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Preface

The summer of 2013 was very good; we found a series of papers published by
Gregory D. Smith and his coauthors. We spent several weeks trying to understand
the paper [35], which introduces and carefully studies a stochastic model of calcium
release from internal stores in cells. Then we found a whole series of papers
[36, 57, 102, 103], and the results more or less kept us busy for months. The
beauty of the theory presented in these papers is that they introduce a systematic
way of analyzing models that are of great importance for understanding essential
physiological processes.

So what is this theory about? It has been fairly well known for a while that
stochastic models are useful in studying the release of calcium ions from internal
storage in living cells. Some authors even argue that this process is stochastic. That
is debatable, but it is quite clear that stochastic models are well suited to study such
processes. Stochastic models are also very well suited to study the change of the
transmembrane potential resulting from the flow of ions through channels in the cell
membrane. Both these processes are of fundamental importance in understanding
the function of excitable cells. In both applications, ions flow from one domain to
another according to electrochemical gradients, depending on whether the channel
is in a conducting or nonconducting mode. The state of the channel is described by
a Markov model, which is a wonderful tool used to systematically represent how an
ion channel or a receptor opens or closes based on the surrounding conditions. In
this context, the contribution of the papers listed above is to present a systematic way
of analyzing the stochastic models in terms of formulating deterministic differential
equations describing the probability density distributions of the states of the Markov
models.

As pointed out in the papers by Smith et al., this approach is not really new; the
authors cite a number of earlier papers and we have been quite influenced by the
paper of Nykamp and Tranchina [63] because of its elegant way of developing the
deterministic differential equation describing the probability density functions of
the states involved in the stochastic process. The key observation is that we can
study stochastic release in two fundamentally different ways: (1) We can run a
number of simulations using a stochastic model. Because of the stochastic state
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vi Preface

of the channel, the results will differ, but we can gather numerous results and
summarize them in terms of histograms describing the probability density functions
of being in a given state. (2) We can find a deterministic partial differential equation
modeling the probability density functions and obtain the distributions by solving
this system numerically. By increasing the number of simulations in (1) and by
refining the numerical discretization in (1) and (2), we observe that the results of the
two methods converge to the same distributions. Therefore, we have a very powerful
tool for analyzing the stochastic models: We can simply solve deterministic partial
differential equations to find the probability density functions. In some simple cases,
the deterministic partial differential equations can be studied analytically and no
numerical solution is needed. The relation between the stochastic simulation and the
solution of the deterministic partial differential equations will be studied repeatedly
in these notes.

More recently, we found the book by Bressloff [6] to be an astonishing source of
material concerning stochastic processes in cells. It will clearly become a standard
reference in the field together with its companion volume [7]. The theory of
stochastic processes is also introduced in a most readable manner by Jacobs [39],
and elements of the theory are covered in the monumental work of Keener and
Sneyd [43, 44].

One reason for our enthusiasm in finding the papers listed above is that, for
a while, we have been trying to understand how to theoretically devise suitable
drugs for mutations affecting both ion channels and receptors. It has been clear for
some time that the effect of mutations on ion channels and various receptors can
be successfully modeled using Markov models to describe the state of the channel.
A comprehensive review is presented by Rudy [74] (see also Rudy and Silva [75]).
Clancy and Rudy and their coauthors (e.g., [16]) have also shown how to use Markov
models to describe the function of various drugs aimed at repairing the function
of mutated channels or receptors. This is very useful, since it allows simulation
based on stochastic models and the models can also be interpreted as continuous
representations for whole cell simulations. However, analysis of the Markov models
is taken to a new level by the introduction of probability density functions defined
in terms of deterministic partial differential equations.

Our approach has been as follows: Let the properties of the drug be free
parameters and use a setup based on Markov models to find the best possible drugs.
This problem is much easier to approach using the results of Smith et al. because
it amounts to understanding how the solution of the extended system of partial
differential equations (including the effect of the drug) behaves as a function of
the parameters characterizing the drug. Typically, we will end up comparing the
solutions of three systems of partial differential equations: (1) a system modeling
the dynamics of healthy (wild type) cells, (2) a system modeling the dynamics of
non-healthy (mutant) cells, and (3) a system modeling the dynamics of non-healthy
cells with a drug added to repair the effect of the mutation. The problem we would
like to address is how to adjust the parameters describing the drug such that the
solution of (3) is as close to the solution of (1) as possible. This turns out to be
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much easier using a deterministic system of partial differential equations describing
the probability density functions than using stochastic simulations.

We have decided to present our results in the form of lecture notes. There are
several reasons for this choice. First, we strongly believe that the theory described
above is very useful, and we want to help make it as comprehensible as possible.
That is more or less impossible to do in scientific papers because their focus must
be on new results and not on careful derivations of established insights. A second
reason is that the problem of understanding cell physiology and how drugs affect
their function is inherently multidisciplinary, and we therefore write these notes in
such a way that we hope readers who are not primarily applied mathematicians can
understand. We also hope to give applied mathematicians glimpses of interesting
problems of great importance.

As mentioned above, these notes aim to explain known theory that we think
can be useful to researchers working on a mathematical understanding of living
cells. There are also new results. We show in some detail how to derive formulas
describing the optimal properties of theoretical drugs. Most of the results are stated
for rather simple models, but it is quite clear that the methods can be extended to
more intricate cases.

The million dollar question when you read these notes is, of course, can these
drugs actually be created? Do they exist? We do not know. We know that Markov
models have been used to successfully represent the actions of drugs, but is it
possible to go the other way and first compute what properties the drug should
have and then create it? We have found no clear answers in the literature or through
discussions with colleagues, so we decided to just formulate these ideas as precisely
as possible in the hopes that someone will find them useful. We have tried to
carefully underline in the notes that we are discussing theoretical drugs, and we
state in many places that this work is about possible drugs.
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Chapter 1
Background: Problem and Methods

Drugs are generally devised to alter the function of cells in a favorable manner. The
actions of drugs can in some cases be represented by mathematical models often
phrased in terms of differential equations. Our aim in these notes is to study such
models and show how the effect of drugs can be optimized. More precisely, drugs
are represented in terms of a set of parameters and we show how optimal drugs can
be characterized by tuning the parameters. Our approach is to consider models of
a healthy cell and a non-healthy cell and a model of a non-healthy cell to which a
drug has been applied. The problem we are trying to resolve is how to tweak the
parameters of the drug such that the drugged non-healthy cell behaves as similarly
to the healthy cell as possible.

We will use this approach to address two processes of immense importance in
physiology: (1) voltage-gated ion channels and (2) calcium release from storage
structures inside the cell. We will also study combinations of these processes
occurring in a space in which the release through voltage-gated ion channels
interacts with calcium release from the internal storage structures.

Both processes can be affected by disease and by mutations. In these notes we
will concentrate on wild type (healthy) cells and mutant cells. We will assume that
the behavior of the wild type cell can be described in terms of Markov models and
that a Markov model can represent the effects of the mutation.

1.1 Action Potentials

Suppose a group of engineers were given the task of developing a pump weighing
about 300 g that is supposed to work uninterruptedly and basically without
maintenance for about 80 years, pump about 7,000 l of blood every day, and beat
every second. The group would—and should—agree that the task is impossible but,

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_1
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2 1 Background: Problem and Methods

Fig. 1.1 Action potentials obtained by measurements taken from Jost et al. [40]

under pressure from their employer, they would probably agree that the mechanism
would have to be extremely simple. Fortunately for us all, the pump has already
been developed by evolution, but it is very far from being simple; it is an extremely
complex piece of machinery, so complex that how it works is still not completely
understood. For an intriguing illustration of this, the reader is encouraged to consult
the fascinating joint paper by Lakatta and DiFrancesco [47] in which they debate
the following fundamental question: How is the heartbeat initiated? It is remarkable
that such a basic question is still open. Two plausible and completely different
mechanisms are discussed, with supporting experimental data and mathematical
models for both. The interested reader can also consult Li et al. [50] for an
introduction to this discussion.

Even if the exact mechanism for initiating the heartbeat is still under debate, it is
completely clear that every normal heartbeat is initiated in the sinoatrial node. From
that node, an electrochemical wave spreads throughout the cardiac muscle. With
every beat, billions of cardiac cells undergo an action potential that is a characteristic
temporal change of the transmembrane potential of the cell V , defined by

V D Vi � Ve;

where Vi and Ve are the intracellular and extracellular electrical potentials, respec-
tively.

In Fig. 1.1 we show an action potential obtained by measurements. The record-
ings are taken from the paper by Jost et al. [40]. Mathematical models have been
used to represent action potentials ever since the groundbreaking paper by Hodgkin
and Huxley [33] from 1952. The first models of cardiac cells were developed by
Noble [61, 62] in 1960–1962. In Fig. 1.2 an action potential is presented based on
the mathematical model of ventricular cardiac cells developed by Grandi et al. [29].
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Fig. 1.2 Action potential
computed using the model of
Grandi et al. [29]
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When an electrical wave of the increased transmembrane potential approaches
a cell, the cell’s transmembrane potential is elevated above a critical value. This
elevation leads to the opening of sodium channels, resulting in a huge influx of
sodium ions into the cell. This rapid process dramatically increases the transmem-
brane potential and is referred to as the upstroke of the action potential. When
the transmembrane potential increases, voltage-gated calcium channels in the cell
membrane open and calcium ions flow into the cell because of the huge difference in
concentrations; the extracellular concentration of calcium ions is much greater than
the intracellular (cytosolic) concentration when the cell is at rest. The increased
concentration of calcium ions within the cell triggers the opening of channels to
internal stores and a great deal more calcium floods into the cytosol. The increased
level of calcium in the cytosol leads to the cell’s contraction, which is basically
the main goal of the whole operation. Then everything returns to the resting state:
Calcium is pumped out of the cell and into internal stores—every cell prepares for
a new wave.

Even if this process is amazingly stable and versatile and a masterpiece by any
standard in the universe, it is not infallible. It can be harmed by disease, by the side
effects of drugs, and by mutations. In these lecture notes, we shall focus on the effect
of mutations and search for theoretical drugs that can, in principle, repair the effect
of dangerous mutations. The study of mutations affecting cardiac cells is a huge
field and we will simply look at prototypical models that capture the characteristic
effects of well-known mutations. Our main objective is to present methods for
computing characterizations of optimal theoretical drugs using prototypical models
of ion release.

Most of these lecture notes will be focused on what happens in single ion
channels. However, in the final chapter we will return to the action potential of
the whole cell.



4 1 Background: Problem and Methods

1.2 Markov Models

The cell membrane is densely populated with ion channels that can open and close
to control the flow of ions across the cell membrane. In Fig. 1.3, we show the
recordings of a single channel and we note the frequent transitions between the open
and closed states and how the frequency changes with the transmembrane potential.
It is commonly believed that the state of a single channel is adequately modeled
using a stochastic approach. Actually, it is common to claim that the process is
stochastic. It is hard, if not impossible, to prove that something is stochastic, but for
modeling purposes it suffices to state that a stochastic approach leads to reasonable
models of the gating dynamics.

A Markov model in its simplest form is usually written as the chemical reaction
scheme

C
koc

�
kco

O; (1.1)

where koc and kco are reaction rates that may depend on the transmembrane potential.
We will return to the interpretation of this notation many times, but let us just
roughly describe what it means. Suppose at a given time t that the gate is open so
the channel is in state O and suppose that �t is a very short time interval. Then (1.1)
states that the probability that the channel changes state from open to closed is given
by koc�t. Similarly, if the channel is closed (C), the probability for a change to the
open state is given by kco�t.

More formally, we let S D S.t/ denote a random variable representing the state
of the channel at time t; so S 2 fO; Cg. Then the transition rates koc and kco give the
probability of changing state during a small time interval �t W

koc�t D Prob ŒS.t C �t/ D C j S.t/ D O.t/�

Fig. 1.3 Single-channel recording of a sodium current (from Shaya et al. [81]). The levels of the
current indicate whether the channel is closed (as indicated in the figure) or open. The probability
that the channel is open is low at �60 mV, higher at �40 mV, and even higher at �20 mV
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Fig. 1.4 The sodium channel model of Clancy et al. [15]; O is the open state, C1, C2 and C3 are
the closed states, while the rest of the states represent different kinds of inactivation

and

kco�t D Prob ŒS.t C �t/ D O j S.t/ D C.t/� ;

respectively. With this notation, we easily see that we can play with the properties
of the channels by changing the values of the parameters koc and koc. We also see
that we can make the reaction scheme dependent on the transmembrane potential V
(mV) by allowing the reaction terms to depend on V:

The case of just one closed and one open state is particularly simple but it is still
the base model and it is frequently used in modeling ion channels. However, much
more intricate models have been derived and one is shown in Fig. 1.4. It represents a
Markov model with one open state, three closed states, and five inactivated1 states.

The popularity of these models stems from the fact that it is possible to adjust
the parameters involved to obtain a model that reflects data quite well. However,
it should also be mentioned that models can be so complex that it is virtually
impossible to uniquely determine all the parameters involved. In these notes,
we shall confine ourselves to relatively simple Markov models but the methods
we describe can be applied, at least in principle, to Markov models of higher
complexity.

1.2.1 The Master Equation

From the Markov model written on the form (1.1), we can derive an equation giving
the evolution of the probability of the two states, open (O) and closed (C). Let o D
o.t/ be the probability that the channel is in the open (O) state at time t and let
c D c.t/ denote the probability that the channel is closed (C). We assume that the
probabilities o and c are known at time t and then use the Markov model (1.1) to
compute the probabilities at time t C �t. Here �t is assumed to be so small that the

1Inactivated states are discussed in Chap. 11.
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channel changes state at most once during the time step from t to t C �t. Then the
scheme (1.1) states that the open probability at time t C �t is given by

o.t C �t/ D Prob Œ.S.t/ D C/ and .C ! O during �t/� (1.2)

C Prob Œ.S.t/ D O/ and not.O ! C during �t/� (1.3)

D c.t/ � .�tkco/ C o.t/ � .1 � �tkoc/ (1.4)

so

o.t C �t/ D o.t/ C �t.kcoc.t/ � koco.t//:

From this equation, we obtain

o.t C �t/ � o.t/

�t
D kcoc.t/ � koco.t/;

and, therefore, by passing to the limit �t ! 0; we get the differential equation

o0.t/ D kcoc.t/ � koco.t/: (1.5)

Similarly, we find that the probability of being in the closed state evolves according
to

c0.t/ D koco.t/ � kcoc.t/: (1.6)

Since we are dealing with probabilities, it is reasonable to assume that the initial
conditions add up to one (the channel is either open or closed) and therefore, by
adding the equations above, we find that

o.t/ C c.t/ D 1

for all time. Hence the variable c in (1.5) can be replaced by 1 � o and the
system (1.5,1.6) can be written as a scalar equation of the form

o0.t/ D .kco C koc/

�
kco

kco C koc
� o .t/

�
: (1.7)

Here we see that

o D kco

kco C koc
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Fig. 1.5 Markov model
including three possible
states: open (O), closed (C),
and inactivated (I)

I

C O

koi

koc

kiok ic
kco

k ci

is a stable equilibrium solution. Furthermore, if we know that the channel is closed
initially, that is, o.0/ D 0; we get the solution

o.t/ D kco

kco C koc

�
1 � e�.kcoCkoc/t

�

and we notice that the equilibrium is reached more quickly as the sum of the rates
kco C koc increases.

1.2.2 The Master Equation of a Three-State Model

The development of the master equation for the two-state model above can be
carried out for any Markov model. For instance, if we consider the three-state
Markov model shown in Fig. 1.5, we realize that the probabilities of the open
(O), closed (C), and inactivated (I) states are governed by the following system
of ordinary differential equations:

o0 D kioi C kcoc � .koi C koc/ o;

c0 D koco C kici � .kco C kci/ c; (1.8)

i0 D koio C kcic � .kio C kic/ i;

Since

i D 1 � .o C c/ ; (1.9)

we have the following 2 � 2 system:

o0 D kio C .kco � kio/ c � .koi C koc C kio/ o; (1.10)

c0 D kic C .koc � kic/ o � .kco C kci C kic/ c: (1.11)

We will now show, using a numerical computation, that the solution of the
system (1.10,1.11) coincides with the average result of Monte Carlo simulations
using the Markov model shown in Fig. 1.5 as the number of Monte Carlo runs goes
to infinity.
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1.2.3 Monte Carlo Simulations Based on the Markov Model

Before we compare the two computational schemes, let us briefly describe how the
Monte Carlo simulation can be implemented. We choose a small timestep �t and
we assume that the state at time t D tn D n�t; where n is a non-negative integer, is
either O, C, or I. For simplicity, we describe how the computation proceeds in the
case of the channel being in the open (O) state at time t D tn. In order to decide the
state at time tnC1 D tn C �t; we divide the unit interval into three non-overlapping
parts: Ac D Œ0; koc�t/ ; Ai D Œkoc�t; koc�t C koi�t/ ; Ao D Œkoc�t C koi�t; 1� :

Then, at time tnC1 D tn C �t; we can update the state of the channel based
on a random number rn in the unit interval drawn from a uniform distribution.
Specifically, if rn 2 Ao; the channel remains open; if rn 2 Ac; the state of the
channel changes from open to closed; and, finally, if rn 2 Ai; the state of the channel
changes from open to inactivated.

Similar steps are straightforward to devise for the case of the channel being in
the closed or inactivated states at time t D tn:

1.2.4 Comparison of Monte Carlo Simulations and Solutions
of the Master Equation

In Fig. 1.6 we compare the probabilities computed by solving the master equa-
tion (1.10,1.11) (red lines) and by Monte Carlo simulations using the Markov
model as described above. In the simulations we have used the initial conditions
o.0/ D i.0/ D 0 and c.0/ D 1 and the rates used in the computations are given
in Table 1.1. As the number of Monte Carlo simulations increases, we see that
the average approaches the solution of the continuous master equation. In these
computations the master equation was solved using the function ODE15s in Matlab.

1.2.5 Equilibrium Probabilities

The equilibrium state of the reaction shown in Fig. 1.5 is characterized by the
equations

kcoc D koco;

koio D kioi; (1.12)

kici D kcic;
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Fig. 1.6 Comparison of the solution of the master equation (1.10,1.11) (red lines) and the results
of Monte Carlo simulations based on the Markov model given in Fig. 1.5. The time step used in
the Monte-Carlo simulations was �t = 0.01 ms in all the panels and the simulations were run for
10 ms. The number of Monte Carlo simulations increases from 100 (top) to 10,000 (bottom)

Table 1.1 Rates (in 1/ms) of the Markov model given in Fig. 1.5 used in the computations
presented in Fig. 1.6

koi kio kco koc kic kci

0.5 0.3 0.6 0.9 0.72 0.8

where o; c; and i denote the probabilities of the channel being open, closed, or
inactivated, respectively. It follows that

c D koc

kco
o

and

i D koi

kio
o:
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By using the fact that o C c C i D 1; we obtain

�
1 C koc

kco
C koi

kio

�
o D 1

and therefore

o D 1

1 C koc
kco

C koi
kio

;

c D
koc
kco

1 C koc
kco

C koi
kio

;

i D
koi
kio

1 C koc
kco

C koi
kio

:

For the particular rates given in Table 1.1, we get the following equilibrium
probabilities: o D 0:24; c D 0:36, and i D 0:4.

1.2.6 Detailed Balance

In order to compute the equilibrium solution of (1.8) above, we assumed that each
of the sub-transitions of the diagram given in Fig. 1.5 was in equilibrium. More
precisely, we assumed that

kcoc D koco; koio D kioi; and kici D kcic:

These three relations yield

kcokoikic D kcikiokoc: (1.13)

This relation is referred to as the condition of detailed balance. In these notes, we
will always assume that Markov models satisfy this condition. More generally, the
product of the rates in a loop (e.g. the I-O-C loop of Fig. 1.5) in the clockwise
direction equals the product of the rates in the counterclockwise direction. Under
this assumption, the equilibrium solution can always be computed by the method
indicated above. We will use the same technique many times in these notes.
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1.3 The Master Equation and the Equilibrium Solution

We have seen that the Markov model written in the form

C
koc

�
kco

O (1.14)

leads to a master equation of the form

o0.t/ Dkcoc.t/ � koco.t/; (1.15)

c0.t/ Dkoco.t/ � kcoc.t/: (1.16)

Since o C c D 1; we can reduce the system to the scalar equation,

o0.t/ D .kco C koc/

�
kco

kco C koc
� o .t/

�

and we readily see that the equilibrium solution is given by

o D kco

kco C koc
:

Exactly the same steps can be followed for the three-state Markov model illustrated
in Fig. 1.5. The associated Markov model reads

o0 D kioi C kcoc � .koi C koc/ o

c0 D koco C kici � .kco C kci/ c

i0 D koio C kcic � .kio C kic/ i

and since

i D 1 � .o C c/ (1.17)

we arrive at the following 2 � 2 system:

o0 D kio C .kco � kio/ c � .koi C koc C kio/ o;

c0 D kic C .koc � kic/ o � .kco C kci C kic/ c:

The equilibrium solution is now defined by a 2 � 2 linear system of equations of the
form

Bq D b; (1.18)
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where

B D
�

koi C koc C kio kio � kco

kic � koc kco C kci C kic

�
; q D

�
o
c

�
, and b D

�
kio

kic

�
:

By solving this linear system and using (1.17), we find (as above) that

o D K�1; c D koc

kco
K�1; i D koi

kio
K�1;

where

K D 1 C koc

kco
C koi

kio
:

1.3.1 Linear Algebra Approach to Finding the Equilibrium
Solution

Calculations to find the equilibrium solution will be done repeatedly in these
notes. We will always use the special structure of the Markov model to derive the
equilibrium solution, but it also worth noting that this can be done by solving a linear
system. The master equation associated with a Markov model of the form (1.14) or
of the form given in Fig. 1.4 can always be written in the form

p0 D Ap;

where p is a vector containing the probabilities of occupying the different states of
the Markov model. Since the sum of the probabilities adds up to one, the number of
unknowns can be reduced by one and the system takes the form

q0 D b � Bq:

Therefore, the equilibrium solution can be found by solving the linear system (1.18).
Instead of reducing the number of unknowns, we can also address the problem

more directly by computing the eigenvector associated the eigenvalue � D 0. For
instance, using Matlab we can put z D null.A/ and then define

p D zP
i zi

where zi denote the components of the vector z.
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1.4 Stochastic Simulations and Probability Density Functions

Given the Markov model, defining a stochastic differential equation describing
changes of the transmembrane potential due to the opening and closing of the
channel is quite straightforward. Additionally, based on the stochastic differential
equation, we will derive deterministic differential equations describing the probabil-
ity density functions of the states involved in the Markov model. We thus have two
ways to analyze models of ion channels: We can either run numerous Monte Carlo
simulations using the stochastic differential equation or solve the deterministic
differential equations defining the probability density functions. Both these methods
will be used throughout the notes. Although one method is the average of the
other, we will see that both provide distinct insights useful to understanding the
mechanisms under consideration.

1.5 Markov Models of Calcium Release

The contraction of the heart is a collective and very well-coordinated effort achieved
in a collaboration involving billions of cells. For each of these cells, the contraction
depends on the release of a massive amount of calcium from internal storage. The
release takes place in many thousands of release units within each cell and the state
of the release process is believed to be adequately modeled using Markov models.

We will study this release in several steps and we start by assuming that the
only varying concentration is in the dyad and that the reaction rates of the Markov
model vary only with this single concentration. This case will be studied in great
detail and we will explain how drugs can be theoretically constructed to repair
mutations affecting the release mechanism. The analysis is based on a scalar
stochastic differential equation representing the concentration of calcium in the
dyad. The properties of this model will be analyzed using Monte Carlo simulations.
Furthermore, we will derive a system of deterministic partial differential equations
describing the probability density function of the states of the Markov model.

It is more common to divide the calcium concentration into two values—not
only one—which leads to 2 � 2 stochastic differential equations to be analyzed.
This model will also be analyzed using Monte Carlo simulations and by a 2D
deterministic system of partial differential equations representing the probability
density functions of the states of the Markov model.

Next, we shall couple the calcium concentration to the voltage-gated release of
calcium through so-called L-type calcium channels. This model will allow us to
study optimal drugs, combining the effect on calcium release and L-type channels.
The balance of these mechanisms rules the calcium-induced calcium release that is
at the crux of cardiac contraction. The calcium-induced calcium release model is
stated in terms of a 2 � 2 model of stochastic equations where the transmembrane
potential V is included as a parameter in the model. The associated model for the
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probability density functions is given by a 2D system of partial differential equations
where the transmembrane potential is again included as a parameter.

1.6 Markov Models of Ion Channels

After analysis of the calcium release we move on to study voltage-gated ion
channels. We will immediately see that in mathematical terms the problem is very
similar to the calcium release problem. For the ion channel case, however, the
stochastic equation is one-dimensional and so is the associated deterministic partial
differential equation. The basic Markov model is still based on the open and closed
states, but we will also see that an inactivated state plays a central role. Optimal
theoretical drugs will be derived and we will observe that they work nicely.

1.7 Mutations Described by Markov Models

A trademark of mutations affecting ion channels and calcium release mechanisms is
that they change the open probability and possibly also the mean open time and other
characteristics of the channels involved. We will show below that the equilibrium
open probability of the channel described by the Markov model of the form (1.1) is
given by

o D kco

kco C koc

and the mean open time is given by

�o D 1

koc
:

The concept of mean open time will be discussed in Chap. 13 and the formula
�o D 1=koc will be derived in that chapter. Given these formulas, it is straightforward
to see that the effect of mutations affecting the open probability or the mean open
time can be modeled by changing the parameters of the Markov model. In these
notes we shall focus on rather simple changes in the model but, again, the techniques
can be generalized to more intricate cases.

Two examples of the effect of mutations are given in Figs. 1.7 and 1.8. Figure 1.7
shows recordings of the open and closed states for the wild type and the V2475F
mutation of the ryanodine receptor (RyR). The graphs in Fig. 1.8 show similar
results for the voltage-gated sodium channel when the wild type recordings are
compared with recordings from a mutant (�KPQ) channel.
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Fig. 1.7 Single-channel recordings of wild type (black) and mutant (red) cardiac RyR channels.
The open probability and the mean open time are significantly increased for the mutant (V2475F)
case. The graphs are from Figure 3 of Loaiza et al. [52]

Fig. 1.8 Sodium current recordings taken from Figure 4 of Chandra et al. [13]: A represents the
wild type and B represents the �KPQ mutant. The recordings are based on 200-ms depolarizing
pulses from �100 to �40 mV

1.8 The Problem and Steps Toward Solutions

Assume that experimental data on wild type cells can be used to identify the
parameters of a Markov model faithfully describing the stochastic properties of the
wild type channel and that experimental data on mutant cells can be used to establish
a Markov model of similar structure representing the stochastic properties of the
mutant channel. Furthermore, we assume that the Markov model of the mutant can
be extended to account for the effect of a theoretical drug. The problem is then to
compute the reaction rates of the drug such that, after the drug is applied, the mutant
channel behaves as similarly to the wild type channel as possible. The essence of
these notes is to show how to solve this problem mathematically; we show how
to compute an optimal theoretical drug. To clarify what we mean by an optimal
theoretical drug, we will give a few examples that will be discussed later and then
we will briefly discuss the concept of a theoretical drug more generally.
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1.8.1 Markov Models for Drugs: Open State and Closed State
Blockers

By using the notation of chemical reactions introduced above, we can explain the
problem in a bit more detail. The reaction scheme for an open state blocker can be
illustrated as follows:

C
koc

�
kco

O
kbo

�
kob

B: (1.19)

For theoretical purposes, this drug is well defined, provided that we know the values
of the parameters kob and kbo. We will often assume that these parameters are
constants. As mentioned above, one example of a problem we want to overcome is
mutations leading to an increased open probability; so either the release mechanism
is too prone to releasing calcium from internal storage or the ion channels are too
prone to allowing current to flow through the cell membrane.

Since the problem involves too high of an open probability, it seems reasonable
to try to fix the open probability by extending the reaction scheme and directly
affecting this state, as illustrated in the reaction scheme above. By allowing the
probability to be moved from O to B, the open probability will be reduced and thus
the goal will be achieved. This reasoning seems impeccable and it seems much less
intuitive to use a closed state drug of the form

B
kcb

�
kbc

C
koc

�
kco

O: (1.20)

We will see, however, that both open and closed state blockers may be optimal,
depending on the nature of the mutation.

1.8.2 Closed to Open Mutations (CO-Mutations)

We have seen that for a Markov model written in the form

C
koc

�
kco

O; (1.21)

the equilibrium open probability is given by

o D kco

kco C koc
D 1

1 C koc
kco
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and the mean open time is given by

�o D 1

koc
:

A mutation leading to an increased open probability can be represented by a Markov
model written in the form

C
koc

�
�kco

O; (1.22)

where � � 1 will be referred to as the mutation severity index and we always use
the convention that � D 1 refers to the wild type case. At this point, it is useful
to recall the interpretation of a scheme of this form. In particular, it is useful to
note that the probability of going from the closed state (C) to the open state (O)
during a time step �t is now given by ��tkco, compared to �tkco for the wild type
channel. It is pretty clear that increasing the mutation severity index will increase
the probability of being in the open state and this is also reflected by the equilibrium
open probability given by

o� D 1

1 C koc
�kco

;

which clearly increases as a function of the mutation severity index �. It is also
interesting to observe that, for this mutation, the mean open time is unchanged. We
will refer to a mutation of this form as a CO-mutation and we will show repeatedly
that, for CO-mutations, closed state blockers are theoretically optimal.

1.8.3 Open to Closed Mutations (OC-Mutations)

Another way to introduce a mutation that increases the open probability is to
decrease the rate from open to closed. This can be written as follows:

C
koc=�

�
kco

O; (1.23)

where, again, � � 1 is the mutation severity index and � D 1 represents the wild
type. The probability of leaving the open state is now reduced and this will lead
to an increased open probability. In particular, the equilibrium open probability is
again given by

o� D 1

1 C koc
�kco

;
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as above, but now the mean open time changes; it is given by

�o D �

koc

and thus increases with the mutation severity index.
We will refer to a mutation of this form as an OC-mutation and we will show

that, for such mutations, open state blockers are theoretically optimal.

1.9 Theoretical Drugs

The concept of a theoretical drug is essential in these notes. Basically, we will refer
to a theoretical drug2 as a purely mathematical construction that may or may not
have a viable pharmaceutical counterpart. A mental image of how the drug may
work is given in Fig. 1.9; the figure is taken from Starmer [87]. With no drug
involved, the channel can take on two conformational states: the open state (O),
when ions can flow freely through the channel, and the closed state (C), when there
is no flow of ions through the channel. An open blocker can change the open state
such that there is no flow through the channel. The reaction scheme of the situation
described in the figure is given by

C
koc

�
kco

O
kbo

�
kob

B: (1.24)

Fig. 1.9 Illustration of a blocker associated with the open state. In the leftmost case the channel
is closed and no ions can pass through it. In the center case, the channel is open and ions may flow
freely. In the rightmost case the channel is blocked by the drug and no ions can pass through it.
The figure is taken from Starmer [87]

2We also use the terms mathematical drug, numerical drug, and so forth interchangeably with
theoretical drug.
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where we again note that the properties of the theoretical drug are solely given by
the values of the rates kob and kbo.

This way of describing the effect of a drug has been used for many years, see
e.g. Hille [31] or Hondeghem and Katzung [34]. Our use of this notation is clearly
motivated by the paper of Clancy et al. [16]. In these papers, an existing drug
is characterized using a scheme of the form (1.24). That is, data obtained from
experiments using a particular drug are used to characterize the rates kbo and kob

referred to, respectively, as the on and off rates of the drug. As mentioned above,
we often view the rates as free parameters that can be optimized in order to create
the best possible theoretical drug in the sense that the channel should work as much
like the healthy case as possible. This way of describing a theoretically optimal drug
was introduced in [99] and clearly motivated by the drug vector approach discussed
in [97].

1.10 Results

Many of the models, methods, and results described in these notes are well known
in the literature. All the Markov models are taken from the literature and so are the
stochastic differential equations and the models describing the probability density
approach. Compared to earlier published models, we will often derive simplified
models, but the ideas behind them are basically the same as those used by many
authors. Concerning the modeling of mutations, we aim to consistently model the
effect of mutations as simply as possible and preferably only by changing a single
parameter: the mutation severity index.

The novel part of these notes is that we attempt to systematically describe how
to compute characterizations of drugs that are optimal in a specific sense and we
do so for a number of applications. We almost exclusively address so-called gain-
of-function mutations. For such mutations, the open probability of the channel or
receptor is too large, which can lead to severe difficulties for the cell and, ultimately,
for large collections of such cells.

1.11 Other Possible Applications

The focus in this text will be on how to compute characterizations of optimal
theoretical drugs defined in terms of parameters describing the associated Markov
model. The methods can, however, also be used to compare existing drugs. If
Markov models are developed for two drugs, the associated probability density
functions can be computed and thus a comparison of the quality of the two drugs
can be computed. This approach will rely heavily on accurate representations of the
function of a drug in terms of a Markov model, which is a problem beyond the scope
of the present notes.
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1.12 Disclaimer

These notes are written to explain in some detail how we can compute characteri-
zations of theoretical drugs in terms of Markov models. However, we specifically
avoid discussing whether it is possible to realize a certain drug given the character-
ization in terms of a Markov model, simply because we do not know and have been
unable to find any reasonable answer to this in the literature. The applicability of
our results therefore remains uncertain.

1.13 Notes

1. Several excellent introductions to Markov models of the stochastic behavior of
receptors and ion channels are available (e.g., [39, 42, 79, 85]). In particular
we recommend the recently published book by Bressloff [6] (see also [7]).
Bressloff [6] provides a broad introduction to stochastic processes in cells and
covers most of the models covered in the present text and much more. It is an
excellent text that will become a standard reference in the field.

2. A comprehensive mathematical analysis of the stochastic properties of single
ion channels using Markov models was initiated by Colquhoun and Hawkes
(e.g., [19–21]).

3. Insight into the electrophysiology of excitable cells was fundamentally
enhanced by the development of the patch clamp technique of Sakmann and
Neher (see, e.g., [77, 78]). The authors received the Nobel Prize in Physiology
or Medicine in 1991 for their work on single ion channels. The patch clamp
technique is used to generate measurements of the form illustrated in Fig. 1.3.
These data are used to determine the Markov model and are therefore of
fundamental importance. As mentioned below, however, the problem of finding
the Markov model based on experimental data is still an active research
problem.

4. The models studied in these notes address the flow of ions through various types
of channels. An excellent introduction to ion channels is given in the book by
Hille [32].

5. Our discussion is focused on mechanisms of the heart but, at the level of
single channels, these mechanisms are similar to channel-based mechanisms
of the brain or, more specifically, the mechanisms of neurons. There are several
excellent introductions to neuroscience (e.g., [22, 23, 38, 90]).

6. Given the Markov model, we have seen that it is pretty straightforward to
compute what state the channel is in as a stochastic function of time. We have
also seen that we can solve the master equation and find the average behavior of
the channel when the rates are independent of the surroundings. Furthermore,
we will show how to compute probability density functions for each state when
the rates depend on the transmembrane potential. Such simulations are forward



1.13 Notes 21

problems: Given the model, compute the solution. The inverse problem in this
setting is quite a bit harder; the problem is to compute the rates (i.e., the values
of koc; kco etc.) of the Markov model in order for the stochastic behavior of the
model to match the measurements of the channel. The analysis of the inverse
problem was started by Colquhoun and Hawkes [19], beginning in 1977, and
their findings are summarized by Sakmann and Neher [78] (see also [17]). More
recently the problem has been addressed in a series of papers by Sachs and his
co-authors; see [59, 68, 69]. Their methods are available in the open-source
QuB software package. Furthermore, Markov chain Monte Carlo (MCMC) has
been used in a series of papers by Siekmann, Sneyd and his co-authors [27, 82–
84]. Interestingly, their analysis shows that certain Markov models cannot be
identified using standard data. The MCMC method was used for inversion of
single ion channel data more than 15 years ago by Ball et al [1], and Rosales
and co-authors, see [72, 73].

7. For whole cell data, the problem of identifying the parameters of Markov
models is carefully studied by Fink and Noble [24].

8. The terms CO-mutation, OC-mutation, and mutation severity index are not
standard and introduced here for convenience.

9. A thorough discussion of the principle of detailed balance can be found in the
paper by Colquhoun et al. [18]. The validity of the principle for given data
can be tested as shown by Song and Magleby [86] and Ullah et al. [101] (suppl.
material). There are examples of Markov models that do not satisfy the principle
of detailed balance (see, e.g., [6], p. 208).

10. The numerical method for handling the Markov model described on page 8 is
not particularly efficient. For the case of constant rates in the Markov model,
considerable acceleration can be achieved by using the method of Gillespie
[26]. The Gillespie method is particularly useful for simulations involving many
channels (see, e.g., [85]).

11. For comprehensive introductions to modeling the cardiac action potential, we
refer to the recent overview by Rudy [74] and to Rudy and Silva [75]. For the
action potential shown in Fig. 1.2, we used the model of Grandi et al. [29]. An
alternative is the model of O’Hara et al. [64] and a huge collection of models is
available at the CellML project (CellML.org).

12. The dynamics of cardiac electrophysiology are introduced in numerous papers
and books; a recent comprehensive review is provided by Qu et al. [71].
The book by Katz [41] is a standard reference in cardiac physiology and
the book by Glass et al. [28] is a standard reference in the modeling of the
heart. Numerical methods for the simulation of cardiac electrophysiology are
presented by Sundnes et al. [93] (see also [25, 67]).
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Chapter 2
One-Dimensional Calcium Release

The contraction of a single cardiac cell is initiated by an increase in the transmem-
brane potential leading to opening of the so-called L-type calcium channels (LCCs).
When these channels are open, calcium flows into a rather small space called the
dyadic cleft (often simply referred to as the dyad), leading to a locally increased
concentration of Ca2C ions. This increased concentration leads to the opening of
the ryanodine receptors (RyRs), which control the flow of calcium from the internal
stores referred to as the sarcoplasmic reticulum (SR). This process is referred to
as the calcium-induced calcium release (CICR) and is of vital importance in the
functioning of the heart. A schematic description of the process is given in Fig. 2.1.

This CICR process is one of the focal points of interest in these notes. We shall
develop a model coupling the effects alluded to in Fig. 2.1. However, in this first
chapter we shall simplify the process quite a bit by assuming that we just have three
spaces: the SR, the dyad, and the cytosol (see Fig. 2.2). This simplification means
that we assume that there is very fast diffusion between the network SR (NSR)
domain and the junctional SR (JSR) domain such that the associated concentrations
are identical. Furthermore, we ignore the L-type channels and assume that the
concentrations in both the SR and the cytosol are constant. This leads to a one-
dimensional model, in the sense that only the concentration of the dyad changes.
The model is useful because it helps illustrate the tools we need in our analysis of
the full CICR process and illustrates the properties of optimal drugs that will be
more or less inherited in more complex models.

