. Liou, and M. Kafil, “A Scalable Off-line MPEG-2 Video 
Encoding Scheme Using a Multiprocessor System,” Parallel Computing 27, no. 6 (May 2001): 823–46.
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Task Parallelization

The task parallelization approach for video encoding was introduced as early as 1991 for 
compact disc-interactive applications.19 This introductory approach took advantage of a 
multiple instruction multiple data (MIMD) parallel object-oriented computer. The video 
encoder was divided into tasks and one task was assigned to one or more processors of the 
100-node message-passing parallel computer, where a node consisted of a data processor, 
memory, a communications processor, and I/O interfaces. This approach loosely used 
task parallelization, where some processors were running tasks with different algorithms, 
but others were running tasks with the same algorithm at a given time. At a higher level, 
the tasks were divided into two phases: a motion-estimation phase for prediction and 
interpolation where motion vectors were searched in each frame, and video compression 
where it was decided which of these motion vectors (if any) would be used.

The parallelization of the motion estimation phase was not task parallel by itself; 
it involved assigning each processor its own frame along with the associated reference 
frames. This process inevitably required copying the reference frames onto several 
appropriate processors, thus creating a performance overhead. Also, many frames had to 
have been read before all processors had some tasks to execute. The video compression 
phase did not have independent frames, so several parts of a frame were processed in 
parallel. A compression unit made up of a group of processors repeatedly received sets 
of consecutive blocks to encode. The tasks in the compression unit were mode decision, 
DCT, quantization, and variable length coding. The resulting bitstream was sent to an 
output manager running on a separate processor, which combined the pieces from all 
the compression units and sent the results to the host computer. The compression units 
reconstructed their own parts of the resulting bitstream to obtain the reference frames.

Note that the quantization parameter depends on the data reduction in all blocks 
processed previously, and one processor alone cannot compute it. Therefore, a special 
processor must be dedicated to computation of the quantization parameter, sending the 
parameter to appropriate compression units and collecting the size of the compressed 
data from each of the compression units for further calculation. An additional 
complication arises from the fact that motion vectors are usually differentially coded 
based on the previous motion vector. But the compression units working independently 
do not have access to the previous motion vector. To resolve this, compression units 
must send the last motion vector used in the bitstream to the compression unit that 
is assigned the next blocks. Figure 5-7 shows the communication structure of the task 
parallelization approach.

19F. Sijstermans and J. Meer, “CD-I Full-motion Video Encoding on a Parallel Computer,” 
Communications of the ACM 34, no. 4 (April 1991): 81–91.
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This idea can be used in video encoding in general, regardless of the video coding 
standards or the algorithms used. However, the idea can be further improved to reduce 
the communication overhead. For example, in a system, the processors can identify 
themselves in the environment and can attach their processor numbers as tags to the  
data they process. These tags can be subsequently removed by the appropriate 
destination processors, which can easily rearrange the data as needed. It is important 
to understand that appropriate task scheduling is necessary in the task parallelization 
approach, as many tasks are dependent on other tasks, owing to the frame-level 
dependences.

Pipelining

Pipelines are cascades of processing stages where each stage performs certain fixed 
functions over a stream of data flowing from one end to the other. Pipelines can be linear 
or dynamic (nonlinear). Linear pipelines are simple cascaded stages with streamlined 
connections, while in dynamic pipelines feedback and/or feed-forward connection 
paths may exist from one stage to another. Linear pipelines can be further divided into 
synchronous and asynchronous pipelines. In asynchronous pipelines, the data flow 
between adjacent stages is controlled by a handshaking protocol, where a stage S

i
 sends 

a ready signal to the next stage S
i+1

 when it is ready to transmit data. Once the data is 
received by stage S

i+1
, it sends an acknowledge signal back to S

i
 . In synchronous pipelines, 

clocked latches are used to interface between the stages. Upon arrival of a clock pulse, 

Figure 5-7.  Communication structure in task parallelization
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all latches transfer data to the next stage simultaneously. For a k-stage linear pipeline, 
a multiple of k clock cycles are needed for the data to flow through the pipeline.20 The 
number of clock cycles between two initiations of a pipeline is called the latency of 
the pipeline. The pipeline efficiency is determined by the percentage of time that each 
pipeline stage is used, which is called the stage utilization.

Video encoding tasks can form a three-stage dynamic pipeline, as shown in Figure 5-7. 
The first stage consists of the motion-estimation units; the second stage has several 
compression units in parallel, and the third stage is the output manager. The bit rate and 
quantization control unit and the reference frame manager can be considered as two 
delay stages having feedback connections with the second-stage components.

Data Parallelization

If data can be partitioned into independent units, they can be processed in parallel with 
minimum communication overhead. Video data possess this characteristic. There are a 
few common data parallelization execution modes, including single instruction multiple 
data (SIMD), single program multiple data (SPMD), multiple instruction multiple data 
(MIMD), and so on.

SIMD is a processor-supported technique that allows an operation to be performed 
on multiple data points simultaneously. It provides data-level parallelism, which is more 
efficient than scalar processing. For example, some loop operations are independent in 
successive iterations, so a set of instructions can operate on different sets of data. Before 
starting execution of the next instruction, typically synchronization is needed among the 
execution units that are performing the same instruction on the multiple data sets.

SIMD is particularly applicable to image and video applications where typically 
the same operation is performed on a large number of data points. For example, in 
brightness adjustment, the same value is added to (or subtracted from) all the pixels in 
a frame. In practice, these operations are so common that most modern CPU designs 
include special instruction sets for SIMD to improve the performance for multimedia 
use. Figure 5-8 shows an example of SIMD technique where two source arrays of eight 
16-bit short integers A and B are added simultaneously element by element to produce 
the result in the destination array C, where the corresponding element-wise sums are 
written. Using the SIMD technique, a single add instruction operates on 128-bit wide 
data in one clock cycle.

20Hwang, Advanced Computer Architecture.
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Procedure- or task-level parallelization is generally performed in MIMD execution 
mode, of which SPMD is a special case. In SPMD, a program is split  into smaller 
independent procedures or tasks, and the tasks are run simultaneously on multiple 
processors with potentially different input data. Synchronization is typically needed at the 
task level, as opposed to at the instruction level within a task. Implementations of SPMD 
execution mode are commonly found on distributed memory computer architectures 
where synchronization is done using message passing. For a video encoding application, 
such an SPMD approach is presented by Akramullah et al.21

Instruction Parallelization

Compilers translate the high-level implementation of video algorithms into low-level 
machine instructions. However, there are some instructions that do not depend on 
the previous instructions to complete; thus, they can be scheduled to be executed 
concurrently. The potential overlap among the instructions forms the basis of instruction 
parallelization, since the instructions can be evaluated in parallel. For example, consider 
the following code:

1	 R4 = R1 + R2
2	 R5 = R1 – R3
3	 R6 = R4 + R5
4	 R7 = R4 – R5

In this example, there is no dependence between instructions 1 and 2, or between 3 
and 4, but instructions 3 and 4 depend on the completion of instructions 1 and 2. Thus, 
instructions 1 and 2 and instructions 3 and 4 can be executed in parallel. Instruction 
parallelization is usually achieved by compiler-based optimization and by hardware 
techniques. However, indefinite instruction parallelization is not possible; the parallelization 
is typically limited by data dependency, procedural dependency, and resource conflicts.

Figure 5-8.  An example of SIMD technique

21S. M. Akramullah, I. Ahmad, and M. L. Liou, “A Data-parallel Approach for Real-time MPEG-2 
Video Encoding,” Journal of Parallel and Distributed Computing 30, no. 2 (November 1995): 129–46.
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Instructions in reduced instruction set computer (RISC) processors have four stages 
that can be overlapped to achieve an average performance close to one instruction per 
cycle. These stages are instruction fetch, decode, execute, and result write-back. It is 
common to simultaneously fetch and decode two instructions A and B, but if instruction 
B has read-after-write dependency on instruction A, the execution stage of B must wait 
until the write is completed for A. Mainly owing to inter-instruction dependences, more 
than one instruction per cycle is not achievable in scalar processors that execute one 
instruction at a time. However, superscalar processors exploit instruction parallelization 
to execute more than one unrelated instructions at a time; for example, z=x+y and c=a*b 
can be executed together. In these processors, hardware is used to detect the independent 
instructions and execute them in parallel.

As an alternative to superscalar processors, very long instruction word (VLIW) 
processor architecture takes advantage of instruction parallelization and allows programs 
to explicitly specify the instructions to execute in parallel. These architectures employ 
an aggressive compiler to schedule multiple operations in one VLIW per cycle. In such 
platforms, the compiler has the responsibility of finding and scheduling the parallel 
instructions. In practical VLIW processors such as the Equator BSP-15, the integrated 
caches are small—the 32 KB data cache and 32 KB instruction cache typically act as 
bridges between the higher speed processor core and relatively lower speed memory. It is 
very important to stream in the data uninterrupted so as to avoid the wait times.

To better understand how to take advantage of instruction parallelism in video 
coding, let’s consider an example video encoder implementation on a VLIW platform.22 
Figure 5-9 shows a block diagram of the general structure of the encoding system.

Figure 5-9.  A block diagram of a video encoder on a VLIW platform

22S. M. Akramullah, R. Giduthuri, and G. Rajan, “MPEG-4 Advanced Simple Profile Video Encoding 
on an Embedded Multimedia System,” in Proceedings of the SPIE 5308, Visual Communications and 
Image Processing  (San Jose: SPIE-IS&T, 2004),  6–17.
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Here, the macroblocks are processed in a pipelined fashion while they go through 
the different encoding tasks in the various pipeline stages of the encoder core. A direct 
memory access (DMA) controller, commonly known as the data streamer, helps prefetch 
the necessary data. A double buffering technique is used to continually feed the pipeline 
stages.  This technique uses two buffers in an alternating fashion – when the data in 
one buffer is actively used, the next set of data is loaded onto the second buffer. When 
processing of the active buffer’s data is done, the second buffer becomes the new active 
buffer and processing of its data starts, while the buffer with used-up data is refilled with 
new data. Such design is useful in avoiding potential performance bottlenecks.

Fetching appropriate information into the cache is extremely important; care needs 
to be taken so that both the data and the instruction caches are maximally utilized. 
To minimize cache misses, instructions for each stage in the pipeline must fit into the 
instruction cache, while the data must fit into the data cache. It is possible to rearrange 
the program to coax the compiler to generate instructions that fit into the instruction 
cache. Similarly, careful consideration of data prefetch would keep the data cache full. 
For example, the quantized DCT coefficients can be stored in a way so as to help data 
prefetching in some Intra prediction modes, where only seven coefficients (either from 
the top row or from the left column) are needed at a given time. The coefficients have a 
dynamic range (-2048, 2047), requiring 13 bits each, but are usually represented in signed 
16-bit entities. Seven such coefficients would fit into two 64-bit registers, where one 
16-bit slot will be unoccupied. Note that a 16-bit element relevant for this pipeline stage, 
such as the quantizer scale or the DC scaler, can be packed together with the quantized 
coefficients to fill in the unoccupied slot in the register, thereby achieving better cache 
utilization.

Multithreading

A thread is represented by a program context comprising a program counter, a register 
set, and the context status. In a multithreaded parallel computation model, regardless 
of whether it is run on a SIMD, multiprocessor, or multicomputer, or has distributed or 
shared memory, a basic unit is composed of multiple threads of computation running 
simultaneously, each handling a different context on a context-switching basis. The 
basic structure is as follows:23 the computation starts with a sequential thread, followed 
by supervisory scheduling where computation threads begin working in parallel. In case 
of distributed memory architectures where one or more threads typically run on each 
processor, interprocessor communication occurs as needed and may overlap among all 
the processors. Finally, the multiple threads synchronize prior to beginning the next unit 
of parallel work.

23G. Bell, “Ultracomputers: A Teraflop before Its Time,” Communications of the ACM 35, no. 8 
(August 1992): 27–47.
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Multithreading improves the overall execution performance owing to the facts that 
a thread, even if stalled, does not prevent other threads from using available resources, 
and that multiple threads working on the same data can share the cache for better cache 
usage. However, threads usually work on independent data sets and often interfere with 
each other when trying to share resources. This typically results in cache misses. In 
addition, multithreading has increased complexity in terms of synchronization, priorities, 
and pre-emption handling requirements.

Simultaneously executing instructions from multiple threads is known as 
simultaneous multithreading in general, or Intel Hyper-Threading Technology on Intel 
processors. To reduce the number of dependent instructions in the pipeline, hyper-
threading takes advantage of virtual or logical processor cores. For each physical core, 
the operating system addresses two logical processors and shares the workload and 
execution resources when possible.

As performance optimization using specialized media instructions alone is not 
sufficient for real-time encoding performance, exploiting thread-level parallelism 
to improve the performance of video encoders has become attractive and popular. 
Consequently, nowadays multithreading is frequently used for video encoder speed 
optimization. Asynchronously running threads can dispatch the frame data to multiple 
execution units in both CPU-based software and GPU-accelerated implementations. It is 
also possible to distribute various threads of execution between the CPU and the GPU.

Multithreading is often used together with task parallelization, data parallelization, 
or with their combinations, where each thread operates on different tasks or data 
sets. An interesting discussion on multithreading as used in video encoding can be 
found in Gerber et al.,24 which exploits frame-level and slice-level parallelism using 
multithreading techniques.

Vectorization

A vector consists of multiple elements of the same scalar data types. The vector length 
refers to the number of elements of the vectors that are processed together, typically  
2, 4, 8, or 16 elements.

Vector length in number of elements
size of vector registers in b( )= ( iits

Size of the data type in bits

)
( )

For example, 128-bit wide vector registers can process eight 16-bit short integers. In 
this case, vector length is 8. Ideally, vector lengths are chosen by the developer or by the 
compiler to match the underlying vector register widths.

24R. Gerber, A. J. C. Bik, K. Smith, and X. Tian, “Optimizing Video Encoding Using Threads and 
Parallelism,” Embedded, December 2009. Available at www.embedded.com/design/real-time-
and-performance/4027585/Optimizing-Video-Encoding-using-Threads-and-Parallelism-
Part-1--Threading-a-video-codec.

http://www.embedded.com/design/real-time-and-performance/4027585/Optimizing-Video-Encoding-using-Threads-and-Parallelism-Part-1--Threading-a-video-codec
http://www.embedded.com/design/real-time-and-performance/4027585/Optimizing-Video-Encoding-using-Threads-and-Parallelism-Part-1--Threading-a-video-codec
http://www.embedded.com/design/real-time-and-performance/4027585/Optimizing-Video-Encoding-using-Threads-and-Parallelism-Part-1--Threading-a-video-codec
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Vectorization is a process to convert procedural loops that iterate over multiple pairs 
of data items and to assign a separate processing unit for each pair. Each processing unit 
belongs to a vector lane. There are the same number of vector lanes as vector lengths, 
so 2, 4, 8, or 16 data items can be processed simultaneously using as many vector lanes. 
For example, consider an array A of size 1024 elements is added to an array B, and the 
result is written to an array C, where B and C are of the same size as A. To implement this 
addition, a scalar code would use a loop of 1024 iterations. However, if 8 vector lanes are 
available in the processing units, vectors of 8 elements of the arrays can be processed 
together, so that only (1024/8) or 128 iterations will be needed. Vectorization is different 
from thread-level parallelism. It tries to improve performance by using more vector lanes 
as much as possible. Vector lanes provide additional parallelism on top of each thread 
running on a single processor core. The objective of vectorization is to maximize the use 
of available vector registers per core.

Technically, the historic vector-processing architectures are considered separate 
from SIMD architectures, based on the fact that vector machines used to process 
the vectors one word at a time through pipelined processors (though still based on a 
single instruction), whereas modern SIMD machines process all elements of the vector 
simultaneously. However, today, numerous computational units with SIMD processing 
capabilities are available at the hardware level, and vector processors are essentially 
synonymous with SIMD processors. Over the past couple of decades, there has been 
progressively wider vector registers available for vectorization in each processor core: for 
example, the 64-bit MMX registers in Pentium to support MMX extensions, 128-bit XMM 
registers in Pentium IV to support SSE and SSE2 extensions, 256-bit YMM registers in 
second generation Core processors to support AVX and AVX2 extensions, 512-bit ZMM 
registers in Xeon Phi co-processors to support MIC extensions. For data-parallelism 
friendly applications such as video encoding, these wide vector registers are useful.

Conventional programming languages are constrained by their inherent serial nature 
and don’t support the computation capabilities offered by SIMD processors. Therefore, 
extensions to conventional programming languages are needed to tap these capabilities. 
Vectorization of the serial codes and vector programming models are developed for this 
purpose. For example, OpenMP 4.0 supports vector programming models for C/C++ and 
FORTRAN, and provides language extensions to simplify vector programming, thereby 
enabling developers to extract more performance from the SIMD processors. The Intel 
Click Plus is another example that supports similar language extensions.

The auto-vectorization process tries to vectorize a program given its serial 
constraints, but ends up underutilizing the available computation capabilities. However, 
as both vector widths and core counts are increasing, explicit methods are developed by 
Intel to address the trends. With the availability of integrated graphics and co-processors 
in the modern CPUs, generalized programming models with explicit vector programming 
capabilities are being added to compilers such as the Intel compiler, GCC, and LLVM,  
as well as into standards such as OpenMP 4.0. The approach is similar to multithreading, 
which addresses the availability of multiple cores and parallelizes programs on these 
cores. Vectorization additionally addresses the availability of increased vector width by 
explicit vector programming.
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Vectorization is useful in video encoding performance optimization, especially for the 
CPU-based software implementations. Vectors with lengths of 16 elements of pixel data can 
provide up to 16-fold speed improvement within critical loops—for example, for motion 
estimation, prediction, transform, and quantization operations. In applications such as 
video transcoding, some video processing tasks such as noise reduction can take advantage 
of the regular, easily vectorizable structure of video data and achieve speed improvement.

Compiler and Code Optimization
There are several compiler-generated and manual code optimization techniques that 
can result in improved performance. Almost all of these techniques offer performance 
improvement without affecting visual quality. However, depending on the needs of the 
application, the program’s critical path often needs to be optimized. In this section, a few 
common compiler and code optimization techniques are briefly described. The benefits 
of these techniques for GPU-accelerated video encoder implementations are usually 
limited and confined to the application and SDK levels, where the primary encoding tasks 
are actually done by the hardware units. Nevertheless, some of these techniques have 
been successfully used in speed optimizations of CPU-based software implementations,25 
resulting in significant performance gains.

Compiler optimization
Most compilers come with optional optimization flags to offer tradeoffs between 
compiled code size and fast execution speed. For fast speed, compilers typically perform 
the following:

•	 Store variables in registers: Compilers would store frequently 
used variables and subexpressions in registers, which are fast 
resources. They would also automatically allocate registers for 
these variables.

•	 Employ loop optimizations: Compilers can automatically 
perform various loop optimizations, including complete or partial 
loop unrolling, loop segmentation, and so on. Loop optimizations 
provide significant performance improvements in typical video 
applications.

•	 Omit frame pointer on the call stack: Often, frame pointers are 
not strictly necessary on the call stack and can safely be omitted. 
This usually slightly improves performance.

•	 Improve floating-point consistency: The consistency can be 
improved, for example, by disabling optimizations that could 
change floating-point precision. This is a tradeoff between 
different types of performance optimizations.

25Akramullah et al., “Optimization.”
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•	 Reduce overhead of function calls: This can be done, for 
example, by replacing some function calls with the compiler’s 
intrinsic functions.

•	 Trade off register-space saving with memory transaction: One 
way to realize such a tradeoff is by reloading pointer variables 
from memory after each function call. This is another example of 
choosing between different types of performance optimizations.

Code optimization
Optimizing every part of the software code is not worth the effort. It is more practical to 
focus on the parts where code optimization will reduce execution time the most. For this 
reason, profiling and analysis of execution time for various tasks in an application is often 
necessary. 

However, the following techniques often provide significant performance 
improvement, especially when compilers fail to effectively use the system resources.

•	 Reduction of redundant operations: Careful programming is 
the key to compact codes. Without loss of functionality, often 
redundant operations in codes can be reduced or eliminated by 
carefully reviewing the code.

•	 Data type optimization: Choosing appropriate data types 
for the program’s critical path is important for performance 
optimization. The data types directly derived from the task 
definition may not yield optimum performance for various 
functional units. For example, using scaled floating-point 
constants and assigning precomputed constants to registers 
would give better performance than directly using mixed-mode 
operations of integer and floating-point variables, as defined 
by most DCT and IDCT algorithms. In some cases such as 
quantization, or introduction of temporary variables stored in 
registers, can provide noticeable performance gain.

•	 Loop unrolling: Loop unrolling is the transformation of a loop, 
resulting in larger loop body size but less iteration. In addition 
to the automatic compiler optimizer, manual loop unrolling is 
frequently performed to ensure the right amount of unrolling, as 
over-unrolling may adversely affect performance. With the CPU 
registers used more effectively, this process minimizes both the 
number of load/store instructions and the data hazards arising, 
albeit infrequently, from inefficient instruction scheduling by 
the compiler. There are two types of loop unrolling: internal 
and external. Internal unrolling consists of collapsing some 
iterations of the innermost loop into larger and more complex 
statements. These statements require higher numbers of machine 
instructions, but can be more efficiently scheduled by the 
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compiler optimizer. External loop unrolling consists of moving 
iterations from outer loops to inner loops through the use of 
more registers to minimize the number for memory access. In 
video encoding applications, motion estimation and motion 
compensated prediction are good candidates to take advantage of 
loop unrolling.

•	 Arithmetic operations optimization: Divisions and 
multiplications are usually considered the most cycle-
expensive operations. However, in most RISC processors, 
32-bit based multiplications take more cycles than 64-bit based 
multiplications in terms of instruction execution latency and 
instruction throughput. In addition, floating-point divisions are 
less cycle-expensive compared to mixed-integer and floating-
point divisions. Therefore, it is important to use fewer of these 
arithmetic operations, especially inside a loop.

Overclocking
Although not recommended, it is possible to operate a processor faster than its 
rated clock frequency by modifying the system parameters. This process is known as 
overclocking. Although speed can be increased, for stability purposes it may be necessary 
to operate at a higher voltage as well. Thus, most overclocking techniques result in 
increasing power consumption and consequently generate more heat, which must be 
dissipated if the processor is to remain functional. This increases the fan noise and/or 
the cooling complexity. Contrarily, some manufacturers underclock the processors of 
battery-powered equipments to improve battery life or implement systems that reduce 
the frequency when operating under battery. Overclocking may also be applied to a 
chipset, a discrete graphics card, or memory.

Overclocking allows operating beyond the capabilities of current-generation system 
components. Because of the increased cooling requirements, the risk of less reliability of 
operation and potential damage to the component, overclocking is mainly practiced by 
enthusiasts and hobbyists rather than professional users.

Successful overclocking needs a good understanding of power management. As 
we will see in Chapter 6, the process of power management is complex in modern 
processors. The processor hardware and the operating system collaborate to manage 
the power. In the process, they dynamically adjust the processor core frequencies as 
appropriate for the current workload. In such circumstances, pushing a certain core to 
100 percent frequency may adversely affect the power consumption. In Figure 5-10, the 
concept is clarified with an example where a typical workload is running on a four-core 
(eight logical cores) Intel second-generation Core processor.
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Figure 5-10.  Frequency and power distribution showing the impact of pushing a single core 
to 100 percent frequency. (Courtesy: J. Feit et al.,  Intel Corporation, VPG Tech. Summit, 2011)

In a multi-core processor, if one CPU core is pushed to 100 percent frequency while 
others are idle, it generally results in higher power consumption. In the example of 
Figure 5-10, as much as ~10 Watts more power is consumed with a single core running 
at 100 percent frequency compared to when all eight cores are in use and the average 
frequency distribution is ~12.5 percent spread across all cores.

Recent Intel processors with integrated graphics allow the hardware-accelerated 
video encoder to automatically reach the highest frequency state for as long as necessary, 
and then keep it in idle state when the task is done. Details of this mechanism are 
discussed in Chapter 6. In a power-constrained environment using modern processors,  
it is best to leave the frequency adjustment to the hardware and the operating system.

Performance Bottlenecks
Performance bottlenecks occur when system performance is limited by one or more 
components or stages of the system. Typically, a single stage causes the entire system 
to slow down. Bottlenecks can be caused either by hardware limitations or inefficient 
software configurations or both. Although a system may have certain peak performance 
for a short period of time, for sustainable throughput a system can only achieve 
performance as fast as its slowest performing component. Ideally, a system should have 
no performance bottleneck so that the available resources are optimally utilized.
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To identify performance bottlenecks, resource utilization needs to be carefully 
inspected. When one or more resources are underutilized, it is usually an indication of a 
bottleneck somewhere in the system. Bottleneck identification is an incremental process 
whereby fixing one bottleneck may lead to discovery of another. Bottlenecks should be 
identified in a sequential manner, during which only one parameter at a time is identified 
and varied, and the impact of that single change is captured. Varying more than one 
parameter at a time could conceal the effect of the change. Once a bottleneck has been 
eliminated, it is essential to measure the performance again to ensure that a new bottleneck 
has not been introduced.

Performance-related issues can be found and addressed by carefully examining and 
analyzing various execution profiles, including:

Execution history, such as the performance call graphs•	

Execution statistics at various levels, including packages, classes, •	
and methods

Execution flow, such as method invocation statistics•	

It may be necessary to instrument the code with performance indicators for such 
profiling. Most contemporary operating systems, however, provide performance profiling 
tools for run-time and static-performance analysis.

For identification, analysis, and mitigation of performance bottlenecks in an application, 
the Intel Performance Bottleneck Analyzer26 framework can be used. It automatically finds 
and prioritizes architectural bottlenecks for the Intel Core and Atom processors. It combines 
the latest performance-monitoring techniques with knowledge of static assembly code to 
identify the bottlenecks. Some difficult and ambiguous cases are prioritized and tagged for 
further analysis. The tool recreates the most critical paths of instruction execution through 
a binary. These paths are then analyzed, searching for well-known code-generation issues 
based on numerous historic performance-monitoring events.

Performance Measurement and Tuning
Performance measurement is needed to verify if the achieved performance meets the 
design expectations. Furthermore, such measurement allows determination of the actual 
execution speed of tasks, identification and alleviation of performance bottlenecks, and 
performance tuning and optimization. It also permits comparison of two tasks—for 
instance, comparing two video encoding solutions in terms of performance. Thus, it plays 
an important role in determining the tradeoffs among performance, quality, power use, 
and amount of compression in various video applications.

Various approaches are available for tuning the system performance of a given 
application. For instance, compile-time approaches include inserting compiler directives 
into the code to steer code optimization, using program profilers to modify the object 
code in multiple passes through the compiler, and so on. Run-time approaches include 
collecting program traces and event monitoring.

26E. Niemeyer, “Intel Performance Bottleneck Analyzer,” Intel Corporation, August 2011. Retrieved 
from www.software.intel.com/en-us/articles/intel-performance-bottleneck-analyzer.

http://www.software.intel.com/en-us/articles/intel-performance-bottleneck-analyzer
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Considerations
As configurable system parameters affect the overall performance, it is necessary to fix 
these parameters to certain values to obtain stable, reliable, and repeatable performance 
measurements. For example, the BIOS settings, the performance optimization options in 
the operating system, the options in the Intel graphics common user interface (CUI),27 and 
so on must be selected before performance measurements are taken. In the BIOS settings, 
the following should be considered: the PCIe latency, clock gating, ACPI settings, CPU 
configuration, CPU and graphics power-management control, C-state latency, interrupt 
response-time limits, graphics render standby status, overclocking status, and so on.

As we noted in the preceding discussion, workload characteristics can influence the 
performance. Therefore, another important consideration is the workload parameters. 
However, it is generally impractical to collect and analyze all possible compile-time and 
run-time performance metrics. Further, the choice of workloads and relevant parameters 
for performance measurement is often determined by the particular usage and how an 
application may use the workload. Therefore, it is important to consider practical usage 
models so as to select some test cases as key performance indicators. Such selection 
is useful, for instance, when two video encoding solutions are compared that have 
performance differences but are otherwise competitive.

Performance Metrics
Several run-time performance metrics are useful in different applications. For example, 
knowledge of the processor and memory utilization patterns can guide the code 
optimization. A critical-path analysis of programs can reveal the bottlenecks. Removing 
the bottlenecks or shortening the critical path can significantly improve overall system 
performance. In the literature, often system performance is reported in terms of cycles 
per instruction (CPI), millions of instructions per second (MIPS), or millions of floating-
point operations per second (Mflops). Additionally, memory performance is reported in 
terms of memory cycle or the time needed to complete one memory reference, which is 
typically a multiple of the processor cycle.

However, in practice, performance tuning of applications such as video coding often 
requires measuring other metrics, such as the CPU and GPU utilization, processing or 
encoding speed in frames per second (FPS), and memory bandwidth in megabytes per 
second. In hardware-accelerated video applications, sustained hardware performance 
in terms of clocks per macroblock (CPM) can indicate potential performance variability 
arising from the graphics drivers and the video applications, so that appropriate tuning can 
be made at the right level for the best performance. Other metrics that are typically useful 
for debugging purposes include cache hit ratio, page fault rate, load index, synchronization 
frequency, memory access pattern, memory read and write frequency, operating system 
and compiler overhead, inter-process communication overhead, and so on.

27This graphics user interface works on a system with genuine Intel CPUs along with Intel 
integrated graphics. There are several options available—for example, display scaling, rotation, 
brightness, contrast, hue and saturation adjustments, color correction, color enhancement, and so on. 
Some of these options entail extra processing, incurring performance and power costs.
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Tools and Applications
The importance of performance measurement can be judged by the large number of 
available tools. Some performance-analysis tools support sampling and compiler-based 
instrumentation for application profiling, sometimes with context-sensitive call graph 
capability. Others support nonintrusive and low-overhead hardware-event-based 
sampling and profiling. Yet others utilize the hardware-performance counters offered 
by modern microprocessors. Some tools can diagnose performance problems related to 
data locality, cache utilization, and thread interactions. In this section, we briefly discuss 
a couple of popular tools suitable for performance measurement of video applications, 
particularly the GPU-accelerated applications. Other popular tools, such as Windows 
Perfmon, Windows Xperf, and Intel Graphics Performance Analyzer, are briefly described 
in Chapter 6.

V Tune Amplifier
The VTune Amplifier XE 2013 is a popular performance profiler developed by Intel.28 
It supports performance profiling for various programming languages, including 
C, C++, FORTRAN, Assembly, Java, OpenCL, and OpenMP 4.0. It collects a rich set 
of performance data for hotspots, call trees, threading, locks and waits, DirectX, 
memory bandwidth, and so on, and provides the data needed to meet a wide variety of 
performance tuning needs.

Hotspot analysis provides a sorted list of the functions using high CPU time, 
indicating the locations where performance tuning will yield the biggest benefit. It also 
supports tuning of multiple threads with locks and wait analysis. It enables users to 
determine the causes of slow performance in parallel programs by quickly finding such 
common information as when a thread is waiting too long on a lock while the cores are 
underutilized during the wait. Profiles like hotspot and locks and waits use a software 
data collector that works on both Intel and compatible processors. The tool also provides 
advanced hotspot analysis that uses the on-chip Performance Monitoring Unit (PMU) on 
Intel processors to collect data by hardware event sampling with very low overhead and 
increased resolution of 1 msec, making it suitable to identify small and quick functions 
as well. Additionally, the tool supports advanced hardware event profiles like memory 
bandwidth analysis, memory access, and branch mispredictions to help find tuning 
opportunities. An optional stack sample collection is supported in the latest version 
to identify the calling sequence. Furthermore, profiling a remote system and profiling 
without restarting the application are also supported.

28 The latest version of VTune Amplifier for Systems (2014) is now part of Intel System Studio tool 
suite at: https://software.intel.com/en-us/intel-system-studio.

https://software.intel.com/en-us/intel-system-studio
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GPUView
Matthew Fisher and Steve Pronovost originally developed GPUView, which is a tool for 
determining the performance of the GPU and the CPU. Later, this tool was incorporated 
into the Windows Performance Toolkit, and can be downloaded as part of the  
Windows SDK.29 It looks at performance with regard to direct memory access (DMA) buffer 
processing and all other video processing on the video hardware. For GPU-accelerated 
DirectX applications, GPUView is a powerful tool for understanding the relationship 
between the works done on the CPU and those done on the GPU. It uses an Event Tracing 
for Windows (ETW) mechanism for measuring and analyzing detailed system and 
application performance and resource usage. The data-collection process involves enabling 
trace capture, running the desired test application scenario for which performance analysis 
is needed and stopping the capture, which saves the data in an event trace log (ETL) file. 
The ETL file can be analyzed on the same or a different machine using GPUView, which 
presents the ETL information in a graphic format, as shown in Figure 5-11.

Figure 5-11.  A screenshot from GPUView showing activity in different threads

GPUView is very useful in analysis and debugging of hardware-accelerated video 
applications. For example, if a video playback application is observed to drop video 
frames, the user experience will be negatively affected. In such cases, careful examination 
of the event traces using GPUView can help identify the issue. Figure 5-12 illustrates an 
example event trace of a normal video playback, where workload is evenly distributed in 
regular intervals. The blue vertical lines show the regular vsync and red vertical lines show 
the present events.

