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1.      Introduction

When   a  finite   element   technique   is   used  for  the   solution  of 

a  two   dimensional  elliptic  boundary  value  problem,   P,   the  region 

of  definition  Ω  of  the  problem  is   divided  in  a  number  of  non-overlapping 

elements.     In  this paper   the   region   Ω  is  rectangular,   the  elements   are 

all  rectangles   and  we   consider  a  technique  of  local  mesh  refinement. 

A  weak  formulation  of  the  problem  P  is   constructed  and  it  is  the 

solution  of  this  weak  problem,  the  generalized  solution  of  P  lying  in 

a   larger   space,  W,   rather  than  the  strong  solution  of   P,   which  is 

sought.      In  the  Galerkin  technique  an  approximation  U(x,y)   to  the 

generalized   solution   u (x,y)    is    constructed   from  a  finite-dimensional 

space  Sh,  which  is  usually  a  subspace  of  W,  where  h  is  a  parameter 

designating  the   size  of  the  elements.   The  key  step  in  the  successful 

application  of  the  Galerkin  method  is  the  construction  of  Sh     which 

generally  consists  of  functions  which  are  piecewise  polynomial  over  Ω. 

In  each  element  the  approximating  function  is  derived  from  an  interpola- 

tion  function  which  interpolates  the  values  of  u,   and  frequently  also 

certain  derivatives  of  u,  at  nodes   in  the  element. 

          Let   the  interpolant   in  each  element  have  the  form

,)yx,(i
k

1i iu)y(x,u~ φ∑
=

=                                                           (1.1) 

where  the   Φi.   are  the  cardinal  basis  functions  of  the  interpolation 

with  respect  to  ui ,   the  function  and  derivative  values  at  the 

nodal  points.      The  approximating  function  then  has   in  each  element 

the  form 

.,)yx,(i
k

1i iU)yx,(U φ∑
=

=                                            (1.2)  

where  now  the  Ui.   are  the  corresponding  values   of  U  and  certain 

of  its   derivatives  at  the  nodal  points   of  the   element.   The  unknown 
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values  of  Ui   are  determined  by  the  Galerkin  method.   The  functions 

φ i   considered  over  the  totality   of   elements   generate   the   finite 

dimensional  space Sh  . 

The  global  piecewise  polynomial  approximating  function  must 

satisfy   certain   continuity   requirements   across   interelement 

boundaries  in  order  that  Sh    be  a  subspace  of  W.  This  is  the 

conforming  condition.  For  Poisson  type  problems  the  conforming 

condition  is  that  Sh ⊂  Co  ( Ω ),  whilst  for  biharmonic  problems  it  is 

that  Sh ⊂ C1  ( Ω );  see  e.g.   Zlamal  [10]. 

When   a   standard   rectangular  mesh   is  taken  together  with  bilinear 

interpolation  to  the  function  values  at  the  four  corners  of  each 

element,  the  global  approximating  function  is  in  Co    and  the  conforming 

condition  for  Poisson  problems   is   satisfied.    In   this  case  the  Lagrange 

basis  functions  in  each  element  are  the  linear  pyramid  functions  of 

the  finite  element  method.  However,  if  the  mesh is  refined locally 

about  some  point  0,  as  for  example  in  Figure  1,    mid-side  nodes    are 

introduced  and  special  interpolants  must  be   derived   for   use   in   these 

five-node   rectangle   elements   so   that   the   global  approximating  function 

may  again  be  in  C o .     Such  interpolants  are  derived  in  Section  2. 

 
Figure     1
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For  biharmonic  problems,  when  a  standard  rectangular  mesh 

is  used,  together  with  a  bicubic    interpolant    in   each   element   to 

 the  values  of   
yx
u2

and
y
u,

x
u,u

∂∂
∂

∂
∂

∂
∂    at   each  of  the  four  corners, 

the  global  approximating  function  will  be  in  C1   .   Again,   if  the  mesh 

is   refined   locally,   special   interpolants    are    necessary    in   the 

five-node  elements   for   the  global   approximating   function   to  he  in  C1  . 