Our aim is therefore to understand in some detail what is going on in the process
illustrated in Fig. 2.1. However, this figure is in itself a huge simplification of the
complex CICR process. The cell consists of 10,000 to 20,000 dyads, each dyad
having up to 100 RyRs, and human ventricles consist of billions of cells. Our aim is
to focus entirely on a very small but essential element in the CICR mechanism.

We model the release of Ca2C ions from the SR to the dyad by formulating
a stochastic differential equation governing the concentration of Ca2C ions in the

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_2
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NSR

JSR

DyadCytosol

Ca2+

RyRs

Ca2+

LCCs Ca2+

T-tubule, extracellular space

Fig. 2.1 This figure illustrates the components involved in the CICR: the T-tubule, the dyad, the
SR represented by the JSR and NSR, and the cytosol. Calcium ions can enter the dyad from the
T-tubule through LCCs and from the SR through the RyRs. The figure is taken from Winslow et
al. [105]. In this chapter, we concentrate on the dynamics in the box surrounded by a thin red
line. Thus we assume that the concentration of the JSR and NSR are identical and constant and
we ignore the LCCs. We also assume that all the RyRs are in the same state and therefore can be
treated as one channel (see also Notes at page 53)

dyad. The model will be studied both numerically and analytically and we show
how the solution’s properties depend on the parameters defining the model. Next, we
will derive a deterministic partial differential equation (PDE) giving the probability
density function of the states of the Markov model. Although the transition from
a stochastic model to a deterministic model for the probability density functions is
classical by now, we will spend some time deriving the equations in detail because
the transition from stochastic to deterministic is such a wonderful piece of insight.
Furthermore, we will provide detailed comparisons of Monte Carlo simulations
based on the stochastic model and the probability density functions. In subsequent
chapters, we will develop the model further by using two small spaces, the dyad and
the JSR (see Fig. 2.1), allowing for different concentrations of Ca2C ions. This leads
to a two-dimensional (2D) problem.

Finally, we will take the LCCs into account. This leads to a 2D problem
depending on one parameter: the transmembrane potential.

In these notes, we will use the concept of dimension in two different, but related,
ways. In the first version of the stochastic model of CICR, we will model only the
concentration of Ca2C in the dyad and we will refer to the model as one dimensional
(1D). When a deterministic model governing the probability density function of the
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states of the Markov model is derived, that model is also 1D in the sense that it
depends on one spatial variable; the concentration of Ca2C. Next we move to two
concentrations (in the dyad and the JSR), leading to a 2D stochastic model in the
sense that it is a 2 � 2 system of stochastic ordinary differential equations. The
associated model governing the deterministic probability density functions is also
2D in the sense that the model depends on two spatial variables: the concentration
of Ca2C in the dyad and in the JSR. So the general rule is that the number of
different concentrations allowed in the system of stochastic ordinary differential
equations carries over to the spatial dimension of the deterministic system of PDEs
governing the probability density functions of the states involved in the Markov
model. Furthermore, the number of states in the Markov model decides the number
of equations in the deterministic system of PDEs.

2.1 Stochastic Model of Calcium Release

Suppose that the cytosolic Ca2C concentration is given by c0 and the SR concentra-
tion is given by c1; we assume both to be constant and that c1 � c0. We want to
model the concentration Nx D Nx.t/ in the dyad located between the cytosol and the
SR (see Fig. 2.2). Throughout these notes, we will use a bar to indicate stochastic
variables.

We assume that there is stochastic release from the SR to the dyad, and diffusion
from the dyad to the cytosol. Let vr denote the speed of release (when the channel is
open) and let vd be the speed of diffusion; both are non-negative. Then a stochastic
model of the concentration Nx D Nx.t/ in the dyad is given by

Nx0.t/ D N�.t/vr.c1 � Nx/ C vd.c0 � Nx/; (2.1)

where the function N� D N�.t/ takes on the value zero (closed) or one (open), and the
dynamics of the function are governed by a Markov model of the form

C
koc

�
kco

O; (2.2)

Cytosol, c0 Dyad, x (t) SR, c1

Fig. 2.2 Illustration of the model studied in the present chapter: The Ca2C concentration is high
in the SR and low in the cytosol. Release from the SR is governed by a Markov model and the
concentration can be diffused from the dyad to the cytosol
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with koc and kco as reaction rates that may depend on the concentration. Markov
models were introduced on page 4 but let us recall that the reaction rates koc and
kco basically indicate the tendency of a channel to change state. So, if the channel is
open, the probability that the channel changes from open to closed in a very short
time interval �t is given by �tkoc and, similarly, if the channel is closed, �tkco is the
probability that it becomes open in the time interval �t. This means that the higher
the rate kco, the more likely it is that the channels are open. This property will be
used repeatedly in what follows.

2.1.1 Bounds of the Concentration

Suppose that at time t D t0; the channel is closed (� D 0/, that the concentration is
given by x.t0/ D x0; and that the channel remains closed for t 6 t0 C �t: Then, in
the interval t0 6 t 6 t0 C �t; the dynamics are given by the deterministic equation1

x0.t/ D vd.c0 � x/

and thus

x.t/ D c0 C evd.t0�t/ .x0 � c0/

in this time interval. Therefore, for a closed channel, the concentration x.t/ of the
dyad approaches c0 (the cytosolic concentration) at an exponential rate. The decay
is faster for larger values of the diffusion velocity vd: By consulting Fig. 2.2 we see
that this is quite reasonable; if we close the release from the SR, the concentration
of the dyad will gradually approach the concentration of the cytosol.

Next, we consider the case of an open channel,

x0.t/ D vr.c1 � x/ C vd.c0 � x/; (2.3)

and again we assume that x.t0/ D x0: We can rewrite this in the form

x0.t/ D .vr C vd/ .cC � x/ ;

where

cC D vrc1 C vdc0

vr C vd
;

1Note that when we consider the case of a given value � , the model becomes deterministic and we
remove the overbar that indicates a variable is stochastic.
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and find that the solution is given by

x.t/ D cC C e.vrCvd/.t0�t/ .x0 � cC/ :

Therefore, when the channel is open, we observe that the concentration x.t/ of
the dyad approaches cC at an exponential rate. Furthermore, we note that the rate
increases with vr C vd. Note also that

cC D c1 C vd .c0 � c1/

vr C vd
< c1: (2.4)

So, to summarize, when the channel is open, the concentration approaches cC < c1

and when it is closed, the concentration approaches c0.
For a given state of the channel (open or closed), the concentration profile is

monotone and therefore there is no way the solution can become less than c0 or
larger than cC. We therefore have

c0 6 Nx.t/ 6 cC (2.5)

for all time, provided that this bound holds initially.
Note that since c1 � c0; we have

cC � vr

vr C vd
c1

and therefore cC approaches c1 if

vd

vr
�! 0:

Suppose, for instance, that we keep vr fixed and we let vd approach zero. Then cC
approaches c1, which is reasonable since calcium will be poured into the dyad, but
the connection to the cytosol is almost closed and thus the dyadic concentration will
increase until it reaches an equilibrium with the SR concentration.

2.1.2 An Invariant Region for the Solution

The invariant region (2.5) deserves a comment, since it will become quite useful
later. Suppose that the initial concentration of the dyad is somewhere in the interval
defined by c0 and cC. Then, we have seen that if the channel is either closed or open,
the solution remains in this interval as long as the channel does not change state.
When the channel changes state, say, at time t D �t, we have a new initial condition
in the interval c0 and cC and we can solve the equation deterministically once more
and the solution will remain in the interval. The process can be repeated over and
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over and the solution will always remain in the interval c0 and cC. This property is
useful, because it directly implies that the probability of being outside this interval
is zero, which is what we need when we want to define boundary conditions for the
model defining probability density functions.

2.1.3 A Numerical Scheme

To perform stochastic simulations, we discretize the equation

Nx0.t/ D N�.t/vr.c1 � Nx/ C vd.c0 � Nx/ (2.6)

to obtain the explicit scheme

xnC1 D xn C �t .�nvr.c1 � xn/ C vd.c0 � xn// (2.7)

where �n takes on the value zero (closed) or one (open). The value of �n is computed
as follows: Let �n be a random number in the unit interval. Assume that �n�1 D 0.
Then, if kco�t > �n, we set �n D 1, but if this condition does not hold, we set
�n D 0. Similarly, assume that �n�1 D 1. Then, if koc�t > �n, we set �n D 0, but if
this condition does not hold, we set �n D 1.

2.1.4 An Invariant Region for the Numerical Solution

We want to ensure that the numerical scheme provides solutions mimicking the
properties of the analytical solutions. Therefore, we want to confirm that the
invariant region for model (2.6) also holds for the numerical solutions. For this to
hold, we have to assume that the time step is restricted as follows:

�t <
1

vr C vd
: (2.8)

To derive the invariant region, we define

F.x/ D x C �t .�nvr.c1 � x/ C vd.c0 � x//

and note that

F0.x/ D 1 � �t .�nvr C vd/ > 1 � �t .vr C vd/ > 0:
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If we assume that c0 6 xn 6 cC, we obtain

xnC1 D F.xn/ > F.c0/ D c0 C �t .�nvr.c1 � c0// > c0

and

xnC1 D F.xn/

6 F.cC/

D cC C �t .�nvr.c1 � cC/ C vd.c0 � cC//

6 cC C �t .vr.c1 � cC/ C vd.c0 � cC//

D cC;

where we have used the fact that

cC D vrc1 C vdc0

vr C vd
:

Therefore, by induction, we have c0 6 xn 6 cC for all time.

2.1.5 Stochastic Simulations

We use the scheme (2.7) to compute the concentration governed by the model (2.6),
using the parameters given in Table 2.1. The numerical results are given in Fig. 2.3
for time running from 0 to 100 ms. In Fig. 2.4, we show the same solution but
focus on the time interval from 20 to 30 ms. The lower graph indicates when the
channel is open (high value) and when it is closed (low value). We observe from
the concentration profile that the solution increases whenever the channel is open
and reduces whenever the channel is closed and we also observe that the solution
remains in the interval Œc0; cC� for all time, where

cC D vrc1 C vdc0

vr C vd
D 91 	M:

Table 2.1 Parameter values
for model (2.6) used in the
computations presented in
Figs. 2.3 and 2.4

vd 1 ms�1

vr 0.1 ms�1

c0 0.1 	M

c1 1,000 	M

kco.x/ 0:1x ms�1 	M�1

koc 1 ms�1
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Fig. 2.3 Code: 1D/figure_mc.m. The calcium concentration of the dyad as a function of time. The
numerical solution is computed using scheme (2.7) using �t D 1 	s and x.0/ D .cC C c0/=2 D
45:55 	M. Furthermore, we assume that the channel is closed initially, so �.0/ D 0
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Fig. 2.4 The concentration profile is taken from Fig. 2.3 above. Here we show the solution
restricted to the time interval ranging from t D 20 to t D 30 ms. In the lower part of the figure
we indicate whether the channel is open (high value) or closed (low value). Seen together, the
figure illustrates that the concentrations increase when the channel is open, and decrease when the
channel is closed

2.2 Deterministic Systems of PDEs Governing
the Probability Density Functions

We have seen that model (2.6) can be studied using Monte Carlo simulations
based on the numerical scheme (2.7). Such simulations clearly give some insight
into the dynamics. In addition to the simulations shown above, we can use the
numerical scheme to see the effect of changing the rates of the Markov model and

1D/figure_mc.m
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the other parameters of the model. However, it is tricky to compare solutions of
simulations based on stochastic processes because the results vary from simulation
to simulation anyway. So we are faced with the following question: Is the difference
in solutions from one computation to another due to stochastic effects or are they
due to changes of parameters? This matter becomes especially pertinent when we
introduce theoretical drugs, because we want to compare solutions with and without
application of the theoretical drug. It is tempting to derive some sort of statistics
based on the simulation results and then compare the solutions computed based on
two sets of parameters based on the statistics.

By running numerous simulations, we can add the results and compute proba-
bility density functions based on the stochastic simulations. Exactly how this can
be done will be explained below. However, it turns out that the probability density
functions can also be computed by solving a deterministic system of PDEs. In this
section we show how to derive this system of PDEs. We will see below that this
is quite useful, because it is much easier to compare solutions of deterministic
differential equations than stochastic solutions. By analyzing the deterministic
system of PDEs we can also, analytically, derive properties of the process that would
be very hard to derive based on direct analysis of the stochastic model (2.6).

2.2.1 Probability Density Functions

Let 
o D 
o .x; t/ be the probability density functions of the channel being in an
open state. This means that, at time t; the probability of the channel being open and
the concentration Nx D Nx.t/ being in the interval .x; x C �x/ is given by

Po fx < Nx.t/ < x C �xg D
Z xC�x

x

o .�; t/ d�: (2.9)

Similarly, the probability of the concentration Nx D Nx.t/ being in the interval .x; x C
�x/ and the channel being closed is given by

Pc fx < Nx.t/ < x C �xg D
Z xC�x

x

c .�; t/ d�; (2.10)

where 
c is the probability density function of the channel being in the closed state.
Note that

Z
.
o .�; t/ C 
c .�; t// d� D 1; (2.11)

where the integral is over all possible concentrations. In particular, if the initial
concentration is in the invariant region given by Œc0; cC� ; then the integral goes over
this interval.
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The probability density functions 
o and 
c contain a great deal of information
about the process under consideration. At every point in time, we can understand
how likely it is that the concentration is in a certain interval for a given state of the
channel. It is therefore of great interest to be able to compute these functions.

2.2.2 Dynamics of the Probability Density Functions

Now, we are interested in understanding how 
o and 
c change dynamically.
Consider 
o and suppose that, for a given x and t, the density 
o.x; t/ is known.
Over a small time interval, several things can happen that will affect the density: a)
the channel can change from open to closed (reducing 
o/, b) the channel can change
from closed to open (increasing 
o/; and, finally, c) the concentration can move from
outside the interval .x; x C �x/ to inside this interval or the concentration can move
from inside the interval .x; x C �x/ to outside this interval.

Here cases a) and b) are handled by the Markov model and we will return to that
issue below, but we will start by taking care of the change in probability density
due to changes in concentration. It turns out that this part will be governed by
an advection2 equation and we will start by considering two very special cases
illustrating how the probability is advected in the absence of a Markov model.

2.2.3 Advection of Probability Density

We start by considering two very special cases in which we just assume that the
channel is always open or the channel is always closed.

2.2.3.1 Advection in a Very Special Case: The Channel Is Kept Open for
All Time

Let us also assume that the probability density function is known at time t D 0 and
that it is given by a very simple function,


o.x; 0/ D 1=h for x 2 Q� D ŒQc � h=2; Qc C h=2�; (2.12)

2Advection means the transport of a conserved quantity.
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and 
o D 0 for values of x outside the interval Q�. Here h is assumed to be a given
positive number and Qc D 1

2
.c0 C cC/, where we recall that

cC D vrc1 C vdc0

vr C vd
:

Note that, since we know that channel is open, we have 
c D 0 for all values of x
and, since we have somehow forced the channel to remain open, nothing will happen
to 
c.

If we pick any initial concentration x0 in the interval Q�, we know that the
concentration will develop according to the ordinary differential equation

x0
o.tI x0/ D ao.x/ D .vr C vd/ .cC � x/ ; (2.13)

whose solution is given by

xo.tI x0/ D cC C e�t.vrCvd/ .x0 � cC/ I

see the discussion on page 26. In Fig. 2.5 we plot xo.tI x0/ as a function of t for ten
values of initial data x0 in the interval Q�, using h D 20 	M. The figure illustrates
that the probability density function 
o, in this special case of a forced open channel,
is simply advected in time and the advection is clearly governed by the speed of
x D x.t/, which is given by x0.t/ D ao.x/.
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Fig. 2.5 Ten solutions of the ordinary differential equation (2.13) with data from Table 2.1. The
figure illustrates that when the channel is kept open and the initial data are of the form given
by (2.12) (with h D 20 	M), the probability density is simply advected toward greater values of
the concentration x
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2.2.3.2 Advection in Another Very Special Case: The Channel Is Kept
Closed for All Time

We can certainly repeat the considerations above for the probability density function
of the closed state. In that case we assume that


c.x; 0/ D 1=h for x 2 Q� D ŒQc � h=2; Qc C h=2� (2.14)

and 
c D 0 for values of x outside the interval Q�. Again we pick any initial
concentration x0 in the interval Q� and recall that the concentration evolves as

x0
c.tI x0/ D ac.x/ D vd .c0 � x/ ; (2.15)

whose solution is given by

xc.tI x0/ D c0 C e�tvd .x0 � c0/ :

In Fig. 2.6 we plot xc.tI x0/ as a function of t for ten values of initial data x0 in
the interval Q�. Again we observe that the probability density function is simply
advected according to the speed of x D x.t/, which is given by x0 D ac.x/.

2.2.3.3 Advection: The General Case

We have seen how the probability density functions evolve in two very special cases.
Next we consider the general case of how the probability density functions are
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Fig. 2.6 Ten solutions of the ordinary differential equation (2.15) . The figure illustrates that when
the channel is kept closed and the initial data are of the form given by (2.14), the probability density
is advected toward smaller values of the concentration x. As above we have used h D 20 	M
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advected when the state of the channel is kept fixed, and we focus on the probability
density function of the open state.

Let Jo.x; t/ denote the flux per time of the probability across the point x at time t:
A positive flux at x indicates a flux of probability into the domain .x; x C �x/ and a
positive flux at x C �x indicates a flux of probability out of the interval. This gives

d

dt
Po fx < Nx.t/ < x C �xg D Jo.x; t/ � Jo.x C �x; t/: (2.16)

It now follows from (2.9) that

Jo.x; t/ � Jo.x C �x; t/

�x
D d

dt

1

�x

Z xC�x

x

o .�; t/ d�

D 1

�x

Z xC�x

x

@
o

@t
.�; t/ d�

and, therefore, by going to the limit in �x; we have

@
o .x; t/

@t
D �@Jo.x; t/

@x
: (2.17)

The flux is given by the product of velocity times density: Jo D 
ov, where in our
case the velocity is given by v D x0.t/, so the flux will be

Jo D 
o.x; t/x0.t/:

By recalling that, when the channel is open, we have

x0.t/ D ao.x/ D vr.c1 � x/ C vd.c0 � x/;

we obtain

Jo D ao.x/
o D .vr.c1 � x/ C vd.c0 � x// 
o: (2.18)

It follows from (2.17) and (2.18) that we have the conservation equation

@
o .x; t/

@t
C @

@x
.ao
o/ D 0; (2.19)

where we account only for the advection of probability.
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2.2.4 Changing States: The Effect of the Markov Model

We have now handled the advection of the probability listed as c) above and how
changes due to the opening or closing of the channel affect the probability density
function remains to be seen. Recall that the reaction scheme of the Markov model
is given by

C
koc

�
kco

O (2.20)

and suppose that the channel is open at time t. If we ignore the advection of
concentration, handled above, we find that the probability density changes as
follows from time t to time t C �t W


o.x; t C �t/ D 
o.x; t/ � �tkoc
o.x; t/ C �tkco
c.x; t/:

By going to the limit in �t and combining this result with the conservation equation
above, we obtain

@
o .x; t/

@t
C @

@x
.ao
o/ D kco
c.x; t/ � koc
o.x; t/;

which governs the dynamics of the open probability density function.

2.2.5 The Closed State

We can carry out the same derivation of an equation modeling the dynamics of the
probability density function of the closed state. The only change is that in the closed
state we have

x0.t/ D vd.c0 � x/

and therefore the associated flux is given by

Jc D vd.c0 � x/
c: (2.21)



2.3 Numerical Scheme for the PDF System 37

2.2.6 The System Governing the Probability Density Functions

To summarize, we have the coupled system

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.22)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c;

where

ao D vr.c1 � x/ C vd.c0 � x/; (2.23)

ac D vd.c0 � x/:

This is a coupled system of PDEs; it is linear and first order and special care
must be taken in solving it numerically, since it develops steep gradients. For ease
of reference, we will sometimes call this the PDF system and its solutions are
sometimes labeled the PDF solutions.

2.2.6.1 Boundary Conditions

The boundary conditions are set up to avoid the leak of probability across the
boundary. Hence we need the fluxes ao
o and ac
c to be zero for x D c0 and x D cC:

Note that ao.cC/ D ac.c0/ D 0; so we require that 
o.c0/ D 0 and 
c.cC/ D 0:

These conditions are fine as long as we know that the concentration is always in
the interval bounded by c0 and cC. However, we may be interested in studying initial
concentrations outside this interval.3 Then we can extend the computational domain
and use zero Dirichlet boundary conditions on the new computational domain.

2.3 Numerical Scheme for the PDF System

The dynamics of the probability density functions are governed by system (2.22),
a system of linear advection-reaction equations. Numerical methods for such
equations are thoroughly covered by LeVeque [48]. To describe the method, we

3We have seen above that the interval bounded by c0 and cC is invariant in the sense that if
the initial condition of the stochastic model (2.1) is in this interval, then the solution remains
in the same interval for all time. We may, of course, however, pick an initial condition outside that
interval, which motivates examination of the probability density functions using a larger domain.
In these notes, however, we will stick to the invariant region.
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consider the simple model


t C .a
/x D h
; (2.24)

where a and h are smooth functions of x. We let 
n
i denote an approximation of 
 at

time t D n�t for x 2 Œxi�1=2; xiC1=2/, where xi D c0 C i�x, with

�x D cC � c0

M

for an integer M > 1. The numerical approximation is defined by the scheme


nC1
i D 
n

i � �t

�x

�
.a
/n

iC1=2 � .a
/n
i�1=2

�
C �thi


n
i ; (2.25)

where

.a
/n
iC1=2 D max.aiC1=2; 0/
n

i C min.aiC1=2; 0/
n
iC1 (2.26)

and aiC1=2 D a.xiC1=2/. In an appendix to this chapter (see page 50), we will go a
bit deeper into the problem of computing solutions to the problem (2.22).

2.4 Rapid Convergence to Steady State Solutions

The PDF solutions rapidly reach a steady state solution. This is illustrated in
Fig. 2.7. As initial conditions, we have 
o.x; 0/ D 
c.x; 0/ D 0, except 
c.x; 0/ D
1=h for x 2 Q� D ŒQc�h=2; QcCh=2�; with h D .cC�c0/=20; and where we recall that
Qc D 1

2
.c0 C cC/. We have used �x D 0:1136 mV and �t D 11:36 ns. Furthermore,

discrete initial conditions are normalized in order to ensure that

�x
X

i;j


i;j D 1; (2.27)

where 
 D 
o C 
c. In the upper panel, we show the solution for the first 10 ms and
we observe rapid convergence toward a steady state solution. In the lower panel,
we show the same results but for a small (and interesting) part of the concentration
ranging from 80 to 91 	M. The solution seems to be almost in steady state after 6–8
ms. Because of this property of the solution of PDF system (2.22), we will often
concentrate on steady state solutions.

In Fig. 2.8 we show the solution for 
c.x; t/. Here we have plotted the logarithm
of the distribution to highlight the small but significant probability densities for the
channel being closed at high concentrations and again we note rapid convergence
toward equilibrium.
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Fig. 2.7 Convergence to the steady state solution of 
o for PDF system (2.22). Upper panel:
Dynamics of the open probability for all relevant values of the calcium concentration. Lower panel:
Solution for concentrations in the interval 80–91 	M. Convergence to steady state is quite rapid
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Fig. 2.8 The figure shows the probability density function of the closed state. In order to highlight
small values of the probability densities, we show log.
c.x; t//

2.5 Comparison of Monte Carlo Simulations and Probability
Density Functions

We are now in a position to study the release process illustrated in Fig. 2.2 using two
different approaches: We can use Monte Carlo simulations and solve the stochastic
differential equation (2.1) or we can compute the probability density functions of
the process by solving system (2.22). In Fig. 2.9, we compare the numerical results
obtained using these two approaches. Here, the probability density functions are
computed using scheme (2.25) and the Monte Carlo simulations are based on the
numerical scheme given by (2.7). In the figure, we show the solution of the PDF
system at time t� D 1 s. The Monte Carlo-based solution is computed by dividing
the interval Œc0; cC� into 100 intervals and then counting the number of open states in
each interval. The counting is performed over a period of time where we assume that
the histogram has reached a stationary shape. In Fig. 2.9 the counting is based on
the time interval running from t D t�=2 to t D t�, with t� D 1 s. By considering the
simulations shown in Fig. 2.7, we know that in this interval the probability density
functions have reached their steady state solutions. In the figure, the histogram is
computed running 500 Monte Carlo simulations. The figure clearly shows that the
probability density approach gives the average of a large number of Monte Carlo
simulations. We will see this repeated over and over in this text.

At steady state, we observe that it is quite unlikely that we have a low
concentration combined with an open channel and it is quite likely that we have a
large concentration (close to cC D 91 	M) combined with an open channel. There
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Fig. 2.9 Numerical solution of PDF system (2.22) (red) at time t D t� D 1 s compared with the
result of Monte Carlo simulations based on scheme (2.7) (histogram)

is a boundary layer close to the upper possible concentration, which means that the
channel tends to be open and the concentration tends to be close to its maximum
value.

In order to further illustrate the connection between the Monte Carlo simulations
and the solution of the PDF system, we show four arbitrary solutions in the
time interval from 900 to 1000 ms computed by the stochastic scheme (2.7). The
solutions are given in Fig. 2.10 and we note that all the solutions are quite close to
the upper level cC of the calcium concentration and the channel tends to be open.

2.6 Analytical Solutions in the Stationary Case

In the stationary case, we can derive analytical solutions of the PDF system. We
start the derivation by recalling that the open and closed probability densities are
governed by the following system of PDEs:

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.28)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c; (2.29)
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Fig. 2.10 Four simulations based on the stochastic scheme (2.7) where the solutions are plotted
from 900 to 1;000 ms. The lower curves give the concentrations and we note that the concentrations
are quite large but limited above by the upper limit given by cC D 91 	M. The upper two lines
indicate whether the channel is open (upper) or closed (lower); we see that the channel is open
most of the time. These results fit well with the results presented in Fig. 2.9, where the probability
density functions are plotted

where

ao D vr.c1 � x/ C vd.c0 � x/; (2.30)

ac D vd.c0 � x/:

We consider the system for x 2 Œc0; cC�, where

cC D c1 C vd .c0 � c1/

vr C vd
:
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In the computations reported above, we saw that the solutions converge rapidly
toward steady state solutions. The steady state solutions are given by the system

@

@x
.ao
o/ D kco
c � koc
o; (2.31)

@

@x
.ac
c/ D koc
o � kco
c: (2.32)

By adding these equations, we find that

@

@x
.ao
o C ac
c/ D 0: (2.33)

Therefore, by invoking the boundary conditions, we have

ao
o C ac
c D 0: (2.34)

Here it is useful to recall that ac < 0 and ao > 0 for x 2 .c0; cC/ and thus we have


c D �ao

ac

o: (2.35)

The system can therefore be reduced to a scalar equation of the form

@

@x
.ao
o/ D �

�
kco

ao

ac
C koc

�

o: (2.36)

By differentiation, we can write this equation in the standard form


0
o D �a.x/
o; (2.37)

with

a.x/ D kco

ac
C koc

ao
C a0

o

ao
:

We define the function A D A.x/ as

A0.x/ D �a.x/;

and find that

�
e�A.x/
o

�0 D 0
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and therefore


o D ceA.x/;

where c is a constant. We can find c by observing that

1 D
Z cC

c0

.
o C 
c/ dx

D
Z cC

c0

�
1 � ao

ac

�

odx

D c
Z cC

c0

�
1 � ao

ac

�
eA.x/dx

and therefore

c D
�Z cC

c0

�
1 � ao

ac

�
eA.x/dx

��1

: (2.38)

Recall that vd D 1 ms�1, c0 D 0:1 	M, vr D 0:1 ms�1, c1 D 1;000 	M, koc D
1 ms�1, and kco D .x=10/ ms�1.	M/�1 and that the fluxes are defined by (2.30).
For these data, we have the analytical solution


o.x/ D Kex=10.91 � x/� 0:1
1:1 .x � 0:1/0:01;


c.x/ D 1:1Kex=10.91 � x/
1

1:1 .x � 0:1/�0:99;

where K � 1:0073 � 10�5.

2.7 Numerical Solution Accuracy

Since we have a steady state analytical solution, we can evaluate the accuracy of the
numerical method under consideration. However, to do so, we will first clarify how
we compute stationary solutions using the numerical scheme.

2.7.1 Stationary Solutions Computed by the Numerical Scheme

The numerical scheme (2.25) can be written in matrix form:


nC1 D .I C �tA/ 
n:
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The scheme is constructed such that if a discrete version of the integral condi-
tion (2.11) holds at time t D 0, it will hold for all subsequent time steps. More
precisely, if we define

rn D �x
MX

iD1

.
n
o;i C 
n

c;i/; (2.39)

and r0 D 1, then, by the construction of the scheme, we have rn D 1 for all n � 1.
Since the solution we are considering converges rapidly to a stationary solution, it is
useful to be able to compute the stationary solution directly. The stationary version
of the scheme reads


 D .I C �tA/ 


but here we have to make sure that the condition rn D 1 is added to obtain a unique
solution. When this condition is added, the stationary version of the system can be
written in the form

B
 D b:

An alternative to this method is to observe that the stationary solution is character-
ized by A
 D 0. Therefore, using Matlab terminology, we can find the stationary
solution by first computing

z D null.A/

and then set


 D z

�x
P

i zi
:

2.7.2 Comparison with the Analytical Solution: The Stationary
Solution

The numerical and analytical solutions are compared in Fig. 2.11. In the numerical
scheme, we use �x D 0:909 	M and we observe that the analytical and numerical
solutions are almost indistinguishable. In Table 2.2, we show the error as the mesh
is refined. In the table, we measure only the errors of inner nodes to avoid evaluating
the analytical solution at singular points. We define Œc0 C ıx; cC � ıx� as the inner
interval, where ıx is the mesh parameter �x used in the coarsest simulation in the
convergence study. The difference between the analytical solution 
 and numerical
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Fig. 2.11 Comparison of the numerical and analytical solutions of the steady state problem (2.31)
and (2.32). Numerical solutions are marked with �
Table 2.2 Error of the
numerical computations as
the mesh is refined. The
convergence is first order

� x Error Error/�x

0.909 0.086 0.095

0.455 0.036 0.078

0.227 0.016 0.072

0.114 0.008 0.069

0.057 0.004 0.066

0.028 0.002 0.064

0.014 0.001 0.063

solution O
 is measured by

k O
 � 
k D j O
o � 
oj=j
oj C j O
c � 
cj=j
cj (2.40)

where jxj D
qP

i x2
i and i runs over the nodes in the inner interval.

2.8 Increasing the Reaction Rate from Open to Closed

In Fig. 2.12 (upper panel), we increase the reaction rate koc from one to three.
This means that the channel is much more prone to be closed and we see that this
changes the probability density function 
o considerably. For completeness, we also
plot the closed probability density functions (lower panel) and observe that, when
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Fig. 2.12 Upper panel: Comparison of the open probability density function for the cases koc D 1

ms�1 and koc D 3 ms�1. When koc is increased, the open probability is significantly reduced
for high concentrations. Lower panel: Comparison of the closed probability density function for
the cases koc D 1 ms�1 and koc D 3 ms�1. When koc is increased, the closed probability is
significantly increased for low concentrations

koc is increased, there is a high probability of the channel being closed and the
concentration being quite low. All the other parameters used in the model are as
specified on page 29.
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2.9 Advection Revisited

In the derivation of system (2.22) above governing the probability density functions
of the states of the Markov model, we found it useful to consider a case representing
the pure advection of probability density. Let us now see that we can find the same
solution using system (2.22), that is,

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.41)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c;

where, as usual,

ao D vr.c1 � x/ C vd.c0 � x/; (2.42)

ac D vd.c0 � x/I

see page 37. Let us assume that 
c.x; 0/ D 0 and that


o.x; 0/ D 1=h for x 2 Q� D ŒQc � h=2; Qc C h=2� (2.43)

and 
o D 0 for values of x outside the interval Q�; for other notation see page 32.
Furthermore, we assume that koc D 0 ms�1 (if the channel is open, it remains
open) and kco D 1 ms�1. Then, the solution of system (2.41) with the given initial
conditions is given by4

.
o; 
c/ D .r; 0/ (2.44)

where r solves the pure advection equation

rt C .ar/x D 0 (2.45)

with a.x/ D ao.x/ and the initial condition r.x; 0/ D 
o.x; 0/:

In Fig. 2.13 we show the solution 
o of this problem in the left panel and in the
right panel we repeat the solution given in Fig. 2.5, where the pure advection case
was studied by solving a series of ordinary differential equations; see page 33.

For completeness, we also consider pure advection in the case where the channel
is always closed. In this case we put kco D 0 ms�1 and koc D 1 ms�1 and we use
the initial conditions given by (2.14). In Fig. 2.14 we show (left panel) the solution

4To see that .
o; 
c/ given by (2.44) solves system (2.41), it is sufficient to insert .
o; 
c/ into the
system to verify that it is a solution.
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Fig. 2.13 Left panel: Solution of system (2.41) using koc D 0 ms�1 and kco D 1 ms�1 and the
initial condition (2.43) computed by solving (2.45) using the mesh parameters �x D 0:114 	M
and �t D 0:0114 �s. Right panel: Ten solutions of (2.13) given in Fig. 2.5 above
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Fig. 2.14 Left panel: Solution of system (2.41) using kco D 0 ms�1 and koc D 1 ms�1 and the
initial condition (2.14) computed by solving (2.45) using the mesh parameters �x D 0:114 	M
and �t D 0:0114 	s. Right panel: Ten solutions of (2.15) given in Fig. 2.6 above
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c of this problem computed by solving the pure advection problem

rt C .ar/x D 0 (2.46)

with a.x/ D ac.x/ and r.x; 0/ D 
c.x; 0/: We also show (right panel) the solution
of the pure advection problem computed by solving a series of ordinary differential
equations, as explained on page 34.

2.10 Appendix: Solving the System of Partial Differential
Equations

In this chapter, we derived the system

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (2.47)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c;

where

ao D vr.c1 � x/ C vd.c0 � x/; (2.48)

ac D vd.c0 � x/I

see page 37. We also briefly sketched a numerical method for solving it; see (2.25).
The numerical solution of systems of this form is used repeatedly in these notes, so
solution methods deserve a little more attention. In this appendix we will present
one way of solving the system; by consulting literature in numerical methods for
solving PDEs, the reader will find a huge number of alternatives. The numerical
solution of systems of this form is an active field of research and we will by no
means argue that the method we present here is any better than other methods. Our
focus is simplicity.

2.10.1 Operator Splitting

By breaking this system down into smaller parts, we will see that it is actually quite
straightforward to solve numerically. Let us start by writing the system in the form


t C .A
/x D K
 (2.49)



2.10 Appendix: Solving the System of Partial Differential Equations 51

where


 D
�


o


c

�
; A D

�
ao 0

0 ac

�
; and K D

��koc kco

koc �kco

�
: (2.50)

Then one way of solving this system is to introduce operator splitting. Using first-
order operator splitting, we can solve the system (2.49) in two steps. Assume that
the solution is given by 
n at time tn D n�t: Then the first step is to solve the system


t C .A
/x D 0 (2.51)

from t D tn to t D tn C �t using 
.tn/ D 
n as the initial condition. Next we define
the initial condition u.tn/ D 
.tnC1/ (which we just computed) and then solve the
system of ordinary differential equations given by

ut D Ku (2.52)

from t D tn to t D tn C �t. Finally, we define


nC1 D u.tnC1/ (2.53)

and thereby we have an approximate solution at time t D tnC1 and the procedure
can be repeated.

Now the problem of solving system (2.47) is reduced to solving a linear
hyperbolic problem of the form (2.51) and a linear system of ordinary differential
equations of the form (2.52). Methods for solving the latter can be found in any
introductory text in numerical methods for PDEs. The explicit and implicit Euler
methods are particularly popular because of their simplicity (see, e.g., [96]). In our
computations, we use either the explicit or the implicit Euler method or we use the
ODE15s method provided by Matlab (www.mathworks.com).

2.10.2 The Hyperbolic Part

Systems of hyperbolic equations can in general be hard to solve, but the present
system takes on a particularly simple form. We observe that the two equations
in (2.51) simply decouple and take the form

@
o

@t
C @

@x
.ao
o/ D 0; (2.54)

@
c

@t
C @

@x
.ac
c/ D 0I

www.mathworks.com
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thus it is sufficient to discuss how to solve a scalar equation of the form

ut C .au/x D 0: (2.55)

This problem is further simplified by the fact that the function a has a uniform sign.
This is obviously true for a D ac D vd.c0 � x/ since x 2 .c0; cC/, where we recall
that

cC D vrc1 C vdc0

vr C vd
(2.56)

and therefore ac � 0 for all relevant values of x: Similarly,

a D ao D vr.c1 � x/ C vd.c0 � x/ D .vr C vd/ .cC � x/ (2.57)

and therefore ao � 0 for all relevant values of x:

We mentioned above that a scalar equation of the form

ut C .au/x D 0 (2.58)

can be solved using the scheme

unC1
i D un

i � �t

�x

�
.au/n

iC1=2 � .au/n
i�1=2

�
; (2.59)

where

.au/n
iC1=2 D max.aiC1=2; 0/un

i C min.aiC1=2; 0/un
iC1 (2.60)

and aiC1=2 D a.xiC1=2/; see (2.25) on page 37. For the probability density function
of the open state 
o with a D ao � 0, we obtain

.ao
o/n
iC1=2 D ao;iC1=2


n
o;i (2.61)

and for the probability density function of the closed state 
c with a D ac � 0, we
obtain

.ac
c/
n
iC1=2 D ac;iC1=2


n
c;iC1: (2.62)

The numerical schemes of the hyperbolic part given by (2.51) therefore read


nC1
o;i D 
n

o;i � �t

�x

�
ao;iC1=2


n
o;i � ao;i�1=2
n

o;i�1

�
(2.63)
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and


nC1
c;i D 
n

c;i � �t

�x

�
ac;iC1=2


n
c;iC1 � ac;i�1=2
n

c;i

�
: (2.64)

2.10.3 The Courant–Friedrichs–Lewy Condition

For hyperbolic problems of the form

ut C .au/x D 0 (2.65)

it is well known that a certain condition must be imposed on the time step in order
to avoid spurious oscillations. The condition states that

�t

�x
max

x
ja.x/j � 1I (2.66)

see LeVeque [48] for a derivation of the Courant–Friedrichs–Lewy condition. Note
that in our case the condition

�t � �x

.vr C vd/.cC � c0/
(2.67)

covers both the equations of the decoupled system (2.54). This is a stability
condition for the hyperbolic part of the problem. If we solve the ordinary differential
equation part (2.52) using an implicit scheme, that part is unconditionally stable.
Nevertheless, the ordinary differential equation part usually requires smaller time
steps than the hyperbolic part in order to obtain sufficient accuracy.