29Available from http://msdn.microsoft.com/en-us/windows/desktop/aa904949.aspx.

http://msdn.microsoft.com/en-us/windows/desktop/aa904949.aspx
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Figure 5-13 shows event traces of the same video playback application, but when it 
drops video frames as the frame presentation deadline expires. The profile appears much 
different compared to the regular pattern seen in Figure 5-12. In the zoomed-in version, 
the present event lines are visible, from which it is not difficult to realize that there are 
long delays happening from time to time when the application sends video data packets 
to the GPU for decoding. Thus it is easy to identify and address the root cause of an issue 
using GPUView.

Figure 5-12.  Event trace of a regular video playback 
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Figure 5-13.  Event trace of video playback with frame drops
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Summary
In this chapter we discussed the CPU clock speed and the extent of the possible 
increase in clock speed. We noted that the focus in modern processor design has shifted 
from purely increasing clock speed toward a more useful combination of power and 
performance. We then highlight the motivation for achieving high performance for video 
coding applications, and the tradeoffs necessary to achieve such performance.

Then we delved into a discussion of resource utilization and the factors influencing 
encoding speed. This was followed by a discussion of various performance-optimization 
approaches, including algorithmic optimization, compiler and code optimization, and 
several parallelization techniques. Note that some of these parallelization techniques 
can be combined to obtain even higher performance, particularly in video coding 
applications. We also discussed overclocking and common performance bottlenecks in 
the video coding applications. Finally, we presented various performance-measurement 
considerations, tools, applications, methods, and metrics.
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Chapter 6

Power Consumption  
by Video Applications

After discussing video compression, quality, and performance aspects in the previous 
chapters, in this chapter we turn our attention to another dimension of video application 
tuning: power consumption. Power consumption needs to be considered together 
with those other dimensions; tradeoffs are often made in favor of tuning one of these 
dimensions, based on the needs of the application and with a view toward providing the 
best user experience. Therefore, we first introduce the concept of power consumption 
and view its limits on typical modern devices, then we follow with a discussion of 
common media workloads and usages on consumer platforms. After that, we briefly 
introduce various criteria for power-aware platform designs. 

Within this general setup, the chapter deals with three major topics: power 
management, power optimization, and power measurement considerations. In regard 
to power management, we present the standards and management approaches used 
by the operating system and by the processor. For discussion of power optimization, 
we present various approaches, including architectural, algorithmic, and system 
integration optimization. The third topic, power measurement, takes us into the realm of 
measurement methodologies and considerations.

Besides these three main topics, this chapter also briefly introduces several power 
measurement tools and applications, along with their advantages and limitations. 

Power Consumption and Its Limits
In today’s mobile world order, we face ever-increasing desires for compelling user 
experiences, wearable interfaces, wireless connectivity, all-day computing, and--most 
critical--higher performance. At the same time, there’s high demand for decreasing form 
factor, lower weight, and quieter battery-powered devices. Such seemingly contradictory 
requirements present unique challenges: not only do newer mobile devices need 
extensive battery lives but they also are harder to cool, as they cannot afford bulky fans. 



Chapter 6 ■ Power Consumption by Video Applications 

210

Most important, they need to operate in a limited power envelope. The main concern 
from the consumer’s point of view, however, is having a system with better battery life, 
which is cost-effective over the device’s life. Therefore, power limits are a fundamental 
consideration in the design of modern computing devices.

Power limits are usually expressed in terms of thermal design power (TDP), which is 
the maximum amount of heat generated for which the cooling requirement is accounted 
for in the design. For example, TDP is the maximum allowed power dissipation for a 
platform. The TDP is often broken down into the power consumption of individual 
components, such as the CPU, the GPU, and so on. Table 6-1 lists typical TDPs for various 
processor models:

Table 6-1.  Typical Power Envelopes

Type TDP (Watts) Comment

Desktop  
server/ workstation

47W–120W High-performance workstations and servers

All-in-one 47W-65W Common usage

Laptop 35W

Ultrabook class 17W Recent areas of focus to decrease TDP

Tablet/Phablet 8W

Smartphone <4W

Although it is important to reduce cost and conserve power for the desktop 
workstations and servers, these platforms essentially are not limited by the availability 
of power. Consumer devices and platforms such as portable tablets, phablets, and 
smartphones, on the other hand, use size-constrained batteries for their power supply. 

A major drawback of these devices is that batteries in tablets often drain down before 
an 8- or 9-hour cross-Atlantic flight is over, and in the case of smartphones, often need 
a recharge every day. As such, today’s market demands over 10 hours of battery life for a 
tablet to enable users to enjoy a long flight and more than 24 hours for a smartphone for 
active use. Additionally, the users of these devices and platforms may choose to use them 
in many different ways, some of which may not be power-efficient. We need, therefore, 
to understand various power-saving aspects for media applications on these typical 
consumer platforms. 

Power is the amount of energy consumed per unit time, and it is typically 
expressed in terms of Joules per second, or watts. The switching power dissipated by 
a chip using static CMOS gates, such as the power consumed by the CPU of a mobile 
computing device with a capacitance C

dyn
, running at a frequency f and at a voltage V, is 

approximately as follows: 

			                   P AC V f Pdyn s= +2
	 (Equation 6-1)

Here, P
S
 is the static power component introduced mainly due to leakage, and A is 

an activity constant related to whether or not the processor is active or asleep, or under a 
gating condition such as clock gating. For a given processor, C

dyn
 is a fixed value; however, 
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V and f can vary considerably. The formula is not perfect because practical devices 
as CPUs are not manufactured with 100 percent CMOS and there is special circuitry 
involved. Also, the static leakage current is not always the same, resulting in variations in 
the latter part of the equation, which become significant for low-power devices. 

Despite the imprecision of the equation, it is still useful for showing how altering 
the system design will affect power. Running the processor of a device at a higher clock 
frequency results in better performance; however, as Equation 6-1 implies, at a lower 
frequency it results in less heat dissipation and consequently lower power consumption. 
In other words, power consumption not only dictates the performance, it also impacts the 
battery life.

In today’s technology, the power or energy supply for various electronic devices and 
platforms usually comes from one of three major sources: 

An electrical outlet, commonly known as the “AC power source”•	

A so-called •	 SMPS unit, commonly known as the “DC power source” 

A rechargeable battery•	

A switch mode power supply (SMPS) unit rectifies and filters the AC mains input so 
as to obtain DC voltage, which is then switched on and off at a high frequency—speed in 
the order of hundreds of KHz to 1 MHz. 

The high-frequency switching enables the use of inexpensive and lightweight 
transformers, inductors, and capacitors circuitry for a subsequent voltage step-down, 
rectification, and filtering to output a clean and stable DC power supply. Typically, an 
SMPS is used as a computer power supply.

For mobile usage, rechargeable batteries supply energy to an increasing number 
of electronic devices, including almost all multimedia devices and platforms. However, 
because of the change in internal resistance during charging and discharging, 
rechargeable batteries degrade over time. The lifetime of a rechargeable battery, aka  
“the battery life,” depends on the number of cycles of charge/discharge, until eventually 
the battery can no longer hold an effective charge. 

Batteries are rated in watt-hours (or ampere-hours multiplied by the voltage). 
Measuring system power consumption in watts gives a good idea of how many hours 
a battery will work before needing a recharge. This measure of battery life is usually 
important to consumers of today’s electronic devices.

Media Workloads on Consumer Platforms
One of the main goals in designing a typical consumer electronic device or platform is to 
make it as user-friendly as possible. This implies that an important design consideration 
is how such devices are to be used. Nowadays, rapid integration of multimedia 
functionalities in modern mobile devices has become commonplace.

For example, a smartphone is expected to work not only as a wireless phone and a 
communication device but also should accommodate applications such as calendars, 
clocks, and calculators, combining to function as a productivity device. It should also serve 
as a navigation device with a compass, a GPS, and maps; and it should function as an 
entertainment device, with games and multimedia applications. In addition to these usages, 
as an educational platform the device is used for digital storytelling or a virtual classroom. 
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Human interaction with these devices calls for high-resolution cameras, high-speed 
wireless connection to the Internet, and voice, touch, and gesture input. On the output 
side, high-fidelity speakers, high-resolution displays, fast processing, and low power 
consumption are common expectations.

However, supporting multiple high-end functionalities often conflicts with the need 
to save power. Increases in battery capacity only partially address the problem, as that 
increase is not sufficient to keep up with the expansion of multimedia integration and 
enhanced user experience. Analyzing and understanding the nature of these multimedia 
workloads will help toward achieving the performance and power optimizations within 
the constraints just mentioned. 

In popular consumer electronics press reviews, power data is often measured and 
analyzed using non-multimedia benchmark workloads, such as Kraken, Sunspider, and 
Octane Javascript benchmarks. Usually these benchmark applications focus on usage of 
the device as a computing platform, leaving unexamined the power consumption of the 
device’s other usages. Yet, often these other applications are not optimized for power, or 
may be optimized to achieve higher performance only on certain platforms and operating 
systems. This fails to recognize the impact of task migration and resource sharing between 
the processing units. With the increasing availability of integrated processor graphics 
platforms, it becomes necessary to include media usages and applications in such analyses. 

In the following section, we discuss some of the common media usages and 
applications.

Media Usages
Multimedia applications are characteristically power-hungry. With the demand for more 
and more features, requirements for power consumption are increasingly raised to higher 
levels. Moreover, some usages may need additional instances of an application, or more 
than one application running at a time. 

Mobile devices used as entertainment platforms have typically run two main types  
of applications: gaming and media. The 2D and 3D video games are the most popular,  
but many other media applications are also in demand on these devices. Among them, 
the following are notable:

Still image capture•	

Still image preview/view finder•	

Wireless display or Miracast: clone mode or extended mode•	

Browser-based video streaming•	

Video recording and dual video recording•	

Video playback•	

Audio playback•	

Internet browsing•	

Videophone and video chat•	

Video conferencing•	
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Video transcoding•	

Video email and multimedia messaging•	

Video upload to Internet•	

Video editing•	

Augmented reality•	

Productivity applications•	

Most of these usages are implemented via special software applications, and some 
may benefit from hardware acceleration if supported by the platform. 

Intel processors are noteworthy for supporting such hardware acceleration through 
the integrated processor graphics, both serving as a general-purpose computing platform 
and fulfilling needs for special-purpose applications. The integration of graphics units 
into the central processor allows mobile devices to eliminate bigger video cards and 
customized video processors, thereby maintaining a small size suitable for mobile usage.

On many mobile devices, some combinations of multimedia applications are used 
simultaneously. For example, audio playback may continue when a user is browsing the 
Internet, or video playback may be complemented with simultaneous video recording. 
Some of these applications use common hardware blocks for the hardware acceleration 
of video codec and processing tasks; simultaneous operation of such hardware blocks is 
interesting from a system resource scheduling and utilization point of view. 

One example of such complex system behavior is multi-party video conferencing; 
another is video delivery over Miracast Wireless Display. Wi-Fi certified Miracast is 
an industry-standard solution for seamlessly displaying multimedia between devices, 
without needing cables or a network connection. It enables users to view pictures from a 
smartphone on a big screen television, or to watch live programs from a home cable box 
on a tablet. The ability to connect is within the device using Wi-Fi Direct, so separate  
Wi-Fi access is not necessary.1

Figure 6-1 shows a usage model of the Miracast application.

Figure 6-1.  Video delivery over Miracast

1For details, see www.wi-fi.org/discover-wi-fi/wi-fi-certified-miracast.

http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-miracast
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To better understand the power consumption by video applications, let us analyze 
one of the multimedia usages in detail: video delivery over Miracast Wireless Display.2

Wireless Display (WiDi) is an Intel technology originally developed to achieve the 
same goals as Miracast. Now that Miracast has become the industry standard, it has been 
supported in Intel (R) Wireless Display (TM) since version 3.5. The goal of this application 
is to provide a premium-content capable wireless display solution that allows a PC user, 
or a handheld device user, to remotely display audiovisual content over a wireless link to 
a remote display. In other words, the notebook or smartphone receives a video from the 
Internet via the wireless local area network or captures a video using the local camera. 
The video is played on the device using a local playback application. A special firmware 
for Miracast Wireless Display then captures the screen of the device and performs 
hardware-accelerated video encoding so as to send the compressed bit stream via Wi-Fi 
data exchange technology to a Miracast adapter. The adapter performs a decoding of the 
bit stream to HDMI format and sends it to the display device through an HDMI cable 
connection. The end-to-end block diagram is shown in Figure 6-2.

WiDi/ SW Driver Audio Capture

H.264

HDCP
iGPU

Intel CPU

HDCP2 Firmware

PCH

AV Mux

Comms.

AV Demux

Comms.

HDCP2
Decrypt
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H.264

HDCP2
Encrypt

WiDi Firmware

Access Protocol
Router

Wi-Fi

WLAN

Notebook PC Miracast WiDi

HDTV

Internet or
Home Network

Figure 6-2.  Miracast Wireless Display end to-end block diagram

2For details, see www-ssl.intel.com/content/www/us/en/architecture-and-technology/
intel-wireless-display.html.

http://www-ssl.intel.com/content/www/us/en/architecture-and-technology/intel-wireless-display.html
http://www-ssl.intel.com/content/www/us/en/architecture-and-technology/intel-wireless-display.html
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In Figure 6-2, the major power-consuming hardware modules are the CPU, the PCH, 
the video codec in the integrated GPU, the hardware-accelerated content protection 
module, the memory, the local display of the notebook, and the remote HDTV display. 
The Miracast Wireless Display adapter mainly runs the wireless display firmware and 
consumes a smaller amount of power. The typical distribution of power consumption in 
this example is shown in Figure 6-3.

Figure 6-3.  Typical distribution of power consumption by components in a Miracast Wireless  
Display application

As can be seen in Figure 6-3, usually the bulk of the power is consumed by the 
display, which in this example consumes about 1.5 times as much power as the 
processor. The Miracast adapter itself consumes a moderate amount—in this example, 
approximately 9 percent of the total power consumed by the application. Due to the 
complex nature of this application, a careful balance should be maintained between 
performance needs and power consumption, so that the appropriate optimizations and 
tradeoffs can be made so as to obtain a satisfactory user experience. 

Another common multimedia application is video playback along with associated 
audio. A detailed analysis of this application is provided in Agrawal et al.3 Here, we just 
note that by performing hardware acceleration of the media playback, the overall power 
consumption is reduced from ~20W to ~5W, while the power consumption profile is also 
changed significantly. Various tasks within the media playback pipeline get a performance 
boost from hardware acceleration, as these are offloaded from the CPU to the special-
purpose fixed-function hardware with better power-performance characteristics.

Analysis of these applications enables identification of the modules that are prime 
candidates for power optimization. For example, some power optimization can be achieved 
by migrating tasks like color-space conversion from the display unit to the GPU. Some 
Intel platforms are capable of such features, achieving a high level of power optimization. 
Various power optimization techniques are discussed in detail later in this chapter.

3A. Agrawal, T. Huff, S. Potluri, W. Cheung, A. Thakur, J. Holland, and V. Degalahal, “Power Efficient 
Multimedia Playback on Mobile Platform,” Intel Technology Journal 15, no. 2 (2011): 82–100.
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Power-Aware Designs
Power consumption is a function of both hardware and software efficiency. Therefore, 
performance gains or power savings increasingly depend on improving that efficiency. 
This is done typically in terms of performance per watt, which eventually translates to 
performance per dollar. Performance per watt is the quantity of computation that can be 
delivered by a computing system for every watt of power consumed. Today’s platforms 
aim to achieve high scores in this measure by incorporating “power awareness” in the 
design process, as significant consideration is given to the cost of energy in computing 
environments. 

In power-aware designs, typically the power savings are achieved by employing 
a divide-and-conquer policy: the system is divided into several independent power 
domains, and only the active domains are supplied with power. Depending on the active 
state of each domain, intelligent management of power achieves the optimum power 
solutions. Also, optimization within each domain is done with a view to gaining an edge 
in power saving and value proposition of a system. 

Power awareness is important not only in the hardware design but also in the 
applications, so as to maximize the performance per dollar. Toward this end, most 
operating systems provide power-management features. As applications know the 
utilization pattern of various hardware resources and tasks, better power management can 
be achieved if the applications can provide appropriate “hints” to the power-management 
units. Furthermore, power awareness of those applications can yield software-level 
optimizations, such as context-aware power optimizations, complexity reduction, and 
memory transfer reduction. These techniques are discussed later in the chapter in regard 
to power optimization.

Power-Management Considerations
The goal of power management in both computers and computer peripherals, such as 
monitors and printers, is to turn off the power or switch the system to a low-power state 
when it is inactive. Power management in computing platforms provides many benefits, 
including increased battery life, lower heat emission, lower carbon footprint, and 
prolonged life of devices such as display panels and hard disk drivers.4 

Power management happens on various constituent hardware devices that may be 
available in a computer system (aka “the system”); among them are the BIOS, central 
processing unit (CPU), hard disk drive (HDD), graphics controller, universal serial bus 
(USB), network, and display. It is also possible to monitor and manage the power use  
to various parts of memory, such as dynamic random access memory (DRAM) and  
non-volatile flash memory, but this is more complex and less common. Some examples 
of power management are listed in Table 6-2; some of these are discussed in subsequent 
sections of this chapter.

4M. Vats and I. Verma, Linux Power Management: IEGD Considerations (Intel Corporation, 2010).  
Available at www.intel.com/content/dam/www/public/us/en/documents/white-papers/linux- 
power-mgmt-paper.pdf.

http://wwww.intel.com/content/dam/www/public/us/en/documents/white-papers/linux-%0apower-mgmt-paper.pdf
http://wwww.intel.com/content/dam/www/public/us/en/documents/white-papers/linux-%0apower-mgmt-paper.pdf
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There may be special power-management hardware or software available. Typically, 
hardware power management in the processor involves management of various CPU 
states (aka C-states), such as the core C-states, the module C-states, the package C-states, 
and so on. (Details of the C-states are described in the next section.) On the other hand, 
software power management in the operating system or in the driver involves tasks like 
CPU core offline, CPU core shielding, CPU load balancing, interrupt load balancing, CPU 
frequency governing etc. With the introduction of the integrated graphics processing 
units (iGPU), primarily in Intel platforms, various GPU states are also important 
considerations for power management.

ACPI and Power Management
The Advanced Configuration and Power Interface (ACPI) specification is an open 
standard adopted in the industry for system-level configuration and management of I/O 
devices and resources by the operating system, including power management. Originally 
proposed by Intel, Microsoft, and Toshiba in 1996, the specification effort was later joined 
by HP and Phoenix. The latest ACPI specification version 5 was published in 2011. 

With wider adoption in the industry, it became necessary to support many operating 
systems and processor architectures. Toward this end, in 2013, the standards body agreed 
to merge future developments with the Unified Extensible Firmware Interface (UEFI) 
forum, which is an alliance of leading technology companies, including the original ACPI 
participants and major industry players like AMD, Apple, Dell, IBM, and Lenovo. All 
recent computers and portable computing devices have ACPI support.

Table 6-2.  Power Management Features

Device/ Component Power Management Features

BIOS CPU settings (e.g., CPU states enabled, CPU fan throttling), 
platform settings (e.g., thermal high/low watermarks, chassis 
fan throttling, etc.)

CPU HLT (halt instruction in x86 for CPU to halt until next external 
interrupt is fired), Stop clock, Intel SpeedStep (aka dynamic 
frequency scaling)

Display Blanking, dimming, power saver mode, efficient energy use 
as specified in the Energy Star international standard

Graphics Controller Power down to intermediate state, power shutoff

Hard drive/ CD-ROM Spin down

Network/ NIC Wake on LAN

USB Power state transition of devices such as mouse,  
USB drives, etc.; wake on access (e.g., mouse movement)
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ACPI Power States
To the user, a computer system appears as either ON or OFF. However, the system may 
support multiple power states, as defined in the ACPI specification. ACPI compliance 
indicates that the system supports the defined power management states, but such 
compliance does not promise the most power-efficient design. In addition, a system can 
have power-management features and tuning capabilities without being ACPI compliant.

According to the ACPI specification, the devices of a computer system are exposed 
to the operating system in a consistent manner. As such, for system-level power 
management, the ACPI defines power draw states for the individual devices (known as 
the device states), as well as the overall computer system (known as the global states or 
the system sleep states). The operating system and the devices can query and set these 
states. Important system buses such as the peripheral component interconnect (PCI) bus, 
may take advantage of these states.

Global States

The ACPI specification defines four possible global “Gx” states and six possible sleep “Sx” 
states for an ACPI-compliant computer-system (Table 6-3). However, some systems or 
devices may not be capable of all states.

Table 6-3.  ACPI Global States

State Gx Sx Description

Active G0 S0 The system is fully usable. CPUs are active. Devices may 
or may not be active, and can possibly enter a lower power 
state. There is a subset of S0, called “Away mode,” where 
monitor is off, but background tasks are running.

Sleep G1 S1 The system appears to be off. Power consumption is 
reduced. All the processor caches are flushed, and the 
CPU(s) stops executing instructions. The power to the 
CPU(s) and RAM is maintained. Nonessential devices may 
be powered off. This state is rarely used.

S2 The system appears to be off. CPU is powered off. Dirty 
cache is flushed to RAM. Similar to S1, the S2 state is also 
rarely used.

S3 Commonly known as standby, sleep, or Suspend-to-RAM 
(STR). The system appears to be off. System context is 
maintained on the system DRAM. All power is shut to the 
noncritical circuits, but RAM power is retained. Transition 
to S0 takes longer than S2 and S1, respectively.

(contiuned)
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State Gx Sx Description

Hibernation S4 Known as hibernation or Suspend-to-Disk (STD). The 
system appears to be off. Power consumption is reduced 
to the lowest level. System context is maintained on the 
disk, preserving the state of the OS, applications, and open 
documents. Contents of the main memory are saved to 
non-volatile memory such as a hard drive, and the system is 
powered down, except for the logic to resume.

Soft Off G2 S5 The system appears to be off. System context is not 
maintained. Some components may remain powered, so 
the computer can wake from input from a keyboard, mouse, 
LAN, or USB device. The working context can be restored if it 
is stored on nonvolatile memory. All power is shut, except for 
the logic required to restart. Full boot is required to restart.

Mechanical 
Off

G3 The system is completely off and consumes no power. A full 
reboot is required for the system to return to the active state.

Table 6-3.  (contiuned)

Device States

The power capabilities of all device hardware are not the same. For example, the 
LAN adapters will have the capability to wake the system; the audio hardware might 
permit streaming while the system is in standby mode, and so on. Some devices can be 
subdivided into functional units with independent power control. Furthermore, some 
devices, such as the keyboard, mice, modems, and LAN adapters, have the capability 
to wake up the system from a sleep state, while the devices are asleep themselves. Such 
capability is possible by the fact that the hardware for these devices must draw a small 
seeping current and be equipped to detect the external wake event. 

The ACPI specification defines the device-dependent D-states as shown in Table 6-4.

Table 6-4.  Device States

Dx Subset of Dx Description

D0 Fully ON and operating.

D1-D2 Intermediate power states. Definition varies by device.

D3 Hot Device is off and unresponsive to bus, but the system 
is ON. Device is still connected to power. D3 Hot has 
auxiliary power enabling a higher power state. A transition 
from D0 to D3 implies D3 Hot.

Cold No power to the device—both the device and system are 
OFF. It is possible for the device to consume trickle power, 
but a wake event is needed to move the device and the 
system back to D0 and/or S0 states.
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The ACPI defines the states D0 through D3, and provides a subdivision of D3 into D3 
hot and D3 cold. Some devices or operating systems don’t distinguish between D3 hot 
and cold, and treats D3 as having no power to the device. However, Windows 8 explicitly 
tracks D3 hot and D3 cold. The D1 and D2 states are optional, but if they are used 
properly, they would provide better cleanliness when the device is idle. 

Power Management by the Operating System
Modern operating systems customarily offer many power management features. Linux, 
Windows, OS X, and Android all support more intelligent power management using the 
newer ACPI standard, rather than the old BIOS controlled Advanced Power Management 
(APM). However, all major operating systems have been providing stable support for 
basic power-management features such as notification of power events to the user 
space—for example, battery status indication, suspend the CPU when idle, and so on.

In the following sections, we discuss power management by the Linux and 
the Windows operating systems. In the context of Linux power management, three 
important components are mentioned: the X Window, the Window Manager, and the 
Intel Embedded Graphics Driver (IEGD). The Windows power management discourse 
includes the Windows power requirements, power policy, the Windows driver model, 
and the Windows driver framework. There’s also a brief description of device power 
management under Windows 8, followed by a discussion on how to deal with power 
requests.

Linux Power Management
Linux supports both the older APM and the newer ACPI power management 
implementations. APM focuses on basic system and OS power management, with much 
of the power-management policy controlled at the BIOS level; whereas an APM driver 
acts as an interface between the BIOS and the Linux OS, as power-management events 
pass between the BIOS and OS. Devices are notified of these events so they can respond 
appropriately. 

The ACPI provides greater flexibility in power management and platform 
configuration, and allows for platform independence and OS control over power-
management events. In addition to the power-management policies, ACPI supports 
policies for responding to thermal events (e.g., fans), physical movement events (e.g., 
buttons or lids), CPU states, power source (e.g., battery, AC power supply), and the like.

Power-management software manages state transitions along with device drivers 
and applications. Device drivers are responsible for saving device states before putting 
them into their low-power states and then restoring the device state when the system 
becomes active. Generally, applications are not involved in power-management state 
transitions. A few specialized softwares, such as the IEGD for Linux, deal directly with 
some devices in order to handle state transitions. Besides the IEGD, there are a few 
common software technologies in Linux, including the X Window system, the Window 
managers, and several open-source processes such as /sys/power/state and  
/proc/acpi/event, which also provide some part of Linux power management.
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The X Window

The X Window system is supported by many operating systems, including Linux, Solaris, 
and HP-UX. It provides graphics capabilities to the OS and supports user-level, system-
level, and/or critical standby, suspend, and resume. In the APM implementation, the 
X-server controls the power-management events. In ACPI implementation, the X Window 
system handles the graphics messages as a user process, but the system-wide power-
management events like suspend/resume are handled by a kernel mode driver.

Window Managers

Window managers on Linux are user-level processes that provide the graphical user 
interface and also deliver reliable power management of the operating system. Among 
the many supported windows managers in Linux are two popular window managers, 
GNOME and KDE. In GNOME, power management uses the hardware abstraction layer 
(HAL) and involves open-source platform power management built on an open-source 
messaging interface called DBUS, while KDE3 provides a proprietary power-management 
solution named KPowersave. 

Intel Embedded Graphics Driver 

In the Intel Embedded Graphics Driver (IEGD) power management, a kernel mode 
driver helps the Linux kernel manage the power. It is also responsible for graphics device 
initialization and resource allocation. In order for you to clearly understand the flow of a 
power event, here are the main parts of the Suspend to RAM example.5 

The Suspend to RAM starts when a power-management event occurs in the platform, 
such as when a button is pressed or a window manager option is triggered, and the 
operating system is notified of the event. Usually the Linux operating system employs a 
protocol to communicate an event between a software component and the Linux kernel. 
Using such protocols, the OS (typically via the Window manager) commands the kernel 
to go to a lower power state, at which point the Linux kernel starts the suspend procedure 
by notifying the X-Server driver.

The X display must switch to console mode before going into a lower power state. 
With ACPI implemented in the Linux kernel, this switch happens by the X-Server 
driver’s calling the Leave virtual terminal function, when the IEGD process saves the 
graphics state and registers information. The Linux kernel then freezes all user processes, 
including the X Window process. Now the kernel is ready to check which devices are 
ready for the suspend operation, and it calls the suspend function of each device driver  
(if implemented) in order to put the device clocks to D3 mode--effectively putting all 
devices into a lower power state. At this point only the Linux kernel code is running, 
which freezes all other active processors except the one where the code is running.

5Ibid.
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Following execution of the kernel-side suspend code, two ACPI methods--namely, 
PTS (Prepare-to-Sleep) and GTS (Going-to-Sleep) are executed, the results of which may 
not be apparent to the Linux kernel. However, before actually going to sleep, the kernel 
writes the address of the kernel wakeup code to a location in the Fixed ACPI Description 
Table (FADT). This enables the kernel to properly wake up upon receiving the restore 
command.

The restore command usually results from a user event, such as a keystroke, mouse 
movement, or pressing the power button, which turns the system on. Once on, the system 
jumps to the BIOS start address, performs housekeeping tasks such as setting up the 
memory controller, and then scans the ACPI status register to get the indication to RAM 
that the system was previously suspended. If video repost is supported, during resume 
operation the BIOS also calls this function to re-execute the video BIOS (vBIOS) code, 
thereby providing a full restart of the vBIOS. 

The system then jumps to the address programmed earlier, as indicated by the ACPI 
register’s status and the FADT. The wakeup address leads to the kernel code execution, 
putting the CPU back into protected mode and restoring the register states. From this 
point, the rest of the wakeup process traverses the reverse path of the suspend process. 
The ACPI WAK method is called, all the drivers are resumed, and user space is restarted. 
If running, the X-server driver calls the Enter virtual terminal function, and the IEGD 
restores the graphics device state and register information. After saving the console mode, 
the X-server driver re-enters the GUI, thereby completing a successful wakeup.

Windows Power Management
Power management in the Windows operating system, particularly Windows 8, has 
significant improvements in this area compared to previous Windows versions.

Power Requirements

In versions earlier than Windows 8, the power requirements involved supporting the 
common ACPI states, such as the S3 and S4 states, mainly on mobile personal computer 
platforms. However, Windows 8 aimed to standardize on a single power requirement 
model across all platforms including desktop, server, mobile laptops, tablets, and phones. 
While one of the goals was to improve the battery life of portable platforms, Windows 
8 applies the smartphone power model to all platforms for quick standby-to-ready 
transitions, and ensures that the hidden applications consume minimal or no resources. 

To this end, Windows 8 defines the requirements listed in Table 6-5.6

6J. Lozano, Windows 8 Power Management. (StarJourney Training and Seminars, 2013.)
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Power Policy

Power policies (also known as power plans or power schemes) are preferences defined by the 
operating system for the choice of system and BIOS settings that affect energy consumption. 
For each power policy, two different settings are usually set by the operating system 
by default, one with battery power supply, the other with AC power supply. In order to 
preserve battery as much as possible, the settings with the battery power supply are geared 
toward saving power more aggressively. Windows defines three power policies, by default:

•	 Performance mode: In performance mode, the system attempts to 
deliver maximum performance without regard to power consumption.

•	 Balanced mode: In this mode, the operating system attempts to 
reach a balance between performance and power.

•	 Power saver mode: In this mode, the operating system attempts 
to save maximum power in order to preserve battery life, even 
sacrificing some performance.

Table 6-5.  Windows 8 Power Requirements

Requirement Type Requirements

System  
Power  
Requirements

1.	 Maximum battery life should be achieved with minimum 
energy consumption.

2.	 The delay for startup and shutdown should be minimal.

3.	 Power decisions should be intelligently made—for example, a 
device that is not in a best position to change the system power 
state should not do so.

4.	 Capabilities should be available to adjust fans or driver motors 
on-demand for quiet operation.

5.	 All requirements should be met in a platform independent 
manner.

Device  
Power  
Requirements

6.	 Devices, especially for portable systems, must be extremely 
power conscious.

7.	 Devices should be aggressive in power savings:

a.	 Should provide just-in-time capabilities.

b.	 Low transition latency to higher states.

c.	 When possible, the device logic should be partitioned into 
separate power buses so that portions of a device can be 
turned off as needed.

d.	 Should support connected standby as appropriate for quick 
connection.

Windows  
Hardware  
Certification  
Requirements

8.	 The Windows HCK tests require that all devices must support 
S3 and S4 without refusing system sleep request.

9.	 Standby and connected standby must last for days.

10.	 Device must queue up and not lose the I/O request while in 
D1-D3 states.
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Users may create or modify the default plans but the power policies are protected by 
the access control list. Systems administrators may override a user’s selection of power 
policies. On Windows, a user may use an applet called “powercfg.cpl” to view and edit 
a power policy. A console version of the applet, called “powercfg.exe,” is also available, 
which permits changing the access control list permissions.

Application software can obtain a notification of the power policy by registering for 
the power plan and can use power policies in various ways:

Tune the application behavior based on the user’s current  •	
power policy.

Modify the application behavior in response to a change in  •	
power policy.

Move to a different power policy as required by the application.•	

The Windows Driver Model 

In the Windows Drive Model (WDM), the operating system sends requests to the drivers 
to order the devices to a higher or lower power state. Upon receiving such requests, a 
driver only saves or restores the state, keeping track of the current and next power states 
of the device, while a structure called Physical Device Object (PDO) performs the work of 
actually increasing or lowering the power to the device. 

However, this arrangement is problematic, as the model requires the drivers 
to implement a state machine to handle the power IRPs (I/O request packets), and 
may result in unwanted complexity due to the time needed to perform a power state 
transition. For example, for a power down request, the driver saves the state of the device 
in memory, and then passes the request down to the PDO, which subsequently removes 
power from the device; only then can it mark the request as completed. However, during a 
power up request that may follow, the driver must first pass the request to the PDO, which 
then restores the power before restoring the device state, and informs the driver to mark 
the request as completed. To overcome this difficulty, the Windows driver framework 
(WDF) was proposed. 

The Windows Driver Framework 

In order to simplify power management within a driver, Windows introduced the concept 
of events in the latest Windows Driver Framework (WDF) driver model. In this model, 
there are optional event handler functions in the driver, whereby the framework calls the 
event handlers at the appropriate time to handle a power transition, thereby eliminating 
the need for a complex state machine.

