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Preface
 

Fundamental Heat Transfer is a required course for all mechanical, chemical, 
nuclear, and aerospace engineering undergraduate students. This senior-level 
undergraduate course typically covers conduction, convection, and radia­
tion heat transfer. Advanced Heat Transfer courses are also required for most 
engineering graduate students. These graduate-level courses are typically 
taught as individual courses named Conduction, Convection, or Radiation. 
Many universities also offer an Intermediate Heat Transfer or Advanced 
Heat Transfer course to cover conduction, convection, and radiation for engi­
neering graduate students. For these courses, however, there are not many 
textbooks available that cover conduction, convection, and radiation at the 
graduate level. 

I have taught an Intermediate Heat Transfer course in the Department 
of Mechanical Engineering at Texas A&M University since 1980. This book 
has evolved from a series of my lecture notes for teaching a graduate-level 
intermediate heat transfer course over the past 30 years. Many MS degree 
students majoring in thermal and fluids have taken this course as their only 
graduate-level heat transfer course. And many PhD degree candidates have 
taken this course to prepare for their heat transfer qualifying examinations as 
well as to prepare for their advanced-level courses in conduction, convection, 
or radiation. This book bridges the gap between undergraduate-level basic 
heat transfer and graduate-level advanced heat transfer as well as serves the 
need of entry-level graduate students. 

Analytical Heat Transfer focuses on how to analyze and solve the classic heat 
transfer problems in conduction, convection, and radiation in one book. This 
book emphasizes how to model and how to solve engineering heat trans­
fer problems analytically, rather than simply applying the equations and 
correlations for engineering problem calculations. This book provides many 
well-known analytical methods and their solutions such as Bessel functions, 
separation of variables, similarity method, integral method, and matrix inver­
sion method for entry-level engineering graduate students. It is unique in that 
it provides (1) detailed step-by-step mathematical formula derivations, (2) 
analytical solution procedures, and (3) many demonstration examples. This 
analytical knowledge will equip graduate students with the much-needed 
capability to read and understand the heat-transfer-related research papers 
in the open literature and give them a strong analytical background with 
which to tackle and solve the complex engineering heat transfer problems 
they will encounter in their professional lives. 
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xii	 Preface 

This book is intended to cover intermediate heat transfer between the 
undergraduate and the advanced graduate heat transfer levels. It includes 
14 chapters and an Appendix: 

Chapter 1 Heat Conduction Equations 
Chapter 2 1-D Steady-State Heat Conduction 
Chapter 3 2-D Steady-State Heat Conduction 
Chapter 4 Transient Heat Conduction 
Chapter 5 Numerical Analysis in Heat Conduction 
Chapter 6 Heat Convection Equations 
Chapter 7 External Forced Convection 
Chapter 8 Internal Forced Convection 
Chapter 9 Natural Convection 
Chapter 10 Turbulent Flow Heat Transfer 
Chapter 11 Fundamental Radiation 
Chapter 12 View Factor 
Chapter 13 Radiation Exchange in a Nonparticipating Medium 
Chapter 14 Radiation Transfer through Gases 
Appendix A Mathematical Relations and Functions 

There are many excellent undergraduate and graduate heat transfer text­
books available. Although I do not claim any new ideas in this book, I do 
attempt to present the subject in a systematic and logical manner. I hope 
this book is a unique compilation and is useful for graduate entry-level heat 
transfer study. 

While preparing this manuscript, I heavily referenced the following books 
and therefore am deeply appreciative to their authors: 

W. Rohsenow and H. Choi, Heat, Mass, and Momentum Transfer, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1961. 

A. Mills, Heat Transfer, Richard D. Irwin, Inc., Boston, MA, 1992. 
K.	 Vincent Wong, Intermediate Heat Transfer, Marcel Dekker, Inc., 

New York, NY, 2003. 
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Edition, John Wiley & Sons, New York, NY, 2002. 

Finally, I would like to sincerely express special thanks to my former 
student, Dr. Zhihong (Janice) Gao (PhD, 2007). Janice spent a lot of time and 
effort to input most of the manuscript from my original Intermediate Heat 
Transfer Class Notes in 2005–2007. Without her diligent and persistent contri­
butions, this book would be impossible. In addition, I would like to extend 
appreciation to my current PhD students, Jiang Lei and Shiou-Jiuan Li for 
their help in completing the book and drawings. 

Je-Chin Han 



1.1.1.1 Fourier’s Conduction Law 

dT T1 − T2 q"" = −k = k (1.1)
dx L 

and 

q"" ≡ ""Acq or q = q
Ac 

1 
Heat Conduction Equations
 

1.1 Introduction 

1.1.1 Conduction 

Conduction is caused by the temperature gradient through a solid mate­
rial. For example, Figure 1.1 shows that heat is conducted from the high-
temperature side to the low-temperature side through a building or a 
container wall. This is a one-dimensional (1-D) steady-state heat conduction 
problem if T1 and T2 are uniform. According to Fourier’s conduction law, the 
temperature profile is linear through the plane wall. 

where q"" is the heat flux (W 2/m ), q the heat rate (W or J/s), k the thermal 
conductivity of solid material (W/m K), Ac the cross-sectional area for 
conduction, perpendicular to heat flow (m2), and L the conduction length (m). 

One can predict heat rate or heat loss through the plane wall by knowing T1, 
T2, k, L, and Ac. This is the simple 1-D steady-state problem. However, in real-
life application, there are many two-dimensional (2-D) or three-dimensional 
(3-D) steady-state heat conduction problems; there are cases where heat gen­
eration occurs in the solid material during heat conduction; and transient 
heat conduction problems take place in many engineering applications. In 
addition, some special applications involve heat conduction with moving 
boundary. All these more complicated heat conduction problems will be 
discussed in the following chapters. 
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FIGURE 1.1 
1-D heat conduction through a building or container wall. 

1.1.2 Convection 

Convection is caused by fluid flow motion over a solid surface. For example, 
Figure 1.2 shows that heat is removed from a heated solid surface to cooling 
fluid. This is a 2-D boundary-layer flow and heat transfer problem. According 
to Newton, the heat removal rate from the heated surface is proportional 
to the temperature difference between the heated wall and the cooling fluid. 
The proportional constant is called heat transfer coefficient; and the same 
heat rate from the heated surface can be determined by applying Fourier 
Conduction Law to the cooling fluid. 

1.1.2.1 Newton’s Cooling Law 

q"" = −kf 
d
d

T
y 

�� = h(Ts − T∞) (1.2) 
at wall 

Also, 
dT �"" −kf y=0q dy

h = = (1.3)
Ts − T∞ Ts − T∞ 

FIGURE 1.2 
Velocity and thermal boundary layer. 



and 
q"" ≡ ""Asq or q = q

As 
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where Ts is the surface temperature (◦C or K), T∞ the fluid temperature (◦C 
or K), h the heat transfer coefficient (W/m2 K), kf the thermal conductivity of 
fluid (W/m K), As the surface area for convection, exposure to flow (m2). 

It is noted that the heat transfer coefficient depends on fluid properties 
(such as air or water as coolant), flow conditions (i.e., laminar or turbulent 
flows), surface configurations (such as flat surface or circular tube), and so 
on. The heat transfer coefficient can be determined experimentally or analyt­
ically. This textbook focuses more on analytical solutions. From Equation 1.3, 
the heat transfer coefficient can be determined by knowing the temperature 
profile in the cooling fluid during convection and then taking the cooling 
fluid temperature gradient near the wall. However, this requires solving 2-D 
boundary-layer equations and will be the subject of the following chapters. 
Before solving 2-D boundary-layer equations, one needs heat transfer coef­
ficient as the convection boundary condition (BC) in order to solve the heat 
conduction problem. Therefore, Table 1.1 provides some typical values of 
heat transfer coefficient in many convection problems. As can be seen, in 
general, forced convection has more heat transfer than natural convection; 
water as a coolant removes much more heat than air; and boiling or conden­
sation, involving phase change, has a much higher heat transfer coefficient 
than single-phase convection. 

1.1.3 Radiation 

Radiation is caused by electromagnetic waves from solids, liquid surfaces, or 
gases. For example, Figure 1.3 shows that heat is radiated from a solid surface 

TABLE 1.1 

Typical Values of Heat Transfer Coefficient 

Type of convection h, W/m2 · K 

Natural convection 
Caused by ΔT : air 5 
Caused by ΔT : water 25 

Forced convection 
Caused by fan, blower: air 25–250 
Caused by pump: water 50–20,000 

Boiling or condensation 
Caused by phase change 
Water � Steam 10,000–100,000 
Freon � Vapor 2500–50,000 



"" 

"" 

1.1.3.1 Stefan–Boltzmann Law 

For real surface, 

q = εσT4 (1.4)s 

For ideal (black) surface, ε = 1 

q = σT4 
s 

and 
q"" ≡ ""Asq or q = q

As 

where ε is the emissivity of the real surface, ε = 0 − 1 (ε metal < nonmetal ε), 
Ts the absolute temperature of the surface, K (K = ◦C + 273.15), σ the Stefan– 
Boltzman constant, σ = 5.67 × 10−8 W/m2 K4, and As the surface area for 
radiation (m2). 

4 Analytical Heat Transfer 

qrad 
′′ 

Any surface at Ts, ε, As 

FIGURE 1.3 
Radiation from a solid surface. 

at a temperature greater than absolute zero. According to Stefan–Boltzmann, 
radiation heat rate is proportional to the surface’s absolute temperature’s 
fourth power, the Stefan–Boltzmann constant, and the surface emissivity. The 
surface emissivity primarily depends on material, wavelength, and temper­
ature. It is between 0 and 1. In general, the emissivity of metal is much less 
than nonmetal. Note that radiation from a surface can go through air as well 
as vacuum environment. 

1.1.4 Combined Modes of Heat Transfer 

In real application, often radiation occurs when conduction or convection 
takes place. This is called combined modes of heat transfer. For example, 
Figure 1.4 shows heat transfer between two surfaces involving radiation and 
convection simultaneously. 
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FIGURE 1.4 
Heat transfer between two surfaces involving radiation and convection. 

Assume: surface A « surrounding sky or building wall surface, T∞  = Tsur 
(or, T∞ = Tsur) 

Total heat flux from the surface A is due to convection and radiation, and 
can be found as 

"" "" ""q = q + q (1.5)conv rad,net 

where 

""q = h(Ts − T∞ )conv 

""q = εσT4 − αεsurσT4 
rad,net s sur 

= εσ(T4 − T4 ), if  ε = α,s sur εsur= 1 

= εσ(T2 + T2 
s sur)(Ts + Tsur)(Ts − Tsur) 

= hr(Ts − Tsur) 

Therefore, from Equation 1.5 

""q = h(Ts − T∞ ) + hr(Ts − Tsur) (1.6) 

where 
hr = εσ(T2 + T2 (1.7) s sur)(Ts + Tsur) 

Also 
q"" ≡ "" Asq or q = q

As 

where α is the absorptivity, Tsur the surrounding wall temperature (◦ C or  
K), εsur the emissivity of the surrounding wall, hr the radiation heat transfer 
coefficient (W/m2 K), and As the surface area for radiation (m2). Total heat 
transfer rate can be determined by knowing Ts, Tsur, h, ε, εsur, σ, and As. 
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1.2 General Heat Conduction Equations 

If the temperature profile inside a solid material T(x, y, z, t) is known, the 
heat rate q through the solid can be determined as shown in Figure 1.5. As 
far as thermal stress is concerned, it is equally important to predict the tem­
perature profile in some high-temperature applications. In this chapter, the 
general heat conduction equations will be derived. The general heat conduc­
tion equation can be used to solve various real problems with the appropriate 
boundary conditions (BCs) and initial condition. The heat conduction can be 
modeled as 1-D, 2-D, or 3-D depending on the nature of the problem: 

1-D T(x) for steady state or T(x, t) for transient problem 
2-D T(x, y) for steady state or T(x, y, t) for transient problem 
3-D T(x, y, z) for steady state or T(x, y, z, t) for transient problem 

To determine the temperature profile, the following should be given: 

1. Initial condition and BCs 
2. Material thermal conductivity	 k, density ρ, specific heat Cp, and 

diffusivity α = k/ρCp 

1.2.1 Derivations of General Heat Conduction Equations 

The general form of the conservation of energy in a small control volume of 
solid material is 

Ein − Eout + Eg = Est	 (1.8) 

where Ein − Eout is the net heat conduction, Eg is the heat generation, and Est 
is the energy stored in the control volume. 

Figure 1.6 shows the conservation of energy in a differential control 
volume in a 3-D Cartesian (rectangular) coordinate. If we consider energy 

y 

x
 
z
 

TH 

T(x, y, z, t) 

k, α 

TL 

FIGURE 1.5 
Heat conduction through a solid medium. 
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FIGURE 1.6 
The volume element for deriving the heat conduction equation. 

conservation in a 1-D system (x-direction only), 

∂qx qx − qx + dx + Eg = Est (1.9)
∂x 

The conduction heat rates can be evaluated from Fourier’s Law, 

∂T 
qx = −kAx (1.10)

∂x
 

With control surface area Ax = dy dz, Equation 1.9 can be written as
 

∂ ∂T − −k dy dz dx + Eg = Est (1.11) 
∂x ∂x 

The thermal energy generation can be represented by 

Eg = q̇ dx dy dz (1.12) 

where q̇ is the energy generation per unit volume dx dy dz. 
The energy storage can be expressed as 

∂(ρ dx dy dz · Cp · T)
Est = (1.13)

∂t 

Substituting Equations 1.12 and 1.13 into Equation 1.11, we have 

∂ ∂T ∂(ρ dx dy dz · Cp · T)− −k dx dy dz + q̇ dx dy dz = (1.14)
∂x ∂x ∂t 



� � 

� � � � � � 

� � 

� � � � 

Dividing out the dimensions of the small control volume dx dy dz, Equa­
tion 1.14 is simplified as 

∂ ∂T ∂(ρCpT)
k + q̇ = (1.15)

∂x ∂x ∂t 

If we consider energy conservation, in a 3-D system (x-direction, y-direction, 
z-direction), the heat equation can be written as 

∂ ∂T ∂ ∂T ∂ ∂T ∂(ρCpT)
k + k + k + q̇ = (1.16)

∂x ∂x ∂y ∂y ∂z ∂z ∂t 

The thermal conductivity k, which is a function of temperature, is hard to 
determine. If we assume that k, ρ, and Cp are constants, then Equation 1.16 is 
simplified as 

∂2T ∂2T ∂2T q̇ 1 ∂T + + + = (1.17) 
∂x2 ∂y2 ∂z2 k α ∂t 

where α = k/ρCp is the thermal diffusivity. 
In a 3-D cylindrical coordinate system as shown in Figure 1.7a, the heat 

conduction equation has the form of 

1 ∂ ∂T 1 ∂2T ∂2T q̇ 1 ∂T 
r + + + = (1.18)

r ∂r ∂r r2 ∂φ2 ∂z2 k α ∂t 

In a 3-D spherical coordinate system as shown in Figure 1.7b, it has the 
form of 

1 ∂ 2 ∂T 1 ∂ ∂T 1 ∂2T q̇ 1 ∂T 
r + sin θ + + = (1.19)

r2 ∂r ∂r r2 sin θ ∂θ ∂θ r2 sin2 θ ∂φ2 k α ∂t 
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r 
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θ 
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FIGURE 1.7 
(a) Cylindrical coordinate system. (b) Spherical coordinate system. 



1. Given surface temperature T(0, t) = Ts, as shown in Figure 1.8 
2. Given surface heat flux, as shown in Figure 1.9a and b 

a.	 Finite heat flux
 
∂T(0, t)
 "" −k = q	 (1.20)s∂x 

b. Adiabatic or insulated surface, which is a special case 

∂T(0, t) "" −k = q = 0	 (1.21)s∂x 

3. Given surface convection, as shown in Figure 1.10 

∂T(0, t)−k = h [T∞ − T(0, t)] (1.22)
∂x 

1.3.2 Initial Conditions 

Initial condition, as shown in Figure 1.11, is required for the transient heat 
transfer problem. 

T(x, 0)  Ti	 (1.23) =

9 Heat Conduction Equations 

1.3 Boundary and Initial Conditions 

The physical conditions existing on the boundary should be known in order to 
determine the temperature profile in a medium by solving the heat conduction 
equation. Moreover, the initial condition T(x, 0) = Ti should also be known if 
the heat transfer is time dependent. 

1.3.1 Boundary Conditions 

There are three kinds of BCs commonly found in many heat transfer 
applications [1]. 

Ts 

T(x, t) 

T 

x 

FIGURE 1.8 
Boundary conditions—given surface temperature. 
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(b)(a) 
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T 

T(x, t) 

T(x, t) 

" qs 

FIGURE 1.9 
(a) Finite heat flux. (b) Adiabatic surface. 

1.4 Simplified Heat Conduction Equations 

1. Steady state ∂T/∂t = 0, no heat generation q̇ = 0 

∂2T
1-D = 0 

∂x2 

∂2T ∂2T
2-D + = 0 

∂x2 ∂y2 

∂2T ∂2T ∂2T
3-D + + = 0 

∂x2 ∂y2 ∂z2 

x 

T(x, t) 

T(0, t)T∞, h 
T 

FIGURE 1.10 
Convective boundary conditions. 

T(x, 0) = Ti 

FIGURE 1.11 
Initial condition. 
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2. Steady state, 1-D with heat source—heater application 

∂2T q̇+ = 0 
∂x2 k 

Steady state, 1-D with heat sink—fin application 

∂2T q̇− = 0 
∂x2 k 

3. Transient without heat generation q̇ = 0 

∂2T 1 ∂T
1-D = 

∂x2 α ∂t 

∂2T ∂2T 1 ∂T
2-D + = 

∂x2 ∂y2 α ∂t 

∂2T ∂2T ∂2T 1 ∂T
3-D + + = 

∂x2 ∂y2 ∂z2 α ∂t 

The above-mentioned three kinds of BCs can be applied to the 1-D, 2-D, 
or –3-D heat conduction problems, respectively. For example, as shown in 
Figure 1.12, 

∂T(0, y, t) 
x = 0, −k = 0 (adiabatic surface)

∂x
 
∂T(a, y, t)
 

x = a, −k = h[T(a, y, t) − T∞] (surface convection)
∂x
 

∂T(x, 0,  t)
 "" y = 0, −k = q (surface heat flux)
∂y ( )

y = b, T(x, b, t) = Ts surface temperature

Remarks 

In general, heat conduction problems, regardless of 1-D, 2-D, 3-D, steady 
or unsteady, can be solved analytically if thermal conductivity is a given 
constant and thermal BCs are known constants. The problems will be ana­
lyzed and solved in Chapters 2 through 4. However, in real-life applications, 
there are many materials whose thermal conductivities vary with tempera­
ture and location, k(T) ∼ k(x, y, z). In these cases, the heat conduction equation 
shown in Equation 1.16 becomes a nonlinear equation and is harder to solve 
analytically. 
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FIGURE 1.12 
Heat conduction in 2-D system with various boundary conditions. 

In addition, in real engineering applications, it is not easy to determine the 
precise convection BC shown in Figures 1.10 and 1.12. These require detailed 
knowledge of complex convection heat transfer to be discussed in Chapters 6 
through 10. 

PROBLEMS 

1.1 Derive Equation 1.18. 
1.2 Derive Equation 1.19. 
1.3	 a. Write the differential equation that expresses transient heat 

conduction in 3-D (x, y, z coordinates) with constant heat 
generation and constant conductivity. 

b. Simplify the differential equation in (a) to show steady-state 
conduction in one dimension, assuming constant conductivity. 

c.	 If the BCs are: T = T1 . . . at . . . x = x1, T = T2 . . . at . . . x = x2, 
solve the second-order differential equation to yield a temper­
ature distribution (T). Express the answer (T) in terms of (T1, 
T2, x, x1, x2). 

d. Using the Fourier law and the results from (c), develop an 
expression for the heat rate per unit area, assuming constant 
conductivity. Express your answer in terms of (k, T1, T2, x1, x2). 

Reference 

1.	 F. Incropera and D. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition, 
John Wiley & Sons, New York, NY, 2002. 



2 
1-D Steady-State Heat Conduction
 

2.1 Conduction through Plane Walls 

For 1-D steady-state heat conduction in plane wall shown in Figure 2.1, with­
out heat generation, the heat conduction equation 1.17 can be simplified as 

∂2T = 0 (2.1)
∂x2 

dT = C1dx 

Equation 2.1 has the general solution 

T = c1x + c2 (2.2) 

with boundary conditions: 

at x = 0, T = Ts1 = c1 · 0 + c2 = c2 

at x = L, T = Ts2 = c1L + c2 

Solve for c1 and c2, 

Ts2 − Ts1 c1 = , c2 = Ts1,
L 

Substituting c1 and c2 into Equation 2.2, the temperature distribution is 

Ts,1 − Ts,2T(x) = Ts,1 − x (2.3)
L 

Applying Fourier’s Conduction Law, one obtains the heat transfer rate 
through the plane wall 

∂T Ts,1 − Ts,2 Ts,1 − Ts,2q = −kA = kA = (2.4)
∂x L (L/KA) 
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FIGURE 2.1 
Conduction through plane wall and thermal–electrical network analogy. 

The heat transfer rate divided by the cross-sectional area of the plane wall, 
that is, heat flux is 

"" q ∂T Ts,1 − Ts,2q = = −k = k (2.5)
A ∂x L 

At the convective surfaces, from Newton’s Cooling Law, the heat transfer 
rates are 

T∞,1 − Ts,1q = Ah1(T∞,1 − Ts,1) = (2.6)
(1/Ah1) 

and 
Ts,2 − T∞,2q = Ah2(Ts,2 − T∞,2) = (2.7) 

(1/Ah2) 

Applying the analogy between the heat transfer and electrical network, one 
may define the thermal resistance like the electrical resistance. The thermal 
resistance for conduction in a plane wall is 

L
Rcond = (2.8)

kA 

The thermal resistance for convection is then 

1 
Rconv = (2.9)

Ah 

The total thermal resistance may be expressed as 

1 L 1 1
Rtot = + + = (2.10)

Ah1 kA Ah2 UA 

where U is the overall heat transfer coefficient. 



2.1.1 Conduction through Circular Tube Walls 

1-D steady-state heat conduction, without heat generation, in the radial 
system shown in Figure 2.3, can be simplified from Equation 1.18 

1 
r 

d 
dr 

� 
r 

dT 
dr 

� 
= 0 (2.13) 

dT 
r 

dr 
= c1 

The general solution of Equation 2.13 is 

T(r) = c1 ln r + c2 

with boundary conditions 

at r = r1, T = Ts,1 = c1 ln r1 + c2 

at r  r2, T  Ts,2  c1 ln r2  c2 = = = +

1-D Steady-State Heat Conduction 15 

Similar to electric current, the heat rate through the wall is 

T∞,1 − T∞,2 T∞,1 − T∞,2q = = = UA(T∞,1 − T∞,2) (2.11) 
(1/Ah1) + (L/kA) + (1/Ah2) Rtot 

Figure 2.2 shows conduction through two plane walls with contact resistance 
between them, the total heat resistance becomes 

R "" 1 1L1 tc L2Rtot = + + + + (2.12)
Ah1 k1A A k2A Ah2 

where R "" = (Ta − Tb/(q/A)) = pre-determined (depends on contact material tc 
surface roughness and contact pressure). 

Contact surface 
T∞,1 h1 

Ts,1 
k2, α2 

Hot fluid 
Cold fluidTa ΔT 

k1, α1 Tb Ts,2 
T∞,2 h2 

0 
L1 L2 

FIGURE 2.2 
Temperature drop due to thermal contact resistance between surface a and surface b. 
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FIGURE 2.3 
Conduction through circular tube wall. 

Solve for c1 and c2, one obtains the temperature distribution 

Ts,1 − Ts,2 r 
T(r) = Ts,1 − ln (2.14)

ln(r2/r1) r1 

The heat transfer rate can be determined from Fourier’s Conduction Law as 

dT dT Ts,1 − Ts,2q = −kA = −k 2πrl = (2.15)
dr dr (ln (r2/r1/2πkl) 

At the convective surface, from Newton’s Cooling Law, the heat transfer 
rates are 

T∞,1 − Ts,1q = A1h1(T∞,1 − Ts,1) = 
(1/A1h1) 

and 
Ts,2 − T∞,2q = A2h2(Ts,2 − T∞,2) = 
(1/A2h2) 

where the cross-sectional area for conduction is A = 2πrl, A1 = 2πr1l, A2 = 
2πr2l. 