2.11 Notes

1. Figure 2.1 is taken from Winslow et al. [105]. The figure will be used many
times in this text as we gradually consider more complex models of CICR. A
detailed description of the CICR mechanism and associated models is given by
Winslow, Greenstein, Tankskanen, and Chen in [105] and [104].

2. A review of possible pathological changes arising in the vicinity of the
dyad is given by Louch et al. [55] and calcium signaling in the developing
cardiomyocyte is reviewed by Louch et al. [54]. Cardiac calcium signaling is
reviewed by Bers [5].

3. The goal of the calcium dynamics of a cardiac cell is to enable the well
coordinated contraction of cardiac muscle. Cardiac excitation contraction is
reviewed by Bers [3, 4].
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4. A detailed model of a calcium release unit is presented by Hake et al. [30] and
Chai et al. [9] used the largest computer in the world (in 2013) to simulate the
calcium dynamics of a single sarcomere at the nanometer scale. Simulations
of the calcium dynamics of a whole cardiac cell are presented by Nivala et al.
[60] and Li et al. [49, 51]. The dynamics was analyzed in [98] using a model
developed by Swietach et al. [95].

5. The derivation in Sect. 2.2 of the system of deterministic differential equations
based on the stochastic release equations is motivated by the derivation of
Nykamp and Tranchina [63].

6. The probability density function approach used to model calcium concentra-
tions is taken from Huertas and Smith [35].

7. As mentioned in the beginning of this chapter, the model illustrated in Fig. 2.2
relies on a series of simplifying assumptions. One additional simplification
underlying the model given in (2.1) is that we assume that there is just one
channel. In reality, the RyRs come in clusters of 10–20 channels, but here
we assume that the effect of these channels can be added together in one big
channel taking on the states of the Markov model in question. This is a major
simplification that makes it possible to deal with the problem. The case of many
interacting channels is dealt with by Bressloff [6] (page 112) for the case of a
Markov model consisting of only two states (closed and open).

8. For readers who need to refresh basic notions of differential equations, we
recommend a look at the books by Logan [53], Strauss [91] or [96, 100].
As mentioned several times above, we recommend LeVeque [48] for an
introduction to the numerical solution of hyperbolic problems.

9. Systems of PDEs written in the form (2.22) appear in many different applica-
tions; see Bressloff [6], where other methods of analysis are also presented.

10. An introduction to operator splitting and an explanation of why it works are
given by, for example, LeVeque [48]. Operator splitting for the monodomain
equation of electrophysiology was used by Qu and Garfinkel [70] and the
accuracy was analyzed by Schroll et al. [80]. Application to the bidomain model
was presented by Keener and Bogar [45] and by Sundnes et al. [94].
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Chapter 3
Models of Open and Closed State Blockers

So far we have studied a one-dimensional model of calcium-induced calcium
release. The analysis started with a stochastic differential equation modeling release
from internal storage to the dyad. We found that this model could be analyzed
using Monte Carlo simulations or a system of deterministic partial differential
equations giving the probability density functions of the open and the closed
states. Furthermore, we found analytical solutions of the stationary solutions of the
probability density system.

The aim of the present chapter is to introduce mathematical models of a drug
and then show how the parameters defining the drug can be computed so that it
works as well as possible. For simplicity, we will focus on closed to open mutations
(CO-mutations; see page 16), but it will become clear how to handle open to closed
mutations (OC-mutations) in later chapters.

Let us start by recalling that the Markov model governing the states of the
channel is given by

C
koc

�
kco

O: (3.1)

When a CO-mutation is present, we introduce the mutation severity index � and
replace the reaction rate kco by �kco,

C
koc

�
�kco

O: (3.2)

Obviously, � D 1 represents the wild type case and the size of � > 1 gives the
strength of the mutation. By recalling what the Markov model means, we see that
the mutation increases the probability of going from the closed to the open state and
thus the open state probability will increase.

© The Author(s) 2016
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55



56 3 Models of Open and Closed State Blockers

In this chapter, we will study theoretical open and closed state blockers. We recall
from Chap. 1 that open and closed state blockers can be presented in the forms

C
koc

�
�kco

O
kbo

�
kob

B (3.3)

and

B
kcb

�
kbc

C
koc

�
�kco

O; (3.4)

respectively. The reasoning behind this way of modeling the effect of a drug was
discussed on page 18 above; see in particular Fig. 1.9. Basically, we assume that
the drug introduces a new conformational state of the channel protein that can be
attained via the open state (for open state blockers) or via the closed state (for closed
state blockers). The blocked states are always assumed to be non-conducting.

The mathematical problem of finding a suitable theoretical drug is now to find
the parameters kbc and kcb for the closed state blockers and kbo and kob for the open
state blockers such that the effect of the mutation is reduced as much as possible.
We will see that this problem is much easier using the probability density approach
than using Monte Carlo simulations.

To compute optimal drugs for the CO-mutation, we will first consider the
equilibrium states of the reactions. For closed state blockers, we can use the
equilibrium considerations to reduce the number of free parameters from two to
one. In principle, this can also be done for open state blockers, but some averaging
is needed in the process and optimality is not obtained. For the closed state blocker,
we can use the steady state system derived above to completely characterize both
parameters of the drug to obtain optimality and computations will show that the
resulting drug is theoretically extremely good and asymptotically perfect in the
sense that it completely reverses the effect of the mutation. We are also able to
derive a good open state blocker, but the method is less satisfactory and the results
are not as good as for the closed state blocker.

3.1 Markov Models of Closed State Blockers
for CO-Mutations

We start the derivation of theoretical drugs by considering closed state blockers. The
reaction scheme of a closed state blocker takes the form

B
kcb

�
kbc

C
koc

�
�kco

O; (3.5)
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where the reaction rates of the drug given by kcb and kbc must be determined so that
the mutated cell behaves as similarly to the wild type cell as possible. We regard
these parameters as free and we seek to compute them to obtain optimal efficiency
of the theoretical drug. Allow us also to briefly repeat that this is basically our
definition of a theoretical drug as discussed on page 18.

3.1.1 Equilibrium Probabilities for Wild Type

Consider the Markov model given by

C
koc

�
kco

O

and let o denote the probability of being in the open state and c the probability of
being in the closed state. Suppose the channel just flickers between open and closed
and nothing else happens. Then the equilibrium probabilities are characterized by

kcoc D koco: (3.6)

This means that the channel keeps on flickering in equilibrium and the probabilities
of the open and closed states satisfy the relation (3.6). From this relation it follows
that

c D koc

kco
o

and then, since o C c D 1; we obtain

o D
�

1 C koc

kco

��1

:

3.1.2 Equilibrium Probabilities for the Mutant Case

In the CO-mutation case, we assume that the rate from C to O is increased and we
define

kco;� D �kco; (3.7)
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where � > 1 and � D 1 denotes wild type. The equilibrium open probability of the
mutant is given by

o� D
�

1 C koc

�kco

��1

;

which clearly increases with increasing values of �.

3.1.3 Equilibrium Probabilities for Mutants with a Closed
State Drug

The equilibrium probabilities of reaction (3.5) are characterized by

�kcoc D koco;

kbcb D kcbcI

so

c D koc

�kco
o;

b D kcb

kbc
c D kcb

kbc

koc

�kco
o;

and, since o C c C b D 1; we obtain

�
1 C koc

�kco
C kcb

kbc

koc

�kco

�
o D 1:

So

o D
�

1 C koc

�kco

�
1 C kcb

kbc

���1

:

Define

ıc D kcb

kbc
(3.8)

and note that, in equilibrium, the wild type open probability is given by

o D
�

1 C koc

kco

��1
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and the drugged mutant open probability is given by

o�;ıc D
�

1 C koc

kco

1 C ıc

�

��1

:

Now, we want to choose the drug characterization ıc such that o�;ıc � o and this
can clearly be achieved by requiring that

1 C ıc

�
� 1

or

ıc � � � 1:

So we obtain the characterization

kcb D .� � 1/kbc: (3.9)

This means that, for the closed state blocker, we reduced the number of parameters
characterizing the blocker from two to one. We will use the probability density
approach to determine the remaining degree of freedom.

3.2 Probability Density Functions in the Presence of a Closed
State Blocker

The probability density approach to the stochastic model in the presence of a closed
state drug is

@
o

@t
C @

@x
.ao
o/ D �kco
c � koc
o;

@
c

@t
C @

@x
.ac
c/ D koc
o � .�kco C kcb/ 
c C kbc
b;

@
b

@t
C @

@x
.ac
b/ D kcb
c � kbc
b;

where

ao D vr.c1 � x/ C vd.c0 � x/;

ac D vd.c0 � x/:
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From (3.9), the parameters of the drug are related by

kcb D .� � 1/ kbcI (3.10)

so the system is

@
o

@t
C @

@x
.ao
o/ D �kco
c � koc
o;

@
c

@t
C @

@x
.ac
c/ D koc
o � .�kco C .� � 1/ kbc/ 
c C kbc
b;

@
b

@t
C @

@x
.ac
b/ D .� � 1/ kbc
c � kbc
b:

In the stationary case, we obtain the system

@

@x
.ao
o/ D �kco
c � koc
o; (3.11)

@

@x
.ac
c/ D koc
o � .�kco C .� � 1/ kbc/ 
c C kbc
b; (3.12)

@

@x
.ac
b/ D .� � 1/ kbc
c � kbc
b: (3.13)

In this system, the mutation severity is given by � and the drug is characterized by
a single parameter given by kbc. For a given value of � our aim is now to compute
the value of kbc such that the probability density function of the open state given by
this system is as similar as possible to the probability density function of the open
state in the case of � D 1, that is, the wild type solution when no drug is applied.

3.2.1 Numerical Simulations with the Theoretical Closed State
Blocker

We consider a mutation characterized by � D 3 and we apply closed state blockers
(see reaction scheme (3.5)) with parameters satisfying the relation (3.10). In Fig. 3.1,
we show the results of these simulations using the Monte Carlo approach: The lower
panel of the figure is the same as the upper panel, except that we focus on concen-
trations ranging from 80 to 91 	M . We observe significant differences between
the wild type solution and the solution representing the mutation. Furthermore, we
observe that the drug works quite well. Similar results are given in Fig. 3.2, where
the computations are based on the probability density approach: Here the lower
panel focuses on very high concentrations ranging from 89 to 91 	M. We also see
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Fig. 3.1 Monte Carlo simulations using the theoretical closed state blocker given by the reaction
scheme (3.5), where the reaction rates are related by (3.10) and the mutation severity index is given
by � D 3. The lower panel focuses on higher levels of concentrations

that the closed state drug improves as the value of kbc increases. In fact, the result
seems to indicate that the drug is asymptotically perfect in the sense that the solution
converges toward the wild type solution when kbc ! 1. Model parameters for these
simulations are given in Table 3.1.
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50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

x (μM)

ρ o

WT
MT (μ=3)
kbc=10
kbc=100
kbc=1000

89 89.5 90 90.5 91
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

x (μM)

ρ o

WT
MT (μ=3)
kbc=10
kbc=100
kbc=1000

Fig. 3.2 Numerical solutions of the steady state probability density functions defined by the
system (3.11)–(3.13), where the reaction rates are related by (3.10) and the mutation severity index
is given by � D 3. The lower panel focuses on higher levels of concentrations. Note that the
concentration axis of this figure is different from that of the lower panel of Fig. 3.1

Table 3.1 Parameter values
for the undrugged case

vd 1 ms�1

vr 0.1 ms�1

c0 0.1 	M

c1 1,000 	M

kco.x/ 0:1x ms�1 	M�1

koc 1 ms�1
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3.3 Asymptotic Optimality for Closed State Blockers
in the Stationary Case

In the simulations above, we observed that the closed state blocker worked well and
that the drug became more effective as the value of kbc increased. Our aim is now
to indicate that, when kbc ! 1, the drug will completely repair the mutation. It
is worth mentioning that the possibility of making a drug with kbc D 1 is quite
unlikely, but the asymptotic result is still of theoretical interest.

Consider the steady state system

@

@x
.ao
o/ D �kco
c � koc
o; (3.14)

@

@x
.ac
c/ D koc
o � .�kco C .� � 1/ kbc/ 
c C kbc
b; (3.15)

@

@x
.ac
b/ D .� � 1/ kbc
c � kbc
b: (3.16)

By adding all the equations, we obtain

@

@x
.ao
o C ac .
c C 
b// D 0: (3.17)

From the boundary conditions, we obtain

ao
o C ac .
c C 
b/ D 0 (3.18)

and therefore


c D �1

ac
.ao
o C ac
b/ ; (3.19)

where we recall that ac < 0 for x 2 .c0; cC/. Now, the system (3.14)–(3.16) can be
rewritten in the form

@

@x
.ao
o/ D ��kco
b �

�
�kcoao

ac
C koc

�

o; (3.20)

1

kbc

@

@x
.ac
b/ D � .� � 1/

ao

ac

o � �
b: (3.21)

We are interested in solutions of this system as kbc becomes very large and we
therefore note that, in the limit as kbc ! 1; the second equation yields


b D � .� � 1/

�

ao

ac

o (3.22)
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and therefore the first equation becomes

@

@x
.ao
o/ D ��kco
b �

�
�kcoao

ac
C koc

�

o (3.23)

D kco .� � 1/
ao

ac

o �

�
�kcoao

ac
C koc

�

o (3.24)

D �
�

kco
ao

ac
C koc

�

o: (3.25)

So

@

@x
.ao
o/ D �

�
kco

ao

ac
C koc

�

o: (3.26)

Recall that the wild type model is

@

@x
.ao
o/ D �

�
kco

ao

ac
C koc

�

o (3.27)

(see (2.36)). By comparing (3.26) and (3.27), we see that when the drug is chosen
to be of the form

kcb D .� � 1/ kbc

and when we let kbc ! 1; the drug completely repairs the probability density
functions of the mutated cell.

3.4 Markov Models for Open State Blockers

Next, we want to consider models of open state blockers. The reaction scheme of an
open state blocker for the mutant reads

C
koc

�
�kco

O
kbo

�
kob

B:

The equilibrium probabilities are now characterized by

�kcoc D koco;

kbob D koboI
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so

c D koc

�kco
o;

b D kob

kbo
o;

and since o C c C b D 1; we have

�
1 C koc

�kco
C kob

kbo

�
o D 1:

We now define the open state blocker characterization

ıo D kob

kbo

and note that the open probability is given by

o�;ıo D
�

1 C koc

�kco
C ıo

��1

:

Since the wild type open probability is given by

o D
�

1 C koc

kco

��1

;

we want to choose the drug such that o�;ıo � o and we therefore require

koc

�kco
C ıo � koc

kco

or

ıo;� � koc

kco

� � 1

�
; (3.28)

where we recall that the mutation severity index � > 1: Since � D 1 is the wild
type case, we note that in that case ıo D 0 is the optimal drug, which makes sense;
there is no need to drug the wild type. However, for mutant cells, we have � > 1

and the characterization (3.28) of ıo depends on the dyad calcium concentration, x:

We will therefore use direct optimization to find suitable open state blockers.
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3.4.1 Probability Density Functions in the Presence
of an Open State Blocker

The probability density model in the presence of an open state drug is

@
o

@t
C @

@x
.ao
o/ D �kco
c � .koc C kob/
o C kbo
b; (3.29)

@
c

@t
C @

@x
.ac
c/ D koc
o � �kco
c; (3.30)

@
b

@t
C @

@x
.ac
b/ D kob
o � kbo
b; (3.31)

where we recall that

ao D vr.c1 � x/ C vd.c0 � x/;

ac D vd.c0 � x/:

In the stationary case, we obtain the system

@

@x
.ao
o/ D �kco
c � .koc C kob/
o C kbo
b; (3.32)

@

@x
.ac
c/ D koc
o � �kco
c; (3.33)

@

@x
.ac
b/ D kob
o � kbo
b: (3.34)

We let both kob and kbo be free parameters and use the Fminsearch function
in Matlab to optimize these parameters by minimizing the discrete l2 difference1

between the wild type and mutant 
o. The resulting parameters are kob D 0:28 ms�1,
and kbo D 1:63 ms�1 and the associated numerical results are given in Fig. 3.3,
marked as opt.

3.5 Open Blocker Versus Closed Blocker

In Fig. 3.4, we compare the results of the best open state blocker (referred to as
opt in Fig. 3.3) and closed state blocker, using kbc D 1;000 ms�1 (see Fig. 3.2).
We clearly see that the closed state blocker is better; in fact, at this resolution of

1The discrete l2 difference between two vectors is given by ku � vk2 D .
P

i.ui � vi/
2/1=2.
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Fig. 3.3 Graphs of the numerical solutions using open state blockers. The open state blockers are
based on optimization using the Fminsearch function in Matlab. In the simulation marked with opt,
both parameters kob and kbo are used in the minimization
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Fig. 3.4 Comparison of the best open state blocker and closed state blocker using kbc D 1;000

ms�1 (see Table 3.2 for all the parameters of the two drugs). It is hard to distinguish between the
wild type solution and the solution of the mutant case where the closed state blocker is applied
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Table 3.2 Parameter values
for the drugs used in Fig. 3.4

kob 0.28 ms�1

kbo 1.63 ms�1

kcb 2,000 ms�1

kbc 1,000 ms�1

the graphs, it is hard to distinguish the wild type solution from the solution of the
mutant case where the closed state blocker is applied.

3.6 CO-Mutations Does Not Change the Mean Open Time

To understand why the closed state blocker is much better than the open state blocker
for CO-mutations, it is useful to recall that the mean open time of the Markov model

C
koc

�
�kco

O (3.35)

is given by

�o D 1

koc
:

Thus the mean open time is independent of the mutation. If a closed state blocker is
introduced as

B
kcb

�
kbc

C
koc

�
�kco

O; (3.36)

we clearly see that the mean open time is still given by

�o D 1

koc
:

On the other hand, for an open state blocker of the form

C
koc

�
�kco

O
kbo

�
kob

B; (3.37)

the mean open time is changed and reads

�o D 1

koc C kob
:
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With a closed state blocker used to repair a CO-mutation, the mean open time is kept
constant, as it should, but it is changed using an open state blocker. Consequently, it
is hard to see how to derive an efficient open state blocker for a CO-mutation.

3.7 Notes

1. In this chapter we focused on CO-mutations (see page 16) and, for such
mutations, closed state blockers are best suited from a theoretical perspective.
We will see later that OC-mutations are more easily repaired using open state
blockers.

2. The argument of asymptotic optimality given on page 63 is not a rigorous
proof. To prove it mathematically, we have to take the boundary layer into
consideration. Our derivation assumes smooth solutions but that assumption does
not hold at the boundary.

3. In this section, we used probability density formulations for systems with more
than two states. The general case of many states is presented in Appendix C of
Huertas and Smith [35].

4. The mean open time will be introduced and analyzed in Chap. 13. In the present
chapter we just used very basic properties.

5. We mentioned above that we used the function Fminsearch in Matlab to solve a
minimization problem; see page 66. The Fminsearch function uses the Melder-
Nead [58] algorithm studied by Lagarias et al. [46]. The method is very powerful
and will be used routinely in these notes.

6. It is an underlying assumption for Markov models that the states of the model
correspond to the conformational states of the channel protein. This should not
be interpreted literally; rather, it has proved to be a useful modeling technique.
A thorough discussion on the modeling of ion channels using Markov models
and the models relation to the states of the protein is provided by Rudy and Silva
[75].
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Chapter 4
Properties of Probability Density Functions

The physical processes we study in this text are modeled using models including
stochastic terms. Direct numerical simulations based on such stochastic models
give results that are hard to interpret and it is therefore common to run many
simulations and compute the average, and we have also seen that we can derive
models governing the probability density functions. These are powerful tools that
provide insight in the processes. In this chapter we will see that it is useful to have
specific numbers that characterize stochastic variables and associated probability
density functions. We encountered the equilibrium probability of being in the open
or closed state (see, e.g., page 57) and we introduced probability density functions
(see, e.g., page 30). Here we shall derive some specific (and common) characteristics
of the probability density functions and discuss how these characteristics can be
used to gain an understanding of calcium release. We will also show how the
characteristics relate to the concepts already introduced and we will discuss how
the characteristics vary as functions of the mutation severity index. Finally, we will
show how the statistical characterizations can be used to evaluate the properties of
theoretical drugs.

4.1 Probability Density Functions

Let us briefly recall the models under consideration. We consider the model

Nx0.t/ D N�.t/vr.c1 � Nx/ C vd.c0 � Nx/ (4.1)

of the calcium concentration of the dyad (see Fig. 2.1). Recall that vr denotes the
speed of release from the sarcoplasmic reticulum (SR) to the dyad, vd denotes the
speed of diffusion from the dyad to the cytosol, c0 is the concentration of calcium

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_4
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ions in the cytosol, and c1 is the calcium concentration in the SR; both c0 and c1 are
assumed to be constant. The stochastic function N� D N�.t/ can be either zero (closed
state) or one (open state) and the state is governed by the Markov model

C
koc

�
kco

O; (4.2)

where koc and kco are the rates associated with the Markov model. As discussed
above, the probability density functions of the states of the Markov model are
governed by the following system of partial differential equations:

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (4.3)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c; (4.4)

where, as above, 
o and 
c are the probability density functions of the open and
closed states, respectively. Furthermore, we recall that

ao D vr.c1 � x/ C vd.c0 � x/; (4.5)

ac D vd.c0 � x/: (4.6)

The system of partial differential equations given by (4.3) and (4.4) is solved on the
computational domain given by � D Œc0; cC�, where

cC D vrc1 C vdc0

vr C vd
;

and the boundary conditions are set up to ensure that there is no leak of probability
across the boundaries (see page 37).

4.2 Statistical Characteristics

For the probability density functions given by the system (4.3) and (4.4), we can
introduce the common statistical concepts of probability, expectation, and standard
deviation. The probabilities of being in the open and closed states are given by

�o D
Z

�


odx and �c D
Z

�


cdx; (4.7)
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respectively. It is worth noting that these values are time dependent but independent
of space (concentration). Furthermore, the sum of these probabilities adds up to
one,

�o .t/ C �c .t/ D 1;

for all time. The expected values of the concentration are given by

Eo D 1

�o

Z
�

x
odx and Ec D 1

�c

Z
�

x
cdx (4.8)

under the condition that the channels are open and closed, respectively. Finally, the
standard deviations �o and �c are given by

�2
o D 1

�o

Z
�

x2
odx � E2
o; (4.9)

�2
c D 1

�c

Z
�

x2
cdx � E2
c : (4.10)

We will show below how changes in the Markov model affect these char-
acteristics and how the characteristics are influenced by the theoretical drugs.
Generally, we have to solve the system (4.3) and (4.4) and then compute the
statistical properties. However, we will see that in the special case in which the rate
functions defining the Markov model, koc and kco, are constant; we can compute
some of the characteristics analytically. We will therefore start by considering such
a case.

4.3 Constant Rate Functions

We consider the system (4.3) and (4.4) in the special case that both koc and kco are
constants (independent of the concentration x). If we integrate (4.3) and (4.4) over
the interval �, we obtain the system

� 0
o D kco�c � koc�o; (4.11)

� 0
c D koc�o � kco�c; (4.12)

where we use the boundary conditions that state that there is no flux of probability
across the boundaries.
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4.3.1 Equilibrium Probabilities

When this system reaches equilibrium, the probabilities satisfy

kco�c D koc�o (4.13)

and since �o C �c D 1; we find that

�o D kco

koc C kco
; (4.14)

�c D koc

koc C kco
; (4.15)

which we recognize as the probabilities o and c, respectively, derived directly
from the equilibrium of the Markov model on page 57. This relation explains the
connection between these two ways of considering the probability of being in a
given state of the Markov model, but it is important to note that this relation only
holds when the rate functions are constant.

4.3.2 Dynamics of the Probabilities

In the special case with only two states of the Markov model and constant rate
functions, we can analytically compute how the probabilities evolve in time. If we
use the fact that �o .t/ C �c .t/ D 1 for all time, we find that the system (4.11)
and (4.12) can be reduced to one equation written in the form

� 0
o D .kco C koc/

�
kco

kco C koc
� �o

�
: (4.16)

Suppose we know that the channel is closed at t D 0I then �o.0/ D 0 and we find
the solution

�o.t/ D kco

kco C koc

�
1 � e�.kcoCkoc/t

�
: (4.17)

We note that if the channel is closed at t D 0; the open probability reaches the
equilibrium given by

kco

kco C koc
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at an exponential rate in time and the exponent is given by kco C koc so that
equilibrium is reached faster for higher rates.

4.3.3 Expected Concentrations

We still consider constant rate functions. In that case, we will show that the expected
concentration in the case of open or closed channels can be obtained by solving a
2 � 2 linear system of ordinary differential equations. We start by considering the
system defining the probability density functions,

@
o

@t
C @

@x
.ao
o/ D kco
c � koc
o; (4.18)

@
c

@t
C @

@x
.ac
c/ D koc
o � kco
c: (4.19)

Since

Eo�o D
Z

�

x
odx and Ec�c D
Z

�

x
cdx; (4.20)

we find, using (4.18), that

.Eo�o/t D
Z

�

x
@
o

@t
dx (4.21)

D �
Z

�

x
@

@x
.ao
o/ dx C kco

Z
�

x
cdx � koc

Z
�

x
odx (4.22)

D �
Z

�

x
@

@x
.ao
o/ dx C kco�cEc � koc�oEo: (4.23)

Here the integral can be handled using integration by parts. The domain � is defined
by the interval Œx�; xC� D Œc0; cC� and we recall that ao
o D ac
c D 0 at x D x�
and at x D xC: Therefore, by using the definition of ao given in (4.5), we obtain

�
Z xC

x�

x
@

@x
.ao
o/ dx D � Œx .ao
o/�xC

x�
C
Z xC

x�

ao
odx (4.24)

D .vrc1 C vdc0/ �o � .vr C vd/ �oEo: (4.25)

Consequently, we obtain

.Eo�o/t D .vrc1 C vdc0/ �o C kco�cEc � .vr C vd C koc/ �oEo: (4.26)
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Similarly, we have

.Ec�c/t D
Z

�

x
@
c

@t
dx (4.27)

D �
Z

�

x
@

@x
.ac
c/ dx C koc

Z
�

x
odx � kco

Z
�

x
cdx (4.28)

D �
Z

�

x
@

@x
.ao
o/ dx C koc�oEo � kco�cEc (4.29)

and, by the definition (4.6) of ac, we find that

�
Z xC

x�

@

@x
.ac
c/ xdx D � Œ.ac
c/ x�xC

x�
C
Z xC

x�

ac
cdx (4.30)

D vdc0�c � vd�cEc: (4.31)

We therefore obtain

.Ec�c/t D vdc0�c C koc�oEo � .vd C kco/ �cEc: (4.32)

Since we have already found explicit formulas for �o and �c; we can define

eo D Eo�o and ec D Ec�c (4.33)

and solve the system

e0
o D .vrc1 C vdc0/ �o C kcoec � .vr C vd C koc/ eo; (4.34)

e0
c D vdc0�c C koceo � .vd C kco/ ec: (4.35)

When �o; �c, and eo; ec are computed, of course computing the expectations Eo and
Ec is straightforward.

4.3.4 Numerical Experiments

In Figs. 4.1 and 4.2, we illustrate the properties derived above by presenting the
results of numerical computations. The parameters used in the computations are
given in Table 4.1. In Fig. 4.1, we show how the probability defined by (4.7) evolves
as a function of time. The solid line is the exact solution given by the formula (4.17)
and the crosses are based on the numerical solution of the system (4.3) and (4.4),
where the probability defined by (4.7) is replaced by a Riemann sum based on the
numerical solution. In Fig. 4.2, we show the evolution of the expected concentration
for the open (solid) or closed (dashed) state, based on solving the system of
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Fig. 4.1 Comparison of the theoretically derived open probability given by (4.17) with the
numerical solution of the probability density functions defined by the system (4.3) and (4.4). In
the latter case, the integrals (4.7) are replaced by Riemann sums
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Fig. 4.2 Comparison of the theoretically derived expectations given by (4.33), where eo and ec

are solutions of the system (4.34) and (4.35), with the numerical solution of the probability density
functions defined by the system (4.3) and (4.4). In the latter case, the integrals (4.8) are replaced
by Riemann sums

ordinary differential equations given by (4.34) and (4.35) and then computing the
expectations from (4.33) and the solution of (4.16). The crosses are based on the
numerical solution of the system (4.3) and (4.4) and the expected values of the
concentration defined by (4.8) are again replaced by a Riemann sum based on the
numerical solution.
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Table 4.1 Parameter values
for the model of (4.1)
and (4.2)

vd 0.1 ms�1

vr 1.0 ms�1

c0 0 mM

c1 1 mM

kco 1 ms�1

koc 1 ms�1

4.3.5 Expected Concentrations in Equilibrium

In the case of constant rates, we derived the following system describing the
evolution of the expected concentrations for open or closed channels, respectively,

e0
o D .vrc1 C vdc0/ �o C kcoec � .vr C vd C koc/ eo; (4.36)

e0
c D vdc0�c C koceo � .vd C kco/ ec; (4.37)

where we recall that

eo D Eo�o and ec D Ec�c: (4.38)

The stationary solution of this system is given as the solution of the following linear
2 � 2 system of equations:

�
koc C vr C vd �kco

�koc kco C vd

��
eo

ec

�
D
�

.vrc1 C vdc0/ �o

vdc0�c

�
; (4.39)

where �o and �c are equilibrium probabilities given by (4.14) and (4.15). The
solution of this system in terms of a formula becomes messy, but if we consider
the specific parameters used in the computations (see Table 4.1), we find that the
equilibrium expectations are given by

Eo D 0:8397 mM, (4.40)

Ec D 0:7634 mM, (4.41)

which compares well with our observations in Fig. 4.2.

4.4 Markov Model of a Mutation

Mutations may change the release mechanism and thus seriously alter the function
of the calcium-induced calcium release. Mutations in the RyR2 gene can lead to
changes in the receptor function, increasing the open probability.
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Table 4.2 Parameter values
for the model (4.43)
and (4.44)

vd 1 ms�1

vr 0.1 ms�1

c0 0.1 	M

c1 1,000 	M

kco 0.1 ms�1	M�1

koc 1 ms�1

As mentioned above, one way to model the increased open probability is to define

kco;� D �kco; (4.42)

where � is referred to as the mutation severity index. This is a CO-mutation (see
page 16) and it does not affect the mean open time. The parameter � D 1 denotes
the wild type case and larger values of � indicate more severe mutations. Basically,
since kco;� > kco for � > 1, the mutation will lead to an increased probability of
being in the open state.

The system governing the open and closed probability densities now takes the
form

@
o

@t
C @

@x
.ao
o/ D �kco x
c � koc
o; (4.43)

@
c

@t
C @

@x
.ac
c/ D koc
o � �kco x
c; (4.44)

where, as above, we have

ao D vr.c1 � x/ C vd.c0 � x/; (4.45)

ac D vd.c0 � x/:

Note that in this model the opening rate depends on the concentration x. Model
parameters are given in Table 4.2.

In Fig. 4.3, we show the results of Monte Carlo simulations (histograms) and
solutions of the probability density system (4.43) and (4.44) (red solid line) for the
wild type case (� D 1) and mutant case (� D 3). As above, we see that these two
computational approaches give more or less the same answer. It is more interesting
to observe the effect of the mutation. We see that the mutation tends to shift the
open probability density function toward the upper boundary, where the function
becomes very large. This shows that, in the case of mutation, it is very likely to have
a high concentration and an open channel—much more likely than in the wild type
case.

The statistical characteristics introduced above are given in Table 4.3. We note
that the total open probability �o increases from 0.811 for the wild type to 0.962 for
the mutant. Also, we note that the expected concentration, Eo, for open channels is



80 4 Properties of Probability Density Functions

0 20 40 60 80
0

0.1

0.2
W

T

ρ
o

0 20 40 60 80
0

0.1

0.2

M
ut

an
t

V (mv)

0 20 40 60 800

0.005

0.01

ρ
c

0 20 40 60 80
0

0.005

0.01

V (mv)

Fig. 4.3 Upper panel: Wild type open (left) and closed (right) probability density functions
computed using Monte Carlo simulations (histogram) and by solving the probability density
system (red line). The integral of the open probability density function is 0.811 (0.189 for the
closed state probability density function). Lower panel: Similar figure as for the mutant case
(� D 3). The integral of the open probability density function is 0.962 (0.038 for the closed
state probability density function)

Table 4.3 Statistical
properties of the wild type
and mutant cases

Case �o Eo �o �c Ec �c

Wild type 0:811 81:91 9:50 0:189 43:04 35:26

Mutant 0:962 87:95 3:20 0:038 84:34 4:85

given by 81.91 	M for the wild type and 87.95 	M for the mutant. The standard
deviation, on the other hand, is significantly reduced (by a factor of three) in the
mutant case compared to the wild type. The probability of being in the closed state
decreases by a factor of five in the mutant case compared to the wild type, whereas
the expected concentration is doubled and the standard deviation is reduced by a
factor of seven.

4.4.1 How Does the Mutation Severity Index Influence
the Probability Density Function of the Open State?

We have seen a few examples indicating how changes in the reaction rates kco and
koc change the probability density functions. Since we are able to solve the stationary
case analytically, this issue can be studied in great detail. Let us start by recalling
that we model the effect of the mutation by introducing a severity index �. The
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stationary model is then

@

@x
.ao
o/ D �kco x
c � koc
o; (4.46)

@

@x
.ac
c/ D koc
o � �kco x
c; (4.47)

where we recall that � D 1 is the wild type case. We discussed above how to
solve the steady state model analytically (see Sect. 2.6, page 41) and we can use the
analytical solution to investigate how the mutation affects the probability density
functions. Since the steady state open probability density function is given by the
solution of


0
o D �˛.x/
o

with

˛.x/ D �kco x

vd.c0 � x/
� vp � koc

vp.cC � x/
;

where

vp D vr
c1 � c0

cC � c0

;

we have solutions of the form


o;�.x/ D K�e
�kco x

vd .cC � x/
koc
vp

�1
.x � c0/

c0�kco
vd ; (4.48)

where K� is a constant given by the somewhat complicated expression

1=K� D .cC �c0/
aCbea�.a/�.b/.1F1.a; aCb; c/Ckoc

vp � vd

vdvp
1F1.a; aCbC1; c//:

Here 1F1 is Kummer’s regularized hypergeometric function and

a D c0�kco=vd; b D koc=vp; c D .cC � c0/�kco=vd:

It is useful to consider the ratio of the mutant solution to the wild type solution and
we find that


o;�.x/


o;1.x/
D K�

K1

e
.��1/xkco

vd .x � c0/
.��1/c0kco

vd :
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Fig. 4.4 Contours of the function

o;�.x/


o;1.x/
. Note that the open probability density function of the

mutant is much greater than the open probability density function of the wild type for large values
of the concentration and for large values of the mutation severity index �

In Fig. 4.4, we graph this relation as a function of the severity index � and the
concentration x: We observe that, close to the maximum concentration, the open
probability density function of the mutant is much larger than for the wild type.

4.4.2 Boundary Layers

As seen in both the numerical and analytical solutions above, the probability density
functions may have singularities at the endpoints. It is easily seen from (4.48) that

o;� has a singularity at the endpoint x D cC whenever

koc

vp
< 1:

Similarly, we find that the closed probability density function is given by


c;�.x/ D K�

vp

vd
e

�xkco
vd .cC � x/

koc
vp .x � c0/

�c0kco
vd

�1
;



4.5 Statistical Properties of the Mutation 83

which has a singularity at x D c0 whenever

�c0kco

vd
< 1:

4.5 Statistical Properties as Functions of the Mutation
Severity Index

We have seen, using numerical computations and analytical considerations, how the
mutation severity index changes the probability density functions. In this section,
we shall look with more detail into how the index changes the statistical properties
of the probability density functions. Again, we consider a case where the rates koc

and kco are constants.

4.5.1 Probabilities

We recall that the open probability, defined as

�o D
Z

�


odx; (4.49)

evolves as

�o.t/ D kco

kco C koc

�
1 � e�.kcoCkoc/t

�
(4.50)

for wild type parameters in the case of �o.0/ D 0. If we introduce the mutation
severity index in the Markov model (see (4.42)), we find that the open probability
evolves as

�o;�.t/ D �kco

�kco C koc

�
1 � e�.�kcoCkoc/t

�
(4.51)

and thus the mutant case shows faster convergence toward a higher probability than
the wild type case. In Fig. 4.5, we show the graphs of �o and �o;� in the case of
� D 3 and � D 10I the other parameters are given in Table 4.4.
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Fig. 4.5 The open probability �o defined by (4.49) with � D 1 (wild type), � D 3, and � D 10.
The mutation increases the equilibrium open probability and reduces the time to reach equilibrium

Table 4.4 Parameter values
for the model (4.1) and (4.2)
(copied from Table 4.1)

vd 0.1 ms�1

vr 1.0 ms�1

c0 0 mM

c1 1 mM

kco 1 ms�1

koc 1 ms�1

4.5.2 Expected Calcium Concentrations

We defined the expected calcium concentrations in the case of open and closed
channels as

Eo D 1

�o

Z
�

x
odx and Ec D 1

�c

Z
�

x
cdx: (4.52)

Recall that �o and �c; are given by explicit formulas and that we introduced

eo D Eo�o and ec D Ec�c: (4.53)
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For constant rates koc and kco, the expectations can be found by solving the system
of ordinary differential equations

e0
o D .vrc1 C vdc0/ �o C kcoec � .vr C vd C koc/ eo; (4.54)

e0
c D vdc0�c C koceo � .vd C kco/ ec; (4.55)

and then computing

Eo.t/ D eo.t/

�o.t/
and Ec.t/ D ec.t/

�c.t/
:

In Fig. 4.6, we show the expected values of the calcium concentration for wild
type data when the channel is open (solid, red) and closed (solid, blue), as well
as mutant-type data .� D 3/ when the channel is open (dotted, red) and closed
(dotted, blue). In the computation using mutant data, we simply replace kco with
�kco. However, keep in mind that this affects the formulas defining the probabilities
�o and �c as well.
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Fig. 4.6 Expected values of the concentration for wild type (dotted lines) and mutant (solid lines)
cases as a function of time. In the mutant case, we used � D 3
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4.5.3 Expected Calcium Concentrations in Equilibrium

As explained above, the equilibrium version of the expected concentrations Eo and
Ec can be found by solving the following 2 � 2 linear system of equations:

�
koc C vr C vd ��kco

�koc �kco C vd

��
eo

ec

�
D
�

.vrc1 C vdc0/ �o

vdc0�c

�
(4.56)

and then computing

Eo D eo

�o
and Ec D ec

�c
;

where �o and �c are equilibrium probabilities given by (4.14) and (4.15),

�o D �kco

koc C �kco
; (4.57)

�c D koc

koc C �kco
: (4.58)

In Fig. 4.7, we plot the expectations as a function of the mutation severity index. The
red line represents the expected value of the calcium concentration when the channel
is open and the blue line represents the expected value of the calcium concentration

100 101 1020.75
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Fig. 4.7 Steady state of Eo and Ec as a function of the mutation severity index



4.5 Statistical Properties of the Mutation 87

when the channel is closed. Here, we use the parameters given in Table 4.4. The
graphs start at � D 1, which represents the wild type case.