Windows 8 offers a new, more granular way to address the power needs of functions 
on multifunction devices in the form of a power framework called PoFx. Additionally, 
it introduces the concept of connected standby, allowing a powered-off device to 
occasionally connect to outside world and refresh state or data for various applications. 
The primary benefit is a quick recovery from standby state to ON state, as if the system 
had been awake the whole time. At the same time, the power cost is low enough to allow 
the system to be in standby state for days.
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Device Power Management in Windows 8

In Windows 8, in response to a query from the plug-and-play (PnP) manager, the  
device drivers announce their device’s power capabilities. A data structure called 
DEVICE_CAPABILITIES is programmed by the driver, indicating the information as shown 
in Table 6-6.

Table 6-6.  Device Capabilities Structure

Field Function

Device D1 and D2 Indicates whether the device supports D1, or D2, or both.

Wake from Dx Indicates whether the device supports waking from a Dx state.

Device state Defines the Dx state corresponding to each Sx state.

DxLatency Nominal transition time to D0.

There is latency for the devices when moving from Dx to D0, as the devices require 
a small period of time before they can become operational again. The latency is longer 
for the higher Dx states, so that a transition from D3 to D0 would take the longest time. 
Furthermore, a device needs to be operational before it can respond to new requests—for 
example, a hard disk must spin up before it can be slowed down again. The latency is 
announced by the driver via the DEVICE_CAPABILITIES data structure.

Note■■  A  device state transition may not be worthwhile if sufficient time is not spent in 
the lower power state, as it is possible that the transition itself would consume more power 
than when the device had been left in a particular state.

In order to manage the device power, the Windows Power Manager needs to know 
the transition latency of each device, which can vary for different invocations even for the 
same device. Therefore, only a nominal value is indicated by the driver. The Windows OS 
controls the time gap between a query and a set power request, during which time the 
device sleeps. A high value for this time gap would increase the sleep time, while a low 
value would cause the OS to give up on powering down the device.

Dealing with Power Requests

There are kernel mode data structures called I/O request packets (IRPs) that are used by 
the Windows Driver Model (WDM) and the Windows NT device drivers to communicate 
with the operating system and between each other. IRPs are typically created by the I/O 
Manager in response to I/O requests from the user mode. In Windows 2000, two new 
managers were added: the plug-and-play (PnP) and Power manager, which also create 
IRPs. Furthermore, IRPs can be created by drivers and then passed to other drivers.
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In Windows 8, the Power Manager sends requests--that is, the power IRPs--to the 
device drivers, ordering them to change the power state of the relevant devices. Power 
IRPs use the major IRP data structure IRP_MJ_POWER, with the following four possible 
minor codes:

•	 IRP_MN_QUERY_POWER: A query to determine the capability of 
the device to safely enter a new requested Dx or Sx state, or a 
shutdown or restart of the device. If the device is capable of the 
transition at a given time, the driver should queue any further 
request that is contrary to the transition before announcing the 
capability, as a SET request typically follows a QUERY request.

•	 IRP_MN_SET_POWER: An order to move the device to a new Dx state 
or respond to a new Sx state. Generally, device drivers carry out a 
SET request without fail; the exception is bus drivers such as USB 
drivers, which may return a failure if the device is in the process 
of being removed. Drivers serve a SET request by requesting 
appropriate change to the device power state, saving context 
when moving to a lower power state, and restoring context when 
transitioning to a higher power state.

•	 IRP_MN_WAIT_WAKE: A request to the device driver to enable the 
device hardware so that an external wake event can awaken the 
entire system. One such request may be kept in a pending state at 
any given time until the external event occurs; upon occurrence 
of the event, the driver returns a success. If the device can no 
longer wake the system, the driver returns a failure and the Power 
Manager cancels the request.

•	 IRP_MN_POWER_SEQUENCE: A query for the D1-D3 counters--that is, 
the number of times the device has actually been in a lower power 
state. The difference between the count before and the count after 
a sleep request would tell the Power Manager whether the device 
did get a chance to go to a lower power state, or if it was prohibited 
by a long latency, so that the Power Manager can take appropriate 
action and possibly not issue a sleep request for the device.

For driver developers, one of the difficulties in calling the various power IRPs is 
determining when to call them. The Kernel Mode Driver Framework (KMDF) in Windows 
8 implements numerous state machines and event handlers, including those for power 
management. It simplifies the task of power management by calling the event handlers 
at the appropriate time. Typical power event handlers include: D0 entry, D0 exit, device 
power state change, device arm wake from S0/Sx, and device power policy state change.

Power Management by the Processor
For fine-grained power management, modern Intel processors support several partitions 
of voltage islands created through on-die power switches. The Intel Smart Power 
Technology (Intel SPT) and Intel Smart Idle Technology (Intel SIT) software determine 
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the most power efficient state for the platform, and provide guidance to turn ON or OFF 
different voltage islands on the processor at any given time. Upon receiving a direction 
to go into a lower power state, the processor waits for all partitions with shared voltage to 
reach a safe point before making the requested state change.

CPU States (C-states)
The CPU is not always active. Some applications need inputs from the system or the user, 
during which the CPU gets an opportunity to wait and become idle. While the CPU is idle 
or running low-intensity applications, it is not necessary to keep all the cores of the CPU 
powered up. The CPU operating states (C-states) are the capability of an idle processor to 
turn off unused components to save power. 

For multi-core processors, the C-states can be applied at a package level or at a core 
level. For example, when a single threaded application is run on a quad-core processor, 
only one core is busy and the other three cores can be in low-power, deeper C-states. When 
the task is completed, no core is busy and the entire package can enter a low-power state.

The ACPI specification defines several low-power idle states for the processor 
core. When a processor runs in the C0 state, it is working. A processor running in any 
other C-state is idle. Higher C-state numbers represent deeper CPU sleep states. At 
numerically higher C-states, more power-saving actions, such as stopping the processor 
clock, stopping interrupts, and so on, are taken. However, higher C-states also have the 
disadvantage of longer exit and entry latencies, resulting in slower wakeup times. For 
a deeper understanding, see the brief descriptions of various C-states of an Intel Atom 
processor, given in Table 6-7.

Table 6-7.  Cx State Definitions, Intel Atom Processor Z2760

State Function Description

C0 Full ON This is the only state that runs software. All clocks are 
running and the processor core is active. The processor can 
service snoops and maintain cache coherency in this state. 
All power management for interfaces, clock gating, etc.,  
are controlled at the unit level.

C1 Auto Halt The first level of power reduction occurs when the core 
processor executes an Auto-Halt instruction. This stops the 
execution of the instruction stream and greatly reduces the 
core processor’s power consumption. The core processor 
can service snoops and maintain cache coherency in 
this state. The processor’s North Complex logic does not 
explicitly distinguish C1 from C0.

(continued)
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Table 6-7.  (continued)

State Function Description

C2 Stop Grant The next level of power reduction occurs when the core 
processor is placed into the Stop Grant state. The core 
processor can service snoops and maintain cache coherency 
in this state. The North Complex only supports receiving a 
single Stop Grant.

Entry into the C2 state will occur after the core 
processor requests C2 (or deeper). Upon detection of a 
break event, C2 state will be exited, entering the C0 state. 
Processor must ensure that the PLLs are awake and the 
memory will be out of self-refresh at this point.

C4 Deeper Sleep In this state, the core processor shuts down its PLL and 
cannot handle snoop requests. The core processor voltage 
regulator is also told to reduce the processor’s voltage. 
During the C4 state, the North Complex continues to handle 
traffic to memory so long as this traffic does not require a 
snoop (i.e., no coherent traffic requests are serviced).

The C4 state is entered by receiving a C4 request from 
the core processor/OS. The exit from C4 occurs when the 
North Complex detects a snoop-able event or a break event, 
which would cause it to wake up the core processor and 
initiate the sequence to return to the C0 state.

C6 Deep Power 
Down

Prior to entering the C6 state, the core processor flushes its 
cache and saves its core context to a special on-die SRAM 
on a different power plane. Once the C6 entry sequence has 
completed, the core processor’s voltage can be completely 
shut off.

The key difference for the North Complex logic 
between the C4 state and the C6 state is that since the core 
processor’s cache is empty, there is no need to perform 
snoops on the internal front side bus (FSB). This means that 
bus master events (which would cause a popup from the 
C4 state to the C2 state) can be allowed to flow unhindered 
during the C6 state. However, the core processor must still 
be returned to the C0 state to service interrupts.

A residency counter is read by the core processor 
to enable an intelligent promotion/demotion based on 
energy awareness of transitions and history of residencies/
transitions.

Source: Data Sheet, Intel Corporation, October 2012. www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf.

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
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Performance States (P-states)
Processor designers have realized that running the CPU at a fixed frequency and voltage 
setting is not efficient for all applications; in fact, some applications do not need to run at 
the operating point defined by the highest rated frequency and voltage settings. For such 
applications there is a power-saving opportunity by moving to a lower operating point. 

Processor performance states (P-states) are the capability of a processor to 
switch between different supported operating frequencies and voltages to modulate 
power consumption. The ACPI defines several processor-specific P-states for power 
management, in order to configure the system to react to system workloads in a power-
efficient manner. Numerically higher P-states represent slower processor speeds, as well 
as lower power consumption. For example, a processor in P3 state will run more slowly 
and use less power than a processor running at P1 state. 

While a device or processor is in operation and not idling (D0 and C0, respectively), 
it can be in one of several P-states. P0 is always the highest-performance state, while P1 
to Pn are successively lower-performance states, where n can be up to 16 depending on 
implementation. 

P-states are used on the principles of dynamic voltage or frequency scaling, and are 
available in the market as the SpeedStep for Intel processors, the PowerNow! for AMD 
processors, and the PowerSaver for VIA processors.

P-states differ from C-states in that C-states are idle states, while P-states are 
operational states. This means that with the exception of C0, where the CPU is active and 
busy doing something, a C-state is an idle state; and shutting down the CPU in the higher 
C-states makes sense, since the CPU is not doing anything. On the other hand, P-states 
are operational states, meaning that the CPU can be doing useful work in any P-state. 
C-states and P-states are also orthogonal—that is, each state can vary independently of 
the other. When the system resumes C0, it returns to the operating frequency and voltage 
defined by that P-state. 

Although P-states are related to the CPU clock frequency, they are not the same. The 
CPU clock frequency is a measure of how fast the CPU’s main clock signal goes up or 
down, which may be a measure of performance, as higher performance would generally 
mean using a higher clock frequency (except for memory-bound tasks). However, this is 
backward looking, as you can measure the average clock frequency only after some clock 
cycles have passed. On the other hand, P-state is a performance state the OS would like to 
see on a certain CPU, so P-states are forward looking. Generally, higher clock frequency 
results in higher power consumption.

When a CPU is idle (i.e., at higher C-states), the frequency should be zero (or very 
low) regardless of the P-state the OS requests. However, note that all the cores on a 
current-generation CPU package share the same voltage, for practical reasons. Since it 
is not efficient to run different cores at different frequencies while maintaining the same 
voltage, all active cores will share the same clock frequency at any given time. However, 
some of the cores may be idle and should have zero frequency. As the OS requests a 
certain P-state for a logical processor, it is only possible to keep a core at zero frequency 
when none of the cores is busy and all cores are kept at the same zero frequency. 

While using a global voltage supply for all the cores leads to the situation where 
certain P-state requests cannot be met, separate local voltage supplies for each core 
would be cost-prohibitive. A tradeoff concerning global- and local-voltage platforms is 
to adopt multi-core architecture with different voltage islands, in which several cores 
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on a voltage island share the same but adjustable supply voltage. An example of this is 
available in Intel’s many-core platform called the single-chip cloud computer. Another 
example is the use of a fully integrated voltage regulator (FIVR), available in some 
processors, that allows per core P-states so that cores can be operated at frequencies 
independent of each other.

Just as the integrated GPUs behave similarly to the CPU, C-states and P-states  
have been defined for the GPU like the CPU C-states and P-states. These are known as  
render C-states (RC-states) and render P-states (RP-states).

Turbo
It is possible to over-clock a CPU, which means running a core at a higher frequency 
than that specified by the manufacturer. In practice, this behavior is possible due to the 
existence of multiple cores and the so-called turbo feature resulting from the power 
budget. Turbo is a unique case in which the frequency and voltage are increased, so 
the turbo state functions as an opposite to the various P-states, where voltage and 
frequency are decreased. The CPU enters turbo state while operating below certain 
parameter specifications, which allows it some headroom to boost the performance 
without infringing on other design specifications. The parameters include the number 
of active cores, processor temperature, and estimated current and power consumption. 
If a processor operates below the limit of such parameters and the workload demands 
additional performance, the processor frequency will automatically dynamically 
increase until an upper limit is reached. In turbo state, complex algorithms concurrently 
manage the current, the power, and the temperature with a view toward maximize the 
performance and the power efficiency.

To better understand a turbo scenario, let us consider an example. Suppose a quad-core 
CPU has a TDP limit of 35W, so that each core has a maximum of 8.75W power budget. 
If three of the four cores are idle, the only operational core can utilize the whole 35W of the 
power budget and can “turbo” up to a much higher frequency than would be possible with 
a less than 9W power budget. Similarly, if two cores are active, they use the same higher 
frequency and share the power budget while the idle cores do not consume any energy. 

A maximum turbo frequency is the highest possible frequency achievable when 
conditions allow the processor to enter turbo mode. The frequency of Intel Turbo Boost 
Technology varies depending on workload, hardware, software, and overall system 
configuration. A request for a P-state corresponding to a turbo-range frequency may or 
may not be possible to satisfy, owing to varying power characteristics. So a compromise 
is made because of many factors, such as what the other cores and the GPU are doing, 
what thermal state the processor is at, and so on. This behavior also varies over time. 
Therefore, as the operating frequency is time-varying and dependent on C-state selection 
policy and graphics subsystem, selecting a P-state value does not guarantee a particular 
performance state.

In general, the P1 state corresponds to the highest guaranteed performance state 
that can be requested by an OS. However, the OS can request an opportunistic state, 
namely P0, with higher performance. When the power and thermal budget are available, 
this state allows the processor configuration where one or more cores can operate at a 
higher frequency than the guaranteed P1 frequency. A processor can include multiple 
so-called turbo mode frequencies above the P1 frequency. 
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Some processors expose a large turbo range and typically grant all cores the 
maximum possible turbo frequency when the cores seek to turbo. However, not all 
applications can effectively use increased core frequency to the same extent. Differences 
may arise from varying memory access patterns, from possible cache contention, 
or similar sources. So allowing all cores to be at a highest level of turbo mode can 
unnecessarily consume power. In order to combat such inefficiencies, techniques 
have been proposed to efficiently enable one or more cores to independently operate 
at a selected turbo mode frequency.7 One of the techniques periodically analyzes all 
cores granted turbo mode to determine whether their frequency should be increased, 
decreased, or left unchanged based on whether the core has been classified as stalled or 
not over the observation interval.

Thermal States (T-States)
In order to prevent potential damage from overheating, processors usually have thermal 
protection mechanisms, where, in an effort to decrease the energy dissipation, the 
processor throttles by turning the processor clocks off and then back on according to a 
pre-determined duty cycle. The thermal states, or T-states, are defined to control such 
throttling in order to reduce power, and they can be applied to individual processor cores. 
T-states may ignore performance impacts, as their primary reason is to reduce power for 
thermal reasons. There are eight T-states, from 0 to 7, while the active state is T

0
. These 

states are not commonly used for power management.

The Voltage-Frequency Curve
It is important to understand the relationship between voltage and frequency for processors, 
as both CPU and integrated GPU follow such relationship in order to scale. A P-state 
requested by the operating system is in fact a particular operating point on the V-F curve.

As can be seen in Figure 6-4, the voltage vs. frequency curve tends to have an 
inflection point, at which the voltage starts to scale with the frequency.

7�M. K. Bhandaru and E. J. Dehaemer, U. S. Patent No. US 20130346774, A1, 2013. Providing 
energy efficient turbo operation of a processor. Available at www.google.com/patents/
WO2013137859A1?cl=en.

http://www.google.com/patents/WO2013137859A1?cl=en
http://www.google.com/patents/WO2013137859A1?cl=en
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Up to this point, a minimum voltage, V
min,

 is required to make the circuit operational 
regardless of the frequency change. The maximum frequency F

max
 at the minimum 

voltage V
min

 is the highest frequency at which the processor part can operate at V
min

. 
This is the point where power efficiency is the best, as we see from the power-frequency 
relationship shown in Figure 6-5. Increasing the frequency beyond F

max
 requires increased 

voltage supply for the circuit to be operational. At the voltage-scaling region, the required 
voltage scales are reasonably linear with frequency. This region offers power-reduction 
opportunities, as discussed later.

Figure 6-4.  Voltage-frequency relationship of a typical processor

Figure 6-5.  Power-frequency relationship and optimization opportunities

Figure 6-5 shows the power vs. frequency relationship and power optimization 
opportunities in a typical processor.

In the V
min

 region, power does not fall as fast as frequency; as dynamic power falls 
with frequency, the leakage power stays constant. On the other hand, in the voltage-scaling 
region, power increases much faster than frequency, as voltage scales are roughly linear 
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with frequency; dynamic power goes up as V2f and leakage goes up roughly as V3. The 
leakage power depends only on the small amount of leakage current, and it follows almost 
the same pattern as the voltage curve with respect to frequency.

Power Optimizations
Let’s recall the power equation:

		  Total power = leakage power + A C
dyn

 V2 f,	 (Equation 6-2)

Here, A is the activity, C
dyn

 is the dynamic capacitance, V is the voltage, and f is the 
operating frequency. From this equation it is easy to see that, in order to reduce power, 
the following approaches can be taken:

Reduce voltage and frequency•	

Reduce activity and •	 C
dyn

As voltage increases approximately linearly with frequency in the voltage-scaling 
region, the term V2f implies a cubic relationship for the power with respect to the 
frequency (see Figure 6-5). Therefore, reducing the voltage and/or the frequency results 
in a dramatic reduction in the power. The power that is conserved in such a manner can 
be given to other parts of the system so that the overall system operation can benefit.

However, the frequency reduction cannot help below F
max

 at V
min

 (below which 
voltage cannot be reduced, as there is a minimum voltage necessary for operation of the 
circuit). In the V

min
 region, the voltage stays constant, so reduction in frequency can yield 

very little power savings. At this point, only activity and C
dyn

 reduction can provide further 
power optimization. This calls for more efficient algorithms and micro-architecture 
design, as well as dynamically turning off unused portions of the circuit. 

The above power-reduction considerations have given birth to new ideas and 
approaches of power optimization, including various gating optimizations and use of 
special-purpose heterogeneous hardware components, such as the integration of a GPU 
capable of multimedia processing, camera image processing, and so on. Overall, it is 
not a hardware-only problem; it requires careful consideration at the software micro-
architecture level as well.

In general, good power optimization requires incorporation of many approaches, 
all working in harmony toward the goal of saving power and increasing battery life. From 
a systems engineering point of view, optimizations can be made in various individual 
power domains within the system by selectively turning off power to certain idle parts of 
the system. 

Power optimizations can be done at various levels of the system. Typically, power 
optimization is done at the following levels:

Architectural optimization•	

Algorithmic optimization•	

System integration optimization•	

Application level optimization•	
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In general, power optimization combines all of these approaches. Architectural 
optimizations deal with the optimization opportunities at the processor hardware level 
and try to obtain a suitable hardware-software partitioning. Algorithmic optimizations 
look for power-saving opportunities in system and application algorithms. For example, 
above the hardware and hardware abstraction layer, the graphics execution stack includes 
hierarchical layers of the application, the middleware, the operating system, and the 
graphics driver. Opportunities to save power exist within each layer and are exploited 
using algorithmic optimization. 

Inter-layer optimization opportunities, however, are more complex and addresses 
inefficiencies by employing optimization at the system integration level. For example, 
efficiency can be improved by choosing to use fewer layers and by redefining the 
boundaries of the layers in order to find the most power-efficient places for the 
optimization. Furthermore, at the application level, load sharing between the CPU and 
the integrated GPU may be considered for reuse of power in one unit that is saved from 
the other, by running a task on the most power-efficient device. Discussions of these 
optimization techniques are follows in more detail. 

Architectural Optimization
The techniques for optimizing power efficiency at the processor architecture level include:

Hardware-software partitioning•	

Dynamic voltage and frequency scaling•	

Power gating•	

Clock gating•	

Slice gating•	

Use of low-level cache•	

Hardware-Software Partitioning
There has been a paradigm shift in the approach to optimizing hardware and software 
interaction. The earlier philosophy was to obtain performance by removing execution 
bottlenecks. For example, if the CPU was the bottleneck in a graphics application, then 
the main power and performance tuning approach was to use a better CPU or to tune 
the CPU code to maximize graphics performance. However, processor architects soon 
realized that removing execution bottlenecks alone is not sufficient; it is also prohibitive 
from a power-consumption perspective to run all subparts of the system simultaneously 
at maximum performance, as various components compete for their share of the power 
envelope. 

This realization opened two optimization opportunities: (a) power saved in one 
subpart can be applied to another; and (b) unused power can be applied to turbo 
behavior. Accordingly, considerations of power management for the overall system and 
shifting power between the CPU, graphics, and other subsystem are taken into account. 
As such, the new philosophy of hardware-software interaction aims not only to eliminate 
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performance bottlenecks but also to continue tuning to increase efficiency and save 
power as well. For example, focus is now given to design goals including:

Reducing CPU processing•	

Optimizing driver codes to use the fewest CPU instructions to •	
accomplish a task

Simplifying the device driver interface to match the hardware •	
interface to minimize the command transformation costs

Using special-purpose hardware for some tasks with a balanced •	
approach for task execution

Fixed-purpose hardware is often implemented with a minimum number of gates that 
switch states or toggle between states to perform certain specific tasks. As dynamic power 
consumption is a function of the number of gates that are switching, and as less switching 
means less dynamic power consumption, it is beneficial to perform the same task on the 
special-purpose fixed function hardware, as opposed to general-purpose hardware that 
may not use the optimum number of switching gates for that particular task. Obviously, if 
the nature of the task changes, the special-purpose hardware cannot be used, as it is often 
not flexible enough to accommodate changes in how it is used. In this case, power saving 
may be achieved by sacrificing flexibility of tasks, and often by migrating workloads 
from general-purpose hardware to fixed-function hardware. Careful design of hardware-
software partitioning is necessary to save power in this manner, and non-programmable 
tasks may be migrated from general-purpose execution units to fixed-purpose hardware. 
For example, video processing algorithms that are run using GPU hardware designed 
explicitly for that task typically consume less power than running those same algorithms 
as software running on the CPU.

Dynamic Voltage and Frequency Scaling
To decrease power consumption, the CPU core voltage, the clock rate, or both can be 
altered, at the price of potentially lower performance, using dynamic voltage and/or 
frequency scaling. Alternatively, higher performance can be achieved at the expense of 
higher power consumption. However, as mentioned in the P-state discussion earlier, with 
the advancement of generations of CPU technology, this process is becoming increasingly 
complex, and there are many contributing factors, such as the load balancing among 
the multiple CPU cores and the GPU, thermal states, and so on. On the other hand, new 
techniques beyond dynamic voltage and frequency scaling are emerging to combat the 
challenges.

Power Gating
Processors can selectively power off internal circuitry by not supplying current to the 
parts of the circuitry that are not in use, and thereby reduce power consumption. This 
can be accomplished either by hardware or software. Examples of this technique include 
Intel Core and AMD CoolCore, where in a multi-processor environment only certain core 
processors (or part of the circuit in those processors) are active at a given time. 
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Power gating generally affects the design more than clock gating, and may introduce 
longer entry and exit latency from a gated state. Architectural tradeoffs are generally 
considered between the amount of power saved and the latency involved. Another 
important consideration is the area used for power gating circuitry if implemented 
in hardware. For example, in fine-grained power gating, switching transistors may be 
incorporated into the standard cell logic, but it still has a large area penalty and difficult 
independent voltage control per cell. On the other hand, in coarse-grained power gating, 
grid style sleep transistors drive cells locally through shared virtual power networks, and 
save area at the expense of sensitivity.

For quick wakeup from a power gated state, sometimes retention registers may 
be used for critical applications. These registers are always powered up, but they have 
special low-leakage circuits as they hold data of the main register of the power gated 
block, enabling quick reactivation.

Clock Gating
Clock gating is a popular technique for reducing dynamic power dissipation by using 
less switching logic and by turning off unnecessary clock circuitry, thereby saving 
power needed to switch states that are not useful at a given time. Clock gating can be 
implemented in RTL code or can be manually inserted into the design. 

There are several forms of clock gating, ranging from manual to fully automated, that 
may be applied together or separately, depending on the optimization. On the one hand, 
there is the manual clock gating performed by driver software, where a driver manages 
and enables the various clocks used by an idle controller as needed. On the other hand, in 
automatic clock gating, the hardware may detect idle or no-workload states, and turn off 
a given clock if it is not needed. For example, on a particular board, an internal bus might 
use automatic clock gating so that it is temporarily gated off until the processor or a DMA 
engine needs to use it, while other peripherals on that bus might be permanently gated 
off if they are unused or unsupported on that board.

Slice Gating
Current Intel processors such as the fourth-generation core processor architecture 
or later have integrated graphics processing units that have arrays of programmable 
execution units (EUs) in addition to fixed-function hardware for specific tasks. The EUs, 
along with media samplers, are further arranged in slices. For example, some  
fourth-generation core SKUs have 40 EUs distributed between two equivalent slices, each 
containing 20 EUs and located in two different power domains. Figure 6-6 shows the slice 
structure of typical Intel fourth-generation core processor graphics execution units.
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As hardware-accelerated multimedia tasks require many different assets in the 
graphics hardware, certain media tasks may place different demands on the media 
assets inside the slices, such as the EUs or the media samplers, and on the assets that are 
outside the slices, such as the Video Front End or Video Quality Engine. For some media 
workloads that require relatively little work from slice-based assets, the processor can 
shut down one slice to save leakage power. For example, for some media workloads,  
fewer than 20 EUs are needed, whereupon the driver software may power off one slice 
without affecting the performance. This is slice gating, also known as slice shutdown.  
The advantage of slice gating is that it maximizes power efficiency across a broad range  
of tasks.

Use of Low-level Cache
Memory power can be significantly reduced by using low-level caches and by designing 
algorithms to utilize these caches in an efficient manner. Video applications are typically 
compute-bound and not memory-bound, unless a memory-restricted system is used. 
Therefore, algorithms can take advantage of memory bandwidth reduction approaches, and 
thereby lower power consumption. For example, in the Intel core architecture, the cache 
is arranged in hierarchical levels, where both a low-level cache and a level-three cache are 
used. This enables power optimization, owing to the lower cost of memory access.
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Algorithmic Optimization
The goal of algorithmic optimization is to reduce execution time by running the tasks fast 
and turning off processing units whenever they are not necessary. This can be achieved in 
many ways, including:

As power consumption is proportional to execution residency, •	
running less code in the CPU translates to less power 
consumption. So, performing code optimization of key software 
modules contributes to algorithmic optimization.

Processing tasks can be offloaded to dedicated power-efficient •	
fixed-function media hardware blocks as supported by the 
platform.

In order to perform various stages in a pipeline of tasks for a given •	
usage, it is generally necessary to expand the data into some 
intermediate representation within a stage. Storing such data 
requires a much larger bandwidth to memory and caches. The 
cost of memory transactions in terms of power consumption can 
be reduced by minimizing the memory bandwidth. Bandwidth 
reduction techniques are, therefore, important considerations for 
algorithmic optimization.

The concurrency available among various stages or substages •	
of the pipeline may be explored and appropriate parallelization 
approaches may be made to reduce the execution time.

The I/O operations can be optimized by appropriate buffering to •	
enable the packing of larger amounts of data followed by longer 
idle periods, as frequent short transfers do not give the modules a 
chance to power down for idle periods. Also, disk access latency 
and fragmentation in files should be taken into account for I/O 
optimization, as they may have significant impact in power 
consumption.

Appropriate scheduling and coalescing of interrupts provide the •	
opportunity to maximize idle time.

All active tasks can be overlapped in all parts of the platform—for •	
example, the CPU, the GPU, the I/O communication, and the 
storage.

Algorithmic optimization should be made with the power, performance, and quality 
tradeoffs in mind. Depending on the requirements of an application, while attempting 
to save power, attention should be paid to maintaining the performance and/or visual 
quality. A few common algorithmic optimization techniques are described in the 
following sections.
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Computational Complexity Reduction
A computing device or system consumes very little power when it is not actively 
computing, as only the display engine needs to be awake; other compute engines may be 
temporarily in a sleeping state. The idea behind reducing computational complexity is 
to keep the system in a high power or busy state only as long as necessary, and to allow 
the system to return to idle state as often as possible. Improving the performance of an 
application can easily achieve power savings, as it allows the system to go back to idle 
state earlier because the work is done faster.

There are several approaches to computational complexity reduction, including 
algorithmic efficiency, active-duty cycle reduction, minimizing overheads such as 
busy-wait locks and synchronization, reducing the time spent in privileged mode, and 
improving the efficiency of I/O processing. We discuss some of these approaches next, 
but for a thorough treatment of them, see Energy Aware Computing.8

Selecting Efficient Data types

It is possible to optimize an algorithm that is heavy in floating point calculations by using 
integer arithmetic instead. For example, the calculation of discrete wavelet transforms 
using the lifting scheme usually involves a number of floating point operations. But the 
lifting coefficients can be implemented by rational numbers that are powers of 2, so that 
the floating point units in the data path can be replaced by integer arithmetic units.9 This 
leads to power savings, as the hardware complexity is reduced.

Similarly, rearranging the code in a way suitable to take advantage of compiler 
optimization, or in a way where certain data dependency allows a computation to be 
done before entering a loop instead of inside the loop, can yield significant performance 
gain and thereby power savings. In an audio application example,10 show some sine and 
cosine functions being repeatedly called on fixed values inside a busy loop; as the values 
are fixed, the computation can be made before entering the loop. This optimization yields 
about a 30 percent performance gain and also saves power. 

In another example, motion vector and discrete cosine transform calculations were 
done on a vector of pixels instead of using each pixel separately,11 which not only gives a 
5 percent overall performance improvement in a software-only H.263 video encoder, but 
also provides power saving in two ways: by doing the computation faster, and by using 
improved memory access and cache coherency.

8 B. Steigerwald, C. D. Lucero, C. Akella, and A. R. Agrawal, Energy Aware Computing  
(Intel Press, 2012).
9P. P. Dang and P. M. Chau, “Design of Low-Power Lifting Based Co-processor for Mobile 
Multimedia Applications,” Proceedings of SPIE 5022 (2003): 733–44.
10Steigerwald et al., Energy Aware Computing.
11S. M. Akramullah, I. Ahmad, and M. L. Liou, “Optimization of H.263 Video Encoding Using a 
Single Processor Computer: Performance Tradeoffs and Benchmarking,” IEEE Transactions on 
Circuits and Systems for Video Technology 11, no. 8 (August 2001): 901–15.
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Code Parallelization and Optimization

Removing run-time inefficiency is also the goal of code parallelization and optimization. 
Multithreading, pipelining, vectorization, reducing the time spent in a privileged mode, 
and avoiding polling constructs are common techniques for code parallelization and 
optimization.

A properly threaded application that uses all available resources usually completes 
earlier than a single-threaded counterpart, and it is more likely to provide performance 
and power benefits. In this context, selecting the right synchronization primitives is 
also very important. Some applications, especially media applications, are particularly 
amenable to improvement using multithreading in a multi-core or multi-processor 
platform. In a multithreaded media playback example mentioned by Steigerwald et al.,12 
while almost linear performance scaling was achieved, the power consumption was also 
halved on a four-core processor at the same time, as all the four cores were busy running 
a balanced workload.

Similarly, the same operation on different data can be efficiently performed by using 
vector operations such as single-instruction multiple-data (SIMD) in the same clock 
cycle on a vector of data. Most modern processors support SIMD operations. The Intel 
Automatic Vectorizing Extensions (AVX) support eight 32-bit floating-point simultaneous 
operations in a single processor clock cycle. As Steigerwald et al.13 claims, for media 
playback applications, use of such SIMD operations can result in approximately  
30 percent less power consumption.

In Listing 6-1, note the following Direct3D query structure and the polling construct 
that only burns CPU cycles, resulting in wasted power.

Listing 6-1.  Polling Example with Direct3D Query Structure (Power Inefficient)

        while ( S_OK != pDeviceContext->GetData( pQuery, &queryData, 
sizeof(UINT64), 0 ) )
        {
                sleep (0); // wait until data is available
        }
 

It is better to use blocking constructs to suspend the CPU thread. However,  
Windows 7 DirectX is nonblocking. Although a blocking solution using the OS primitives 
would avoid the busy-wait loop, this approach would also add latency and performance 
penalty, and may not be appropriate for some applications. Instead, a software work-around 
may be used, where a heuristic algorithm detects the GetData() call in a loop. In an example 
of such work around,14 up to 3.7W power was reduced without performance degradation. 
Listing 6-2 shows the concept of the workaround:

12 Steigerwald et al., Energy Aware Computing.
13Ibid.
14D. Blythe, “Technology Insight: Building Power Efficient Graphics Software,” Intel Developer 
Forum, 2012.
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Listing 6-2.  Example of an Alternative to the Polling Construct

INT32 numClocksBetweenCalls = 0;
INT32 averageClocks = 0;
INT32 count = 0;
 
// Begin Detect Application Spin-Loop
// ... ...
UINT64 clocksBefore = GetClocks();
if ( S_OK != pDeviceContext->GetData( pQuery, &queryData, sizeof(UINT64),  
0 ) ) {
        numClocksBetweenCalls = GetClocks() - clocksBefore;
        averageClocks += numClocksBetweenCalls;
        count++;
 
        if ( numClocksBetweenCalls < CLOCK_THRESHOLD )
        {
                averageClocks /=count;
                if ( averageClocks < AVERAGE_THRESHOLD )
                {
                        WaitOnDMAEvent( pQuery, &queryData, sizeof(UINT64) );
                        return queryData;
                }
                else
                {
                        return queryBusy;
                } 
        }
        else 
        {
                return queryBusy;
        }
}
else 
{
        return queryData;
}
// End Detect Application Spin-Loop

Memory Transfer Reduction
Limiting data movement and efficient data processing lead to better performance and 
lower power consumption. In this connection, it is more efficient to keep data as close 
to processing elements as possible by using the memory and cache hierarchy, and to 
minimize data transfer from main memory.
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Reduction of memory transfer can curtail the power consumption, owing to the 
reduced number of memory accesses, even at the expense of a moderate increase in 
computational complexity.15 Bourge and Jung proposed to reduce memory transfer by 
using embedded compression for the predictive pictures in the encoding feedback loop. 
It is possible to use an embedded coding scheme that would keep the reference frame 
in the frame memory in compressed format so as to use about a third of the memory 
compared to regular uncompressed coding method. If a lossless compression is used, 
then the required memory would be halved instead. 