Applying the electrical-thermal analogy, the heat transfer rate is 
expressed as 

T∞,1 − T∞,2 T∞,1 − T∞,2q = = 
(1/h12πr1l) + ((ln r2/r1)/2πkl) + (1/h22πr2l) Rtot 

= UA(T∞,1 − T∞,2) (2.16) 

where U is the overall heat transfer coefficient, UA = U1A1 = U2A2. 
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If we consider radiation heat loss between the tube outer surface and 
surrounding wall, 

s,2 − T4 )qradiation = A2εσ(T4 
sur

= A2εσ(T2 
s,2 + T2 )(Ts,2 + Tsur)(Ts,2 − Tsur)sur

= A2hr(Ts,2 − Tsur) 

where 

hr = εσ(T2 )(Ts,2 + Tsur)surs,2 + T2 

and 

q = qconv + qrad 

= A2h2(Ts,2 − T∞,2) + A2hr(Ts,2 − Tsur) 

If Tsur = T∞,2, then 

1 ln(r2/r1) 1
Rtot = + + (2.17) 

h1 2πr1l 2πkl (h2 + hr)2πr2l 

For three concentric cylindrical walls, with radius r1, r2, r3, r4, respectively, 
the total heat resistance becomes 

1 ln r2/r1 ln r3/r2 ln r4/r3 1
Rtot = + + + + 

h12πr1l 2πk1l 2πk2l 2πk3l h42πr4l 

2.1.2 Critical Radius of Insulation 

Consider a tube of insulating material with inside radius ri at constant tem­
perature Ti. At the outside radius of the insulating tube, ro, a surface heat 
transfer coefficient h may be assumed for convection from the outside surface 
of the insulation to the atmosphere at temperature T∞. From Equation 2.16 
for this case: 

Ti − T∞ q = 
(ln(ro/ri)/2πkl) + (1/h2πrol) 

If l, Ti, T∞, h, k, and ri are all assumed to remain constant while ro varies, the q 
is a function of ro alone. As ro increases, the term 1/hro decreases but the term 
(ln ro/ri)/k increases; hence, it is possible that q might have a maximum value. 
Take derivative of the above equation with respect to ro; then set dq/dro = 0 
and solve for (ro)critical, the critical radius for which q is a maximum [1], 

k 
(ro)critical = (2.18)

h 



Ts,1 

h1T∞,1 
q 
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FIGURE 2.4 
Flat plate heat conduction with internal heat generation and asymmetrical boundary conditions. 

where k is the conductivity of insulation material, h is outside convection 
coefficient from insulation material. If ri is less than (ro)critical, q is increased 
as insulation is added until ro = (ro)critical. Further increases in ro cause q to 
decrease. If, however, ri is greater than (ro)critical, any addition of insulation 
with decrease q (heat loss rate). 

2.2 Conduction with Heat Generation 

1-D steady-state heat conduction equation with heat generation in the plane 
wall is (from Equation 1.17) 

∂2T q̇+ = 0 
∂x2 k (2.19)

dT q̇= −  x + c1dx k
 

The general solution is
 

q̇
T = −  x2 + c1x + c22k 

with asymmetrical boundary conditions [2] shown in Figure 2.4, 

q̇
at x = L, T = Ts,L = −  L2 + c1L + c22k 

q̇
at x = −L, T = Ts,1 = −  (−L)2 + c1(−L) + c22k 

Solve for c1 and c2, one obtains the temperature distribution 

2qL˙ 2 x Ts,2 − Ts,1 x Ts,2 + Ts,1T(x) = 1 − + +
2k L2 2 L 2 



   

� � 

� 
� 

� � � 

Applying symmetric boundary conditions shown in Figure 2.5a, at x = L, 
T = Ts; x = −L, T = Ts, solve for c1 and c2, one obtains the temperature 
distribution 

2˙ xqL2 
T(x) = Ts + 1 − (2.20)

2k L2 

At the centerline of the plane wall, the temperature is 

q̇L2 
T0 = Ts + (2.21)

2k 

The heat flux to cooling fluid is 

dT � 
q "" = −k � = h(Ts − T∞) (2.22)

dx x=L 

From Equation 2.20, one obtains 

dT � q̇L= −
dx kx=L 

From Equation 2.22, h(Ts − T∞) = −k(−(q̇/k)L) = q̇L. 
Therefore, the surface temperature in Equation 2.20 can be determined as 

q̇L
Ts = T∞ + (2.23)

h 
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FIGURE 2.5 
Flat plate heat conduction with internal heat generation. (a) Symmetric boundary conditions. 
(b) Adiabatic surface at midplane. 
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FIGURE 2.6 
Cylindrical rod heat conduction with internal heat generation. 

In 1-D steady-state cylindrical medium with heat generation, the heat 
conduction equation is (from Equation 1.18) 

1 d dT q̇
r + = 0 (2.24)

r dr dr k 

d dT q̇
r = −  r

dr dr k 

The general solution is 

dT q̇
r = −  r2 + c1dr 2k 

dT q̇ c1= −  r +
dr 2k r 

q̇
T(r) = −  r2 + c1ln r + c24k 

with boundary conditions as shown in Figure 2.6: 

dT 
at r = 0, = 0 = c1dr 

q̇
at r = r0, T = Ts = −  r0

2 + c24k 

Solve for c1 (c1 = 0) and c2, one obtains the temperature distribution 

2 2˙ r0T(r) = Ts + qr
1 − 2 (2.25)

4k r0 

At the centerline of the cylindrical rod, the temperature is 

2qr
T0 = Ts + ˙ 0 (2.26)

4k 



""	 � � � 

� � � 

The heat flux to cooling fluid is 

dT � 
q = h(Ts − T∞) = −k	 (2.27) 

dr r=ro 

From Equation 2.25, one obtains 

dT � q̇ro= −
dr r=ro 

2k 

( )
From Equation 2.27, h(Ts − T∞) = −k −(˙ = (˙qro/2k) qro/2). 

Therefore, the surface temperature in Equation 2.25 can be determined as 

q̇roTs = T∞ +	 (2.28)
2h 
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2.3	 Conduction through Fins with Uniform 
Cross-Sectional Area 

From Newton’s law of cooling, heat transfer rate can be increased by either 
increasing temperature difference between surface and fluid, heat transfer 
coefficient, or surface area. For a given problem, temperature difference 
between surface and fluid may be fixed, and increasing heat transfer coef­
ficient may result in more pumping power. One popular way to increase heat 
transfer rate is to increasing surface area by adding fins on the heated surface. 
This is particularly true when the heat transfer coefficient is relatively low such 
as air-side heat exchangers (e.g., the car radiators) and air-cooled electronic 
components. Heat transfer rate can increase dramatically by increasing many 
times of surface area with many fins. Therefore, heat is conducted from the 
based surface into fins and dissipated into the cooling fluid. However, tem­
perature drops when heat is conducted through fins due to a finite thermal 
conductivity of the fins and the convective heat loss to the cooling fluid. This 
means the fin temperature is not the same as the base surface temperature 
and the temperature difference between the fin surface and the cooling fluid 
reduces along the fins. It is our job to determine the fin temperature in order 
to calculate the heat loss from the fins to the cooling fluid. 

In general, the heat transfer rate will increase with the number of fins. But, 
there is limitation on the number of fins. The heat transfer coefficient will 
reduce if the fins are too crowded. In addition, heat transfer rate will increase 
with thin fins with high thermal conductivity. But, there is limitation on the 
thickness of thin fins due to manufacturing concern. Here we are not inter­
ested in optimizing the fin dimensions but in determining the fin temperature 
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FIGURE 2.7 
One-dimensional conduction through thin fins with uniform cross-section area. 

at a given fin geometry and working conditions. We assume that heat conduc­
tion through the fin is 1-D steady state because the fin is thin. The temperature 
gradient in the other two dimensions is neglected. We will begin with the con­
stant cross-sectional area fins and then consider the variable cross-sectional 
area fins. The following is the energy balance of a small control volume of 
the fin with heat conduction through the fin and heat dissipation into cooling 
fluid, as shown in Figure 2.7. The result of temperature distributions through 
fins of different materials can be seen from Figure 2.8. 

dqx qx − qx + dx − hAs(T − T∞) = 0 (2.29)
dx 

where As = P dx, and P is perimeter of the fin, and qx is from Fourier’s 
Conduction Law shown in Equation 1.10. 

d dT − −kAc dx − hP dx(T − T∞) = 0 (2.30)
dx dx 

x 

Tb 

T∞ 

Plastic 
Steel 

Aluminum 
Copper 

FIGURE 2.8 
Temperature distributions through fins of different materials. 
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If the cross-sectional area is constant, that is, Ac = constant, and k is also 
constant, Equation 2.30 can be simplified as 

d2T 
dx2 

d2(T − T∞) 

dx2 

− 

− 

hP 
kAc 

(T − T∞) = 0 

hP 
kAc 

(T − T∞) = 0 

(2.31) 

Let θ(x) = T(x) − T∞, Equation 2.31 becomes 

d2θ 

dx2 − 
hP 
kAc 

θ = 0 (2.32) 

Let m2 = hP/kAc, Equation 2.32 becomes 

d2θ 

dx2 − m2θ = 0 (2.33) 

The general solution is 

θ(x) = c1emx + c2e−mx 

with the following boundary conditions: 
At the fin base, 
x = 0, T = Tb, then θ(0) = Tb − T∞ = θb 
At the fin tip, 
x = L, there are four possible cases 

1. Convection boundary condition −k(∂T/∂x)| = h(TL − T∞), then x=L 
(∂θ(L)/∂x) = (h/−k)θL 

2. The fin tip is insulated −k(∂T/∂x)| = 0 or  (∂θ(L)/∂x) = 0x=L 

3. The tip temperature is given as T| = TL or θ(L) = TL − T∞ = θLx=L 

4. For a long fin, L d > 10 ∼ 20, T| = T∞, or  θ(L) = T∞ − T∞ = 0,x=L 
which is an ideal case. 

Applying boundary conditions: 

x = 0, θ(0) = θb = c1 + c2 

x = L 

∂θ(L) h mL + c2(− −mL = −(h/k)(c1emL +For case 1: = −k θL, that is, c1me m)e
∂x 

c2e−mL), solve for c1 and c2, one obtains the temperature distribution as 
follows: 

θ(x) T(x) − T∞ cosh m(L − x) + (h/mk) sinh m(L − x) = = (2.34)
θb Tb − T∞ cosh mL + (h/mk) sinh mL 
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The heat transfer rate through the fin base (qf) is  

dT � dθ(0) 
qf = qx = −kAc = −kAcdx dxx=0 

sinh mL + (h/mk) cosh mL = M (2.35)
cosh mL + (h/mk) sinh mL 

√ 
where M = hPkAcθb 

emx − e−mx 
sinh mx = 

2 
emx + e−mx 

cosh mx = 
2 

d sinh mx = cosh mx · m dx
dx 

d cosh mx = sinh mx · m dx
dx 

For case 2: dθ/dx| = 0, that is, c1memL − c2me−mL = 0, solve for c1 andx=L 
c2, one obtains the temperature distribution through the fin base (qf) as 

θ(x) T(x) − T∞ cosh m(L − x) = = (2.36)
θb Tb − T∞ cosh mL 

)dT � dθ(0) 
qf = qx = −kAc = −kAc = hPkAcθb tanh mL (2.37) 

dx dxx=0 

mL + c2e−mLFor case 3: θ(L) = θL, that is, c1e = θL, solve for c1 and c2, one 
obtains the temperature distribution and heat transfer through the fin base 
(qf) as  

θ(x) T(x) − T∞ (θL/θb) sinh mx + sinh m(L − x) = = (2.38)
θb Tb − T∞ sinh mL 

)dT � dθ(0) cosh mL − θL/θb qf = qx = −kAc = −kAc = hPkAcθb (2.39)
dx dx sinh mLx=0 

For case 4: very long fins, θ(L) = 0, then c1 = 0, c2 = θb, we obtained the 
following temperature distribution and heat transfer rate through the fin base 
(qf) as 

θ = e−mx (2.40)
θb 

dθ(0) )
qf = qx = −kAc = M = hPkAcθb (2.41)

dx 
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It should be noted that the above results can be applied to any fins with 
uniform cross-sectional area. This includes the fins with circular, rectangu­
lar, triangular, and other cross sections as shown in Figure 2.7. One should 
know how to calculate the fin cross-sectional area Ac and fin perimeter P 
(circumferential length) for a given uniform cross-sectional area fin geometry. 

2.3.1 Fin Performance 

2.3.1.1 Fin Effectiveness 

Most often, before adding the fins, we would like to know whether it is worth­
while to add fins on the smooth heated surface. In this case, we define the fin 
effectiveness. The fin effectiveness is defined as the ratio of heat transfer rate 
through the fin surface to that without the fin (i.e., convection from the fin 
base area). 

qwith fin 
ηε = (2.42)

qwithout fin 

The fin effectiveness must be greater than unity in order to justify using 
the fins. Normally, it should be greater than 2 in order to include the material 
and manufacturing costs. In general, the fin effectiveness is greater than 5 for 
most of the effective fin applications. For example, for the long fins (case 4 fin 
tip boundary conditions), the fin effectiveness is 

√ 
hPkAcθb kP 

ηε = = > 1 ∼ 5 (2.43)
hθbAc hAc 

2.3.1.2 Fin Efficiency 

We would like to know the fin efficiency after we have decided to add the 
fins. The fin efficiency is defined in Equation 2.42 as the ratio of heat transfer 
through the fin surface to that through a perfect conducting fin (an ideal fin 
with infinite thermal conductivity as super conductors). 

qfin 
ηf = (2.44)

qmax 

By definition, the fin efficiency is between 0 and 1. However, the fin effi­
ciency is around 0.9–0.95 for most of the efficient fin application. For example, 
for long fins (case 4 fin tip boundary conditions), the efficiency is 

√ 
hPkAcθb

ηf = ≥ 90% (2.45)
hPLθb 

http:0.9�0.95
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In order to get the higher fin effectiveness and fin efficiency, we need to have 
a thin fin (larger P/Ac ratio) with larger thermal conductivity k (aluminum or 
copper) and low working fluid heat transfer coefficient h (air cooling). 

q = qfin + qnon-fin 

q = Nηfqmax + h(Tb − T∞)Anon-fin 

where N is the number of fins and 

qmax = h(Tb − T∞)As,fin 

dT � 
qfin = −kAc �dx x=0 

It is important to point out that the temperature distribution through a 
fin varies depending on the aforementioned fin tip boundary conditions. In 
general, these temperatures are a decay curve from the fin base to the fin tip 
as shown in Figure 2.8. These decay curves are the combination of sinh and 
cosh functions shown above. In addition, the heat transfer rate through the 
fin depends on the temperature gradient at the fin base and the fin thermal 
conductivity. For example, the temperature gradient at the fin base is greater 
for the steel fin than the aluminum fin. However, heat transfer rate through 
the fin base is higher for an aluminum fin than for a steel fin for the same fin 
geometry and working fluid conditions. This is because the aluminum fin has 
a much larger thermal conductivity than the steel fin. 

2.3.2 Radiation Effect 
"" If we also consider radiation flux q , the energy balance equation 2.29 can be r 

rewritten as 

dqx "" qx − qx + dx − hAs(T − T∞) + Asq = 0
dx r 

"" "" where q = radiation gain from solar = constant, or q = radiation loss = r r "" −εσ(T4 − T4 ). If we consider q = constant, the solution of above equation sur r 
can be obtained by Equation 2.34 by setting 

"" qrθ = T − T∞ − 
h 

"" However, if we consider q = −εσ(T4 − T4 ), the above energy balance r sur
equation can be rewritten as 

dqx qx − qx + dx − hAs(T − T∞) − εσAs(T4 − T4 ) = 0
dx sur



If we let T∞ = Tsur, hr = εσ(T2 + T2 ∞)(T + T∞), the above equation can be 
written as 

d2(T − T∞) 

dx2 − 
(h + hr)P 

kAc 
(T − T∞) = 0 

The solution of the above equation can be obtained by numerical 
integration. 
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2.4	 Conduction through Fins with Variable Cross-Sectional 
Area: Bessel Function Solutions 

Most often, we would like to have a fin with decreasing fin cross-sectional 
area in the heat conduction direction in order to save material costs. In other 
situations, fin cross-sectional area increases in the heat conduction direction 
such as an annulus fin attaching to the circular tube (the so-called fin tube). In 
these cases, we deal with steady-state 1-D heat conduction through fins with 
variable cross-sectional area. Bessel function solutions are required to solve 
temperature distribution through these types of fin problems [2–4]. Figure 2.9 
shows the heat conduction through variable cross-sectional area fins and heat 
dissipation to working fluid. 

Consider the energy balance of a small control volume in the fin, 

dqx qx − qx + dx − hAs(T − T∞) = 0
dx 

dqx−	 dx − hAs(T − T∞) = 0
dx 

where As = P dx, and P is perimeter of the fin, and qx is from Fourier’s 
Conduction law shown in Equation 1.10. 

d dT − −kAc dx − hP dx(T − T∞) = 0
dx dx 

If k is constant, we have 

d dT hP
Ac − (T − T∞) = 0

dx dx k � � (2.46)
d d(T − T∞) hP 

Ac − (T − T∞) = 0
dx dx k 

For example, for an annulus fin with uniform thickness t as shown in 
Figure 2.9b, the fin cross-sectional area from the centerline of the tube is 



dx 

hAs(T−T∞) 
h, T∞ 

qf qxx xdqqx dx+ dx 

(a) 

t 

r1 

r2 

dr 

(b) 

h, T∞ 

qf 

(c) (d) 

dx 
0x 

ro 

t 

o 

r 

h, T∞
h, T∞ 

qf 

Ac = 2πr · t. The fin perimeter including the top and the bottom, P = 2 · 2πr. 
Let θ = T − T∞, Equation 2.46 becomes 

d 
dr 

� 
2πrt 

dθ 

dr 

� 
− 

h · 4πr 
k 

θ = 0 

d 
dr 

� 
r 

dθ 

dr 

� 
− 

2 hr  
kt 

θ = 0 

r 
d 
dr 

� 
r 

dθ 

dr 

� 
− 

2 hr2 

kt 
θ = 0 

(2.47) 

r 
d 
dr 

� 
r 

dθ 

dr 

� 
− m2r2θ = 0 

where m2 = 2h/kt. 

1. For heat generation problem—Bessel function: The solutions of 
Equation 2.47 can be a typical Bessel function with heat generation 
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FIGURE 2.9 
One-dimensional heat conduction through thin fins with variable cross-section area. (a) Conical 
fin; (b) annular fin; (c) taper fin; (d) disk fin. 
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as the following format: 

( )
2 2x 

d 
x 

dθ + m x2 − ν θ = 0 (2.48)
dx dx 

θ = a0Jν(mx) + a1Yν(mx), ν = 0, 1, 2, . . .  (2.49) 

2. For heat loss problem—Modified Bessel function: The solutions of 
Equation 2.47 can be the typical modified Bessel function with heat 
loss as the following format: 

( )
2 2x 

d 
x 

dθ − m x2 + ν θ = 0 (2.50)
dx dx 

θ = a0Iν(mx) + a1Kν(mx), ν = 0, 1, 2, . . .  (2.51) 

Comparing Equations 2.47 and 2.50, r = x, the general solution of Equation 
2.47 is the same format as Equation 2.51 with ν = 0 

θ(mr) = a0I0(mr) + a1K0(mr) (2.52) 

with the following boundary conditions: 
At the fin base, r = r1, T = Tb, then θ = Tb − T∞ = θb. 
At the fin tip, r = r2, there are four possible cases as discussed before, 

1. Convective boundary 

∂T � ∂θ(r2) −h −k = h(Tr2 − T∞) or = θr2∂r ∂r kr=r2 

2. The tip fin is insulated 

∂T � ∂θ(r2)−k = 0 or  = 0 
∂r ∂rr=r2 

3. Top tip temperature is given 

T|r=r2 = Tr2 or θ(r2) = Tr2 − T∞ = θr2 

4. For a long fin r2/t > 10 ∼ 20 

T|r=r2 = T∞ or θ(r2) = T∞ − T∞ = 0 

For case 2, the fin tip is insulated, for example: 

At r = r1, θ = θb = a0I0(mr1) + a1K0(mr1), 

∂θ(r2) dI0(mr) � dK0(mr) � 
At r = r2, = a0 + a1 

∂r dr drr=r2 r=r2 

= a0mI1(mr2) − a1mK1(mr2) = 0, 
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where applying the properties of I and K, 

d d
I0(mr) = mI1(mr) and K0(mr) = −mK1(mr)

dr dr
 

Solve for a0 and a1
 

K1(mr2)
 a0 = θbI0(mr1)K1(mr2) + I1(mr2)K0(mr1)
 

I1(mr2)
 a1 = θbI0(mr1)K1(mr2) + I1(mr2)K0(mr1) 

one obtains the temperature distribution as 

θ(r) T(r) − T∞ I0(mr)K1(mr2) + I1(mr2)K0(mr) = = (2.53)
θb Tb − T∞ I0(mr1)K1(mr2) + I1(mr2)K0(mr1) 

Therefore, heat transfer through the fin base can be calculated as 

dθ � dθ � 
qf = −kAc = −k(2πr1)(t)dx drr1 r=r1 

I1(mr1)K1(mr2) − I1(mr2)K1(mr1) qf = 2πkr1tm θb (2.54)
I0(mr1)K1(mr2) + I1(mr2)K0(mr1) 

And the fin efficiency can be determined as 

qf 
ηf = 

h2π(r2
2 − r1

2)θb 

It is important to point out that temperature decreases from the fin base 
to the fin tip depending on the specified fin tip boundary conditions. The 
temperature decay curve again is a combination of Bessel function I0 and K0. 
The characteristics of Bessel functions J, Y, I, and K, and their derivatives are 
shown in Figure 2.10. 

2.4.1 Radiation Effect 
"" If we also consider radiation effect, q = constant = positive value, then the r "" above solution can be used by replacing θ = T − T∞ − (q /h). However, if we r "" consider q = −εσ(T4 − T4 ), and T∞ = Tsur, hr ∞)(T + T∞), the = εσ(T2 + T2 

r sur
energy balance equation 2.46 can be written as 

d d(T − T∞) (h + hr)PAc − (T − T∞) = 0
dx dx k 

The solution of the above equation can be obtained by numerical 
integration. 
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FIGURE 2.10 
The characteristics of Bessel functions. 

Examples 

2.1. A composite cylindrical wall (Figure 2.11) is composed of two materials of 
thermal conductivity kA and kB, which are separated by a very thin, electric 
resistance heater for which interfacial contact resistances with material A and 
B R "" tc,B, respectively. Liquid pumped through the tube is at a temper­tc,A, R "" 
ature T∞,i and provides a convection coefficient hi at the inner surface of 

FIGURE 2.11 
Thermal circuit of a composite cylindrical wall and all resistance. 
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the composite. The outer surface is exposed to ambient air, which is at T∞,o 
and provides a convection coefficient of ho. Under steady-state conditions, 

"" a uniform heat flux of qh is dissipated by the heater. 

a. Sketch the equivalent thermal circuit of the system and express all 
resistances in terms of relevant variables. 

b. Obtain an expression that may be used to determine the heater tempera­
ture, Th. 

c. Obtain an expression for the ratio of heat flows to the outer and inner 
" " fluids, q /qi . How might the variables of the problem be adjusted to o


minimize this ratio?
 