These  are  derived  in  Section  3. 

In   Section  4   a   Galerkin   procedure   is  described  briefly  for 

a  problem  involving  Laplace's   equation,  and  in  Section   5  numerical 

results   are   given.

2.   Co    approximating  functions

We   consider  the  unit   square  with  vertices  at   (0,0),   (1,0), 

(1,1)  and  (0,1).     The  linear  interpolant  to  the  values  U(0 ,0 )   and 

U(1,0)   along  [0,1  ]  can  be  written  as 

U(x,0)  =  (1-x)   U(0,0)  +   x  U(1,0)   .                                                       (2.1) 

By  using  tensor  products  we  see  immediately  that  the  bilinear 

interpolant  to  U ( 0 , 0 ) ,    U(1 ,0 ) ,   U(1,1)   and  U(0,1)   over  the  square  is 

U(x,y)  =   (1-x)(l-y)U(0,0)+x(l-y)U(l,0)+xyU(l,l)+(l-x)yU(0,1), 

.y)(x,i
4

1i iU φ∑
=

=                                                                                (2.2) 

The  φ i.   are  the   basis   functions   referred   to   in   Section  1,   and  

use  of   (2.2)   in  each  element  of  a  regular  mesh    produces  a  C° 

approximating   function. 

When  the  mesh  is  refined   locally   by   successive   halving 

of  the  mesh  length,   as  in  Figure   1,  mid-side  nodes   are  introduced 
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and  situations   as  in  Figure  2  arise.     An  obvious  approach  for 

 
Figure  2 

dealing  with  the  mid-side  node  (
2
1 , 0 )  is  to  take  ( 2 . 2 )   in  element   1, 

which  thus  gives  the  value  at   (
2
1 , 0 )    as  the  linear  interpolant  "between 

(0,0)   and  (1,0).     This  can  then  be  used  directly   when   (2.2),   suitably 

scaled;,   is  applied  in  elements   2 and 3.    Thus  the  unknown  value  at 

(
2
1 ,0)   is  not  introduced  in  element   1.     However,   the  effect  of  this  scheme 

is  to  spread  the  domain  of  influence  of  the  coarse  mesh  into  the  region 

of  fine  mesh.     The  effect  of  the  refinement  is  therefore  reduced; 

see   e.g. Wait   and  Mitchell  [ 5 ]  where    this  procedure   is   adopted.  In  order 

to  avoid  this   we   choose   the   alternative   scheme   given   below. 

A  suitably  scaled  form  of  (2.2)   is  used   in   each   of   the   elements 

2  and  3.     This   function  in  element  2  interpolates  U(0,0)   and  U(
2
1 ,0), 

whilst  at  the  same  time  it  is  linear  on  L12     =   {(x,y); 0  ≦  x  ≦   
2
1 , y=0}. 

Similarly  in  3  the  function  interpolates  U (
2
1 , 0 )    and  U ( 1 , 0 )    and  is  linear 

on  L13  ≡  {(x,y);  
2
1  ≦ x ≦ 1,  y =0} .  As  there  is  a  node  at   (

2
1 ,0) in  element   1, 
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the   interpolant   (2.2)   has   to  be  adapted  so  that   in   1   it  will 

interpolate  the  value  U (
2
1 , 0 )    as  well  as  the  values   at  the  four 

corners  of  the  element,   whilst  being   linear  on  L12  and   L  13  .  The 

piecewise  polynomial  function  over  the  union  of  the  elements   1,2  and  3 

will  then  again  be  in  Co  . 

The  technique  is  to  consider  separately   the   two   rectangles 

R1   ≡  {(x,y) ; 0 ≦ x ≦
2
1 ,       0 ≦ y ≦ 1} 

   (2.3) 

and 

R2   =  {(x,y); 
2
1  ≦ x ≦ 1,      0 ≦ y  ≦ 1 }   . 

   (2.4) 

In  R1    the   interpolating   function   is 

U(x,y) = (1-2x)(1-y)U(0,0)   +  2x (1-y)U(
2
1 ,0) + 2xy U(

2
1  , 1) 

            +  (1-2x)yU(0,l). 