However, by using block-based memory access and by carefully managing 
the computational complexity of the embedded coding scheme, Bourge and Jung 
show that an overall power saving is possible.16 They achieve this by imposing some 
restrictions on the coding scheme, which is a lossy scheme and is capable of obtaining 
better compression ratio and corresponding power saving than a lossless scheme. The 
restrictions include coding each block independently, fixing the compression ratio for 
each block, and jointly storing the luminance and chrominance blocks in memory. 
The end result is that even with an increase in computational complexity, the memory 
transfer, which dominates power consumption, is saved by 55 percent. 

Although this particular scheme resulted in visual quality degradation at higher 
bitrates, using an appropriate lossless scheme may bring about overall power savings 
due to less memory transfer. Most important, owing to such reduction in memory 
transfer, a smaller memory embedded closer to the CPU can be used, leading to less cable 
dissipation during access. In some hardware implementations, it is possible to use low-
cost on-chip memory instead of off-chip SDRAM.

System Integration Optimization
The interaction between various layers in the software stack can be optimized during 
system integration to yield a more power-efficient solution. The operating system, the 
graphics drivers, the middleware such as Intel media software development kit (SDK), 
and the applications can cooperate in such optimization. As these layers are typically 
developed by different companies, it is natural to expect inefficiencies resulting from such 
interactions. To improve the inter-layer efficiency, the following approaches to system 
integration optimization may be considered:

Reducing the number of layers.•	

Improving the understanding of the authors of various layers •	
regarding each other’s capabilities and limitations.

Redefining the boundaries of the layers.•	

However, lacking such radical approaches, and until these become available, system 
integration optimization can still be done at various levels, some of which are as follows. 

15A. Bourge and J. Jung, “Low-Power H.264 Video Decoder with Graceful Degradation,” Proceedings  
of SPIE 5308 (2004): 372–83.
16Ibid.
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System Operating Point on the P-F Curve
Figure 6-7 shows typical system operating points on the power-frequency curve, 
compared to the minimum operating point (F

max
 at V

min
) and the maximum operating 

point (running at turbo frequency). 

Figure 6-7.  Typical system operating point

As seen in Figure 6-7, in the voltage-scaling region of the power curve, tuning the 
system’s operating frequency is important for power saving. It is possible to occasionally 
run the system at a lower frequency and save power as long as performance requirements 
are met. From the power consumption point of view, the best operating point is F

max
 

at V
min

; however, this frequency may not be sufficient for some applications. On the 
other hand, from the performance point of view, the best operating point is in the turbo 
frequency region. Based on the resource utilization profile, it is possible for power-
aware graphics drivers to determine how to tune the frequency of the processor, and it is 
possible to dynamically move between turbo and regular operating frequency. 

As the operating system manages power, some systems offer various power policies 
ranging from low-power usage with low performance to high-power usage with high 
performance. In addition, the BIOS provide some flexibility to set the system frequency. 
End-users may take advantage of these power policies to adjust the system operating 
point to appropriate levels; for example, using the power-saver policy can lower the 
operating frequency and thereby save power.

Intelligent Scheduling
The levels of hardware-software partitioning are generally in the scope of architectural 
optimization. However, system-level optimization should also carefully consider the 
power-saving opportunities that are not covered by architectural design alone. For 
example, scheduling and migrating tasks between a software layer and special-purpose 
hardware units is a way such power-saving opportunities may be made available.



Chapter 6 ■ Power Consumption by Video Applications 

244

The operating system performs the scheduling of tasks for the CPU, while graphics 
drivers can schedule and manage the tasks for the GPU. Intelligent scheduling and 
load sharing between the CPU and the GPU is an active area of research, for which the 
middleware and the application layer may also make significant contributions. It is 
important, then, to find the most efficient place to do the processing; for instance, it may 
not be sufficient to simply multithread a CPU work, and it may be less efficient in terms of 
Joules per operation than operations per second. 

Accomplishing migration of such a task from the CPU to a more power-efficient 
dedicated hardware module requires cooperation from all layers of the execution stack. 
To facilitate the scheduling, sometimes it is necessary to partition a piece of the system 
into several smaller chunks. For example, a shared user mode driver (UMD) that would 
interact with three run-time environments, such as OpenGL run-time, Direct3D 11  
run-time, and Direct3D 9 run-time, may be redefined and divided into three components: 
OpenGL UMD, D3D 11 UMD, and D3D 9 UMD. This would facilitate both specific 
hardware access and interaction with the run-time environments; and it would make the 
system more amenable to power gating.

Similarly, some fixed work repeatedly done by the kernel mode driver for every 
invocation may be moved to the hardware itself. Examples of such system-level 
optimization can be found in the Intel fourth-generation core processor architecture, 
where using such system-level optimizations achieves a 2.25W decrease in CPU power for 
a popular 3D game application.17

Duty Cycle Reduction
By parallelizing the essential active tasks in a system—for example, tasks in the CPU, 
the GPU, the memory, and the I/O subsystem—the overall uncore duty cycle can be 
minimized. This would keep the related power subdomains active only for the required 
operations as needed and only for the minimum period of time, turning them off 
otherwise. The power subdomains include the various sensors, the PLLs, the memory 
interface interconnect buses, and so on, which can be separately controlled to minimize 
power consumption.

Furthermore, in order to run at a more efficient operating point, the duty cycle of 
the processor can be reduced by moving along the voltage-frequency curve, and using 
a higher frequency and higher power consumption for a shorter period of time, before 
going to an idle state for a relatively longer period of time. For the overall duration, this 
would typically result in lower power consumption. Conversely, for the same frequency, 
power can be saved with a lower voltage setting, as power is proportional to the square of 
the voltage. Duty cycle reduction is usually done at the system integration optimization 
level by the graphics kernel mode driver.

Figure 6-8 depicts the effect of a duty cycle reduction algorithm that focuses on using 
a higher frequency for a shorter period to accomplish the task of a video application, 
while the CPU is idle for longer period of time. In this example, the CPU utilization is 
reduced by approximately 20 percent. 

17Blythe, “Technology Insight.”
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Application-Level Optimization
With the desire to support a plethora of functionalities in mobile computing devices 
comes the use of multiple sensors. A contemporary platform therefore includes light 
sensors, gyroscopes, accelerometers, GPS receivers, and near-field communications. 
By becoming aware of the available system resources and the user environment where 
multiple sensors may be active at a given time, applications can help avoid power misuse 
and can help users determine the priority of the sensors and features for a power-starving 
scenario. 

Context Awareness by the Application
It is possible for a badly written application to burn power unnecessarily that could 
otherwise be saved. On the other hand, if an application is aware of the system resources 
that it runs on, and can sense a change in the system resource availability, it is possible for 
that application to react in a friendly manner to overall power consumption. For example, 
upon detecting low battery and subsequently notifying the user, an application may wait 
for intervention from the user before going to a lower power state. Alternatively, in a more 
active response, it may dim the display by default after sensing a darker ambient light 
condition.

It is the duty of the operating system to allocate system resources for each 
application, as requested by the application. The application’s registering for power-
related events allows the operating system to notify the application of a power event so 
as to enable the application to make an appropriate response. The application can also 
query for system state information using the APIs (application programming interfaces) 
provided by the operating system. For example, depending on whether the system is 

Figure 6-8.  Effect of duty cycle reduction on CPU utilization
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powered by a battery or connected to AC wall power, applications can make various 
power-saving decisions:

Instead of a full system scan as done while on AC power, a virus •	
checker may start a partial scan of the system on battery power.

A media player may decide to trade off video quality to achieve •	
longer playback of a Blu-ray movie.

A gaming application may choose to sacrifice some special effects •	
to accommodate more sections of the game.

In Windows, applications can query the operating system using a unique GUID 
(globally unique identifier) called GUID_ACDC_POWER_SOURCE to obtain the power setting 
information, and use this knowledge when a power event occurs. Similarly, to determine 
the remaining battery capacity, the GUID_BATTERY_CAPACITY_REMAINING can be used. 
And to learn about the current power policy, the GUID_POWERSCHEME_PERSONALITY can be 
used. It is also possible to use the GUID_BACKGROUND_TASK_NOTIFICATION to determine 
whether it is suitable to run a background task at the current state or it is better to wait for 
the active state so as not to perturb an idle state. In Linux, similar approaches also exist, 
where CCBatteryInfo structure can be used to determine the battery state. Furthermore, 
if the application switches contexts, it is possible to lower the power for the application’s 
context that is no longer running.

Applications Seeking User Intervention 
An application may invite favorable user intervention to save power. For example:

An application can monitor battery capacity, and when the •	
battery charge drops to a certain fraction of its capacity--say,  
50 or 25 percent--the application may indicate a warning to the 
user interface to alert the user of the remaining battery capacity.

An application can respond to a power source change from AC to •	
DC by notifying the user of the change and providing an option to 
dim the display.

An application can respond to ambient light level and request the •	
user to adjust the display brightness.

Some of these actions can also be automatically taken by the system, but depending 
on the application, some may require user intervention. In general, user-configurable 
options allow the user to personalize the system, the application, and the experience. 
System and application designers may need to consider various tradeoffs when deciding 
which choices to give to the user and which to implement by default. For example, 
Windows provides the user with three power policies to choose from, or to define 
one’s own settings. These options and settings drive the system-level behaviors that 
significantly impact the power efficiency of the platform.
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Power Measurement
Now that we have covered different areas of power optimization, let us consider how to 
actually measure the power. In this section, we present the measurement methodology 
and various power-measurement considerations.

The ability to measure and account for power at various levels of the system allows 
system designers or users to understand existing power-management policies or to 
deploy optimized power-management policies as needed. Measuring power can uncover 
power-related problems that result in higher cost for the system. The major motivations 
for measuring power include:

Understanding the impact of an application on power •	
consumption by the system, and potentially finding optimization 
opportunities by tuning the application.

Determining the effect of software changes at the user level, at •	
the driver level, or at the kernel level; and understanding whether 
there is any performance or power regression owing to code 
changes.

Verifying that a debug code was removed from the software.•	

Determining the amount of power savings from power-management •	
features, and verifying that such features are turned on.

Determining the •	 performance per watt in order to drive 
performance and power tuning, thereby obtaining the best 
tradeoff in practical thermally constrained environments.

However, few tools and instructions are available to measure the power consumed 
in a platform. Also, depending on the need for accuracy, different power-measurement 
methods can be used, ranging from simple and inexpensive devices to specialized data 
acquisition systems (DAQs). We present various approaches to power measurement. 

Methodology
Within a computing system, power is measured at various system levels and at the 
motherboard level. In particular, this applies to the CPU package power, memory 
power, and display power measurement. Depending on the type of power supply, such 
measurement is of two types: AC power and DC power.

AC Power Measurement
For the system AC power or wall-power measurement, generally an AC power meter is 
connected between the power source and the system under measurement. The price 
for this measurement equipment may vary, depending on the accuracy and precision 
requirements. Simple, low-cost equipment typically has several drawbacks, including 
small ranges, low and imprecise sampling rates, inability to be used with other devices 
such as AC to DC converters or data acquisition systems, low resolution, and incongruity 
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for measuring small power changes. On the other hand, they are easy to use and require 
little or no setup time. 

For purposes of system-level and motherboard measurement, AC power 
measurement is not suitable, as these methods cannot provide insight into the system’s 
power consumption.

DC Power Measurement
Although DC power can be measured using scopes and multi-meters, the easiest, most 
accurate, and most precise way of measuring DC power is by using automated data 
acquisition systems (DAQs). DAQs take analog signals as inputs and convert them to 
digital data sequence for further processing and analysis, using specialized software. 
Typically, DAQs can support several input channels, and can interface with the data-
analyzing computer via standard serial or USB ports. They are capable of handling 
very high data rates and can measure tiny voltage differences, making them ideal for 
automated power measurements.

The power dissipated across a resistor can be expressed as follows:

				     P=V2/R,	 (Equation 6-3)

where V is the voltage in volts, R is the resistance in ohms, and P is the power in watts. 
The current through the circuit is determined by the ratio of V to R. To measure the 

power of a black box circuit, it is a common practice to add a very small sense resistor with 
a low resistance, r, in series with the black box, which has a larger resistance, R, so the 
total resistance of the circuit is approximately equal to R. In this case, the power needed 
for the black box can be approximated in a modified version of Equation 6-3:

				    × =
´

P
v v

R

D
, 	 (Equation 6-4)

where DV is the voltage drop across the sense resistor and V is the potential of a channel 
input with respect to ground. 

Since voltage is the potential difference between two points, for each voltage 
measurement two inputs are required: one to represent the ground, or reference 
potential, and the other to represent the non-zero voltage. In a single-ended 
measurement, the reference is provided by the DAQ’s own ground and only the non-zero 
voltage is measured for an input channel voltage. Compared to using separate grounds 
for each channel, single-ended measurements may be less accurate, but they have the 
advantage of using faster sampling or more input channels.

DAQs can take as inputs the general-purpose analog signals in the form of voltage. 
The analog signals may have originally been captured using a sensor before being 
converted to the voltage form, or they may already exist in a voltage form. In the latter 
case, a simple low-resistance sense resistor can act as a sensor. 

In order to measure the power of a certain system or motherboard component, 
typically the appropriate power rails are instrumented so that a sense resistor is 
connected in series on the rail. As current flows through the sense resistor, a voltage drop 
DV is created, which can be measured by the DAQ, as shown in Figure 6-9, where a very 
small sense resistor (e.g., 2 milliohm resistance) is used. 
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The data can be analyzed and aggregated to give the measured power over a period 
of time, using special software accompanying the DAQ, such as the National Instrument 
LabView. 

Considerations in Power Measurement 
The following factors are generally taken into account while measuring power:

The TDP of the processor part under measurement.•	

The accuracy and precision of the data acquisition system; •	
The ability of the DAQ and associated software for real-time 
conversion of analog voltage signals to digital data sequence, and 
for subsequent processing and analysis.

Ambient temperature, heat dissipation, and cooling variations •	
from one set of measurements to another; to hedge against run-
to-run variation from environmental factors, a three-run set of 
measurements is usually taken and the median measured value is 
considered.

Separate annotation of appropriate power rails for associated •	
power savings, while recording the power consumption on all 
power rails at a typical sampling rate of 1 kHz (i.e., one sample 
every one millisecond), with a thermally relevant measurement 
window between one and five seconds as the moving average.

Recognition of operating system background tasks and power •	
policy; for example, when no media workload is running and the 
processor is apparently idle, the CPU may still be busy running 
background tasks; in addition, the power-saving policy of the 
operating system may have adjusted the high-frequency limit of 
the CPU, which needs to be carefully considered.

Consideration of average power over a period of time in •	
order to eliminate the sudden spikes in power transients, and 
consideration only of steady-state power consumption behavior.

CPU Core 
VCC

Phase 1

The 
DAQ

Small sense resistor (e.g. 2 mΩ)

Figure 6-9.  Power measurement setup in a power rail
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Benchmarks included for both synthetic settings and common •	
usage scenarios; appropriate workloads considered for high-end 
usages so that various parts of the system get a chance to reach 
their potential limits.

Consideration of using the latest available graphics driver and •	
media SDK versions, as there may be power optimizations 
available in driver and middleware level; also, there is a risk of 
power or performance regression with a new graphics driver 
such as potential changes to the GPU core, memory, PLL, voltage 
regulator settings, and over-clock (turbo) settings.

Tools and Applications
Power-measurement tools include both specialized and accurate measurement systems 
such as DAQs, as well as less accurate software-based tools and applications. We consider 
a specialized DAQ system and introduce several software tools with varying capabilities.

An Example DC Power-Measurement System
An example DC power measurement system is based on the National Instruments* 
PXIe 6363 PCI-express based DAQ and the associated LabView Signal Express software 
application for signal analysis. The PXIe 6363 has a signal capture bandwidth of 1.25 
million samples per second and an A/D conversion resolution of 16 bits on every voltage 
input channel. This input voltage is programmable down to ±1V, so that it is easy to zoom 
into the low-voltage signals. Similarly, for today’s low-power devices, newer versions of 
PCIe DAQs with higher-precision input voltages are also available. 

Typically a 2 milli-ohm current sense resistor is used in series with all power rails of 
interest—for example, the CPU package, the memory DIMMs, and the display, for which 
the peak, the average, and the minimum DC power consumption are measured. Also, the 
run-time CPU and GPU frequencies are monitored to determine proper turbo operation. 
The power setup is calibrated automatically on each run for sense resistor and test 
harness variations that may occur due to ambient temperature.

To capture and compute power in watts, it is necessary to measure both voltage and 
current for each power rail. This is accomplished by using current sense resistors in series 
with the incoming power supply on each voltage rail. The voltage drop across the current 
sense resistor is a small amplitude signal that directly correlates to the amount of current 
flowing through the sense resistor. The voltage for each power rail (positive and negative 
wire), and the output of the current sense resistor (positive and negative wire), connects 
directly to the PXIe 6363 via the removable TB-2706 terminal block analog input modules. 

The measured power is logged and plotted using the LabView Signal Express to 
produce a detailed and comprehensive power-performance profile. This application 
captures and processes the voltage and current measurements from the PXIe 6363 DAQ 
modules and computes the power in watts simply by multiplying the measured voltage 
and sense current.
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This application also supports various statistical measurements, such as moving 
average, peak, average, and minimum power used for detailed signal analysis. Figure 6-10 
depicts a sample of a LabView configuration interface for a power measurement system. 
In this interface, selections can be made for the voltage channels of interest. Figure 6-11  
then shows an example of the LabView interface when a power measurement is in 
progress. The top and bottom windows show voltage, current, or power signals from all 
input channels and a single channel (Channel 0), respectively.

Figure 6-10.  LabView data acquisition setup for power measurement
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Software Tools and Applications
To get the best and most accurate data on how much energy a computer platform is using 
during operation, a hardware power meter is needed. The Networked Data Acquisition 
Unit (NetDAQ) from Fluke, the National Instrument DAQ, and the Yokogawa WT210 are 
examples of such acquisition systems. However, these are expensive and the cost may not 
be justifiable to a regular consumer or an application developer who is only interested 
in a one-time or so power measurement. For these users it makes more sense to select a 
software tool or application that measures power consumption.

The tool and applications are primarily used to identify power issues, with and 
without workloads running, in order to optimize the system’s power consumption. The 
issues typically encountered include: 

•	 CPU/Chipset Power: Such problems are identified by examining 
the CPU C-state residency to determine whether the CPU and the 
chipset power are optimally managed, and to get some insight 
into what is causing any increase in platform power consumption. 
For example, high residency at deep C-states such as C3 may 
indicate frequent C-state transition due to device interrupt or 
software activity.

Figure 6-11.  Power data acquisition in progress
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•	 CPU Utilization: CPU utilization samples are commonly taken 
at every timer tick interrupt--i.e., every 15.6 millisecond for 
most media applications and some background applications. 
However, the timer resolution can be shortened from the default 
15.6 millisecond in an attempt to capture activities within 
shorter periods. For multi-core CPUs, CPU utilization and power 
consumption depend on the active duration, while each core 
may only be active for a partial segment of the total duration for 
which the platform is active. Therefore, CPU core utilization and 
platform utilization should be counted separately. Logically, 
when the activities of two cores overlap, the CPU utilization is 
shown as the sum of two utilizations by most power measurement 
tools. Only few tools, the Intel Battery Life Analyzer among them, 
can actually use fine-grain process information to determine the 
total active duration of both the platform package and the logical 
CPU. By investigating the CPU utilization, inefficient software 
components and their hotspots can be identified, and the impact 
of the software component and its hotspots can be determined to 
find optimization opportunities.

•	 CPU Activity Frequency: Power tools can help identify software 
components causing frequent transition of CPU states. It is 
valuable to determine the frequency of the activity of each 
component and the number of activities that are happening in 
each tick period. Understanding why the frequent transitions 
are happening may help point to power-related issues or 
improvement prospects.

•	 GPU Power: On the modern processors, as most media 
applications run on the GPU, it is also important to understand 
the impact of GPU C-state transitions and GPU utilization. GPU 
utilization largely controls the power consumption of media 
applications. However, there are only few tools that have the 
ability to report GPU utilization; the Intel GPA is one such tool.

In general, there are several tools and applications available for the measurement 
and analysis of power consumption of various components of a computing device. Some 
are especially relevant for analysis of the idle system behavior, while others are suitable 
for media applications. In the next section, we discuss some of these tools, starting with 
the Linux/Android based PowerTop and going into several Windows-based tools. We 
then discuss specific tools for monitoring and analyzing battery life. The Power Virus 
is also mentioned, which is mainly used for thermal testing. However, as new tools are 
constantly being developed, some tools obviously are not covered. 

PowerTop
PowerTop is a software utility developed by Intel and released under GPL license that is 
designed to measure and analyze power consumption by applications, device drivers, 
and kernels running on Android, Linux, or Solaris operating systems. It is helpful in 
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identifying programs that have power issues and to pinpoint software that results in 
excessive power use. This is particularly useful for mobile devices as a way to prolong the 
battery life.

PowerCfg
PowerCfg is a command line tool in Windows that allows users control the power-
management settings of the system and to view or modify the power policy. It is typically 
used to detect common issues in power efficiency, processor utilization, timer resolution, 
USB device selective suspend, power requests, and battery capacity.

PwrTest
PwrTest is a power management test tool available in the Windows Driver Kit that enables 
application developers and system integrators to obtain power-management information 
such as the various sleep states information (e.g., C-state and P-state information) and 
battery information from the system and record over a period of time. 

Perfmon and Xperf
The Windows Perfmon provides abilities to monitor the performance counters available 
in Windows, including C-state and P-state residencies, which are useful in understanding 
CPU utilization and activity related issues.

The Xperf is a command-line tool that helps developers in system-wide 
performance analysis by monitoring system and kernel events such as context switches, 
interrupt service routines, and deferred procedure calls for a period of time and by 
generating reports for graphical review. It is useful to correlate the events with system 
status in scenarios where the system is idle, running web browsing, or during media 
applications. Xperf generates event trace logs that can be viewed using Xperfview; both 
of these tools are available in the Windows Performance Toolkit.

Joulemeter
Developed by Microsoft Research, Joulemeter is a modeling tool to measure the energy 
usage of virtual machines (VMs), computers of various form factors and power capacity, 
and even individual software applications running on a computer. It measures the impact 
of components such as the CPU, screen, memory, and storage on their total power 
use. One of its advantages is that it can measure the impact of software components, 
such as VMs, that do not have a hardware interface and therefore are not amenable to 
measurement by hardware power meters.
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The data obtainable from Joulemeter includes the current energy usage for each 
component, such as the base or idle energy usage, CPU usage above the baseline idle, 
monitor, and hard disk. The output data is presented in watts and is updated every second. 
Details can be found in Joulemeter: Computational Energy Measurement and Optimization.18

Intel Power Gadget
To assist end-users, independent software vendors, original equipment manufacturers, and 
the application developers to precisely estimate power consumption without any hardware 
instrumentation of the system, Intel developed a software tool named Intel Power Gadget, 
which is enabled for the second- Generation Intel Core processors. Additional functions of 
the tool include estimation of power on multi-socket systems and externally callable APIs to 
extract power information within sections of the application code.

The gadget includes a Microsoft Windows sidebar gadget, driver, and libraries to 
monitor and estimate real-time processor package power information in watts, using the 
energy counters in the processor. After installation, the gadget can be simply brought up 
to monitor processor power usage while running a workload or when the system is idle. 
An “Options” pop-up window allows setting the sampling resolution in milliseconds and 
the maximum power in watts. The output data, notably the processor package power and 
frequency, is generated in real time and can be logged in a file with a comma-separated 
values (CSV) format. The gadget can be downloaded from Intel’s website.19

Intel Power Checker
The Intel power or energy checker tool determines the power efficiency of a system in 
terms of useful work done with respect to energy consumed during that work. It is an 
easy way for media or game application developers to check the power efficiency of their 
applications on mobile platforms with Intel Core or Atom processors. This tool does not 
require an external power meter, and it is useful for power analysis of any application 
compiled for Intel processors or Java framework applications. 

By default, this tool checks the system capability to provide power consumption 
data and whether a particular driver called EzPwr.sys (part of Intel Power Gadget) is 
installed, which would be necessary if an external power meter device is used. Typically, 
the tool first measures the baseline power without the target application running, while 
unnecessary processes such as operating system updates, Windows indexing service, virus 
scans, Internet browsers, and so on are turned off. In the next step, the target application is 
run, and power is measured again starting from a desired point of the target application’s 
execution. Finally, it measures power again when the target application is completed and 
returned to an idle state. The tool provides analysis on elapsed time, energy consumption, 
and average C3 state residency, and gives the platform timer duration in milliseconds. 
This tool is now part of the Intel Software Development Assistant.20 

18Available from Microsoft Research at research.microsoft.com/en-us/projects/joulemeter/
default.aspx.
19Available from software.intel.com/en-us/articles/intel-power-gadget.
20Available from software.intel.com/en-us/isda.

http://research.microsoft.com/en-us/projects/joulemeter/default.aspx
http://research.microsoft.com/en-us/projects/joulemeter/default.aspx
http://software.intel.com/en-us/articles/intel-power-gadget
http://software.intel.com/en-us/isda
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Intel Battery Life Analyzer
The Intel Battery Life Analyzer (BLA) is a software tool running on Microsoft Windows 
that is primarily used to monitor the activities of hardware and software platform 
components and determine their impact on battery life. It can identify drivers, processes, 
or hardware components that prevent the platform from entering low-power states. BLA 
has many modules to support the power analysis, including CPU C-state and software 
activity analysis.

The more time the system spends in the deep C-state, the less power it consumes. 
BLA recommends threshold values for C-state residencies, in particular, that the deepest 
C-state residency at idle should be greater than 95 percent for the processor package 
(i.e., socket) containing multiple processor cores and 98 percent per core. Also, C0 and 
C1 states for the package should be less than 5 percent at idle. There are options in the 
BLA tool to set the appropriate C-state threshold values. Copies of the BLA tool can be 
requested via e-mail from Intel.21

Intel Graphics Performance Analyzer
The Intel Graphics Performance Analyzers 2013 (Intel GPA) is a suite of three graphics 
analysis and optimization tools--namely, the system analyzer, the frame analyzer, and the 
platform analyzer—to help game and media application developers optimize their games 
and other graphics-intensive applications. Intel GPA supports the latest generations of 
Intel Core and Intel Atom processor-based platforms running Microsoft Windows 7, 8, 
8.1, or the Android operating system. The system analyzer provides the CPU and the GPU 
performance and power metrics in real time, and allows users to quickly identify whether 
the workload is CPU- or GPU-bound so the user can concentrate on specific optimization 
efforts. The frame analyzer provides ability to analyze performance and power down to 
the frame level. The platform analyzer provides off-line analysis of the CPU and GPU 
metrics and workloads with a timeline view of tasks, threads, Microsoft DirectX, and 
GPU-accelerated media applications in context. The tool is also available from Intel.22

GPU-Z and HWiNFO
GPU-Z is a lightweight system utility from TechPowerUp, designed to provide vital 
information about a video card and/or the integrated graphics processor; it supports 
nVIDIA, ATI, and Intel graphics devices. HWiNFO is free software, available from the 
Internet, that combines the functionalities of CPU-Z and GPU-Z and provides the CPU, 
the GPU, and memory usages, along with other system information.

21Request for BLA tool can be made at batterylifeanalyzer@intel.com.
22Available from software.intel.com/en-us/vcsource/tools/intel-gpa.

http://batterylifeanalyzer@intel.com
http://software.intel.com/en-us/vcsource/tools/intel-gpa
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Power Virus
Power virus executes specific machine code in order to reach the maximum CPU 
power dissipation limit—that is, the maximum thermal energy output for the CPU. This 
application is often used to perform integration testing and thermal testing of computer 
components during the design phase of a product, or for product benchmarking using 
synthetic benchmarks.

Summary
In modern processors, power considerations go beyond battery life and attempt to dictate 
performance. We reviewed the power-consumption behavior by media applications 
running on mainstream computing devices. 

First, we discussed the requirements and limits of power consumption of typical 
systems, the power equation, and aspects of various sources of power supply. Then, 
we covered how a mobile device is expected to serve as the platform for computing, 
communication, productivity, navigation, entertainment, and education. We also 
surveyed three major topics: power management, power optimizations, and power 
measurement considerations. 

Finally, we learned about several power-measurement tools and applications, and 
their advantages and limitations. In particular, we showed as an example a specific 
DC power measurement system using a DAQ, and several software-based power 
measurement tools. 

While there is no single tool or application suitable for all types of power-measurement 
scenarios, some tools are quite capable of providing important insights into the power 
profiles of video applications, and are useful for this purpose.
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Chapter 7

Video Application Power 
Consumption on Low-Power 
Platforms

Some mobile applications, particularly those on low-power devices, unjustifiably use a 
lot of energy, causing unnecessary strain on the device battery. Some applications start 
automatically as soon as the device is powered on or do not go to sleep when the user 
stops using them; in most cases these applications keep performing noncritical tasks. 
Other applications may devote only a small fraction of their energy budget to the core 
task, while spending a larger portion on user tracking, uploading user information, or 
downloading ads. 

To conserve battery power, systems usually go to deep sleep at every opportunity, 
from which they can be awaken as needed; some applications abuse this feature by 
regularly waking the device for nonessential tasks, such as checking the server for 
updates, new content, or mail and messages, or for reporting back on user activity or 
location. For this reason, judicious use of available resources and capabilities by these 
applications can save significant energy and thereby improve battery life.

However, most mobile media applications have a different emphasis in their power-
saving attempts. They usually don’t have sufficient performance headroom for doing 
auxiliary tasks; so they need to consider the characteristically complex nature of the 
media usages, as well as the resource constraints of the device.

Viewed primarily from the media application point of view, this chapter begins by 
extending the power consumption, management, and optimization discussions that 
were begun in Chapter 6 to the domain of the low-power device. The chapter starts with 
a discussion of the power-consumption priorities of low-power devices. Then, it presents 
typical media usages on these low-power devices. Four such common usages—namely 
video playback, video recording, video conferencing, and video delivery over Miracast 
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Wireless Display—are analyzed and discussed. Examples of activities and a power 
profile for each of these usages are also offered. This is followed with a discussion of the 
challenges and opportunities present in system low-power states, which include  
finer-grained states than the ACPI power states presented in Chapter 6. 

The next section discusses power-management considerations for these low-power 
platforms, particularly some display power-management techniques for saving power. 
Then, software and hardware architectural considerations for power optimization are 
surveyed and various power-optimization approaches are offered. In the final section, we 
briefly mention low-power measurement considerations and metrics.

The Priorities for Low-Power Devices
In the past several decades, we have experienced exponential growth in terms of 
computer speed and density, in accordance with the well-known Moore’s law. Ultimately, 
this trend will come to an end, as the growth is restricted by the realism of power 
dissipation and the limits of device physics. But for now, the power consumption of 
individual computing elements has yet to level off. Mobile computing devices, such as 
smartphones, laptops, and tablets, as well as home entertainment electronics like set-top 
boxes, digital cameras, and broadband modems, essentially follow this same trend, and 
so there is still room for power optimization.

On the other hand, increased functionalities for the mobile devices are becoming 
common for many low-power embedded systems, ranging from electronic controllers 
of household appliances to home energy-management systems, and from in-vehicle 
infotainment to sophisticated medical equipment. Not only must such devices consume 
very little power, they must also be “always on, always available.” 

Thus, fueled by insatiable consumer demand and intense competition, 
manufacturers of mobile devices continue to offer progressively more functions and 
faster clocks, but these are required to conform to a lower power budget for extended 
battery life. Furthermore, the advent of wearable computing devices, such as smart 
earphones and smartwatches, require extremely low-power processors within amazingly 
tiny forms. For example, a smartwatch with a surface area as small as 1600 mm2 generally 
requires more than a week’s battery life, ushering in the heralded Internet of Things (IoT).