SOLUTION 

a. See the sketch shown in Figure 2.11. 

b. Performing an energy balance for the heater, Ėin = Ėout, it follows that 

"" " " Th − T∞,iqh(2πr2) = qi + q = o 
(hi2πr1)−1 + (ln(r2/r1)/2πkB) + R "" tc,B 

Th − T∞,o+ 
(ho2πr3)−1 + (ln(r3/r2)/2πkA) + R "" tc,A 

c. From the circuit, 

" (hi2πr1)−1 + (ln (r2/r1) /2πkB) + R "" qo (Th − T∞,o) tc,B= · " (ho2πr3)−1 + (ln (r3/r2) /2πkA) + R "" qi (Th − T∞,i) tc,A 

2.2. Heat is generated at a rate q̇ in a large slab of thickness 2L, as shown in 
Figure 2.5a. The side surfaces lose heat by convection to a liquid at temper­
ature T∞. Obtain the steady-state temperature distributions for the following 
cases: 

a. q̇ = q̇o 1 − (x/L)2 , with x measured from the centerplane. 

b. q̇ = a + b(T − T∞) 

SOLUTION 

a. q̇ = q̇o 1 − (x/L)2 

( )2d2T q̇o x = −  1 − 
dx2 k L 

dT q̇o 1 x3 
= −  x − + C1dx k 3 L2 

4q̇o 1 1 x
T = −  x2 − + C1x + C2k 2 12 L2 
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dT 
Boundary conditions: x = 0, = 0 (symmetry); x = L,

dx 

dT − k = h (T − T∞)
dx 

Substituting the boundary conditions into the above equation to replace 
C1 and C2, 

( )4 ( )2q̇oL2 5 1 x x 4 
T − T∞ = + − + 

2k 6 6 L L 3Bi 

b. q̇ = a + b(T − T∞) 

d2T b a + T − T∞ − = 0 
dx2 k b 

Solving the above equation, 

( a ) ( )1/2 ( )1/2T − T∞ − = C1 cos b/k x + C2sin b/k x 
b 

Applying boundary conditions, 

( ) ( )1/2 ( )
a h cos b/k a/b x 

T − T∞ − = ( ( (b h cos b/k
)1/2 L + b/k

)1/2 sin b/k
)1/2 L 

2.3. A long gas turbine blade (Figure 2.12) receives heat from combustion gases 
by convection and radiation. If reradiation from the blade can be neglected 
Ts « T∞, determine the temperature distribution along the blade. Assume 

a. The blade tip is insulated. 

b. The heat transfer coefficient on the tip equals that on the blade sides. 

The cross-sectional area of the blade may be taken to be constant. 

SOLUTION 

If the blade is at a much lower temperature than the combustion gases, radi­
ation emitted by the blade will be much smaller than the absorbed radiation 
and can be ignored to simplify the problem. An energy balance on an element 
of fin Δx long gives 

dT � dT � −kAc + kAc = 0 � � − hPΔx(T − T∞) + qradPΔx 
dx dxx x+Δx 

Dividing by Δx and letting Δx → 0, 

d2T hP qradP − (T − T∞) + = 0 
dx2 kAc kAc 
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FIGURE 2.12 
A turbine blade modeled as a fin with constant cross-sectional area. 

Since qrad is a constant, we rewrite this equation as 

d2T hP qrad − T − T∞ + = 0 
dx2 kAc h 

" which defines an “effective” ambient temperature T = T∞ + qrad/h. Then ∞ " the solutions can be obtained by replacing T∞ with T∞. 

a. Insulated blade tip. 

( )
T − T∞ + qrad/h cosh m (L − x) ( ) = 
Tb − cosh mLT∞ + qrad/h

b. Tip and side heat transfer coefficient equal. 

( ) ( )
T − cosh m (L − x) + h/mk sinh m (L − x)T∞ + qrad/h( ) = ( )

cosh mL + h/mk sin mLTb − T∞ + qrad/h

2.4. The attached Figure shows a straight fin of triangular profile (Figure 2.13). 
Assume that this is a thin fin with w » t . Derive the heat conduction equation 
of fin: determine the temperature distributions in the fin analytically; and 
determine the fin efficiency. 

SOLUTION 

From Figure 2.13, 

d dT h dAsAc − (T − T∞) = 0 (2.55)
dx dx k dx 

tw d2T tw dT 2hw 
x + − (T − T∞) = 0 

L dx2 L dx k 



 T∞, h 

t W 
dx 

y 

L x 

� � 

d2T dT 2h 
x + − L (T − T∞) = 0 

dx2 dx kt 

2 d
2θ dθ 

x + x − m2Lxθ = 0 (2.56)
dx2 dx 

where 

t
Ac = w x 

L 

dAs = 2w dx 

θ ≡ T − T∞ 

2h2 ≡m
kt 

As � 2wL 

But we need z2(d2θ/dz2) + z(dθ/dz) − z2θ = 0, for the modified Bessel 
function solution 

So, z2 ∼ x , z ∼ √ 
x ( )√ √ √ 

From the solution form, I0 2m xL , imply z ∼ x = 2m xL 

dz √ 1 √ 1 2m2L−1/2= 2m L · · x = m L √ = 
dx 2 x z 

dθ dθ dz d2θ d dθ dz = · ; = · ;
dx dz dx dx2 dz dx dx 
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FIGURE 2.13 
A triangular straight fin with variable cross-sectional area. 
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Substituting into Equation 2.56 

2 d
2θ dθ 

z + z − z2θ = 0 (2.57)
dz2 dz 

The solution to the above equation is 

θ = C1Io (z) + C2Ko (z) 

Boundary conditions 

at x = 0, Ko → ∞, C2 = 0, 

at x = L, θ = θb, ( )√ 
I0 2m xL

θ = θb · I0(2 mL) 

dT � I1(2 mL) 
qf = +kAc = θbktwm 

dx I0(2 mL)x=L 

qf 1 I1(2 mL)
ηf = = 

hθb2wL mL I0(2 mL) 

2.5. A hollow transistor (Figure 2.14) has a cylindrical cap of radius ro and height 
L, and is attached to a base plate at temperature Tb. Show that the heat 
dissipated is 

( ) I0 (mro) sinh mL + I1 (mro) cosh mL 
qf = 2πkrot Tb − T∞ m 

I0 (mro) cosh mL + I1 (mro) sinh mL 

where the metal thickness is t , m = (h/kt)1/2, and the heat transfer coef­
ficient on the sides and top is assumed to be the same, h, and outside 
temperature, T∞. 
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FIGURE 2.14 
A hollow transistor modeled as a fin. 
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SOLUTION 

The cap is split into two fins, (1) a straight fin of width 2πro and length L, and 
(2) a disk fin of radius ro.
 

For the straight fin with T = Tb at x = 0,
 

( )1/2T1 − T∞ = C1 sinh mx + (Tb − T∞) cosh mx ; m = h/kt (2.58) 

For the disk with dT /dr = 0 at  r = 0, 

( )1/2T2 − T∞ = C2I0 (mr) ; m = h/kt (2.59) 

The constants C1 and C2 are determined by matching the temperature and 
heat flow at the join, 

T1(L) = T2(ro); dT /dx L = − dT /dr ; (2.60)x= r=ro 

Since kAc is the same for both fins at the junction. Substituting Equa­
tions 2.58 and 2.59 into Equation 2.60 gives 

( )
C2I0 (mro) = C1 sinh mL + Tb − T∞ cosh mL ( )−C2I1 (mro) = C1 cosh mL + Tb − T∞ sinh mL 

Solving, 

( ) I0 (mro) sinh mL + I1 (mro) cosh mL
C1 = − Tb − T∞ I0 (mro) cosh mL + I1 (mro) sinh mL 

The heat dissipation is the base heat flow of fin 1, 

dT1 qf = −kAc = −kAcmC1dx x=0 

( ) I0 (mro) sinh mL + I1 (mro) cosh mL = 2πkrot Tb − T∞ I0 (mro) cosh mL + I1 (mro) sinh mL 
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Remarks 

This chapter deals with 1-D steady-state heat conduction through the plane 
wall with and without heat generation, cylindrical tube with and without 
heat generation, and fins with constant and variable cross-sectional area. 
Although it is a 1-D steady-state conduction problem, there are many engi­
neering applications. For example, heat losses through building walls, heat 
transfer through tubes, and heat losses through fins. In undergraduate heat 
transfer, we normally ask you to calculate heat transfer rates through the plane 

http:h/kt(2.59
http:h/kt(2.58
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walls, circular tubes, and fins, with given dimensions, material properties, and 
thermal boundary conditions. Therefore, you can pick up the right formulas 
and plug in with these given numbers and obtain the results. 

However, in this intermediate heat transfer level, we are more focused on 
how to solve the heat conduction equation with various thermal boundary 
conditions and how to obtain the temperature distributions for a given phys­
ical problem. For example, how to solve the temperature distributions for the 
plane walls, circular tubes, with and without heat generation, and fins with 
constant and variable cross-sectional area, with various thermal boundary 
conditions. In particular, we have introduced one of very powerful mathe­
matical tools, Bessel function, to solve the fins with variable cross-sectional 
area with various thermal boundary conditions. This is the only thing new as 
compared to the undergraduate heat transfer. 

PROBLEMS 

2.1. The performance of gas turbine engines may be improved by 
increasing the tolerance of the turbine blades to hot gases 
emerging from the combustor. One approach to achieving high 
operating temperatures involves application of a thermal barrier 
coating (TBC) to the exterior surface of a blade, while passing 
cooling air through the blade. Typically, the blade is made from 
a high-temperature superalloy, such as Inconel (k ≈ 25 W/m K) 

while a ceramic, such as zirconia (k ≈ 1.3 W/m K), is used as 
a TBC. 

Consider conditions for which hot gases at T∞,o = 1700 K and 
cooling air at T∞,i = 400 K provide outer- and inner-surface con­
vection coefficients of ho = 1000 W/m2 K and hi = 500 W/m2 K, 
respectively. If a 0.5-mm-thick zirconia TBC is attached to a 5­
mm-thick Inconel blade wall by means of a metallic bonding 
agent, which provides an interfacial thermal resistance of R "" = t,c 
10−4m2 K/W, can the Inconel be maintained at a temperature that 
is below its maximum allowable value of 1250 K? Radiation effects 
may be neglected, and the turbine blade may be approximated as 
a plane wall. Plot the temperature distribution with and without 
the TBC. Are there any limits to the thickness of the TBC? 

2.2. 1-D heat conduction through a circular tube, as shown in Fig­
ure 2.3. Determine heat loss per tube length as the following 
conditions: 

Given: 

Steam Inside the Pipe Air Outside the Pipe Steel Pipe AISI 1010 

T∞1 = 250◦C T∞2 = 20◦C 2r1 = 60 mm 
h1 = 500 W/m2K h2 = 25 W/m2K 2r2 = 75 mm 

ε = 0.8 

Find: q/L =? 
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2.3. Heat is generated at a rate q̇ in a long solid cylinder of radius 
ro, as shown in Figure 2.6. The cylinder has a thin metal sheath 
and is immersed in a liquid at temperature T∞. Heat transfer 
from the cylinder surface to the liquid can be characterized by 
a heat transfer coefficient h. Obtain the steady-state temperature 
distributions for the following cases: 

a.	 q̇ = q̇o
�
1 − (r/r 2

o) . 
b.	 q̇ = a + b(T 

�
− T∞). 

2.4. 1-D, a hollow cylindrical copper tube fin with constant cross-
sectional area (Figure 2.15). Disk-shaped transistor dissipates 
0.2 W during steady state. Good insulation at the base plate.
 
L = 15 mm, ro = 7.75 mm, ri = 7.5 mm, Assume: h1 = 0 (no cool­
ing)
 
t = 0.25 mm
 
Air cooling: T∞ = 25◦C, h2 = 50 W/m2K
 
Find: copper tube temperature distribution.
 

2.5. A thin metal disk, as shown in Figure 2.9d, is insulated on one side 
and exposed to a jet of hot air at temperature T∞ on the other. The 
convection heat transfer coefficient h can be taken to be constant 
over the disk. The periphery at r = R is maintained at a uniform 
temperature TR. 
a.	 Derive the heat conduction equation of disk. 
b. Determine the disk temperature distributions. 
c.	 Do you think the disk temperature is hotter at the center or the 

periphery? Why? 
2.6. Given a relatively thin annular fin with a uniform thickness, as 

shown in Figure 2.9b, that is affixed to a tube. The inner and outer 
radii of the fin are ri and ro, respectively, and the thickness of 
the fin is t. The tube surface (i.e., the base of the annular fin) is 
maintained at a temperature of Tb or T(ri) = Tb. Both the top 
and the bottom surfaces are exposed to a fluid at T∞. The con­
vection heat transfer coefficient between the fin surfaces and the 
fluid is h. 
a.	 Derive the steady-state heat conduction equation of the annu­

lar fin, and propose a solution of the annular fin temperature 
distribution with the associate boundary conditions. 

Transistor 

T•, h2 T•, h2 

T•, h2T•, h2 h1 = 0 

Tb 
ri 
ro 

FIGURE 2.15 
A hollow cylindrical copper tube fin. 
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b. If during the air cooling, the annular fin has also received radi­
ation energy from the surrounding environment, Tsur, can you 
sketch, compare, and comment on the fin temperature profile 
T(r) with that in (a)? 

2.7. Both sides of a very thin metal disk, as shown in Figure 2.9d, are 
heated by convective hot air at temperature T∞. The convection 
heat transfer coefficient h can be taken constant over the disk. The 
periphery at r = R is maintained at a uniform temperature TR. 
a.	 Derive the steady-state heat conduction equation of the disk. 
b. Propose a solution method and the associated boundary con­

ditions that can be used to determine the disk temperature 
distributions. Sketch the disk temperature profile T(r). Do  
you think the disk temperature is hotter at the center or the 
periphery? Why? 

c.	 If during the air heating, the disk has also emitted a net uniform 
radiation flux q"" to the surrounding environment, derive the rad 
steady-state heat condition equation of the disk and propose 
a solution method to determine the disk temperature distri­
butions. Can you sketch, compare, and comment on the disk 
temperature profile with that in (b)? 

2.8. The front surface of a very thin metal disk is cooled by convective 
air at temperature T∞ while the back surface is perfectly insulated, 
as shown in Figure 2.9d. The convection heat transfer coefficient h 
can be taken to be constant over the front surface of the disk. The 
periphery at r = R is maintained at a uniform temperature TR by 
a heat source. 
a.	 Derive the steady-state heat conduction equation of 

disk. 
b. Determine the disk temperature distributions with the associ­

ated boundary conditions. Sketch the disk temperature profile 
T(r). 

c.	 If during the air cooling, the disk has also emitted a net uniform 
radiation flux q"" to the surrounding environment, derive rad 
the steady-state heat conduction equation of the disk and 
determine the disk temperature distributions. Can you sketch, 
compare, and comment on the disk temperature profile with 
that in (b)? 

2.9. A thin conical pin fin is shown in Figure 2.9a. Determine analyt­
ically the temperature profile in the pin fin. Also determine the 
heat flux through the pin fin base. 
Given: 
Pin fin tip temperature: TR > T∞ Pin fin height: l 
Pin fin base diameter: d Pin fin base temperature: Tb 
Cooling air at T∞, h Hot wall at Tb 

2.10. The wall of a furnace has a height	 L = 1 m and is at a uni­
form temperature of 500 K. Three materials of equal thickness 
t = 0.1 m, having the properties listed in the table attached, are 
placed in the order shown in the Figure to insulated the furnace 



  

  

Furnace 
500 K A B C 

Air 

T∞ = 300 K 
V∞ = 1.5 m/s 

1	 2 3 4 

wall (Figure 2.16). Air at T∞ = 300 K blows past the outer layer 
of insulation at a speed of V∞ = 1.5 m/s as shown in the figure. 
a.	 Assuming 1-D, steady conduction through the insulation lay­

ers, calculate the heat flux from the wall to the surroundings, 
q. For this, choose the most appropriate of the following two 
correlations: 

h̄L = 0.664 Re1/2Pr1/3(ReL < 105; laminarflow)Lk 

h̄L = (0.037Re0.8 − 850)Pr1/3(ReL > 105; turbulentflow)Lk 

¯where h is an average heat transfer coefficient, ReL is the 
Reynolds number based on L and V∞, and Pr is the Prandtl 
number of air. 

b. For the arrangement shown in the figure, calculate the tem­
peratures at surfaces 2, 3, and 4. 

c.	 How should the materials A, B, C be ordered to obtain the 
steepest temperature gradient possible between surfaces 1 
and 2? 

d. For this	 new arrangement, calculate the temperatures at 
surfaces 2, 3, and 4. 

Material K(W/m k) ρ(kg/m3) μ(kh/m s) cp(kJ/kg K) 

A 100 
B  10  
C 1 
Air 0.026 1.177 1.846 × 10−5 1.006 

2.11. A very long copper rod of small diameter is moving in a vac­
uum with a constant velocity, V (Figure 2.17). The long rod is 
moving from one constant temperature region, T0, at  x = 0, to 
another temperature region, TL (at x = L). Solve for the steady-
state temperature distribution in the rod between x = 0 and L. 
Neglect thermal radiation. 
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FIGURE 2.16 
A furnace composite plane wall model. 
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FIGURE 2.17 
A moving fin model. 

a.	 Write down the governing equation for axial temperature 
distribution when V = 0. 

b. Determine the axial temperature distribution which satisfies 
the specified boundary conditions when V = 0. 

c.	 Write down the governing equation for axial temperature 
distribution when V = 0. 

d. Determine the axial temperature distribution which satisfies 
the specified boundary conditions when V = 0. 

(Make any necessary assumption. For example, the thermal 
conductivity of the copper rod is k . . .) 

2.12. A thin long rod extends from the side of a probe that is in outer 
space. The base temperature of the rod is Tb. The rod has a diam­
eter, D, a length, L, and its surface is at an emissivity, ε. State all 
relevant assumptions and boundary conditions. 
a.	 Starting with an energy balance on a differential cross section 

of the pin fin, perform an energy balance on the rod and derive 
a differential equation that could be used to solve this problem. 

b. Sketch on the same plot the temperature distribution along 
the rod, and compare the heat loss through the rod for the 
following four cases: (1) The rod is made of aluminum; (2) 
apply paint on the aluminum rod; (3) the rod is made of steel; 
(4) apply the paint on the steel rod. 

2.13. Given a relatively thin annular fin with uniform thickness that is 
affixed to a tube. The inner and outer radii of the fin are ri and 
ro, respectively, and the thickness of the fin is w. The tube surface 
(i.e., the base of the annular fin) is maintained at a temperature of 
Tb, or  T(ri) = Tb. Both the top and bottom surfaces of the fin are 
exposed to a fluid at T∞. The convective heat transfer coefficient 
between the fin surfaces and the fluid is h. 
a.	 Show that, to determine the steady 1-D temperature distribu­

tion in the annular fin, T(r), the governing equation may be 
written in the form of a modified Bessel’s equation. 

d2	y 1 dy n2

dx
+  c2  y  0 2 x dx

−
� 

+
x2 

� 
=

where y = y(x), and c and n are constants. 
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b. The general solution of the above modified Bessel’s equation 
is y = C1In(cx) + C2Kn(cx), where C1 and C2 are constants, 
and In and Kn are the modified Bessel’s functions of the first 
and second kinds of order n, respectively. Assuming that 
the heat transfer on the outer surface of the fin is negligible 
[i.e., dT/dr = 0 at  r = ro], solve the governing equation to 
obtain the steady 1-D temperature distribution in the annular 
fin, T(r). 

c.	 You may also determine the steady 1-D temperature distribu­
tion in the annular fin numerically using the finite difference 
method. Give the finite-difference equations for the nodes at 
r = ri and r = ro and for a typical interior node. Please rear­
range the equations to give expressions for the temperatures 
at the nodes. 

2.14. An engineer has suggested that a triangular fin would be more 
effective than a circular fin for a new natural convection heat 
exchanger. The fins are very long and manufactured from Al 2024­
T6. The triangular fin has an equilateral cross section with a base 
dimension of 1.0 cm and the second fin has a circular cross sec­
tion with a 0.955 cm diameter. If the base temperature of the fin is 
maintained at 400◦C, which fin will transfer more heat and which 
fin has a greater effectiveness? 

[h = 25 W 2 /m K, k2024−T6 = 177 W/mK, T∞ = 25◦C] 
q 1/2

fin = (hPkAc) · θb εfin = qfin/hAcθb 

2.15. A thin conical pin fin is attached to a hot base plate at Tb. The 
cooling air has temperature T∞ and convection heat transfer coef­
ficient h. Determine analytically the temperature profile in the pin 
fin. Also, determine the heat flux through the pin fin base. 

2.16. Solve temperature profile for the annulus fin geometry as shown 
in Figure 2.9b, assume that the fin tip is exposed to convection 
fluid with same given temperature and convection heat transfer 
coefficient. 

2.17. Solve the temperature profile for the annulus fin geometry as 
shown in Figure 2.9b, assume that the fin tip is fixed at a given 
temperature between the fin base and the convection fluid. 

2.18. Determine the solutions shown in Equations 2.36 and 2.37. 
2.19. Determine the solutions shown in Equations 2.38 and 2.39. 
2.20. Determine the solutions shown in Equations 2.40 and 2.41. 
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Most often heat is conducted in two dimensions instead of one dimension 
as discussed in Chapter 2. For example, we are interested in determining the 
temperature distribution in a 2-D rectangular block with appropriate BCs. 
Once the temperature distribution is known, the associated heat transfer rate 
can be determined. The following are the steady-state 2-D heat conduction 
equations without heat generation and the typical BCs with given surface 
temperatures. 

∂2T 
∂x2 + 

∂2T 
∂y2 = 0 (3.1) 

∂2θ 

∂x2 + 
∂2θ 

∂y2 = 0, if let θ = T − T0 (3.2) 

Boundary conditions: 

x = 0, T = 0 or  x = 0, θ = 0 homogeneous BC 
x = a, T = 0 or  x = a, θ = 0 homogeneous BC 
y = 0, T = 0 or  y = 0, θ = 0 homogeneous BC 
y  b, T  Ts or y  b, θ  Ts  T0  θs nonhomogeneous BC = = = = − =

    
  

3 
2-D Steady-State Heat Conduction
 

3.1	 Method of Separation of Variables: Given 
Temperature BC 

Here, we defined a homogeneous BC as T = 0, or ∂T/∂x = 0, ∂T/∂y = 0; 
θ = 0, or ∂θ/∂x = 0, ∂θ/∂y = 0, that is, temperature or temperature gradient 
at a given boundary surface (in the x- or  y-direction) equals 0. In contrast, 
we define a nonhomogeneous BC as T = 0, ∂T/∂x = 0, ∂T/∂y = 0; or θ = 0, 
∂θ/∂x = 0, ∂θ/∂y = 0, that is, temperature or temperature gradient at a given 
boundary surface (in the x- or  y-direction) does not equal 0. 

Equations 3.1 and 3.2 can be solved by the method of separation of variable. 
By means of this, we can separate the temperature from depending on two 
directions, T(x, y), to one direction each, T(x) and T(y), respectively. The final 
2-D temperature distribution is a product of each 1-D temperature solution, 
that is, T(x, y) = T(x) · T(y). The following outlines the method of separation 

45 



  

y 

T = Ts Isofluxes 
b 

T = 0 T = 0 

Isotherm 

x 
T = 0 a 

y Ts θ = θs 
b 

T0 T0 

θ = 0 θ = 0 

x 
T0 θ = 0 a 

θ = T –T0 

46 Analytical Heat Transfer 

FIGURE 3.1 
2-D heat conduction with three homogeneous and one nonhomogeneous boundary conditions. 

of variable [1–4]. We need four BCs, two in the x-direction and two in the 
y-direction, to solve the 2-D heat conduction problem. One important note is 
that, among four BCs, only one nonhomogenoeus BC is allowed in order to 
apply the principal of separation of variable method. For a given problem, 
we need to make sure that only one nonhomogeneous BC exists either in the 
x- or in the  y-direction. The principal of superposition will be used for the 
problems having two, three, or four nonhomogeneous BCs. We will begin with 
the simplest case, as shown in Figure 3.1, with given surface temperatures as 
BCs. Then we will move to more complicated cases with surface heat flux and 
surface convection BCs as well as the problems required in the principal of 
superposition. 