4.5.4 What Happens as � �! 1?

When the mutation severity index goes to infinity, we force the channel to be open
more or less all the time. If we consider the stochastic model

Nx0.t/ D N�.t/vr.c1 � Nx/ C vd.c0 � Nx/

as � �! 1; we know that the channel is generally open, so we have N�.t/ � 1:

Therefore, we obtain the model

Nx0.t/ � vr.c1 � Nx/ C vd.c0 � Nx/:

As we have seen earlier, the equilibrium version of this equation is given by

x D cC D vrc1 C vdc0

vr C vd
� 0:91 mM

and this is what we see from the graphs of Fig. 4.7.
We can also see this from system (4.56). For the parameters given in Table 4.4,

we have

�o D �

1 C �
and �c D 1

1 C �

and therefore the system (4.56) takes the form

�
2:1 ��

�1 � C 0:1

��
eo

ec

�
D
 

�

1C�

0

!
; (4.59)

which, in terms of Eo and Ec, reads

 
2:1 �� �c

�o

��o .� C 0:1/�c

!�
Eo

Ec

�
D
�

1

0

�
: (4.60)

If we let � �! 1; we obtain the system

�
2:1 �1

�1 1

��
Eo

Ec

�
D
�

1

0

�
(4.61)
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and the solution

Eo D Ec � 0:91 mM:

4.6 Statistical Properties of Open and Closed State Blockers

We have seen above that open and closed state theoretical blockers can significantly
reduce the effect of the mutation. Computations have shown that closed state
blockers repair the effect of the mutation as the parameter kbc goes to infinity.
This effect is also shown by a direct mathematical argument. For the open state
blocker, we have seen that fairly good results can be obtained when the parameters
of the drug are optimized, but perfect results can probably not be obtained for a
CO-mutation because of the change of the mean open time described above. In
this section, we present the statistical properties of the two types of drugs. The
properties are presented in Table 4.5. In the table we observe that the total open
probability (see Sect. 4.2, page 72) of the open state in the wild type case is 0.811.
This increases to 0.962 for the mutant case (� D 3). When the closed state blocker
is applied and the factor kbc is increased, we see that the open probability is repaired
by the drug. The same effect holds for the expected concentration Eo of the open
state; it is completely repaired by the closed state blocker for large values of kbc.
This also holds for the standard deviation. For the open state blocker, we do not
obtain a sufficient effect by increasing kbo, but when both parameters of the drug are
optimized, the open probability and the expected concentration of the open state are
almost completely repaired. The open state blocker is, however, unable to repair the
standard deviation.

Table 4.5 Statistical
properties of the closed and
open state blockers

Case �o Eo �o

Closed blocker, kbc=10 0:739 82:47 10:59

Closed blocker, kbc=100 0:805 81:97 9:66

Closed blocker, kbc=1,000 0:811 81:91 9:52

Open blocker, kbo=1 0:935 86:85 6:45

Open blocker, kbo=10 0:936 85:97 4:89

Open blocker, kbo=100 0:936 85:80 3:44

Optimized open blocker 0:817 80:09 13:10

Wild type, no drug 0:811 81:91 9:50

Mutant, no drug 0:962 87:95 3:20
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4.7 Stochastic Simulations Using Optimal Drugs

We derived closed state and open state blockers with the parameters summarized in
Table 3.2. In Fig. 4.8, we show the solutions of the stochastic model

Nx0.t/ D N�.t/vr.c1 � Nx/ C vd.c0 � Nx/ (4.62)

computed using the scheme

xnC1 D xn C �t .�nvr.c1 � xn/ C vd.c0 � xn// ; (4.63)

where the dynamics of the stochastic function � are given by the Markov model.
The wild type solution is given in the upper-left part of the solution and we observe
significantly larger variations than for the solution in the mutant case (upper right).
The effect of the mutation is well repaired by both drugs. Note that since a random
number is used in every time step, the solutions will never coincide, no matter how
good the drug is. This illustrates the difficulty of comparing stochastic solutions and
shows that comparison using probability density functions and derived statistics is
much easier.
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Fig. 4.8 Simulations based on the stochastic model (4.62) computed using scheme (4.63). In the
mutant case, we use � D 3. The parameters specifying the drugs are given in Table 3.2
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4.8 Notes

1. The mean open time will be introduced and analyzed in Chap. 13. In the present
chapter, we have just used the very basic properties.

2. The statistical properties discussed in this chapter are taken from Williams et al.
[103].
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Chapter 5
Two-Dimensional Calcium Release

The essence of calcium-induced calcium release is once more illustrated in Fig. 5.1.
This figure is very similar to Fig. 2.1 on page 24 except that the box surrounded
by a thin red line is now slightly extended. This is meant to illustrate that the
model is now extended to account for changes in the calcium concentration of the
junctional sarcoplasmic reticulum (JSR) space (see Fig. 5.1); so we now consider
a two-dimensional (2D) model where the concentration of the dyad (Nx D Nx.t/) and
the JSR (Ny D Ny.t/) vary, recalling that the bar notation indicates stochastic variables.
The concentration of the cytosol and the network sarcoplasmic reticulum (NSR) are
still kept constant and we still ignore L-type calcium currents. An illustration of the
mathematical model under consideration is given in Fig. 5.2.

The basic steps of the analysis of the 2D problem follow the steps of the
analysis of the one-dimensional (1D) problem. We will start our analysis of the 2D
problem by formulating a 2�2 system of stochastic differential equations giving the
dynamics of the calcium concentration of the dyad and of the JSR. This model will
be used as a basis for Monte Carlo simulations. By following the steps above, we
also derive a 2D deterministic equation describing the probability density functions
of the open and closed states. A numerical method for this system will be presented
and, again, we will find that it is reasonable to focus on steady state computations.
The probability density model will be extended to account for open or closed state
blockers and, as above, we will see that we can find very good closed state blockers
for CO-mutations (see page 16).

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_5
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NSR

JSR

DyadCytosol

Ca2+

RyRs

Ca2+

LCCs Ca2+

T-tubule, extracellular space

Fig. 5.1 As above, this figure illustrates the components involved in calcium-induced calcium
release: the T-tubule, the dyad, the sarcoplasmic reticulum (SR) represented by the JSR and NSR
and the cytosol. In this chapter, we concentrate on the dynamics in the box surrounded by a thin red
line. We assume that the concentrations of the cytosol (c0) and of the NSR (c1) are constants and
we ignore the LCCs. The variables of interest are the calcium concentrations of the dyad (Nx D Nx.t/)
and the JSR (Ny D Ny.t/)

Cytosol, c0 Dyad, x̄(t) JSR, ȳ(t) NSR, c1

Fig. 5.2 Sketch of a release unit. The cytosolic calcium concentration (c0) and NSR calcium
concentration (c1) are assumed to be constant, while the concentrations of the dyad and JSR are
given by Nx D Nx.t/ and Ny D Ny.t/, respectively. Note that c0 � c1

5.1 2D Calcium Release

The process of calcium release illustrated in Fig. 5.2 can be modeled as follows:

Nx0.t/ D N�.t/vr .Ny � Nx/ C vd .c0 � Nx/ ; (5.1)

Ny0.t/ D N�.t/vr .Nx � Ny/ C vs .c1 � Ny/ ; (5.2)

where vr denotes the rate of release from the JSR to the dyad, vd denotes the speed of
calcium diffusion from the dyad to the cytosol, and vs denotes the speed of calcium
diffusion from the NSR to the JSR. Furthermore, N�.t/ is a stochastic variable taking
on two possible values, zero and one, with (as above) zero denoting a closed channel
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and one denoting an open channel. The dynamics of N� are governed by the Markov
model under consideration. Furthermore, we always assume that

c1 � c0 and vr; vd; vs > 0: (5.3)

For the 2D case, we also assume1 that

vdvs � v2
r : (5.4)

5.1.1 The 1D Case Revisited: Invariant Regions
of Concentration

Suppose the speed of diffusion, vs; from the JSR to the NSR becomes very large.
From (5.2), we observe that the limiting case when vs ! 1 yields y D c1 and thus
the problem is in 1D and can be written

Nx0.t/ D N�.t/vr .c1 � Nx/ C vd .c0 � Nx/ ;

which is exactly the problem we discussed in Chap. 2 (page 25). We analyzed this
equation and saw that, when the channel is closed .� D 0/, the solution tends toward
the equilibrium point represented by

x D c0

and, when the channel is open, the equilibrium solution is given by

x D cC D .1 � ˛/ c1 C ˛c0;

where

˛ D vd

vr C vd
:

Based on this, we concluded that if the initial concentration is in the interval
Œc0; cC� ; the solution will always remain in this interval. The reason for this is that
if the channel is closed, the solution will decrease toward c0 and, if the channel
is open, the solution will increase toward cC: For closed channels, c0 is a stable
equilibrium and, similarly, if the channel is open, cC is a stable equilibrium.

1This is a technical assumption needed in an argument below.
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5.1.2 Stability of Linear Systems

Before we consider the 2D case, we need to recall some basic properties of linear
systems of ordinary differential equations. For a system of the form

x0.t/ D Ax;

where A is a matrix and the unknown x is a vector, we know that the equilibrium
solution x D 0 is stable, provided that the real part of all the eigenvalues of A is
negative. However, the systems under consideration here are of the form

x0.t/ D Ax C b; (5.5)

where b is a known vector. In the case of a non-singular matrix A, the equilibrium
solution is given by

x� D �A�1b (5.6)

and we are interested in the stability of this solution. To assess the stability, we
define

e D x � x�

and observe that

e0.t/ D x0.t/ D Ax C b D Ax � Ax� D Ae

and, of course, e D 0 is a stable equilibrium of the system

e0 D Ae;

provided that the real part of all the eigenvalues of A are negative. Therefore, the
equilibrium solution (5.6) of the system (5.5) is stable under the same condition.
With these observations at hand, we are ready to try to understand the dynamics of
the system (5.1) and (5.2).

5.1.3 Convergence Toward Two Equilibrium Solutions

Our aim is now to understand the dynamics of the 2D case and we start by
considering the system when the channel is closed.
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5.1.3.1 Equilibrium Solution for Closed Channels

In this case, the system (5.1) and (5.2) is quite simple, since there is no communi-
cation between the dyad and the JSR. The system is

x0.t/ D vd .c0 � x/ ; (5.7)

y0.t/ D vs .c1 � y/ ; (5.8)

and the stable equilibrium solution of this system is given by

xc D c0;

yc D c1:

5.1.3.2 Equilibrium Solution for Open Channels

The more interesting case is when the channel is open. Then the system reads

x0.t/ D vr .y � x/ C vd .c0 � x/ ; (5.9)

y0.t/ D vr .x � y/ C vs .c1 � y/ ; (5.10)

and the equilibrium solution is given by

xo D ˛c1 C .1 � ˛/ c0;

yo D ˇc1 C .1 � ˇ/ c0;

where

˛ D vrvs

vd .vr C vs/ C vrvs
;

ˇ D vs .vd C vr/

vd .vr C vs/ C vrvs
:

It is useful, but not surprising, to note that

yo � xo D .ˇ � ˛/ .c1 � c0/ D vsvd

vd .vr C vs/ C vrvs
.c1 � c0/ > 0;

since c1 is assumed to be larger than c0 (see (5.3)).
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5.1.3.3 Stability of the Equilibrium Solution

Whether the equilibrium solution for open channels is stable remains to be seen.
As noted above, this can be determined by invoking the eigenvalues of the system
matrix, which, in this case, are given by

A D
�� .vr C vd/ vr

vr � .vr C vs/

�
:

Since the matrix is symmetric, the eigenvalues are real, so it is sufficient to see if
they are always non-positive. The eigenvalues are given by

�� D 1

2

�
�
q

.vd � vs/
2 C 4v2

r � vd � 2vr � vs

�
;

�C D 1

2

�q
.vd � vs/

2 C 4v2
r � vd � 2vr � vs

�
;

where obviously �� < 0 for any vr; vd; vs > 0: Hence, �C < 0 also remains to be
shown. To this end, we start by assuming that �C > 0I so we assume that

0 <
p

u � v;

with

u D .vd � vs/
2 C 4v2

r

and

v D vd C 2vr C vs:

We can safely multiply both sides of this inequality with something positive such asp
u C v and we therefore find that

0 <
�p

u � v
� �p

u C v
�

D u � v2

D �4 .vdvr C vdvs C vrvs/

and, since vr; vd; vs > 0, this is a contradiction and we conclude that �C < 0 for all
vr; vd; vs > 0:
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5.1.4 Properties of the Solution of the Stochastic Release
Model

We have found that when the channel is closed, the equilibrium solution is given by

xc D c0;

yc D c1;

which is stable. Similarly, when the channel is open, the equilibrium solution is
given by

xo D ˛c1 C .1 � ˛/ c0; with ˛ D vrvs

vd .vr C vs/ C vrvs
;

yo D ˇc1 C .1 � ˇ/ c0; with ˇ D vs .vd C vr/

vd .vr C vs/ C vrvs
;

and this solution is also stable. The solution of the model given by the system (5.1)
and (5.2) will therefore tend toward .xc; yc/ whenever the channel is closed and
toward .xo; yo/ whenever the channel is open. This will be illustrated in numerical
simulations below.

5.1.5 Numerical Scheme for the 2D Release Model

To perform 2D stochastic simulations, we use the numerical scheme

xnC1 D xn C �t .�nvr .yn � xn/ C vd .c0 � xn// ; (5.11)

ynC1 D yn C �t .�nvr .xn � yn/ C vs .c1 � yn// ; (5.12)

where � is computed according to the Markov model given by the reaction
scheme

C
koc

�
kco

O (5.13)

(see page 28), where koc and kco are reaction rates that may depend on both the
concentrations represented by x D x.t/ and y D y.t/.
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Table 5.1 Values of
parameters used in 2D
simulations based on the
scheme (5.11) and (5.12)

vd 1 ms�1

vr 0.1 ms�1

vs 0.01 ms�1

c0 0.1 	M

c1 1,000 	M

kco 1 ms�1

koc 1 ms�1
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Fig. 5.3 Results of simulation using the scheme (5.11) and (5.12) with the data given in Table 5.1

5.1.5.1 Simulations Using the 2D Stochastic Model

We use the numerical scheme given by (5.11) and (5.12), where the parameters and
functions involved are described in Table 5.1. The numerical solutions are given in
Figs. 5.3 and 5.4. In the latter figure, we also indicate when the channel is open and
closed (upper panel).

5.1.6 Invariant Region for the 2D Case

We observed in the 1D case that an invariant region for the numerical scheme
used to compute approximate solutions of the stochastic model was useful for the
probability density system, since it defined the interval in which to solve the system.
Similarly, we will derive an invariant region for numerical solutions generated by
the scheme (5.11) and (5.12) and this invariant region will define the geometry we
will use to solve the probability density system.
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Fig. 5.4 A detailed view of the results given in Fig. 5.3. The open/closed state of the channel is
indicated in the upper panel

Let us start by recalling the assumptions (5.3) and (5.4) and let us also assume
that the time step �t > 0 is chosen such that

�t < min

�
1

vr C vd
;

1

vr C vs

�
: (5.14)

Define

x� D c0; (5.15)

xC D vrc1 C vdc0

vr C vd
; (5.16)

y� D c0vr C c1vs

vr C vs
; (5.17)

yC D c1; (5.18)

and observe that

y� � xC D c0vr C c1vs

vr C vs
� vrc1 C vdc0

vr C vd
D .c1 � c0/

vdvs � v2
r

.vr C vs/ .vr C vd/
:

It now follows from the assumptions (5.3) and (5.4) that we have

y� > xC: (5.19)
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Our aim is now to show that � D .x�; xC/ � .y�; yC/ is an invariant region
for solutions of the scheme (5.11) and (5.12). Because of (5.19), this means, in
particular, that under the assumptions (5.3) and (5.4) the lowest possible calcium
concentration of the JSR will always be larger than (or equal to) the highest calcium
concentration of the dyad.

The numerical scheme (5.11, 5.12) can be written in the form

xnC1 D F.xn; yn; �n/;

ynC1 D G.xn; yn; �n/;

where

F.x; y; �/ D x C �t .�vr .y � x/ C vd .c0 � x// ;

G.x; y; �/ D y C �t .�vr .x � y/ C vs .c1 � y// :

We will consider the properties of the functions F and G for x and y in the domain

� D f.x; y/ W x� � x � xC; y� � y � yCg (5.20)

and for 0 � � � 1: Note that

@F.x; y; �/

@x
D 1 � �t .�vr C vd/ � 1 � �t .vr C vd/ > 0

by condition (5.14). In addition, we have

@F.x; y; �/

@y
D �t�vr � 0

and

@F.x; y; �/

@�
D �tvr .y � x/ � 0;

where we use (5.19) and (5.20). Similarly, we have

@G.x; y; �/

@y
D 1 � �t .�vr C vs/ � 1 � �t .vr C vs/ > 0;

which is also positive by condition (5.14). Finally, we have

@G.x; y; �/

@x
D �t�vr � 0
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and

@G.x; y; �/

@�
D �tvr .x � y/ � 0

by (5.19) and (5.20). We now assume that

.xn; yn/ 2 �:

Then,

xnC1 D F.xn; yn; �n/ � F.x�; y�; 0/ D x�

and

xnC1 D F.xn; yn; �n/ � F.xC; yC; 1/ D xC:

So we conclude that

x� � xnC1 � xC:

Similarly,

ynC1 D G.xn; yn; �n/ � G.x�; y�; 1/ D y�

and

ynC1 D G.xn; yn; �n/ � G.xC; yC; 0/ D yCI

so we conclude that

y� � ynC1 � yC:

We have seen that under the assumptions (5.3), (5.4), and (5.14), it follows that,
if

.xn; yn/ 2 �;

then also

.xnC1; ynC1/ 2 �

and we therefore conclude that � is an invariant region for the scheme of (5.11)
and (5.12). This means that the probability density system will be solved in the
domain defined by �:
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5.2 Probability Density Functions in 2D

In the 1D case considered above, we derived a model for the probability density
functions. In the 2D case, we can follow exactly the same steps and arrive at a
system of partial differential equations of the form

@
o

@t
C @

@x

�
ax

o
o
�C @

@y

�
ay

o
o
� D kco
c � koc
o; (5.21)

@
c

@t
C @

@x

�
ax

c
c
�C @

@y

�
ay

c
c
� D koc
o � kco
c; (5.22)

where

ax
o D vr .y � x/ C vd .c0 � x/ ;

ay
o D vr .x � y/ C vs .c1 � y/ ; (5.23)

ax
c D vd .c0 � x/ ;

ay
c D vs .c1 � y/ :

As in 1D, 
o and 
c denote the open and closed probability density functions,
respectively, satisfying the integral condition

Z
�

.
o C 
c/ dx dy D 1: (5.24)

Here the domain can be taken to be

� D f.x; y/ W x� 6 x 6 xC; y� 6 y 6 yCg (5.25)

and the boundary conditions are again defined to ensure that there is no flux of
probability out of the domain (see page 37).

5.2.1 Numerical Method for Computing the Probability
Density Functions in 2D

To solve the system (5.21) and (5.22), we need to define a numerical method. For the
1D model (see page 37), we used an upwind scheme as presented by LeVeque [48].
Here, we use the 2D version of the same numerical method. Consider the partial
differential equation


t C .a
/x C .b
/y D g
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Table 5.2 Discretization
parameters

�t 0.001 ms

�x 0.92 	M

�y 9.3 	M

where a; b, and g are smooth functions of x and y: We let 
n
i;j denote an approxi-

mation of 
 at time t D n�t for .x; y/ 2 Œxi�1=2; xiC1=2/ � Œyj�1=2; yjC1=2/, where
xi D x� C i�x; yj D yC C j�y, and

�x D xC � x�
Mx

; �y D yC � y�
My

:

Here Mx and My denote the number of grid points along the x and y axes,
respectively. The numerical approximation is defined by the scheme


nC1
i;j D 
n

i;j � �t

�x

�
.a
/n

iC1=2;j � .a
/n
i�1=2;j

�

� �t

�y

�
.b
/n

i;jC1=2 � .b
/n
i;j�1=2

�
C �tgi;j


n
i;j; (5.26)

where

.a
/n
iC1=2;j D max.aiC1=2;j; 0/
n

i;j C min.aiC1=2;j; 0/
n
iC1;j; (5.27)

.b
/n
i;jC1=2 D max.bi;jC1=2; 0/
n

i;j C min.bi;jC1=2; 0/
n
i;jC1: (5.28)

In our simulations, this scheme is used for both equations (5.21) and (5.22) above,
where the right-hand sides are given by kco
c �koc
o and koc
o �kco
c, respectively.

As pointed out above, the probability densities integrates to one (see (5.24)), and
the discrete version of this condition reads,

�x�y
X

i;j


i;j D 1; (5.29)

where 
 D 
o C 
c. Note that the initial conditions must be chosen such that
this condition holds. The discretization parameters used throughout this chapter are
given in Table 5.2.

5.2.2 Rapid Decay to Steady State Solutions in 2D

We observed in 1D that the time-dependent probability density functions converge
rapidly toward steady state solutions. This is illustrated in Fig. 2.7 on page 39. In
Fig. 5.5, we show snapshots of the open probability density function at times 1, 2,
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Fig. 5.5 Open probability density function 
o as a function of the dyad (x) and the JSR
concentrations (y) for times t D 1, 2, 3, 5, 10, 20, 40, 70, and 100 ms. Note the convergence
toward an equilibrium solution. In the computations, we use �t D 0:001 ms, �x D 0:92 	M, and
�y D 9:3 	M

3, 5, 10, 20, 40, 70, and 100 ms and we observe that the solution converges toward
an equilibrium solution with time. This is verified in Fig. 5.6, where we plot the
(weighted) norm between the dynamic and stationary solutions for time t ranging
from 0 to 150 ms and we see that the solution is quite close to equilibrium at t D 100

ms. This observation is useful because it implies that when we assess the effect of
various theoretical drugs, it is sufficient to consider steady state solutions.

5.2.3 Comparison of Monte Carlo Simulations and Probability
Density Functions in 2D

As in 1D, we want to compare the probability densities 
o and 
c computed by
solving the probability density system (5.21) and (5.22) using the scheme (5.26)
with Monte Carlo simulations based on the stochastic differential equations (5.1)
and (5.2) solved by the numerical scheme (5.11) and (5.12). The comparison is
undertaken in the same manner as in 1D. We simply run a number of Monte Carlo
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Fig. 5.6 The weighted norm of the difference between the open probability density function 
o at
time t and at time 1;000 ms. This figure shows convergence toward an equilibrium solution
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Fig. 5.7 Steady state open probability density function 
o computed by solving the probability
density system (5.21) and (5.22). The solution is bounded (red curve) by solutions of the
system (5.7) and (5.8) and the system (5.9) and (5.10)

simulations for a long time and count the number of open states in small rectangles.
The procedure is a direct generalization of the method used in 1D (see page 40).

The numerical solution of the probability density system is given in Fig. 5.7 and
the associated solution based on Monte Carlo simulations is given in Fig. 5.8. As in
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Fig. 5.8 Open probability density function 
o computed by Monte Carlo simulations using the
scheme (5.11) and (5.12). The solution is bounded (red curve) by solutions of the system (5.7)
and (5.8) and the system (5.9) and (5.10)

1D, we observe that the solutions are quite similar. In both these figures, we observe
that the solutions stay inside a region bounded by a red curve. The red curve is
computed by solving (5.7) and (5.8) for the closed state and (5.9) and (5.10) for the
open state.

5.2.4 Increasing the Open to Closed Reaction Rate in 2D

In 1D, we observed that if we increased the reaction rate koc from open to closed, the
steady state probability density functions changed considerably (see page 46). We
observed that the open probability decreased and the closed probability increased
significantly. In Fig. 5.9, we study the same effect in 2D and again we observe
that the open probability density function is considerably decreased when koc is
increased from one to three. The statistics of the solutions are given in Table 5.3 and
we note that the total open probability is reduced considerably when koc is increased
from one to three. The expected dyad concentration (x) does not change very much,
but the expected JSR concentration (y) increases significantly and this observation
holds for both open and closed channels.
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Fig. 5.9 The effect of increasing koc from one to three. The open probability density function is
reduced considerably

Table 5.3 Statistical
properties of the probability
density functions for
koc D 1 ms�1 and
koc D 3 ms�1

koc �o Exo Eyo �xo �yo

1 0.430 12.63 202.4 4.948 46.27

3 0.221 13.23 339.2 6.723 56.88

koc �c Exc Eyc �xc �yc

1 0.570 5.12 218.2 4.842 49.90

3 0.779 5.95 348.0 5.563 57.22

5.3 Notes

1. The 2D stochastic model and the associated probability density functions are
taken from Huertas and Smith [35], but some of the parameters are changed.
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4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/


Chapter 6
Computing Theoretical Drugs
in the Two-Dimensional Case

Let us briefly recall the difficulty we want to overcome with the theoretical drug.
The difficulty is that in the prototypical reaction defined by the Markov model

C
koc

�
kco

O

the rates may change under various mutations. One case that we have focused on in
these notes is CO-mutations where the reaction rate from C to O is increased. The
reaction of a CO-mutation takes the form

C
koc

�
�kco

O;

where we assume that � > 1 is a constant. We refer to this constant as the
mutation severity index and the mutation is typically worse the larger the value of
�; furthermore, � D 1 refers to the wild type case. Our aim is to devise a theoretical
drug of the form

Bc

kcb

�
kbc

C
koc

�
�kco

O
kbo

�
kob

Bo;

where the constants kbc; kcb; kbo, and kob are used to tune the drug such that the effect
of the mutation is reduced as much as possible. As above, we will consider blockers
associated with the closed state, which means that kob D 0, or blockers associated
with the open state, which means that kcb D 0. The model and discretization
parameters used throughout this chapter are given in Table 6.1.

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_6
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Table 6.1 Parameters reused
from the previous chapter
(i.e., Table 5.1)

vd 1 ms�1

vr 0.1 ms�1

vs 0.01 ms�1

c0 0.1 	M

c1 1,000 	M

kco 1 ms�1

koc 1 ms�1

�t 0.001 ms

�x 0.92 	M

�y 9.3 	M

6.1 Effect of the Mutation in the Two-Dimensional Case

When the effect of the mutation is taken into account, the probability density
functions are governed by the system

@
o

@t
C @

@x

�
ax

o
o
�C @

@y

�
ay

o
o
� D �kco
c � koc
o; (6.1)

@
c

@t
C @

@x

�
ax

c
c
�C @

@y

�
ay

c
c
� D koc
o � �kco
c; (6.2)

where we recall that the fluxes are given by

ax
o D vr .y � x/ C vd .c0 � x/ ;

ay
o D vr .x � y/ C vs .c1 � y/ ; (6.3)

ax
c D vd .c0 � x/ ;

ay
c D vs .c1 � y/

(see page 102). In Fig. 6.1, we compare the solution of this system when � D 1

(wild type) and � D 3 (mutant) and in Table 6.2 we give the statistics of the
solutions. The total open probability increases from 0.430 for the wild type to
0.743 for the mutant. In addition, the expected concentrations of both the dyad
and the junctional sarcoplasmic reticulum (JSR) decrease considerably. In the one-
dimensional (1D) case we observed that the variability of the solution decreased
when the mutation was introduced. This observation seems to carry over to the two-
dimensional (2D) case.
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Fig. 6.1 The open state probability density function for the wild type case (left) and the mutant
case (right, � D 3)

Table 6.2 Properties of the
open probability density
function in the wild type and
mutant cases

Case �o Exo Eyo �xo �yo

Wild type 0.430 12:63 202.4 4.948 46.27

Mutant 0.743 9:64 131.7 2.419 18.90

6.2 A Closed State Drug

In the 1D case, we were able to compute a characterization of the closed state drug
based on considering the equilibrium solution of the reaction scheme. Since the
reaction scheme is the same in the 1D and 2D problems, we can use exactly the
same characterization as above. Let us first recall that the reaction scheme of the
closed state drug takes the form

B
kcb

�
kbc

C
koc

�
�kco

O:

We found above (see (3.9) on page 59) that the parameters of the closed state blocker
should be related as

kcb D .� � 1/kbc; (6.4)

so the optimal value of kbc remains to be determined. To find the optimal value
of this parameter, we need to extend the system (6.1) and (6.2) to account for the
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theoretical drug. When the closed state blocker is added, the steady state version of
the probability density system reads

@

@x

�
ax

o
o
�C @

@y

�
ay

o
o
� D �kco
c � koc
o; (6.5)

@

@x

�
ax

c
c
�C @

@y

�
ay

c
c
� D koc
o � .�kco C .� � 1/ kbc/ 
c C kbc
b; (6.6)

@

@x

�
ax

c
b
�C @

@y

�
ay

c
b
� D .� � 1/ kbc
c � kbc
b: (6.7)

Our aim is now to compute the value of the single parameter kbc such that the open
probability density function defined by the system (6.5)–(6.7) is as close as possible
to the solution of the system (6.1) and (6.2) in the case of � D 1 (i.e., the wild type
case). In other words, we want to use the drug to repair the effect of the mutations
in the sense that we want the open probability densities to be as close as possible to
the wild type open probability densities.

In Fig. 6.2 we show the solution of the system (6.5)–(6.7) using � D 3 and
kbc D 0:01, 0.1, 1, and 10 ms�1. As expected, we note that the solution becomes
increasingly similar to the wild type solution (see Fig. 6.1) as kbc increases.
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Fig. 6.2 Closed state blocker applied to the mutant case (� D 3). As the value kbc increases, the
probability density function approaches the wild type solution
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Fig. 6.3 The solution with the closed state blocker approaches the wild type case as kbc increases

6.2.1 Convergence as kbc Increases

Again we observe that the theoretical closed state blocker becomes more efficient
for larger values of kbc: To obtain a more precise impression of the convergence, we
compute the norm of the difference between the open probability of the wild type
case and the open probability of the solution of the system (6.5)–(6.7) as a function
of kbc using the norm defined by (2.40) on page 46. The result is shown in Fig. 6.3
and we again observe that, when kbc becomes sufficiently large, the effect of the
mutation is repaired completely.

6.3 An Open State Drug

The reaction scheme of an open state blocker for a mutant is

C
koc

�
�kco

O
kbo

�
kob

B:

We learned above that we had limited success in using the equilibrium solution to
derive an optimal characterization of the open state drug. We will therefore directly
optimize the two parameters kbo and kob:
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6.3.1 Probability Density Model for Open State Blockers in 2D

The probability density model in the presence of an open state drug is

@

@x

�
ax

o
o
�C @

@y

�
ay

o
o
� D �kco
c � .koc C kob/
o C kbo
b; (6.8)

@

@x

�
ax

c
c
�C @

@y

�
ay

c
c
� D koc
o � �kco
c; (6.9)

@

@x

�
ax

c
b
�C @

@y

�
ay

c
b
� D kob
o � kbo
b: (6.10)

In Fig. 6.4, we show the cost function defined by the norm (see (2.40) on page 46)
of the difference between the open probability density function of the wild type
(solution of (6.1) and (6.2) with � D 1/ and the open probability density function
of the solution of the system (6.8)–(6.10) with � D 3: By minimizing the cost
function, using Matlab’s Fminsearch with default parameters and kob D kbo D 1 as
an initial guess, we find that an optimal open state blocker is given by

kob D 0:3225 ms�1; kbo D 0:3346 ms�1: (6.11)
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Fig. 6.4 Relative difference between the wild type and the mutant with an open state blocker for
the case � D 3. There is a minimum around .kbo; kob/ � .0:3; 0:3/ ms�1 marked by a small �
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Fig. 6.5 Relative difference between the wild type and the mutant with an open state blocker for
the case � D 10. There is a minimum around .kbo; kob/ D .0:53; 0:63/ ms�1

6.3.1.1 Does the Optimal Theoretical Drug Change with the Severity
of the Mutation?

One issue here is to see if the drug changes with the mutation severity index.
Numerical experiments show that the optimal drug does change. In Fig. 6.5, we
show the case in which � D 10 and the optimum has shifted compared to Fig. 6.4.

6.4 Statistical Properties of the Open and Closed State
Blockers in 2D

We introduced statistical properties of probability density functions in Sect. 4.2 (see
page 72). In Sect. 4.6 (page 88), we observed that, for the 1D release problem,
the closed state blocker completely repaired the statistical properties of the open
state probability density functions. In addition, an optimized version of an open
state blocker gave good results, but it was unable to repair the standard deviation
of the open state probability density functions for the particular CO-mutations we
considered.

The statistical properties of the solutions for 2D release are summarized in
Table 6.3. The results are quite similar to the 1D case. Again, for the CO-mutations,
the closed state blocker improves as the value of kbc increases and the optimized
version of the open state blocker also provides good results.
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Table 6.3 Statistical properties of the open probability density function in the mutant case when
a blocker is applied. For the mutant case, we use � D 3

Case �o Exo Eyo �xo �yo

Closed blocker, kbc= 0.01 0.547 10.55 144.2 4.726 58.93

Closed blocker, kbc=0.1 0.465 13.60 188.9 5.890 73.66

Closed blocker, kbc=1 0.422 13.69 205.7 5.231 53.08

Closed blocker, kbc=10 0.428 12.80 203.2 5.014 47.15

Open blocker, kbo=0.33, kob=0.32 0.484 13.04 187.5 4.724 48.34

Wild type 0.430 12.63 202.4 4.948 46.27

Mutant, no drug 0.743 9.64 131.7 2.419 18.90
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Fig. 6.6 Open probability density function for the wild type, the mutant (� D 3), the mutant plus
the closed state blocker, and the mutant plus the open state blocker. We compute the stationary
solution by solving the time-dependent equations until T D 100 ms. In the computation we use
�t D 0:001 ms, �x D 0:92 	M, and �y D 9:3 	M. The model parameters are specified in
Table 6.1

6.5 Numerical Comparison of Optimal Open and Closed
State Blockers

In the 1D case, we saw that for CO-mutations the closed state blocker was able
to completely remove the effect of the mutation, whereas the open state blocker
was less efficient. This result also holds in the 2D case. In Fig. 6.6, we compare
the open probability density function of the steady state solution of the wild type



6.6 Stochastic Simulations in 2D Using Optimal Drugs 117

(solution of (6.1) and (6.2) with � D 1/; the mutant (solution of (6.1) and (6.2) with
� D 3/; the optimal closed state blocker (solution of (6.5)–(6.7) using � D 3 and
kbc D 10 ms�1/ and the optimal open state blocker (solution of (6.8)–(6.10) with
� D 3; kob D 0:3225 ms�1; kbo D 0:3346 ms�1/: We observe that it is hard to see
any difference between the open probability density function of the wild type and
the mutant when the closed state blocker is applied. In addition, the optimal open
state blocker improves the solution, but not as much as the closed state blocker does.

6.6 Stochastic Simulations in 2D Using Optimal Drugs

We have used the probability density approach to find an optimal closed state
blocker. In Fig. 6.7 we show how the closed state blocker works in a dynamic
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Fig. 6.7 Stochastic simulation of dyad concentrations (left, x D x.t/) and JSR concentrations
(right, y D y.t/) for the wild type (upper), the mutant (� D 3, middle), and the mutant where
the closed state drug is applied (lower, kbc D 10 ms�1). Here we use �t D 0:01 ms. The model
parameters are specified in Table 6.1, and the initial conditions are given by x.0/ D c0 and y.0/ D
c1 with the channel being closed
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simulation based on the scheme (5.11) and (5.12). We plot the concentrations of
the wild type, the mutant (� D 3), and the mutant when the closed state blocker is
applied (kbc D 10 ms�1; kcb D .� � 1/kbc). The dyad concentrations (x D x.t/) are
on the left-hand side and the JSR concentrations (y D y.t/) are on the right-hand
side. As for the 1D simulations, we observe that the mutations significantly reduce
the variability of the solutions and that this effect is basically completely repaired
by the closed state blocker.

6.7 Notes

1. The 2D stochastic differential equation and the associated probability density
system is taken from Huertas and Smith [35].
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Chapter 7
Generalized Systems Governing Probability
Density Functions

So far we have considered one-dimensional and two-dimensional release processes.
When the channel can take on two states—open or closed—we have seen that the
associated probability density functions are governed by 2 � 2 systems of partial
differential equations. When a drug is added to the Markov model, an extra state
is introduced associated with either the open or the closed state and we obtain
a model for the probability density functions phrased in terms of 3 � 3 systems
of partial differential equations. In subsequent chapters, we will study situations
involving many states and, to do so without drowning in cumbersome notation, we
need mathematical formalism to present such models compactly. The compact form
we use here is taken from Huertas and Smith [35]. We will introduce the more
compact notation simply by providing a couple of examples. These will, hopefully,
clarify how to formulate rather complex models in an expedient manner.