Designers aim to keep reducing the packaging, manufacturing, operational and 
reliability costs of these devices while simultaneously supporting increasingly complex 
designs. Such ambitious goals generally materialize with the introduction of new 
silicon process technologies of finer geometry roughly every two years. However, every 
generation of process shrinkage results in higher power leakage, owing to increased gate 
and junction diode leakage. Although the dynamic power consumption scales down 
with process geometry, growing wire density tempers such reductions. Therefore, a 
simple scaling down of dynamic power alone is often insufficient for next-generation 
applications. The increased insistence on performance obligations for evermore 
complex applications imposes aggressive battery-life requirements, so this calls for more 
aggressive management of leakage and active power. 
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In general, the priorities for low-power devices moving from one process geometry 
to the next, smaller geometry include:

•	 Decreasing the dynamic power. This is possible as the dynamic 
capacitance and the voltage are both generally reduced for a 
smaller geometry.

•	 Maintaining the total static leakage power. This is an active area of 
focus for hardware architects because, due to process technology, 
the leakage power tends to increase for a smaller geometry. So it 
is necessary to optimize in this area with a view to maintaining 
the leakage power.

•	 Keep active leakage at a small percentage (e.g., approximately 
10-15%) of the dynamic power. Also, leakage power must not be 
allowed to dominate the power consumption equation.

Let us recall the power-frequency relationships presented in Chapter 6. Figure 7-1 
shows the dynamic and leakage power with respect to frequency. 

Figure 7-1.  Power-frequency relationship. For low-power design, the goal is to keep leakage 
power at ~10-15% of the dynamic power, even as the process shrinks to the next generation

As is evident from Figure 7-1, there is an efficient frequency below which voltage 
and frequency scaling do not achieve good power reduction. In this V

min
 region, voltage 

only scales linearly with frequency, so leakage current, and consequently leakage power, 
becomes a determining factor for further power reduction. It is also necessary to point 
out that voltage cannot be arbitrarily reduced, as there is a minimum voltage needed to 
drive the circuit into the active state. Above the efficient frequency point, however, good 
voltage scaling can be achieved, as the voltage scales with frequency according to a cubic 
relationship. As a result, in this relatively higher-power region, power reduction can 
happen with an easy voltage-frequency tradeoff.
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An example of mobile low-power platform architecture is shown in Figure 7-2. Power 
management and optimization are essential for each module of the architecture—namely 
the system-on-a-chip (SOC), storage module, input and output (I/O) module, sensors 
and cameras, controllers and communications module. In typical modern SoCs, there are 
dedicated circuits available for thermal control and power management—for example, 
the power management controller (PMC), which is discussed later.

SoC Storage and Memory

Communications

I/O

Sensors and 
Cameras

CPU

Graphics/ Media 
accelerator

(GPU)

PCH, Audio DSP, 
PMIC etc.

GPS, Compass, 
Accelerometer, 
Gyroscope etc.

NAND 
Flash

SD
Card

RAM/ 
ROM

SIM 
Card

LCD eDP HDMI Keypad, 
Speakers, 

etc.

Bluetooth Wi-Fi 3G/LTE 
Modem

Front/back 
cameras

Controllers

PMC USB Thermal

Figure 7-2.  An example of mobile platform architecture

Typical Media Usage on Low-Power Platforms
Low-power computing platforms span a wide range of devices and applications, all of 
which need to save power while they are not in use, or only partially in use, regardless of 
whether media are involved. Table 7-1 lists some examples of low-power platforms.1

1B. Steigerwald,  C. D. Lucero,  C. Akella, and A. R. Agrawal, Energy Aware Computing (Hillsboro, 
OR : Intel Press, 2011).
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Table 7-1.  Examples of Low-Power Platforms

Category Example Special needs and requirements

Computing on the go Smartphones, tablets, 
netbooks, wearable 
devices

Small form factor and limited 
storage capabilities; minimum heat 
dissipation and special cooling 
requirements; reduced memory 
bandwidth and footprint; multiple 
concurrent sessions; hardware 
acceleration for media and graphics; 
sensors; real-time performance; 
extended battery life

Medical equipment Imaging systems, 
diagnostic devices, point 
of care terminals and 
kiosks, patient monitoring 
system

Amenable to sterilization; secure, 
stable and safe to health; resistant to 
vibration or shock; lightweight and 
portable; high-quality image capture 
and display capability; fanless 
cooling support, etc.

Industrial control 
systems 

Operator-controlled 
centralized controller of 
field devices

Special I/O requirements, vibration 
and shock withstanding capabilities, 
variety of thermal and cooling 
requirements, ranging from fanless 
passive heat sink to forced air, etc.

Retail equipment Point of sale terminals, 
self-checkout kiosks, 
automatic teller machines 
(ATMs)

Ability to withstand extreme 
ambient temperature, good air-flow 
design, security from virus attacks, 
non-susceptibility to environmental 
conditions (dust, rain etc.)

Home energy 
management 
systems

Centralized monitor of a 
home’s usage of utilities 
such as electricity, gas 
and water; data mining 
of energy usage for 
reporting, analysis and 
customization (e.g., 
warning users when 
washing clothes is 
attempted during peak 
electrical rates or when 
a light is left on without 
anyone present, etc.)

Internet connectivity; various 
sensors; ability to control various 
smartphone apps; wireless push 
notification capability; fanless 
operation; ability to wake from a 
low-power or power-down state by 
sensors or signals from Internet; low 
power consumption while working 
as an energy usage monitor

(continued)
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Category Example Special needs and requirements

In-vehicle 
infotainment  
systems

Standalone navigation 
systems, personal video 
game player, Google 
maps, real-time traffic 
reporting, web access, 
communication between 
car, home and office

Ability to withstand extreme 
ambient temperature; special 
cooling mechanisms in the 
proximity of heating and air-
conditioning system; small form 
factor to fit behind dashboard; very 
low power level (below 5W); fast 
return from deep sleep (S3) state

Digital signage Flight information 
display system, outdoor 
advertising, wayfinding, 
exhibitions, public 
installations

Rich multimedia content playback; 
display of a single static image in 
low-power state; auto display of 
selected contents upon sensor 
feedback (e.g., motion detection); 
intelligent data gathering;  analysis 
of data such as video analytics;  
real-time performance

Special equipment 
for military and 
aerospace

Air traffic control, special 
devices for space stations 
and space missions, 
wearable military gears

Security; real-time performance; 
fast response time; extreme altitude 
and pressure; wearable rugged 
devices with Internet and wireless 
connectivity; auto backup and/or 
continuous operation

Embedded gaming Video gaming devices, 
lottery, slot machines

High-end graphics and video 
playback; keeping attractive image 
on the screen in low-power state; 
various human interfaces and 
sensors; high security requirements; 
proper ventilation

Satellite and 
telecommunications

Scalable hardware and 
software in datacenters 
and base stations, 
throughput and power 
management and control

Compliance with guidelines 
requirements for environmental 
condition such as National 
Equipment Building Systems (NEBS); 
Continuous low-power monitoring

Internet of Things Smart appliances, 
smart watches, smart 
earphones, smart bowl

Very low power for control and 
monitoring; Internet connectivity

Table 7-1.  (continued)

Although the requirements are manifold from different low-power platforms, practical 
considerations include tradeoffs among processor area, power, performance, visual quality, 
and design complexity. It may be necessary to reduce nonessential functions or sacrifice 
visual quality while maintaining low power and keeping usability and elegance. This 
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approach would favor simplicity over performance, so as to support the energy-efficiency 
requirements for a specific device or application. Consequently, there are only a few media 
usages that are overwhelmingly commonplace in low-power platforms. Of particular 
importance are video playback and browsing over local and remote Wireless Display, video 
recording, and videoconferencing. Some details of these usages are discussed next.

Video Playback and Browsing
Video playback, either from local storage or streaming from the Internet, is one of the most 
prevalent and well-known media usage model for low-power devices. Video can be played 
back using a standalone application or via a browser, while the content is streamed from 
the Internet. As digital video is usually available in various compressed and coded formats, 
video playback involves a decompression operation during which the video is decoded 
before being played back on the display. If the resolution of the video is not the same as the 
display resolution, the decoded video is resized to match the display resolution.

Video decode and playback are quite complex and time-consuming operations 
when performed using the CPU only. Often, hardware acceleration is used to obtain 
higher performance and lower power consumption, as optimized hardware units are 
dedicated for the operations. In modern processors, hardware-accelerated playback is the 
norm, and it is essential for low-power platforms.

Figure 7-3 shows the software stack for a video playback usage model based on the 
Android operating system. The Media Extractor block demultiplexes the video and audio 
data. That data is fed to the corresponding Open MAX (OMX) decoder, which delivers the 
video bitstream to the LibMix library to begin decoding. The hardware decoder is used for 
the actual video decoding, which is driven by the media driver. The decoded video buffers 
are delivered to the Android audio-video synchronization (AVsync) software module. By 
comparing the video buffer’s presentation time stamp (PTS) and the audio clock, AVsync 
queues the buffers to the Surfaceflinger to be rendered on the display at the appropriate time.

Media Player

Media Extractor Video Renderer Surfaceflinger

OMXAVC Secure

MSDK/ LibMix Video Processing Unit

Stagefright

OGL 
Driver

Composer

LibVA

Media User Mode Driver

Kernel Mode Driver

Figure 7-3.  Video playback software stack on Android
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Figure 7-4 shows a block diagram of the decode process in video playback. This 
process is typically defined by an international standards study group, and all compliant 
decoders must implement the specified definitions of the codec formats. Careful 
optimizations at various hardware and software levels are necessary to obtain a certain 
performance and power profile, especially on low-power platforms. Optimization 
approaches include implementation of repetitive operations on special-purpose 
hardware, optimized memory load/store/copy, cache coherency, scheduling, load 
balancing of tasks in various hardware functional units, optimized post-processing, 
opportunistically entering power-saving states, and so on. 

In Figure 7-5, an example activity profile of the video playback usage is presented 
for AVC 1080p30 and 1080p60 resolutions. In this Intel Architecture-based low-power 
platform, a 1080p playback generally requires ~10-25% CPU and ~15-30% GPU activity 
depending on the frame rate. While the display unit consumes about half of the platform 
power, the SoC consumes ~20-30%. Notable power loss occurs at the voltage regulator 
(~15%), memory (~5%), and other parts of the platform.
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Motion
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Figure 7-4.  Block diagram of video decode process
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Figure 7-5.  Example of video playback activity and power profile

Video Recording
In this usage model, the user captures a video of 1080p resolution with the device’s main 
camera while the audio is captured with the integrated microphone. The output of the 
camera (usually compressed) is decoded and pre-processed with de-noising and scaling 
as needed. The resulting uncompressed source is encoded using hardware acceleration. 
Encoded and multiplexed video and audio streams are stored in local files. (While 
preview mode is fairly common for this usage model, for simplicity it is not considered in 
the following software stack, as shown in Figure 7-6.)
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In Figure 7-7, an example video recording activity profile is presented for AVC 
1080p30 and 1080p60 resolutions on an Intel Architecture platform. On this platform, 
recording a 1080p video generally requires ~40-60% of CPU activity, as well as ~30-60% 
of GPU activity depending on the frame rate. The SoC and the display unit both consume 
about a third of the platform power. Similar to the playback usage, significant power 
dissipation occurs in the voltage regulator (~15%), memory (~7%), and other parts of the 
platform. Note that compared to the playback usage, GPU activity is higher because of the 
heavier encode workload.
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Figure 7-6.  Video recoding software stack on Android
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Figure 7-7.  Example video recording activity and power profile

Video Delivery over Wireless Display and Miracast
In the video delivery over Wireless Display (WiDi) and Miracast usage, the device’s Wi-Fi  
connection is used to stream encoded screen content captured from a local display 
to a remote HDTV or monitor. WiDi supports wireless transport of the associated 
audio content as well. In particular, the platform’s video and audio encoding hardware 
acceleration capabilities are exploited to generate an audio-video stream encapsulated in 
Wi-Fi packets that are streamed over a peer-to-peer connection to a WiDi adaptor device 
connected to a remote display. Owing to the multi-role support of Wireless Local Area 
Network (WLAN), multiple connections may simultaneously be available at a wireless 
access point, serving the WiDi peer-to-peer connection as well as a dedicated connection 
to the Internet while sharing the same frequency. The multi-role allows, for example, 
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browsing of the Internet in clone or multi-tasking modes, as described below. Playback of 
video or browsing of the Internet is commonly protected by a digital rights management 
(DRM) protocol over the WiDi. An overview of a WiDi complete solution and the Miracast 
industry standard was presented in Chapter 6.

WiDi supports two main usage models:

Clone mode, where the same content is presented on both a •	
local and a remote display. The local display’s resolution may be 
modified to match the remote display’s maximum resolution. 
Also, if the WiDi performance is insufficient, the frame rate of the 
remote display may be downgraded.

Extended mode, where there is remote streaming of a virtual •	
display and the content is not shown on the device’s embedded 
local display. There are two scenarios for the extended display:

Extended video mode shows the content on the remote •	
display, while local display displays only the UI controls.

Multi-tasking is allowed, where a video is shown on the •	
remote display while an independent application such as a 
browser may also run and show content on the local display.

Ideally, the platform should be designed so that there is no performance degradation 
when wireless display is activated. 

Figure 7-8 shows the WiDi flow diagram for an Intel Architecture platform. One 
or more screen content surfaces are captured, composited, scaled, and converted to 
a format appropriate to the hardware-accelerated video encoder, while the audio is 
independently captured and encoded as well. The encoded video and audio bitstreams 
are then encrypted according to the HDCP2 protocol and the encrypted bitstreams are 
multiplexed and packetized to produce MPEG-2 transport stream packets that are ready 
to send over the Wi-Fi channel.
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Figure 7-8.  Wireless Display flow diagram on an Intel Architecture platform

Figure 7-9 shows the activity profile of three WiDi scenarios: 

Clone mode while the device is idle–that is, the local display •	
shows a mostly static screen.

Video playback in extended mode where the video is played back •	
in the remote display.

Multi-tasking in extended mode where a browser (or some other •	
window) is independently presented on the local display while a 
video is played back in the remote display.
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For the idle clone scenario, depending on the display refresh rate, the screen 
content may be captured and encoded at 720p60 or 1080p30 resolution using hardware 
acceleration. The encoded video bitstream is typically encrypted, multiplexed with 
the audio bitstream, and divided into transport packets before transmission using the 
Wi-Fi protocol.Hardware-accelerated video —pre-processing may also be done before 
composition, scaling, and conversion to the uncompressed format that is fed to the 
encoder. When a video is played back in the clone mode, simultaneous decode, capture 
and encode operations happen using hardware-acceleration. For the extended mode 
scenarios, the local display does not show the video, the content is only shown in the 
extended wireless display; no composition, scaling, or format conversion is done and 
only decoding and encoding are performed, In all cases the audio is typically encoded in 
the CPU.

Figure 7-9.  Example WiDi activity profile
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On the Intel Architecture platform, WiDi usages generally require ~15-45% of the 
CPU activity and ~30-40% of GPU activity, depending on the WiDi scenario. While the 
local display does not consume power in extended video mode, the SoC consumes about 
half of the platform power, the other half being distributed to the rest of the platform. For 
other WiDi modes, the platform power is more or less equally divided among the display, 
the SoC, and the rest of the platform.

Videophone or Videoconferencing
Multi-party videoconferencing is a generalized case of a two-party videophone or video 
chat, which uses a camera that is integrated with a device for capturing a video, usually 
in motion JPEG (MJPEG) or other compressed formats. Using the device’s hardware-
acceleration abilities, the camera output is then decompressed (if the camera output is 
compressed), processed, and re-encoded to a low-delay format at a dynamically varying 
bit rate with some error-recovery capabilities. This is basically video playback and video 
recording usage models concurrently applied, with the following stipulations: 

Both encode and decode operations must happen simultaneously •	
in real time, usually accelerated by hardware.

The camera output should be input to the encoding unit in real •	
time as well. The camera output frame rate should be in concert 
with the encoding frame rate.

The end-to-end delay from camera capture to packetized •	
bitstream output should be constant.

The video elementary streams for both incoming and outgoing •	
bitstreams should be appropriately synchronized with the 
corresponding audio elementary streams.

For multi-party videoconferencing, usually in the local display there is one main 
video window and several thumbnail videos of the multiple parties involved. Figure 7-10  
illustrates a flow diagram of typical videoconferencing. Assuming the camera capture 
format is a compressed one, the captured video is decoded, scaled, and/or pre-processed 
before encoding to a suitable format such as AVC with appropriate bit rate, frame rate, 
and other parameters to obtain good tradeoffs among video quality, delay, power 
consumption, and amount of compression. Also, the incoming video bitstreams are 
decoded and composed together before display. All these typically are done using 
hardware acceleration. Multiplexing-demultiplexing and packetization-depacketization 
are generally done in the CPU, while audio can be processed by special hardware units or 
audio drivers and kernels.
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Figure 7-10.  Flow of a typical videoconferencing event

The activity profile of the videoconferencing usage is similar to the WiDi usage.  
In both cases, simultaneous encode and multiple decodes are involved; encoding is done 
with low delay and variable bit rates amenable to changes in network bandwidth, and 
there are real-time requirements for both cases as well. 

System Low-Power States
The goal of low-power platform design, from both hardware and software points of view, 
is to successfully meet the challenges posed by limited battery life, heat dissipation, clock 
speed, media quality, user experience, and so on while addressing the ever-increasing 
need to support complex multi-tasking applications. To this end, as was detailed in 
Chapter 6, the ACPI defines several processor states to take advantage of reduced power 
consumption when the processor is not fully active. However, the ACPI model of power 
management is not sufficient for modern mobile applications, especially with the 
requirement of “always on” connectivity. To address this issue, new low-power states 
have been defined, but they present some problems.



Chapter 7 ■ Video Application Power Consumption on Low-Power Platforms

275

Drawbacks of the ACPI Simple Model
The ACPI simple model of power management has a few limitations:

The model assumes that the operating system or the power •	
manager will manage the power. However, this is not always the 
case. Some devices, such as disk drives, CPUs, and monitors, 
manage their own power and implement power policies beyond 
what is achievable by the ACPI model.

The four device states are not sufficient. For example, D3 has •	
two subsets. Also, a processor in D0 state has additional CPU 
(Cx) states and performance (Px) states, as described in the next 
section. In addition, a device may perform multiple independent 
functions and may have different power states for each function.

Recent advances in the operating system impose new •	
requirements on power management. For example, the concept 
of connected standby requires the system to turn off all activities 
except that of listening for an incoming event, such as a phone call.

Recognition of these drawbacks resulted in special S0iX states within the S0 state 
in Windows. These are intended for fine-tuning the standby states. A higher integer X 
represents higher latency but lower power consumption.

Connected Standby and Standby States
Connected Standby (CS) mimics the smartphone power model to provide an instant 
on/instant off user experience on the PC. Connected Standby is a low-power state 
in Windows 8 and later versions that uses extremely low power while maintaining 
connectivity to the Internet. With CS, the system is able to stay connected to an 
appropriate available network, allowing the applications to remain updated or to obtain 
notification without user intervention. While traditional Sleep state (S3) has wake latency 
of more than two seconds and Hibernate (S4) may take indefinitely longer, CS-capable 
ultra-mobile devices typically resume in less than 500 ms.

When the system goes into CS, the OS powers down most of the hardware, except 
the bare minimum required to preserve the contents of DRAM. However, the Network 
Interface Controller (NIC) still gets a trickle of power so it is able to scan incoming packets 
and match them with a special wake pattern. To preserve the connection, the NIC wakes 
the OS as needed. The OS also wakes up every few hours to renew its DHCP lease. Thus, 
the system maintains its layer-2 and layer-3 connectivity, even while the NIC is mostly 
powered down.

In addition, the system can be wakened in real time. Consider when a Skype call 
arrives and the system needs to quickly start the ring tone. This works through special 
wake-pattern packets. The Skype server sends a packet on a long-running TCP socket. 
The NIC hardware is programmed to match that packet and wake the rest of the OS.  
The OS receives and recognizes the Skype packet and starts playing the ring tone.
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Connected Standby has the following four elements:

Most of the hardware is in a low-power state.•	

The NIC wakes the OS when the NIC needs OS intervention to •	
maintain layer-2 connectivity.

The OS periodically wakes the NIC to refresh its layer-3 •	
connectivity.

The NIC wakes the OS when there’s a real-time event (e.g., an •	
incoming Skype call).

Connected Standby platforms are usually designed with SoCs and DRAMs that have 
the following characteristics:

•	 Less than 100 ms switch time between idle and active modes. The 
active mode allows running code on the CPU(s) or the GPU, 
but may not allow accessing the storage device or other host 
controllers or peripherals. The idle mode may be a clock-gated or 
power-gated state, but should be the lowest power consumption 
state for the SoC and DRAM.

•	 Support of self-refresh mode for the DRAM to minimize power 
consumption. Typically mobile DRAM (LP-DDR) or low-voltage 
PC DRAM (PC-DDR3L, PC-DDR3L-RS) is used.

•	 Support of a lightweight driver called Power Engine Plug-in (PEP) 
that abstracts SoC-specific power dependencies and coordinates 
device state and processor idle state dependencies. All CS-capable 
platforms must include a PEP that minimally communicates to 
the operating system when the SoC is ready for the lowest power 
idle mode.

The process of preparing the hardware for low-power during Connected Standby can 
be visualized as an upside-down pyramid, as shown in Figure 7-11. The lowest power is 
achieved when the whole SoC is powered down, but this can occur only when each set 
of devices above it has been powered down. Therefore, the latency for this state is the 
highest within Connected Standby.
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Figure 7-11.  Preparation for transitioning to low-power state during Connected Standby

The S0iX states are the latest standby states, which include S0i1, S0i1-Low Power 
Audio, S0i2, and S0i3. These states are available on recent Intel platforms and are 
enabled for all operating systems. They are special standby states that allow the system to 
consume a trickle of power, and so they are crucial for Connected Standby to work.  
A device enters CS when the off/on button is pushed or after an idle time-out; while in CS 
mode, it consumes very low power. For example, at CS mode, an Intel Z2760-based device 
consumes <100 mW, and can stay in this mode for more than 15 days without requiring a 
recharge. Figure 7-12 shows the flow of actions in CS mode.
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Contrast this with ACPI S3 state, where all activities of the processor are paused 
when the system is sleeping and activities resume only upon signals from keyboard, 
mouse, touchpad, or other I/O devices. Connected Standby automatically pauses and 
resumes activity on the system in a tightly controlled manner, using the various S0iX 
states to help ensure low power and long battery life. A typical system with a 45 Watt-hour 
battery may achieve 100 hours of battery life in S3 state, while in S0i3 the battery life 
becomes three times as long. 

Figure 7-13 shows a comparison of the S0i3 state with respect to the S0 and the S3 
states. The S0i3 essentially gives the best of both power consumption and latency: it is less 
power consuming than the S0 (Active) state, consuming almost the same power as the S3 
(Sleep) state while yielding wake latency in the order of milliseconds, similar to the S0 state. 
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Figure 7-13.  Relative power-latency relationship for S0i3 compared to traditional ACPI 
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Table 7-2 provides estimates of the entry and exit latency for each of the low-power 
standby states on an Intel Architecture platform. Especially on Windows 8 and Windows 
8.1 operating systems, these quick latencies translate to an exceptionally snappy wake 
performance from a user experience point of view, while delivering significant power savings.

Table 7-2.  Estimated Entry and Exit Latency of Standby  
States of an Intel Architecture Platform

State Entry Latency Exit Latency

S0i1 ~200 msec ~400 msec

S0i2 ~200 msec ~420 msec

S0i3 ~200 msec ~3.4 msec

Combination of Low-Power States
Table 7-3 lists the combined system low-power states and ACPI power states for a typical 
low-power processor. The ACPI power states were described in Chapter 6, so only the 
effect of S0iX is added here for a clearer understanding.

Table 7-3.  Definitions of System Low-Power States

State or Substate Description

G0/S0/PC0 Full on. CPUs are active and are in package C0 state.

G0/S0/PC7 CPUs are in C7 state and are not executing with caches flushed; 
controllers can continue to access DRAM and generate 
interrupts; DDR can dynamically enter deep self-refresh with 
small wake-up latency.

G0/S0 Standby ready. CPU part of the SoC is not accessing DDR or 
generating interrupts, but is ready to go standby if the PMC 
wants to start the entry process to S0iX states.

G0/S0i1 Low-latency standby state. All DRAM and IOSF traffic is halted. 
PLLs are configured to be off.

G0/S0i1 with audio Allows low-power audio playback using the low-power engine 
(LPE), but data transfer happens only through specific interfaces. 
Interrupt or DDR access request goes through the PMC. The 
micro-architectural state of the processor and the DRAM content 
are preserved.

G0/S0i2 Extended low-latency standby state. S0i2 is an extension on  
S0i1—it parks the last stages of the crystal oscillator and its 
clocks. The DRAM content is preserved.

(continued)
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State or Substate Description

G0/S0i3 Longer latency standby state. S0i3 is an extension on S0i2—it 
completely stops the crystal oscillator (which typically generates 
a 25 MHz clock). The micro-architectural state of the processor 
and the DRAM content are preserved.

G1/S3 Suspend-to-RAM (STR) state. System context is maintained on 
the system DRAM. All power is shut to the noncritical circuits. 
Memory is retained, and external clocks are shut off. However, 
internal clocks are operating.

G1/S4 Suspend-to-Disk (STD) state. System context is maintained on the 
disk. All power is shut off, except for the logic required to resume. 
Appears similar to S5, but may have different wake events.

G2/S5 Soft off. System context is not maintained. All power is shut off, 
except for the logic required to restart. Full boot is required to 
restart.

G3 Mechanical off.

Source: Data Sheet, Intel Corporation, April 2014. www.intel.com/content/dam/www/
public/us/en/documents/datasheets/atom-z36xxx-z37xxx-datasheet-vol-1.pdf.

Table 7-3.  (continued)

Power Management on Low-Power Platforms
The main power-management tasks are done by the operating system—for example, 
taking the idle CPU core offline; migrating and consolidating tasks, threads, and 
processes to a minimum number of the cores to allow other cores to go idle; limiting 
frequent back-and-forth switching of tasks between cores for variable workloads; 
managing tradeoffs between power gain and hardware or software latencies; load 
balancing between the active cores, and so on. In addition to the power-management 
features provided by the operating system according to the ACPI standard, there 
are several hardware and software approaches to power management, all with a 
singular goal of achieving the most power savings possible. We discuss some of these 
approaches next.

Special Hardware for Power Management
As power management is crucial for low-power platforms, in most contemporary devices 
there are special-purpose hardware units dedicated to these power-management tasks. 
Here are two such units.

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-z36xxx-z37xxx-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-z36xxx-z37xxx-datasheet-vol-1.pdf
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Power Management Circuits
With the increase in system complexity comes the need for multiple sources of power 
at various voltage levels. Such need cannot be fulfilled by voltage regulators alone; 
power management ICs (PMICs) have been introduced for greater flexibility. Power 
Management ICs (PMICs) are special-purpose integrated circuits (or a system block 
in a SoC device) for managing the power requirements of the host system. A PMIC is 
often included in battery-operated devices such as mobile phones and portable media 
players. Typical PMIC efficiency is 80 to 85 percent, depending on idle or active states of 
applications. A PMIC may have one or more of the following functions:

Battery management•	

DC-to-DC conversion•	

Voltage regulation•	

Power-source selection•	

Power sequencing•	

Miscellaneous other functions•	

Power management is typically done with the following assumptions:

All platform devices are ACPI compliant.•	

SOC devices are PCI devices except GPIOs.•	

The PCI device drivers directly write to PMCSR register to power •	
down/power up the device; this register triggers an interrupt in 
the PMC.

The device drivers use ACPI methods for D0i3/D3 entry/exit flows.•	

Power-Management Controller
The drivers and the OS alone are not adequate for power-management tasks such as 
save and restore context or handling special wake events. A special microcontroller, 
called the Power Management Controller (PMC), is typically used for powering up and 
powering down the power domains in the processor. It also supports the traditional 
power-management feature set along with several extended features. For example, in 
Intel fourth-generation Atom SoCs, the PMC performs various functions, including:

Power up the processor and restore context.•	

Power down the processor and save context.•	

Handle wake events for various sleep states.•	

Secure the boot.•	

Perform low-power audio encode (using LPE) and general-•	
purpose input-output (GPIO) control in order to be able to go to 
S0i1 when LPE is active.
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The PMC is also used in ARM11 processors in power-saving mode,2 where it 
determines (for instance, when instructed by the processor) that the processor should be 
put into dormant or shutdown mode; it asserts and holds the core reset pin; it removes 
power from the processor core while holding reset; and so on.

Display Power Management
The display is the major power-consuming component in most low-power platforms. 
Several power-management features have been implemented to manage and optimize 
the display power in various platforms. For example, in recent Intel platforms, the 
following are among the many display power-management features:

Panel Self-Refresh 
The panel self-refresh (PSR) feature, typically used for embedded display port (eDP) 
displays, allows the SOC to go to lower standby states (S0iX) when the system is idle but 
the display is on. The PSR achieves this by completely eliminating the display refresh 
requests to the DDR memory as long as the frame buffer for that display is unchanged. 
In such cases, the PSR stops the display engine from fetching data from external memory 
and turns off the display engine. 

Display Power-Saving Technology 
The display power-saving technology (DPST) is an Intel backlight control technology. 
In recent versions, the host side display engine can reduce up to 27 percent of the panel 
backlight power, which linearly affects the energy footprint. The Intel DPST subsystem 
analyzes the frame to be displayed, and based on the analysis, changes the chroma value 
of pixels while simultaneously reducing the brightness of backlight such that there is 
minimum perceived visual degradation. If there is considerable difference between the 
current frame being displayed and the next frame to be displayed, new chroma values 
and brightness levels are calculated. 

The DPST needs to be enabled by the display driver; the DPST cannot yet work in 
parallel with the PSR. If a MIPI3 panel does not have a local frame buffer, then DPST 
should be enabled and the PSR can be disabled. In general, the DPST should be enabled 
for additional power savings for bridge chips that do not have local frame buffers.

2Details available at infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0143c/
CHDGDJGJ.html.
3The MIPI (Mobile Industry Processor Interface) is a global industrial alliance that develops 
interface specifications, including signaling characteristics and protocols, for the mobile 
communication industry. Details are available at www.mipi.org.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0143c/CHDGDJGJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0143c/CHDGDJGJ.html
http://www.mipi.org/
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Content-Adaptive Backlight Control 
A liquid crystal display (LCD) consists of a backlight that shines through a filter. The filter 
modulates the backlight and is controlled by the pixel values that are to be displayed: the 
brighter the pixel, the more is the light that passes through. By controlling the array of 
pixels in an LCD filter, images of different brightness can be shown on the display. Such 
control is typically based on a power-brightness tradeoff.

Content-adaptive backlight control (CABC) takes advantage of the fact that the 
perceived brightness is due to the backlight being modulated by the filter. A dark frame 
appears dark because the filter does not allow much light to shine through. However, 
the same effect can be achieved by using a dimmer backlight and controlling the filter 
to allow more light to shine through. In other words, the backlight is dimmed and the 
brightness of the frame is boosted, resulting in the same perceived brightness.

However, reducing the brightness of the backlight decreases the available dynamic 
range. The CABC may clip pixels requiring a higher dynamic range, producing a 
washout effect. Also, it is possible that the target backlight brightness varies greatly from 
frame to frame; aggressively changing the backlight by such large amounts can result 
in flickering. Therefore, a tradeoff is necessary between CABC-based power savings 
and perceived visual quality. To get the best performance, typically separate histogram 
analysis is done for each color component to determine the desired brightness. Then 
the maximum of these is chosen as the target backlight. This ensures that all colors are 
accurately rendered.

The CABC engine resides inside either the display bridge or the panel. With the 
ability to dynamically control the backlight as the content changes, this feature looks for 
opportunities to save power by reducing the backlight power. The algorithm processes 
and analyzes the current frame in order to update the backlight for the next frame. This 
can work in parallel with the PSR. Power savings from CABC are bigger when playing 
higher FPS video. 

Ambient Light Sensor 
The Ambient Light Sensor (ALS) backlight power savings modulates the backlight based 
on surrounding light. More power savings (e.g., up to 30%) occur when there’s less 
ambient light and there’s less power savings (e.g., 20%) when there’s more ambient light. 
The display power management typically uses ALS inside the panel or the bridge.

Low-Power Platform Considerations
It is easy to understand, from the power-frequency relationship (Figure 7-1), that there 
is an optimal frequency for a given power budget. With this fundamental concept, there 
are some software and architectural considerations to keep in mind, particularly from the 
point of view of limited power platforms.
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Software Design
Regarding the resource-scarce wearable and ultra-mobile low-power platforms, there are 
several important ideas to evaluate from the application design point of view. It is a  
no-brainer that new applications take these considerations into account; however, 
existing applications can be modified to benefit from them as well. 

Given that most low-power devices offer various power-saving opportunities, 
applications should exploit those prospects appropriately. For example, allowing 
networking devices to go to a lower power state for longer period may avoid unnecessary 
network traffic, as will using a buffering mechanism. But here are some additional 
suggestions for power savings. 

Intelligent Power Awareness
Low-power designs typically trade performance for power savings, using techniques such 
as voltage scaling or frequency scaling, thereby reducing the voltage or the frequency, 
respectively, to reduce the dynamic power consumption. However, a minimum voltage 
level must be supplied for the circuit to be operational. Further, reducing the supply voltage 
increases circuit delay, which restricts the operating frequency of the processor; the delay 
cannot be too large to satisfy the internal timings at a particular operating frequency.  
Thus, a careful approach is necessary to determine the appropriate amount of voltage 
scaling, as demonstrated by the Intel (R) Speed Step (TM) voltage scaling technology.