T(x, y) = X(x)Y(y) (3.3) 

Then take the derivatives 

∂T ∂X dX = Y = Y 
∂x ∂x dx 

∂2T ∂2X d2X = Y = Y
 
∂x2 ∂x2 dx2
 



∂T ∂Y dY = X = X 
∂y ∂y dy 

∂2T ∂2Y d2Y = X = X 
∂y2 ∂y2 dy2 

Then substitute them into the 2-D conduction equation 3.1 

d2X d2Y
Y + X = 0 

dx2 dy2 

(3.4) 
1 d2X 1 d2Y − = 
X dx2 Y dy2 

The equality can hold only if both sides are equal to a constant as each side 
of Equation 3.4 is a function of an independent variable. The constant can 
be positive, negative, or zero. However, the positive number of the constant 
is the only possibility for the BCs in this case. The readers may note that 
zero and negative constants do not satisfy the BCs. Therefore, we express 
Equation 3.4 as 

1 d2X 1 d2Y 2− = = λ (3.5)
X dx2 Y dy2 

Then we have 

d2X/dx2 + λ2X = 0 ⇒ X = X(x), the equation for two homogeneous 
BCs, 

d2Y/dy2 − λ2Y = 0 ⇒ Y = Y(y), the equation for one homogeneous BC, 
X(x) = C1 cos λx + C2 sin λx, the solution for equation with two homo­

geneous BCs, 
Y(y) = C3e−λy + C4eλy or (Y(y) = C3 sinh λy + C4 cosh λy), the solution 

for equation with one homogeneous BC. 

Solve C1 and C2 for the x-direction equation 

at x = 0, T = 0, ⇒ X = 0, then C1 = 0,
 
at x = a, T = 0, ⇒ X = 0, then C2 sin λa = 0 ⇒ λna = nπ, n = 0, 1, 2, 3, . . . and
 
then,
 

nπ 
λn = 

a 

Therefore, 

nπx
X(x) = C2 sin 

a 
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Solve C3 and C4 for the y-direction equation at y = 0, T = 0, Y = 0 = C3 + 
C4 ⇒ C4 = −C3. 

− λny −λny − eλnyY( y) = C3e λny − C3e = C3(e ) 

With sinh(x) = (ex − e−x)/2, let C5 = C3/2, the above equation can be 
written as 

Y( y) = C5 sinh(λny) 

Then solve for the product equation, and let C2C5 = Cn. 
 nπx nπy nπx nπy

T(x, y) = X(x) · Y(y) = C2C5 sin sinh = Cn sin sinh 
a a a a  

at y = b, T = Ts = Cn sin(nπ/a)x sinh(nπ/a)b. 
Multiplying both sides by sin(nπx/a) dx, one obtains 

 mπx nπx nπb mπx
sin · Ts dx = Cn sin sinh sin dx 

a a a a 

Cn can be determined by the integration over x, 

Ts sin(mπx/a) dx 
(3.6)

sin(nπx/a) sinh(nπb/a) sin(mπx/a) dx 
Cn =

Cn = 0, if m = n; 

Ts sin(nπx/a) dx 
, if  m = n. 

(nπx/a) sinh(nπb/a) dx 
Cn =

sin2

one perform integration? From the integration table, oneHow does 
obtains 

a 
anπx a nπx a

1. sin dx = −  (1 − cos(nπ))cos � = 
a nπ a 0 nπ

0 

= 
a 

nπ 

[
1 − (−1)n] = 

⎧ ⎨ 
⎩ 

0, n = even 
2a 
nπ 

, n = odd 

a � �aa nπx 1 2nπx a
sin2 nπx 

dx = − sin =2. 
2nπ 2 2a a a 0 

0 

or 
a a 

sin2 nπx 
a 

dx = 
a1 − cos(2nπx/a) a 1 a 2nπx � a

dx = − sin = 
2 2 2 2nπ 2a 0 

0 0 
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Therefore, one obtains 

(2/nπ) [1 − (−1)n] TsCn = 
sinh(nπb/a) 

Finally, the 2-D temperature distribution follows: 

∞ nπx nπy
T(x, y) = Cn sin sinh	 (3.7) 

a a 
n=1 

∞ 
(2/nπ) [1 − (−1)n] Ts nπx nπy

T(x, y) =	 sin sinh (3.8)
sinh(nπb/a) a a 

n=1 

The second-order partial differential equations (PDEs) T(x, y) are split into 
two second-order ordinary differential equations (ODEs) T(x) and T(y). The 
second-order ODE with two homogeneous BCs is the so-called eigenvalue 
equation. The solution of the eigenfunctions, sine and cosine, depend on 
the two homogeneous BCs. The eigenvalues, λ, can be determined by one 
of the two homogeneous BCs (either both in the x-direction, or both in the 
y-direction). The solution of the other second-order ODE is a decay curve 
of combining e(x) and e(−x) for an infinite-length problem, or sinh(x) and 
cosh(x) for a finite-length problem. The only nonhomogeneous BC will be 
used to solve the final unknown coefficient Cn. The integrated value Cn can 
be determined by performing integration of sin, sin-square or cos, cos-square, 
depending on the given BCs, by using the characteristics of the orthogonal 
functions. 

If we let θ = T − T0, follow the same procedure, the 2-D temperature 
distribution becomes 

nπx nπy
θ(x, y) = θ(x)θ(y) = Cn sin sinh	 (3.9)

a a 
∞ 

(2/nπ) [1 − (−1)n] θs nπx nπy
θ(x, y) =	 sin sinh (3.10)

sinh(nπb/a) a a 
n=1 

3.2	 Method of Separation of Variables: Given Heat Flux 
and Convection BCs 

3.2.1 Given Surface Heat Flux BC 

The following shows the similar principal of using the separation of variable 
method to solve the 2-D heat conduction problems with one nonhomogeneous 
boundary specified as surface heat flux or surface convection condition [2]. 
As the aforementioned procedure, we need to make all BCs homogeneous 



 

 

 

 

 
� 

�
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T1 

T1T1 

a 

b 

" 
sq 

∂y 
= −k = given 

x 

y 

θ = T−T1 

θ = 0 

θ = 0 

θ = 0 

∂θ 

FIGURE 3.2 
2-D heat conduction with three homogeneous and one heat flux nonhomogeneous boundary 
conditions. 

but one. For example, in Figure 3.2, the three temperature BCs become homo­
geneous by setting θ = T − T1 and the only nonhomogeneous heat flux BC 

"" becomes q = −k(∂θ/∂y). The solution will be the product of sine and cosine s 
in the x-direction (two homogeneous BCs) and sinh cosh in the y-direction 
(one nonhomogeneous BC). As before, the nonhomogeneous heat flux BC will 
be used to solve the final unknown integrated value Cn. 

Given a long rectangular bar with a constant heat flux along one edge, 
other edges are isothermal. In order to obtain homogeneous BCs on the three 
isothermal edges, let θ = T − T1. Laplace’s equation, Equation 3.2, applies to 
this steady 2-D conduction problem. 

∂2θ ∂2θ + = 0 
∂x2 ∂y2 

Boundary conditions: 

at x = 0, y = 0, x = a, θ = 0 
"" at y = b, −k(∂θ/∂y) = qs 

The solution is subject to the three homogeneous BCs with θ replacing T, 

∞ nπx nπy
θ(x, y) = Cn sin sinh 

a a 
n=1 

Applying the last BC, nonhomogeneous, to solve for Cn, 

� ∞"" ( )∂θ �� qs nπx nπ nπb = −  = Cn sin cosh 
∂y k a a ay=b n=1 

a"" −(q /k) 0 sin(nπx/a) dxsCn = �a
(nπ/a) cosh(nπb/a) 0 sin2(nπx/a) dx 



 

  

  

y 

θ = T−T1 

T∞ , h ∂θ bh (θ−θ∞) = −k 
∂y 

b 

T1 T1 

θ = 0 θ = 0 

xT1 θ = 0 a 

 

"" −(q /k)(a/nπ)[1 − (−1)n]s= 
(nπ/a) cosh(nπb/a)[(a/2)]

"" −(q /k)(2/nπ)[1 − (−1)n]s= 
(nπ/a) cosh(nπb/a) 

Therefore, we obtain 

∞ "" 2q a[1 − (−1)n] nπx nπysT(x, y) = T1 − sin sinh (3.11) 
kn2π2 cosh(nπb/a) a a 

n=1 

3.2.2 Given Surface Convection BC 

A similar procedure can be applied for the only nonhomogeneous convection 
BC problem [2] shown in Figure 3.3. Again, the solution will be a product of 
sine and cosine in the x-direction and sinh and cosh in the y-direction, and 
the nonhomogeneous convection BC will be used to solve the final unknown 
integrated value of Cn. 

A long rectangular bar with one side cooled by convection and the others 
maintained at a constant temperature T1. 

Define θ = T − T1. Laplace’s equation applies to this steady 2-D conduction 
problem. 

∂2θ ∂2θ + = 0 
∂x2 ∂y2 

which must be solved subject to BCs 

x = 0, 0 < y < b : θ = 0, 

y = 0, 0 < x < a : θ = 0, 

x = a, 0  < y < b : θ = 0, 
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FIGURE 3.3 
2-D heat conduction with one convective boundary conditions. 
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⎧ ⎪	 ∂T ⎪ ⎪ h(T − T∞) = −k ⎪ ⎪	 ∂y⎪ ⎨ ∂(T − T1) y = b, 0  < x < a : h[(T − T1) − (T∞ − T1)] = −k ⎪	 ∂y⎪ ⎪ ⎪ ∂θ ⎪ ⎪ ⎩ h(θ − θ∞) = −k 
∂y 

The solution is subject to the three homogeneous BCs with θ replacing T, 

∞ nπx nπy
θ(x, y) = Cn sin sinh 

a a 
n=1 

and at y = b, applying nonhomogeneous BCs to solve for Cn: 

∞ 
∂θ nπx nπ nπb h nπx nπb = Cn sin cosh = −  Cn sin sinh − θ∞ 
∂y a a a k a a 

n=1	 n 

nπx nπ nπb h nπb h
Cn sin cosh + sinh = θ∞ a	 a a k a k 

n=1 

a
(h/k)θ∞ 0 sin(nπx/a) dx 

Cn = a 
((nπ/a) cosh(nπb/a) + (h/k) sinh(nπb/a)) sin2(nπx/a) dx 

0 

(h/k)θ∞(a/nπ) [1 − (−1)n]= 
((nπ/a) cosh(nπb/a) + (h/k) sinh(nπb/a)) [(a/2)] 

θ∞(2/nπ) [1 − (−1)n]= 
(sinh(nπb/a) + (nπ/a)(h/k) cosh(nπb/a)) 

Therefore, we obtain 

T − T1 
∞ 

(2/nπ) [1 − (−1)n] sin(nπx/a) sinh(nπy/a) =	 (3.12)
T∞ − T1 sinh(nπb/a) + (nπ/a)(h/k) cosh(nπb/a)

n=1 
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3.3	 Principle of Superposition for Nonhomogeneous BCs 
Superposition 

In some applications, we may have all three kinds of surface BCs applied 
to a given problem. For example, Figure 3.4 shows a 2-D heat conduction 
problem with given surface temperature, heat flux, and convection BCs, 



 

   

 
 

   

    

              

h, T∞ 
hθ = −k 

∂y 
∂θ 

T( y ) ∇2 T = 0 T0 ⇒ θ( y ) ∇2 θ = 0 
θ =T–T∞ 

θ0 
⇒ Superposition 

θ = θ1 + θ2 + θ3 

q″ 
∂y

q″ = −k ∂θ 

hθ1 = −k 
∂y 
∂θ1 hθ2 = −k 

∂y 
∂θ2 hθ3 = −k 

∂y 
∂θ3 

θ1 = 0 ∇2 θ1 = 0 θ1 = 0 θ2 = θ2 ( y ) ∇2 θ = 02 
θ2 = 0 θ3 = 0 ∇2 θ3 = 0 θ3 = θ0 

∂y
q″ = −k ∂θ1 

∂y 
0 = −k ∂θ2 

∂y 
0 = −k ∂θ3 

⊕ ⊕ 

� � 
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FIGURE 3.4 
Principle of superposition for two-dimensional heat conduction with four nonhomogenous 
boundary conditions. 

respectively. The problem becomes involving three, nonhomogeneous BCs 
after letting θ = T − T∞. We have to use the superposition principal, split­
ting the problem with three nonhomogeneous BCs into three individual 
problems [1]. For each of the problems, there is only one nonhomogeneous 
BC. Then the method of separation of variable can be applied. It is impor­
tant to note that both the heat conduction equations and the associated BCs 
must satisfy the superposition principal, respectively, that is, θ = θ1 + θ2 + θ3 
for both heat conduction equation and four BCs. From the aforementioned 
discussion, we know how to obtain the solution for θ1 (two homogeneous 
x-BCs and one nonhomogeneous at y = 0), θ2 (two homogeneous y-BCs and 
one nonhomogeneous at x = 0), and θ3 (two homogeneous y-BCs and one 
nonhomogeneous at x = b). Applying superposition, the final temperature 
distributions is θ = θ1 + θ2 + θ3. 

3.3.1 2-D Heat Conduction in Cylindrical Coordinates 

Figure 3.5 shows 2-D cylindrical coordinate systems. The following equations 
can be solved using the method of separation of variables as discussed above. 
The detailed solutions can be found from any advanced heat conduction 
textbook. 

∂2T 1 ∂T 1 ∂2T + + = 0 ⇒ T = R(r)Θ(φ) (3.13)
∂r2 r ∂r r2 ∂φ2 

1 ∂ ∂T ∂2T 
r + = 0 ⇒ T = R(r)Z(z) (3.14)

r ∂r ∂r ∂z2 
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r 

r 

z 

r 

z 

T(r,z) 

T(r,ϕ) 

T(r,z,ϕ) 

ϕ 

ϕ 

FIGURE 3.5 
2-D heat conduction in cylindrical coordinates. 

3.4	 Principle of Superposition for Multidimensional Heat 
Conduction and for Nonhomogeneous Equations 

3.4.1 3-D Heat Conduction Problem 

Sometimes we need to solve the 3-D heat conduction problems in Cartesian 
(rectangular) coordinates as shown in Figure 3.6. Basically, we are first to 
convert the 3-D into the 2-D heat conduction problem and then solve the 2-D 
problem by using the separation of variable method discussed earlier. The 
following is a brief outline on how to solve this type of problem. 

The steady-state 3-D heat conduction equation without heat generation is 

∂2T ∂2T ∂2T + + = 0	 (3.15)
∂x2 ∂y2 ∂z2 

T1 

T1 

T1T0 

x 

y y 

z x 
T1 

T1 

T1 

T1θ0 

FIGURE 3.6 
3-D heat conduction in Cartesian coordinates. 



Let θ = T − T1.
 
The above governing equation and the associated BCs become
 

∂2θ ∂2θ ∂2θ + + = 0 
∂x2 ∂y2 ∂z2 

x = 0, θ = 0, or ∂θ/∂x = 0; x = a, θ = 0, two homogeneous BCs, 
y = 0, θ = 0, or ∂θ/∂y = 0; y = b, θ = 0, two homogeneous BCs, 
z = 0, θ = θ0; z = c, θ = 0, one nonhomogeneous BC. 

Let θ = X(x)Y(y)Z(z). Put its derivatives in the above 3-D heat conduction 
equation and obtain 

− 
1 
X 

d2X 
dx2 = 

1 
Y 

d2Y 
dy2 + 

1 
Z 

d2Z 
dz2 = λ2 (3.16) 

This implies 

d2X 
dx2 + λ2X = 0 (3.17) 

− 
1 
Y 

d2Y 
dy2 = 

1 
Z 

d2Z 
dz2 − λ2 = μ2 

The last equation can be further written as 

⎧
d2Y ⎪ ⎪ + μ2Y = 0⎨ dy2 

(3.18) ⎪ ⎪d2Z ⎩ − (λ2 + μ2)Z = 0 
dz2 

Therefore, we need to solve two eigenvalue equations. The x-direction solu­
tion will be sine and cosine, the y-direction solution is sine and cosine, and 
the z-direction solution is sinh and cosh. The only nonhomogeneous BC 
in the z-direction will be used to determine the final unknown integrated 
value Cn. 

From the previous discussion, the solutions for X, Y, and Z follow: 

⎧
X ∼= c1 cos λx + c2 sin λx ⎪ ⎪ ⎨ 
Y ∼ sin μy= c3 cos μy + c4 ⎪ √ √ ⎪ ⎩Z ∼ − λ2+μ2z + c6e λ2+μ2z= c5e
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3.4.2 Nonhomogeneous Heat Conduction Problem 

The problem of steady-state 2-D heat conduction with uniform heat genera­
tion can be split into two problems shown below, θ(x, y) = ψ(x, y) + φ(x). We  
already know how to solve these two problems. 

· 
∂2θ ∂2θ q+ + = 0 (3.19)
∂x2 ∂y2 k 

∂2ψ ∂2ψ + = 0 
∂x2 ∂y2 

∂2φ q̇+ = 0 (3.20)
∂x2 k 

where 

− λyψ = X(x)Y(y) = (c1 cos λx + c2 sin λx) · (c3e λy + c4e ) 

Examples 

3.1 A 2-D rectangular plate is subjected to the following thermal BCs: 

x = 0, 0 < y < b : T = T0 

x = a, 0  < y < b : T = T0 

y = 0, 0 < x < a : T = T0 

y = b, 0  < x < a : T = cx 

a. Derive an expression for the steady-state temperature distribution T (x , y). 

b. Sketch the isotherms and isofluxes. 

SOLUTIONS 

a. 
∂2θ ∂2θ + = 0 (3.21)
∂x2 ∂y2 

( ) ( )
Let θ x , y = X (x) · Y y ; 

1 ∂2X ∂2Y 2= −  = λ
X ∂x2 ∂y2 

∂2X − λ2X = 0 (3.22)
∂x2 

∂2Y + λ2Y = 0 (3.23) 
∂y2 
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X = C1 cos (λx) + C2 sin (λx) 

− λyY = C3e λy + C4e

[ ] − λyθ = C1 cos (λx) + C2 sin (λx) C3e λy + C4e (3.24) 

Boundary conditions: 

i. x = 0: θ = 0 

ii. x = a: θ = 0 

iii. y = 0: θ = 0 

iv. y = b: θ = cx − T0 

Applying BC (i) into Equation 3.24, C1 = 0
 

Applying BC (ii) into Equation 3.24, C2 sinh (λa) = 0, λn = nπ/a.
 

Applying BC (iii) into Equation 3.24, C3 = −C4.
 

( ) (nπx ) ( )
λny − e−λnyθ x , y = C2 · C4 sin e

a 

( ) ∞ (nπx ) (nπy ) (3.25) 
θ x , y = Cn sin sinh 

a a 
n=1 

Applying BC (iv) and using orthogonal functions to evaluate Cn, 

a 
0 (cx − T0) sin (nπx/a) dx 

(3.26)a 

0 

Cn =
sin2 (nπx/a) dx

( )
nπb/asinh 

a 

0 

( )nπx 
(cx − T0) sin dx 

a 

( )2 ( ) ( ) a ( )aa nπx ax nπx T0 · a nπx = c sin − cos + cos . 
nπ a nπ a nπ a 00 

a ( ) 2nπx ca T0 · a 
(cx − T0) sin dx = (− cos (nπ)) + (cos (nπ) − 1) 

a nπ nπ 
0 

a (nπx ) ca2 T0 · a [ ]n+1 + n − 1(cx − T0) sin dx = (−1) (−1)
a nπ nπ 

0 

a 

0 

( )nπx a T0 · an(cx − T0) sin dx = (−1) (−ca + T0) − 
a nπ nπ 
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�a ( ) � � ��anπx x 1 2nπx a 
sin2 dx = − sin = 

a 2 4nπ a 20 
0 

2 (−1)n+1 (ca − T0) − 2T0⇒ Cn = ( )
nπ sinh (nπb/a)

Hence, 

( ) ∞ ( ) ( )2 (−1)n+1 (ca − T0) − T0 nπx nπy
θ x , y = ( ) sin sinh 

π n sinh nπb/a a a 
n=1 

b. See the sketch in Figure 3.7. 

3.2. A long rectangular bar 0 ≤ x ≤ a, 0  ≤ y ≤ b, shown in Figure 3.8, is heated 
at x = 0 with a uniform heat flux and is insulated at x = a and y = 0. The 
side at y = b loses heat by convection to a fluid at temperature T∞. 

a. Determine the temperature distribution T (x , y ). 

b. Sketch the isotherm and isoflux. 

 

∂Th(T−T∞) = −k y ∂y y ∂θhθ = −kh T∞, ∂y
bb 

θ = T–T∞ 
∂T ∂θ =0 = 0q q = −k  ∂θ 

∂x∂xs s ∂x 

0 ∂T a x 0 ∂θ a x =0 = 0∂y ∂y 
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cx 

0 0 

Isotherms Isofluxes 0 

FIGURE 3.7 
Sketch for the isotherms and isofluxes. 

FIGURE 3.8 
A long rectangular bar with heat flux as one nonhomogenous boundary condition. 



 

SOLUTIONS 

a. 

∂2θ ∂2θ + = 0 (3.27)
∂x2 ∂y2 

( )
Let θ x , y = X (x) · Y (y): 

1 ∂2X ∂2Y 2= −  = λ
X ∂x2 ∂y2 

∂2X − λ2X = 0 (3.28)
∂x2 

∂2Y + λ2Y = 0 (3.29) 
∂y2 

X = C1 sinh (λx) + C2 cosh (λx) ( ) ( )
Y = C3 sin λy + C4 cos λy[ ] [ ( ) ( )]

θ = C1 sinh (λx) + C2 cosh (λx) C3 sin λy + C4 cos λy (3.30) 

Boundary conditions: 

i. x = 0: qs = −k(∂θ/∂x) 

ii. x = a: ∂θ/∂x = 0 

iii. y = 0: ∂θ/∂y = 0 

iv. y = b: hθ = −k(∂θ/∂y)
 

Applying BC (iii) into Equation 3.30, C3 = 0.
 

Applying BC (ii) into Equation 3.30, C1λ cosh (λa) + C2λ sinh (λa) = 0, 
C2 = −C1 coth (λa). 

[ ] ( )
θ = Cn sinh (λx) − coth (λa) cosh (λx) cos λy (3.31) 

Applying BC (iv) into Equation 3.31, 

[ ] ( )
hCn sinh (λx) − coth (λa) cosh (λx) cos λb[ ] ( )= +kλCn sinh (λx) − coth (λa) cosh (λx) sin λb

( ) h 
λ tan λb = 

k 
∞ [ ] ( )

θ = Cn sinh (λnx) − coth (λna) cosh (λnx) cos λny (3.32) 
n=1 

( )
where λn tan λnb = (h/k). 
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Applying BC (i) into Equation 3.26, 

∞ 

qs = −k Cn λn cosh (λnx) − coth (λna) λn sinh (λnx) cos λny x=0 
n=1 

∞ ( )
qs = −k Cnλn cos λny

n=1 

b 

cos 
( )
λny dy = 

b � 

0 

Cn cos2 (λny
) 

dy− 
qs 

kλn 
0 

� ( ) ( )�b 
qs 1 ( )� y 2 sin λny cos λny− sin λny b = Cn +0kλn λn 2 4λn 0 

( )
2qs sin λnb

Cn = −  ( ( ) ( ) )
kλn sin λnb cos λnb + bλn

( )∞ 2qs sin λnb
θ = ( ( ) ( ) )

kλn sin λnb cos λnb + bλnn=1 

[ ] ( )× − sinh (λnx) + coth (λna) cosh (λnx) cos λny

3.3. A thin rectangular plate, 0 ≤ x ≤ a, 0  ≤ y ≤ b, as shown in Figure 3.9, with 
negligible heat loss from its sides, has the following BCs: 

x = 0, 0 < y < b: T = T1
 
x = a, 0  < y < b: T = T2
 

"" y = 0, 0 < x < a: q = 0 (insulated) s
 
y b, 0  < x < a: T T3
 = =

 

x 

y 

b 

0 

T = T3 

T = T1 T = T2 

a 
q″ = 0s 
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FIGURE 3.9 
A thin rectangular plate with two one nonhomogenous boundary condition. 
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a. Determine the steady-state temperature distribution. 

b. Sketch the isotherms and isofluxes. 

SOLUTIONS 

a. 