7.1 Two-Dimensional Calcium Release Revisited

Let us start by recalling that the two-dimensional process of calcium release
illustrated in Fig. 5.2 on page 92 can be modeled as

Nx0.t/ D N�.t/vr .Ny � Nx/ C vd .c0 � Nx/ ; (7.1)

Ny0.t/ D N�.t/vr .Nx � Ny/ C vs .c1 � Ny/ ; (7.2)

where N� D N�.t/ is a stochastic variable governed by a Markov model represented
by a reaction scheme of the form

C
koc

�
kco

O:

© The Author(s) 2016
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We have seen (see, e.g., page 102) that the probability density functions of the open
state .
o/ and the closed state .
c/ are governed by the system

@
o

@t
C @

@x

�
ax

o
o
�C @

@y

�
ay

o
o
� D kco
c � koc
o; (7.3)

@
c

@t
C @

@x

�
ax

c
c
�C @

@y

�
ay

c
c
� D koc
o � kco
c; (7.4)

where

ax
o D vr .y � x/ C vd .c0 � x/ ;

ay
o D vr .x � y/ C vs .c1 � y/ ; (7.5)

ax
c D vd .c0 � x/ ;

ay
c D vs .c1 � y/ :

To prepare ourselves for more complex systems, we number the states in this simple
system with i D 1; 2; where i D 1 is for the open state and i D 2 is for the closed
state. The system can now be written in the form

@
i

@t
C @

@x

�
ax

i 
i
�C @

@y

�
ay

i 
i
� D .K
/i ;

where .K
/i denotes the ith component of the matrix vector product K
: Here the
vector 
 is given by


 D
�


1


2

�
D
�


o


c

�

and the matrix is given by

K D
��k12 k21

k12 �k21

�
D
��koc kco

koc �kco

�
:

Furthermore, we introduce the functions

ax
i D �ivr .y � x/ C vd .c0 � x/ ;

ay
i D �ivr .x � y/ C vs .c1 � y/ ;

where �i is one for the open state (i.e., i D 1) and zero for the closed state (i.e.,
i D 2).
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7.2 Four-State Model

It useful to illustrate this compact notation for a slightly more complex model based
on four states. Suppose that the Markov model governing the stochastic variable N�
in model (7.1) and (7.2) is based on four states: two open states O1 and O2 and two
closed states C1 and C2, as shown in Fig. 7.1.

The probability density system associated with the model (7.1) and (7.2) when
the Markov model is given by Fig. 7.1 can now be written in the form

@
o1

@t
C @

@x

�
ax

o
o1

�C @

@y

�
ay

o
o1

� D kc1o1
c1 � .ko1c1 C ko1o2 / 
o1 C ko2o1
o2 ;

@
o2

@t
C @

@x

�
ax

o
o2

�C @

@y

�
ay

o
o2

� D kc2o2
c2 � .ko2c2 C ko2o1 / 
o2 C ko1o2
o1 ;

(7.6)

@
c1

@t
C @

@x

�
ax

c
c1

�C @

@y

�
ay

c
c1

� D ko1c1
o1 � .kc1o1 C kc1c2 / 
c1 C kc2c1
c2 ;

@
c2

@t
C @

@x

�
ax

c
c2

�C @

@y

�
ay

c
c2

� D kc1c2
c1 � .kc2c1 C kc2o2 / 
c2 C ko2c2
o2 ;

where

ax
o D vr .y � x/ C vd .c0 � x/ ;

ay
o D vr .x � y/ C vs .c1 � y/ ; (7.7)

ax
c D vd .c0 � x/ ;

ay
c D vs .c1 � y/ :

By defining the states O1; O2; C1; and C2 to be the states 1, 2, 3, and 4, respectively,
we can write the system (7.6) in the more compact form

@
i

@t
C @

@x

�
ax

i 
i
�C @

@y

�
ay

i 
i
� D .K
/i (7.8)

Fig. 7.1 Markov model
including four possible states:
two open states, O1 and O2,
and two closed states, C1

and C2

C1 O1

C2 O2

kc1 o1
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for i D 1; 2; 3; 4; where

ax
i D �ivr .y � x/ C vd .c0 � x/ ;

ay
i D �ivr .x � y/ C vs .c1 � y/ ;

and 
 D .
1; 
2; 
3; 
4/T : Here �i is one for the open states (i.e., i D 1 and i D 2)
and zero for the closed states (i.e., i D 3 and i D 4). Furthermore, the matrix is
given by

K D

0
BB@

� .ko1c1 C ko1o2 / ko2o1 kc1o1 0

ko1o2 � .ko2c2 C ko2o1 / 0 kc2o2

ko1c1 0 � .kc1o1 C kc1c2 / kc2c1

0 ko2c2 kc1c2 � .kc2c1 C kc2o2 /

1
CCA ;

which in compact notation is

K D

0
BB@

� .k13 C k12/ k21 k31 0

k12 � .k24 C k21/ 0 k42

k13 0 � .k31 C k34/ k43

0 k24 k34 � .k43 C k42/

1
CCA :

7.3 Nine-State Model

We have seen how to formulate probability density systems for two-state and four-
state Markov models. For even larger Markov models, it is useful to introduce two-
dimensional numbering. This will be illustrated using the nine-state model given in
Fig. 7.2. Here Sij; i; j D 1; 2; 3, denotes the states of the Markov model and Kmn

ij

Fig. 7.2 Markov model
including nine possible states S 31 S 32 S 33
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denotes1 the reaction rate from the state Sij to the state Smn: The system governing
the probability density functions of these states can be written in the form

@
ij

@t
C @

@x

�
ax

ij
ij
�C @

@y

�
ay

ij
ij

�
D Rij; (7.9)

where

Rij D Ki;j
i;jC1
i;jC1 C Ki;j

iC1;j
iC1;j C Ki;j
i;j�1
i;j�1 C Ki;j

i�1;j
i�1;j

�
�

Ki;jC1
i;j C KiC1;j

i;j C Ki;j�1
i;j C Ki�1;j

i;j

�

i;j:

Here 
ij denotes the probability density function of the state Sij and we use the
convention that Kmn

ij D 0 for i; j; m; n … f1; 2; 3g : We also have

ax
ij D �ijvr .y � x/ C vd .c0 � x/ ;

ay
ij D �ijvr .x � y/ C vs .c1 � y/ ;

where �ij D 1 when the state Sij represents an open state and �ij D 0 when Sij

represents a closed state.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

1We use Kij as shorthand for Ki;j; but we use the comma when an index of the form j C1 is needed,
that is we write Ki;jC1:
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Chapter 8
Calcium-Induced Calcium Release

We started in Chap. 2 by assuming that the concentrations of the junctional
sarcoplasmic reticulum (JSR) and the network sarcoplasmic reticulum (NSR) are
identical and that the L-type current can be ignored and thus we studied a one-
dimensional problem where the calcium concentration of the dyad was the only
variable of interest. The model is illustrated in Figs. 2.1 and 2.2. Then, in Chap. 5,
we extended the model to account for the varying concentrations in the dyad and the
JSR, but we still ignored the effect of the voltage-gated L-type channels and kept
the concentration of the cytosol and the NSR constant. The two-dimensional model
is illustrated in Figs. 5.1 and 5.2. Our aim is now to include the effect of L-type
channels. The L-type channels open and close depending on the transmembrane
potential V , so the model will therefore be parameterized by V . The model is
illustrated in Figs. 8.1 and 8.2.

It should be noted that we are still interested in the dynamics related to the
dyad and not to the whole cell. We therefore keep the concentration of the cytosol
and NSR constant and assume that the concentration of the extracellular space (ce)
only affects the concentration of the dyad through the voltage-gated L-type calcium
channels (LCCs). In a whole-cell model, this would be different in many ways, but
we shall not consider that topic here.

The state of a voltage-gated channel is governed by a Markov model where
the transitions depend on the transmembrane potential (or voltage for short). If
the electrical potential in the dyad is given by Vi (intracellular potential) and the
extracellular potential is given by Ve, we define the transmembrane potential to be

V D Vi � Ve:

As a notational convention, we use the subscript r to indicate that N�r models the
open or closed state of the ryanodine receptor (RyR) and the subscript l in the term
N�lJl is used to indicate that this is the flux through the LCC.

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_8
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NSR

JSR

DyadCytosol

Ca2+

RyRs

Ca2+

LCCs Ca2+

T-tubule, extracellular space

Fig. 8.1 The figure is a modified version of Figure 1 (panel A) of Winslow et al. [105] and
illustrates the components involved in calcium-induced calcium release (CICR). In this chapter,
we concentrate on the dynamics in the box surrounded by a thin red line. We assume that the
concentrations of the cytosol, the NSR, and the extracellular domain represented by the T-tubule
are kept constant and that inflow of calcium through the LCCs is governed by a voltage-dependent
Markov model

Extracellular, ce

Cytosol, c0 Dyad, x (t) JSR, y(t) NSR, c1

Fig. 8.2 Sketch of a release unit. The cytosolic (c0), NSR (c1), and extracellular (ce) calcium
concentrations are assumed to be constant, while the concentrations of the dyad and JSR are given
by Nx D Nx.t/ and Ny D Ny.t/, respectively. Furthermore, we assume that the flux of calcium from the
extracellular space to the dyad is voltage gated. Recall that c0 � c1

8.1 Stochastic Release Model Parameterized
by the Transmembrane Potential

In the models we have studied so far, a very basic building block has been that, if x0

denotes the concentration of a large reservoir of calcium and x D x.t/ denotes the
concentration of a small space connected to the reservoir, then the concentration x
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Table 8.1 Values of
parameters used in
simulations in this chapter

vd 1 ms�1

vr 0.1 ms�1

vs 0.01 ms�1

c0 0.1 	M

c1 1,000 	M

ce 1,800 	M

evolves according to the model

x0.t/ D v .x0 � x.t// ; (8.1)

where v denotes the speed of diffusion between the two spaces. Here we assume that
the concentration of the large reservoir, x0, can be kept constant. This model can be
extended to the case where the channel between the spaces can be either closed or
open:

Nx0.t/ D N�.t/v .x0 � Nx.t// ; (8.2)

where N� is a random variable taking on two possible values, one (open) and zero
(closed). The stochastic release models studied above are derived by gluing together
pieces of models of exactly this type.

In this chapter, one additional effect is added: We now allow calcium to flow
into the dyad through the LCCs. This flow depends on both the gradient of the
concentration and of the electrical potential across the membrane dividing the
extracellular space and the dyad.

The process illustrated in Fig. 8.2 can be modeled as follows

Nx0 D N�rvr .Ny � Nx/ C vd .c0 � Nx/ � N�lJl; (8.3)

Ny0 D N�rvr .Nx � Ny/ C vs .c1 � Ny/ : (8.4)

This model is almost the same as the one we analyzed above (see (5.1) and (5.2)
on page 92). The new term is given by � N�lJl and it models the inflow of calcium
through the LCCs. The function N�l is governed by a Markov model and, as usual, it
takes on two values: zero (closed) and one (open). The Markov model governing
N�l depends on the transmembrane potential V and the flux depends on V; the
extracellular calcium concentration ce and the dyad concentration x D x.t/: As
above, vr denotes the rate of release from the JSR to the dyad, vd denotes the
speed of calcium diffusion from the dyad to the cytosol, and vs denotes the speed
of calcium diffusion from the NSR to the JSR. The model parameters are given in
Table 8.1.

The Markov model governing N�r will be the same as above, but we need to
introduce a Markov model governing N�l. We will also combine these Markov models
to simplify the introduction of a probability density formulation. Furthermore, we
need to describe the electrochemical flux Jl.
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8.1.1 Electrochemical Goldman–Hodgkin–Katz (GHK) Flux

Consider Fig. 8.1 and suppose that the membrane between the T-tubule and the
dyad has thickness L: If the electrical field is constant through the channel, the flux
is given by

Jl D D

L

2F

RT

x � cee� 2FV
RT

1 � e� 2FV
RT

V; (8.5)

which is referred to as the GHK flux (see Keener and Sneyd [42]). Here D is
Fick’s diffusion constant, F is Faraday’s constant, R is the gas constant, and T is
the absolute temperature. By defining

V0 D RT

2F
;

we have

Jl D D

L

x � cee� V
V0

1 � e� V
V0

V

V0

; (8.6)

where F; R; T, and V0 are given in Table 8.2.

8.1.2 Assumptions

As for the model in Chap. 5, we will make the following assumptions for the
parameters involved:

c1 � c0 and vr; vd; vs > 0; (8.7)

vdvs � v2
r : (8.8)

Table 8.2 Parameters
in (8.5)

F 96485:3 C mol�1

R 8:3145 J mol�1K�1

T 310 K

V0 13.357 mV
D
L 0.02 ms�1
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8.1.3 Equilibrium Potential

The electrochemical equilibrium over the membrane separating the extracellular
space and the dyad is characterized by

Jl D 0:

In equilibrium, we must have

x D cee� V
V0 ;

so the equilibrium transmembrane potential is given by

Veq D V0 ln
ce

x
: (8.9)

For this value of the transmembrane potential V; the driving force � N�lJl in the
system (8.3) and (8.4) is zero even if the channel is open. It should also be noted
that the equilibrium transmembrane potential depends on the concentration x of the
dyad and will therefore be a dynamic quantity. Here it is useful to recall that we
regard V as a parameter input to the system and not a part of the dynamics.

8.1.4 Linear Version of the Flux

We mentioned above that our modeling so far has been based on very simple linear
fluxes of the form given in (8.1). In the case we are considering now, the flux
depends on both the difference in concentration and the electrical potential over
the membrane; see (8.6). A Taylor series expansion of the GHK flux can be written
as

Jl D D

L
.x � ce/ C D

2L
.x C ce/

V

V0

C O
�
.V=V0/

2
�

(8.10)

and, therefore, if V D 0; the flux is given by

Jl D D

L
.x � ce/

so the term � N�lJl has the form we used in (8.2). This means that the electrochemical
flux given by (8.6) reduces to a purely concentration-based flux when there is no
difference in electrical potential across the membrane.
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8.1.5 Markov Models for CICR

As discussed above, two Markov processes are involved in the CICR. We have seen
that the gating of the release of calcium from the sarcoplasmic reticulum to the dyad
is given by the stochastic variable N�r D N�r.t/, which is governed by the reaction
scheme

Cr

kr
oc

�
kr

co

Or: (8.11)

We recall here that r is used to indicate the relation to the RyR channels. Similarly,
the Markov model for the LCC is given by

Cl

kl
oc

�
kl

co

Ol; (8.12)

where l is used to indicate the relation to the LCCs. This Markov model governs the
stochastic variable N�l D N�l.t/:

It is convenient to combine these two Markov models into one reaction scheme of
the form illustrated in Fig. 8.3.The states of this combined Markov model are given
by ClCr (both closed), ClOr (LCC closed, RyR open), OlOr (both open), and OlCr

(LCC open, RyR closed). In our computations, we use the rates shown in Table 8.3.

Fig. 8.3 Markov model
including four possible states:
ClCr (both closed), ClOr

(LCC closed, RyR open),
OlOr (both open), and OlCr

(LCC open, RyR closed)

ClCr ClOr

OlCr OlOr

k rco

k lco

k roc
k lcok loc

k rco

k loc

k roc

Table 8.3 Reaction rates used in the Markov model illustrated in Fig. 8.3. Here � � 1 denotes
the mutation severity index of the RyR, � � 1 denotes the mutation severity index of the LCC and
� D � D 1 represents the wild type case

RyR LCC

kr
co D � x4

K.y/4Cx4 ms�1 kl
co D � l1.V/=�l

kr
oc D 1 ms�1 kl

oc D .1 � l1.V//=�l

K.y/ D Kmax � y=1000 l1.V/ D 0:01 exp.�.V � 5/2=500/

Kmax D 7:4 �M �l D 1 ms
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8.1.6 Numerical Scheme for the Stochastic CICR Model

A numerical scheme for running simulations based on the CICR model (8.3)
and (8.4) is given by

xnC1 D xn C �t
�
� r

nvr .yn � xn/ C vd .c0 � xn/
� � �t� l

nJl.xn; V/; (8.13)

ynC1 D yn C �t
�
� r

nvr .xn � yn/ C vs .c1 � yn/
�

; (8.14)

where � r
n and � l

n are computed according to the Markov model illustrated in Fig. 8.3.

8.1.7 Monte Carlo Simulations of CICR

In Fig. 8.4, we show the results of stochastic simulations using the model (8.3)
and (8.4). The computations are based on the numerical scheme (8.13) and (8.14)
with the parameters given in Table 8.1 and �t D 0:01 ms. As initial conditions we
have used x.0/ D c0 and y.0/ D c1 with both gates closed. From top to bottom, the
transmembrane potential is given by V D 20, 0, �20, and �40 mV.

The associated calcium concentrations of the dyad given by x D x.t/ are graphed
in the left panels and the calcium concentrations of the JSR given by y D y.t/ are
graphed in the right panels. In all cases, we show the solution for a time interval
ranging from 0 ms to 1000 ms. The calcium concentration clearly depends on the
transmembrane potential and we observe in particular that there is no activity for
V D �40 mV, since the LCC is inactivated at that voltage.

In Fig. 8.5, we show a detailed view of the case of V D 0 mV. In the upper part
of the graph we show the state of the RyR (upper) and the LCCs (lower). The CICR
mechanism is illustrated in the first part of the graph: The LCC opens at t � 5

ms, but the release is too short-lived to trigger an RyR opening and we therefore
observe just a minor increase in the dyad calcium concentration given by x. Next
time, at t � 9 ms, there is a new opening and now the channel is open for a longer
time; there is an increase in x leading to opening of the RyR channel and then the
concentration increases dramatically.

8.2 Invariant Region for the CICR Model

We have seen in both the one- and two-dimensional models above that we can
derive invariant regions for the stochastic models and that these regions define the
computational domain for the probability density system. Our aim is now to derive
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Fig. 8.4 Calcium dynamics of the dyad x D x.t/ and the JSR y D y.t/ for four values of the
transmembrane potential V

an invariant region for the CICR model given by

Nx0 D N�rvr .Ny � Nx/ C vd .c0 � Nx/ � N�lJl; (8.15)

Ny0 D N�rvr .Nx � Ny/ C vs .c1 � Ny/ : (8.16)

Here it is convenient to write the GHK flux in the form

Jl.x/ D a0.x � x0/;
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Fig. 8.5 A detailed view of the case of V D 0 mV taken from Fig. 8.4. In addition, we show the
state of the RyR channel (upper panel) and the LCC (lower panel). The first spike at 5 ms in the
LCC is very short and does not trigger an RyR release. The next one, at 9 ms, does trigger an RyR
release

where

a0 D D

L

1

1 � e� V
V0

V

V0

and

x0 D cee� V
V0 ;

so the system takes the form

Nx0 D N�rvr .Ny � Nx/ C vd .c0 � Nx/ C N�la0.x0 � Nx/; (8.17)

Ny0 D N�rvr .Nx � Ny/ C vs .c1 � Ny/ : (8.18)

8.2.1 A Numerical Scheme

Let us consider the numerical scheme (8.13, 8.14),

xnC1 D xn C �t
�
� r

nvr .y � x/ C vd .c0 � x/ C � l
na0.x0 � x/

�
; (8.19)

ynC1 D yn C �t
�
� r

nvr .x � y/ C vs .c1 � y/
�

: (8.20)

Here � r
n and � l

n simply denotes constants that take on the value zero or one and
their values will be specified in order to study the dynamics of the system when the
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associated channels are open or closed. The numerical scheme can be written in the
form

xnC1 D F .xn; yn/ ; (8.21)

ynC1 D G .xn; yn/ ; (8.22)

with

F.x; y/ D x C �t .�rvr .y � x/ C vd .c0 � x/ C �la0.x0 � x// ;

G.x; y/ D y C �t .�rvr .x � y/ C vs .c1 � y// :

Here we assume that

�t 6 min

�
1

vd C a0 C vr
;

1

vs C vr

�
: (8.23)

Under this condition, we observe that

@F

@x
D 1 � �t .vd C �la0 C �rvr/ > 0

for any choice of �l and �r. We also have

@F

@y
D �t�rvr > 0:

Similarly, we find that

@G

@x
D �t�rvr > 0 (8.24)

and

@G

@y
D 1 � �t .vs C �rvr/ > 0: (8.25)

Assume that

0 6 xn; yn 6 M; (8.26)

where

M D max

�
c1;

c0vd C a0x0

a0 C vd

�
:
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Since

@F

@x
;

@F

@y
;

@G

@x
;

@G

@y
> 0;

we have

xnC1 D F .xn; yn/ 6 F.M; M/ D M C �t .vd .c0 � M/ C �la0.x0 � M// 6 M

and

ynC1 D G .xn; yn/ 6 G.M; M/ D M C �t .vs .c1 � M// 6 M:

Furthermore, we have

xnC1 D F .xn; yn/ > F.0; 0/ D �t .vdc0 C �la0x0/ > 0

and

ynC1 D G .xn; yn/ > G.0; 0/ D �tvsc1 > 0:

So, by induction, the invariant region (8.26) holds for all n > 0:

8.3 Probability Density Model Parameterized
by the Transmembrane Potential

The probability density formulation of the system (8.3) and (8.4) is given by the
system of partial differential equations

@
oo

@t
C @

@x

�
ax

oo
oo
�C @

@y

�
ay

oo
oo
� D kl

co
co � �
kl

oc C kr
oc

�

oo C kr

co
oc; (8.27)

@
oc

@t
C @

@x

�
ax

oc
oc
�C @

@y

�
ay

oc
oc
� D kl

co
cc � �
kl

oc C kr
co

�

oc C kr

oc
oo; (8.28)

@
cc

@t
C @

@x

�
ax

cc
cc
�C @

@y

�
ay

cc
cc
� D kl

oc
oc � �
kl

co C kr
co

�

cc C kr

oc
co; (8.29)

@
co

@t
C @

@x

�
ax

co
co
�C @

@y

�
ay

co
co
� D kl

oc
oo � �
kl

co C kr
oc

�

oc C kr

co
cc; (8.30)



136 8 Calcium-Induced Calcium Release

where 
oo; 
oc; 
cc; and 
co represent the probability densities of the states denoted
OlOr; OlCr; ClCr; and ClOr; respectively. The terms of the fluxes are given by

ax
oo D vr .y � x/ C vd .c0 � x/ � Jl.x; V/; ay

oo D vr .x � y/ C vs .c1 � y/ ;

ax
oc D vd .c0 � x/ � Jl.x; V/; ay

oc D vs .c1 � y/ ;

ax
cc D vd .c0 � x/ ; ay

cc D vs .c1 � y/ ;

ax
co D vr .y � x/ C vd .c0 � x/ ; ay

co D vr .x � y/ C vs .c1 � y/ ;

where we use the convention that in the expression ax
˛ˇ; the index ˛ indicates

whether the LCC is open .˛ D o/ or closed .˛ D c/ and the index ˇ plays the same
role for the RyR channel. Similar notation is used for the flux terms represented by
ay

˛ˇ: As usual, the sum of total probabilities is one:

Z
�

.
oo C 
oc C 
cc C 
co/ dx dy D 1: (8.31)

8.4 Computing Probability Density Representations of CICR

In Fig. 8.6, we show solutions of the system (8.15) and (8.16) defined in the
computational domain � D �.V/ for four values of the transmembrane potential:
V D 20, 0, �20, and �40 mV. In all computations, the parameters are given in
Table 8.1 and the Markov model is illustrated in Fig. 8.3. All distributions are
initially set to zero, except that 
cc.c0; c1/ D 1=.�x�y/. Hence the initial discrete
probability densities integrates to one;

�x�y
X

i;j


i;j D 1; (8.32)

which is a discrete version of (8.31) with 
 D 
oo C 
oc C 
co C 
cc.
The simulation results are shown in Fig. 8.6 and summarized in Table 8.4. We

observe that the transmembrane potential V significantly influences the probability
density functions. In Table 8.4, we observe that the probability of the LCC being
in the open state is highest for V D 0 mV and it is almost zero for V D �40 mV.
In the computations, we use �t D 0:001 ms, �x D 1:02, 1:23, 1:54 and 1:95 	M
(the domain size varies with V), and �y D 9:3 	M. Note that the scale of the plots
varies (see Fig. 8.6).
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Fig. 8.6 Probability density functions for different voltages. The LCC is more prone to being
open (last two columns) when the voltage is close to V D 5 mV, that is, where l1.V/ is close to
its maximum. Black corresponds to 10�3 for 
cc and to 10�6 for the other three distributions

Table 8.4 Probability of being in the four states for different voltages. Recall that the probabilities
are computed using (4.7) at page 72 where the probability density functions are numerical solutions
of the system (8.27)–(8.30)

V �cc �co �oc �oo

20 0.978 0.015 0.005 0.001

0 0.959 0.032 0.007 0.003

�20 0.982 0.015 0.002 0.001

�40 0.993 0.006 0.000 0.000
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8.5 Effects of LCC and RyR Mutations

We are now in a position to study the effect of both LCC and RyR mutations.
We assume that both the LCC and RyR mutations lead to leaky channels that can
be represented by increasing the reaction rate from closed to open. So we again
consider CO-mutations.

The reaction scheme in the presence of mutations is illustrated in Fig. 8.7. Here
� � 1 denotes the strength of the RyR mutations and � � 1 denotes the strength of
the LCC mutations. Note that � D 1 and � D 1 represent the wild type.

8.5.1 Effect of Mutations Measured in a Norm

To measure the effect of the mutations, we introduce the norm

k
�;� � 
1;1k D 1

6

X
V

X
z

k

�;�
z � 
1;1

z kL2.�/

k

�;�
z kL2.�/ C k


1;1
z kL2.�/;

(8.33)

where 
z represents 
oo, 
oc, 
co, or 
cc and V represents summation over the
following values of the transmembrane potential: �80, �60, �40, �20, 0, and 20

mV. Furthermore,

k
kL2.�/ D
�Z

�


2d�

�1=2

: (8.34)

The difference between the wild type solution and the solution based on mutated
reaction rates is depicted in Fig. 8.8. The figure shows the difference as a function
of the two mutation severity indices � and �.

Fig. 8.7 Mutant version of
the Markov model given in
Fig. 8.3 including four
possible states: ClCr (both
closed), ClOr (LCC closed,
RyR open), OlOr (both open),
and OlCr (LCC open, RyR
closed)
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k roc
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Fig. 8.8 Difference between wild type solutions and mutated solutions, defined in terms of the
norm given by (8.33). The wild type solution is represented by � D � D 1

8.5.2 Mutations Increase the Open Probability of Both
the LCC and RyR Channels

In Sect. 4.2 (page 72), we introduced statistical measures for the probability density
functions. We will now consider how the LCC and RyR mutations affect the
statistical properties of the associated probability density functions. Let us first
consider how the mutations affect the total probability of being in the different
states. In Fig. 8.9, we show the total probability of being in the states OO, CO, OC,
and CC, where, as above, the first letter denotes the state of the LCC and the second
letter indicates the state of the RyR channel. Here the value of the transmembrane
potential is V D 0 mV. In Fig. 8.10, we show similar results in the case of V D �80

mV; the probability of the LCC being open is very small and the LCC mutation
must be extremely severe to change this. Basically, at V D �80 mV, the LCC is
closed independent of the mutations. This observation certainly depends heavily on
the particular reaction rates used in these computations (see Table 8.3 on page 130).
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Fig. 8.9 Probability of being in the state OO, CO, OC, or CC at V D 0 mV as a function of the
mutation severity index of the LCC, represented by �, and the mutation severity index of the RyR
channel, represented by �. Here � D � D 1 represents the wild type
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Fig. 8.10 Probability of being in the state OO, CO, OC, or CC at V D �80 mV as a function of
the mutation severity index of the LCC, represented by �, and the mutation severity index of the
RyR channel, represented by �. Here � D � D 1 represents the wild type. Note the scale of the
axis in the plots on the left-hand side
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8.5.3 Mutations Change the Expected Values
of Concentrations

Figures 8.11 and 8.12 show the development of the expected concentration for
varying strengths of mutations. In Fig. 8.11, we set V D 0 mV and see that
the mutations change the expected concentrations significantly. More specifically,
both mutations lead to lower expected JSR concentrations. In Fig. 8.12, we set
V D �80 mV and observe that the expected concentrations are not altered by the
LCC mutation. As for the total probabilities discussed above, the reason for this is
that, at this value of V , the probability of going from closed to open is practically
zero and the mutation must be orders of magnitude larger to open the LCC at this
voltage. Again, this observation is based on the particular form of the reaction rates
given in Table 8.3.
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Fig. 8.11 This figure shows how the expected concentrations of the dyad (given by x) and the JSR
(given by y) change as functions of the mutation severity indices. The curve denoted by Ecc starts at
the circle that represents the expected values of x and y in the case of both the LCC and RyR being
closed. The starting point represents the wild type and the curves represent the two mutations (or
combinations of them) and similarly for the curves starting at the circles next to Eoc, Eco, and Eoo.
All curves are computed using V D 0 mV
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Fig. 8.12 This figure shows how the expected concentrations of the dyad (given by x) and the JSR
(given by y) change as functions of the mutation severity indices. The curve denoted by Ecc starts
at the circle that represents the expected values of x and y in the case of both LCC and RyR being
closed. The starting point represents the wild type and the curves represent the two mutations (or
combinations of them) and similarly for the curves starting at the circles next to Eoc, Eco, and Eoo.
All curves are computed using V D �80 mV

8.6 Notes

1. The Markov model (including parameters) given in Fig. 8.3 and the probability
density system (8.27)–(8.30) are taken from Williams et al. [102].

2. The functions given in Table 8.3 are motivated by the models of Stern et al. [89].
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Chapter 9
Numerical Drugs for Calcium-Induced Calcium
Release

In the previous chapter, we developed models of calcium-induced calcium release
(CICR) in terms of both a stochastic release model and a model of the probability
density functions of the states involved in the stochastic release model. The models
incorporated the effects of mutations in both the ryanodine receptors (RyRs) and
the L-type calcium channels (LCCs). The purpose of the present chapter is to
introduce theoretical drugs aimed at repairing the effect of mutations of both the
LCCs and RyR channels. Model parameters used throughout this chapter are given
in Table 9.1.

We have seen in previous chapters that, if we ignore the effect of the LCC, we
can completely repair the effect of an RyR mutation using a closed state blocker
if the mutation is of the CO type. In this chapter, we want to see if this result also
holds when the effect of the LCCs is taken into account. Since the transmembrane
potential V enters the model as a parameter, it is sufficient to control the effect of
the LCCs for a number of different values of V . The next issue we want to address
is how to repair the effect of LCC mutations. We will find optimal open and closed
state blockers.

9.1 Markov Models for CICR, Including Drugs

We consider a situation where the RyR or the LCC may be affected by CO-
mutations. Both effects are modeled by Markov models and in this section we
introduce theoretical drugs in terms of open and closed state blockers for both the
RyR and the LCC.

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_9
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Table 9.1 Values of
parameters used in
simulations in this chapter

vd 1 ms�1

vr 0.1 ms�1

vs 0.01 ms�1

c0 0.1 	M

c1 1,000 	M

9.1.1 Theoretical Blockers for the RyR

As discussed above, the gating of the release of calcium from the sarcoplasmic
reticulum to the dyad is given by the stochastic variable N�r D N�r.t/ governed by
the reaction scheme

Cr

kr
oc

�
�kr

co

Or: (9.1)

Here � is the mutation severity index, which is one in the wild type case. We have
seen that open and closed state blockers can be added to the reaction as

Br
c

kr
cb

�
kr

bc

Cr

kr
oc

�
�kr

co

Or

kr
bo

�
kr

ob

Br
o; (9.2)

where Br
c and Br

o denote the blocked states associated with the closed and open
states, respectively. The characteristics of the drugs are given by the constants kr

cb
and kr

bc (for the closed state blocker) and kr
ob and kr

bo (for the open state blocker).

9.1.2 Theoretical Blockers for the LCC

The Markov model governing the stochastic variable N�l D N�l.t/ of the LCC is given
by

Cl

kl
oc

�
�kl

co

Ol; (9.3)

where we have introduced the parameter � to indicate a mutation of the LCC. The
wild type case is again represented by � D 1 and any � > 1 denotes a leaky LCC.
We introduce a theoretical representation of a drug as for the RyR channels:

Bl
c

kl
cb

�
kl

bc

Cl

kl
oc

�
�kl

co

Ol;
kl

bo

�
kl

ob

Bl
o; (9.4)
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where, in line with the RyR case, Bl
c and Bl

o denote the blocked states associated
with the closed and open states, respectively, and the characteristics of the LCC
drugs are given by the constants kl

cb and kl
bc (for the closed state blocker) and kl

ob
and kl

bo (for the open state blocker).

9.1.3 Combined Theoretical Blockers for the LCC and the RyR

To use the probability density formalism, it is convenient to rewrite the two Markov
models as one combined model of the form illustrated in Fig. 9.1.This model
consists of 16 separate states given by

Bl
cB

r
c Bl

cCr Bl
cOr Bl

cB
r
o

ClBr
c ClCr ClOr ClBr

o

OlBr
c OlCr OlOr OlBr

o

Bl
oBr

c Bl
oCr Bl

oOr Bl
oBr

o

(9.5)

and the combined LCC and RyR drug is fully specified by

kr
cb; kr

bc; kr
bo; kr

ob; kl
cb; kl

bc; kl
bo; and kl

ob: (9.6)

Fig. 9.1 The Markov model
represented in Fig. 8.3
extended to account for
blockers for the LCC and the
RyR

B lcB rc B lcCr B lcOr B lcB ro

ClB rc ClCr ClOr ClB ro
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B loB rc B loCr B loOr B loB ro
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9.2 Probability Density Functions Associated
with the 16-State Model

As mentioned in Chap. 7 (see page 119), it is convenient to use a more compact
notation to represent the system of partial differential equations governing the
probability density functions when the Markov model consists of numerous states.
By using the notation introduced in Chap. 7 , we can write the probability density
system associated with the Markov model in Fig. 9.1 in the form

@
ij

@t
C @

@x

�
ax

ij
ij
�C @

@y

�
ay

ij
ij

�
D Rij; (9.7)

where

Rij D Ki;j
i;jC1
i;jC1 C Ki;j

iC1;j
iC1;j C Ki;j
i;j�1
i;j�1 C Ki;j

i�1;j
i�1;j

�
�

Ki;jC1
i;j C KiC1;j

i;j C Ki;j�1
i;j C Ki�1;j

i;j

�

i;j:

The flux terms are given by

ax
ij D � r

i vr .y � x/ C vd .c0 � x/ � � l
j Jl;

ay
ij D � r

i vr .x � y/ C vs .c1 � y/ ;

where � r
i D 1 when the RyR state is open and � r

i D 0 when the RyR state is closed
and similarly for � l and the LCC.

9.3 RyR Mutations Under a Varying Transmembrane
Potential

In this section, we assume that a mutation affects the RyR such that the mutation
severity index is increased. This problem has been discussed several times above,
but here we also need to take into account that the value of the transmembrane
potential may change. In our computations, we use � D 3 and we try to repair the
effect of the mutation by adding a closed state blocker to the Markov model of the
RyR channel. The Markov model is shown in Fig. 9.2.

The closed state drug applied to the RyR channel is represented by the two
parameters kr

cb and kr
bc: We have seen above that for closed state blockers of the

RyR it is reasonable to define

kr
cb D .� � 1/ kr

bc;

where the value of kr
bc remains to be decided.
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Fig. 9.2 The Markov model represented in Fig. 8.3 extended to include an RyR mutation and a
closed state blocker for the RyR
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Fig. 9.3 Total probabilities based on the model for the probability density functions associated
with the Markov model in Fig. 9.2. A closed state blocker is applied, the mutation severity index
is � D 3, and the transmembrane potential is V D 0 mV. The plots show the total probability of
being in the state OO, (OC+OB), CO, or (CC+CB) as a function of kr

bc. In the upper left plot, the
total probability of being in the OO state is higher for the mutant than for the wild type. This is
repaired by the closed state drug. Similar results are shown for the other states

9.3.1 Theoretical Closed State Blocker Repairs the Open
Probabilities of the RyR CO-Mutation

Numerical results using the closed state drug shown in Fig. 9.2 are given in Fig. 9.3.
Note that we aim to repair the probability of being in the open state and are not
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Fig. 9.4 Based on the probability density functions of the states OO, (OC+OB), CO, and
(CC+CB), we can compute the expected concentrations of the dyad (x) and the JSR (y). The wild
type is denoted by ı and the RyR mutation index � increases from one to three along the solid
line. In the dashed line, we keep � D 3 and increase the value of kr

bc from 0 to 100 ms�1. We
observe that as kr

bc increases, the expected concentrations are completely repaired. The experiment
is carried out for the case of V D 0 mV

interested in whether the channel is in a blocked state or in a closed state. The
probability of being in a closed or blocked state is therefore added in the graphs.
We observe from the graphs that the mutant channel is completely repaired by the
closed state blocker.

In Fig. 9.4, we show the development of the expected concentrations of the
dyad (x) and the junctional sarcoplasmic reticulum (JSR) (y) and observe that the
expected concentrations are repaired by a sufficiently strong version of the blocker
associated with the closed state of the RyR channel.

9.3.2 The Open State Blocker Does Not Work as Well
as the Closed State Blocker for CO-Mutations in RyR

In Table 9.2, we report on the performance of the open and closed state blockers for
the RyR mutation. Recall that the probability �oo, the expected dyad concentration
(Ex

oo), and the expected JSR concentration (Ey
oo) are defined on page 72. The closed

blocker clearly is best suited to repair this mutation.
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Table 9.2 Properties of the probability density function (
oo) of being in the state OO with � D 3

(and � D 1). The closed state blocker works fine in the sense that it is well suited for repairing a
CO-mutation of the RyR. The open state blocker is unable to completely repair the effect of the
mutation. The open state blocker is found using Matlab’s Fminsearch, with a cost function defined
to minimize the difference between the wild type and the mutation when the drug is applied. In
this table, WT and MT mean wild type and mutant, respectively, and V D 0 mV is used in the
simulations

WT MT Optimal closed blocker Optimal open blocker

103 � �oo 2:75 5:11 2:74 0:81

Ex
oo 51:87 45:62 51:92 52:46

Ey
oo 751:76 544:30 751:99 713:89

Fig. 9.5 The Markov model
represented in Fig. 8.3
extended to include an LCC
mutation and a closed state
blocker for the LCC
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Fig. 9.6 The Markov model
represented in Fig. 8.3
extended to include an LCC
mutation and an open state
blocker for the LCC

ClCr ClOr

OlCr OlOr

B loCr B loOr

k rco

ηk lco

k roc
ηk lcok loc

k rco

k lob

k loc

k roc
k lobk lbo

k rco

k lbo

k roc

9.4 LCC Mutations Under a Varying Transmembrane
Potential

Next, we address the problem of defining a theoretical drug for LCC mutations. We
consider closed state LCC blockers of the form given in Fig. 9.5 and open state
blockers of the form given in Fig. 9.6.
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Fig. 9.7 Total probabilities based on the model for the probability density functions associated
with the Markov model in Fig. 9.5, where an LCC-type closed state blocker is included. The LCC
mutation severity index is � D 3 and the transmembrane potential is V D 0 mV. The plots show
the total probability of being in the state OO, OC, (CO+BO), or (CC+BC) as a function of kl

bc. In
the upper left plot, the total probability of being in the OO state is higher for the mutant than for the
wild type. This is repaired by the closed state drug. Similar results are shown for the other states

For the closed state blockers, we need to determine the two parameters kl
bc and

kl
cb and for the open state blockers we must determine kl

bo and kl
ob: For the closed

state blockers we define

kl
cb D .� � 1/ kl

bc

and we consider various values of kl
bc:

9.4.1 The Closed State Blocker Repairs the Open Probabilities
of the LCC Mutant

The results of applying the theoretical closed state blocker associated with the closed
state (see Fig. 9.5) of the LCC are given in Figs. 9.7, 9.8, and 9.9. In the first
figure, we show how the closed state blocker repairs the total probabilities and in the
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Fig. 9.8 Using the probability density functions of the states OO, OC, (CO+BO), and (CC+BC),
we compute the expected concentrations of the dyad (x) and the JSR (y). The wild type is denoted
by ı and the LCC mutation index � increases from one to three along the solid line. In the dashed
line, we keep � D 3 and increase the value of kl

bc from 0 to 100 ms�1. We observe that as kl
bc

increases, the expected concentrations are completely repaired. The simulations are performed
using V D 0 mV

second figure we consider the expected concentrations. In Fig. 9.9, we show how the
expected concentrations are repaired for six values of the transmembrane potential.
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Fig. 9.9 The expected concentration of the dyad (x) and the JSR (y) for the OO state for the
transmembrane potential changing from �80 to 20 mV. The wild type is denoted by ı and the
LCC mutation index � increases from one to three along the solid line. In the dashed line, we keep
� D 3 and increase the value of kl

bc from 0 to 100 ms�1. In all cases, the closed state blocker
repairs the effect of the mutation
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Chapter 10
A Prototypical Model of an Ion Channel

So far we have been concerned with calcium-induced calcium release (CICR) as
illustrated in Fig. 8.2 (page 126). To study CICR, we started by studying the
development of the concentration of calcium ions in the dyad and kept everything
else constant. The interesting part was then to see how the release mechanism of
the ryanodine receptor RyR changes the dynamics of the dyad concentration. In
particular, we were interested in RyR mutations and their theoretical effect on the
dyad concentration through changes in the open probability of the RyR channel.
We saw how theoretical blockers could be defined in order to repair the effect
of the mutations, in the sense that we were able to restore essential properties
of the process. We also introduced the effect of allowing the concentration of
the junctional sarcoplasmic reticulum to change and we studied how the overall
processes were affected by introducing the transmembrane potential and allowing
the L-type calcium channel (LCC) to open and close.