Unfortunately, system performance requirements in modern processors are too high 
to make voltage scaling an attractive energy-saving solution. Also, processor frequency is 
not the only factor that affects the power-performance behavior of complex multimedia 
applications; memory access latency and memory bandwidth are also important factors. 
Besides, multimedia applications have real-time deadlines to meet, which further 
restrict the usefulness of voltage scaling. Therefore, in practical systems, the voltage and 
frequency need to be dynamically adjusted along the voltage-frequency curve.

Dynamic adjustment of voltage and frequency should normally be the job of the 
operating system. However, the operating system does not have knowledge of the expected 
workload, especially when bursty multimedia applications are involved. Also, such 
workloads are not easy to predict with reasonable accuracy and oftentimes interval-based 
schedulers are not sufficient. At best, the operating systems may use some heuristics to 
change the processor frequency and try to control power consumption. But this answer 
does not work well for bursty workloads such as video decoding, encoding, or processing. 

If the application is power-aware, however, the actual workload can be predicted 
better in a dynamic fashion; and by doing so, a power reduction of over 30 percent is 
possible for a typical video decoding.4 The power consumption of applications largely 
depends on the number of clock cycles needed for instructions and memory references. 
If applications can provide information about their future demands to the OS, the OS 
can then perfom more efficient scheduling of tasks and does not need to work with 
questionable predictions. 

4J. Pouwelse, K. Langendoen,  and H. Sips, “Dynamic Voltage Scaling on a Low Power 
Microprocessor,” Proceedings of the 7th Annual International Conference on Mobile Computing and 
Networking (2001): 251–59. Association for Computing Machinery.
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This application is particularly useful on resource-scarce mobile devices. Applications 
must be aware of their processing demands—in particular, the required number of clocks 
until the next deadline of the application’s current task—and must inform the OS of those 
clock requirements. The OS can then take into account the cycle count along with the 
power-frequency curve to regulate and achieve the minimum frequency at which the 
application deadline can be met, thereby achieving optimal power consumption. 

For example, for an H.263 decoding, the number of bits used in a coded frame is 
fairly proportional to the decoding time. Using a hint of the number of bits used in each 
frame, an application can determine the expected frequency requirement for a video and 
obtain a power saving of about 25 percent, as reported by Pouwelse et al.5 

Often there is power-saving firmware logic to control the host system’s power draw. 
However, the firmware does not have knowledge of the work that the application is 
trying to do, and threfore is unable to optimize the energy investments, as it must rely 
on measurements and look for opportunities to save the energy. An intelligent power-
aware application, on the other hand, can generally use its knowledge of the task and the 
memory-utilization pattern to send hints to the firmware for further power saving. 

In an example of such performance-aware power saving, Steigerwald et al.6 
mentions an online transaction-processing application, where the application monitors 
the performance counters of the transaction processing to determine the performance 
impact. This information is provided to the middleware, which learns and updates the 
optimal power-limiting policy on the system. At the lowest level, a power controller 
firmware component caps the power consumption of the system.

Quality Requirements
Although it’s common to trade performance and visual quality for power saving, users 
of most modern games and media applications have a high quality expectation that 
must be met. It is possible to run the processor at a low frequency and lower the power 
consumption, but that’s not acceptable for various games and video codec applications, 
as the frame-processing deadline would be missed. That would mean the frames would 
not be displayed in real time, resulting in dropped frames and a poor user experience. 
However, it is possible to meet the quality requirements while still saving power by carefully 
considerating both aspects together when designing and optimizing the software.

Hardware-Accelerated Blocks
Recent low-power processors of mobile handheld devices have come with various 
hardware blocks capable of specific tasks, such as camera image signal processing or 
video decoding. Often these hardware blocks are optimized for lower power consumption 
than if the task were performed on a general-purpose CPU. Applications should take 
advantage of these hardware blocks and offload as much processing as possible in order 
to lower the computational burden and save power consumption.

5Ibid.
6Steigerwald et al., Energy Aware Computing.
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Energy-Efficient User Interfaces
From the various usage models described earlier, it is evident that the display is the most 
power-consuming unit of the platform. However, it is possible to design graphical user 
interfaces (GUI) in a energy-efficient manner, particularly for liquid crystal displays 
(LCD) or displays based on organic light-emitting diodes (OLED).7 For these displays, 
different colors, color patterns, or color sequences consume different amounts of power, 
and thus, low-energy color schemes can be used to reduce power. For example, thin film 
transistor (TFT) LCDs, which are typically utilized in personal digital assistants (PDA), 
consume less power when black than when white. 

Another way toward energy efficient GUI design is to improve the latency caused by 
interfaces with humans by using fewer and larger buttons for greater user convenience.

Code Density and Memory Footprint
With low-power mobile platforms such as smartphones, poor code density means that 
the code size of the firmware and driver required to run on the processor is too large.  
As a result, the device manufacturer has to use more RAM and flash memory to hold the 
firmware, compared to what optimized firmware would need. Thus, more memory is 
used resulting in higher cost and reduced battery life.

Since memory cost dominates the cost and power budget of the entire design, 
firmware optimization and code density can make a big difference. Optimization at the 
compiler level, and possibly instruction set architecture (ISA), can achieve much denser 
firmware binaries, thereby helping reduce power consumption. 

Another way to shrink the memory footprint of binaries is to perform a lossless 
compression while writing to memory and the correspoding decompression when 
reading back from memory. However, the power savings would depend on the nature of 
the workload. As media workloads have good locality characteristics, it may be beneficial 
to use memory compression for certain media usages. 

Optimization of Data Transfer
Modern mobile applications designed for low-power devices often benefit from 
available Internet connectivity by processing a large amount of data in the cloud and 
maintaining only a thin client presence on the device. While such an approach may boost 
performance, the large number of data transfers means the power consumption is usually 
high. But by exploiting the pattern of the data to be transferred, it is possible to reduce 
the data bandwidth usage, thereby also reducing power consumption. Furthermore, 
applications can take advantage of the new S0iX states for notification purposes, and 
allow the processor to go to lower power states more frequently.

7K. S. Vallerio, L. Zhong, and N. K. Jha, “Energy-efficient Graphical User Interface Design,”  
IEEE Transactions on Mobile Computing 5, no. 7 (July 2006): 846–59.
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Parallel and Batch Processing
Scheduling of tasks is a challenge in multi-tasking environments. Serialization of tasks 
over a long period of time does not provide the processor with an opportunity to go to 
lower power states. Parallelization, pipelining, and batch processing of tasks can grant 
the processor such opportunity and thereby help lower power consumption. If a task 
does not have specific processing rate, it may be useful to run the processor at the highest 
frequency to complete the task as fast as possible, and then allow the processor to idle for 
a long period of time.

Architectural Matters
The architectural considerations for low-power designs are quite similar, even for 
strikingly different hardware architectures, such as Qualcomm 45nm Serra SoC8 and 
Intel 22nm fourth-generation Atom SoC. While it is important to design various system 
components for lower power consumption, it is also important to optimize the system 
design and manage it for lower power consumption. In particular, architectural ideas for 
power saving include the following.

Combined System Components
Integrating the processor and the platform controller hub (PCH) on the same chip can 
reduce power, footprint, and cost, and also can simplify the firmware interface. Utilizing 
run-time device power management, as initiated by the kernel and optimizing in the 
proper context, can significantly contribute to a low-power solution. 

Optimized Hardware and Software Interaction 
In the era of specialization, code sharing between drivers or hardware versions and 
operating systems has become less important, in favor of reduced processing and reduced 
power use. Emphasis has also shifted so that hardware commands are similar to API commands 
and less command transformation is used. The following ideas embody this concept.

Migrating the Workload from General-Purpose to  
Fixed-Purpose Hardware
Moving tasks from general-purpose to fixed-function hardware saves power, as a fewer 
number of gates can be used for a special purpose, thereby reducing the dynamic power 
consumption that depends on the number of gates that are switching. This technique 
should especially benefit non-programmable tasks such as setup, clip, coordinate 
calculation, some media processing, and so on.

8M. Severson, “Low Power SOC Design and Automation,” retrieved July 27, 2009, from  
http://cseweb.ucsd.edu/classes/wi10/cse241a/slides/Matt.pdf.

http://cseweb.ucsd.edu/classes/wi10/cse241a/slides/Matt.pdf
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Power Sharing Between the CPU and the GPU
To maximize performance within given platform capabilities, technologies such as Intel 
Burst Technology 2.0 automatically allow processor cores to run faster than the specified 
base frequency while operating below the specified limits of power, temperature, and 
current. Such turbo mode and power sharing are supported for both CPU and GPU.  
The high-performance burst operating points can be adjusted dynamically.

Using Low-Power Core, Uncore, and Graphics
All parts of the processor—the core, uncore, and graphics—should be optimized for 
low power consumption. The GPU being a significant power contributor, tasks such as 
composition of the navigation bar, status bar, application UI, video, and so on should go 
to the display controller as much as possible, so as to facilitate the lowest device activity 
and memory bandwidth. 

Also, as power consumption is highly dependent on the use cases, processor power 
optimization should be done with practical use cases in mind. That is, a low-power 
solution is constrained by the worst use case; optimization for and management of both 
active and leakage power should be considered.

For reducing leakage power, know that although the PMIC can regulate power and 
can collapse the full chip power during sleep, such power collapsing requires data to be 
saved to memory and rebooting of all parts of the processor for restoration. The desirable 
impact, then, is when there is a net savings in power—that is, when the leakage power 
saved over a period of time is larger than the energy overhead for save and restoration.

Power reduction of RAM/ROM periphery and core array

All memories in the core array need to have leakage control. Power reduction should be 
considered for peripheral circuits as well, as significant power reduction is achievable 
from the RAM/ROM periphery.

Reduce V
DD

 during sleep mode to manage leakage

Minimizing V
DD

 of the entire die during sleep is beneficial, especially during short 
sleep cycles. This has the added advantage of small software overhead and fast 
restoration, as all memory and register states are retained. Voltage minimization is the 
most effective way to control leakage without complex management by the software. 
However, exceptions to this are the domains where voltage cannot be reduced due to the 
requirements of Connected Standby.

Independent memory bank collapse for large  
high-density memories

A common power-saving technique is to use power gating on some portions of memory 
banks that are not accessed by the application. Standby/active leakage reduction can be 
achieved by gating clock/data access to banks that are not needed. However, this requires 
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proper power management in software and firmware so that the appropriate, potentially 
idle memory banks are identified and gated correctly. Also, power gating is not possible 
for all blocks. Careful analysis will compare the savings achieved from dynamic and 
leakage powers.

Advanced low-power clocking and clock tree optimization

Clock tree power is a major contributor to total active power use. In the case of 
Qualcomm Serra, clock tree consumes 30 to 40 percent of the total active power. As clock 
architecture has a high impact on power use, its use and frequency should be carefully 
planned. In particular, the number of phase-locked loops (PLLs), independent clock 
domain control, frequency and gating, synchronicity, and so on need to be considered.

Clock domain partitioning

Partitioning the clocks across different clock domains allows better power management 
for various clocks, as the clocks can be independently turned off. For example, separate 
clock domains for I/O and the CPU can be controlled individually. 

Independent frequency clock domains

Although asynchronous domains are more flexible, there is increased latency across 
clock domain boundaries. On the other hand, synchronous clock domains can save 
power in low-performance mode, but they are susceptible to higher power costs for the 
worst user case. 

Fine-grained tuning of clock gating

One of the most effective ways to save active power is to use fine-grained automatic and 
manual tuning of clock gating. Either the hardware or the software can control the clock 
gating, but each has a cost. Analysis of clock gating percentage and efficiency of clock 
gating can reveal further optimization opportunities.

Using Power Domains or Power Islands
The idea of power islands can be illustrated with the example of a house. If there is 
only one power switch for all the light bulbs in the entire house, more energy must be 
spent when the switch is turned on, even when there is only one person in the house 
who needs only one light at any given time. Instead, if there are individual switches to 
control all the light bulbs, energy savings are achieved when only the needed light  
bulb is turned on. Similarly, in a typical computing system, 20 to 25 independent  
power islands are defined to achieve power savings. This allows for the following  
energy savings.
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Independent voltage scaling for active and sleep modes

For different power islands, the voltage scaling can be done independently for both active 
and sleep modes. This implies both frequency and consequential power savings.

Power gating across power domains

The PMIC can control multiple power domains, yielding better power control and 
efficiency, as well as independent voltage scaling and power-collapsing abilities. However, 
the number of power domains is limited by the increased impedance of the power domain 
network (PDN), increased IR drop due to larger number of power switches, increased bill of 
materials (BOM), and the fact that level shifters and resynchronization are necessary at the 
domain boundaries. Dynamically controlling the power collapse of various domains using 
small, fast, and efficient chip regulators may be the best option.

When a power island is not power gated, all unused peripherals that are parts of the 
power island should be clock gated. On the other hand, when a power island is power 
gated, all relevant peripherals are in D0i3 (but the supply voltage may still be on).

Offering Power-Aware Simulation and Verification
To optimize the system for low power consumption, use power-aware simulation tools 
and verification methodology to check entry to and exit from low-power states, properly 
model the power collapse, verify the polarity of clamping, verify the power domain 
crossings, and so on. These methods include the following.

Tradeoffs among power, area, and timing 

Custom design flows and circuits can produce more power-efficient results for some 
tasks; however, custom design requires more time and efforts. A balanced approach 
makes careful selection of areas for customization and optimization so as to obtain 
the greatest benefit. Good customization candidates are clock trees, clock dividers, 
memory and cell intellectual property (IP, a common term for innovative designs), 
and so on. It is better to move the customization to the IP block and to use automated 
methods to insert, verify, and optimize that IP block; that way, specific improvements 
and/or problems can easily be attributed to the appropriate block.

Comparative analysis of low-power solutions

Design decisions are generally complex, especially when many tradeoffs are involved. 
To judge how good a low-power solution will be, perform a comparative analysis using 
a similar solution. Usually this method exposes the strengths and weaknesses of each 
solution.



Chapter 7 ■ Video Application Power Consumption on Low-Power Platforms

291

Power Optimization on Low-Power Platforms
On low-power platforms, several aspects of power optimization typically come into play 
simultaneously. Here, we use a video playback application to illustrate various power-
optimization approaches. Each contributes a different amount to the overall power 
savings, depending on the application’s requirements and the video parameters.9

Run Fast and Turn Off
In a hardware-accelerated video playback, the GPU does the heavy lifting by performing 
hardware-based decode, scaling, and post-processing, such as deblocking. Meanwhile, 
the CPU cores execute the OS processes, media frameworks, media application, audio 
processing, and content protection tasks. The I/O subsystem performs disk access and 
communication, while the uncore runs the memory interface. On a typical platform, 
these subsystems execute various tasks in sequential order. An obvious optimization is 
to exploit the overlap of tasks and to parallelize them so that the hardware resources can 
operate concurrently, making the most of the I/O bursts for a short time before becoming 
idle. In this case, the optimization focus is on reducing the active residencies and 
achieving power savings when the resources are idle.

Activity Scheduling
It is important to appropriately schedule the activity of the software and hardware, and 
make smart use of the memory bandwidth. In video playback, tasks are mainly handled 
by the CPU and the GPU, and are of three main categories: audio tasks, video tasks, and 
associated interrupts. 

Audio activities are periodic with a 1 to 10 ms cycle, and are handled by a CPU thread 
that schedules audio decode and post-processing tasks, as well as related audio buffers 
for DMA operations. In addition to the regular periodic behavior of the audio DMAs, 
the DMA activity involves Wi-Fi and storage traffic from I/O devices going into memory, 
which are somewhat bursty in nature. 

Video tasks are partially handled by the CPU, which performs the audio-video 
demultiplexing, while the GPU performs the decoding and post-processing tasks. 
Parallelizing the CPU and the GPU tasks are obvious scheduling choices to lower the 
overall power consumption.

As CPU power consumption is influenced by how many times the CPU needs to wake 
up from a low-power state to an operating state, and the energy required for such state 
transitions, significant power savings can be achieved with a power-aware application 
that avoids such transitions. It does this by using interrupts to the maintain execution 
sequences, instead of timer-based polling constructs, and by appropriately scheduling 
them. Further optimization can be achieved by scheduling regularly occurring audio DMAs 
further apart, or even offloading audio to a dedicated audio-processing hardware.

9A. Agrawal, T. Huff,  S. Potluri,  W. Cheung,  A. Thakur, J. Holland,  and V.Degalahal,  
“Power Efficient Multimedia Playback on Mobile Platform,” Intel Technology Journal 15, no. 2 
(2011): 82–100.
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Reducing Wake-ups
Streaming the video playback usually requires communication devices to have smoothing 
buffers while accessing the memory due to the bursty nature of the incoming network 
data packets. Smart communication devices can reduce the number of CPU wake-ups by 
combining the interrupts and by using programmable flush threshold, and by treading 
the path to memory that is already active.

Burst Mode Processing
Video playback is done on a frame-by-frame basis, while frame processing time is 
between 15 and 30 ms, depending on the frame rate. The nature of video playback does 
not offer the CPU much opportunity to go to a low-power state and return to active state 
within this short time. To overcome this limitation, a pipeline of multiple frames can be 
created such that the associated audio is decoupled and synchronized properly, thereby 
allowing the CPU to aggressively utilize its low-power states. Although this approach 
requires substantial software changes, it should nonetheless be explored for very  
low-power devices.

Improving CPU and GPU Parallelism
As the decoding and processing tasks are done by the GPU, the main tasks that remain 
for the CPU are preparing the hardware acceleration requests for decoding, rendering, 
and presenting the video frames. These tasks are independent and, therefore, can be 
implemented in separate hardware threads, which can be scheduled and executed in 
parallel. By parallelizing the execution threads, the CPU package can stay in deep idle 
states for longer periods, achieving power savings.

GPU Memory Bandwidth Optimization
The GPU performs video decoding and post-processing. These processes require the 
highest amount of memory bandwidth in the entire video playback application. But 
memory bandwidth scales with the content and display resolution, as well as with the 
amount of video processing done on each frame. Displaying a frame with a blit method 
(i.e., drawing the frame directly onto a display window) requires copying the frame twice: 
once to a composition target surface and once to a render surface. These costly copies 
can be avoided by using the overlay method, by which the kernel directly renders the 
frame to the overlay surface.

Display Power Optimization
Display requires more than a third of the device’s power for video playback applications. 
There are many ways to address this problem, most of which were covered earlier. In 
addition, a media playback application can benefit from frame buffer compression and 
reduction of refresh rate. 
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Frame buffer compression does not directly impact the video window; but for full-
screen playback when update of the primary plane is not needed, only the overlay plane 
can be updated, thereby saving memory bandwidth and, consequently, power. Reducing 
the refresh rate, on the other hand, directly reduces memory bandwidth. For example, 
reducing from 60 Hz to 40 Hz results in a 33 percent reduction in memory bandwidth. Not 
only is memory power reduced, owing to less utilization of display circuitry, but the overall 
display power is also lowered. However, depending on the content, the quality of the video 
and the user experience may be poorer compared to a video with full refresh rate.

Storage Power Optimization
Frequent access to storage results in excessive power dissipation, while reduction of such 
access allows the storage device to go to lower power states sooner and contributes to 
overall power savings. However, unlike the CPU, storage devices typically need to be idle 
for more than a second before they are transitioned to a lower power state. 

As the requirement for media playback storage access is on the order of tens of 
milliseconds, normally a storage device would not get a chance to sleep during media 
playback. A power-aware media playback application, however, can pre-buffer about 
10 seconds’ worth of video data, which will allow a solid-state storage device to enter a 
low-power state. Storage devices based on a hard drive are slower, however, and require 
multiple minutes of pre-buffering for any meaningful power savings.

The Measurement of Low Power 
Measuring low power is generally done following the same shunt resistor method as 
described in Chapter 6. However, precise measurement and analysis of several power 
signals may be necessary to determine the impact of particular power-consuming 
hardware units.

Processor Signals for Power
In a typical low-power Intel Architecture platform, such as the Intel Atom Z2760,10 the 
processor signals that are defined for power interface are as shown in Table 7-4. Power 
analysis is done by appropriately measuring these signals.

10 “Intel Atom Processor Z2760: Data Sheet,” Intel Corporation, October 2012, retrieved from  
www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom- 
z2760-datasheet.pdf.

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-z2760-datasheet.pdf
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Table 7-4.  Important Processor Signals for Power Interface

Signal Description

V
CC

Processor core supply voltage: power supply is required for 
processor cycles.

V
NN

North Complex logic and graphics supply voltage.

V
CCP

Supply voltage for CMOS Direct Media Interface (cDMI), CMOS Digital 
Video Output (cDVO), legacy interface, JTAG, resistor compensation, 
and power gating. This is needed for most bus accesses, and cannot be 
connected to V

CCPAOAC
 during Standby or Self-Refresh states.

V
CCPDDR

Double data rate (DDR) DLL and logic supply voltage. This is required 
for memory bus accesses. It needs a separate rail with noise isolation.

V
CCPAOAC

JTAG, C6 SRAM supply voltage. The processor needs to be in Active or 
Standby mode to support always on, always connected (AOAC) state.

LVD_VBG LVDS band gap supply voltage: needed for Low Voltage Differential 
Signal (LVDS) display.

V
CCA

Host Phase Lock Loop (HPLL), analog PLL, and thermal sensor  
supply voltage.

V
CCA180

LVDS analog supply voltage: needed for LVDS display. Requires a 
separate rail with noise isolation.

V
CCD180

LVDS I/O supply voltage: needed for LVDS display.

V
CC180SR

Second generation double data rate (DDR2) self-refresh supply 
voltage. Powered during Active, Standby, and Self-Refresh states.

V
CC180

DDR2 I/O supply voltage. This is required for memory bus accesses, and 
cannot be connected to V

CC180SR
 during Standby or Self-Refresh states.

V
MM

I/O supply voltage.

V
SS

Ground pin.

Media Power Metrics
Many media applications share characteristics of real-time requirement, bursty data 
processing, data independency, and parallelizability. So, in media applications, it is 
important to measure and track several power-related metrics to understand the behavior 
of the system and to find optimization opportunities. Among these metrics are SoC, 
display, voltage regulator and memory power as percentages of full platform power, the 
CPU core and package C-state residencies, the GPU activities and render cache (RC)-state 
residencies, memory bandwidth, and so on. 
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As certain media applications may be compute-bound, memory-bound, I/O 
bound, or have other restrictions such as real-time deadlines, determining the impact of 
these factors on power consumption provides better awareness of the bottlenecks and 
tradeoffs. 

It is also important to understand the variation of power with respect to video 
resolution, bit rate, frame rate, and other parameters, as well as with regard to system 
frequency, thermal design power, memory size, operating system scheduling and power 
policy, display resolution, and display interface. Analyzing and understanding the 
available choices may reveal optimization opportunities for power and performance.

Summary
The marriage of low-power devices with increased demand for application performance, 
and the various challenges for attaining such low-power use, has been described in this 
chapter. As downscaling of process technology, together with voltage and frequency 
scaling, provides reductions in power, these techniques fall short of achieving state-of-
the-art low-power design targets. Analysis of common low-power scenarios from a media 
usage standpoint shows that more aggressive power-reduction approaches are necessary 
while taking the whole system into account. 

To this end, various power-management and optimization approaches were discussed. 
Low-power measurement techinques were also presented. Together, Chapters 6 and 7 
provide a good platform for understanding the tradeoffs between increased dynamic 
ranges for frequency tuning and greater static power consumption—elements that must 
be carefully balanced. In the next chapter, some of these tradeoffs between power and 
performance are viewed from the point of view of a media application.
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Chapter 8

Performance, Power, and 
Quality Tradeoff Analysis

When you’re operating under resource constraints, it is necessary to understand the right 
tradeoffs to reach your goal. Often one thing must be given up to gain another thing. 
Depending on the objectives, priorities, and tolerances of a solution, an appropriate 
balance must be struck between the best use of available resources and the best 
achievable success measure.

In the case of creating compressed video, measures are used to obtain the best 
quality and the highest performance at the cost of the least number of bits and the lowest 
power consumption. For an overall encoding solution, success criteria may also include 
choices among hardware-based, software-based, and hybrid encoding systems that offer 
tradeoffs in flexibility, scalability, programmability, ease of use, and price. Users of video 
coding solutions, therefore, need to be aware of the appropriate choices to be made 
among cost, adaptability, scalability, coding efficiency, performance, power, and quality 
so as to achieve a particular video coding solution.

Tradeoff analysis is useful in many real-life situations. Understanding the options, 
particularly in terms of performance, power, and quality, is a valuable capability for 
architects, developers, validators, and technical marketers, as much as it is helpful for 
technical reviewers, procurers, and end-users of encoding solutions. Making informed 
product decisions by assessing the strengths and weaknesses of an encoder, comparing 
two encoders in terms of their practical metrics, and tuning the encoding parameters 
to achieve optimized encoders are among the decision points offered by such analysis. 
Furthermore, when new features are added to an existing encoder, such analysis can 
reveal the costs and benefits of those new features in particular measures. This helps 
users decide whether or not to enable some optional encoding features under various 
constraints and application requirements.

As coding efficiencies in terms of rate distortion of various algorithms were covered 
in previous chapters, here we turn the discussion toward an examination of how tradeoff 
analysis actually works. We focus on three major areas of optimization and the tradeoffs 
inherent in them—namely, performance, power, and quality. These three areas are of 
critical importance in present-day video encoding usage models and encoding solutions.
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The discussion starts with the common considerations of tradeoff analysis involving 
these three measures, along with other options that may appear. This is followed by a 
discussion of the effects of encoding parameter tuning on these three measures. We then 
briefly discuss a few common optimization strategies and approaches.

With these discussions we present case studies of tradeoff analysis that look at 
performance power, performance quality, and power quality. These examples view the 
variables from several different points of view, shedding light on the methodologies 
commonly used in such analyses.

Considerations in a Tradeoff Analysis
Tradeoff analyses are essentially decision-making exercises. With the wide variability 
of video complexities and the numerous combinations of tuning parameters available, 
tradeoffs are commonly made based on the application’s requirements for enhanced 
visual experience. The outcome of a tradeoff—namely, the properties of the encoded 
bitstream—determine the worthiness of the analysis. It is imperative that an encoded 
bitstream be syntactically valid, but its merit is typically judged in terms of its properties, 
including the amount of compression, the perceived quality when decoded, the amount 
of time it took to generate it, and its power consumption.

An important application of tradeoff analysis is a comparison of two encoding 
solutions based on both’s performance, power, and quality. To make a fair comparison in 
such cases, various system parameters must be considered and made as equivalent as as 
possible. Such considerations include:

The configurable TDP (cTDP) or scenario design power (SDP) •	
settings (in fourth-generation Intel Core or later processors) such 
as nominal TDP, cTDP up, or cTDP down, which are usually done 
to accommodate overclocking or available cooling capacities.

Power mode, whether AC (plugged in) or DC (battery).•	

Operating system graphics power settings and power plans, such •	
as maximum battery life and balanced or maximum performance.

Display panel interface, such as embedded display port (eDP) or •	
high-definition multimedia interface (HDMI).

Display resolution, refresh rate, rotation and scaling options, color •	
depth, and color enhancement settings.

Number and type of display units connected to the system (e.g., •	
single or multiple, primary or secondary, local or remote).

Overhead and optimizations, application’s settings for color •	
correction and color enhancement, driver settings, and so on.

Firmware, middleware, and driver versions.•	

Operating system builds and versions.•	
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Operating voltage and frequency of the CPU and GPU.•	

Memory configuration and memory speed.•	

Source video content format and characteristics.•	

When conducting these comparisons, it is also necessary to turn off irrelevant 
applications or processes, leaving the test workload as the only one running on the 
platform. This ensures that the available resources are properly allocated to the workload 
and there is no resource contention or scheduling conflict. Futhermore, it is generally 
good practice to take the same measurement several times and to use the median result. 
This reduces any noise that may be present within the measurement tolerance. Keeping 
the system temperature stable is also necessary to reduce potential noise in the measured 
data; temperature contollers that automatically activate a dedicated fan when a higher 
than target temperature is sensed are typically used for this purpose.

Types of Tradeoff Analyses
For mobile devices, saving power is typically the high priority. Therefore, if a decision 
only moderately impacts visual quality but saves substantial power, that quality 
tradeoff in favor of power saving is usually preferred for low-power mobile devices. 
Generally, techniques that provide greater compression while keeping the visual 
quality level approximately the same are good candidates for tradeoffs. However, these 
techniques often come with higher complexity, imposing a greater demand on power 
or performance. For example, HEVC encoding offers improved efficiency at the cost of 
more complex compression compared to AVC. As such, HEVC encoding in lieu of AVC 
encoding for an HD video is not an automatic choice on a power-constrained mobile 
device. Thus, tradeoff analysis must consider the overall benefit or the net gain. 

Priorities are driven primarily by the requirements of the usage models and hence 
they also govern the tradeoffs that are made. For example, consider a videoconferencing 
application versus a video transcoding application. For the former, the low delay and 
real-time requirements demand steady power consumption throughout the video 
session, while for the latter, a run-fast-and-sleep approach is more beneficial. Additional 
limits may be applied depending on the availablility of resources. For instance, certain 
techniques that trade visual quality for better performance may not always be feasible, 
owing to limitations of the system, including the TDP, maximum processor frequency 
limit, and so on. Similarly, although a low-level cache can increase performance in many 
video applcations, it may not be available in the system under consideration.

Effects of Parameter Tuning
Various encoding parameters affect the relationship between performance and power 
consumption, as well as visual quality. The motivation for such tuning parameters is 
often to expose opportunities for obtaining higher performance, better quality, or power 
savings. Further, these tuning exercises reveal whether there are inefficiencies in a  
non-optimized video application, in addition to potential causes for such inefficiencies, 
all of which can lead to better solutions. 
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Typically, the impact of such tuning is more easily seen in improved visual 
quality and performance, rather than in lowered power consumption. As elaborated 
in Chapters 4 and 5, many parameters have a significant impact on both performance 
and quality, including the video spatial resolution, frame rate, and bit rate; group of 
pictures structure; number of reference pictures; R-D optimization in mode decision 
and determination of motion vectors; adaptive deblocking filter; various levels of 
independent data units such as macroblocks, slices, frames, or group of pictures; 
multiple passes of analysis and processing, multiple generations of compression, and 
pre- and post-processing filters; and special-effects filters.

Some of these parameters have greater effects on the visual quality while others 
benefit performance and power; your parameter tuning efforts should take these 
relative benefits into account. For example, using B-pictures significantly affects both 
visual quality and performance, but using R-D optimization in mode decision and 
determination of motion vectors slows down the encoding speed more significantly  
than it improves visual quality. Similarly, using multiple slices slightly reduces visual 
quality, but it improves parallelizability and scalability and it offers performance and 
power-saving opportunities.

In addition, it is important to consider just how much power savings or improved 
performance can be achieved while the encoded video retains reasonable visual 
quality. The nature of the video content and the bit allocation policy are important 
considerations here.

Optimization Strategies
There are a few optimization strategies with regard to improving performance or 
saving power, usually without surrendering visual quality. These strategies are typically 
employed in optimizations of video coding applications and come with appropriate 
tradeoffs. 

•	 Reducing scheduling delay: Batching allows a series of function 
calls, such as motion estimation calls, for various macroblocks 
to be done together. Further, it allows macroblock-row-level 
multithreading for appropriate parallel processing. Typically, 
all operations within a batch share the same memory surface, 
thereby improving data fetch and cache hit rate. However, 
the application must wait for the writes to complete for all 
macroblocks in a batch before it can read from the memory 
surface. This introduces a small delay, but that delay is 
nonetheless suitable for video applications such as video 
streaming. The performance benefits achieved by batching do not 
typically sacrifice visual quality, and they give plenty of headroom 
for other workloads running concurrently. 
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•	 Optimizing slack time: Proactive energy optimization by 
workload shaping1 is another way to obtain power optimization. 
As opposed to worst-case design philosophy, the video codec 
implementation framework not only is aware of hardware-specific 
details but also proactively adapts the implementation strategy 
to offer the best possible resource utilization. When it’s in a 
traditional reactive energy optimization approach, the system 
merely adjusts its execution speed to the changing workload 
by exploiting available slack time. In the proactive scheme, 
the implementation can alter the shape of the workload at a 
given time, thereby achieving ~50 to 90 percent more energy 
savings than traditional implementations. In this case, the slack 
is accumulated over multiple data units so that the underlying 
processor can use a more aggressive power-saving approach, such 
as a deep sleep, for the larger slack period. Further, by reordering 
the video frames within a tolerable latency increase, additional 
slack accumulation and consequent power savings are achieved. 
The proactive workload adaptation is done by using high-level 
complexity models, while the video codec framework interprets 
the models at run-time to choose the appropriate frequency and 
voltage of operation, thereby minimizing energy without loss in 
quality and without missing any deadlines for a frame. 

•	 Parallelizing tasks: The benefits of the parallelization of tasks, 
data, and instructions have been discussed in Chapter 5.  
Parallelizing independent tasks and distributing them over 
multiple processors makes full use of available processing 
capabilities. This allows the processing to complete quickly 
and enables the processors to go to deeper sleep states for 
longer periods of time, thus achieving power savings. Pipelines 
of tasks also keep the resources busy for as long as necessary 
and minimize resource conflicts. Further, with appropriate 
design of parallel applications, bottlenecks can be removed by 
re-scheduling a task to a different processor when a processor 
becomes too slow or unresponsive. Prioritization of tasks on 
various processors also helps overall performance. However, 
parallelization has its potential disadvantages of added overhead, 
such as inter-processor communication or synchronization costs. 