(2.5) 

However,   the  point   ( 2 , 1 )    is  not  a  node  of  the  element   1,  and 

so   the   value  U (
2
1 , 1 )    is   eliminated   using   the   continuity   of   the 

approximating  function  across   {(x,y);   0 ≦ x  ≦   1, y =  1 }   by  the 

substitution   of 

U(
2
1 , l)   =   

2
1  (U(0,1)+  U(1,1)). 

Thus  for  (x,y)  ε R1

U(x,y)  = (1-2x)(1-y)U(0,0)  +  2x(1-y)U(
2
1 ,0)+  xy U(  1,1)+  y(1-x)U(0,1 ).   (2.6) 

A  similar  technique  is   adopted  in  R2   so  that  in  element   1 

U(x,y)  =  y(1-x)U(0, 1) + xy U (1,1) 

  
⎪
⎩

⎪
⎨

⎧

<<−−+−−

<≤−+−−
+

.1x
2
1,(1,0)Uy)(11)(2x0),

2
1y)U((1x)2(1

,
2
1x0,),0,

2
1U)(y)12x(y)U(0,0)(12x)1(

                      (2.7) 
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The  function  U(x,y)   in   (2 .7 )    is  bilinear  in  R1  and  R2  and 

continuous  across  x=
2
1 , 0 ≦  y  ≦ 1 . Use  of  trial  functions  of  the 

type  (2.7)   in  the  five  node  elements  together  with  bilinear   trial 

functions  in  the  standard  elements  will  ensure  that   the   resulting 

global  approximating  function  is  in  Co . 

Note  that,   in  terms  of "+ functions" commonly  used  in  splines, 

it  is  possible  to  write 

U(x,y)  =  y (1 -x )U(0 , l )  +  x y  U ( 1 , 1 )  

+  (1-2x)(1-y)U(0,0)   +  2x(l-y)U(
2
1 ,0) 

+  (1-y) (2x-1)+    [U(0,0)-  2U(
2
1 ,0)  +  U ( 1 , 0 ) ]   , (2.8) 

where 

⎪
⎩

⎪
⎨

⎧

<

>−
=+−

.
2
1x,0

,
2
1x,)12x(

1)(2x  

3.     C1    Approximating  Functions

The  notation 

yx
y)U(x,2

y)(x,1,1U,
y

y)U(x,y)(x,0,1U,
x

y)U(x,y)(x,1,0U
∂∂

∂
=

∂
∂

≡
∂

∂
≡  

 

is  adopted,  and  with  this  notation  the  cubic  interpolant  to 

U(0,0),  U(1,0),  U1,0(0,0),  U1 ,  0(0,1)   over  [0,l]   can  be  written 

U(x,0) = φ 1(x)U(0,0) +   φ 2(X)U1,0(0,0) + φ 3(X)U(1,0)+ φ 4 (x)U1,0(1,0)   ,                (3.1)

 

where                                                                           (3.2)

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−=−−≡

+−=−≡

−=

+−=

.1)(t2tt)(12(t)4

,3)2t(2tt)(11(t)3

,t21)t((t)2

1),(2t21)t((t)1

φφ

φφ
φ

φ
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The 's are the cardinal  basis   functions  for  Hermite φ

interpolation     and it is noted  that,  if   φ ' ( t )    =   d φ  (t)/dt, 

φ 1  (0) = φ 3(1). = φ 2(0)   =  φ 4’ (1) =  1   , 

φ 2 (0) = φ  3(0)  = φ 4(0)   =  0   , 

φ 1 (0) = φ 3(0)  = φ 4(0)   =  0   , 

φ ’
1(0) = φ ’

3(0)  = φ '4(0)   =  0   , 

     φ ’
1(1) = ’φ 2(1)  = φ ’

3(1)  = 0  . 