∂2T ∂2T + = 0 
∂x2 ∂y2 

Let θ = T − T1, then 

∂2θ ∂2θ + = 0 
∂x2 ∂y2 

Let θ = θ1 + θ2, 

∂2θ1 ∂2θ1+ = 0 
∂x2 ∂y2 

∂2θ2 ∂2θ2+ = 0 
∂x2 ∂y2 

[ ] [ ]
θ1 = C1 cos(λx) + C2 sin(λx) C3 cosh(λy) + C4 sinh(λy)

x = 0, θ1 = 0, ⇒ C1 = 0 
x = a, θ1 = 0, ⇒ λa = nπ; λn = (nπ/a) n = 1, 2, 3, . . .  
y = 0, ∂θ1/∂y = 0; ⇒ C4 = 0 

∞ 

θ1 = Cn cosh(λny) sin(λnx)
 

n=1
 

∞ ( )nπb nπx 
θ1(x , b) = (T3 − T1) = Cn1 cosh sin 

a a 
n=1 

a
(T3 − T1) 0 sin ((nπx/a)) dx 

Cn1 = ( ) �acosh (nπb/a) 0 sin
2 ((nπx/a)) dx [ ]

(T3 − T1)a · (1 − cos(nπ)/nπ) 2(T3 − T1) 1 − (−1)n= ( ) = ( )
(a/2) cosh (nπb/a) nπ cosh (nπb/a)

∞ [ ] ( ) ( )2(T3 − T1) 1 − (−1)n nπy nπx 
θ1 = ( ) · cosh sin 

πn cosh (nπb/a) a a 
n=1 

Solution for θ2 

[ ] [ ]
θ2 = C1 cosh(λx) + C2 sinh(λx) C3 cos(λy) + C4 sin(λy)
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y = 0, ∂θ/∂y = 0; ⇒ C4 = 0
 
y = b, θ2 = 0; ⇒ λn = nπ/2b
 
x = 0, θ2 = 0; ⇒ C1 = 0
 

∞ 

θ2 = Cn2 sinh(λnx) cos(λny) 

nodd 

∞ 

θ2(a, y) = (T2 − T1) = Cn2 sinh(λna) cos(λny), 
nodd 

�b ( )
(T2 − T1) 0 cos (nπy/2b) dy

Cn2 = ( ) �bsinh (nπa/2b) 0 cos2(λny) dy 

4(T2 − T1) sin ((nπ/2)) = ( )
nπ sinh (nπa/2b)

where sin((nπ/2)) = (−1)(n−1/2) for n odd 

∞ 4(T2 − T1)(−1)(n−1)/2 ( ) ( )nπx nπy
θ2 = ( ) sinh cos 

nπ sinh (nπa/2b) 2b 2b nodd 

Finally, 

⎧
 ⎨ ∞ [
1 − (−1)n

] ( ) ( )
2(T3 − T1) nπy nπx
T (x , y) = T1 + ( )cosh sin ⎩ nπ cosh nπb/a a a 

n=1 

⎫ 
∞ 

(−1)(n−1)/2 ( ) ( )⎬4(T2 − T1) nπx nπy+ ( ) sinh cos 
nπ sinh (nπa/2b) 2b 2b ⎭ nodd 

3.4. A long rectangular rod 0 ≤ x ≤ a, 0  ≤ y ≤ b, as shown in Figure 3.10, has the 
following thermal BCs: 

x = 0, 0 < y < b : T = To 

x = a, 0  < y < b : T = T0 + T1 sin(πy/b) 

y = 0, 0 < x < a : T = T0
 

y = b, 0  < x < a : T = T0 + T2 sin(πx/a)
 

a. Determine the steady-state temperature distribution. 

b. Sketch the isotherm and isoflux. 
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SOLUTIONS 

a. Let θ = T − T0, then
 

∂2θ ∂2θ
 + = 0 
∂x2 ∂y2 

x = 0; θ = 0 ( )
x = a; θ = T1 sin (πy/b)

y = 0; θ = 0, 
( )πx 

y = b; θ = T2 sin 
a 

Let θ = θ1 + θ2 with θ1 and θ2 satisfying the following BCs at 

x = 0, θ1 = 0, θ2 = 0 
( )πy

x = a, θ1 = 0, θ2 = T1 sin 
b 

y = 0, θ1 = 0, θ2 = 0 
( )πx 

y = b, θ1 = T2 sin θ2 = 0 
a 

Solutions for θ1 and θ2 are obtained as 

( ) ( )nπx nπy
θ1 = Cn1 sin · sinh 

a a 
( ) ( )nπy nπx 

θ2 = Cn2 sin · sinh 
b b 

and T = T0 + θ 

T = T0 + θ1 + θ2 
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x 

y 

b 

a 

T = T0 + T2 sin(πx/a) 

T = T0 + T1 sin(πy/b) 

0 T = T0 

T 
= 

T 0
 

FIGURE 3.10 
A long rectangular rod with two nonhomogenous boundary conditions. 
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Remarks 

In this chapter, we have introduced a very powerful mathematical tool, the 
method of separation of variables, to solve typical 2-D heat conduction prob­
lems with various thermal BCs. In the undergraduate-level heat transfer, we 
normally employ the finite-difference energy balance method to solve the 
2-D heat conduction problems with various thermal BCs. The finite-difference 
numerical methods and solutions will be discussed in Chapter 5. Here we 
are more focused on the analytical methods and solutions for various 2-D 
heat conduction problems. In general, all kinds of 2-D heat conduction prob­
lems with various BCs can be solved analytically by using superposition of 
separation of variables. 

The most important thing for applying separation of variable is that you 
have to set up your problem where only one nonhomogeneous BC is allowed. 
If you have more than one nonhomogeneous BC, you have to employ the 
superposition principle to split into two or three subproblems in order to 
use separation of variables. The problems become more complicated if you 
work with 3-D heat conductions with heat generation and with complex BCs, 
but they are still workable. However, if you are interested in solving for the 
2-D and 3-D cylindrical coordinate systems and for the 2-D and 3-D spherical 
coordinate systems with complex BCs, they are beyond the intermediate-level 
heat transfer, you need to look at the advanced heat conduction textbook for 
solutions. 

Another popular method is using the finite-difference method to be dis­
cussed in the later chapter. It is particularly true when you deal with 
complicate BCs such as convection. In real-life engineering applications, the 
convection heat transfer coefficients normally are varied along the solid sur­
face. This will cause additional complexity for the separation of variables 
because we normally assume the uniform convection BCs to simplify the prob­
lem. This will not cause any complexity at all by using the finite-difference 
numerical method. 

PROBLEMS 

3.1. A long rectangular bar 0 ≤ x ≤ a, 0  ≤ y ≤ b, and a, b << L, the 
bar length, is heated at y = o and y = b, respectively, to a uniform 
temperature To and is insulated at x = 0. The side of x = a loses 
heat by convection to a fluid at temperature T∞ with a convection 
coefficient h. 
a.	 Write down, step by step, a solution method and associated 

BCs, which can be used to determine the bar steady-state 
temperature distributions. 

b. Sketch the heat flows and the isothermal profiles in the 
rectangular bar. 

3.2. An infinitely long rod of square cross section (LXL) floats in a 
fluid. The heat transfer coefficient between the rod and the fluid 



is relatively large compared to that between the rod and the ambi­
ent air, that is, hf >> h or hf = ∞. Determine the steady-state ∼
temperature distributions in the rod with the associated BCs. 
a. Use the analytical approach. 
b. Sketch the isotherms and isoflux in the rod, if Tf < T∞ and 

h = a constant value. 
3.3. A long fin of rectangular cross section (2LXL) with a thermal con­

ductivity k is subjected to the BCs is shown on the sketch (the 
left side is kept at To, the right side is perfectly insulated, the 
upper side is exposed to a constant flux, and the lower side is 

"" exposed to a convection air flow). q = constant; steam To, h = ∞; 
air h = constant, T∞. 
a. Determine the temperature distribution in the fin. 
b. Approximately plot the temperature and heat flow profiles in 

the fin, if To > T∞. 
3.4. Refer to Figure 3.1, and determine the temperature distributions 

for 2-D heat conduction with the following BCs: 

(1) x = 0, T = To 
x = a, T = To 
y = 0, T = To 
y = b, T = Ts 

(2) x = 0, T = To 
x = a, T = To 
y = 0, T = Ts 
y = b, T = To 

(3) x = 0, T = To 
x = a, T = Ts 
y = 0, T = To 
y = b, T = To 

(4) x = 0, T = Ts 
x = a, T = To 
y = 0, T = To 
y = b, T = To 

3.5. Refer to Figure 3.2, and determine the temperature distributions 
for 2-D heat conduction with the following BCs: 

(1) x = 0, T = T1 (2) x = 0, T = T1 
x = a, T = T1 
y = 0, T = T1 
y = b, q "" s = −k(∂T/∂y) 

x = a, T = T1 
y = 0, q "" s = −k(∂T/∂y) 

y = b, T = T1 

(3) x = 0, T = T1 
x = a, q "" s = −k(∂T/∂x) 

(4) x = 0, q "" s = −k(∂T/∂x) 

x = a, T = T1 
y = 0, T = T1 y = 0, T = T1 
y = b, T = T1 y = b, T = T1 

3.6. Refer to Figure 3.3, and determine the temperature distributions 
for 2-D heat conduction with the following BCs: 

(1)	 x = 0, T = T1 (2) x = 0, T = T1 
x = a, T = T1 x = a, T = T1 
y = 0, T = T1 y = 0, −k(∂T/∂y) 

= h(T − T∞) 

y = b, −k(∂T/∂y) = h(T − T∞) y = b, T = T1 
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(3) x = 0, T = T1 (4) x = 0, −k(∂T/∂x) = h(T − T∞) 

x = a, −k(∂T/∂x) x = a, T = T1 
= h(T − T∞) 

y = 0, T = T1 y = 0, T = T1 
y = b, T = T1 y = b, T = T1 

3.7. Use the principle of superposition to determine the temperature 
distribution for 2-D heat conduction with four nonhomogeneous 
BCs shown in Figure 3.4. 

3.8. Refer to Figure 3.6, and determine the temperature distributions 
for 3-D heat conduction with the following BCs: 

(1) x = 0, T = T1 (2) x = 0, T = T1 
x = a, T = T1 x = a, T = T1 
y = 0, T = T1 y = 0, T = T1 
y = b, T = T1 y = b, T = T1 
z = 0, T = To z = 0, T = T1 
z = c, T = T1 z = c, T = To 

3.9. Refer to Equation 3.19, and determine the temperature distribu­
tions for 2-D heat conduction with uniform heat generation with 
the following BCs: 

(1) x = 0, −k(∂T/∂x) = 0 (2) x = 0, T = To 
x = a, −k(∂T/∂x) = h(T − T∞) x = a, T = To 
y = 0, T = To y = 0, −k(∂T/∂y) = 0 
y = b, T = To y = b, −k(∂T/∂y) 

= h(T − T∞) 

3.10. Obtain an expression for the steady-state temperature distribution 
T(x, y) in a long square bar of side a. The bar has its two sides and 
bottom maintained at temperature T1, while the top side is loosing 
heat by convection. Consider the surrounding temperature to be 
T∞, the heat transfer coefficient at the top wall be denoted by h, 
and let the thermal conductivity of the bar be equal to k. 
a.	 Sketch the domain and write the governing equation and BCs 

for this problem. 
b. Define the temperature θ(x, y) = T(x, y) − T1, and find a series 

solution using separation of variables. 
c.	 Using the BCs write the expression for the coefficients used in 

the series solution for θ(x, y), and write an expression. 
d. Write an expression for (T(x, y) − T1)/(T∞ − T1). 

3.11. Given a very long and wide fin with a height of 2L. The base of 
the fin is maintained at a uniform temperature of Tb. The top and 
bottom surfaces of the fin are exposed to a fluid whose temper­
ature is T∞ (T∞ < Tb). The convective heat transfer coefficient 
between the fin surfaces and the fluid is h. 
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a.	 Sketch the steady 2-D temperature distribution in the fin. 
b. If you were to determine the steady 2-D temperature distribu­

tion in the fin using a finite-difference numerical method, you 
would solve a set of algebraic nodal equations simultaneously 
for the temperatures at a 2-D array of nodes. Derive the equa­
tion for a typical node on one of the surfaces of the fin. Please 
do not simplify the equation. 

c.	 Using the method of separation of variables, derive an expres­
sion for the steady local temperature in the fin, in terms of the 
thermal conductivity of the fin, k, the convective heat transfer 
coefficient, h, the half-height of the fin, L, and the base and 
fluid temperatures, Tb and T∞. 

Note that 

W  �
[cos2 1

(aw)] dw = a[2aW + sin (2aW)
4 

]
0 

W 

and 
�

[cos(aw) · cos(bw)] dw = 0, when a = b. 

0 

3.12. A long rectangular rubber pad of width a = W and height b = 2W 
is a component of a spacecraft structure. Its sides and bottom 
are bonded to a metal channel at constant temperature T0, and 
the temperature distribution along the top of the pad can be 
approximated as a simple sine curve T = T0 + Tm sin(πx/W). 
a.	 Write the differential equation and BCs needed to solve for the 

temperature distribution in the pad. 
b. Find the solution for the temperature distribution from the 

differential equation and BCs. 
3.13. A long rod of right triangular cross section has the horizontal 

length “a” at temperature T1, the vertical length “b” at temper­
ature T2, and the inclined length perfectly insulated. Obtain an 
expression for the steady-state temperature distribution T(x, y) in 
the long rod of triangular cross section as stated. Assume that the 
thermal conductivity of the material of the rod is constant. 

3.14. A long rectangular bar 0 ≤ x ≤ a, 0  ≤ y ≤ b, and a, b << L, the 
bar length, is heated at y = 0 and y = b, respectively, to a uniform 
temperature To and is insulated at x = 0. The side of x = a loses 
heat by convection to a fluid at temperature T∞ with a convection 
coefficient of h∞. 
a.	 Write down, step by step, a solution method and the associ­

ated BCs, which can be used to determine the bar steady-state 
temperature distributions. You do not need to obtain the final 
solution of the steady-state temperature distributions. 

b. Sketch the heat flows and the isothermal profiles in the 
rectangular bar. 
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3.15. Given a very long and wide fin with a height of 2H. The base of 
the fin is maintained at a uniform temperature of Tb. The top and 
bottom surfaces of the fin are exposed to a fluid whose temper­
ature is T∞ (T∞ < Tb). The convective heat transfer coefficient 
between the fin surfaces and the fluid is h. 
a.	 Derive an expression for the steady 2-D local temperature in 

the fin, in terms of the thermal conductivity of the fin, k, the 
convective heat transfer coefficient, h, the half-height of the fin, 
H, and the base and fluid temperature, Tb and T∞. 

b. Sketch the steady 2-D temperature and heat flux distribution 
in the fin.
 

Note that
 

x  � �
2

� 1 
cos (ax) dx = a [2ax 

4 
+ sin(2ax)] and

0 

x  �
[cos(ax) · cos(bx)] dx = 0 when a = b. 

0 
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∂2T ∂2T ∂2T q̇ 1 ∂T + + + = (4.1)
∂x2 ∂y2 ∂z2 k α ∂t 

The simplified case of the unsteady 1-D heat conduction equation without 
heat generation becomes 

∂2T 1 ∂T = (4.2)
∂x2 α ∂t 

We need both the initial and two BCs in order to solve the temperature 
depending on (x, t) as sketched in Figure 4.2. The solution of separation of 
variable method is 

T = T(x, t) 

Initial condition: 

t = 0, T(x, 0) = Ti. 

4 
Transient Heat Conduction 

The temperature in a solid material changes with location as well as with time, 
and this is the so-called transient heat conduction problem. We may have 
1-D, 2-D, or 3-D transient heat conduction problem depending on the real 
applications. However, some problems can be modeled as zero-dimensional 
(0-D) because the temperature in a solid material uniformly changes only with 
time and does not depend on location. This is a special case of the transient 
heat conduction problem. The finite-length solid material of 1-D, 2-D, or 3-D 
transient problem can be solved by separation of variable method and the 0-D 
transient problem can be solved by the lumped capacitance method. Figure 4.1 
shows typical finite-length solid materials of the 1-D transient problem for the 
slab (or the plane wall), cylinder, and sphere coordinates. The semiinfinite 
solid material of the 1-D transient problem can be solved by the similarity 
method, the Laplace transform method, or the approximate integral method. 

The unsteady 3-D heat conduction equation with heat generation is 
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FIGURE 4.1 
1-D transient heat conduction and the characteristic length. 

Boundary conditions: 

dT 
x = 0, = 0

dx 
∂T(L, t) 

x = L, T(L, t) = Ts or − k = h[T(L, t) − T∞]
∂x 

4.1 Method of Lumped Capacitance for 0-D Problems 

In real applications, many transient heat conductions in a solid material 
can be modeled as a 0-D problem. The important assumption is that the 
entire material temperature changes only with time. If that is the case, those 
solid geometries shown in Figure 4.1 can be solved by the following lumped 

–L L0 
x 

t q″ 

T (x,t)Ti 

h, T∞ 

–L L0 
x 

t 
q″ 

T (x,t) 

Ts 

Ti 

FIGURE 4.2 
1-D transient problems for a slab or a plane wall. 
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Ti 

T (t) 
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(a) 

t θ 
θ0 

(b) hAs t–θ = e ρVc 
θ 

1 
i 

θ 
fn(Bi, Fo) θi 

0.368 

hAs t 
0-D Transient problem–lumped 1 ρVc 

capacitance method Thermal time constant 

(c) 

t1 

thAs 

ρVc 
= 

2 3 

i 

0.368 

1 

θ 
θ 

τττ 

τ 

The solution of 0-D heat conduction 

� � 
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FIGURE 4.3 
Method of lumped capacitance. 

capacitance method. Note that the lumped method can be applied to any irreg­
ular geometry as long as the assumption of the entire material temperature 
uniformly changing with time is valid during the transient. Therefore, we do 
not need to solve for 1-D, 2-D, or 3-D transient conduction equations. 

Consider the energy balance on the solid material during the cooling (or 
heating) process as shown in Figure 4.3: 

d(ρVCT) = −hAs(T − T∞) (4.3)
dt 

Let θ = T − T∞ then 

dθ 
ρVC = −hAsθdt 

dθ hAs= −  θ
dt ρVC 

hAsdθ = − θ dt 
ρVC 

θ T − T∞ −(hAs/ρVC)t −(hLc/k)·(αt/L2) −Bi·Foc= = e = e = e = f (Bi, Fo) (4.4)
θi Ti − T∞ 

where Bi = (hLc/k), Fo = (αt/L2), Lc = (V/As) = (volume/surface area).c 
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The above temperature decay solution is plotted in Figure 4.3. Therefore, the 
solid temperature can be predicted with time for a given material with certain 
geometry under the cooling or heating condition. The material with a smaller 
thermal time constant (τt = (ρVc/hAs)) can quickly reach the environment 
temperature. 

Now, the question is under what condition the lumped capacitance solu­
tion can be used. The answer is that the Biot (Bi) number must be less than 
0.1. Therefore, to use 0-D solution, the condition Bi = (hLc/k) <  0.1 must be 
satisfied. The Biot number is defined as the ratio of surface convection (h, the 
convection heat transfer coefficient from the solid surface; Lc, the characteristic 
length of the solid material) to solid conduction (k, the thermal conductivity 
of the solid material). The smaller Bi number implies a small-sized mate­
rial with high-conductivity exposure to a low convection cooling or heating 
fluid. For the case of smaller Bi, the temperature inside the solid material 
changes uniformly (independent of location) with environmental cooling or 
heating during the transient. Of course, Bi = 0.1 implies that we may have 
10% error by using the lumped solution. The smaller Bi is better for using 
the lumped solution. Another point is that the solution can be applied to any 
geometry if the condition of Bi < 0.1 is valid. For a given solid geometry, 
the characteristic length Lc = (volume/surface area) = (V/As). For example, 
as shown in Figure 4.1, the characteristic length Lc = L is for a 2L-thick slab 
(plane wall), 

1 1
Lc = Ro for the cylinder and Lc = Ro for the sphere coordinate. 

2 3 

4.1.1 Radiation Effect 

If we also consider radiation flux q "" r and internal heat generation q̇, the energy 
balance equation 4.3 can be rewritten as 

d(ρVCT) = −hA  "" 
s(T − T∞) + qV ˙ + Asq

dt r 

where q ""  
r

4 
= radiation gain from solar flux  constant, or q ""r  radiation loss  

T − T4 ; q̇ = heat generation = I2εσ( )

= = =
sur R due to electric current and resistance 

heating = constant. 
If we consider q"" 

r = constant and q̇ = constant, the solution of the above 
equation can be obtained by Equation 4.4 by setting 

� � 
qV + A "" 

sq
θ = (T − T r ) 

˙
∞ −

hAs

�� 
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However, if we consider q̇ = 0, but q "" = −εσ(r T4 − T4 )sur , the energy balance 
equation can be rewritten as 

d(ρVCT) = −hAs(T − T ) − εσAs(T4 ∞ − T4 )
dt sur

If let T∞ = T 2 2 
sur, hr = εσ(T + T )(T + T ), the above equation can be ∞ ∞

written as 
d(T − T∞) (h + hr)A

t 
+ s 

(T T
d ρVC 

− ∞) = 0 

The solution of the above equation can be obtained by numerical 
integration. 

4.2	 Method of Separation of Variables for 1-D and for 
Multidimensional Transient Conduction Problems 

4.2.1 1-D Transient Heat Conduction in a Slab 

The solution of the 1-D transient conduction problem for a slab (plane wall) is 
expected as T(x, t). The separation of variable method used for the 2-D steady-
state heat conduction problem can be applied here if we consider T(x, t) 
similar to T(x, y). In other words, we separate the temperature T(x, y) into 
the product of T(x) · T(y) for the 2-D steady state and T(x, t) into T(x) · T(t) 
for the 1-D transient, respectively. Then we can follow the similar procedure 
as before in order to solve the 1-D transient problem [1]. 

For a 1-D plane wall transient problem, as shown in Figure 4.4a, with the 
convection BC, 

∂2T 1 ∂T = 
∂x2 α ∂t 

Let θ = T − T∞ and θ(x, t) = X(x)τ(t), then, 

∂2θ 1 ∂θ =	 (4.5)
∂x2 α ∂t 

d2X + λ2X = 0 
dx2 

dτ 2+ λ ατ = 0
dt 

X = c1 sin λx + c2 cos λx 

−λ2αtτ = c3 e



(a) 

h, T∞ 

Ti 

t 

–L 0 L 

(b) 
Ti 

t 

Ts 

–L 0 L 

Constant surface 
Convective boundary condition temperature boundary condition 
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FIGURE 4.4 
1-D transient heat conduction. 

Initial condition: 

θ(x, 0) = θi = Ti − T∞ 

Boundary conditions: 

⎧
∂θ(0, t) ⎪ {⎨ = 0 

∂x c1 = 0⇒ ⎪ ∂θ(L, t) −kc2(− sin λL)λ = hc2 cos λL ⎩−k = hθ(L, t)
∂x 

k sin(λL) · λ = h cos(λL) 

h 
λn = cot(λnL),

k 
hL 

λnL = cot(λnL) = Bi cot(λnL). 
k 

λn is determined by the convection BC. 