1V. Akella, M. van der Shaar, and W. F. Kao, “Proactive Energy Optimization Algorithms for 
Wavelet-based Video Codecs on Power-aware Processors,” in Proceedings of IEEE International 
Conference on Multimedia and Expo (Amsterdam, The Netherlands: IEEE, July 2005), 566–69.
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•	 Optimizing I/O: Besides maximizing the use of system resources 
for the shortest possible time, increasing the data access speed 
and reducing I/O bottlenecks have prime significance when 
making power versus processing delay choices. In some off-line 
video applications, such as cloud-based video distribution, it is 
possible to obtain better overall power profiles by using dedicated 
I/O processors while groups of parallel processors are encoding 
batches of video segments. However, a side effect of this technique 
is the increased delay; the final video bitstream can only be stitched 
together when all the encoding processors are done. Therefore, 
the number of groups served by the I/O processor becomes the 
parameter of a possible tradeoff. Data prefetching and streaming 
opportunities should also be exploited as much as possible, noting 
that video data is particularly amenable to such techniques. 

•	 Reducing compute operations: Algorithmic optimization allows 
techniques such as threshold-based early termination of loops, 
or exploitation of SIMD-style parallelism. These techniques help 
reduce the number of compute operations. However, this requires 
extremely careful analysis to determine and understand the 
various tradeoffs involved; in some cases, the visual quality may 
be affected as well. Furthermore, optimizing the code by hand or 
using the various compiler optimization techniques has direct 
impact on performance and power consumption by reducing the 
number of instructions to be executed. 

•	 Optimizing the cost vs. benefit: The cost of high performance 
in terms of implementation complexity, and consequently 
in terms of power consumption, should be always carefully 
considered. It may be necessary to redesign the performance 
optimization approaches to tackle power consumption. In an 
image-filtering experiment,2 it was observed that the behavior of 
this workload is drastically different from, for example, a scalar-
vector multiplication-accumulation workload, although both 
workloads are similarly parallelizable. In the image-filtering case, 
performance optimizations are possible owing to the available 
data-reuse opportunities. This is also true for many video coding 
and processing applications. However, the energy profile of the 
image-filtering process is irregular, owing to uneven data reuse 
and resource scheduling. The energy optimal point corresponds 
to a large unrolling factor, relatively modest array partitioning, 

2B. Reagen, Y. S. Shao, G. Y. Wei, and D. Brooks, “Quantifying Acceleration: Power/Performance 
Trade-Offs of Application Kernels in Hardware,” in Proceedings of 2013 IEEE International 
Symposium on Low Power Electronics and Design (Beijing: IEEE, September 2013), 395–400.
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pipelined multipliers, and non-pipelined loops. The large 
unrolling factor allows for greatest utilization of loaded data for 
the reasonable bandwidth requirements. The bandwidth needs 
are usually amortized over multiple cycles, maximizing the reuse 
and efficiency of given resources. This results in a complex control 
flow and a non-intuitive energy optimal design solution. For such 
complex workloads, the cost of additional power consumption by 
a higher performing design may not always be justified. 

The Performance–Power Tradeoff
Recall from Equation 6-1 that power is a linear function of frequency. As improved 
performance directly depends on increased frequency up to a certain frequency limit, it 
is desirable to increase the frequency while keeping the power consumption the same. To 
achieve this, the co-factors of frequency—namely, the voltage, the capacitance, and the 
activity factor—need to be reduced. Furthermore, leakage current needs to be reduced. 
The activity factor is typically reduced by using clock gating, while the capacitance is 
reduced by downsizing the gates. As mentioned in Chapter 6, lowering the voltage can 
only be done in the voltage scaling region until a minimum voltage is reached, which must 
be sufficient for transistors to operate. Note from Figure 6-7 that leakage is constant in the 
low-frequency V

min
 region, while in the voltage-scaling region the leakage keeps increasing 

at typical operating points. Leakage current is decreased by reducing the transistor width 
and using lower leakage transistors. However, lower leakage transistors are also slower 
compared to leaky ones. Therefore, hardware designers need to make the appropriate 
optimizations to maximize the frequency for a given amount of power consumption. 

It is important to note that ~90 percent of all modern mobile platforms are power 
limited. Therefore, every bit of power savings is considered equivalent to a corresponding 
gain in frequency. Typically, in the V

min
 region of low-power platforms, ~10 percent power 

saving translates to some 15 percent gain in frequency, while in the voltage scaling region, 
~20 percent power saving corresponds to a mere ~5 percent gain in frequency. Thus 
the importance of judicious hardware design for optimal voltage, capacitance, activity 
factor, and leakage cannot be overstated, particularly with regard to obtaining the highest 
frequency at a given power budget. Operating at higher frequency generally implies 
better performance for various applications.

For video applications, higher CPU or GPU operating frequencies provide faster 
encoding speed, but they also consume more energy. A tradeoff between energy consumed 
and encoding speed is thus necessary at the system-design and hardware-architectural level, 
particularly for GPU-accelerated encoders. The programmable part of the encoding should 
also maintain an appropriate balance between performance and power. Usually this is done 
by parallelizing the encoding tasks, by scheduling appropriate tasks among multiple threads 
of CPU and GPU, by migrating tasks between the CPU and the GPU on the fly, by adjusting 
the schedules of the tasks, and/or by optimizing resource utilization for individual tasks, 
all without significantly affecting visual quality. For example, depending on the complexity 
of the video content, encoding two slices of a picture in parallel can yield ~10 percent 
performance gain with negligible quality impact. Tuning of encoding parameters also affects 
the overall encoding speed and power consumption, as some hardware units, such as the 



Chapter 8 ■ Performance, Power, and Quality Tradeoff Analysis

304

bit-rate control units, scaling units, and so on, may be optionally turned off depending on 
the parameter setting. Such tuning, however, may influence visual quality.

Let’s consider the following case study of a performance–power tradeoff for a video 
transcoding application. For comparison, the same tests are run on two platforms with 
different performance-power characteristics. Note that the transcoding comprises 
decoding of a compressed video into an uncompressed format, which is subsequently 
encoded using appropriate encoding parameters into the target video in compressed 
format. The decoding tasks in the transcode operation remain the same for the same 
source video content, and usually the decoding is much faster than the encoding. Thus, 
the overall transcode performance can be measured in terms of the encoding speed 
alone. As such, the terms performance and encoding speed are used interchangeably.

Case Study
Consider two transcoding workloads, each about 5 minutes long; both of them operate 
with a spatial resolution of 1920×1080p at 30 fps, and transcode from higher bit-rate H.264 
input bitstreams into lower bit-rate bitstreams of the same format. Workload 1 consists of 
lower complexity frames with infrequent scene changes, fewer details, and slower motion 
compared to Workload 2.

The transcoding tasks are carried out on two Intel platforms. Table 8-1 shows the 
platform configurations.

Table 8-1.  Plaform Configuration for Transcode Experiment

Platform 1 Platform 2

Processor 4th-gen. Core i7 4th-gen. Core i5

# Cores 4 2

CPU frequency 2 GHz 1.3 GHz

CPU turbo 3.2 GHz 2.6 GHz

TDP 47 W 15 W

Cache size 6 MB 3 MB

Graphics Intel (R) Iris Pro (TM) 5200 Intel (R) Iris Pro (TM) 5000

Max GPU frequency 1.2 GHz 1 GHz

Embedded DRAM Yes No

Memory 4 GB dual channel 4 GB dual channel

Memory speed 1333 MHz 1333 MHz

We also consider three sets of encoding parameters, numbered 1, 2, and 3. In 
each set, a combination of encoding parameters is used. Table 8-2 shows some of the 
important distinctions for each parameter set.
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Figure 8-1 shows transcode performance on the two platforms using the two workloads 
with various sets of encoding parameters. It is notable that, owing to the different complexities 
of the two workloads, the tuning of parameters affects them differently. It is also observed that 
the degree of such impact is different on the two different platforms.

Table 8-2.  Important Differences in Settings for Each Parameter Set

Param Set 1 Param Set 2 Param Set 3

Configuration Fast Faster Fastest

Motion estimation algorithm Algorithm 1 Algorithm 1 Algorithm 2

Motion estimation search range 48 pixels 48 pixels 28 pixels

Fractional pixel motion compensation 1/8 pixel 1/8 pixel 1/4 pixel

Adaptive search Yes No No

Multiple reference pictures Yes No No

Multiple predictions Yes No No

Macroblock mode decision Complex Complex Simplified

Figure 8-1.  Transcode performance comparison of two platforms

From Figure 8-1 it can be noted that Platform 1 has an average of ~60 percent better 
throughput in terms of encoding speed compared to Platform 2, of which the embedded 
dynamic RAM provides ~10 percent performance throughput difference and the GPU 
frequency difference accounts for another ~20 percent. The remaining ~30 percent 
difference can be attributed to a combination of processor graphics hardware optimization, 
number of GPU execution units, cache size, number of CPU cores, CPU clock speed, turbo 
capacity, and so on.
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While Workload 2 gives consistently increasing performance as the parameters move 
from fast to fastest cominations, especially on Platform 1, Workload 1 provides a peak 
performance of over 12-fold faster than real-time speed with parameter set 3. Therefore, 
it is clear that workload characteristics, along with parameter tuning, greatly influence the 
transcode performance. Comparing the fastest parameter set (3) for both workloads on 
Platform 1, it can be observed that Workload 1 provides ~13 percent better performance 
compared to Workload 2. On Platform 2, a similar trend is observed, where Workload 1 is 
~12 percent faster compared to Workload 2.

Note that, owing to the characteristics of Workload 2 and to the constrained 
resources on Platform 2, parameter set 1 yields significantly lower performance on this 
platform because this parameter set includes multiple reference pictures, multiple 
predictions, and elaborate analysis for mode decisions.

Figure 8-2 shows the package power consumptions by the two platforms for the two 
workloads with the same sets of parameters.

Figure 8-2.  Transcode package power consumption comparison of two platforms

From Figure 8-2, it is clear that on, average, Platform 1 consumes ~34 percent more 
package power compared to Platform 2, while neither platform reaches its maximum 
TDP limit for the workloads under consideration. However, some parameter settings 
require certain hardware units to turn on and consume power, while others don’t. This is 
evident from the difference in power consumption between the two platforms, ranging 
from ~14 percent to ~44 percent.

Interesting observations can also be made if the absolute power consumption is 
considered on each platform. As the parameters are tuned, the power consumption 
generally decreases, especially on Platform 1. Further, on Platform 1, Workload 1 has 
a 28 percent dynamic range of power consumption, while Workload 2 has a mere 
8 percent dynamic range. On Platform 2, however, these numbers are ~7 and ~10 percent, 
respectively. This shows that on Platform 1, the power consumption of Workload 1 reacts 
more quickly to changing parameters compared to Workload 2. However, on Platform 2,  
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these workloads are not compute-bound and therefore do not react to changing 
parameters. In this case, cache performance and number of GPU execution units become 
the dominant factors, with little regard to the encoding parameters.

Figure 8-3 shows the platform efficiency in terms of fps per watt for both workloads 
on the two platforms for each set of parameters. Platform 1 is generally more efficient 
than Platform 2, with an average of ~23 percent better efficiency, owing to its dedicated 
embedded dynamic RAM, higher GPU frequency, higher number of GPU execution units, 
and better cache performance.

Figure 8-3.  Platform efficiency in terms of fps per watt during a set of transcode 
experiments

From Figure 8-3 it is also observed that parameter tuning somewhat similarly 
impacts Workload 1 on both platforms, but for Workload 2, Platform 2 shows larger 
variation in terms of platform efficiency. This behavior of platform efficiency is not only 
due to changing parameters but also to the different characteristics of the workloads.

Figure 8-4 shows another point of view for performance versus power analysis. 
The two platforms are clearly showing different performance characteristics owing to 
differences in their available resources. Both workloads are clustered together on the two 
platforms. Because of the bigger cache size and the presence of an embedded dynamic 
RAM, Platform 1 generally consumes more power compared to Platform 2, but it provides 
much higher performance as well.
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From Figure 8-4 it can be observed that, on a given platform, appropriate parameter 
selections can provide good power-saving opportunities. For example, on Platform 2, 
Workload 1 can provide close to 1 watt of power saving using parameter set 3 compared 
to parameter set 1.

Note that, while one is performing a performance and power tradeoff analysis, 
employing parallelization techniques or optimizing resource utilization generally has 
little impact on visual quality. However, by tuning the encoding parameters, the quality 
is affected as well. In these cases, the power–performance tradeoff becomes a power–
performance–quality three-way tradeoff. If the bit-rate control algorithm tries to maintain 
the same quality with a variable bit rate, resulting in different bitstream sizes, then the 
tradeoff becomes a power–performance–encoding efficiency three-way tradeoff. This is a 
side effect of the power–performance tradeoff.

The Performance–Quality Tradeoff
Higher encoding speed can be obtained by manipulating some video encoding 
parameters such as the bit rate or quantization parameter. By discarding a large 
percentage of high-frequency details, there remains less information to be processed, 
and thus encoding becomes faster. However, this directly affects the visual quality of the 
resulting video. On the other hand, using B-pictures offers a different performance-quality 
factor. Although a delay is introduced as the reference frames must be available before 
a B-picture can be decoded, the use of B-pictures generally improves the visual quality 
as well as the temporal video smoothness. For example, in a set of experiments with 
the H.264 encoding, we found that when we used two B-pictures between the reference 
pictures, the average impact on FPS was ~7 percent, but that some ~0.35 dB better quality 
in terms of BD-PSNR was obtainable for the same set of HD video sequences.

Figure 8-4.  Performance vs. power on the two platforms (WL and PS are abbreviations of 
workload and parameter set, respectively)
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Similarly, manipulating parameters such as the motion search range, search 
method, number of reference pictures, two-pass encoding, and so on can impact both 
performance and quality. Therefore, it is necessary to always look into the potential 
impact on visual quality of a any performance gain or loss before considering a feature or 
parameter change in the video encoder. To illustrate the performance–quality tradeoff, 
we present two case studies and discuss the results obtained. 

Case Study I
A 35 Mbps H.264 input bitstream is transcoded into another bitstream of the same 
format, but with a lower bit rate of 7 Mbps. The original video test clip is about 5 minutes 
long, with a spatial resolution of 1920×1080p at 30 fps. It comprises several scenes with 
varying complexities ranging from high spatial details to mostly flat regions, and from 
high irregular motion to static scenes. The transcoding tasks involve fully decoding the 
bitstream and re-encoding it with new coding parameters.

The transcoding tasks are carried out on a platform with configurations given  
in Table 8-3.

Table 8-3.  Platform Configuration for Transcoding in Case Study I

System Parameter Configuration

Processor 4th-gen. Core i5

# Cores 4

CPU frequency 2.9 GHz

CPU turbo 3.6 GHz

TDP 65 W

Cache size 6 MB

Graphics Intel (R) HD Graphics (TM) 4600

Max GPU frequency 1.15 GHz

Embedded DRAM Yes

Memory 4 GB dual channel

Memory speed 1333 MHz

Two transcoder implementations are used: a software-based transcoder  
running entirely on the CPU, and a GPU-accelerated transcoder where most of the 
compute-intensive tasks are done in special-purpose fixed-function hardware units.  
The two implementations optimize the parameters differently, but both offer three output 
modes of performance–quality tradeoffs: the best quality mode, the balanced mode, and 
the best speed mode.
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Although the GPU-accelerated implementation provides only a few externally 
settable parameters, and while there are many choices available for the CPU-only 
implementation, effort is made to keep these paramteters as close as possible for both 
implementations. Surely, there are variations in the exact parameters that are tuned for a 
mode by the two implementations, but there are some commonalities as well. Table 8-4 
summarizes the common parameters.

Table 8-4.  Common Parameters of the Two Implementations

Parameter Best Quality Mode Balanced Mode Best Speed Mode

Motion estimation and 
mode decision methods

Algorithm 1 Algorithm 2 Algorithm 3  
(with early exits)

Fractional motion 
compensation

Eighth pixel Quarter pixel None

Reference pictures Many Few Single

Adaptive search Yes No No

Motion search range Large Medium Small

Weighted prediction Yes Yes No

Multiple B-pictures Yes Yes No

Sub-macroblock 
partitions

All Few None

Scene change detection Yes Yes No

Look-ahead analysis for 
bit rate control

Many frames Few frames No look-ahead

Note that these parameters are used slightly differently in the two implementations, 
so the exact same quality is not expected from the two implementations. Also note that 
the focus of the GPU-accelerated implementation is on achieving higher performance 
without losing much visual quality, thus only a few parameters are varied from the best 
quality to the best speed in this implementation. On the other hand, obtaining higher 
performance is difficult in CPU-only implementation; therefore, the best speed mode in 
this implementation turns off several features much more aggressively compared to the 
GPU-accelearted implementation.

The performance is measured in terms of FPS for the three modes of operation for 
both transcoder implementations. Note that the coding parameters are tuned for each of 
the three modes to obtain certain performance–quality tradeoffs. Figure 8-5 shows the 
transcode performance comparison between the CPU-only and the GPU-accelerated 
implementations. It also shows speedups of the different modes.
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From Figure 8-5, we can see that both implementations scale in terms of speed 
from the best quality, to the balanced, to the best speed modes. For instance, the 
GPU-accelerated implementation speeds up the encoding from one mode to the next 
by a factor of approximately 2. However, with more aggressive tuning of the encoding 
parameters, the CPU-only implementation scales from the best quality to the balanced 
mode by performing the optimizations given in Table 8-5 and achieving a 7.45 times 
speedup. Similarly, from the balanced to the best speed mode, an additional 4.2 times 
speedup is obtained.

Figure 8-5.  Transcode comparison of various performance modes

Table 8-5.  Optimizations in Different Modes for the CPU-only Implementation

Parameters Best Quality Balanced Best Speed

Motion estimation 
method

Uneven 
multihexagon search

Hexagonal search 
with radius 2

Diamond search 
with radius 1

Maximum motion 
vector range

24 16 16

Sub-pixel motion 
estimation

Yes Yes No

Partitions All (p8x8, p4x4, b8x8, 
i8x8, i4x4)

p8x8, b8x8, i8x8, 
i4x4

No sub-macroblock 
partitions

Use trellis for mode 
decisions

Yes No No

Adaptive quantization Yes, with  
auto-variance

Yes No

(continued)
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Obviously, these optimizations take a toll on the visual quality, as can be observed 
from Figure 8-6, which shows the quality comparisons for the two implementations. From 
the best quality to the best speed, the CPU-only implementation loses on an average of 
about 5 dB in terms of PSNR, with a tiny reduction of less than 0.1 percent in file size. On the 
other hand, with the focus on performance improvement while maintaining visual quality, 
the GPU-accelerated implementation does a good job of losing only an average of about  
0.6 dB of PSNR from the best quality to the best speed mode. However, this implementation 
ends up with a ~1.25 percent larger file size with the best speed mode compared to the best 
quality mode, thereby trading off the amount of compression achieved.

Table 8-5.  (continued)

Parameters Best Quality Balanced Best Speed

R-D mode decision All picture types I-picture and 
P-picture only

None

Max number of 
reference pictures

16 2 1

Number of references 
for weighted 
prediction for 
P-pictures

2 1 None

Number of frames to 
look-ahead

60 30 None

Max number of 
adaptive B-pictures

8 2 No B-pictures

CABAC Yes Yes No

In-loop deblocking Yes Yes No

8×8 DCT Yes Yes No

Scene change 
detection

Yes Yes No
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Another observation can be made from Figures 8-5 and 8-6; in terms of speed for the 
three performance modes, the GPU-accelerated implementation is faster than the  
CPU-only implementation by factors of approximately 33, 9, and 4, respectively. This 
shows the contrast between the two implementations in terms of parameters tuning. 
While the GPU-accelerated implementation starts with a much better performance 
in the best quality mode, it has an average of 1.76 dB lower PSNR with a ~1.5 percent 
larger file size compared to the best quality mode in the CPU-only implementation. 
Thus, it has already sacrificed significant visual quality in favor of performance. Further, 
the GPU-accelerated implementation is less flexible in terms of ability to change the 
algorithms, as some of the algorithms are implemented in the fixed-function hardware 
units. Nonetheless, in the best speed mode, this implementation shows an average of 
~2.8 dB better PSNR, but with a ~2.9 percent larger file size compared to the CPU-only 
implementation. These results demonstrate the performance–quality tradeoff and the 
tuning choices inherent in the two implementations.

Figure 8-7 shows the encoded video quality versus the encoding speed for this case 
study. It is evident that quality and speed scale among the different modes for both  
CPU-only and GPU-accelerated implementations, although the rate of scaling is different 
for the two implementations.

Figure 8-6.  Quality comparisons of the two implementations
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Case Study II
This second case shows another sample comparison of two encoding solutions in 
terms of performance and quality. A set of ten different video contents with varying 
complexities of motion and details are used. The video resolutions belong to the  
set {352×288, 720×480, 1280×720, 1920×1080}. Seven sets of video encoding parameters 
are used, providing a range between best quality and best speed. Encoding tests are 
carried out using two GPU-accelerated encoder implementations.

In this example, both encoding solutions operate on similar application program 
interfaces, such that parameter set 1 provides the best quality and parameter set 7 gives  
the best speed, although there are some differences between a parameter set for Encoder  
1 compared to the same level of parameter set for Encoder 2. For example, parameter set 
1 for Encoder 1 includes ⅛ pixel precision motion compensation and the use of trellis for 
mode decision, while Encoder 2 does not include these parameters in its parameter set 1. 
Some important parameters that are common to both two encoders are shown in Table 8-6.

Table 8-6.  Important Common Parameters between Encoder 1 and Encoder 2

PS1 PS2 PS3 PS4 PS5 PS6 PS7

8×8 transform Yes Yes Yes Yes Yes Yes Yes

¼ pixel prediction Yes Yes Yes Yes Yes Yes No

Adaptive search Yes Yes Yes Yes Yes No No

Max references 10 8 6 5 4 2 2

Multiple prediction Yes Yes Yes Yes P-picture 
only

No No

Figure 8-7.  Quality vs.encoding speed for case study I
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Figure 8-8 shows the performance comparison between the two encoders in terms of 
FPS for each of the parameter sets. For both encoders, there are clear trends of improved 
performance with the progress of the parameter sets. However, the rates of improvement 
are different for the encoders. While Encoder 2 reaches the best performance of close to 
nine-fold faster than the real-time performance much more aggressively after parameter 
set 3, Encoder 1 displays a comparatively gradual rate of rise in performance as it steadily 
reaches about the same performance by tuning the parameters.

Figure 8-8.  Performance comparison of the two encoders

Figure 8-9 shows a quality comparison between the two encoders in terms of  
BD-PSNR with respect to the parameter set 7 of Encoder 2. Again, clear trends of 
gradually lower quality are observed for both encoders. For Encoder 2, tuning the 
parameters can yield up to ~0.45 dB gain in BD-PSNR, while Encoder 1 reaches a level  
of ~0.47 dB quality gain. However, for Encoder 1, the mid-levels of parameter tuning do 
not show significant quality differences. Noticeable quality improvement for Encoder 1 
happens between parameter sets 7 and 6, and between parameter sets 2 and 1.
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Figure 8-10 shows quality versus encoding speed for the second case study. In 
general, for all sets of parameters, Encoder 1 provides better quality for a given encoding 
speed compared to Encoder 2. It is also clear that parameter set 1 truly represents the best 
quality mode, while the set 7 represents the best speed for both encoders. For Encoder 1, 
parameter set 6 appears to be the most effective, as it provides the largest quality difference 
(~0.1 dB BD-PSNR), but at the same time it also provides over 11 percent improvement in 
encoding speed compared to Encoder 2.

Figure 8-9.  Quality comparison of the two encoders

Figure 8-10.  Quality vs. encoding speed for case study  II
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The Power–Quality Tradeoff
Noise is one of the most critical problems in digital images and videos, especially in 
low-light conditions. The relative amount of brightness and color noise varies depending on 
the exposure settings and on the camera model. In particular, low-light no-flash photo- and 
videography suffers from severe noise problems. The perceptual quality of video scenes with 
chroma noise can be improved by performing chroma noise reduction, alternatively known 
as chroma denoise. A complete elimination of brightness or luma noise can be unnatural 
and the full chroma noise removal can introduce false colors, so the denoising algorithms 
should carefully adapt the filtering strength, depending on the input local characteristics. 
The algorithm should represent a good tradeoff between reduction of noise and preservation 
of details. An example of a GPU-accelerated implementation of a chroma denoise filter, 
as a video processing capability, is typically available as an image-enhancement color 
processing (IECP) option offered by the Intel processor graphics. 

To demonstrate the power–quality tradeoff, we present a case study of chroma 
denoise filtration. While playing back a video, the chroma denoise filter detects noise in 
the two chroma planes (U and V) separately and applies a temporal filter. Noise estimates 
are kept between frames and are blended together, usually at 8-bit precision. As the the 
GPU-accelerated chroma denoise typically provides sufficient performance for real-time 
processing, on modern processor platforms the performance is not normally a concern. 
However, although the visual quality is expected to improve, the additional operations 
required by the chroma noise reduction filter means that extra power is consumed. 
Therefore, this case study illustrates a tradeoff between power use and quality.

Case Study
This example uses a third-generation Intel Core i7 system with CPU frequency 2.7 GHz, 
turbo frequency up to 3.7 GHz, 45 W TDP, and graphics turbo frequency up to 1.25 GHz. 
The screen resolution is set to be 1920×1080, the same as the resolution of the video 
content. The balanced OS power policy is used, and the operating temperature is kept at 
50°C, which is typical with CPU fans as the cooling system. Two workloads are employed, 
consisting of playback of an AVC encoded and a VC-1 encoded Blu-ray disc along with 
chroma denoise filter. Note that the VC-1 encoded content has much higher scene 
complexity compared to the AVC encoded content.

Figure 8-11 shows effect of the chroma denoise filter on the package power. An 
average of ~7 percent additional power, up to ~0.48 Watts, is consumed owing use of the 
chroma denoise filter. This is a significant penalty in terms of power consumption.
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Figure 8-12 shows the effect of the chroma denoise filter on the combined CPU and GPU 
activity. From the activity point of view, there’s an average of ~8.5 percent increase owing to 
the chroma denoise. This corresponds well with the increase in power consumption, and 
also represents a substantial increase in the time during which the processor is busy.

Figure 8-13 shows the effects of the chroma denoise filter on visual quality, in terms of 
PSNR. Although an average of ~0.56 dB improvement is seen in PSNR, the perceived impacts 
on visual quality for these workloads are small. Note that the absolute PSNR value for the 
VC1 workload is about 4 dB lower than the AVC workload—this is due to the inherent higher 
complexity of the VC-1 encoded video content compared to the AVC encoded content.

Figure 8-11.  Effect of chroma denoise filter on package power

Figure 8-12.  Effect of chroma denoise filter on combined CPU and GPU activity
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Figure 8-13.  Effect of chroma denoise filter on perceived visual quality

Figure 8-14.  Power–quality tradeoff for the chroma denoise filter

Figure 8-14 shows the power–quality tradeoff for the chroma denoise filter. Although 
improved PSNR is observed, such improvement comes at the expense of substantially 
increased power consumption. Therefore, on power-constrained platforms, this option 
should be carefully considered. It is possible, for example, that upon detecting a lower 
level of battery availability, a power-aware playback application would automatically turn 
off the optional chroma denoise so as to save power.
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Summary
In this chapter we discussed how tradeoff analysis works and we provided four practical 
examples. While a tradeoff analysis can involve consideration of many different 
dimensions, we focused on performance, power, and quality, which are the foremost 
criteria for success in today’s low-power computing devices. While power consumption 
defines the achievable battery life, it joins highest encoding speed and best visual quality 
as the most desirable features of contemporary video coding solutions.

We  discussed encoding parameter tuning and examined some optimization 
strategies. Further, we offered case studies that embodied  performance–power, 
performance–quality, and power–quality tradeoffs. These case studies reflect  several 
different points of view and help clarify the methodologies commonly used in such 
analyses.
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Chapter 9

Conclusion

The increasing demand for compressed digital video and the associated computational 
complexity, the availability and evolution of video coding standards, the restrictions of 
low-power computing devices, particularly in mobile environment, the requirements 
of increased speed and efficient utilization of resources, the desires for the best visual 
quality possible on any given platform, and above all, the lack of a unified approach to the 
considerations and analyses of the available tradeoff opportunities—these have been  
the essential motivating factors for writing this book. In this final chapter, we summarize the 
book’s key points and propose some considerations for future development in the field.

Key Points and Observations
Based on the key points made in this book, the following observations can be made:

Tradeoffs are possible among the various video measures, •	
including the amount of compression, the visual quality, the 
compression speed, and the power consumption.

Tuning of video encoding parameters can reveal these tradeoffs.•	

Some coding parameters influence one video measure more than •	
the others; depending on the application, optimization of certain 
measures may be favored over others.

Analyzing the impact of various coding parameters on •	
performance, power and quality is part of evaluating the strength 
of a video coding solution.

Some video coding solutions are more suitable for certain types •	
of video uses than for others, depending on the optimization 
performed and the parameters tuned.
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Being able to compare two video coding solutions is not only •	
useful in ranking available solutions but also valuable in making 
informed choices.

Sampling and scanning methods, picture rates, color space, •	
chromaticity, and coding formats are among the parameters 
defined by the ITU-R digital video studio standards in three 
recommended specifications.

Visual quality degradation is an option, owing to the natural •	
tolerant characteristics of the human visual system (HVS) and 
the fact that the HVS is more sensitive to certain types of visual 
quality loss than others. Many video compression techniques 
and processes take advantage of this fact and trade quality for 
compression.

Chroma subsampling is a common technique to take full •	
advantage of the HVS sensitivity to color information. Many video 
usages make use of 4:2:0 chroma subsampling.

Various techniques are available for digital video compression. •	
Most international standards adopt transform-based spatial 
redundancy reduction, block-matching motion compensation-
based temporal-redundancy reduction, and variable-length 
code-based spectral redundancy-reduction approaches for lossy 
predictive coding.

International standards define a range of video applications •	
in the domains of practical compression, communication, 
storage, broadcast, gaming, and so on. Standard video formats 
are essential for exchanging digital video among products 
and applications. The algorithms defined by the standards are 
implementable in practical hardware and software systems, and 
are common across multiple industries.

Video compression is influenced by many factors, including noise •	
present at the input, dynamic range of input pictures, picture 
resolution, artifacts, requirements for bit rate, frame rate, error 
resiliency, quality settings (constant or variable from picture to 
picture), algorithm complexity, platform capabilities, and so on.

Lossy compression introduces some visual quality impairment, •	
but owing to HVS limitations, a small amount of quality loss is 
not too objectionable. Common compression artifacts include 
quantization noise, blurring, blocking, ringing, aliasing, flickering, 
and so on. Quality is also affected by sensor noise at the video 
capture device, video characteristics such as spatial and temporal 
activities, amount and method of compression, number of passes 
or generations of compression, errors during transmission, and 
artistic visual effects introduced during post-production.
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The opinions of human viewers are the most important criteria in •	
judging the visual quality of compressed videos, but the opinions 
are subjective, variable and cannot be repeated reliably.

Objective measures such as PSNR and SSIM are widey used in •	
the evaluation of video quality. Although they do not correlate 
perfectly with human experience, they provide a good estimate of 
visual quality. However, when judging the output of an encoder, 
such objective measures alone are not sufficient; the cost in terms 
of bits spent must also be considered.

Many video quality-evaluation methods and metrics are offered •	
in the literature, with varying levels of complexity. This is an active 
area of academic research as well as emerging ITU standards.

Several encoding parameters can be tuned to trade video quality •	
for performance and power consumption. Important parameters 
here include the bit rate, frame rate, and latentcy requirements; 
bit-rate control type, available buffer size, picture structure, 
and picture groups; motion parameters, number of reference 
pictures, motion vector precision, and motion vector search and 
interpolation methods; entropy coding type; number of encoding 
passes; and so on.

Coding efficiency is determined in terms of the quality achieved •	
in regard to the number of bits used. In the literature, coding 
efficiency is often used to mean performance. However, in this 
book, performance refers to the coding speed.

Encoding speed is determined by several factors, including the •	
platform and the video characteristics. Platform characteristics 
include the CPU and GPU frequencies, operating voltages, 
configurable TDP state, operating system power policy, memory 
bandwidth and speed, cache policy, disk access speed, I/O 
throughput, system clock resolution, graphics driver settings, 
and so on. Video characteristics include formats, resolutions, bit 
rate, frame rate, group of picture structure, and other parameters. 
Video scene characteristics include the amount of motion, details, 
brightness, and so on.

Various parallelization opportunities can be exploited to increase •	
encoding speed. However, costs of task scheduling and interprocess 
communication should be carefully considered. Parallelization 
approaches include data partitioning, task parallelization, pipelining, 
data parallelization, instruction parallelization, multithreading,  
and vectorization.

Faster than real-time encoding is useful in applications such •	
as video editing, archiving, recording, transcoding, and format 
conversion.
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Visual communication and applications such as screen cast •	
require low-delay real-time encoding, typically on resource-
constrained client platforms.

Performance optimization implies maximal utilization of •	
available system resources. However, power-aware optimization 
approaches maximize the resource utilization for the shortest 
possible duration and allow the system to go into deeper sleep 
states for as long as possible. This is in constrast to the traditional 
approach of only minimizing the idle time for a given resource.

Algorithmic optimization, code and compiler optimization, •	
and redundancy removal are noteworthy among the various 
performance-optimization approaches.

There are several power-management points in the system, •	
including the BIOS, the CPU, the graphics controller, the hard disk 
drive, the network, and the display. Memory power management 
is also possible, but is done infrequently.