Taking  tensor products  we  obtain the bicubic  interpolant  to 

   Z  ≡  {U(xi,yi),  U1,0 (xi, yi ),U0,1(xi,y.),   U1,1(xi,yi)}   ,                  (3.3) 

at  respectively  each  of  the  four  points   (xi yj)  =(0,0),(1,0),(1,1),(0,1) 

over  the  unit  square  as 

U(x,y) =  φ 1 (x)  [φ 1(y)U(0,0)  +φ 2(y)U0.1(0,0) +φ 3(y)U(0,l)+ φ 4(y)U0,1,(0,1)  

+ φ 2(x)[ φ 1(y)U1,0(0)+ φ 2(y)U1,1(0,0)+ φ 3(y)U1,0(0,1)+ φ 4(y)U1,1(0,1)] 

             + φ 3(x)  [φ 1(y)U(1,0) +φ 2(y)U0,1 (1,0)+ φ 3  (y)U(l,l)+4(y)U0,1 (1,1)] 

             + φ 4(x)[ φ 1(y)U 1, 0(1,0)+ φ 2(y)U1,1(1,0) + φ 3(y)U1,0(1,1) + φ 4(y)U1,1(1,1)], 

 (3.4) 

where  the  φ 's  are  as  in  (3.2).     Use  of  (3.4)  as  the  trial  function  in. 

each  element  of  a  standard  rectangular  mesh,  together  with  the  specifying 

of  Z  as  in  (3.3)  at  each  node,  will  produce  a  C1  approximating  function. 

However,  we  wish  to  refine  the  mesh  as  in   Figure  1,  whilst   retaining   C1 

continuity  in  the  global  approximating  function.   Referring  again  to  the 

situation   as   in  Figure  2,  a special   trial  function  is   thus  needed  in   elements 

such  as   1.  Following  Section 2  we  split  the  element  1 into  the  two  rectangles 

R1    and  R2   of  (2.3)  and  (2.4).   The  bicubic  interpolant  to  the  vales  of  Z  at  the 
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four  vertices  of R1    is,  from  (3.4), 

φ φ φ1(2x)[ 1(y)U(0,0) + 2(y)U0,1 (0,0) + φ 3  (y)U(0,1) + φ 4(y)U0,1 (0,1)] u(x.y)  = 

+ 
2
1  φ 2(2x)[ φ 1(y)U1, 0(0,0) + φ 2(y)U1,1 (0,0) + φ 3(y)U1,0(0,1) + φ 4(y)U1,1  (0.1)] 

+  φ 3(2x)[ φ 1(y)U(
2
1 ,0) + φ 2(y)U0,1( 2

1 ,0) + φ 3(y)U(
2
1 ,1) + φ 4(y)U0,1 ( 2

1 ,1)] 

+ 
2
1 φ 4(2x)[ φ 1(y)U1,0( 2

1 ,0) + φ 2(y)U1.1 ( 2
1 ,0)+ φ 3(y)U1.0  ( 2

1 ,1) + φ 4(y)U1,1 ( 2
1 ,1)]. 

                                                                                                                                               (3.5) 

The right hand side of (3.5)  involves  values  of  Z at the  point  (
2
1 ,1), 

which  is  not  a  node  of  the  discretization.  In  order  that  these  values 

may  be  eliminated  interpolants  having  the  form  (3.1)  are  used on 

{(x,y) ;0 ≦ x ≦ 1, y = 1 },  so  that 

U(
2
1 ,1) = φ 1( 2

1 )U(0,1) +φ 2( 2
1 )U1,0  (0,1) +φ 3( 2

1 )U(1,1) +φ 4( 2
1 )U1, 0(1,1), 

U0,1 ( 2
1 ,1)= φ 1 ( 2

1 ) U0,1(0,1) + φ 2( 2
1 )U1,1 (0,1) + φ 3( 2

1 )U0,1 (1, 1) + φ 4 ( 2
1 )U1,1(1,1), 

U1,0( 2
1 ,1)= φ 1( 2

1 )U(0,1) + φ 2( 2
1 )U1,0(0,1) + φ 3( 2

1 )U(1,1) + φ 4( 2
1 )U1,0 (1,1), 

(3.6) 

(3.7) 