Now we leave the RyR and Markov models based on concentrations of calcium
ions and focus on voltage-gated channels. We touched upon this topic earlier, since
the LCC is voltage gated, but now we will dynamically update the voltage and focus
solely on how voltage develops and how it affects the transitions of the Markov
model.

We will start by studying a very simple channel to explain the basics steps as
carefully as possible. This channel does not have a name and probably does not
exist in nature, but it provides a good example to get a handle on the steps involved
in understanding much more complex (and more realistic) ion channels.

In the study of CICR, we examined what was going on in a very small part of
the cell based on the tacit assumption that if we can repair what is going on in
every tiny part of the cell, we will probably also do a decent job in repairing all of
the cell. We will follow the same strategy in studying voltage-gated channels: We
will study a single channel and see how mutations may affect the function of the
channel and thereby how the transmembrane potential is changed. Again, we will

© The Author(s) 2016
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and Engineering 111, DOI 10.1007/978-3-319-30030-6_10

153
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derive theoretical drugs and see how they should be defined in order to repair the
effect of the mutations. However, the assumption that small domains can be studied
independently is less reliable for voltage-gated channels than for the CICR process
in the vicinity of the dyad. The reason for this is that electrical diffusion waves travel
much faster than concentration waves.

10.1 Stochastic Model of the Transmembrane Potential

The transmembrane potential is defined to be the difference between the intracellular
potential vi and the extracellular potential ve:

v D vi � ve: (10.1)

Let us consider a membrane consisting of a leakage current with conductance
given by gL and an ion channel with conductance given by gi: The transmembrane
potential of such a membrane is governed by the differential equation

Cv0 D �gL .v � VL/ � gi.v � Vi/; (10.2)

where C is the capacitance of the membrane, VL is the resting potential of
the leakage current, and Vi is the resting potential of the ion channel. In our
computations, we will consider an example1 with the parameters listed in Table 10.1.
We assume that the ion channel can be either open (O), with gi D 1 mS/cm2; or
closed (C), with gi D 0 mS/cm2. The state of the stochastic ion channel is governed
by a Markov model of the form

C
koc

�
kco

O; (10.3)

Table 10.1 Values of the
parameters used in the
model (10.2)

C 1 �F/cm2

gL 1=10 mS/cm2

VL 0 mV

Vi 11=10 mV

1Here, the choice of the parameter Vi may seem a bit strange, but we will see below that it will lead
to a very simple computational domain for the probability density functions.
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where the reactions rates will be specified below. With these definitions, the
stochastic equation takes the form

v0 D � 1

10
v � �

�
v � 11

10

�
; (10.4)

where � is zero (closed) or one (open) depending on the state of the Markov
model (10.3).

10.1.1 A Numerical Scheme

We compute numerical solutions of the model (10.4) using the scheme

vnC1 D vn � �t

�
1

10
vn C �n

�
vn � 11

10

��
; (10.5)

where �t denotes the time step and �n takes on values based on the state of
the Markov model. Based on the Markov model, the value of �n is computed as
described on page 28. We assume that the time step (in ms) satisfies the condition

�t <
10

11
: (10.6)

10.1.2 An Invariant Region

We discussed above that it is useful to derive an invariant region for the stochastic
model since such a region can be used to define the computational domain of the
probability density equation. We claim that, under the condition (10.6) for the time
step, the solutions generated by scheme (10.5) will always remain in the interval
given by

� D .0; 1/;

provided that the initial condition is in this region. To show that � is an invariant
region for solutions generated by scheme (10.5), we write the scheme in the form

vnC1 D H.vn; �n/;

where

H.v; �/ D v � �t

�
1

10
v C �

�
v � 11

10

��
:
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Since

@H.v; �/

@v
D 1 � �t

�
1

10
C �

�
> 0

because of (10.6) and

@H.v; �/

@�
D �t

�
11

10
� v

�
> 0

for any v 2 �; we have

vnC1 D H.vn; �n/ 6 H .1; 1/ D 1

and

vnC1 D H.vn; �n/ > H.0; 0/ D 0:

So, by induction, we have vn 2 � for all n.

10.2 Probability Density Functions for the Voltage-Gated
Channel

We can now follow exactly the same steps as in Sect. 2.2 (see page 30) to derive
a model of the probability density functions of the open state and the closed state.
The probability of the channel being in the open state for voltages between v and
v C �v is given by

Po fv < V.t/ < v C �vg D
Z vC�v

v


o.w; t/dw;

where 
o is the probability density function of the open state. Similarly, we have

Pc fv < V.t/ < v C �vg D
Z vC�v

v


c.w; t/dw

where 
c is the probability density function of the closed state. By the arguments
given in Sect. 2.2, we find that the probability density functions must be solutions
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of the system

@
o

@t
C @

@v
.ao
o/ D kco
c � koc
o; (10.7)

@
c

@t
C @

@v
.ac
c/ D koc
o � kco
c;

where the flux terms are given by

ao D �gL .v � VL/ � .v � Vi/ D 11

10
.1 � v/ ; (10.8)

ac D �gL .v � VL/ D � 1

10
v

As usual, the boundary conditions are set up to avoid a probability leak across
the boundary. Hence we need the fluxes ao
o and ac
c to be zero for v D 0 and
v D 1: Note that ao.1/ D ac.0/ D 0I so we require 
o.0/ D 0 and 
c.1/ D 0: In the
numerical simulations presented below, we use the scheme described in Sect. 2.3.
Stationary solutions of the numerical scheme are computed as described on page 44.

10.3 Analytical Solution of the Stationary Case

We showed in Sect. 2.6 how an analytical solution can be derived for a stationary
system of the form (10.7). Here we shall repeat this derivation for a voltage-gated
channel. For simplicity we shall consider a channel where the reaction scheme of
the Markov model is independent of the voltage; we choose

koc D 1 ms�1 and kco D � ms�1:

So, we will again focus on CO-mutations. Here �, referred to as the mutation
severity index, will be specified in the computations below. In all computations,
� D 1 will be referred to as the wild type case. Increased values of kco will
increase the open probability of the ion channel in (10.2) and therefore bring the
transmembrane potential closer to the maximum value (given by VC D 1 mV).

The first step in the derivation of the analytical solution is to observe that, in the
steady state, the sum of the equations of (10.7) results in the equation

@

@v
.ao
o C ac
c/ D 0:

The second step is to observe that the boundary conditions imply that

ao
o C ac
c D 0:
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Therefore, for the present model, we find that


c D �ao

ac

o D 11

v
.1 � v/ 
o

and, from (10.7), we have

@

@v
.ao
o/ D �
c � 
o D

�
11�

1 � v

v
� 1

�

o:

By differentiation, we obtain

ao
@

@v

o D

�
11�

1 � v

v
� 1 � @

@v
ao

�

o

and thus


0
o D a.v/
o; (10.9)

where

a.v/ D
�

10�

v
C 1

11.1 � v/

�
:

The solution of (10.9) is given by


o D c
v10�

.1 � v/1=11
(10.10)

and then


c D 11c .1 � v/10=11 v10��1:

Here the constant c must be chosen such that
Z

�

.
o C 
c/ dv D 1:

It is interesting to note here that, even if both 
o and 
c depend heavily on the
mutation severity index �, the relation between these functions is independent of �

since


o


c
D v

11.1 � v/
:
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10.4 Comparison of Monte Carlo Simulations and
Probability Density Functions

In previous chapters we gave many examples showing that the probability density
functions faithfully represent the frequency distributions that can be computed using
Monte Carlo simulations. We will briefly show that this also holds for the ion
channel model considered here. In Fig. 10.1, we compare the open probability
density function given by (10.10) and a histogram computed using Monte Carlo
simulations based on the numerical scheme given by (10.5). We observe again—and
by now we are starting to get used to it—that the probability density functions more
or less coincide with the histograms computed using Monte Carlo simulations.2
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μ = 1
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Fig. 10.1 Comparison of the results of Monte Carlo simulations (histogram) and analytical
solutions of the system governing the probability density functions for four values of the mutation
severity index �. The unit interval is divided into 100 sub-intervals where the number of
occurrences is counted in the Monte Carlo simulations. The analytical solutions are evaluated in
the center of these sub-intervals. Each case was simulated for 10 s, with �t D 0:01 ms

2At this point it feels appropriate to remind the reader of one of the many great quotes by John von
Neumann: “In mathematics you don’t understand things. You just get used to them.”
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10.5 Mutations and Theoretical Drugs

In our analysis of the RyR, we studied the effect of mutations increasing the open
probability of the channel. In addition, for voltage-gated ion channels, mutations
may affect the open probability of the channel and thereby change the dynamics
of the transmembrane potential. We will study specific examples of this below,
where we present actual mutations and their effect on actual ion channels, such
as the sodium channel. However, for the time being, we will stick to our not so
realistic but rather cute model. We will assume that the stochastic dynamics of
the transmembrane potential are governed by (10.2), that the probability density
functions are governed by (10.7), and that the Markov model is given by

C
koc

�
kco

O; (10.11)

where koc D 1 ms�1 and kco D � ms�1: As usual, � is the mutation severity
index and � D 1 denotes the wild type case. Motivated by the results for the RyR
mutations, we will try to repair the effect of the mutation using an open or a closed
state blocker. This will prove to be quite efficient, since we are dealing with a CO-
mutation.

10.5.1 Theoretical Open State Blocker

The Markov model of the theoretical open state blocker is

C
koc

�
kco

O
kbo

�
kob

B; (10.12)

where the parameters kbo and kob need to be determined. The associated steady state
version of the probability density system is given by

@

@v
.ao
o/ D kco
c � .koc C kob/ 
o C kbo
b;

@

@v
.ac
c/ D koc
o � kco
c; (10.13)

@

@v
.ac
b/ D kob
o � kbo
b;

where 
o; 
c; and 
b denote the probability density functions of the open (O),
closed (C), and blocked (B) states, respectively. We compute optimal values of
the parameters kbo and kob using the Fminsearch function in Matlab applied
to the difference between the open probability density function computed by
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solving (10.13) and the wild type solution given by system (10.7), with � D 1:

The function used in the minimization is given by

qR j
o;mtCd � 
o;wtj2dvqR

2

o;wtdv

;

where 
o;wt is the wild type open probability density function and 
o;mtCd is the
mutant open probability density function where the theoretical drug is applied.

10.5.2 Theoretical Closed State Blocker

The Markov model of the theoretical closed state blocker is

B
kcb

�
kbc

C
koc

�
kco

O; (10.14)

where the parameters kcb and kbc must be computed. Following the arguments on
page 58, we find that these parameters must be related as

kcb D .� � 1/ kbc (10.15)

and thus we are left with the task of finding a proper value for only one parameter:
kbc: Of course, based on what we learned for the RyR channel, we suspect that kbc

should be as large as possible. The computations reported below will verify this
suspicion.

The steady state version of the probability density system associated with the
Markov model (10.14) is given by

@

@v
.ao
o/ D kco
c � koc
o;

@

@v
.ac
c/ D koc
o � .kco C .� � 1/ kbc/ 
c C kbc
b; (10.16)

@

@v
.ac
b/ D .� � 1/ kbc
c � kbc
b;

where, again, 
o; 
c; and 
b denote the probability density functions of the open (O),
closed (C), and blocked (B) states, respectively. Here, the value of kbc characterizing
the drug remains to be determined and will be discussed below.
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10.5.3 Numerical Computations Using the Theoretical
Blockers

Let us start by showing that the closed state blocker is improved by increasing
values of kbc: In Fig. 10.2, we show the numerical solutions of system (10.16) with
increasing values of kbc for four values of the mutation severity index �: We observe,
as expected, that the drug is improved as kbc is increased.

In Fig. 10.3, we compare a good theoretical closed state blocker (using kbc D
100 ms�1) and the best open state blocker for four values of the mutation severity
index �. This figure does not reveal much difference between the two alternative
blockers, but we will see below that the statistical properties of the solutions show
that there is a significant difference.

10.5.4 Statistical Properties of the Theoretical Drugs

To further compare the properties of the drugs, it is useful to use the statistical
properties introduced above. We recall that the probability of being in state i is
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Fig. 10.2 The open probability density functions of the wild type (WT), mutants (MT) and
mutants in the presence of the closed state blocker (CB) for four values of the mutation severity
index �. We use kbc = 0.1, 1, 10, 100 ms�1 and observe that, for the largest value of kbc, the
drugged solutions are virtually indistinguishable from the wild type solution
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Fig. 10.3 Comparison of the best closed and open state blockers for four values of the mutation
severity index. For the case � D 0:5 the optimization did not find any open state blockers that
helped (the solution for the mutant in the presence of the open state blocker (OB) is superimposed
on the solution for the mutant (MT) in the lower trace.) We found the following specifications of
the open state blockers to be optimal: For � D 2, we used kbo D 0:37 ms�1 and kob D 0:21 ms�1

and, for � D 3, we used kbo D 0:45 ms�1 and kob D 0:35 ms�1. In all cases, we used the closed
state blocker characterized by kbc D 100 ms�1 and kcb D .� � 1/ kbc

given by

�i D
Z

�


idv;

where i D o; c; or b for the open, closed, or blocked state, respectively. The expected
value of the transmembrane potential under the condition that the channel is open,
closed, or blocked is given by

Ei D 1

�i

Z
�

v
idv;

for i D o; c; or b, respectively. Finally, for i D o; c; or b; the standard deviations are
given by

�2
i D 1

�i

Z
�

v2
idv � E2
i :
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Table 10.2 Statistics of the open probability density functions in the case of � D 3. The closed
state blocker is given by kbc D 100 ms�1 and kcb D .� � 1/ kbc and the open state blocker is
given by kbo D 0:45 ms�1 and kob D 0:35 ms�1

WT MT CB OB

�o 0.500 0.750 0.500 0.478

Eo 0.922 0.969 0.922 0.919

�o 0.076 0.031 0.076 0.088

In Table 10.2, we compare the statistical properties of the solutions based on
different theoretical blockers. We see that the mutation significantly increases the
open probability but leaves the expected value of the transmembrane potential more
or less unchanged. The standard deviation, however, is significantly reduced by the
mutation.

Both the open and closed state blockers are able to significantly reduce the effect
of the mutations, as illustrated in Fig. 10.3. However, the closed state blocker is
slightly better at this than the optimal open state blocker.

10.6 Notes

1. The equation

Cv0 D �gL .v � VL/ � gi.v � Vi/ (10.17)

(see (10.2)) underpins this chapter and most of the rest of these lecture notes. It
is a classical equation and derivations are found in numerous places. A thorough
discussion is given in the classical text by Plonsey and Barr [66]. The basic idea
of the derivation is to equate the flux of ions through the membrane with the
associated change of the charge in the extracellular and intracellular domains.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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Chapter 11
Inactivated Ion Channels: Extending
the Prototype Model

Experimental evidence suggests that some ion channels can take on three main
states: open (O), closed (C), or inactivated (I). Here both C and I mean that the
channel is non-conducting, but when the channel is inactivated, it is harder to open
again than when the channel is in the closed state. This feature is useful in modeling
an action potential. In the action potential of a cardiac cell, the upstroke is driven
mainly by the sodium current. When the upstroke is completed, the sodium channels
are inactivated to avoid spurious new upstrokes before the cell has undergone a
restitution period. Certain mutations impair the ability of the channel to deactivate,
which may lead to arrhythmias. We will return to this topic below. Here, it suffices to
state that we need to introduce an inactivated state in the prototype model discussed
above.

The stochastic model considered in this chapter is the same as in Chap. 10

Cv0 D �gL .v � VL/ � gi.v � Vi/; (11.1)

with the parameters given in Table 10.1 on page 154.

11.1 Three-State Markov Model

The reaction scheme of an ion channel taking on the three states O, C, and I is given
in Fig. 11.1. To model the properties of the action potential in the way we described
above, we need to introduce reaction rates that depend on the transmembrane
potential v. At this point, we just want to derive a prototypical model and we

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_11
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Fig. 11.1 Markov model
including three possible
states: open (O), closed (C),
and inactivated (I)

I

C O

koi

koc

kiok ic
kco

k ci

therefore, admittedly somewhat arbitrarily, define the following rates:

kco D k1
co

�co
; koc D 1�k1

co
�co

;

koi D 1; kio D kcokoikic
kockci

;

kic D e�30v; kci D 1
100

;

(11.2)

where

k1
co D 1

1 C e6�16v

and

�co D 1

10
:

By the definition of kio; these rates satisfy the principle of detailed balance (see
page 10 and the notes of Chap. 1).

11.1.1 Equilibrium Probabilities

We saw above (see page 8) that the equilibrium state of the reaction shown in
Fig. 11.1 is given by

o D 1

1 C koc
kco

C koi
kio

;

c D
koc
kco

1 C koc
kco

C koi
kio

;

i D
koi
kio

1 C koc
kco

C koi
kio

:
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Fig. 11.2 Equilibrium probabilities of the open, closed, and inactivated states as functions of the
transmembrane potential v

These probabilities are graphed as functions of the transmembrane potential in
Fig. 11.2. Note that the open probability in equilibrium is quite small; the channel
is basically closed for v close to zero and it is inactivated for large values of v.

11.2 Probability Density Functions in the Presence
of the Inactivated State

When the inactivated state is included in the model, as indicated in Fig. 11.1, the
system governing the associated probability density functions is given by

@
o

@t
C @

@v
.ao
o/ D kco
c � .koc C koi/
o C kio
i; (11.3)

@
c

@t
C @

@v
.ac
c/ D koc
o � .kco C kci/
c C kic
i; (11.4)

@
i

@t
C @

@v
.ac
i/ D koi
o � .kio C kic/
i C kci
c; (11.5)
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Fig. 11.3 Probability density functions of the open, closed, and inactivated states (red lines)
computed as numerical solutions of the system (11.3)–(11.5) and histograms based on Monte Carlo
simulations using the stochastic differential equation (11.1)

where

ao D �gL .v � VL/ � .v � Vi/ D 11

10
.1 � v/ ; (11.6)

ac D �gL .v � VL/ D � 1

10
v:

11.2.1 Numerical Simulations

Again, we want to compare the solution computed by Monte Carlo simulations
based on the stochastic differential equation given in (11.1) and the probability
density functions defined by the system (11.3)–(11.5). The numerical results are
given in their usual form in Fig. 11.3. As expected, the histograms computed using
Monte Carlo simulations and the numerical solution of the system (11.3)–(11.5)
are quite similar. In these computations, the stochastic simulation ran for 100 s,
with �t D 0:01 ms, and we used the mesh size �v D 0:01 in the numerical
solution of the system (11.3)–(11.5). It is particularly interesting to see that the tiny
boundary layer close to v D 0 for the probability density function of the inactivated
state is captured using both the Monte Carlo and the probability density function
approaches.

11.3 Mutations Affecting the Inactivated State of the Ion
Channel

Certain mutations of the sodium channel are known to impair the channel’s ability to
deactivate. We introduce a mutation severity index � and assume that the reaction
rates of the mutant are changed such that both the probabilities of moving from
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Fig. 11.4 Probability density functions of the open, closed, and inactivated states for the wild
type and for three values of the mutation severity index: � D 1:5; 3; 10: Larger values of � give
solutions farther away from the wild type solution (solid line). The probability density of the closed
state is only shown for v between 0 and 0.1 to magnify very small differences

the inactivated to the closed state and from the inactivated to the open state are
increased. The effect of these changes will clearly be to lower the probability of the
channel being in the inactivated state.

In mathematical terms, we define

Nkic D �kic; (11.7)

Nkio D �kio;

where � > 1 and where kic and kio are the wild type reaction rates given by (11.2).
It should be noted that the new reaction rates still satisfy the principle of detailed
balance. In Fig. 11.4, we show the equilibrium probability density functions of the
open, closed, and inactivated states for the wild type and for three values of the
mutation severity index �:

11.4 A Theoretical Drug for Mutations Affecting
the Inactivation

We want to derive a theoretical drug repairing the effect of the mutation described
in (11.7). In the Markov model illustrated in Fig. 11.5, we have introduced a blocked
state associated with the open, closed, and inactivated state and we now want to
figure out what the best choice might be. The equilibrium solution of the reaction
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Fig. 11.5 The model
represented in Fig. 11.1
extended to account for
blockers associated with the
closed state (BC), the open
state (BO), and inactivated
state (BI)
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represented in Fig. 11.5 is characterized by the equations

kcoc D koco; kcic D kici;

koio D kioi; kbcbc D kcbc;

kbobo D kobo; kbibi D kibi:

It is useful to define

rxy D kxy

kyx

and to note that

rxy D 1

ryx
:

With this notation, the principle of detailed balance stating that

kcokoikic

kockiokci
D 1

can be written as

rcoroiric D rocriorci D 1:

The equations above can now be written as

c D roco; c D rici;

o D rioi; bc D rcbc;

bo D robo; bi D ribi:
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It is convenient to express all probabilities in terms of the open probability:

c D roco;

i D roio;

bc D rcbc D rcbroco;

bo D robo;

bi D ribi D ribroio:

Since c C i C o C bc C bo C bi D 1; we have

o D p�1;

where

p D 1 C roc .1 C rcb/ C roi .1 C rib/ C rob:

We refer to p as the inverse open probability and we note that for the wild type it is
given by

p D 1 C roc C roi:

11.4.1 Open Probability in the Mutant Case

As discussed above, we are interested in understanding how to define a theoretical
drug for mutations affecting the inactivation of the ion channel. We assume that the
mutation affects the inactivation in a way that reduces the probability of being in
the inactivated state. As mentioned above, this can be modeled by increasing the
reaction rates from the inactivated state to both the closed and the open states. We
assume that

Nkic D �kic; Nkio D �kio;

where � > 1 is the mutation severity index. This gives

Nric D
Nkic

kci
D �ric

and

Nrio D Nkio

koi
D �rio:
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We assume that the reaction rates between the closed and open states are unaffected
by the mutation and therefore

Nroc D roc:

Detailed balance dictates that we should have

.�kic/kcokoi D .�kio/kockci;

which holds regardless of the choice of �, since the wild type rates satisfy the
principle of detailed balance.

The inverse open probability in the presence of the mutations is given by

Np D 1 C roc C Nroi D 1 C roc C 1=Nrio D 1 C roc C 1

�rio
D 1 C roc C roi

�
:

11.4.2 The Open Probability in the Presence of the Theoretical
Drug

When the drug given in Fig. 11.5 is applied, the inverse open probability is

pb D 1 C roc .1 C rcb/ C roi

�
.1 C rib/ C rob

where rcb; rib, and rob are used to characterize the drug. Our aim is to now use these
parameters to tune the drug such that

pb � p;

where p is the inverse open probability of the wild type. More precisely, we want to
determine the constants rcb; rib, and rob such that

1 C roc .1 C rcb/ C roi

�
.1 C rib/ C rob � 1 C roc C roi

holds for all relevant values of the transmembrane potential v: We observe that if
we put rcb D rob D 0; we obtain the condition

roi

�
.1 C rib/ � roi

and therefore we set

rib D � � 1:
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We conclude that we can repair the equilibrium state of the mutation completely by
applying a drug consisting of a blocker of the inactivated state, provided that the
reaction rates of the drug satisfy

kib

kbi
D � � 1;

where � is the severity index of the mutation. This means that we have reduced the
problem of finding a drug to a single parameter given by kbi: This remaining degree
of freedom will be addressed below.

11.5 Probability Density Functions Using the Blocker
of the Inactivated State

In Sect. 11.2 above, we derived a system governing the probability density functions
of the open, closed, and inactivated states. Here, we want to extend the system to
account for the theoretical drug represented by a blocker of the inactivated state. The
Markov model of the drug is given in Fig. 11.6. The drug will completely repair the
equilibrium state of the Markov model, provided that

kib D .� � 1/ kbi; (11.8)

where � is the mutation severity index of the mutation (see (11.7)). The stationary
probability density functions of the states in the Markov model of Fig. 11.6 are
governed by the system

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C �kio
i; (11.9)

@

@v
.ac
c/ D koc
o � .kco C kci/ 
c C �kic
i; (11.10)

Fig. 11.6 Markov model of
the prototype ion channel
with a blocker associated
with the inactivated state

I BI

C O

koi

koc

kiok ic

kib

kco

k ci kbi
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@

@v
.ac
i/ D koi
o � .�kio C �kic C .� � 1/ kbi/
i C kci
c C kbi
b; (11.11)

@

@v
.ac
b/ D .� � 1/ kbi
i � kbi
b; (11.12)

where 
o; 
c; 
i; and 
b denote the probability density functions of the open, closed,
inactivated, and blocked states, respectively, and where the flux terms are given by

ao D �gL .v � VL/ � .v � Vi/ D 11

10
.1 � v/ ;

ac D �gL .v � VL/ D � 1

10
v:

The associated model of the wild type is given by

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C kio
i; (11.13)

@

@v
.ac
c/ D koc
o � .kco C kci/ 
c C kic
i; (11.14)

@

@v
.ac
i/ D koi
o � .kio C kic/
i C kci
c: (11.15)

All the reactions rates used in the computations are given in (11.2); the computa-
tional domain is given by � D Œ0; 1� and we used 201 mesh points. In Fig. 11.7,
we show the difference between the open state probability density function of the
wild type, denoted by 
o; computed by solving the system (11.13)–(11.15), and the
mutant where the drug is applied, computed by solving (11.9)–(11.12), denoted by

�

o : The difference is defined by the norm

k
o � 
�
o k D

��
o � 
�
o

��
L2.�/

k
okL2.�/ C ��
�
o

��
L2.�/

; (11.16)

where, as usual,

k
kL2.�/ D
�Z

�


2dv

�1=2

:

We observe that, as kbi increases, the drug defined by (11.8) completely repairs the
effect of the mutation.



11.5 PDFs: Blocked Inactivated State 175

10−6 10−4 10−2 100 1020

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

k
bi

||ρ
o−ρ

* o||

Fig. 11.7 The difference between the open probability density function of the wild type (
) and the
open probability density function (
�) of the mutant using the drug defined by (11.8), measured by
the norm k
o �
�

o k defined in (11.16). The difference goes to zero as the parameter kbi is increased
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Chapter 12
A Simple Model of the Sodium Channel

In the previous two chapters, we studied a prototypical model of an ion channel. The
model consisted of a differential equation involving a gating mechanism that could
be either open or closed. A Markov model governed the gating and we derived a
system giving the probability density functions of the states involved in the Markov
model. We used the probability density approach to compute optimal theoretical
drugs and noted that a mutation leading to an increase in the closed to open reaction
rate could be completely repaired by an optimal closed state drug.

Next, we extended the prototypical model to also include an inactivated state.
The inactivated state can also be affected by mutations and we studied the particular
case in which the rates from inactivated to open and from inactivated to closed were
increased by a factor � referred to as the mutation severity index. In this case, we
observed that an optimal drug was represented by a blocker associated with the
inactivated state. We were again able to completely repair the effect of the mutation
using the theoretical drug.

In this chapter, we shall move closer to realistic Markov models of sodium
channels. These models tend to be somewhat more intricate than the prototypical
model we have studied so far. Providing Markov models of the sodium channels has
been a very active field of research for decades and a series of models are available.
We have chosen to study models that seem to capture the basic structure applied in
many models but are manageable from a mathematical point of view. We choose
this approach for clarity of presentation and not for its ability to represent specific
data. It is, hopefully, quite clear that the method we use to analyze the models is
applicable to many other models.

Mutations of the sodium channel can lead to impaired inactivation. This may lead
to leakage of the sodium current, which can again trigger arrhythmias. Here we will
consider a model of the �KPQ mutation of the SCN5A gene. This mutation may
lead to an arrhythmogenic disorder referred to as the long-QT syndrome, which can
lead to sudden cardiac death in the worst case. There are several models representing

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_12
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the effect of the �KPQ mutation. One that is well known is provided by Clancy and
Rudy [14]. Their approach to model the impaired inactivation is to introduce a burst
mode in the model where no inactivation state is available. We will consider two
ways of modeling the effect of the mutation.

In the first approach, we will use the method utilized above. We will simply
increase the reaction rate from the inactivated to the closed state and from the
inactivated to the open state by a factor � � 1, referred to as the mutation severity
index. This change will clearly reduce the probability of being in the inactivated
state. It is therefore a model of impaired inactivation.

The second approach is to introduce a burst mode in the model. When the channel
is in the burst mode, there is no inactivated state. This model will be parameterized
such that it is highly unlikely that the channel will enter the burst mode for the wild
type case, but the probability of entering the burst mode is considerably higher in
the mutant case.

12.1 Markov Model of a Wild Type Sodium Channel

Markov models have turned out to be a powerful tool in representing the physics
of the sodium channel and a series of alternatives have been proposed by various
authors. Since this is still a very active field of research, it is hard to claim one
particular model as the definitive model. We shall therefore focus on a kind of model
that has a structure that seems to be more or less agreed upon but, as usual, we attack
this problem with simplicity in mind. This also holds true for the way we introduce
the effect of a mutation.

We start by considering a simple model of the sodium channel, illustrated in
Fig. 12.1. The actual functions used in our computations will be given below.
However, we should note that the functions will always be chosen such that they
satisfy the principle of detailed balance, which, for the model given in Fig. 12.1,
means that the following relation holds:

kiokockci D koikickco: (12.1)

I

C3 C2 C1 C0 O

koi

koc

kiok ic
kco

k ci

32

23a

b

a

b

a

b

Fig. 12.1 Markov model of a wild type sodium channel consisting of an open state .O/, an
inactivated state .I/, and four closed states .C0; C1; C2; C3/
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The model of the closed states deserves a comment or two. Let us assume that
a sodium channel consists of three subunits and these subunits may exist in two
states: closed or permissible. The whole channel is in the state C0 if all three units
are in the permissible state. Over a brief period given by �t, the channel can change
from the state C0 to the open state and the probability of this event is �tkco or it
can change to the inactivated state with probability �tkci. However, the channel can
also go from the permissible state C0 to the state C1 and the probability of doing
this is 3�tˇ. The reason for the factor of three here is that it is sufficient that one of
the three subunits closes. By assuming that the subunits act independently, we find
that the probability is 3�tˇ. The same reasoning gives us the rest of the transitions
between the different closed states.

12.1.1 The Equilibrium Solution

The equilibrium probabilities of the model given in Fig. 12.1 are characterized by
the equations

kcic0 D kici; koio D kioi; kcoc0 D koco;

3ˇc0 D ˛c1; 2˛c2 D 2ˇc1; 3˛c3 D ˇc2;

where c0 denotes the equilibrium probability of being in the state C0. Similarly,
the other variables are defined as the equilibrium probability of being in the states
C1; C2; C3; I, and O. We express all probabilities in terms of the open probability:

i D koi

kio
o; c0 D koc

kco
o;

c1 D 3ˇ

˛

koc

kco
o; c2 D 3ˇ2

˛2

koc

kco
o; c3 D ˇ3

˛3

koc

kco
o:

Since oC iCc0 Cc1 Cc2 Cc3 D 1; we find the following equilibrium probabilities:

o D 1

qw
; i D koi=kio

qw
; c0 D koc=kco

qw
; (12.2)

c1 D 3ˇ

˛

koc=kco

qw
; c2 D 3ˇ2

˛2

koc=kco

qw
; c3 D ˇ3

˛3

koc=kco

qw
;

where

qw D 1 C koi

kio
C koc

kco
.1 C ˇ=˛/3 :

Here the subscript w is used to indicate that qw represents the wild type case.
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12.2 Modeling the Effect of a Mutation Impairing
the Inactivated State

The mutation impairs the inactivated state of the channel. In Sect. 11.3 we modeled
this by increasing the probability of moving from the inactivated state to the open
state or to the closed state. This was done by increasing the rates kio and kic: We use
the same approach here and define

Nkic D �kic; (12.3)

Nkio D �kio; (12.4)

where, as usual, � is the mutation severity index. From (12.1), we have

kiokockci D kickcokoi

and therefore

.�kio/ kockci D .�kic/ kcokoiI

so

Nkiokockci D Nkickcokoi

and thus the principle of detailed balance also holds for the mutant case, in which
the rates are given by (12.3) and (12.4).

12.2.1 The Equilibrium Probabilities

The reaction scheme of the mutant is illustrated in Fig. 12.2. In the mutant case, the
equilibrium probabilities are given by

o D 1

qm
; i D koi= .�kio/

qm
; c0 D koc=kco

qm
; (12.5)

c1 D 3ˇ

˛

koc=kco

qm
; c2 D 3ˇ2

˛2

koc=kco

qm
; c3 D ˇ3

˛3

koc=kco

qm
;

where

qm D 1 C koi

�kio
C koc

kco
.1 C ˇ=˛/3 :
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I

C3 C2 C1 C0 O

koi

koc

μkioμk
ic

kco

k ci

32

23a

b

a

b

a

b

Fig. 12.2 Markov model of the mutant version of the sodium channel consisting of an open state
.O/, an inactivated state .I/, and four closed states .C0; C1; C2; C3/. Here � is referred to as the
mutation severity index

For the equilibrium state it is worth observing that, since

i D koi=kio

koi
kio

C �
�
1 C koc

kco
.1 C ˇ=˛/3

� ;

the probability of being in the inactivated state is reduced when � is increased.
Similarly, we observe that the associated open probability given by

o D 1

1 C koi
�kio

C koc
kco

.1 C ˇ=˛/3

increases as � increases. Although these calculations concern the equilibrium state,
this is a pretty strong hint of an increased open probability in the dynamic case as
well and an increased open probability is exactly the problem one observes when
inactivation is impaired.

12.3 Stochastic Model of the Sodium Channel

We use the same model of the transmembrane potential as above (see (10.2) on
page 154). Recall that the stochastic differential equation is given by

Cv0 D �gL .v � VL/ � �gNa.v � VNa/; (12.6)

where C is the capacitance of the membrane, VL is the resting potential of the
leakage current, and VNa is the resting potential of the sodium channel. The
parameters are listed in Table 12.1.

The sodium channel can be either open (O), with � D 1; or closed (C), with
� D 0; and, as usual, the state of the channel is determined by a Markov model.
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Table 12.1 Values of the
parameters used in
model (12.6)

C 1 	F/cm2

gL 1=10 mS/cm2

gNa 1 mS/cm2

VL �85 mV

VNa 45 mV

Since C D 1; we rewrite the equation in the more convenient form

v0 D �gL .v � VL/ � �gNa.v � VNa/; (12.7)

where gL and gNa now have the unit1 ms�1:

12.3.1 A Numerical Scheme with an Invariant Region

A numerical scheme for the model (12.7) can be written in the form

vnC1 D vn � �t .gL .vn � VL/ C �ngNa.vn � VNa//; (12.8)

where �n is either zero or one and where �t denotes the time step. We assume that
the condition

�t <
1

gL C gNa
(12.9)

holds and, under this condition, we will show that an invariant region for the
solutions generated by the scheme (12.8) is given by

� D .VL; VC/ ; (12.10)

where

VC D gLVL C gNaVNa

gL C gNa

and, for the parameters we defined in (12.1), we have VC � 33:18 mV.
To derive the invariant region, we proceed along the lines used on page 155 and

thus start by defining

H.v; �/ D v � �t .gL .v � VL/ C �gNa.v � VNa//:

1The use of the odd units for gL and gNa stems from the fact that we have, for notational
convenience, incorporated the capacitance of the membrane in these constants.
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For values of v in the region � and for values of �t satisfying condition (12.9), we
have the properties

d

dv
H.v; �/ D 1 � �t .gL C �gNa/ > 1 � �t .gL C gNa/ > 0

and

d

d�
H.v; �/ D ��t .gNa.v � VNa// > 0:

Using these observations, we obtain

vnC1 D H.vn; �n/ 6 H.VC; 1/ D VC

and

vnC1 D H.vn; �n/ > H.VL; 0/ D VL:

So, by induction, it holds that � D .VL; VC/ is an invariant region for scheme (12.8).

12.4 Probability Density Functions for the Voltage-Gated
Channel

The systems modeling the probability density functions in the wild type and mutant
cases are of exactly the same form; the only difference is given by the mutation
severity index. The probability density functions of the states of the Markov model
given in Fig. 12.2 are given by

@
o

@t
C @

@v
.ao
o/ D kco
0 � .koc C koi/ 
o C �kio
i;

@
i

@t
C @

@v
.ac
i/ D koi
o � � .kio C kic/ 
i C kci
0;

@
0

@t
C @

@v
.ac
0/ D koc
o � .kci C kco C 3ˇ/ 
0 C �kici C ˛
1; (12.11)

@
1

@t
C @

@v
.ac
1/ D 2˛
2 � .˛ C 2ˇ/ 
1 C 3ˇ
0;

@
2

@t
C @

@v
.ac
2/ D 3˛
3 � .2˛ C ˇ/ 
2 C 2ˇ
1;

@
3

@t
C @

@v
.ac
3/ D �3˛
3 C ˇ
2;
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where

ao D �gL .v � VL/ � gNa.v � VNa/; (12.12)

ac D �gL .v � VL/ ;

with 
o denoting the probability density function of being in the open state, 
0

denoting the probability density function of being in the state C0; and so on.