Typically, hardware-based power management involves the •	
various CPU C-states and the render C-states. Software-based 
power management in the operating system or in the driver 
includes CPU core offline, CPU core shielding, CPU load 
balancing, interrupt load balancing, CPU and GPU frequency 
governing, and so on.

On low-power platforms, special hardware units are typically •	
needed for power management. Multiple points of power at 
various voltage levels constitute a complex system, for which fast 
and precise management of power requirements is handled by 
these special-purpose units.

The goal of power management is to allow the processor to go •	
into various sleep states for as long as possible, thereby saving 
power consumption.

Total power consumption includes dynamic power and static •	
leakage power; dynamic power depends on the operating voltage 
and frequency, while static power depends on the leakage current.

A minimum voltage is required for the circuit to be operational, •	
regardless of frequency change. The maximum frequency at 
which the processor can operate at minimum voltage (F

max
@V

min
) 

is the most power-efficient operating point. Increasing the 
frequency from this point also increases the dynamic power at a 
cubic rate and the static power at a linear rate. At this relatively 
high power, a power reduction can happen with an easy voltage–
frequency tradeoff. Reducing the frequency below the most 
efficient point—that is, into the V

min
 region—reduces the dynamic 

power linearly while the static power remains constant, drawing a 
constant leakage current.
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Power optimization can be done at the architecture level, at •	
the algorithm level, at the system integration level, and at the 
application level.

On low-power platforms, some practical tradeoffs are possible •	
among processor area, power, performance, visual quality, 
amount of compression, and design complexity. It may be 
necessary to sacrifice visual quality in favor of power savings on 
these platforms.

The display consumes a considerable portion of the system power for •	
video applications—in many cases, about a third of the system power. 
There are several display power-management techniques, including 
panel self-refresh, backlight control using the Intel display power-
saving technology, ambient light sensors, and content adaptivity.

Low-power software design considerations include intelligent •	
power awareness, quality requirements, availability of hardware-
acceleration capabilities, energy-efficient UI, code density and 
memory footprint, optimization of data transfer and cache 
utilization, parallel and batch processing, and so on.

Low-power architectural considerations include combining •	
system components on the same chip, optimized hardware-
software interaction, workload migration from general-purpose 
to fixed-function hardware, CPU-GPU power sharing, reduced 
power core, uncore and graphics units, use of power islands, 
power-aware simulation and verification, and so on.

Power-optimization approaches include running fast and •	
turning off the processor, scheduling of tasks and activities, 
reducing wakeups, burst-mode processing, reducing CPU-GPU 
dependency and increasing parallelism, GPU memory bandwidth 
optimization, and power optimization for the display and the 
storage units.

To measure power and performance for tradeoff analysis, •	
you calibrate the system and select appropriate settings for 
operating temperature, voltage and frequency, cTDP, AC or DC 
power mode, OS power policy, display settings, driver settings, 
application settings, encoding parameters, and so on.

The tradeoff analysis discussed in Chapter 8 attempts to fill a •	
void that presently exists in comprehensive analysis methods. 
Particularly, it is important to examine the impact of tuning 
various parameters to obtain a better understanding of the costs 
and benefits of different video measures.

Understanding the tradeoffs among performance, power, and •	
quality is as valuable to architects, developers, validators, and 
technical marketers as it is to technical reviewers, procurers, and 
end-users of encoding solutions.
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Considerations for the Future
The topics covered in this book will, I hope, inspire discussions that will take us into the 
future of video coding and related analysis. Some of the areas where future analysis is 
likely to extend are the following.

Enhanced Tools and Metrics for Analysis
Although it is possible to look into the details of performance, power, and quality in 
a given encoding test run, and to understand the relationships between them, it is 
not easy to determine why there is an increase or decrease for a given metric for that 
encoding run. This is especially difficult when comparing the results of two tests, likely 
generated by two different encoding solutions with different capabilities. Similarly, 
when comparing two metrics for the same run, it is not always obvious why there is an 
increase or decrease relative to each other. The complexity arises from the presence 
of many variables that react non-deterministically to changes in the system or video 
coding parameters, and that affect one another. Also, those influences are different for 
different video contents, applications, and usage scenarios. There needs to be study, as 
well as careful and time-consuming debugging, so we can understand these complex 
relationships.

Researchers are trying to come up with better video metrics, indices, and scores, 
particularly for visual quality, compression, performance, and power consumption. 
The analysis techniques are expected to adapt to more comprehensive future metrics. 
Eventually, there will be a single measure for all the benefits to weigh against a single 
measure for all the costs for video coding, and that this measure will be universally 
accepted for evaluation and ranking purposes. With the availability of the new 
metrics, enhanced benchmarking tools that consider all aspects of video coding are 
also expected.

Improved Quality and Performance
Techniques to improve visual quality with the same amount of compression will 
follow a path of continuous improvement. In the past couple of decades, this trend 
was evident in algorithms from MPEG-2 to AVC, and from AVC to HEVC. Similarly, 
optimization techniques for performance and power are improving at a rate even faster 
than that for quality improvement. Every generation of Intel processors is producing 
roughly 30 to 200 percent performance for the same power profile as compared to the 
previous generation for GPU-accelerated video coding and processing. Even low-power 
processors today are capable of supporting video applications that were only matters 
of dreams a decade ago. It is not far fetched to think that, with appropriate tradeoffs 
and optimizations, everyday video applications will have better visual quality despite 
platform limitations.
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Emerging Uses and Applications
Wearables pose unique challenges when it comes to power consumption and 
performance, yet new uses on these emerging computing platforms are appearing every 
day. The role of video here is an open area of research. It embraces the notions of how to 
determine measures of goodness in video coding for these uses, how to quantify them, 
and which metrics to use.

The capabilities, uses, and requirements of video coding in driverless cars and  
radio-controlled drones are being assessed and developed. With their increasing 
processing abilities operating on resource-constrained systems, tradeoff analysis and 
optimization will play major roles in design and application. However, the methodologies 
and metrics for these uses are still open to definition.

Telemedicine, too, is in its infancy. Compression and communication technologies 
for high-resolution video are maturing to eventually reach flawless execution on 
handheld devices that can be used in remote surgical operations. Performance, power, 
and quality will be factors requiring tradeoffs in these scenarios as well.

Beyond Vision to the Other Senses
Of the five human senses, vision is considered the most important, but human experience 
is not complete with vision alone. Consequently, video is not the only data type for digital 
multimedia applications. Typically, audio and video are experienced together; touch and 
gestures are also rapidly evolving. So their measurement, understanding, and tuning will 
include audio, touch, and gesture. The relationships among these sense-based data types 
are complex and will require deep analysis, detailed study, and—ultimately—tradeoffs. 
This remains another active area of research.

As the challenges of the future are resolved, we will experience the true, full potential 
of the human senses.
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Appendix A

Appendix

To the best of our knowledge, there is no benchmark available in the industry that is 
suitable for comparison of video encoding solutions in terms of performance, power, 
quality, and amount of compression. However, there is a well-known academic effort 
carried out by Moscow State University (MSU) to compare available codecs. This 
academic analysis is able to rank various software-based and/or hardware-accelerated 
encoder implementations in terms of objective quality measures. Obviously, it is 
possible to tune the parameters of an encoder to achieve higher coding efficiency, higher 
performance, or lower power use, resulting in a different ranking.

The discussion of this Moscow effort is followed by short descriptions of common 
industry benchmarks, which are generally limited to power and performance evaluations 
and do not consider other aspects of video coding. However, it is possible that new 
benchmarks will be suitable for a wider ranking of video encoding. Also included in this 
appendix is a brief list of suggested reading materials. Although existing references do not 
cover tradeoff analysis methods and metrics, they have in-depth discussions of certain 
topics only briefly mentioned in this book.

MSU Codec Comparison
A codec comparison project supported by the Computer Graphics and Multimedia 
Laboratory at Moscow State University compares the coding efficiency of various codecs.1  
The goal of this project is to determine the quality of various H.264 codecs using objective 
measures of assessment. The annual project reports are available from 2003 to 2012.

1D. Vatolin et al., MSU Video Codec Comparison, http://compression.ru/video/codec_ 
comparison/index_en.html.

http://compression.ru/video/codec_comparison/index_en.html
http://compression.ru/video/codec_comparison/index_en.html
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In the most recent comparison, done in 2012, the following H.264 encoders were 
compared: 

DivX H.264 software•	

Elecard H.264 software•	

Intel QuickSync H.264 encoder using Intel third-generation Core •	
processor graphics

MainConcept H.264 software•	

MainConcept CUDA based H.264 encoder•	

XviD MPEG-4 Advanced Simple Profile software•	

DiscretePhoton software•	

x264 software•	

The contents of various complexities with resolutions ranging from 352×288 to 
1920×1080 were used, including 10 standard-definition, 16 high-definition (HDTV), and 
five video-conferencing sequences. The PSNR, SSIM, and MS-SSIM were used as the 
comparison objective metrics on all the color planes Y, U, and V for all frames in the video 
sequences. In making the comparisons and ranking the encoders, the following facts 
were recognized:

For an encoder, the output visual quality is not the same for •	
different frames of the same video sequence. Thus, a fair 
comparison would consider whether the same frames are being 
compressed by the various encoders. Frame mismatch can easily 
make a difference in quality.

Different encoders are tuned to different content types. In •	
particular, the default settings of an encoder may be best suited 
for a certain content type or video usage model. Therefore, 
comparing encoders with default settings may not necessarily be 
fair.

Compression quality considerably depends on coding •	
parameters. Setting appropriate coding parameters based on 
practical usage models is important in obtaining a realistic 
evaluation of various encoders.

To make a fair comparison, codec settings provided by the developers of each codec 
were used. The target application was video transcoding, mainly for personal use. The 
fast presets were taken to be analogous to real-time encoding on a typical home-use 
personal computer.
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The 2012 report ranked the eight codecs by considering the overall average achieved 
bit rates for approximately the same quality, and presented the following ranking based 
on this measure alone, without regard to encoding speed. Table A-1 shows the ranking:

Table A-1.  MSU Codec Ranking

Rank Codec Overall Average Achieved Bit Rate for 
the Same Quality (in percentage of 
XviD bit rate, lower is better)

1 x264 51

2 MainConcept H.264 Software 62

3 DivX H.264 69

4 Elecard H.264 71

5 Intel QuickSync (3rd -gen. Core) 93

6 XviD 100

7 DiscretePhoton 121

8 MainConcept CUDA 137

While this comparison is useful to some extent, note that only the quality aspects are 
considered here, regardless of performance and power consumption tradeoffs. This is a 
weakness of this comparison methodology; choosing different parameters for an encoder 
could easily provide different coding efficiency than is used for the ranking.

The tradeoffs and methodologies discussed in this book are important for getting an 
understanding of the big picture. Comparison of encoders should always acknowledge 
and take into account the various options considered by the encoders for different usage 
models. An encoder implementation with default settings may work better than one 
for video conferencing, but may not be as good for transcoding applications. However, 
the encoding parameters exposed by an implementation may be tuned to obtain better 
quality or performance. Note that different encoders give different controls to the  
end-users. Knowledge of parameters for an encoder is necessary to achieve best results 
for particular scenarios.

Industry Benchmarks
Some common benchmarks in the industry are occasionally used by enthusiasts to 
compare processors and their graphics and video coding capabilities. Although these 
benchmarks may include some video playback tests, they are not generally suitable 
for comparing video encoders, owing to their limited focus. Nevertheless, a few such 
benchmarks are briefly described below. It is hoped that points made in this book will 
inspire establishment of benchmarks that overcome this shortcoming and eventually 
reflect a higher state of the art.
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MobileMark 2012
MobileMark 2012 from BAPCo is an application-based benchmark that reflects 
patterns of business use in the areas of office productivity, media creation, and media 
consumption. In addition to battery life, MobileMark 2012 simultaneously measures 
performance, showing how well a system design addresses the inherent performance and 
power management.

Unlike synthetic benchmarks, which artificially drive components to peak capacity 
or deduce performance using a static simulation of application behavior, MobileMark 
2012 uses real applications, user workloads, and datasets in an effort to reflect the 
battery life a user might experience when performing similar workloads. MobileMark 
is commonly used by PC OEMs, hardware and software developers, IT departments, 
system integrators, publishers, and testing labs, as well as information technologists and 
computer industry analysts.

However, MobileMark is targeted to run business applications such as Microsoft 
Office, and uses Adobe Premiere Pro CS5 and Adobe Flash Player 11 to perform the video 
processing tasks. While this provides an indication of system design and CPU capabilities, 
it does not take advantage of the GPU-acceleration opportunities available in modern 
systems. Furthermore, it does not take into account the visual quality of compressed 
video. Therefore, this benchmark is very limited in its scope.

PCMark and PowerMark
These benchmarks were developed by FutureMark. PCMark is a standard performance 
benchmarking tool for personal computers of various form factors. With five separate 
benchmark tests and battery life testing, it can distinguish the devices based on efficiency 
and performance. It allows measurement and comparison of PC performance using 
real-world tasks and applications. The applications are grouped into scenarios that reflect 
typical PC use in the home and office environments.

PowerMark is a battery life and power consumption benchmark designed for 
professional testing labs. It delivers accurate results from realistic productivity and 
entertainment scenarios.

Both PCMark and PowerMark have limitations similar to those of MobileMark, as 
they consider performance or power alone and do not incorporate appropriate tradeoffs. 
Therefore, using only these benchmarks for ranking video encoders is not sufficient.

GFXBench
GFXBench, previously known as GLBenchmark and DXBenchmark, is a unified 3D 
graphics performance benchmark suite developed by Kishonti Ltd., who also developed 
CompuBench (formerly CLBenchmark) for CPUs. It allows cross-platform and cross-API 
comparison of GPUs in smartphones, tablets, and laptops. GFXBench 3.0 is an OpenGL 
ES 3 benchmark designed for measuring graphics performance, render quality, and 
power consumption in a single application. It utilizes OpenGL ES 3 capabilities, such as 
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multiple render targets for deferred rendering, geometry instancing, transform feedback, 
and so on. It generates relevant workloads and measurement targets on different graphic 
performance aspects.

However, GFXBench does not deal with natural or synthetic video playback, 
recording, transcoding, video coferencing, screencast, or similar workloads. Furthermore, 
3D graphics such as video games are primarily concerned with real-time performance and 
good graphics render quality, while video encoding and transcoding online and off-line 
applications may benefit from faster than real-time performance and an acceptable level 
of playback quality. Since GFXBench does not consider compressed video or bit-rate 
variations in quality measurements, it is difficult to ascertain the actual cost of quality. 
In addition, GFXBench does not report the package power, leaving open the possibility 
of large variations in power consumption from use of peripheral devices, while the 
processor package power may have been quite stable.

Therefore, the current version of GFXBench is not sufficient for measuring video 
applications in terms of power, performance, and quality. Yet, it is encouraging to see 
some commercial tool developers starting to think in terms of performance, power, and 
quality; perhaps future versions of GFXBench will fill the gaps that exist today in tools and 
benchmarking areas.

Suggested Reading
Here are a couple of academic research efforts that may be of interest.

H. R. Wu and K. R. Rao, eds., •	 Digital Video Image Quality and 
Perceptual Coding (Boca Raton, FL: CRC Press, 2005).

Perceptual coding techniques discard superfluous data that humans cannot process 
or detect. As maintaining image quality, even in bandwidth- and memory-restricted 
environments, is very important, many research efforts are available in the perceptual 
coding field. This collection of research, edited by H. R. Wu and K. R. Rao, surveys the 
topic from a HVS-based approach. It outlines the principles, metrics, and standards 
associated with perceptual coding, as well as the latest techniques and applications.

The collection is divided broadly into three parts. First, it introduces the basics of 
compression, HVS modeling, and coding artifacts associated with current well-known 
techniques. The next part focuses on picture-quality assessment criteria; subjective and 
objective methods and metrics, including vision model-based digital video impairment 
metrics; testing procedures; and international standards regarding image quality. In the 
final part, practical applications come into focus, including digital image and video coder 
designs based on the HVS, as well as post-filtering, restoration, error correction, and 
concealment techniques.

This collection covers the basic issues and concepts along with various compression 
algorithms and techniques, reviews recent research in HVS-based video and image 
coding, and discusses subjective and objective assessment methods, quantitative quality 
metrics, test criteria, and procedures; however, it does not touch on performance, power, 
or tradeoff analysis.

Ahmad and S. Ranka, eds., •	 Handbook of Energy-Aware and Green 
Computing (Boca Raton, FL: CRC Press, 2012).
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Some power-efficient techniques from various systems points of view, including 
circuit and component design, software, operating systems, networking, and so on, are 
presented in this book by Ahmad and Ranka. It is not specific to video applications; 
however, this two-volume handbook explores state-of-the-art research into various 
aspects of power-aware computing. Although one paper in the handbook discusses about 
a particular approach to mobile multimedia computing, future researchers may find 
some of the other optimization aspects and techniques useful in the general area of video 
encoding as well. 
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Preface

End-users of video applications are seeking and receiving increasingly more control 
over their operations. Uploading video to the Internet is only the beginning of a trend in 
which a consumer controls video quality by balancing various other factors. Emerging 
applications will give further control to the end-user, such as for video analysis and 
classification; open-source applications for private party content generation, editing, 
and archiving; and applications for cloud asset management. Thus, it is important to 
understand the concepts and methods for evaluating the various video measures.

Owing to characteristics of the human visual system (HVS), some loss in visual 
quality is perceptible, but much is not. Taking advantage of this fact, we know that digital 
video data can be compressed. In fact, in most digital video applications the video data is 
frequently compressed and coded for easier capture, storage, transmission, and display. 
Typical compression techniques result in some visual quality loss and require the use 
of powerful computing systems. The more the compression, the worse is the decline 
in quality. Therefore, a sweet spot needs to be found in balancing compression with 
perceptible visual quality, with the simultaneous goal of achieving a high coding speed. 
Likewise, optimization of power consumption is essential for getting the job done on 
inexpensive consumer platforms. Here, the goal is to keep the total system cost down 
while delivering a good user experience. 

While tradeoffs can be made now, there needs to be a comprehensive set of 
engineering principles, strategies, methodologies, and metrics to enable greater 
understanding of such tradeoffs. This book addresses this shortfall with an explanatory 
approach, exposing readers to methods of evaluating various coding solutions in terms 
of their potential gains and losses. Further, it enables the reader to differentiate between 
two video coding solutions, and thereby better shape a perception of tradeoff potentials. 
For example, an informed video codec user may consider the requirements of a particular 
video use and opt to select the opportunities offered by the Intel (R) Quick Sync (TM) 
Video and its GPU-acceleration capabilities rather than choosing a competing solution.

One approach for such an evaluation of coding solutions, or a comparative study of 
multiple coding solutions, is to consider ways the video can reach the end-user; doing 
so, though, means comprehending the requirements of various video applications 
that dictate visual quality levels. To achieve acceptable visual quality, then, the 
minimum system capacity must be determined, which impacts performance and power 
requirements. On available platforms with GPU-acceleration capabilities, optimizations 
can be done to meet those requirements, which usually require tradeoffs among video 
measures, obtained by tuning the system and encoding the parameters. This book 
discusses various video measures and the tradeoff opportunities they offer, providing a 
solid background for evaluating various coding solutions.
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Practical video applications include interactive digital video storage—for example, 
in Blu-ray discs; local and remote video playback on computer or television screens; 
video capture and recording; video broadcast over terrestrial, satellite, cable and 
telecommunication channels; video screencast over wireline or wireless channels to 
an appropriate display unit; video streaming over a network; cloud-based on-demand 
video services; video transcoding from one format or resolution to other formats and 
resolutions for burning to disc or for uploading to the Internet; video conferencing, 
video e-mail and other visual communication; video editing or video post-production 
and processing; digital cinema, home television theater, and remote video surveillance; 
telemedicine; electronic news gathering; and so on. Additionally, many more video 
applications are emerging, including virtual reality and synthetic video, video 
composition and analysis, and video classification and retrieval. Users of these existing 
and new video applications can take advantage of the information in this book to tune the 
various parameters to suit their needs.

Benefits to the Readers
The topics covered in this book are valuable for a wide range of engineers, codec 
architects, application developers, system validators, technical marketers, technical 
reviewers, and end-users. They are important in multiple industries and for platforms 
ranging from low-power mobile phones to high-end servers as long as they use video 
coding solutions, be they on the desktop, on cloud-based platforms, or through  
Internet streaming.

This book, therefore, is for anyone who wants to master the video coding concepts 
without sustaining the rigors of the underlying mathematics and signal processing; or 
who wants to tune a video coding solution for a particular video usage while making 
optimal use of available computing platforms and resources. Additionally, anyone who 
wants to assess a newly available video solution or compare and rank different solutions 
will find the material contained herein to be worthy. 

As noted above, no standards exist for tradeoff analysis of methodologies or metrics 
for video codec evaluation. Existing benchmarks primarily deal with either visual 
quality or system performance. Rarely do they consider the power consumption of 
CPU-intensive applications. There are no comprehensive multimedia-centric calibration 
and benchmarking tools for considering visual quality, encoding speed, and power 
consumption simultaneously, particularly on GPU-accelerated platforms. However,  
this book attempts to fill that gap. It will guide all interested parties in avoiding  
erroneous comparisons and in understanding the true strengths and limitations of 
various coding solutions.

Furthermore, performance, power, and quality of video are important subjects both 
in the industry and in academia. To our knowledge, this is the first book to deal with 
tradeoff measures of video coding.

Owing to space limits, the book covers only the concepts, principles, methods, 
and metrics of video compression, quality, performance, and power use.  If you need 
clarification of some information, find any errors, or have questions or comments, feel 
free to contact me at: shahriar.m.akramullah@intel.com. 

http://shahriar.m.akramullah@intel.com
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Organization of the Book
The book comprises nine chapters and an appendix. Chapter 1 introduces some key 
concepts and various considerations for video encoding. It also presents the reasons for 
tradeoff analysis and the challenges and opportunities in doing such an analysis. Chapter 2  
presents the HVS characteristics and how various digital video compression techniques 
can exploit the HVS to achieve compression. It also notes the factors influencing and 
characterizing the compression algorithms. Chapter 3 provides an overview of the most 
popular international video coding standards. Chapter 4 discusses visual quality issues 
and factors affecting the human observer’s perceptual quality of video. Chapter 5 covers 
video coding speed and performance, as well as factors influencing performance, and 
it identifies the coding parameters to be tuned in any attempt to trade performance 
for visual quality. Chapters 6 and 7 present the power consumption aspects of video 
applications, mentioning the challenges especially encountered on low-power platforms 
with limited resources. Chapter 8 discusses the considerations for tradeoff analysis, 
focusing on three major areas of optimization—namely, performance, power, and visual 
quality. Specific examples of tradeoffs employing these measures are  provided. Chapter 9  
summarizes the key points of this book, and proposes some considerations for future 
work. In the appendix, well-known industry benchmarks and interesting references are 
listed, and their limitations are indicated.


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	The Key Concepts
	Digital Video
	Video Data Compression
	Noise Reduction
	Visual Quality
	Performance
	Power Consumption

	Video Compression Considerations
	Varying Uses
	Conflicting Requirements
	Hardware vs. Software Implementations

	Tradeoff Analysis
	Benchmarks and Standards
	Challenges and Opportunities
	The Outcomes of Tradeoff Analysis

	Emerging Video Applications
	Summary

	Chapter 2: Digital Video Compression Techniques
	Network Limits and Compression
	The Human Visual System
	The HVS Models
	The First Approximation Model
	Refined Model Including Nonlinearity
	The Model Implications
	The Model Applications

	Expoliting the HVS

	An Overview of Compression Techniques
	Data Structures and Concepts
	Signals and Sampling
	Common Terms and Notions

	Chroma Subsampling
	4:4:4 to 4:2:0

	Reduction of Redundancy
	Spatial Redundancy
	Temporal Redundancy
	Statistical Redundancy

	Entropy Coding
	Huffman Coding
	Arithmetic Coding


	Compression Techniques: Cost-benefit Analysis
	Transform Coding Techniques
	Discrete Cosine Transform
	Quantization

	Walsh-Hadamard and Other Transforms

	Predictive Coding Techniques
	Lossless Predictive Coding
	Lossy Predictive Coding
	Lossy DPCM
	Temporal Prediction


	Additional Coding Techniques
	Vector Quantization
	Subband Coding

	Rate-Distortion Theory
	Lossy Compression Aspects


	Summary

	Chapter 3: Video Coding Standards
	Overview of International Video Coding Standards
	JPEG
	H.261
	MPEG-1
	MPEG-2
	H.263
	MPEG-4 (Part 2)
	AVC
	Profile and Level
	Picture Structure
	Coding Algorithm
	Intra Prediction
	Inter Prediction
	Transform and Quantization
	Entropy Coding
	Flexible Interlaced Coding
	In-Loop Deblocking
	Error Resilience

	HEVC
	Picture Parititioning and Structure
	Profiles and Levels
	Intra Prediction
	Inter Prediction
	Motion Vector Prediction
	Motion Compensation

	Entropy Coding
	In-loop Deblocking and SAO
	Parallel Processing Syntax and Tools
	Tiles
	Wavefront Parallel Processing
	Slice Segments and Dependent Slices


	International Standards for Video Quality
	VQEG Standards
	IEEE Standard 1180-1990


	Overview of Other Industry Standards and Formats
	VC-1
	VP8
	VP9
	Picture Partitioning
	Bitstream Features
	Residual Coding
	Intra Prediction
	Inter Prediction
	Loop Filter
	Segmentation


	Summary

	Chapter 4: Video Quality Metrics
	Compression Loss, Artifacts, and Visual Quality
	Compression Loss: Quantization Noise
	Quantization of Samples
	Frequency Quantization
	Color Quantization

	Common Artifacts
	Blurring Artifact
	Block Boundary Artifact
	Ringing Artifact
	Aliasing Artifacts
	Jaggies
	Moiré Pattern

	Flickering Artifacts
	Jerkiness
	Telecine Judder

	Other Image Artifacts
	Corruption due to Transmission Error
	Image Noise


	Factors Affecting Visual Quality

	Video Quality Evaluation Methods and Metrics
	Subjective Video Quality Evaluation
	Subjective Quality Evaluation Methods and Metrics
	Absolute Category Rating
	Degradation Category Rating
	Comparison Category Rating
	SAMVIQ
	MOS


	Objective Video Quality Evaluation Methods and Metrics
	Classification of Objective Video Quality Metrics
	Full Reference
	Reduced Reference
	No Reference

	Error Sensitivity Based Approaches
	General Framework
	Limitations
	Peak Signal-to-Noise Ratio
	Applications
	Advantages
	Limitations
	Improvements on PSNR

	Moving Picture Quality Metric

	Structural Similarity Based Approaches
	Structural Similarity Index

	Information Fidelity Based Approaches
	Visual Information Fidelity

	Spatio-Temporal Approaches
	Spatio-Temporal Video SSIM

	Saliency Based Approaches
	Saliency-based Video Quality Assessment

	Network-Aware Approaches
	Modified PSNR

	Noise-Based Quality Metrics
	Noise Quality Measure

	Objective Coding Efficiency Metrics
	BD-PSNR, BD-SSIM, BD-Bitrate
	Advantages
	Limitations

	Generalized BD-PSNR
	Limitations


	Examples of Standards-based Measures
	Video Quality Metric
	ITU-T G.1070 and G.1070E
	ITU-T P.1202.2



	Measurement of Video Quality
	Subjective Measurements
	Objective Measurements and Their Applications

	Parameters to Tune
	Parameters that Impact Video Quality
	Tradeoff Opportunities

	Summary

	Chapter 5: Video Coding Performance
	CPU Speed and its Limits
	Motivation for Improvement
	Performance Considerations
	Maximum Resource Utilization
	Resource Specialization
	Video Parameters Tuning
	Factors Determining Encoding Speed
	System Configurations
	The Nature of Workloads
	Encoding Tools and Parameters
	Independent data units
	GOP structure
	Bit rate control
	Multiple reference pictures
	R-D Lagrangian optimization
	Frame/field mode for interlaced video
	Adaptive deblocking filter

	Video Complexity and Formats
	GPU-based Acceleration Opportunities



	Performance Optimization Approaches
	Algorithmic Optimization
	Fast Algorithms
	Fast Transforms
	Fast Intra Prediction
	Fast Motion Estimation
	Fast Mode Decision
	Fast Entropy Coding

	Parallelization Approaches
	Data Partitioning
	Task Parallelization
	Pipelining
	Data Parallelization
	Instruction Parallelization
	Multithreading
	Vectorization


	Compiler and Code Optimization
	Compiler optimization
	Code optimization

	Overclocking
	Performance Bottlenecks

	Performance Measurement and Tuning
	Considerations
	Performance Metrics
	Tools and Applications
	V Tune Amplifier
	GPUView


	Summary

	Chapter 6: Power Consumption by Video Applications
	Power Consumption and Its Limits
	Media Workloads on Consumer Platforms
	Media Usages

	Power-Aware Designs
	Power-Management Considerations
	ACPI and Power Management
	ACPI Power States
	Global States
	Device States


	Power Management by the Operating System
	Linux Power Management
	The X Window
	Window Managers
	Intel Embedded Graphics Driver

	Windows Power Management
	Power Requirements
	Power Policy
	The Windows Driver Model
	The Windows Driver Framework
	Device Power Management in Windows 8
	Dealing with Power Requests


	Power Management by the Processor
	CPU States ( C -states)
	Performance States ( P -states)
	Turbo
	Thermal States ( T -States)

	The Voltage-Frequency Curve

	Power Optimizations
	Architectural Optimization
	Hardware-Software Partitioning
	Dynamic Voltage and Frequency Scaling
	Power Gating
	Clock Gating
	Slice Gating
	Use of Low-level Cache

	Algorithmic Optimization
	Computational Complexity Reduction
	Selecting Efficient Data types
	Code Parallelization and Optimization

	Memory Transfer Reduction

	System Integration Optimization
	System Operating Point on the P-F Curve
	Intelligent Scheduling
	Duty Cycle Reduction

	Application-Level Optimization
	Context Awareness by the Application
	Applications Seeking User Intervention


	Power Measurement
	Methodology
	AC Power Measurement
	DC Power Measurement

	Considerations in Power Measurement

	Tools and Applications
	An Example DC Power-Measurement System
	Software Tools and Applications
	PowerTop
	PowerCfg
	PwrTest
	Perfmon and Xperf
	Joulemeter
	Intel Power Gadget
	Intel Power Checker
	Intel Battery Life Analyzer
	Intel Graphics Performance Analyzer
	GPU-Z and HWiNFO
	Power Virus


	Summary

	Chapter 7: Video Application Power Consumption on Low-Power Platforms
	The Priorities for Low-Power Devices
	Typical Media Usage on Low-Power Platforms
	Video Playback and Browsing
	Video Recording
	Video Delivery over Wireless Display and Miracast
	Videophone or Videoconferencing

	System Low-Power States
	Drawbacks of the ACPI Simple Model
	Connected Standby and Standby States
	Combination of Low-Power States

	Power Management on Low-Power Platforms
	Special Hardware for Power Management
	Power Management Circuits
	Power-Management Controller

	Display Power Management
	Panel Self-Refresh
	Display Power-Saving Technology
	Content-Adaptive Backlight Control
	Ambient Light Sensor


	Low-Power Platform Considerations
	Software Design
	Intelligent Power Awareness
	Quality Requirements
	Hardware-Accelerated Blocks
	Energy-Efficient User Interfaces
	Code Density and Memory Footprint
	Optimization of Data Transfer
	Parallel and Batch Processing

	Architectural Matters
	Combined System Components
	Optimized Hardware and Software Interaction
	Migrating the Workload from General-Purpose to Fixed-Purpose Hardware
	Power Sharing Between the CPU and the GPU
	Using Low-Power Core, Uncore, and Graphics
	Power reduction of RAM/ROM periphery and core array
	Reduce V DD during sleep mode to manage leakage
	Independent memory bank collapse for large high-density memories
	Advanced low-power clocking and clock tree optimization
	Clock domain partitioning
	Independent frequency clock domains
	Fine-grained tuning of clock gating

	Using Power Domains or Power Islands
	Independent voltage scaling for active and sleep modes
	Power gating across power domains

	Offering Power-Aware Simulation and Verification
	Tradeoffs among power, area, and timing
	Comparative analysis of low-power solutions



	Power Optimization on Low-Power Platforms
	Run Fast and Turn Off
	Activity Scheduling
	Reducing Wake-ups
	Burst Mode Processing
	Improving CPU and GPU Parallelism
	GPU Memory Bandwidth Optimization
	Display Power Optimization
	Storage Power Optimization

	The Measurement of Low Power
	Processor Signals for Power
	Media Power Metrics

	Summary

	Chapter 8: Performance, Power, and Quality Tradeoff Analysis
	Considerations in a Tradeoff Analysis
	Types of Tradeoff Analyses
	Effects of Parameter Tuning
	Optimization Strategies

	The Performance–Power Tradeoff
	Case Study

	The Performance–Quality Tradeoff
	Case Study I
	Case Study II

	The Power–Quality Tradeoff
	Case Study

	Summary

	Chapter 9: Conclusion
	Key Points and Observations
	Considerations for the Future
	Enhanced Tools and Metrics for Analysis
	Improved Quality and Performance
	Emerging Uses and Applications
	Beyond Vision to the Other Senses


	Appendix A: Appendix
	MSU Codec Comparison
	Industry Benchmarks
	MobileMark 2012
	PCMark and PowerMark
	GFXBench

	Suggested Reading

	Index