(3.8) 

U1,1( 2
1 ,1)= φ 1( 2

1 )U0,1(0,1) + φ 2( 2
1 )U 1,1   (0,1) + φ 3( 2

1 )U0,1    (1,1) + φ 4( 2
1 )U1,1  (1,1). (3.9) 

But 

φ 1( 2
1 ) = φ 3( 2

1 ) = 
2
1    ,                   φ 2( 2

1 ) = - φ 4( 2
1 ) -

8
1

 , 

                      ’φ 1( 2
1 ) = -

2
3 .        ’φ 2 ( 2

1 ) =  φ 4( 2
1 )   =  -

4
1 ,        φ 3( 2

1 )  =  
2
3  .   

Substitution  of  these  values  into  (3.6)  -  (3 .9)   and the  subsequent 

substitution  of  the  resulting  expressions  for    Z    at  (
2
1  ,1)  in  (3. 5) 
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leads to 

U(x,y)   = φ 1(y)[Φ1(2x)U(0,0) +
2
1 φ 2(2x)U1,0(0,0) +φ 3(2x)U(

2
1 ,0) + 

2
1 φ 4(x)U1,0 ( 2

1 , 0)] 

+ φ 2(y)[ φ 1(2x)Ul, 0(0,0)+ 
2
1

2(2x)U1,1 (0.0)+ φ 3(2x)U1,0(
2
1 ,0) 

+ 
2
1 φ 4 (2x) Ul,1 ( 2

1 ,0)] 

+  φ 3(y)[{ φ 1(2x)  +
2
1 φ 3 + 3(2x)- 

4
3

 φ 4(2x)}  U(0,1) 

+  {
2
1  φ 2(2x)  +  

8
1

 φ 3(2x)  -  
8
1

 φ 4 (2x)}U1 , 0(0,1)] 

+  {
2
1  φ 3(2x)+ 

4
3

φ 4(2x)}U(1,1)-  
8
1

{ φ 3(2x)+ φ 4(2x)}U1, 0(1,1)] 

+  φ 4(y)[{ φ 1(2x)+ 
2
1 φ 3(2x)- 

4
3

 φ 4(2x)}U0,1 (0,1) 

 +  {
2
1 φ 2(2x) +

8
1

 φ 3(2x)  +  
8
1

φ 4(2x)}U 1,1   (0,1) 

+  {
2
1  φ 3(2x)+ 

4
3

φ 4(2x)}U0 , 1(l,1)- 
8
1

{ φ 3(2x)+ φ 4(2x)}U1,1 (1,1)] 

 (3.10) 

for  0  ≦  x  ≦  
2
1 , 0  ≦  y ≦  1. 

An  expression  of  a  similar  form  to  that  in  (3.10)  is 

obtained  for  the  interpolant  in  R2  ≡ {(x.y);  
2
1  ≦ x ≦ 1,0 ≦ y ≦1}. 

This  taken  together  with  the  interpolant  (3-10)  produces  in  element 

1  an  interpolant  which  is  C1    and  which  is  cubic  on  the  sides,  the  top 

and  each  of  the  halves  of  the  bottom  of  the  element.   Incorporation   of 

this  into  the  space  of  piecewise   bicubic  functions  will  ensure  that  the 

resulting  global  approximating  function  is  in  C1  . 
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4.      Galerkin Method For Model Problem

We consider the problem in which u(x,y) satisfies 

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

=
∂

∂

=
∂

∂
=

=

=−

,DEεy)(x,,0
x

y)u(x,

,CDOBεy)(x,,0
y

y)u(x,
,EOεy)(x,,0y)u(x,
,BCεy)(x,,500y)u(x,
,Ωεy)(x,,0]y)[u(x,Δ

U

   (4.1)

where   Ω    is  the  rectangular region OBCDEO of Figure  3,  in which  EO=OB=BC=0.5. 