12.4.1 Model Parameterization

To carry out numerical computations comparing the properties of the wild type
and the mutant sodium channel, we need to define the rates involved in the model
described in Fig. 12.2. We use the rates

kab.v/ D k1
ab .v/=�ab; kba.v/ D .1 � k1

ab .v//=�ab;

with

k1
ab D 1

1 C esab.Vab�v/
:

Furthermore, the rates ˛ and ˇ in Fig. 12.2 are given by

˛ D k1
cp =�cp and ˇ D .1 � k1

cp /=�cp:

With this parameterization, the principle of detailed balance is satisfied, provided
that

sco C sic C soi D 0 and scoVco C soiVoi C sicVic D 0:

The parameters are given in Table 12.2 and we introduce the mutation as we did
in the previous chapter: We increase the probability of going from the inactivated
state to either the open or the closed state. More specifically, we define

Nkic D �kic and Nkio D �kio;

where, as usual, the wild type case is given by � D 1.

Table 12.2 Parameters of
the Markov model illustrated
in Figs. 12.1 and 12.2

ab Vab (mV) sab (1/mV) �ab (ms)

co �60 0:1 0.01

oi �120 0:05 3

ic �80 �0:15 10

cp �60 0:1 0.1
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12.4.2 Numerical Experiments Comparing the Properties
of the Wild Type and the Mutant Sodium Channel

In Fig. 12.3, we show the probability density functions of the open state, the
inactivated state, and the sum of the closed states for the wild type case .� D 1/

and two mutations .� D 10 and � D 30/: The properties of the solutions are
summarized in Table 12.3, which presents the expected values of the open state, the
inactivated state, and the sum of the closed states.
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Fig. 12.3 The probability density functions of the open state (left), the sum of the closed states
(center), and the inactivated state (right) for the wild type case (solid line) and two values of the
mutation severity index: � D 10 and � D 30. The strongest mutation differs the most from the
wild type solution

Table 12.3 Probability of being in the open, closed, or inactivated states and the expected value
of the transmembrane potential, provided that the channel is open, closed, or inactivated

� �o � 100 �c �i � 100 Eo Ec Ei

1 0.0067 0.9951 0.4834 �50:8 �84:9 �83:5

3 0.0080 0.9982 0.1765 �41:1 �84:9 �79:6

10 0.0162 0.9989 0.0942 �13:4 �84:9 �57:0
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12.4.3 Stochastic Simulations Illustrating the Late Sodium
Current in the Mutant Case

Impaired inactivation of the sodium channel leads to a late sodium current, which
is illustrated in Fig. 12.4. The figure also includes experimental data of the sodium
current taken from Bennett et al. [2]. We observe that, by using � D 30, the model
fits the experimental data fairly well.
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Fig. 12.4 Currents computed using the Markov model given in Fig. 12.2. Top panel: Currents
based on numerical simulations for � D 1; 10; 30; 100. Each trace is an average of 10,000 Monte
Carlo runs. The current is given by I D gNaPo.v�VNa/, with the transmembrane potential clamped
at v D 0. The currents are normalized so that the wild type case peaks at �1. The parameters are
given by VNa D 45 and gNa D 1 and Po is the average ratio of open channels over 10,000 runs,
computed at each time step. The lower graphs are from Bennett et al. [2], for the wild type case
(left) and mutant case (right)
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12.5 A Theoretical Drug Repairing the Sodium Channel
Mutation

We introduce a theoretical drug for the sodium channel of the form given in
Fig. 12.5. The equilibrium probabilities of the model are characterized by the
equations

kcic0 D �kici; koio D �kioi; kcoc0 D koco;

3ˇc0 D ˛c1; 2˛c2 D 2ˇc1; 3˛c3 D ˇc2;

kbcb0 D kcbc0; kbcb1 D kcbc1; kbcb2 D kcbc2;

kbcb3 D kcbc3; kbibi D kibi; kbobo D kobo:

As usual, we express all probabilities in terms of the open state probability,

i D koi

�kio
o; c0 D koc

kco
o;

c1 D 3ˇ

˛

koc

kco
o; c2 D 3ˇ2

˛2

koc

kco
o; c3 D ˇ3

˛3

koc

kco
o;

b0 D ıc
koc

kco
o; b1 D ıc

3ˇ

˛

koc

kco
o; b2 D ıc

3ˇ2

˛2

koc

kco
o;

b3 D ıc
ˇ3

˛3

koc

kco
o; bi D ıi

koi

�kio
o; bo D ıoo;

where we have introduced the following parameters characterizing the drug:

ıo D kob

kbo
; ıi D kib

kbi
; ıc D kcb

kbc
:
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Fig. 12.5 Markov model for a theoretical drug of the sodium channel. The model consists of the
usual states O; I; C0; C1; C2, and C3 and the blocked states BO; BI; BC0; BC1; BC2, and BC3
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Since the sum of the probabilities is one, we obtain

om;d D 1

qm;d
;

where the subscript indicates the mutant case in the presence of a drug. Here,

qm;d D 1 C koi

�kio
C koc

kco
.1 C ˇ=˛/3 .1 C ıc/ C ıi

koi

�kio
C ıo

and we recall that the wild type open probability is given by

ow D 1

qw
;

where

qw D 1 C koi

kio
C koc

kco
.1 C ˇ=˛/3 :

Obviously, we obtain om;d � ow, provided that qm;d � qw. If we choose a drug
characterized by

ıo D ıc D 0; and ıi D � � 1 (12.13)

we find that

qm;d D 1 C koi

kio
C koc

kco
.1 C ˇ=˛/3 D qw

and therefore, with the drug specified by (12.13), we have om;d D ow, so the open
probability at equilibrium is repaired.

12.5.1 Numerical Experiments Using the Blocker
of the Inactivated State

We have seen that a blocker of the inactivated state is a promising candidate for
repairing the mutation described in Fig. 12.2. The drug is characterized by (12.13),
so we have

kib D ıikbi D .� � 1/ kbi (12.14)

and the parameter kbi remains to be determined. In Table 12.4, we show that the
blocker is more efficient the larger kbi is. In fact, the blocker is able to repair all the
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Table 12.4 The open
probability, �o, the expected
value of the transmembrane
potential, Eo, and the standard
deviation, �o, for increasing
values of kbi. For large values
of kbi, the statistical properties
of the mutant are completely
repaired by the drug

kbi �o � 103 Eo �o

WT 0.067 �50:794 46.828

MT 1.534 12:991 26.831

10�6 1.341 12:940 26.913

10�5 1.180 12:487 27.634

10�4 0.556 8:240 33.343

10�3 0.135 �16:903 49.326

0.01 0.070 �47:563 48.205

0.1 0.067 �50:729 46.869

1 0.067 �50:791 46.830
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Fig. 12.6 The open probability density function for the wild type (WT) case and the mutant (MT)
case using the mutation severity index � D 30 and, finally, the mutant case with the drug given
by (12.14) with kbi D 0:001 ms�1. A small value of kbi was used to see a difference between the
drugged case and the WT case

relevant statistical properties of the solution. The statistical properties presented in
the table are introduced in Sect. 4.2 on page 72.

In Fig. 12.6, we show the open state probability density functions of the wild
type, the mutant, and the drugged version of the mutant. Again, we see that the drug
completely repairs the open state probability density function.
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Fig. 12.7 The sodium current for the wild type (WT) and the mutant (MT) with the mutation
severity index � D 30. The drug given by (12.14) with kbi D 0:01 ms�1 almost completely
removes the late sodium current

12.5.2 The Late Sodium Current Is Removed by the Inactivated
State Blocker

In Fig. 12.4 above, we demonstrated, using Monte Carlo simulations, that the
mutation under consideration leads to a significant late sodium current comparable
to the current observed in experiments. By using the drug described in (12.13) with
kbi D 0:01 ms�1; we see that the late current more or less completely disappears
(see Fig. 12.7).

12.6 Notes

1. The basic structure of the Markov model in Fig. 12.1 is taken from Patlak [65],
who discusses and evaluates several possible models in relation to experimental
data.

2. Modeling the effects of a drug on the sodium channel is motivated by the paper
of Clancy et al. [16].

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.
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regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.



Chapter 13
Mutations Affecting the Mean Open Time

In the simplest case of Markov models of the form

C
koc

�
kco

O; (13.1)

we have studied mutations leading to an increased open probability by increasing
the rate from closed (C) to open (O), given by kco. We refer to these as CO-
mutations and for such mutations we have successfully derived closed state blockers
represented as

B
kcb

�
kbc

C
koc

�
�kco

O; (13.2)

where � > 1 is the mutation severity index and � D 1 represents the wild type.
These blockers can completely repair the equilibrium open probability of the mutant
by adjusting the “on rate” divided by the “off rate” of the drug given by

ıc D kcb

kbc

(see, e.g., page 58). The remaining degree of freedom can be found using probability
density systems and the resulting drugs have been proven to work exceptionally well
in theoretical computations.

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_13

193



194 13 Mutations Affecting the Mean Open Time

There is, however, another way of modeling increased equilibrium open proba-
bility. Rather than increasing the rate from C to O, we can reduce the rate from O to
C:

C
koc=�

�
kco

O; (13.3)

where again � > 1 is referred to as the mutation severity index. This type of
mutation is referred to as an OC-mutation and the equilibrium open probability for
this Markov model is given by

o D 1

1 C koc=�

kco

;

which clearly increases for increasing values of �: Formally, we can carry out the
same math to devise a closed state drug that completely repairs the equilibrium
open probability of the mutant; however, when this drug is put into the probability
density system to determine the remaining degree of freedom of the drug, we
quickly observe that the task is impossible and the theoretical drug does not provide
significant improvement.

The core difficulty here is that a CO-mutation does not change the mean open
time of the channel. A closed state blocker is therefore well suited because such
a blocker does not affect the mean open time. However, for an OC-mutation, an
increased mean open time is part of the problem and a closed state blocker is not the
solution, simply because it cannot affect the mean open time. Rather, an open state
blocker must be used.

In this chapter, we will explain the notion of mean open time and study mutations
that lead to an increased open probability and an increased mean open time. We will
show that open state blockers are optimal for such mutations.

13.1 The Mean Open Time

Let us briefly recall the interpretation of the Markov model

C
koc

�
kco

O:

This scheme means that if the channel is closed (C), the probability of changing
the state from closed to open (O) in a small time interval �t is given by kco�t:
Clearly, this interpretation only holds for short time intervals, since the probability
cannot exceed one. Note also that if the rate kco increases, this leads to an increased
probability of moving from C to O during the time step �t: Similarly, koc�t denotes
the probability of moving from the open state to the closed state in the time step �t:



13.1 The Mean Open Time 195

Suppose that the channel is open at time t D 0: The probability that the channel
remains open after a short time step �t is given by

p1 D 1 � koc�t:

If we take another time step, the probability that the channel is still open at time
t D 2�t is given by

p2 D p1 .1 � koc�t/ D .1 � koc�t/2

and so on. At time t D n�t; the probability of the channel still being open is given
by

pn D .1 � koc�t/n :

If we now introduce time given by

t D n�t;

we have

.1 � koc�t/n D .1 � koc�t/
t

�t :

The probability of closing a channel that is in the open state during a time step is
given by �tkoc and therefore the probability of closing a channel that has remained
open for n time steps is given by

�tkoc .1 � koc�t/
t

�t :

The expected open time is therefore given by

1X
nD1

n�t .1 � koc�t/
t

�t �tkoc:

If we go to the limit of �t ! 0 in this expression, we find that

1X
nD1

n�t .1 � koc�t/
t

�t �tkoc
�t!0�!

Z 1

0

tkoce�koctdt D 1

koc

and therefore we have found that the mean open time is given by

�o D 1

koc
: (13.4)
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13.1.1 Mean Open Time for More Than One Open State

We have seen that the mean open time for a Markov model of the form

C
koc

�
kco

O

is given by

�o D 1

koc
: (13.5)

It is straightforward to extend the argument above to see that, for a Markov model
of the form

C
koc

�
kco

O
kbo

�
kob

B;

the mean open time is given by

�o D 1

koc C kob
: (13.6)

But what happens if there is more than one open state? This situation will become
relevant below, where we consider models including a burst mode. The models
contain at least two open states. To understand the mean open time in the presence of
more than one open state, we consider the generic extension illustrated in Fig. 13.1.

Assuming that the rates are set according to the principle of detailed balance, we
have

kulou D kluol;

where ou and ol are the probabilities of being in the states Ou or Ol, respectively,
and u and l represent the upper and lower states, respectively.

Fig. 13.1 Markov model
with two open states (Ou, Ol)
and two closed states (Cu, Cl)

Cu Ou

Cl Ol

kuco

ka

kuoc
kulkb

k lco

klu

k loc
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As for the derivation above, we assume that the channel is open and our task is
to figure out how long we can expect the channel to remain open. We know that,
initially, the channel is either in the state Ou or Ol. Let us define qu and ql to be the
conditional probabilities of being in the upper and lower open states, given that the
channel is open. For the upper state we write

qu D P.S D Ouj.S D Ou or S D Ol//;

where S D X means that the channel is in state X. Since

P.AjB/ D P.A and B/=P.B/

and, in our case, since (A and B) = A, we obtain

qu D P.S D Ou/=P.S D Ou or S D Ol/ D ou

ou C ol

and similarly for the lower state; with

ql D P.S D Olj.S D Ou or S D Ol//;

we obtain

ql D ol

ou C ol
:

It follows that qu C ql D 1 and that

qu D klu

kul C klu

and

ql D kul

kul C klu
:

The probability of remaining in the open states in the first time step is now given by

p1 D �
1 � �tku

oc

�
qu C �

1 � �tkl
oc

�
ql

D 1 � �t

�
ku

ocklu C kl
ockul

kul C klu

�

and thus, by following the steps above, we find that

pn D .1 � �tK/n ;
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where

K D ku
ocklu C kl

ockul

kul C klu
:

The probability of closing a channel that is in one of the open states during a time
step is given by

�tku
ocqu C �tkl

ocql D �tK

and, therefore, the probability of closing a channel in a time step that has remained
open for n time steps is given by

�tK .1 � �tK/n :

We find that the expected mean open time is given by

�o D 1

K
D kul C klu

ku
ocklu C kl

ockul
: (13.7)

13.1.1.1 Special Cases

It is interesting to consider the formula for the mean open time given by (13.7) in
two special cases. First, we assume that ku

oc D kl
oc and we let koc denote this common

value. Then, by (13.7), we have

�o D 1

koc

which is the same as we found for the two-state scheme above. Next consider the
case of kul D klu (and ku

oc 6D kl
oc). By (13.7), we find

�o D 1

.ku
oc C ku

oc/=2
: (13.8)

13.2 Numerical Experiments

It is useful to have a look at the mean open time computed in specific numerical
experiments to determine how well it is represented by the theoretical value derived
above. Similarly, it is useful to consider how well the theoretical equilibrium open
probability represents the data we observe in actual computations. In this section,
we will present experiments that hopefully clarify these matters.
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13.2.1 Mean Open Time and Equilibrium Open Probability:
Theoretical Values Versus Sample Mean Values

Let us illustrate the result above by a few numerical experiments. We start by
considering the Markov model

C
koc

�
kco

O;

where we set kco D 1 ms�1 and we let

koc D 1

m
ms�1

for m D 1; : : : ; 100: For every value of koc; we run a simulation using the Markov
model for T D 104 ms. The time instances when the channel changes state are
stored in the sequence ftigN

iD0 and the mean open time observed in the simulation is
given by1

�o;s D 2

N

X
i

.ti � ti�1/o ;

where

.ti � ti�1/o D
	

ti � ti�1 if the channel is open in this interval,
0 if the channel is closed in this interval.

With this notation we can also define the sample open probability by

os D 1

T

X
i

.ti � ti�1/o :

In Fig. 13.2 (left panel), we plot the sample mean open time �o;s and the theoretical
mean open time given by

�o D 1

koc
(13.9)

1The index s here is used to indicate sample, since these are values for a specific computation and
not the theoretical value computed above.
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Fig. 13.2 Mean open time (left) and open probability (right), with koc D 1=m ms�1 and kco D 1

ms�1. The sample values (dashed lines) correspond well with the theoretical values (solid line)

as functions of koc: We also plot (right panel) the sample open probability os and the
theoretical equilibrium probability given by

o D 1

1 C koc
kco

: (13.10)

In both plots, we see that the mean values computed in the simulations are quite
close to the theoretical values. If we increase the simulation time T; these graphs
converge toward the same value.

13.2.2 The Closed to Open Rate kco Does Not Affect the Mean
Open Time

We have seen that, theoretically, according to (13.9), the mean open time �o is
independent of the closed to open rate kco; but the open probability is affected as
stated in (13.10). This is illustrated in Fig. 13.3, where we use koc D 1 ms�1 and
kco D 1=m ms�1 and plot the mean open time (left panel) and the open probability
(right panel) as functions of m:
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Fig. 13.3 Mean open time (left) and open probability (right) with kco D 1=m ms�1 and koc D 1

ms�1. The mean open time is not affected by changes in kco. The sample values correspond well
to the theoretical values

13.2.3 The Mean Open Time in the Presence of Two Open
States

In Fig. 13.4, we show the sample mean open time and the theoretical mean open
time given by

�o D 1

K
D kul C klu

ku
ocklu C kl

ockul
(13.11)

for the Markov model in Fig. 13.1. In the computations, we have used kl
oc D 1 ms�1,

ku
oc D 10 ms�1, and klu D 0:001 ms�1 and kul varies. The other parameters of the

model do not affect the result, as long as detailed balance holds.

13.2.4 Changing the Mean Open Time Affects the Dynamics
of the Transmembrane Potential

We consider the stochastic model of the transmembrane potential given by

vt D gK.VK � v/ C �gNa.VNa � v/; (13.12)

where � is a stochastic variable governed by the two-state Markov model

C
koc

�
kco

O:



202 13 Mutations Affecting the Mean Open Time

10−4 10−2 100

0.2

0.4

0.6

0.8

1

k
ul

 (ms −1)

τ o
 (m

s)

theoretical

sampled

Fig. 13.4 Mean open time for a Markov model with two open states

We use the parameters

gK D 1

10
ms�1; gNa D 1 ms�1; (13.13)

VK D �85 mV, VNa D 45 mV,

and compute solutions using the standard scheme

vnC1 D vn � �t .gK .vn � VK/ C �ngNa.vn � VNa//; (13.14)

where the time step is assumed to satisfy the condition

�t <
1

gK C gNa
: (13.15)

Under this condition, we have seen above that, for solutions computed by (13.12),
an invariant region is given by

� D .VK ; VC/ ; (13.16)

where

VC D gKVK C gNaVNa

gK C gNa
:
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In Fig. 13.5, we show numerical solutions of (13.12) for

koc D kco D 0:1 ms�1; 1 ms�1; 10 ms�1; 100 ms�1:

According to the considerations above, the equilibrium open probability is given by

o D 1

1 C koc
kco

;

which is constant for the four parameter sets used in Fig. 13.5. The mean open time,
however, varies with koc as

�o D 1

koc
:

For the cases studied in Fig. 13.5, the mean open times are 10, 1, 1/10, and 1/100 ms
and we observe that the reduced mean open time greatly reduces the variations of
the transmembrane potential.

13.3 Changing the Mean Open Time Affects the Probability
Density Functions

The stationary version of the probability density system governing the states of the
Markov model

C
koc

�
kco

O

is given by

@

@v
.ao
o/ D kco
c � koc
o; (13.17)

@

@v
.ac
c/ D koc
o � kco
c;

where

ao D gK.VK � v/ C gNa.VNa � v/; (13.18)

ac D gK.VK � v/:
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Fig. 13.5 Simulations based on the numerical scheme (13.14) with changing reaction rates for the
Markov model. From top to bottom, koc D kco D 0:1, 1, 10, and 100 ms�1: Since koc D kco for all
values, the open probability is kept constant but the mean open time given by 1=koc is decreasing
from top to bottom
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The analytical solution of this problem is given by


o.v/ D KgK.VC � v/
koc

g �1
.v � VK/

kco
gK ;


c.v/ D Kg.VC � v/
koc

g .v � VK/
kco
gK

�1
;

where

g D gNa C gK , VC D gNaVNa C gKVK

gNa C gK

and K is chosen such that

Z VC

VK


o C 
c D 1;

which is given by

1=K D kco C koc

a C b
.VC � VK/.aCb/B.a; b/;

with a D kco=gK; b D koc=g, and B.a; b/ D �.a/�.b/=�.a C b/.
In Fig. 13.6, we show the open probability density function for the data given

in (13.13) with

koc D kco D 0:1 ms�1; 1 ms�1; 10 ms�1; 100 ms�1:

Again, we recall that as koc increases, the mean open time decreases and we observe
in the figure that the probability density function becomes narrower.

13.4 Theoretical Drugs for OC-Mutations

We have seen earlier that when mutations increase the open probability by increas-
ing the reaction rate from C to O .kco/; the effect of the mutation can be completely
repaired by using an optimal closed state blocker. Now we are interested in a
mutation that increases the open probability by reducing the reaction rate from O
to C .koc/ : Such a mutation increases both the open probability and the mean open
time and we will observe that a closed state blocker is unable to repair the effect of
such a mutation.

We consider the two-state Markov model

C
koc=�

�
kco

O; (13.19)
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Fig. 13.6 The open probability density function 
o (solid line) and closed probability density
function 
c depend on the mean open time given by 1=koc. In the figures, we have used k D
koc D kco
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where � > 1 is the mutation severity index; as usual, � D 1 denotes the wild type.
Recall that the equilibrium open probability is given by

o D 1

1 C koc
�kco

and the mean open time is given by

�o D �

koc
;

so the mutation clearly increases both the open probability and the mean open time.

13.4.1 The Theoretical Closed State Blocker Does Not Work
for the OC-Mutation

Let us start by considering a closed state blocker of the form

B
kcb

�
kbc

C
koc=�

�
kco

O: (13.20)

We find that the equilibrium open probability of the mutant in the presence of the
closed state blocker is given by

o D 1

1 C koc
kco

1Cıc
�

;

where

ıc D kcb

kbc
:

Since the wild type equilibrium open probability is given by

o D 1

1 C koc
kco

;

the drug will repair the open probability, provided that

1 C ıc

�
D 1
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and therefore the drug must satisfy the usual condition

ıc D � � 1:

A drug satisfying this condition will completely repair the equilibrium open
probability and that is, of course, good, but it is not enough. Since the mutation
represented by (13.19) also affects the mean open time, a drug of the form (13.20)
cannot repair that effect of the mutation. To see this, we consider the probability
density system defined by

@

@v
.ao
o/ D kco
c � 1

�
koc
o;

@

@v
.ac
c/ D 1

�
koc
o � .kco C .� � 1/ kbc/ 
c C kbc
b; (13.21)

@

@v
.ac
b/ D .� � 1/ kbc
c � kbc
b;

where, as usual, 
o; 
c; and 
b denote the probability density functions of the open
(O), closed (C), and blocked (B) states, respectively, and where the fluxes are defined
by (13.18). In Fig. 13.7, we compare the open probability density computed by
solving the system (13.21) with the open probability density of the wild type. The
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Fig. 13.7 The solid line represents the wild type solution and the dashed line represents the
mutant. Various closed state drugs are applied, but none are able to repair the effect of the mutation
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wild type probability density functions are given by

@

@v
.ao
o/ D kco
c � koc
o; (13.22)

@

@v
.ac
c/ D koc
o � kco
c;

and the probability density functions of the mutant case are given by

@

@v
.ao
o/ D kco
c � 1

�
koc
o; (13.23)

@

@v
.ac
c/ D 1

�
koc
o � kco
c:

In the computations we have used the parameters given by (13.13) and the rates

kco D 1 ms�1 and koc D 1 ms�1:

We use three values of the rates kbc and we observe that no parameter is able to repair
the open state probability density function of the mutation. In Fig. 13.8, we show
the norm of the difference between the open probability density defined by (13.21)
and (13.22. The norm is defined by (2.40) on page 46 and we see that no version of
the closed state blocker defined by (13.20) is able to repair the effect of the mutations
given by (13.19).

10−2 100 102
2.2

2.3

2.4

2.5

2.6

2.7

kbc

Fig. 13.8 The norm of the difference between the wild type solution and the mutant after the drug
is applied. The norm is defined by (2.40) on page 46. We see that no value of the drug parameter
kbc for the closed state blocker is able to repair the effect of the mutation
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13.4.2 The Theoretical Open State Blocker Repairs the Effect
of the OC-Mutation

Next, we consider an open state blocker for the mutation leading to both an increased
open probability and an increased mean open time. The theoretical open state
blocker can be written in the form

C
koc=�

�
kco

O
kbo

�
kob

B; (13.24)

where the parameters kbo and kob define the theoretical drug. For this Markov model,
the equilibrium open probability is given by

o� D 1

1 C koc
�kco

C kob
kbo

and the mean open time is given by

�o;� D 1
1
�

koc C kob
:

Since the associated wild type values are

o D 1

1 C koc
kco

and

�o D 1

koc
;

we want to define the drug such that

1 C koc

�kco
C kob

kbo
D 1 C koc

kco

and

1

�
koc C kob D koc:
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To satisfy these two requirements, we find that the drug must be given by

kob D � � 1

�
koc;

kbo D kco:

(13.25)

13.4.3 The Theoretical Open State Blocker Is Optimal

We will show analytically that the open state blocker defined by (13.24) where the
parameters are given by (13.25) is an optimal drug, in the sense that the effect of the
mutation is completely repaired. We start by observing that the probability density
system associated with the Markov model (13.24) is given by

@

@v
.ao
o/ D kco
c � .��1koc C kob/
o C kbo
b;

@

@v
.ac
c/ D ��1koc
o � kco
c; (13.26)

@

@v
.ac
b/ D kob
o � kbo
b:

If we insert the drug given by (13.25), we obtain the system

@

@v
.ao
o/ D kco
c � koc
o C kco
b;

@

@v
.ac
c/ D ��1koc
o � kco
c; (13.27)

@

@v
.ac
b/ D �

1 � ��1
�

koc
o � kco
b:

We define

N
c D 
c C 
b

and add the two latter equations of this system to find that 
o and N
c solve the system

@

@v
.ao
o/ D kco N
c � koc
o; (13.28)

@

@v
.ac N
c/ D koc
o � kco N
c;

which coincides with the system defining the wild type probability density functions
(see (13.22) above). We therefore conclude that the open state blocker defined by
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Fig. 13.9 Probability density functions of the wild type, mutant, and mutant in the presence of
the open blocker. The open blocker completely repairs the open probability density function of the
mutant

the parameters (13.25) completely repairs the probability density functions of the
mutant for any value of the mutation severity index.

13.4.3.1 The Probability Density Function of the Blocked State Is
Proportional to the Probability Density Function of the Wild
Type Closed State

In Fig. 13.9, we show the open probability density functions of the wild type
(defined by system (13.22), the mutant (defined by system (13.23) with � D 3/; and
the mutant including the optimal drug (defined by system (13.27)). As expected, the
open probability is completely repaired by the theoretical drug.

In the right panel of the figure, we show the graph of 
c for the wild type (solid
line) and for the mutant case in the presence of the open blocker. We show both 
c

and 
b. We note that these graphs seem to have the same shape and we will show
that they indeed differ only by a constant.

We start by making the ansatz that for the solution of system (13.27) we have


b D .� � 1/ 
c: (13.29)
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If we insert this into system (13.27), we find that the two latter equations become
identical and the system is therefore reduced to the following 2 � 2 system:

@

@v
.ao
o/ D �kco
c � koc
o;

@

@v
.ac
c/ D ��1koc
o � kco
c: (13.30)

Therefore, we can define


�
c D �
c

and find that 
o and 
�
c solve system

@

@v
.ao
o/ D kco
�

c � koc
o;

@

@v

�
ac


�
c

� D koc
o � kco
�
c ; (13.31)

which is exactly the wild type system. We therefore conclude that


b D .� � 1/ 
c D � � 1

�

�

c ; (13.32)

where .
o; 
c; 
b/ solves the system (13.27) and where .
�
o ; 
�

c / solves the wild type
system

@

@v

�
ao
�

o

� D kco

�
c � koc


�
o ;

@

@v

�
ac


�
c

� D koc

�
o � kco
�

c :

13.4.4 Stochastic Simulations Using the Optimal Open State
Blocker

In Fig. 13.10, we show the results of numerical simulations using scheme (13.14).
We show the result for the wild type model (upper panel), the mutant model (middle
panel), and the model of the mutant where the drug defined by (13.25) is used (lower
panel).

The graphs show that the effect of the mutation is repaired using the drug (13.25);
the solutions are not identical and this is reasonable, since a random number
generator is involved in updating the state of the Markov model and therefore
two computed solutions will not be identical (not even two wild type solutions).
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Fig. 13.10 Numerical simulations using scheme (13.14) for wild type data (upper panel), mutant
data (center panel), and mutant data where the drug defined by (13.25) is used (lower panel).
Observe the long open periods in the middle panel and that these are repaired by the drug (lower
panel)

However, we note that the qualitative properties of the upper and lower solutions are
similar, whereas the mutant case is different due to the increased open probability
and prolonged mean open time.
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13.5 Inactivated States and Mean Open Time

In Chap. 11, we studied a Markov model including the open state (O), closed
state (C), and inactivated state (I). The prototypical Markov model is repeated in
Fig. 13.11. As usual, we assumed that the principle of detailed balance holds and
therefore the parameters of the Markov model satisfy the equation

kiokockci D koikcokic: (13.33)

We also introduced a mutation that increased the rates kio and kic and thus reduced
the probability of being in the inactivated state. From what we have just seen,
we readily observe that such a mutation does not influence the mean open time;
however, if data show that the mean open time is affected, the effect of the mutation
must be modeled differently. Another way to model the reduced equilibrium
probability of being in the inactivated state is to reduce the rates toward the
inactivated state. Such a mutation takes the form

Nkci D kci=�; (13.34)

Nkoi D koi=�;

where � > 1 and, as usual, � D 1 represents the wild type. It follows from (13.33)
that the principle of detailed balance also holds for the mutant model:

kiokoc
kci

�
D koi

�
kcokic: (13.35)

If we repeat the argument above, we find that the mean open time of the model
presented in Fig. 13.11 is given by

�o D 1

koc C koi

Fig. 13.11 Three-state
Markov model. In the mutant
case, we replace the rates kci

and koi by kci=� and koi=�,
respectively, where � denotes
the mutation severity index

I

C O

koi

koc

kiok ic
kco

k ci
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for wild type data and

�o;� D 1

koc C koi=�

for the mutant case. We note that the mean open time increases as the mutation
severity index � increases. Following the usual steps, we find that the equilibrium
probabilities are given by

o D 1

1 C koc
kco

C koi
�kio

;

c D
koc
kco

1 C koc
kco

C koi
�kio

;

i D
koi
kio

�
�
1 C koc

kco

�
C koi

kio

:

We observe that the equilibrium probability of being in the open and closed states
increases as a consequence of the mutation and the equilibrium probability of being
in the inactivated state is reduced under the mutation.

13.5.1 A Theoretical Open State Blocker

We observed above that to repair the effect of changes in the mean open time,
it is necessary to use an open state blocker. The reason for this is that neither a
closed blocker nor an inactivated blocker has any effect on the mean open time and,
therefore, it is inconceivable that such blockers can repair the effect of a mutation
on the mean open time. An open state blocker directly affects the mean open time
and the drug must be tuned to repair the effect of the mutation.

A Markov model that includes an open state blocker is shown in Fig. 13.12.
We have already computed formulas for the equilibrium probabilities of a Markov
model of this form (see page 170). The inverse .p D 1=o/ open probability in
equilibrium is given by

p� D 1 C koc

kco
C 1

�

koi

kio

and thus the wild type inverse open probability is given by

p D 1 C koc

kco
C koi

kio
:
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Fig. 13.12 The model
represented in Fig. 13.11 is
extended to account for the
blocker (BO) associated with
the open state

I

C O BO

koiμ

koc

kob

kiok ic
kco

k ci /
μ

kbo

Similarly, the inverse open probability in the presence of the open state blocker is
given by

pb;� D 1 C koc

kco
C 1

�

koi

kio
C kob

kbo
:

Furthermore, the mean open time of wild type is given by

�o D 1

koi C koc

and, when the theoretical drug is included in the mutant case, the mean open time is
given by

�o;b;� D 1
1
�

koi C koc C kob
:

We are now looking for a drug that will repair the equilibrium probability and the
mean open time. More precisely, we want to find the parameters kbo and kob such
that pb;� D p and �o;b;� D �o. More explicitly, we require that

1 C koc

kco
C 1

�

koi

kio
C kob

kbo
D 1 C koc

kco
C koi

kio

and

1

�
koi C koc C kob D koi C koc:

This is a 2 � 2 system of equations in the unknowns kob and kbo and the solution is
given by

kob D �
1 � ��1

�
koi and kbo D kio: (13.36)

We will see in numerical experiments below that the open state blocker illustrated in
Fig. 13.12 where the parameters of the drug are given by (13.36) repairs the effect
of the mutation.
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13.5.2 Probability Density Functions Using the Open State
Blocker

We have found a theoretical drug (see (13.36)) for the mutation affecting the rates
from O to I and from C to I and we want to assess the drug’s usefulness by
considering the open probability density functions. For the wild type case, the
probability density functions of the states present in the Markov model of Fig. 13.11
are governed by the system

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C kio
i;

@

@v
.ac
c/ D koc
o � .kco C kci/ 
c C kic
i; (13.37)

@

@v
.ac
i/ D koi
o � .kio C kic/
i C kci
c:

In the mutant case, when the open state blocker is added as indicated in Fig. 13.12,
the probability density system is

@

@v
.ao
o/ D kco
c �

�
koc C 1

�
koi C kob

�

o C kio
i C kbo
b;

@

@v
.ac
c/ D koc
o �

�
kco C 1

�
kci

�

c C kic
i; (13.38)

@

@v
.ac
i/ D 1

�
koi
o � .kio C kic/
i C 1

�
kci
c;

@

@v
.ac
b/ D kob
o � kbo
b:

As usual, 
o; 
c; 
i; and 
b denote the probability density functions of the open,
closed, inactivated, and blocked states, respectively, and the functions of the flux are
given by (13.18). By introducing the drug given by (13.36), we obtain the system

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C kio
i C kio
b;

@

@v
.ac
c/ D koc
o �

�
kco C 1

�
kci

�

c C kic
i; (13.39)

@

@v
.ac
i/ D 1

�
koi
o � .kio C kic/
i C 1

�
kci
c;

@

@v
.ac
b/ D �

1 � ��1
�

koi
o � kio
b:



13.5 Inactivated States and Mean Open Time 219

−10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
k=1

ρo WT

ρo MT

ρo MT+OB

−10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
kco=10

ρo WT

ρo MT

ρo MT+OB

−80 −60 −40 −20 0 20
0

0.5

1

1.5 x 10−3

V (mv)

kio=0.1

ρo WT

ρo MT

ρo MT+OB

Fig. 13.13 Left panel: All rates equal one. The theoretical drug restores 
o. Middle panel: As in
the left panel, except kco D 10 ms�1. Right panel: As in the left panel, except kio D 0:1 ms�1. For
all three cases, � D 10

In Fig. 13.13, we show solutions of the wild type system (13.37), the mutant system,
and the mutant system where the drug is added (13.39). Note that the mutant system
is equal to the wild type system, except for the change of the rates kci and koi given
by

Nkci D kci=�; (13.40)

Nkoi D koi=�:

In Fig. 13.13, we compare the open probability density functions of the three
models for three different sets of parameters. In the left panel of Fig. 13.13, we
show the open probability of the wild type (solid line), the mutant (� D 10),
and the mutant in the presence of the theoretical open blocker. We see that the
effect of the mutation is completely repaired by the drug. Other cases are shown
in the center and right panels. The effect of the drug is still good but the effect
of the mutation is not completely repaired. These observations are confirmed in
Table 13.1. Furthermore, we have tested a large variety of parameters and the results
we show here (center and right panels) represent the most difficult cases we could
find in experiments. Therefore, we conclude that the theoretical open state blocker
illustrated in Fig. 13.12 works very well.
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Table 13.1 Statistical properties of 
o for the cases shown in Fig. 13.13

k D 1 kco D 10 kio D 0:1

�o Eo �o Eo �o Eo

WT 0:333 16:366 0:476 22:995 0:083 �12:867

MT 0:476 23:272 0:833 31:074 0:333 17:702

MT+OB 0:333 16:366 0:476 23:169 0:083 �9:225
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Fig. 13.14 Monte Carlo runs of the case shown in the right panel of Fig. 13.13

13.5.3 Stochastic Simulations Using the Open State Blocker

In Fig. 13.14, we show simulations using the numerical scheme

vnC1 D vn � �t .gK .vn � VK/ C �ngNa.vn � VNa//; (13.41)

where the value of the variable �n is determined by the Markov model given in
Fig. 13.11. For the wild type case, the rates kci and koi are used and, in the mutant
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case, the rates kci=� and koi=� are used. Furthermore, when the drug is applied in
the mutant case, the Markov model is as illustrated in Fig. 13.12, where the rates of
the drug are given by (13.36). We observe that, in the mutant case, the channel does
not inactivate and therefore more action potentials are generated. When the drug is
applied, this effect seems to be removed and the channel again acts more or less
as in the wild type case. However, as mentioned above it is not straightforward to
compare solutions based on the stochastic model and therefore we emphasis the use
of probability density functions.

13.6 Notes

1. The derivation of the formula for the mean open time given by (13.4) can be
found in many places (e.g., Keener and Sneyd [42] or Smith [85]).
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Chapter 14
The Burst Mode of the Mutant Sodium Channel

We observed above that the effect of the �KPQ mutation of the SCN5A gene
leading to a delayed sodium current can be modeled by increasing the reaction rates
from the inactivated state to the open state and to the permissible state C0. The model
gave results at least qualitatively similar to the experimental data (see Fig. 12.4).