−λ2 αt −λ2 αtθ = c2 cos λnx · c3e n = cn cos(λnx) e n , 

where cn = c2c3. 
Applying the initial condition 

0θi = cn cos(λnx) e , 

2θi cos(λnx) = cn cos (λnx), 

�L
θi 0 cos(λnx) dx θi2 sin λn cn = = ,�

0 
L cos2(λnx) dx λn + sin λn cos λn 

where λn L = λn 



 

 

 

 

� 

� � � 

� � (

−λ2 αt⇒ θ = T − T∞ = cn cos(λnx) e n , 

θ T − T∞ 2 sin λn cos λn(x/L) −λ2 
nFo⇒ = = · e . (4.6)

θi Ti − T∞ λn + sin λn cos λn 

In addition to T(x, t), the ratio of the total energy transferred from the wall 
over the time t is 

Q ρCp[Ti − T(x, t)] dV = (4.7) 
Qo ρCpV(Ti − T∞) 

1 θ = 1 − dV
V θi 

2 sin λn sin λn −λ2 
nFo= 1 − · · e (4.8)

λn + sin λn cos λn λn 

where Fo = (αt/L2). 
Similarly, for the case of a given surface temperature as BC shown in 

Figure 4.4b, 

∂T(0, t)
at x = 0, = 0 

∂x 

at x = L, T(L, t) = Ts 

The solution can then be obtained as 

θ T − Ts 2(−1)n 1 x − n+ 1 π2Fo = = ( ) cos n + π e 2 

)2 

(4.9)
θi Ti − Ts n + 1 π 2 L
 

2
 

4.2.2 Multidimensional Transient Heat Conduction in a Slab (2-D or 3-D) 

The governing equation for multidimensional heat conduction, as shown in 
Figure 4.5, is 

∂2θ ∂2θ ∂2θ 1 ∂θ + + = (4.10)
∂x2 ∂y2 ∂z2 α ∂t 

θ(x, y, z, t) = θx(x, t) · θy(y, t) · θz(z, t) (4.11) ⎧ ⎪∂2θx 1 ∂θx ⎪ ⎪ ⎪ = ⎪ ∂x2 α⎪ ∂t ⎪ ⎪ ⎨
∂2θy 1 ∂θy= ⎪ ∂y2 α ∂t ⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂2θz 1 ∂θz ⎪ = ⎩ 
∂z2 α ∂t 
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4.2.3 1-D Transient Heat Conduction in a Rectangle with Heat Generation 

The governing equation for 1-D transient heat conduction with heat 
generation is 

∂2θ q̇ 1 ∂θ + = (4.12)
∂x2 k α ∂t 

The temperature profile can be solved by separation of variables. For 
example, to use the separation of variables method, we define 

θ = θ1(x) + θ2(x, t) (4.13) 

d2θ1 q̇+ = 0 
dx2 k 

where θ1 can be solved by 1-D heat conduction with internal heat generation 
and θ2 can be solved by the aforementioned method of separation of variables 
with a given convection or surface temperature BCs. 

For 3-D transient heat conduction with heat generation, as shown in 
Figure 4.6, the following equations can be used to solve temperature profiles 
T(x, y, z, t) or θ(x, y, z, t): 

∂2θ ∂2θ ∂2θ q̇ 1 ∂θ + + + = (4.14)
∂x2 ∂y2 ∂z2 k α ∂t 

θ = θ1(x) + θ1(y ) + θ1(z) + θ2x(x, t) · θ2y(y, t) · θ2z(z, t) (4.15) 

76 Analytical Heat Transfer 

FIGURE 4.5 
Multidimensional transient heat conduction. 

where θx(x, t), θy(x, t), and θz(x, t) can be solved by the aforementioned 
method of separation of variables with a given surface temperature or 
convection BCs. 



 

 

where 

∂2θ1 q̇+ = 0 
∂x2 k 

∂2θ2x 1 ∂θ2x = 
∂x2 α ∂t 

∂2θ2y 1 ∂θ2y= 
∂y2 α ∂t 

∂2θ2z 1 ∂θ2z = 
∂z2 α ∂t 

A general form of the solution of 1-D transient heat conduction with the 
convection BC applicable to a slab, a cylinder, and a sphere, as shown in 
Figure 4.1, can be written [2] as 

∞ 
θ −λ2 Fon
θ i 

= Cnf (λnη) e (4.16) 
n=1 

∞Q −λ2 Fon= 1 − CnF(λn) e (4.17) 
Qo n=1 
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FIGURE 4.6 
Multidimensional transient heat conduction with heat generation. 

Geometry θ(x, t) Cn f (λnη) F(λn) 

Slab (∂2θ/∂x2) 

= (1/α)(∂θ/∂t) 

(2 sin λn/(λn 

+ sin λn cos λn)) 

cos(λn(x/L)) sin λn/λn 

Cylinder (1/r)(∂/∂r)(r(∂θ/∂r)) 

= (1/r)(∂θ/∂t) 

(2J1(λn)/(λn[J2 
o (λn) 

+J2 
1 (λn)])) 

Jo(λn(r/ro)) (2J1(λn)/λn) 

Sphere (1/r2)(∂/∂r)(r2(∂θ/∂r)) 

= (1/r)(∂θ/∂t) 

(2[sin λn − λn cos λn]) � 
(λn − sin λn cos λn) 

(sin(λn(r/ro)) 
� 

(λn(r/ro)) 

3(sin λn 

−λn cos λn)/λ3 
n 



With the eigenvalues as 

x hL αt
Bi cos λn − λn sin λn = 0 for the slab, η = , Bi = , Fo = 

L k L2 

r hro αt 
λnJ1(λn) − BiJo(λn) = 0 for the cylinder, η = , Bi = , Fo = 

ro k r2 
o 

r hro αt 
λn cos λn + (Bi − 1) sin λn = 0 for the sphere, η = , Bi = , Fo = 

k r2ro	 o 
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4.3	 1-D Transient Heat Conduction in a Semiinfinite 
Solid Material 

4.3.1 Similarity Method for Semiinfinite Solid Material 

The semiinfinite solid is characterized by a single identifiable surface. If a 
sudden change in temperature occurs at this surface as shown in Figure 4.7, 
then transient 1-D conduction will take place within the solid. The similarity 
method can be employed to solve this kind of problem [3]. The 1-D transient 
heat conduction equation in a semiinfinite solid without heat generation is 

Ti 
x 

t 

Heating 

q″ 

Ts T (x,t) 

Coolingt 
q″ 

q″ 

Ts 

FIGURE 4.7 
1-D transient heat conduction in a semiinfinite solid material. 



� � 

� � 

given by 

∂2T 1 ∂T = 
∂x2 α ∂t
 

The surface BC is
 

T(0, t) = Ts
 

And the interior BC is prescribed by
 

T(∞, t) = Ti 

The initial condition is 

T(x, 0) = Ti 

By applying the similarity method, we may transform the PDE, which 
involves two independent variables (x and t), to an ODE expressed in terms 
of a single similarity variable (η).√ √ 

As x ∼ αt ( αt is the diffusion length), we define the similarity variable √ 
η = (x/ 4αt); therefore T(x, t) = T(η), 

√ 
x = η 4αt (4.18) 

Let θ = ((T − Ti)/(Ts − Ti)). 
The 1-D transient heat equation can be expressed as 

∂2θ 1 ∂θ = 
∂x2 α ∂t 

Applying the similarity variable into θ, that is, θ(x, t) = θ(η) 

Therefore, 

∂θ dθ ∂η dθ −x = = √ 
∂t dη ∂t dη 2t 4αt 

∂θ dθ ∂η dθ 1 = = √ 
∂x dη ∂x dη 4αt � � � � �� � � 

∂2θ d ∂θ ∂η d ∂θ 1 1 1 ∂2θ = = √ √ = 
∂x2 dη ∂x ∂x dη ∂η 4αt 4αt 4αt ∂η2
 

Inserting the above terms into the heat equation, we obtain
 

1 d2θ 1 −x dθ
 = 
4αt dη2 α 2t(4αt)1/2 dη 

79 Transient Heat Conduction 



� �

� 

� 

� � � � � 

Rearranging it, we obtain 

α d2θ −x dθ = 
4αt dη2 2t(4αt)1/2 dη 

d2θ −2x dθ dθ = √ = −2η (4.19)
dη2 4αt dη dη 

For the case of given constant surface temperature, 

x = 0, η = 0, θ(0) = 1 

x = ∞, η = ∞, θ(∞) = 0
 

Let P ≡ (dθ/dη); rearranging the equation and integrating it, we obtain
 

dP dθ η2
= −2ηP ⇒ P ≡ = c1e−
dη dη ⎧ dP ⎪ ⎪ = −2η dη ⎪ ⎨ P 

⎪ ⎪ ⎪ 
dP 
P 

= −2η dη 

η2 + c 
⎩ 

ln P = −
η 

θ = c1 e−η2
dη + c2 

0 

From the BC, 

η = 0, θ = 1 ⇒ c2 = 1 

From the BC, 

η = ∞, θ = 0 

∞ √ 
2 π 2−u0 = c1 e du + 1 = c1 + 1 ⇒ c1 = −√

2 π 
0 

Inserting c1 and c2 into the integral, we obtain the following results as 
sketched in Figure 4.8. 

η 

T − Ti 2 
e

2 x x−u1 − √ du = 1 − erf (η) erfc √ 1 − erf √θ = = = =
Ts − Ti π 4αt 4αt 

0 
(4.20) 
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� � � 

and 

∂T � ∂θ � 
qs = −k = −k(Ts − Ti)

∂x ∂xx=0 x=0 

∂ 2 η 
2= −k(Ts − Ti) 1 − √ e−u du 

∂x π 0 x=0 � � (4.21)
2 1−η2= −k(Ts − Ti) −√ e √ 
π 4αt η=0 

k(Ts − Ti) = √ 
παt 
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4αt 

T−Ti 
Ts−Ti 

= 

η = 

θ 

x 

θ = erfc (η) 

FIGURE 4.8 
Solution of 1-D transient heat. 

4.3.2 Laplace Transform Method for Semiinfinite Solid Material 

The 1-D transient conduction problem in a semiinfinite solid material can be 
solved by the Laplace transform method [1]. The heat diffusion equation for 
1-D transient conduction is of the form 

∂2T 1 ∂T = 
∂x2 α ∂t
 

Case 1: Constant surface temperature BC
 

T(0, t) = Ts 

T(∞, t) = Ti 

Initial condition: 

T(x, 0) = Ti. 



� 

� � 

� � 

� � � � 

Let θ = T − Ti, therefore, 

∂2θ 1 ∂θ = 
∂x2 α ∂t 

θ(0, t) = θs = Ts − Ti 

θ(x, 0) = 0 

θ(∞, t) = 0 

Defining the Laplace transform of a given temperature, 

∞ 

−stdtL(T) = T = T e (4.22) 

0 

TiL(Ti) = 
s 

L(0) = 0 

∂T
L = sT − Ti 

∂t 

∂nT ∂nT
L = 

∂xn ∂xn 

T(x, t) = T(x, s) 

Applying the Laplace transform to 1-D transient heat conduction, 

∂2T 1 ∂T
L = L (4.23)

∂x2 α ∂t 

∂2θ ¯ 1 = [sθ ¯ − θ̄ (x, 0)] (4.24)
∂x2 α

From the initial condition, θ̄ (x, 0) = 0. 

d2 ̄  √ √θ s 
θ ¯ = 0 ⇒ ¯ − s/αx + c2 e s/αx− θ = c1 e

dx2 α 

Applying the Laplace transform to the BCs, 

⎧ ⎨θ̄ (∞, s) = 0, c2 = 0 
θs θs¯ ⎩θ(0, s) = , c1 = 
s s 
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So 
√θs¯ − s/αxθ = e

s 

Applying the inverse Laplace transform from a given table, we obtain the 
following results as sketched in Figure 4.9. 

θ T − Ti x = = erfc √ (4.25)
θs Ts − Ti 4αt 

Case 2: Constant surface heat flux BC: 

T(x, 0) = Ti 

T(∞, t) = Ti 

∂T(0, t) "" −k = qs∂x 

Let θ = T − Ti, then 

θ(x, 0) = 0 

θ(∞, 0) = 0 

∂θ(0, t) "" −k = qs∂x 

The Laplace transform solution is 

q "" 1 √ 
s − s/αxθ ¯ = √ − e
k s s/α 
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FIGURE 4.9 
Solution of 1-D transient heat conduction with given surface temperature boundary condition. 
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qs ″ 

0 

t 

T (x,t) 

T (x,t) 

FIGURE 4.10 
Solution of 1-D transient heat conduction with constant surface heat flux boundary condition. 

Applying the inverse Laplace transform from a given table, we obtain the 
following results as sketched in Figure 4.10. 

�√ � "" q 4αt xs −(xT − Ti = 
k 

√ 
π 

e
2/4αt) − x · erfc √ (4.26)

4αt 
√"" q 4αtsat x = 0, Ts − Ti = √ (4.27) 

k π 

Case 3: Convective surface BC: 

T(x, 0) = Ti 

T(∞, t) = Ti 

∂T(0, t)−k = h[T∞ − T(0, t)]
∂x 

Let θ = T − Ti 

θ(x, 0) = 0 

θ(∞, 0) = 0 

∂θ(0, t)−k = h[θ∞ − θ(0, t)]
∂x 

Applying the inverse Laplace transform from a given table, we obtain the 
following results as sketched in Figure 4.11. 

� � � � �� 
θ T − Ti x x h √ = = erfc √ − e(x(h/k)+α(h2/k2)t)erfc √ + αt
 

θ∞ T∞ − Ti 4αt 4αt k
 
(4.28) 

∂T(0, t)"" q = −k = h[T∞ − T(0, t)] (4.29)
∂x 



h, T∞ 

T (x,t) 

T (x,t) 

t 

0 

� � 

� � � � 

� � � 

� 

� 

4.3.3 Approximate Integral Method for Semiinfinite Solid Material 

Let θ = T − Ts, 

θi = Ti − Ts, t = 0 

∂θ(δ, t)
θ(0, t) = 0, = 0, t > 0 

∂x 

∂θ ∂2θ = α (4.30)
∂t ∂x2 

δ δ 

∂2θ∂θ 
dx = 

∂t 
dxα 

∂x2 
0 0 

∂θ ∂θ = α − α 
∂x ∂xx=δ x=0 

where 

δ δ δ 

dδ dδ d dδ 
θ dx − θ dx −d∂θ 

dx ≡ · θi + 0θx=δ + θx=0 = 
dt dt dtdt dt∂t 

0 0 0 

δ � � � �
dδ 

θ dx−d ∂θ ∂θ∴ · θi = α − α
dt ∂xdt ∂xx=δ x=0 

0 ⎡ ⎤ 
δ � �

d ∂θ ⎦θ dx − θiδ = −α⇒ ⎣ 
dt ∂x x=0 

0 

Assume a temperature profile is a second-order polynomial, 

θ(x, t) = a + bx + cx2 

85 Transient Heat Conduction 

FIGURE 4.11 
Solution of 1-D transient heat conduction convective surface boundary condition. 



subject to BC: 

θ 

θi 
= 2 

x 
δ 

−
(x 

δ 

)2 ≡ 2η − η2 

η = 
x 
δ 

, dx = δ dη 

Then ⎡ 1 ⎤ 
d 
dt 

⎣� 
θi(2η − η2)δ dη − θiδ⎦ = −  

2αθi 

δ 
0 

dδ2 
− 12α = 0 at  t = 0, δ(0) = 0⇒ 

dt √ ⇒ δ = 12αt 

From the approximate integral method, we obtain the following results as 
sketched in Figure 4.12: 

( )2 2θ x x 2x x= 2 − = √ − (4.31)
θi δ δ 12αt 12αt 
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FIGURE 4.12 
Solution of 1-D transient conduction for semiinfinite solid material using approximate integral 
method. 

4.4 Heat Conduction with Moving Boundaries 

There are many engineering application problems involving heat conduc­
tion with moving boundaries such as freezing or melting for solar storage 
systems. Other examples are related to high-temperature droplet evaporation 
and ablation applications. The problems can be solved by using the similarity 
method or the integral approximate method [4]. 
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FIGURE 4.13 
Heat conduction with moving boundary problem—freezing. 

4.4.1 Freezing and Solidification Problems Using the Similarity Method 

Freezing—Neumann solution (exact solution) [4], as sketched in Figure 4.13: 
Governing equation: 

θ = T − Tm (4.32) 

∂2θ1 1 ∂θ1 = 
∂x2 α1 ∂t 

∂2θ2 1 ∂θ2 = 
∂x2 α1 ∂t
 

Boundary conditions (4.33):
 

x = 0, θ1 = θs (4.33a) 

x = ∞, θ2 = θ∞ (4.33b) 

x = δ(t), θ1 = 0 (4.33c) 

θ2 = 0 (4.33d) 

∂θ1 ∂θ2 dδ
k1 − k2 = Lρ1 (4.33e)

∂x ∂x dt 

where L represents the latent heat of melting. 
Initial conditions: 

t = 0, δ = 0, T = T∞ 

Assume ρ1 = ρ2.
 
Neumann applied the similarity method:
 

x 
θ1 = c1 + c2erf √ (4.33f) 

4α1t 
x" " θ2 = c1 + c2erf √ (4.33g) 
4α2t 



� � � 

� 

� � 

� � � � 

√ √
 
At x = δ, δ ∼ t to obtain θ1 = 0, δ = b t.
 
Insert Equations 4.33a through 4.33d into Equations 4.33f and 4.33g 

c1 = θs 

−θs c2 = √ 
erf (b/ 4α1) 

θ∞" c = √2 erfc(b/ 4α2) 

θ∞" c = θ∞ − √1 erfc(b/ 4α2) 

From Equation 4.33e, 

−k1θs exp(−b2/4α1) k2θ∞ exp(−b2/4α2) b √ √ − √ √ = Lρ1 (4.33h) 
πα1erf (b/ 4α1) πα2erfc(b/ 4α2) 2 

η 

2 
e−η2∂ ∂x∵ erf √ dη√= 

∂x 4α1t π ∂x 
0 

η 

2 ∂η d −η2 
dη√= e

π ∂x dη 
0 

22 1 −x= √ √ exp
π 4α1t 4α1t 

∴ b can be obtained from Equation 4.33h: 

√ 
δ = b t 

θ1 can be obtained from Equation 4.33f, θ2 can be obtained from Equation 4.33g 

∂θ1 q1 = k1 can be determined 
∂x 0 

Special case: slow freezing, as sketched in Figure 4.14, approximately linear. 
⇒ θ∞ = 0: 

√ 
θ1 erf (x/ 4α1t) = 1 − √ (4.34)
θs erf (b/ 4α1) 

b can be obtained 
√ 

δ = b t 
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Melting—integral technique by Goodman (1958) [4], as sketched in 
Figure 4.15: 

δ(0) = 0 

Let θ = T − Tm, 

∂2θ 

∂x2 = 
1 
α 

∂θ 

∂t 
(4.35) 

Initial condition: θ(x, 0) = 0. 
BCs for slow melting (Figure 4.16): 

⎧ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎩ 

θ(0, t) = Ts − Tm = θs 

θ(δ, t) = 0 

−k 
∂θ 

∂x 

� � � � 
δ 

= Lρ 
dδ 

dt 

(4.36) 
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FIGURE 4.14 
Slow freezing: T∞ ∼= Tm. 

4.4.2	 Melting and Ablation Problems Using the Approximate 
Integral Method 

x 

Moving boundary 

δ 

SolidLiquidTs 

Ti 
x = (t) 

Tm 

FIGURE 4.15 
Heat conduction with moving boundary problems. 



 

� 

� 
� � 

� � � � 

� �
 

�θ dx − θ(δ, t) δ 

⎡ ⎤ 
δ 

d 
dt 

⎣� 

0 

�� � � � � 
∂θ ∂θ ⎦ = α − 
∂x ∂xδ 0 

δ � � � �
d 
dt 

θ dx = −α ρL 
dδ ∂θ +
dt ∂x 0 

0 

Assume θ = c1(x − δ) + c2(x − δ)2 (4.37) 

Boundary conditions: 

x = 0, θs = −c1δ + c2δ
2 (4.37a) 

dθ � ∂θ dδ ∂θ 
x = δ, = 0 = + , that is, θ(δ, t) = 0

dt ∂x dt ∂tδ δ δ � �2 � � 
∂θ k ∂θ = −  + 
∂x δ ρL ∂t δ 

∂2θ 
� 

∂θ 
�2 k
∴ α = 

∂x2 ∂x ρLδδ 

α · 2c2 = c1
2 k 

. (4.37b)
ρL 

From Equations 4.37a and 4.37b, we obtain 

)αρL 
c1 = [1 − 1 + μ]

δk 
αδ + θs c2 = 

δ2 

where μ (2θsCp/L) is the Stefan number. =
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FIGURE 4.16 
Slow melting: Tm ≡ Ti . 

where L is the latent heat of melting. 



 

 

qs ″ 

T∞ 

Tm 

Va 

Ti = T∞ 

x = 0 x = L, ∞ 

� � 
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FIGURE 4.17 
Ablation at surface of flat wall. 

Then, inserting Equation 4.37 into Equation 4.35, we obtain 
[ √ ]

dδ 6α 1 − 1 + μ + μ
δ = √

dt 5 + μ + 1 + μ 
√ 

δ = b t 
� √ �1/2√ 1 − 1 + μ + μ

b = 2 3α √ 
5 + μ + 1 + μ 

Linear approximation for small μ: 
√ )


δ ∼ b t ∼ 2αμt
 

4.4.2.1 Ablation 

Ablating heat shields have been successful in satellite and missile reentry to 
the earth’s atmosphere as a means of protecting the surface from aerodynamic 
heating. In this application, the high heat flux generated at the surface first 
causes an initial transient temperature rise until the surface reaches the melt­
ing temperature, Tm. Ablation (melting of the surface) begins and follows 
a second short transient period, and then a steady-state ablation velocity is 
reached. The melted material is assumed to run off immediately. The prob­
lem can be simplified to 1-D transient heat conduction with moving boundary 
due to ablation. Figure 4.17 shows ablation at the surface of the flat plate with 
an imaging ablation velocity, Va, moving to the left [5]. The heat conduction 
equation for this reference frame is Equation 4.38 with an added enthalpy 
flux term associated with the moving velocity Va: 

∂ ∂T ∂T ∂T
k + ρcVa = ρc (4.38)

∂x ∂x ∂x ∂t 

The problem can be solved by three stages: (1) the initial transient before 
the surfaces reach Tm, (2) the second transient period during ablation, and 



� � 

� � 

� � 
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(3) after the steady-state ablation velocity has been reached, the temperature 
distribution in the material is steady. The initial transient problem has been 
solved before (i.e., Va = 0, given the surface heat flux BC). The second tran­
sient problem, Equation 4.38, can be solved by the finite-difference method. 
For the steady-state problem with constant ablation velocity, Equation 4.38 
becomes 

∂ ∂T ∂T
k = −ρcVa (4.39)

∂x ∂x ∂x 

With the accompanying low thermal conductivity material (such as glasses 
and plastics) the temperature gradient at the surface is very steep so that x = L 
may be considered as x = ∞. Proper BCs are as follows: 

x = 0, T = Tm 

x = ∞, T = T∞ = Ti 

∂T 
x = ∞, = 0 (4.40)

∂x 

For constant properties k, ρ, c, and for the case of constant surface heat flux 
"" q , Equation 4.39 is solved by integrating twice and evaluating the integration s 

constants with Equation 4.40. Let θ = (dT/dx), then 

d Va 
θ = −  θ

dx α 

dθ Va= −  dx 
θ α 

dθ Va = − dx 
θ α 

Valn θ = −  x + C 
α 

θ = 
dT = C1 e−(Va/α)x + C2dx 

where at x = ∞, (dT/dx) = 0 = θ, ∴ C2 = 0. 
−(Va/α)xThen (dT/dx) = C1 e , 

−(Va/α)x dxdT = C1 e

α
T = −C1 e−(Va/α)x + C3Va 



"" � 
� 

� 

at x = ∞, T = T∞ = C3 

α 
at x = 0, T = Tm = −C1 + C3Va 

Va Va−C1 = (Tm − C3) = (Tm − T∞)
α α 

Therefore, 

−(Va/α)x + T∞T = (Tm − T∞) e

T − T∞ −(Va/α)x= e (4.41)
Tm − T∞ 

Applying energy balance on the surface in order to determine the ablation 
velocity Va (assuming L as the heat of ablation of the material), 

∂T � 
q − ρLVa = −k = ρCVa(Tm − T∞) (4.42)s �∂x x=0 

"" qsVa = (4.43)
ρL + ρC(Tm − T∞) 

The total heat conducted into the solid material evaluated with the 
temperature distribution, Equation 4.41, is 

∞ 
k(Tm − T∞)"" q = ρC (T − T∞) dx = (4.44)c Va 

0 

"" The total heat transferred to the surface in time t is q · t. Then for this period s 
of time t, the fraction of the total heat transferred which was conducted into 
the solid material is obtained by substituting Equation 4.43 into Equation 4.44: 

"" q k(Tm − T∞)[ρL + ρC(Tm − T∞)]c = (4.45)
q "" q "" · q "" · ts s s 

Comparing Equations 4.43 and 4.45, a large magnitude of [ρL + ρC(Tm − 
T∞)] is desirable to reduce the amount of material ablated, but a small mag­

"" nitude is desirable to reduce the fraction of q which is conducted into the s 
solid material. A compromise is necessary. 