  
 

The  problem(4.1)  is  derived using  symmetry  from a well  known problem 

in  a  rectangle  containing  a  slit  which has  been much  studied;  see  for 

example Whiteman [ 6 ], [7 ]  and Wait  and Mitchell [ 5 ]  .    We  define  the 

two  disjoint  parts  of  the  boundary    DECDOB2Ω,EOBC1Ω UUU ≡∂≡∂  

and  let  ∂Ω  =  ∂Ω1     ∂ΩU 2 with Ω   ≡ Ω  U  ∂Ω. 

Let  W1
2  (Ω)  be  the  Sobolev  space  of  functions which together with 

their  generalized derivatives  of  order  one  are  in  L2(Ω).    The  subspace 

of  functions  in W1
2  (Ω)  which  satisfy  a homogeneous  boundary  condition 

on  ∂Ω1  is  written   W1
2(Ω)∩ (∂Ω1)0 ;     that  is  for v  e  W1

2(Ω)∩ (∂Ω1)0 , 
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V  ε   W1

2  (Ω)   and v = 0   on   ∂Ω1   . 

The  weak  problem  corresponding  to   (4.1)   is   ; 

                           find  u ε f  +  W1
2  (Ω)such  that 

a(u,v)   =0 ∀    v ε W1
2 (Ω)∩ (∂Ω1)0   , (4.2) 

where     f  ε  W1
2(Ω )   with  f=500  on  BC  and  f=0  on  EO  

The  notation  u  ε  f  +  W1
2  (Ω)means  that  u = f+v,  where  v ε W1

2(Ω) ∩ (∂Ω1 ) 0   . 

In   (4.2)   the   bilinear   functional   a (u,v)    is   defined   as 

.)Ω(1
2Wεvu,dydx

Ω y
v

y
u

x
v

x
uv)(u,a ∀∫∫ ∂

∂
∂
∂+

∂
∂

∂
∂= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

 
The  energy  norm   | |v | | E    is  defined  by 

 ||v||E =   ( a (v .v )  
2
1

   . (4.3) 

The  region     Ω  is  discretized  into  rectangular  elements  of 

generic  length    h     so  that  there  are    m    internal  nodes,   n    nodes 

on   ∂Ω1  and  p  nodes  on  ∂Ω2  .  The  global  approximating  function 

U  ε  Sh    is  written  as 

∑
=

+∑
+

=
=

n

1j
,y)(x,jCh

jfy)(x,iB
pm

1i iUy)U(x,      (4.4)

where  the  fh
j.   are  the  known  values  of  u =U  at  the  nodes  of 

∂Ω1   and  the  Bi   and  Cj   are  formed  from  the  Φi   of  (1,2).     The  Bi

and  Cj.   are  linear  pyramid  basis  functions  at  respectively  the 

nodal  points  of    Ω  U  ∂Ω2  and  the  nodal  points  of  ∂Ω1

In  the  Galerkin  procedure  we   seek     U      as  in   (4.4)   such  that 

a(U , Bk)   =  0   ,                      k=   1,   2,     ...   ,  m+p.                   (4. 5) 
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Equations   (4.5)   are  the  normal  equations  for  the   solution  of 

the  unknown  coefficients  U i .      Bounds  on  the  error  in  the  Galerkin 

solution  U,   having  the  form 

||u-U||E    ≤ Kh|u|2         ,  (4.6) 

where 

( ) ( ) ( )
,

2

2L
2y

u22

2Lyx
u22

2L
2x

u2

2|u|
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

Ω∂

∂
+

Ω∂∂

∂
+

Ω∂

∂
=  

are  well  known;   see  e.g.   Ciarlet  and  Raviart  [ 3 ] .     For  problems 

containing  boundary  singularities,   for  example  due  to  re-entrant 

corners  such  as  in  the  problem  in  the  slit  rectangle  which  is 

equivalent  to   (4.1),  the  second  derivatives  of    u    are  not  in  L2. 

However  ,   error  bounds  involving  hπ/a  for  problems  containing 

re-entrant  corners  with  interior  angles  a  >   π  have  been   derived; 

see  Babuska  and  Aziz  [l,p.274]. 