A better-established way of modeling the effect of the mutation is to introduce a
so-called burst mode. A simple Markov model including a burst mode is illustrated
in Fig. 14.1, where the states of the burst mode are indicated by 	. Note that when
the channel is in the burst mode, there is no inactivated state and therefore the burst
mode can be used to model the effect of impaired inactivation. The reaction rates
going from the burst mode to the normal mode are given by ku (where u stands
for up) and the reaction rates from the normal mode to the burst mode are given
by kd (where d stands for down). We assume kd << ku, which means that, for the
wild type, the probability of being in the burst mode is very small. The probability
of being in the burst mode increases with the mutation severity index �. As usual,
� D 1 represents the wild type. In the wild type, a channel is basically never in
the burst mode and therefore the channel inactivates as it should and no late sodium
current is observed. In the mutant case, however, the probability of being in the burst
mode is increased. Since there is no inactivated state in the burst mode, the channel
fails to inactivate and therefore the probability of being in the open state is increased
and therefore we observe a non-negligible late current. This will be illustrated in the
numerical computations below.

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_14
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Fig. 14.1 Prototypical model
of a sodium channel
including a burst mode. The
model consists of the states
O; I; and C of the normal
mode and O� and C� of the
burst mode (lower part)

I

C O

C∗ O∗

ku

koc

µk d

koi

koc

kiok ic

kco

k ci

µk d

kco

ku

14.1 Equilibrium Probabilities

We will start by considering the equilibrium states of the prototypical model
illustrated in Fig. 14.1. By following the usual steps (see, e.g., page 187) we find
the equilibrium probabilities given by

o D 1

1 C koi
kio

C koc
kco

C �kd

ku
koc
kco

C �kd

ku

; (14.1)

i D
koi
kio

1 C koi
kio

C koc
kco

C �kd

ku
koc
kco

C �kd

ku

; (14.2)

c D
koc
kco

1 C koi
kio

C koc
kco

C �kd

ku
koc
kco

C �kd

ku

; (14.3)

c� D
koc
kco

�kd

ku

1 C koi
kio

C koc
kco

C �kd

ku
koc
kco

C �kd

ku

; (14.4)

o� D
�kd

ku

1 C koi
kio

C koc
kco

C �kd

ku
koc
kco

C �kd

ku

: (14.5)

Here, we observe that the equilibrium probability of being in the inactivated state
is clearly reduced as the mutation severity index is increased. This is the effect we
wanted, since inactivation is impaired in the mutation and the effect is modeled by
introducing a burst mode that lacks the inactivated state. Second, we observe that
the sum of the open probabilities given by

o C o� D 1 C � kd

ku

1 C koi
kio

C koc
kco

C � kd

ku
koc
kco

C � kd

ku

(14.6)
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is an increasing function of �I in fact,

d

d�

�
o C o�� D

kd

ku
koi
kio�

1 C koc
kco

C koi
kio

C � kd

ku
koc
kco

C � kd

ku

�2
> 0: (14.7)

So the model has the two main properties we seek: The equilibrium probability of
being in the inactivated state is reduced and the open probability is increased.

14.2 The Mean Open Time

We observed above (see page 196) that the formula for the mean open time can also
be derived in the presence of several open states. If we generalize the argument to
also take into account the inactivated state, we find that the mean open time of the
Markov model illustrated in Fig. 14.1 is given by

�o;� D �kd C ku

�kdkoc C ku .koc C koi/
(14.8)

and, since

d�o;�

d�
D koikdku

.kukoc C kukoi C �kockd/
2
; (14.9)

the mean open time increases as a function of the mutation severity index.

14.3 An Optimal Theoretical Open State Blocker

Our aim is now to define an open state drug that can repair both the equilibrium
open probability and the mean open time. The structure of the open state blocker is
given in Fig. 14.2 and the equilibrium total open probability is now given by

�
o C o��

�;d D 1 C � kd

ku

1 C koi
kio

C koc
kco

C � kd

ku
koc
kco

C � kd

ku C kob
kbo

�
1 C �kd

ku

� : (14.10)

Furthermore, the mean open time is now given by

�o;�;d D �kd C ku

�kd .koc C kob/ C ku .koc C koi C kob/
; (14.11)
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Fig. 14.2 Prototypical model of a sodium channel including a burst mode and an open state
blocker. The model consists of the states O; I; C; and OB of the normal mode and O�; C�; and
OB� of the burst mode (lower part). The states OB and OB� represent the open blocker and we
assume that the rates characterizing the blocker are the same in the normal and burst modes

where the subscript d is used to remind us that this concerns the case where the
theoretical drug has been applied.

The task at hand is now to tune the drug such that the equilibrium open
probability and the mean open time given by (14.10) and (14.11), respectively, are
as close as possible to the equilibrium open probability and the mean open time of
the wild type. We regard the parameters kob and kbo as the unknowns and we want
to solve the following 2 � 2 system of equations:

1 C � kd

ku

1 C koi
kio

C koc
kco

C � kd

ku
koc
kco

C � kd

ku C kob
kbo

�
1 C � kd

ku

� D 1 C kd

ku

1 C koi
kio

C koc
kco

C kd

ku
koc
kco

C kd

ku

;

(14.12)

�kd C ku

�kd .koc C kob/ C ku .koc C koi C kob/
D kd C ku

kdkoc C ku .koc C koi/
;

(14.13)

where the latter equation determines the on rate, kob; of the drug,

kob D .� � 1/
kdkukoi

.ku C �kd/ .ku C kd/
; (14.14)

and we note that, in the case of � D 1; the drug is completely turned off, which
is reasonable. Since kob is known, the off rate of the drug can be computed by
solving (14.12). If we define

A D kob

kbo
; (14.15)
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we find from (14.12)

A D .� � 1/
koi

kio

kukd

.�kd C ku/ .kd C ku/
(14.16)

and then the off rate of the drug is given by

kbo D A�1kob D kio (14.17)

which is the same as we have in the prototypical model given in Fig. 13.12;
see (13.36) on page 217.

14.4 Numerical Experiments

The purpose of this section is to show how the burst mode can be used to represent
impaired inactivation and how the theoretical drug derived above works.

14.4.1 Representation of the Late Sodium Current Using the
Burst Mode Model

As discussed in Chap. 12, impaired inactivation leads to a late sodium current (see
Fig. 12.4). Here, we will see that this effect can also be obtained using a Markov
model of the form indicated in Fig. 14.1. In Fig. 14.3, we repeat the computations
reported in Fig. 12.4, using the Markov model of Fig. 14.1. The parameters used in
this computation are given in Table 14.1. We observe from Fig. 14.3 that � D 20

seems to represent the late current of Fig. 12.4 fairly well.

14.4.2 The Open State Blocker Repairs the Effect
of the Mutation

In Fig. 14.3, we show the late current for the wild type, the mutant � D 20, and
the drug using the optimal open state blocker defined by (14.14) and (14.17). We
observe that the late current induced by the mutation is repaired by the open state
blocker. The statistics of the open probability density function (for the wild type,
the mutant (� D 20), and the mutant where the drug has been applied) are given
in Table 14.2 and the corresponding probability density functions are shown in
Fig. 14.4. Again we note that the open blocker repairs the main features of the
solution.



228 14 The Burst Mode

0 20 40 60 80

−1

−0.8

−0.6

−0.4

−0.2

0

t (ms)

no
rm

al
iz

ed
 c

ur
re

nt

μ=1
μ=20
μ=40
μ =100
μ =20+OB

Fig. 14.3 Currents computed using the Markov model illustrated in Fig. 14.2. The simulations are
based on averages of 10,000 runs. As expected, the open blocker asymptotically repairs the late
current

Table 14.1 Values of the
parameters used in the model
in Fig. 14.2. The remaining
rates are as in Table 12.2

� 20

ku 0.0001 ms�1

kd 0.001 ms�1

kob 0.0286 ms�1

kbo 0.000824 ms�1

Table 14.2 Statistics of the stationary probability density functions computed using the Markov
model illustrated in Fig. 14.2. The subscript o refers to open states and the subscript n refers to
non-conducting states

� �o �n Eo En

1 0.59 0.41 31.2 �54.2

20 0.96 0.04 33.1 �52.8

50 0.98 0.02 33.1 �51.3

100 0.99 0.01 33.2 �49.8

20+OB 0.46 0.54 30.2 �57.9

14.5 A More Sophisticated Markov Model

The Markov model presented in Fig. 14.1 above has a structure that is a bit simpler
than the Markov model commonly used to model the sodium channel. A more
common structure is given in Fig. 14.5. This is the model we studied in Chap. 12.
When a burst mode is added to it, the Markov model obtains the form illustrated in
Fig. 14.6.
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Fig. 14.4 Stationary probability density functions computed using the Markov model illustrated
in Fig. 14.2. The open probability density function is given in the left panel and the probability
density function of the sum of non-conducting states is given in the right panel. We observe that
the open blocker repairs most parts of the probability density functions
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Fig. 14.5 Typical Markov model of a wild type sodium channel consisting of an open state .O/,
an inactivated state .I/, and four closed states .C0; C1; C2; and C3/. This model was analyzed in
Chap. 12

To understand how the burst mode changes the properties of the model, it is of
interest to compute the equilibrium probabilities. The equilibrium state of the model
presented in Fig. 14.6 is characterized by the following system of equations:

kcic0 D kici; koio D kioi; kcoc0 D koco;

3ˇc0 D ˛c1; 2˛c2 D 2ˇc1; 3˛c3 D ˇc2;

kuo� D �kdo; kuc�
0 D �kdc0; kuc�

1 D �kdc1;

kuc�
2 D �kdc2; kuc�

3 D �kdc3:

(14.18)
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Fig. 14.6 Markov model of the sodium channel. The model consists of the states O; I; C0; C1; C2;

and C3 of the normal mode and O�; C�
0 ; C�

1 ; C�
2 ; and C�

3 of the burst mode (lower part). Note that
there is no inactivated state in the burst mode and that � denotes the mutation severity index. A
larger value of � increases the probability of moving from the normal (upper) mode to the burst
(lower) mode

It follows that

i D koi

kio
o; c0 D koc

kco
o;

c1 D 3ˇ

˛

koc

kco
o; c2 D 3ˇ2

˛2

koc

kco
o; c3 D ˇ3

˛3

koc

kco
o;

o� D �
kd

ku
o; c�

0 D �
kd

ku

koc

kco
o; c�

1 D �
3ˇ

˛

kd

ku

koc

kco
o;

c�
2 D �

3ˇ2

˛2

kd

ku

koc

kco
o; c�

3 D �
ˇ3

˛3

kd

ku

koc

kco
o

and, since the sum of the probabilities equals one, we have

o .�/ D 1

koi
kio

C
�
1 C � kd

ku

� �
1 C koc

kco
.1 C ˇ=˛/3

�

and

o .�/ C o� .�/ D 1 C � kd

ku

koi
kio

C
�
1 C � kd

ku

� �
1 C koc

kco
.1 C ˇ=˛/3

� :
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Therefore,

d

d�

�
o .�/ C o� .�/

� D
koi
kio

kd

ku�
koi
kio

C
�
1 C koc

kco
.1 C ˇ=˛/3

� �
1 C � kd

ku

��2
> 0;

so the total open probability increases as the mutation severity index � increases.
This will lead to a sustained sodium current characteristic of the mutation under
consideration.

It is also interesting to see how the mutation severity index changes the
probability of being in the normal or burst mode. To understand this, we define
b and b� as the sum of the probabilities in the normal and burst modes, respectively.
By using the equilibrium probabilities derived above, we obtain

b�

b
D o� C c�

0 C c�
1 C c�

2 C c�
3

o C c0 C c1 C c2 C c3 C i
D �

kd

ku

1 C koc
kco

.1 C ˇ=˛/3

koi
kio

C 1 C koc
kco

.1 C ˇ=˛/3

and thus the probability of being in the burst mode increases as the mutation severity
index increases.

14.6 Numerical Experiments Illustrating the Effect
of the Burst Mode

The effect of increasing the mutation severity index of the Markov model given
in Fig. 14.6 is shown in Fig. 14.7 using the parameters given in Table 14.3. The
associated currents are shown in Fig. 14.8 and we note that when the mutation
severity index increases, there is a significant late sodium current (Table 14.4).

14.7 A Theoretical Drug for the Mutation Represented
by the Burst Mode

In the simplified Markov model presented in Fig. 14.1 above, we saw that an open
blocker was able to repair the effect of the mutation. Now the Markov model is
extended (see Fig. 14.6), but it is reasonable to believe that an open blocker is still
the best alternative, since both the open probability and the mean open time are
affected by the mutation. We consider the Markov model given in Fig. 14.9, where



232 14 The Burst Mode

30 31 32 33 34
10−7

10−6

10−5

10−4

10−3

V (mV)

ρo

−10 0 10 20 30
10−8

10−7

10−6

V (mV)

ρn

μ=1
μ=10
μ=30
μ=100

Fig. 14.7 The probability density functions of the open, closed, and inactivated states for the burst
mode model. The mutation severity index is given by � D 10; 30; and 100 and the black line
represents the wild type. Note that we only show solutions for the values of the transmembrane
potential where the solutions differ as a result of the mutations

Table 14.3 Values of the parameters used in the model in Fig. 14.6. The remaining rates are as in
Table 12.2 on page 184

� 1,10,30,100

ku 0.1 ms�1

kd 0.01 ms�1

an open blocker is added to both the open states of the Markov model given in
Fig. 14.6. By following our usual procedure, we find that

�
o C o��

�;d D 1 C � kd

ku

kob
kbo

�
1 C � kd

ku

�
C koi

kio
C
�
1 C � kd

ku

� �
1 C koc

kco
.1 C ˇ=˛/3

� :

The associated mean open time is given by

�o;�;d D �kd C ku

�kd .koc C kob/ C ku .koc C koi C kob/
: (14.19)
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Fig. 14.8 Currents computed using the Markov model including the burst mode (see Fig. 14.6).
Top panel: Current for � D 1; 10; 30; 100. Each trace is an average of 10,000 Monte Carlo runs
and the current is computed by I D gNaPo.v�VNa/, with the transmembrane potential at v D 0 mV.
The currents are normalized so that the wild type current peaks at �1. Here VNa D 45 mV and
gNa D 1 mS/cm2. The lower figures are from Bennett et al. [2]

Table 14.4 Probabilities and
expected values of the
transmembrane potential for
open and non-conducting
states for increasing values of
the mutation severity index �

� 1000 � �o �n Eo Ec

1 0.05738 0.99994 �53:2 �84:9

10 0.08435 0.99992 �26:1 �84:9

30 0.12109 0.99983 �8:3 �84:9

100 0.22305 0.99978 10:5 �84:9

30+OB 0.05490 0.99995 �57:0 �84:9
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Fig. 14.9 Markov model of the mutant sodium channel with a blocker associated with the open
states. The model consists of the states O; I; OB; C0; C1; C2; and C3 of the normal mode and
OB�; O�; C�

0 ; C�
1 ; C�

2 ; and C�
3 of the burst mode (lower part). The drug is characterized by the

two parameters kbo and kob

We now want to tune the drug characterized by the two parameters kob and kbo such
that

�
o C o��

�;d
� �

o C o��
wt

and

�o;�;d � �o;wt;

where the subscript wt denotes wild type values. As above, we have two equations
for the two unknowns kob and kbo and the solution is given by

kob D .� � 1/
kdkukoi

.ku C �kd/ .ku C kd/
(14.20)

and

kbo D A�1kob; (14.21)

where

A D koi

kio
kukd � � 1

.�kd C ku/ .kd C ku/
: (14.22)
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Fig. 14.10 Probability density functions for the wild type, the mutant (� D 30), and the mutant in
the presence of the open blocker. The subscripts o and n refer to open and non-conduction states,
respectively, where the states are shown in Fig. 14.9

So we obtain

kbo D kio: (14.23)

We note that the formulas for the optimal open blocker for the Markov model given
in Fig. 14.9 are exactly the same as for the open blocker of the prototype Markov
model given in Fig. 14.2.

In Fig. 14.10, we show the probability density functions of the wild type, the
mutant (using � D 30), and the mutant case where the optimal open blocker is
applied. The blocker repairs the effect of the mutation and the same effect is seen in
Fig. 14.11 where the currents are given; the open blocker removes the late sodium
current.
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Fig. 14.11 Currents computed using the Markov model given in Fig. 14.9 for the wild type, the
mutant (� D 30), and the mutant in the presence of the open blocker

14.8 Notes

1. The burst mode is discussed by Bennett et al. [2] and modeled in the paper by
Clancy and Rudy [14].

2. The form of the model illustrated in Fig. 14.6 is taken from Clancy and Rudy
[14], but the functions and parameters of the model are not taken from their
paper.

3. As mentioned above, the introduction of a burst mode is a convenient way of
modeling the effect of certain mutations. The notion that gating may enter various
modes has been considerably extended and studied in the papers by Chakrapani
et al. [10–12] and by Ionescu et al. [37]. In the recent paper by Siekmann et al
[83] the concept of modal gating is studied and a method for detecting mode
changes based on single channel data is developed.
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Chapter 15
Action Potentials: Summing Up the Effect
of Loads of Ion Channels

In this final chapter we will use the theoretical drugs developed in various chapters
above for whole cell simulations. So far we have studied very small parts of a cell.
We started by studying the dynamics going on in a single dyad; see Fig. 2.1. The
size of one dyad is less than 1/1,000 	m3[3] and we have been concerned with the
concentration of calcium ions in this small volume. We have also studied the voltage
dynamics in the vicinity of a single ion channel. The size of a single channel is about
1 nm. Now we address what is going on in a whole cell and it is important to realize
that, compared to the single dyad and the single ion channel, the whole cell is huge;
a normal ventricular cell is about 30,000 	m3 [3], or on the order of 30 million times
larger than the single dyad.

In the analysis of single channels, we have regarded the state of a channel as
a stochastic variable. In the whole cell, however, the effect of a huge number of
channels is added and the sum can be modeled using deterministic equations. We
will still use the same Markov model formalism in terms of reaction schemes to
formulate the models, but now we will use the associated master equations (see
page 5) to define the open probability of the channel. Thus we need to solve
deterministic systems of ordinary differential equations to find the open probability
as a function of time.

Since the state of the channels will be represented using Markov model reaction
schemes, we can study mutations in the same manner as we did for the single
channel case. Therefore, we can use the results we derived above regarding optimal
theoretical drugs for the single channel case for the whole cell case as well. The
reasoning behind this was indicated earlier: If a mathematical model of a cell is
constructed by using models of a huge number of single channels and we can repair
the function of each single channel, the whole cell will be repaired.

In this chapter we will start by introducing a model of the action potential of
the whole cell. We will focus on a simplified model that will merely represent the
action potential in a qualitatively relevant manner; it will not represent any particular

© The Author(s) 2016
A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels
and Receptors Using Markov Models, Lecture Notes in Computational Science
and Engineering 111, DOI 10.1007/978-3-319-30030-6_15
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action potential in a quantitatively correct manner. Using numerical experiments, we
will show that the model provides reasonable results for both wild type and various
mutations. Finally, we will use the optimal theoretical drugs derived above and see
that the effect of various mutations can be repaired using the theoretical drugs.

15.1 Whole Cell Action Potential Model

Our aim is now to introduce a reasonably simple action potential model for a whole
cell. We will use the building blocks developed above and add some new features in
order to get an action potential that is qualitatively reasonable.

The model consists of six main variables: v; ce; cc; cd; cj, and cn: Here v; as
usual, denotes the transmembrane potential given in mV. All the other variables are
concentrations given in �M; ce is the extracellular calcium concentration, cc is the
cytosolic concentration, cd is the concentration of the dyad, cj is the concentration
of the JSR, and finally cn is the concentration of the NSR; see Fig. 15.1. In addition
to these six main variables, we will have variables associated with various Markov
models; all these variables are between zero and one; they also denote probabilities
and they have no unit. The transmembrane potential is governed by the equation

Cv0 D � .INa C ICa C IK C I0/ (15.1)

where the minus sign is according to convention in the field. Here C denotes the
capacitance and is simply a constant that will be specified below. The current I0

represents a stimulus of the cell and we will use it below to initiate action potentials.

Vd Vj Vn
Dyad jSR nSR

Jd,cJc,e
Vc

Ve
T-tubule

Extracellular space

Cytosol

Jd,e J j,d Jn,j J c,n

I0 ICa INa IK

Fig. 15.1 Sketch of the calcium dynamics and the fluxes and pumps involved. The volumes of
the cytosol, the dyad, the junctional sarcoplasmic reticulum (JSR) and the network sarcoplasmic
reticulum (NSR) are Vc; Vd; Vj; and Vn, respectively
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The sodium current INa; the calcium current ICa; and the potassium current IK need
some attention and will be handled separately.

In addition to the transmembrane potential, we need to keep track of all
five calcium concentrations. By considering Fig. 15.1, we see that the cytosolic
concentration can change in three ways1: (1) Calcium may diffuse into the cytosolic
space from the dyad,2 leading to an increase in the cytosolic concentrations; (2)
it can be pumped from the cytosol into the NSR and thereby reduce the cytosolic
concentration; or, finally, (3) it can be pumped out to the extracellular space, thereby
reducing the cytosolic concentration. The calcium concentration of the NSR, cn; will
be increased as calcium is pumped into this space from the cytosol and reduced by
diffusion into its neighboring space, the JSR. In the JSR the calcium concentration
will increase through diffusion from the NSR and be reduced when calcium is
released through the ryanodine receptor (RyR) into the dyadic space. Finally, the
concentration in the dyad will increase when calcium is released from the JSR to
the dyad; it will be reduced as calcium diffuses out to the cytosol and finally it will
be increased when calcium is released into the dyad through the L-type calcium
channels (LCCs). In mathematical terms, we get the following system of equations:

Vcc0
c D Jd;c � Jc;n � Jc;e; (15.2)

Vnc0
n D Jc;n � Jn;j; (15.3)

Vjc
0
j D Jn;j � Jj;d; (15.4)

Vdc0
d D Jj;d � Jd;c � Jd;e: (15.5)

Vec0
e D Jc;e C Jd;e: (15.6)

Here the notation Jx;y denotes a flux of calcium from space x to space y: So Jd;c

denotes the flux of calcium from the dyad (d) to the cytosol (c) and, similarly, Jd;e

denotes the flux of calcium from the dyad (d) to the extracellular (e) space. Here
Vx denotes the volume fraction occupied by the space x (see Table 15.1). The total
amount of calcium in the system is given by

c D Vccc C Vncn C Vjcj C Vdcd C Vece: (15.7)

1This is a major simplification; many other things can happen to calcium but this rough description
is sufficient for our purposes.
2It is important to recall here that when we talk about the dyad now, we really refer to a space
representing the sum of all the dyads of the cell. So what used to be a very tiny place is not so tiny
anymore.
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15.1.1 Conservation of Calcium

It follows from the system (15.2)–(15.6) that

c0 D 0; (15.8)

so the total amount of calcium is conserved no matter how the calcium dynamics of
the cell are organized.

15.1.2 Definition of Calcium-Related Fluxes

We need to define all the fluxes entering the system (15.2)–(15.6) and we start with
the simple diffusion fluxes. Some of them have been used in earlier chapters, but we
need a little more notation here, so we redefine all the terms.

15.1.2.1 Flux Jd;c from the Dyad to the Cytosol

We assume that the pure diffusion flux from the dyad to the cytosol can be written
as

Jd;c D kd;c .cd � cc/ : (15.9)

Here we assume that kd;c is a constant and the value used in our computations is
given in Table 15.2.

15.1.2.2 Flux Jn;j from the NSR to the JSR

Similarly, we assume that the diffusion flux from the NSR to the JSR can be
written as

Jn;j D kn;j
�
cn � cj

�
; (15.10)

where kn;j is assumed to be a constant (see Table 15.2).

Table 15.1 The table shows the relative size of the intracellular spaces. Note that the volume
fractions of the intracellular space add up to 100 %. In addition, Ve represents 100 % of the
extracellular space. We assume that both the extracellular space and the total intracellular space
are 30.4 pL

Vd 0.1 %

Vj 0.3 %

Vn 1 %

Vc 98.6 %
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Table 15.2 Constants used
to define the fluxes between
the different spaces. The
constants are in units of 1/ms

kc;n 0.01

kj;d 0:01

kd;c 0:001

kd;e 0:0001

kn;j 0:0001

kc;e 0:00001

Fig. 15.2 Markov model
including four possible states:
ClCr (both closed), ClOr

(LCC closed, RyR open),
OlOr (both open), and OlCr

(LCC open, RyR closed)

ClCr ClOr

OlCr OlOr

k rco

k lco

k roc
k lcok loc

k rco

k loc

k roc

Table 15.3 Reaction rates used in the Markov model illustrated in Fig. 15.2. As usual, � � 1

denotes the mutation severity index of the RyR and � � 1 denotes the mutation severity index of
the LCC

RyR LCC

kr
co.cd ; cj/ D �

c4
d

K.cj/4Cc4
d

ms�1 kl
co.v/ D � l1.v/=�l

kr
oc D 1 ms�1 kl

oc.v/ D .1 � l1.v//=�l

K.cj/ D 20 C 1000.
1000�cj

600
/2 l1.v/ D exp.�. v�55

10
/2/

�l D 1 ms

15.1.2.3 RyR Flux Jj;d from the JSR to the Dyad

The flux from the JSR to the dyad can be written in the form

Jj;d D oj;dkj;d
�
cj � cd

�
; (15.11)

where, as usual, oj;d is governed by a Markov model and kj;d is a constant giving the
speed of diffusion when the RyR channel (situated between the JSR and the dyad)
is open.

The variable oj;d is governed by the Markov model used in Chap. 8. For
convenience the Markov model is repeated here in Fig. 15.2 and the functions used
in the model are given in Table 15.3. Note that oj;d is the probability of being in the
state ClOr or the state OlOr of the Markov model given in Fig. 15.2.
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Table 15.4 Parameters
in (15.12)

F 96485:3 C mol�1

R 8:3145 J mol�1K�1

T 310 K

v0 13.357 mV

15.1.2.4 Flux from the Extracellular Space to the Dyad: Jd;e

This flux was introduced above (see page 128) and referred to as the Goldman-
Hodgkin-Katz (GHK) flux. In the present notation, we write

Jd;e D od;ekd;e
cd � cee� v

v0

1 � e� v
v0

v

v0

: (15.12)

Here F is Faraday’s constant, R is the gas constant, and T is the absolute temperature
and we have defined

v0 D RT

2F
:

The parameters involved in defining the Jd;e flux are given in Table 15.4. Further-
more, od;e is governed by the Markov model given in Fig. 15.2. Here od;e is the
probability of being in the state OlCr or the state OlOr of the Markov model in
Fig. 15.2.

15.1.3 Definition of Calcium Pumps

The terms Jc;e and Jc;n remain to be defined. These terms are active fluxes, or pumps,
that continuously remove calcium from the cytosol and out to the extracellular
domain .Jc;e/ and into the NSR .Jc;n/: These pumps transport calcium against a
considerable concentration gradient and the operation therefore requires energy. In
our model we do not track the energy consumption and we simply introduce the
pumps:

Jc;e D kc;e.cc � ce=18000/ (15.13)

and

Jc;n D kc;n.cc � cn=10000/: (15.14)
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15.1.4 Definition of the Currents

The currents INa; IK and ICa of (15.1) remain to be defined. Each current will be
written in the form

Ix D oxgx.v � vx/;

where ox is the open probability of the channel given by the continuous version of a
Markov model, gx is the maximum conductance of the channel, and vx is the resting
potential.

15.1.4.1 Sodium Current INa

The sodium current has been studied above; see Chaps. 12 and 14. The model takes
the form

INa D oNagNa.v � vNa/; (15.15)

where the open probability oNa is the sum of the probability of being in the O or the
O� state of the Markov model of Fig. 15.3.

15.1.4.2 Potassium Current IK

The potassium current is written in the form

IK D .oKgK.v/ C gK1.v//.v � vK/; (15.16)

I
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Fig. 15.3 This figure is a copy of Fig. 14.9 and it illustrates a Markov model of the mutant sodium
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Fig. 15.4 Markov model of a potassium channel consisting of one closed and one open state

where the open probability oK is given by the Markov model of Fig. 15.4 with rates

˛.v/ D e�7C0:03v;

ˇ.v/ D e�8�0:03v:

The voltage-dependent conductances are given by

gK.v/ D 0:1e�0:03v;

gK1.v/ D 1

1 C e0:1vC10
:

15.1.4.3 Calcium Current ICa

The calcium current is given by the calcium flux Jd;e from the dyad to the
extracellular space plus the flux Jc;e from the cytosol to the extracellular space. In
order to use these fluxes in the equation governing the transmembrane potential, we
need convert to current density,

ICa D 2F
V

A
.�Jd;e � Jc;e/: (15.17)

Here V D 30:4 pL is the cell volume and A D 1:4 � 10�4 cm2 is the cell area.

15.1.5 Markov Models in Terms of Systems of Differential
Equations

The model of the action potential for a whole cell is a system of ordinary differential
equations. For parts of the system this is clear from the equations, but for the Markov
models, this may seem unclear. In Sect. 1.3 we explained how to formulate a system
of ordinary differential equation associated with the reaction scheme defining a
Markov model. Since the Markov models considered in the present chapter are
considerably more complex, we will give one more example of this transition in
order to clarify matters. To this end, consider the Markov model presented in
Fig. 15.5. The associated system of ordinary differential equations governing the
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Fig. 15.5 Markov model of a
wild type sodium channel
consisting of an open state
.O/, an inactivated state .I/,
and four closed states
.C0; C1; C2; and C3/

I

C3 C2 C1 C0 O

koi

koc

kiok ic
kco

k ci

3β

α

2β

2α

β

3α

probabilities is given by

o0 D kioi C kcoc0 � .koc C koi/ o;

i0 D koio C kcic0 � .kio C kic/ i;

c0
0 D koco C kici C ˛c1 � .kco C kci C 3ˇ/ c0;

c0
1 D 3ˇc0 C 2˛c2 � .2ˇ C ˛/ c1;

c0
2 D 2ˇc1 C 3˛c3 � .2˛ C ˇ/ c2;

c0
3 D ˇc2 � 3˛c3:

Here, o denotes the open probability of the sodium channel, c0 is the probability
of the C0 state, and so forth. Ideally, we would write oNa for o, c0;Na for c0, and so
forth, but it becomes clumsy. Since these variables represent probabilities, they sum
to one (for all time) and we can therefore reduce the number of unknowns in the
system by one.

Based on this example, it should be straightforward to formulate the system of
ordinary differential equations associated with the more complex Markov model
given in Fig. 15.3.

15.2 Numerical Simulations Using the Action Potential
Model for Wild Type Markov Models

The complete version of the model presented above can be written in the compact
form

Cv0 D � .INa C ICa C IK C I0/ ; (15.18)

u0 D F.v; u/; (15.19)

where v is the transmembrane potential and all other variables are gathered in the
vector u. The initial conditions used in the simulations are given in Table 15.5. In
addition, we need to specify the applied current I0. This current will be zero most of
the time, but it will be turned on every 500 ms in order to mimic periodic stimulation
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Table 15.5 Initial conditions. The Markov models for the LCC and RyR were initially set to
closed and the Markov model for sodium channel was set to be in the state C3. Starting with
these conditions, the code is run for 1,000 cycles in order to generate the initial conditions used in
generating the figures below. The exact numbers obtained depend upon the chosen cycle length

v �85 mV

cd 0.1 	M

cc 0.1 	M

cj 1,000 	M

cn 1,000 	M

ce 1,800 	M

of the cell. More specifically, we hold I0 = �6 mV/ms for 5 ms at the start of each
cycle.

15.2.1 Single Action Potential

In Fig. 15.6 we show the transmembrane potential and all the calcium concentration
for a single action potential. There are a number of interesting effects acting together
to generate the action potential. Let us consider some of them in some detail.

In Fig. 15.7 we show the first 20 ms of the computation. In the left panel we show
the transmembrane potential v (upper left panel), the open probability oNa (middle
left panel), and the sodium current INa (lower left panel). Observe that when the
cell is stimulated by the applied current I0, the transmembrane potential increases.
This increase leads to an increased open probability of the sodium channel. When
the sodium channel opens, the sodium current becomes large (or very negative,
to be precise), which leads to a fast increase of the transmembrane potential. As
the transmembrane potential reaches its peak value (at about 15 ms), the open
probability starts to decline, since the channel inactivates. In the three right panels,
we show the calcium concentration of the dyad cd (upper right panel), the calcium
flux Jd;e (middle right panel), and the open probability of the RyR channel (lower
right panel). We see that when the transmembrane potential starts increasing, the
calcium flux Jd;e increases and the calcium concentration of the dyad increases.
This increase leads to the increased open probability (lower right panel) of the RyR
channel and therefore the dyad concentration increases rapidly.

In Fig. 15.8, we show the return to the stable equilibrium solution. In the
left panel, we show the transmembrane (upper left panel), the open probability
of the LCC (middle left panel), and the open probability of the gated potassium
channel. After the sodium channel has switched off (see Fig. 15.7), the calcium
current contributes to a continued depolarized state. However, after about 20 ms
the transmembrane potential starts declining because of a substantial (positive)
potassium current.
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Fig. 15.6 The action potential of the model described in the present chapter. The membrane
potential (upper left) and the dynamics of the five calcium concentrations are shown for 500 ms.
The action potential is initiated by holding I0 D �6 mV/ms for 5 ms. All variables return to their
resting values after about 500 ms
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Fig. 15.7 The first 20 ms of the simulation shown in Fig. 15.6. Note the log scale in the upper
right panel. There we see a slow rise due to the LCC opening, followed by a fast rise due to the
RyR opening
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Fig. 15.8 After about 15 ms, the transmembrane potential (upper left) reaches its peak value and
enters the plateau phase before it starts to decline toward the stable equilibrium solution
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In the right panels, we follow the development of the calcium concentration of
the dyad cd (upper right panel), the calcium concentration cj of the JSR, (middle
right panel), and the open probability of the RyR channel, denoted oj;d (lower right
panel).

15.2.2 Many Action Potentials

In Fig. 15.9, we show the action potential for a simulation running for 25,000 ms.
The left panel shows the transmembrane potential v (upper left panel), the calcium
concentration cd of the dyad (middle left panel), and the extracellular calcium
concentration ce (lower left panel). From top to bottom in the right panels, we
show the cytosolic calcium concentration cc, the NSR calcium concentration cn, and
finally the JSR calcium concentration cj. All variables return to their initial values
and the rhythm seems to be perfect.

15.3 Changing the Mean Open Time of the Sodium Channel
While Keeping the Equilibrium Probability Fixed
Changes the Action Potential

We consider a case where we multiply all rates of the Markov model (see Fig. 15.3)
of the sodium channel by the same factor. Here we use the wild type case (� D 1)
and the drug parameters (kob; kbo) are set to zero. This will change the mean open
time, but not the equilibrium probabilities. The results are given in Fig. 15.10,
where the blue line illustrates the results using default parameters, the red line
represents the solution when all the rates are multiplied by 1.3, and finally the green
line represents the solution when all the rates are multiplied by 0.7. We observe
that the action potential changes substantially when the rates are changed (and the
mean open time is changed), even though the equilibrium probabilities are kept
unchanged.

15.4 Numerical Simulations Using the Action Potential
Model When the Cell Is Affected by a Mutation

We will use the model of the action potential for the whole cell introduced above to
study the effect of mutations. We have studied many different theoretical models
of mutations earlier, but here we will limit ourselves to study the effect of one
theoretical model of a sodium channel mutation, one model of a RyR mutation, and
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Fig. 15.9 The action potential running for 25,000 ms (50 beats). All variables return to their
equilibrium values before a new action potential is initiated (every 500 ms)
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Fig. 15.11 The figure shows the action potential of the wild type (blue), the mutant (green), and
the mutant after the application of the drug (red)

one model of an LCC mutation. We will also see how the theoretical drugs derived
above handle these mutations.

15.4.1 Mutation of the Sodium Channel

We consider a mutation of the sodium channel of the form presented in Fig. 15.3.
In Fig. 15.11 we show simulation results comparing the wild type (� D 1, blue),
the mutant (� D 10, green), and a simulation (red) where a drug is applied to the
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mutant case. The Markov model describing the open state drug is given in Fig. 15.3,
where we have used drug parameters given by

kbo D kio; and kob D .� � 1/
kdkukoi

.ku C �kd/ .ku C kd/
I

see (14.20) and (14.23). As in the single channel case, we observe that the theoretical
drug is able to repair the effect of the mutation.

15.4.2 Mutation of the RyR

In Fig. 15.12 we have simulated mutation in the RyR using the Markov model given
in Fig. 15.2. The figure shows the wild type (blue, � D 1), the mutant (green,
� D 3), and the mutant where the drug has been applied (red). We have used a
closed state drug computed as described in (3.5) and (3.9) and we observe that the
theoretical drug is able to repair the effect of the mutation.

15.4.3 Mutation of the LCC

In Fig. 15.13 we have simulated mutation in the LCC channel, using � D 3. We
model the mutation and the drug as defined in (3.5) and (3.9). As usual, kbc is a free
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Fig. 15.12 The cytosolic calcium concentration for wild type (blue, � D 1), the mutant (green,
� D 3), and the mutant after the application of the drug (red). We have used a closed state drug as
defined in (3.5) with kbc D 0:5 ms�1 and kcb D .� � 1/kbc; see (3.9)
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Fig. 15.13 LCC mutation. The cytosolic calcium concentration for the wild type (blue, � D 1),
the mutant (green, � D 3), and the mutant case where the theoretical drug is applied (red). In the
computations we have used kbc D 0:05 ms�1; for larger values of kbc the results overlap with the
wild type case

parameter that must be chosen sufficiently large. Again, we note that the theoretical
drug repairs the effect of the mutation.

15.5 Notes

1. The action potential model discussed in Sect. 15.1 and used throughout this
chapter is only of qualitative relevance; no effort is made to mimic the prop-
erties of one particular cell. The field of models for the action potential is
huge and growing. A great collection of models is provided by the Auckland
Bioengineering Institute at the University of Auckland and their collaborators;
see CellML.org. Recent models tend to be increasingly complex and hard to deal
with from a mathematical perspective, but clearly the models become more and
more realistic in terms of mimicking the properties of the actual action potential.
As mentioned earlier, there are comprehensive introductions to the cardiac action
potential, such as Rudy [74] and Rudy and Silva [75].

2. In these notes we have used Matlab as the computational platform for all
our simulations. For solving ordinary differential equations we have used the
ODE15s function. However, solving the ordinary differential equations modeling
the single cell action potential has received a great deal of attention and numerical
methods suited for this problem have been developed. An early alternative was
developed by Rush and Larsen [76]; the method was improved to second by
Sundnes et al. [92] and comparisons of several methods were provided by Marsh
et al. [56] and Campos et al. [8]; see also Stary and Biktashev [88]. From
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a programming perspective, the explicit Euler scheme is always an attractive
alternative, but for stiff problems the stability requirement often excludes that
method. For instance, if we use the explicit Euler method with a fixed time step
to compute the solutions shown in Fig. 15.6, we need about 26,000 time-steps,
whereas the ODE15s method needs 335 time steps.
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