Examples 

4.1. Solve transient temperature profiles of a convectively cooled cylinder, as 
shown in Figure 4.1b, by separation of variables. 
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SOLUTION 

1 ∂ ∂θ 1 ∂θ ∂2θ 1 ∂θ 1 ∂θ 
r = or + = 

r ∂r ∂r α ∂t ∂r2 r ∂r α ∂t 

Boundary conditions: 
∂θ �i. r = 0, � = 0
∂r r=0 

∂θ �ii. r = ro, −k � = hθro∂r r=ro 

Separation of variables: 

θ = R(r)τ(t) 

∂τ 2 −αλ2t+ λ τ = 0; τ = C3 e
∂t 

∂2R 1 ∂R + + λ2R = 0 
∂r2 r ∂r 

R(r) = C1J0(λr) + C2Y0(λr) 

Applying BCs 

∂R � = −C1λJ1(0) + C2λY1(0) = 0, J1(0) = 0, ⇒ C2 = 0 
∂r r=0 

∂R �	 h −k = kC1λJ1(λro) = hθR, λJ1(λro) = J0(λro), λn = λro 
∂r	 kr=ro 

λnJ1(λn) − BiJ0(λn) = 0 

where Bi = (hro/k), 

∞ � � 
2	 r−(α/r )λ2 
o	 n

ro 
θ = Cn e t J0 λn 

n=1 

at t = 0, θ = 1 

∞ � � 
r

1 = CnJ0 λn ro n=1
 

ro
∫0 rJ0(λn(r/ro)) dr (r2/λn)J1(λn)oCn =	 = ro	 2∫0 rJ0
2(λn(r/ro)) dr (ro /2)[J02(λn) + J1

2(λn)] 
∞ 2J1(λn)J0(λn(r/ro)) λ2 

nθ =	 · e− F0 

J2 
n=1 λn 0 (λn) + J1

2(λn) 

where F0 = (αt/r2).o 
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4.2. Solve transient temperature profiles of a convectively cooled sphere, as shown 
in Figure 4.1c, by separation of variables. 

SOLUTION 

1 ∂2 1 ∂θ 
(rθ) = 

r ∂r2 α ∂t 

Boundary conditions: 

i. r = ro − k ∂θ = hθro∂r 
ii. t = 0 θ = 1
 

Let U(r , t) = rθ(r , t),
 

∂2U 1 ∂U = 
∂r2 α ∂t ⎧ ⎨U = 0 at  r = 0 

BCs ∂U h 1 ⎩ + − U = 0 at  r = ro 
∂r k ro 

U = r for t = 0 

U = R(r)τ(t) 

∂τ 2 −αλ2t+ αλ τ = 0; ⇒ τ(t) = C3 e
∂t 

∂2R + λ2R(r) = 0 
∂r2 

R(r) = C1 sin(λr) + C2 cos(λr) 

at r = 0, U = 0, ⇒ C2 = 0 

h 1
C1λ cos(λro) + − C1 sin(λro) = 0 

k ro
 

λn = λro
 

λn cos(λn) + (Bi − 1)sin(λn) = 0
 

where Bi = (hro/k), 

∞ � � 
r −λ2F0nU = Cn sin λn e
ro n=1 

where F0 = (αt/r2).o 
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At t = 0, θ = 1, U = r , 

∫ro 
0 r sin(λn(r/ro)) dr
 

Cn = ∫r
0
o sin2(λn(r/ro)) dr
 

2(sin(λn) − λn cos(λn))

Cn = 

λn − sin(λn)cos(λn) 

∞ 2 [sin(λn) − λncos(λn)] sin(λn(r/ro)) −λ2F0θ = · · e n
λn − sin(λn)cos(λn) λn(r/ro) 

n=1 

4.3. Solve transient temperature profiles in a semiinfinite solid body using the 
Laplace transform for the following BCs of constant surface heat flux. 

If at time t = 0 the surface is suddenly exposed to a constant heat flux 
"" q —for example, by radiation from a high-temperature source—the resulting s 

temperature response is 

"" �1/2q 4αt xs −xT − Ti = e
2/4αt − x erfc 

k π (4αt)1/2 

SOLUTION 

1-D transient:
 

∂2T 1 ∂T
 = 
∂x2 α ∂t 

Initial condition:
 

t = 0; T = Ti .
 

Boundary conditions: 

"" i. x = 0; −k ∂T = qs∂x 
ii. x → ∞; T = Ti 

Let θ = T − Ti ,
 

∂2θ 1 ∂θ
 = 
∂x2 α ∂t 

Initial condition:
 

t = 0; θ = 0.
 

Boundary conditions: 

"" i. x = 0; −k ∂θ = q
∂x s 

ii. x → ∞; θ = 0 
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Applying the Laplace transform, 

∂2θ̃ s − θ̃ = 0 (1)
∂x2 α 

Boundary conditions: 

−k ∂ θ̃ qs 
"" 

i. x = 0; = 
∂x s 

˜ii. x → ∞; θ = 0. 

Solving, 
√ √ − s/αxθ̃ = C1 e s/αx + C2 e (2) 

Applying BC (ii), C2 = 0. √"" Applying BC (i), C1 = (q /s)(1/k s/α).s
 
Substituting this into above (2),
 

q "" 1 √ 
s − s/αxθ̃ = √ e (3)
s k s/α 

Rearranging, 
√"" ˜ qs /k α −(x/ 

√ 
α) 

√ 
sθ = e

s3/2 

Applying the Laplace inverse, 

"" 2q √ t x x xsθ = α 2 exp − − √ erfc √ 
k π 4αt α 2 αt 

"" �1/2 2q 4αt x xsT − Ti = exp − − x erfc 
k π 4αt (4αt)1/2 

4.4. Solve transient temperature profiles in a semiinfinite solid body using the 
Laplace transform for the following BCs of convective heat transfer to the 
surface. 

If at time t = 0 the surface is suddenly exposed to a fluid at temperature 
T∞, with a convective heat transfer coefficient h, the resulting temperature 
response is 

T − Ti x x h = erfc − ehx/k+(h/k)2αt erfc + (αt)1/2 
T∞ − Ti (4αt)1/2 (4αt)1/2 k 

SOLUTION 

1-D transient 

∂2T 1 ∂T = 
∂x2 α ∂t 
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Initial condition:
 

t = 0; T = Ti .
 

Boundary conditions: 

i. x = 0; −k ∂θ = h(θ∞ − θ0)
∂x 

ii. x → ∞; T = Ti 

Let θ = T − Ti , 

∂2θ 1 ∂θ = 
∂x2 α ∂t 

Initial condition:
 

t = 0; θ = 0
 

Boundary conditions: 

i. x = 0; −k ∂θ = h(θ∞ − θ0)
∂x 

ii. x → ∞; θ = 0 

Applying the Laplace transform, 

∂2θ̃ s − θ̃ = 0 (1) 
∂x2 α 

Boundary conditions: 
( )

−k dθ̃(0,t) θ∞i. x = 0; dx = h s − θ̃(0, t)

˜ii. x → ∞; θ = 0 

By solving, 
√ √ − s/αxθ̃ = C1 e s/αx + C2 e (2) 

Applying BC (ii), C2 = 0.
 
Applying BC (i),
 

(h/k)θ∞C1 = √ 
((h/k) + ( s/α))s 

Substituting this into above (2), 

˜ (h/k)θ∞ −√ 
s/αxθ = √ e (3)

((h/k)+( s/α))s 

By rearranging, 

√ √ √ ˜ (h/k) α −(x/ α) sθ = θ∞ ( √ √ ) e
(h/k) α+ s s 
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Applying the Laplace inverse, 

θ	 h √ x x(h/k)x= −e e(h2α/k2)t erfc αt + √ + erfc √
 
θ∞ k 4αt 4αt
 

T − T x	 x hi	 1/2= erfc − ehx/k+(h/k)2αt erfc + (αt)
T∞ − Ti (4αt)1/2	 (4αt)1/2 k 
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Remarks 

There are many engineering problems involving 0-D, 1-D, 2-D, or 3-D tran­
sient heat conduction with various thermal BCs. In the undergraduate-level 
heat transfer, we have focused mainly on how to apply the lumped capaci­
tance solutions to solve relative simple engineering problems. For 1-D and 
multidimensional transient conduction problems, we normally do not go 
through the detailed mathematical equations and solutions. Instead, students 
are expected to apply these formulas to solve many engineering relevant prob­
lems by giving solid material geometry with appropriate thermal properties 
and thermal BCs. 

In the intermediate-level heat transfer, Chapter 4 we have introduced sev­
eral very powerful mathematical tools such as similarity method, Laplace 
transform method, and integral approximate method, in addition to the sep­
aration of variables method already mentioned in Chapter 3. Specifically, the 
separation of variables method is convenient to solve the transient conduc­
tion problems with finite-length dimensions such as the plate, cylinder, and 
sphere with various thermal BCs. However, the similarity method, Laplace 
transform method, or integral approximate method is more appropriate to 
solve the transient conduction problems with semiinfinite solid material for 
various thermal BCs. 

1-D transient heat conduction with moving boundaries belongs to advanced 
heat conduction material. (Readers can skip these topics.) 

PROBLEMS 

4.1. The wall of a rocket nozzle is of thickness L = 25 mm and is made 
from a high-alloy steel for which ρ = 8000 kg/m3, c = 500 J/kg K, 
and k = 25 W/m K. During a test firing, the wall is initially at 
Ti = 25◦C and its inner surface is exposed to hot combustion gases 
for which h = 500 W/m2K and T∞ = 1750◦C. The firing time is 
limited by the nozzle inner-wall temperature when it reaches 
1500◦C. The outer surface is well insulated. 
a.	 Write the transient heat conduction equation, the associated 

BCs, and determine the nozzle wall temperature distributions. 
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(Note: The diameter of the nozzle is much larger than its thick­
ness. No need to perform integration of orthogonal functions 
if you run out of time.) 

b. Sketch several nozzle wall temperature profiles during tran­
sient heating. 

c.	 To increase the firing time, changing the wall thickness L is 
considered. Should L be increased or decreased? Why? The 
value of the firing time could also be increased by select­
ing a wall material with different thermophysical properties. 
Should materials of larger or smaller values of ρ, c, and k be 
chosen? 

4.2. A one-side-insulated metal plane wall with a thickness of L is 
initially at temperature Ti and suddenly the other side is heated 
by forced convection water at temperature T∞ with a convection 
heat transfer coefficient h. 
a.	 Outline, step by step, the procedures and the associated initial 

and BCs that may be used to solve the temperature distribu­
tions in the plane wall. You do not need to solve the transient 
temperature distribution. 

b. Sketch the temperature profiles in the plane wall during the 
heating process. Also, estimate the surface temperature at the 
final steady-state condition. 

4.3. A long metal plane wall with a thickness of 2L is initially at tem­
perature Ti and suddenly both sides are heated by convection 
fluid flow at temperature T∞ with a convection heat transfer coef­
ficient h. Outline the procedures that may be used to solve the 
temperature distributions in the plane wall and sketch the tem­
perature profiles in the plane wall during the heating process for 
two different cases. 
a.	 Fluid flow is natural convection air. 
b. Fluid flow is forced convection water. 
c.	 Also, estimate the surface temperature at the final steady-state 

condition. Which fluid flow will reach the steady temperature 
faster? Why? Make appropriate assumptions in order to justify 
your answers. 

4.4. A large flat plate (with a thickness of 2L) initially at Ti is suddenly 
plunged into a liquid bath at T∞. Derive an expression for the 
instantaneous temperature distribution in the plate, if, 
a.	 The heat transfer coefficient between the two surfaces of the 

plate and the liquid, h, is given as constant and finite. 
b. The heat transfer coefficient h between the two surfaces of the 

plate and the liquid is very large so that the temperatures on the 
two surfaces of the plate may be assumed to change abruptly 
to the temperature of the liquid (i.e., T(L,t) = T∞, for t > 0). 

c.	 Sketch the instantaneous temperature distribution in the plate 
for both (a) and (b) if T∞ > Ti. 

4.5. A semiinfinite solid initially at a uniform temperature	 Ti and 
suddenly exposed at its surface to a constant heat flux q”. 
a.	 Determine the temperature history in the solid. 
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b. Approximately plot the temperature profiles for the following 
BCs: 

i. Constant q” at the surface. 
ii. Constant temperature at the surface, Ts(0,t) >  Ti. 

iii. Constant fluid temperature Tf and h, Tf > Ti. 
4.6. A semiinfinite carbon steel block is initially at a uniform tem­

perature Ti and its surfaces is suddenly exposed to a constant 
irradiation flux q "" , simultaneously to an ambient air of h, T∞. 
a.	 Determine the temperature history in the solid and sketch the 

temperature profiles in the solid assuming Ti = T∞.Analytical 
method. 

b. If a semiinfinite pure copper block will be operated at the same 
condition, state that the time required for the surface of the 
block to reach Ts will be longer or shorter than that of the steel 
block. Why? 

4.7. A liquid confined in a half-space x > 0 is initially at a temperature 
Ti which is higher than its freezing temperature Tm. For times 
t > 0, the surfaces at x = 0 are subjected to the following BCs. 
Plot the temperature history both in the liquid and the solid. 
a.	 Constant heat flux is q "" ; this q "" is removed away from the 

surface. 
b. Constant surface temperature To, To < Tm. 
c.	 If natural convection takes place in the liquid region with 

a constant h, plot the temperature profiles and freezing dis­
tance δ with time in both case (a) and case (b). Explain the 
difference. 

4.8. Asolid simulated as a half-space, x > 0, is initially at a temperature 
Ti which is equal to its melting temperature Tm. For time t > 0, 
the surface at x = 0 is subjected to the following BCs. Plot the 
temperature history both in liquid and solid: 
a.	 Constant heat flux is q "" ; this q "" is applied to the surface. 
b. Constant surface temperature Ts, Ts > Tm. 
c.	 Convection to the surface with heating fluid at T∞, h. 

4.9. Refer to Equation 4.14, and solve the temperature distributions 
for the 3-D block with the following BCs: 

(1)	 x = ±a, T = Ts 

y = ±b, T = Ts 

z = ±c, T = Ts 

(2)	 x = ±a, (−k∂T(±a, t)/∂x) = h[T(±a, t) − T∞] 
y = ±b, (−k∂T(±b, t)/∂y) = h[T(±b, t) − T∞] 
z = ±c, (−k∂T(±c, t)/∂z) = h[T(±c, t) − T∞] 

4.10. A semiinfinite solid is initially at uniform temperature Ts. The 
surface of the semiinfinite solid is suddenly exposed to a constant 
temperature Tw. 
a.	 Write the governing equations and the BCs. 
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b. Nondimensionalize the governing equations and BCs by 
appropriate choice of temperature variable, length scale, and 
timescale. 

4.11. An infinite body of cold liquid initially at uniform temperature 
Ts is brought in contact with a heated horizontal wall of infinite 
length maintained at a constant temperature (Tw). It is expected 
that after infinite time the liquid temperature profile will be linear 
within a thermal boundary layer of thickness δ. Neglect gravity or 
body forces and liquid convection and assume that heat transfer 
in the liquid is by conduction only. 
a.	 Write the governing equations and the BCs. 
b. Nondimensionalize the governing equations and BCs by 

appropriate choice of temperature variable, length scale, and 
timescale. 

c.	 Solve the governing equations to obtain the transient tem­
perature profile. Verify if the solution for the transient 
temperature profile satisfies the linear temperature pro­
file when steady-state conditions are reached (at infinite 
time). 

4.12. A plate is initially at temperature Ti when laid on an insulated 
surface and cooled by air flow at temperature T∞, with the heat 
transfer coefficient h. The length of the plate is l, width w, and 
thickness b (l » w, l » b, w » b). The thermal diffusivity of the 
plate is α and the thermal conductivity of the plate material is k. 
The viscosity of air is μ and density is ρ. Estimate the time required 
for the bottom surface of the plate to cool to Tb, when 
a.	 The plate material is made of copper (the conduction resistance 

in the slab is negligible). 
b. The plate material is made of plastic (the convection resistance 

on the slab is negligible). 
4.13. A long metal plane wall with a thickness of 2L is initially at tem­

perature Ti and suddenly both sides are heated by a convection 
fluid flow at temperature T∞. Outline the procedures and solve 
the temperature distributions in the plane wall and sketch the 
temperature profiles in the plane wall during the heating process 
for two different cases. 
a.	 Fluid flow is natural convection air. 
b. Fluid flow is forced convection water. 

4.14.	 a. Consider a large wall, separating two fluids at T∞1 and T∞2 
(T∞2 < T∞1). To prevent heat transfer from the hot fluid at 
T∞1 to the wall, a thin foil guard heater (of negligible thick­
ness) on the surface of the wall exposed to the hot fluid at 
T∞1 is used to raise the surface temperature to T∞1. Sketch 
the instantaneous temperature distributions at several differ­
ent times in the fluids near the wall and in the wall, before and 
after the surface temperature is raised with the thin foil guard 
heater, until a steady state is reached. 

b. Consider a large wall, separating two fluids at T∞1 and T∞2 
(T∞2 < T∞1). Instead of the thin foil guard heater in (a), heat is 
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generated uniformly in the wall to prevent heat transfer from 
the fluid at T∞1 to the wall. Sketch the instantaneous temper­
ature distributions in the fluids at several different times near 
the wall and in the wall, before and after heat is generated uni­
formly in the wall to prevent heat transfer from the hot fluid 
to the wall, until a steady state is reached. 

c.	 Consider a large wall with a thickness of 2L its surfaces main­
tained at T1 and T2 (T2 = T1). Heat is generated uniformly in 
the wall. Beginning with the steady-state, 1-D, heat conduction 
equation and appropriate BCs (T = T1 at x = −L and T = T2 
at x = +L), derive an expression for the steady-state 1-D tem­
perature distribution in the wall, T(x). Using the expression, 
show that the rate of heat generation is equal to the sum of the 
rates of heat transfer from the two surfaces. 

4.15. The plane wall has constant properties and no internal generation 
and is initially at a uniform temperature Ti. Suddenly, the surface 
x = L is exposed to a heating process with a fluid at T∞ having a 
convection coefficient h. At the same instant, the electrical heater 

"" is energized providing a constant heat flux q0 at x = 0. 
a.	 On T − x coordinates, sketch the temperature distributions for 

the following conditions: initial condition (t < 0), steady-state 
condition (t → ∞), and for two intermediate times. 

"" b. On q − x coordinates, sketch the heat flux corresponding to x 
the four temperature distributions of (a). 

"" c.	 On q − t coordinates, sketch the heat flux at the locations x = 0x "" "" and x = L. That is, show qualitatively how q (0,t) and q (L, t)x x
vary with time. 

d. Derive an expression for the steady-state temperature at the 
"" heater surface, T(0, ∞), in terms of q0, T∞, k, h, and L. 

4.16. The plane wall has constant properties and a uniform internal 
generation of q̇(W/m3) that activates only when the electric heater 
is energized. The wall is initially at a uniform temperature Ti. 
Suddenly, the surface x = L is exposed to a cooling process with a 
fluid at T∞ having a convection coefficient h. At the same instant, 

"" the electrical heater is energized providing a constant heat flux q0 
at x = 0. 
a.	 On T − x coordinates, sketch the temperature distributions for 

the following conditions: initial condition (t ≤ 0), steady-state 
condition (t → ∞), and for two intermediate times. 

"" b. On q − x coordinate, sketch the heat flux corresponding to x 
the four temperature distributions of (a). 

"" c.	 On q − t coordinates, sketch the heat flux at the locations x = 0x "" "" and x = L. That is, show qualitatively how q (0,t) and q (L,t)x x
vary with time. 

d. Derive an expression for the steady-state temperature 
"" at the heater surface, T(0,∞), in terms of q0, q̇, T∞, k, h, 

and L. 
4.17. A 10 m-long 2 cm-diameter copper rod is immersed in a heat­

ing bath at a uniform temperature of 100◦C. This rod is suddenly 
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exposed to an air stream at 20◦C with a heat transfer coefficient 
of 200 W/m2 K. Find the time required for the copper rod to cool 
to an average temperature of 25◦C. Write all assumptions if nec­
essary. Thermal conductivity, specific heat, and density of copper 
are 401 W/m K, 385 J/kg K, and 8933 kg/m3, respectively. 

4.18. Determine the temperature profile for 1-D transient heat conduc­
tion problem in a cylinder at constant surface temperature as 
shown in Figure 4.1b. 

4.19. Determine the temperature profile for 1-D transient heat conduc­
tion problem in a sphere at constant surface temperature as shown 
in Figure 4.1c. 

4.20. Determine the temperature profile for 1-D transient heat conduc­
tion problem in a vertical plate at constant surface temperature as 
shown in Figure 4.4b. 
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5 
Numerical Analysis in Heat Conduction
 

5.1	 Finite-Difference Energy Balance Method for 2-D 
Steady-State Heat Conduction 

The above-discussed principle of separation of variable is a powerful method 
to solve the 2-D heat conduction problem. However, the solutions become 
tedious for various nonhomogenous BCs. With the help of modern computers, 
the heat conduction problem can be easily solved by using the finite-difference 
energy balance method for complex BCs. For example, Figure 5.1 shows the 
typical numerical grid distribution for 2-D heat conduction with given sur­
face temperatures as BCs. It requires detailed mathematical procedures if we 
choose the separation of variable method to solve this problem. Of course, 
the accuracy of the numerical solutions depends on the number of finite-
difference grids used for energy balance calculations. In general, the accuracy 
improves with the increase of grid points. It should be noted that each grid 
point actually represents the temperature of a small area ΔxΔy. So we obtain 
the discrete temperature distribution by using the finite-difference method. 
However, when Δx and Δy become very small (approaching zero), the tem­
perature distribution predicted by the finite-difference method will be the 
same as those calculated using the separation of variable method. 

In general, the grid size in the x-direction is not necessarily the same as that 
in the y-direction. We need to use smaller grid size (more grid points) in the 
high-temperature gradient direction. The energy balance can be performed 
for each grid point shown in Figure 5.1. The number of unknown temperatures 
is the same as the number of energy balance equations (the number of grid 
points). Therefore, the unknown temperatures can be solved. Note that we do 
not need to perform energy balance on the boundary points if the boundary 
temperatures are already given. But, we need to perform energy balance on 
the boundary points if the boundary is exposed to heat flux or convection 
in which their boundary temperatures are unknown and to be determined 
using the finite-difference method. The following outlines the finite-difference 
method to solve the 2-D heat conduction problem shown in Figure 5.2. We 
can begin the energy balance at the interior points and then extend to energy 
balance at the boundary points with various BCs. 
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Energy balance at the interior nodes: 

4 

qi→0 + q̇(Δx · Δy · 1) = 0 (5.1) 
i=1 

T1 − T0 T2 − T0 T3 − T0kΔy · 1 · + kΔy · 1 · + kΔx · 1 · 
Δx Δx Δy 

T4 − T0+ kΔx · 1 · + q̇(Δx · Δy) = 0 (5.2)
Δy 

If Δx = Δy, 

1 q̇ΔxΔx
T0 = T1 + T2 + T3 + T4 + (5.3)

4 k 

Energy balance at boundary nodes (not needed if the surface temperature 
is given): 

Convection boundary on the surface nodes: 

T1 − T0 Δx T4 − T0 Δx T3 − T0kΔy · 1 · + k · 1 · + k · 1 · 
Δx 2 Δy 2 Δy 

Δx + hΔy(T∞ − T0) + q̇ · Δy = 0 (5.4)
2 
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FIGURE 5.1 
Finite difference method to solve 2-D heat conduction problem. 
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FIGURE 5.2 
Finite difference method to solve 2-D heat conduction problem. 

Uniform heat flux at the surface nodes: 

Δy T1 − T0 T3 − T0 Δy T2 − T0k · 1 · + kΔx · 1 · + k · 1 · 
2 Δx Δy 2 Δx 

Δy"" + qs Δx · 1 + q̇ · Δx = 0 (5.5)
2 

"" If insulation BCs applies to the surface nodes, then q = 0.s 
In general, T0, T1, T2, T3, and T4 can be replaced by Tm,n, Tm−1,n, 

Tm+1,n, Tm,n−1, and Tm,n+1 or by Ti,j, Ti−1,j, Ti+1,j, Ti,j−1, and Ti,j+1, 
where m = 1, 2, 3, . . ., n = 1, 2, 3, . . . or i = 1, 2, 3, . . ., j = 1, 2, 3, . . ., to obtain 
T1,1, T1,2, T1,3, . . . , T2,1, T2,2, T2,3, . . ., and T3,1, T3,2, T3,3, . . . . 