The  effect  of  the  singularity  is  to  reduce  the  accuracy  of  the 

Galerkin  solution,  particularly  in  the  neighbourhood  of  the  re-entrant 

corner.     It  is  shown  by  Babuska [2]  that  with  "proper"  refinement 

of  the  elements  around  the  corners  the  effect  of  the  singularity  can 

be  removed.     For  ease  and  automation  of  computation  we  now  use  the  local 

refinement  scheme  of  Section  2,  which  is  based  on  successive  halving 

of  the  mesh  length  to  obtain  accurate  Galerkin  solutions  to  the 

problem  (4. 1). 

5.       Numerical  Results 

In  applying  the  Galerkin  technique  of  Section 4  to  the 

problem  (4.1)  we  use  square  elements  and  take  the  basis  functions 
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Bi(x,y)   and  Cj(x,y)   of  ( 4 . 4 )    to  be  pyramids  in  the  appropriate 

elements.     Thus  in  each  square  of  a  standard mesh  of  length    h    the 

local  trial  function  has  the  form  (2.2).   For  the  value  h= 1/14 the  results 

obtained  at  three  specific  points  are  given  in  Figure  4.   For  comparison  accurate 

results  obtained  using  a  conformal  transformation  method  (CTM)  due 

to  Whiteman  and  Papamichael [ 9 ]   are  also  included  in  Figure 4. 

It  is  seen  that,  as  expected,  the  greatest  inaccuracies  occur  in 

the  neighbourhood  of  0. 

The  refinement  scheme  of  Figure  1   is  now  used  with  the  trial 

functions   (2.4)   in  five  node  elements.  We  note  that  each  level  of 

refinement  introduces  8  new  equations  into  the  system  (4,5).   The 

ordering  of  the  nodes  is   chosen  so  that  the  inclusion  of  the  extra 

equations  is  performed  automatically.   This  is  achieved  by  ordering 

peripherally  about  the  singularity.  In  each  case  the  matrix   of   coefficients 

is  symmetric  and positive  definite,  and  full  advantage  is  taken  of  the band 

structure.     The    three  sample  points  P  ≡ (0,1/14)  and  Q ≡( 1/14,0)  near  to  0 

and  R  ≡ (-3/7,3/7)  remote  from  0,  with  the  origin  of  co-ordinates  at  0,  are  again 

chosen  and  results  at  these  points  are  given   in  Figure 4  for  levels   of 

refinement  ranging  from  1  to  8  with  the  original  mesh  length    h    again 

taken  as    1/14 . 

It  is  seen  that  with  continued  local  mesh  refinement  the  stage 

has  been  reached  where  the  Galerkin  solutions  are  more  accurate  near 

the  singularity  than  they  are  at  a point  in  Ω  remote  from  0.     The  effect 

of  the  singularity  on  the  numerical  solution  has  thus  been  neutralized 

by  the  refinement.  The  error  at  points  on  the  coarse  mesh  is  due  to 

the  coarse  mesh  spacing. 

An  alternative  technique  to  local  mesh  refinement  is  to  include 

in  the  space Sh   singular  functions  having  the  form  of  the  singularity, 

as  has  been  done by  Fix [4]  and Whiteman [8]  .  In  order  to  do this  one 
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has   of  course  to  know  the   form  of  the   singularity.      Further 

the   augmentation  of  Sh     poses   difficult   computational  problems. 

W e  feel  that   local  mesh  refinement   is   a  viable  alternative. 

Number of 
Levels of

Value at   U (x, y) at     Number  of 
Linear

   Refinement P≡(0,1/14) Q ≡(1/14,0) R≡(3/7,3/7) Equations 

0    (h=1/14) 97.05 147.05 88.73 104 

1 99.61 150.52 89.78  112 

2 101.62 153.39 90.31   120 

3 102.72 154.92 90.57  128 

4 103.27 155.69 90.70  136 

5 103.54 156.07 90.78  144 

6 103.68 156.26 90.80  152 

7 103.75 156.36 90.82  160 

8 103.78 156.40 90.83  168 

CTM [9] 
Results 

103.77 156.48 91. 34         - 

Figure   4 
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