Another approach is to make grid nodes directly from the heat conduc­
tion equation. The 2-D steady-state heat conduction equation with heat 
generation is 

∂2T ∂2T q̇+ + = 0 
∂x2 ∂y2 k 

The finite-differential format of the steady-state 2-D heat conduction 
equation with heat generation can be written as 

(Tm−1,n − Tm,n)/Δx + (Tm+1,n − Tm,n)/Δx 
Δx 

(Tm,n−1 − Tm,n)/Δy + (Tm,n+1 − Tm,n)/Δy q̇+ + = 0 (5.6)
Δy k 

Let Δx = Δy, and one obtains 

q̇
(Tm−1,n + Tm+1,n + Tm,n−1 + Tm,n+1) + (Δx)2 = 4Tm,n (5.7) 

k 

where m = 1, 2, 3, . . ., n = 1, 2, 3, . . . . 
The above linear equation can be applied to any interior nodes. Theoreti­

cally, one would obtain m × n linear equations, and therefore, temperature 
T(x, y) = Tm,n can be solved using the matrix method [1,2]. For example, 
let Tm,n = T1, T2, T3, . . . , TN , and the above linear equations can be applied 
T1, T1, T3, . . . , TN . Rearranging the equation, one obtains 

a11T1 + a12T2 + a13T3 + · · · + a1NTN = C1 

a21T1 + a22T2 + a23T3 + · · · + a2NTN = C2 

. . (5.8) . 

aN1T1 + aN2T2 + aN3T3 + · · · + aNNTN = CN 

Using the matrix notation, these equations can be expressed as 

[A] [T] = [C] (5.9) 

where 

[A] = 

⎡ 
⎢ ⎢ ⎢ ⎣ 

a11 
a21 

. . . 

a12 
a22 

· · ·  
· · ·  

a1N 
a2N 

⎤ 
⎥ ⎥ ⎥ ⎦ , [T] = 

⎡ 
⎢ ⎢ ⎢ ⎣ 

T1 
T2 
. . . 

⎤ 
⎥ ⎥ ⎥ ⎦ , [C] = 

⎡ 
⎢ ⎢ ⎢ ⎣ 

C1 
C2 
. . . 

⎤ 
⎥ ⎥ ⎥ ⎦ 

aN1 aN2 · · ·  aNN TN CN 
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The solution may be expressed as 

[T] = [A]−1 [C] (5.10) 

where [A]−1 is the inverse of [A] that is defined as 

⎡ ⎤ 
b11 b12 · · ·  b1N ⎢ ⎥b21 b22 · · ·  b2N ⎢ ⎥[A]−1 = ⎢ . ⎥ ⎣ .. ⎦ 
bN1 bN2 · · ·  bNN 

Therefore, temperature can be determined by 

T1 = b11C1 + b12C2 + · · · + b1NCN 

T2 = b21C1 + b22C2 + · · · + b2NCN 

. . (5.11) . 

TN = bN1C1 + bN2C2 + · · · + bNNCN 

Example 5.1 

We use Figure 5.3 as an example to demonstrate how to solve the 2-D heat 
conduction problem by using the finite-difference method. Let Δx = Δy , q̇ = 0. 
Rearrange the temperatures from the energy balance on node 1, 2, 3, …. 

1
T1 = (Ts + Ts + T2 + T3) ⇒ 

4 
−4T1 + T2 + T3 + 0 + 0 + 0 + 0 + 0 = −2Ts 

1
T2 = (T1 + T4 + T1 + Ts)4 
2T1 − 4T2 + 0 + T4 + 0 + 0 + 0 + 0 = −Ts 

1 
T3 = (Ts + T5 + T4 + T1)

4
 
1


T4 = (T3 + T6 + T3 + T2)
4
 
1


T5 = (Ts + T7 + T6 + T3)
4
 
1


T6 = (T5 + T8 + T5 + T4)
4 

1 hΔx
T7 = ( ) 2T5 + T8 + Ts + 2 T∞

4 + 2(hΔx/k) k 
1 hΔx 

T8 = ( ) T6 + T7 + T∞
2 + (hΔx/k) k 



[T ] = [A]−1[C ] 

[A] = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−4 1 1 0 0 0 
2 −4 0 1 0 0 
1 0 −4 1 1 0 
0 1 2 −4 0 1 
0 0 1 0 −4 1 
0 0 0 1 2 −4 

0 0 0 0 2 0 

0 0 0 0 0 1 

[C ] = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−Ts 
−Ts 
−Ts 

0 
−Ts 

0 

−Ts − 
2h 
k 

ΔxT∞ 

− 
h 
k 

ΔxT∞ 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

[T ] = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

T1 
T2 
T3 
T4 
T5 
T6 
T7 
T8 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

0 
0 
0 
0 
1 
0 

− 

� 
4 + 

2h 
k 

Δx 
� 

1 

0 
0 
0 
0 
0 
1 

1 

− 

� 
2 + 

h 
k 

Δx 
� 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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Ts 

5 

1 12 

3 34 

6 

87 7 

Ts Ts 

5 

T∞, h 

FIGURE 5.3 
Example of using finite difference method to solve 2-D heat conduction problem. 

Place temperatures on the left-hand side of the equation and the constants on the 
right-hand side. We can form a coefficient matrix [A], temperature matrix [T ], and 
column matrix [C ]. The linear equations of the finite-difference energy balance 
on each grid point can be represented by the product of [A][T ] = [C ]. Therefore, 
the temperature distribution can be obtained if we know how to solve [T ] from 
[A] and [C ]. So the main job for this method is how to obtain [A] and [C ]. The 
solution for [T ] is  
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Example 5.2 

We use Figure 5.4 with T (x , y) = Tm,n, when m = 1, 2, 3, 4, 5, n = 1, 2, 3, 4, 5, 
respectively. We need to solve the temperature column matrix [T ]. Let Δx = Δy , 
q̇ = 0, and write down the linear equations of the finite-difference energy bal­
ance method on each mode, and obtain a coefficient matrix [A] and a column 
matrix [C ]. Therefore, the temperature matrix can be solved by [A] [T ] = [C ], 
[T ] = [A]−1 [C ], where all [T ], [A], and [C ] are equal: 

T1,1 
⎡ 

T2,1 T3,1 T4,1 T5,1 
⎤ 

⎢ ⎢ T1,2 T2,2 T3,2 T4,2 T5,2⎥ ⎥ 
[T ] = ⎢ ⎢ T1,3 T2,3 T3,3 T4,3 T5,3⎥ ⎥ = ⎣T1,4 T2,4 T3,4 T4,4 T4,5⎦ 

T1,5 T2,5 T3,5 T4,5 T5,5 

⎡ 
C1,1 C2,1 C3,1 C4,1 C5,1 

⎤ 
⎢ ⎢ C1,2 C2,2 C3,2 C4,2 C5,2⎥ ⎥ 

[C ] = ⎢ ⎢ C1,3 C2,3 C3,3 C4,3 C5,3⎥ ⎥ = ⎣C1,4 C2,4 C3,4 C4,4 C4,5⎦ 
C1,5 C2,5 C3,5 C4,5 C5,5 

⎡ ⎤ 
a11 a21 a31 a41 a51 ⎢a12 a22 a32 a42 a52⎥ ⎢ ⎥ 

[A] = ⎢a13 a23 a33 a43 a53⎥ ⎢ ⎥ ⎣a14 a24 a34 a44 a54⎦ 
a15 a25 a35 a45 a55 

⎡ 
T1,1 ⎢ ⎢ T2,1 ⎢ ⎢ . ⎢ . . ⎢ ⎢ ⎢ T1,1 ⎢ ⎢T2,2 ⎢ ⎢ . ⎢ . ⎢ . ⎢ ⎢ ⎢ T1,5 ⎢ ⎢ T2,5 ⎢ ⎢ . ⎢ . . 
T5,5 

⎣ 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 
C1,1 ⎢ ⎢ C2,1 ⎢ ⎢ . ⎢ . . ⎢ ⎢ ⎢ C1,1 ⎢ ⎢C2,2 ⎢ ⎢ . ⎢ . ⎢ . ⎢ ⎢ ⎢ C1,5 ⎢ ⎢ C2,5 ⎢ ⎢ . ⎢ . . 
C5,5 

⎣ 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

The above-mentioned finite-difference energy balance method can be used for 
solving 2-D and 3-D heat conduction problems with Cartesian, cylindrical, and 
spherical coordinates with various BCs; for example, for the 3-D problem as shown 
in Figure 5.5. 



 

 

  

  

Ts given surface temperature 
5 

4
 
qs" =0
 h, T∞insulated 3 Convectionwall 

2 
n = 1, ..., 5
 

y
 

x qs̋  uniform heat flux m = 1, ..., 5 

2 3 4 5 

Let T (x , y , z) = Ti,j,k , with i = 1, 2, 3, . . . i, j = 1, 2, 3, . . . j, and k = 1, 2, 3, . . . k . 

T T T T1,1,k 2,1,k 3,1,k i,1,k 

1,1,3T 2,1,3T 3,1,3T i ,1,3T 

1,1,2T 2,1,2T 3,1,2T i ,1,2T 

1,1,1T 2,1,1T 3,1,1T i ,1,1T 

1,2,kT 2,2,kT 3,2,kT i,2,kT 

1,2,3T 2,2,3T 3,2,3T i ,2,3T 

1,2,2T 2,2,kT 3,2,2T i ,2,2T 

1,2,1T 2,2,1T 3,2,1T i ,2,1T 

1,j,kT 2,j,kT 3,j,kT i,j,kT 

1,j,3T 2,j,3T 3,j,3T i,j,3T 

T T T T1,j,2 2,j,2 3,j,2 i,j,2 

112 Analytical Heat Transfer 

FIGURE 5.4 
Example of using finite difference method to solve 2-D heat conduction problem with various 
boundary conditions. 
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T (x, y, x) 
i =1,2,3, ..., i 

k = 1,2,3, ..., k 

j =1,2,3, ..., j 

FIGURE 5.5 
Finite difference method to solve 3-D heat conduction problem. 

For the case of a curved boundary [3], the interior nodes can be determined as 
shown in Figure 5.6. 

Given : Ti+1,j , Ti−1,j , Ti,j+1, Ti,j−1 

Ti−1,j − Ti,j Ti+1,j − Ti,j
kΔy + kΔy (5.12)

Δx aΔx 

Ti,j+1 − Ti,j Ti,j−1 − Ti,j+kΔx + kΔx = 0 
bΔy cΔy 

Unknown :Ti,j 

bΔy 

cΔy 

aΔx 

Ti+ 1, j 

Ti, j+ 1 

Ti, j–1 

Δy 

Δx 

Ti – 1, j Ti , j 

FIGURE 5.6 
Finite difference method to solve the interior nodes next to the curved boundary. 
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5.2	 Finite-Difference Energy Balance Method for 1-D 
Transient Heat Conduction 

The heat equation for 1-D transient heat conduction with heat generation is 

∂2T q̇ 1 ∂T + = . 
∂x2 k α ∂t 

This equation is a parabolic equation. As discussed in Chapter 4, this equa­
tion can be solved analytically by using the separation of variables method, 
similarity method, Laplace transform method, or integral method. In this 
chapter, we would like to solve 1-D and 2-D transient conduction prob­
lems with various BCs by using the finite-difference explicit method and the 
finite-difference implicit method [1]. 

5.2.1 Finite-Difference Explicit Method 

This is finite difference in space with an explicit form (lower bond). At a given 
interior point, heat conductions from the neighborhood points are based on 
the previous time-step temperatures in order to increase that point tempera­
ture during the incremental time-step change. This method is limited by the 
instability problem, but easy to understand and calculate. 

The finite-difference format of the above 1-D transient heat conduction 
equation can be written as 

(T1 
P − T2 

P)/Δx + (T3 
P − T2 

P)/Δx q̇ 1 TP+1 − TP 
+ = 2 2 (5.13)

Δx	 k α Δt 

Example 5.3 

Energy balance at the interior nodes, for example, node 2, as shown in Figure 5.7: 

q = energy storage 

Lower bond: 

T1 
P − T P T3 

P − T P ρCpΔx · y · 1 ·(T P+1 − T2 
P )2 2	 2k · y · 1 + k · y ·1 + q̇ · Δx · y · 1 =	 . 

Δx Δx	 Δt 
(5.14) 

Let q̇ = 0, α = (k/ρCp), one obtains 

T1 
P + T3 

P − 2T P = 
1 

(T P+1 − T2 
P )2 2Fo 

T P+1 = Fo(T1 
P + T3 

P ) + (1 − 2Fo)T P (5.15)2	 2 



 

  
  

  

  

  

Ts 

y 

x 0 1 2 3 4
1
2 

Δx 

pT3 p p step
T4 

pT1 

Ti

pT2 

T2 p+1 T3 
p+1 T4 

T1 

p+ 1 step 

p+1 

p+1 

Δx 

� � 
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FIGURE 5.7 
Finite difference energy balance method for one-dimensional transient heat conduction with 
given surface temperature boundary condition. 

where time increment Δt with time step P , that is, t = PΔt , with P = 0, 1, 2, . . . . 
Fo is a finite-difference form of the Fourier number Fo = (αΔt/Δx2). 

By hand calculation, temperature at (P + 1) step is determined by the preced­
ing time temperature at P step as sketched in Figure 5.7. For example, P = 0, 
t = 0, initial condition, T 0 = T 0 = T 0 = T 0 = Ti .s 1 2 3 

For stability, (1 − 2Fo) ≥ 0, that is, Fo ≤ 1/2, consider Δt as a very small value 
and Δx as a very large value. 

Example 5.4 

For the case of surface convection BC (node 0) as sketched in Figure 5.8: 

T
p 

T
p+1 

1 − T
p − T

p 
Δx0 0 0h(T∞ − T0 

p
) + k = ρCp (5.16)

Δx Δt 2 

2h Δt 2αΔt 
0 0 + 0 ) + 0 )T
p+1 = T

p 
(T∞ − T

p 
(T1 

p − T
p 

ρCp Δx Δx2 

( )
= 2Fo T1 

p + Bi T∞ + (1 − 2 Fo − 2 Bi Fo) T
p (5.17)0 

where 

Fo = (αΔt/Δx2) = Fourier number, 

hΔx
Bi = = Biot number. 

k 

For stability criterion, 1 − 2Fo − 2Bi Fo ≥ 0, that is, Fo (1 + Bi) ≤ 1/2. 
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p step 

1 
2 

h, T∞ 

x 

y p+ 1 step 

Δx 

p+1 T1 

p+1 T0 

pT1 

pT0 

pT2 pT3 Ti 

p+1 T2 p+1 T3 

FIGURE 5.8 
Finite difference energy balance method for one-dimensional transient heat conduction with 
convection boundary conditions. 

Example 5.5 

For the case of surface heat flux BC as sketched in Figure 5.9: 

T
p+1 � �

T
p − T

p 
1 − T

p 
Δx"" 0 0 0qs + k = ρCp (5.18)

Δx Δt 2
 

T
p+1 Δt "" kΔt 

T
p
= q + 1 + (1 − 2Fo)T

p (5.19)0 s 0(Δx/2)ρCp (Δx/2)ρCp 

For stability, Fo ≤ 1/2 

1 
2 

Δx 

p+1 T3 

pT3 Ti 

pT2 

pT1 

pT0 

p+1 T2 

p+1 T1 

p+1 T0 

p + 1 step 

p step 

q" s 

x 

y 

FIGURE 5.9 
Finite difference energy balance method for 1-D transient heat conduction with surface heat flux 
boundary condition. 



 
q = energy storage 

Tp+1 − Tp+1 Tp+1 − Tp+1 Tp+1 − Tp
 
1 2 3 2 2 2
k + k + q̇ · Δx · 1 = ρCpΔx (5.20)

Δx Δx Δt 

Let q̇ = 0, α = (k/ρCp), Fo = (αΔt/Δx2), one obtains 

2Δx − TpTp+1 − Tp+1 + Tp+1 − Tp+1 
(Tp+1 = 1 2 3 2 2 2 )αΔt 

+ Tp+1 = Tp
(1 + 2 Fo)Tp+1 − Fo (Tp+1 

) (5.21)2 1 2 2 
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5.2.2 Finite-Difference Implicit Method 

This is finite difference in space with an implicit form (upper bond). At a given 
interior point, heat conductions from the neighborhood points are based on 
the new time-step temperatures in order to increase that point temperature 
during the incremental time-step change. This method has no instability prob­
lem, best accuracy, large Δt, and small Δx, but requires a computer to solve 
the matrix inverse problem. 

Energy balance at the interior nodes (e.g., node 2, as shown in Figures 5.7 
through 5.9): 

Upper bond: 

There is no stability issue. 
In general, T0, T1, T2, T3, . . . can be replaced by Tm or Ti, when m = 1, 2, 3, . . .  

or i = 1, 2, 3, . . . . 

5.3 2-D Transient Heat Conduction 

The above-mentioned finite-difference energy balance method can be used 
for solving the 2-D transient heat conduction problem [1]. 

Let T(x, y, t) = T(m, n, t) or T(i, j, t), with m = i = 1, 2, 3, . . ., n = j = 
1, 2, 3, . . . . 

∂2T ∂2T q̇ 1 ∂T + + = 
∂x2 ∂y2 k α ∂t 

x-direction net heat conduction + y-direction net heat conduction = 
temperature change of a small element (Δx Δy · 1). 



( )� ( )�

( )� ( )�

Finite-difference explicit form (lower bond): 

Tp − Tp Tp − Tp
Δx + Δxm+1,n m,n m−1,n m,n

Δx 

Tm
p 

,n+1 − Tm
p 

,n Δy + Tm
p 

,n−1 − Tm
p 

,n Δy q̇ 1 Tp+1 − Tp 
m,n m,n+ + = 

Δy k α Δt 
(5.22) 

Let Δx = Δy, q̇ = 0, Fo = αΔt/Δx2, and temperature at (P + 1) step is 
determined by the preceding time temperature at P step as 

( )
Tp+1 Tp 

m,n = Fo m+1,n + Tm
p 

−1,n + Tm
p 

,n+1 + Tm
p 

,n−1 + (1 − 4Fo)Tm
p 

,n (5.23) 

For the stability criterion, (1 − 4Fo) ≥ 0, that is, Fo ≤ 1/4.
 
For the 1-D transient heat conduction problem, one obtains
 

Tp+1 
m = Fo (Tm

p 
+1 + Tm

p 
−1) + (1 − 2 Fo)Tm

p 

For stability, (1 − 2Fo) ≥ 0, that is, Fo ≤ 1/2
 
Finite-difference implicit form (upper bond):
 
( ) ( )

Tp+1 − Tp+1 Tp+1 − Tp+1 
/Δx + /Δxm+1,n m,n m−1,n m,n 

Δx ( ) ( )
Tp+1 Tp+1 

m,n+1 − Tm
p+

,n
1 

/Δy + m,n−1 − Tm
p+

,n
1 

/Δy q̇ 1 Tp+1 − Tm
p 

,nm,n+ + = 
Δy k α Δt 

(5.24) 

Let Δx = Δy, q̇ = 0, Fo = αΔt/Δx2, and temperature at (P + 1) step is 
determined by 

Tp+1 − Tp+1 + Tp+1 − Tp+1 + Tp+1
 
m+1,n m,n m−1,n m,n m,n+1
 

− Tp+1 + Tp+1 1 (
Tp+1 − Tp 

)
m,n m,n−1 − Tm

p+
,n 

1 = m,n m,nFo ( )
Tp+1 + Tp+1 + Tp+1 

(1 + 4 Fo)Tp+1 − Fo m,n+1 + Tp+1 = Tp (5.25)m,n m+1,n m−1,n m,n+1 m,n 

For a 1-D transient heat conduction problem, one obtains 

(1 + 2 Fo)Tm
p+1 − Fo(Tm

p 
+1 + Tm

p 
−1) = Tm

p 

It can be solved by a computer matrix, and there is no instability issue. 
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FIGURE 5.10 
Finite difference method to solve a 2-D conduction problem. 

In general, the finite-difference energy balance method (explicit or implicit 
method) can be used to solve 1-D, 2-D, and 3-D transient heat conduction 
problems for Cartesian, cylindrical, and spherical coordinates with various 
BCs. 

Example 5.6 

Figure 5.10 shows a long, square bar with opposite sides maintained at Ta and Tb, 
and the other two sides lose heat by convection to a fluid at T∞. The conductivity 
of the bar material is k convective heat transfer coefficient is h. For the given mesh, 
use the finite-difference energy balance method to obtain a coefficient matrix [A], 
temperature matrix [T ], and a column matrix [C ]. 

SOLUTION 

Figure 5.10 shows the prescribed surface conditions and the nodes. Symmetry 
allows us to consider just nine nodes. For the interior, nodal temperatures are 

1 
T2 = (Ta + T1 + T3 + T5)

4 
1 

T3 = (Ta + T2 + T2 + T6)
4 
1

T5 = (T2 + T4 + T6 + T8)
4 
1

T6 = (T3 + T5 + T5 + T9)
4 



� � 

� � 

� � 

� � 

� � 

� � 

1 ( )
T8 = T5 + T7 + T9 + Tb4 

1 ( )
T9 = T6 + T8 + T8 + Tb4 

For the boundary, nodal temperatures are 

kΔy kΔx kΔy kΔx kΔx − + + hΔy T1 + T2 + T4 = −  Ta − hΔyT∞ 
Δx Δy Δx 2Δy 2Δy 

kΔx kΔy kΔx kΔy kΔx
T1 − + + hΔy T4 + T5 + T7 = −hΔyT∞2Δy Δx Δy Δx 2Δy 

kΔx kΔy kΔx kΔy kΔx
T4 − + + hΔy T7 + T8 = −  Tb − hΔyT∞2Δy Δx Δy Δx 2Δy 

In matrix form [A] [T ] = [C ], 

⎡ 
kΔy kΔx kΔy kΔx − + + hΔy ⎢ Δx Δy Δx 2Δy ⎢ ⎢ ⎢ 1 −4 1 ⎢ ⎢ 2 −4 ⎢ ⎢ ⎢ kΔx kΔy kΔx ⎢ − + + hΔy ⎢ 2Δy Δx Δy⎢[A] = ⎢ 1 1 ⎢ ⎢ ⎢ 1 ⎢ ⎢ ⎢ kΔx ⎢ ⎢ 2Δy ⎢ ⎢ ⎣ 

⎤ 
⎥1 ⎥ ⎥ ⎥1 ⎥ ⎥ ⎥kΔy kΔx ⎥ ⎥Δx 2Δy ⎥ ⎥−4 1 1 ⎥ ⎥ ⎥2 −4 1 ⎥ ⎥ ⎥kΔy kΔx kΔy ⎥− + + hΔy ⎥

Δx Δy Δx ⎥ ⎥
1 1 −4 1 ⎥ ⎦ 

1 2 −4 
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⎡ 
T1 ⎢ ⎢T2 ⎢ ⎢ ⎢T3 ⎢ ⎢ ⎢ T4 ⎢ ⎢[T ] = ⎢ T5 ⎢ ⎢T6 ⎢ ⎢ ⎢T7 ⎢ ⎢ ⎢ T8 ⎣ 
T9 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

[C ] =  

⎡ kΔx − Ta − hΔyT∞ ⎢ 2Δy ⎢ ⎢ −Ta ⎢ ⎢ ⎢ −Ta ⎢ ⎢ ⎢ −hΔyT∞ ⎢ ⎢ 0 ⎢ ⎢ ⎢ 0 ⎢ ⎢ ⎢ kΔx ⎢− Tb − hΔyT∞ ⎢ 2Δy ⎢ ⎢ −Tb ⎣ 
−Tb 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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Remarks 

The finite-difference method is a very powerful numerical technique to solve 
many engineering application problems.As long as you know how to perform 
the basic energy balance at the interior nodes as well as at the boundary nodes, 
this method essentially can solve all kinds of heat conduction problems with 
complex thermal BCs. In the undergraduate-level heat transfer, students are 
normally required to perform simple energy balance at any specified node 
inside a 2-D steady-state solid material and on the boundary. 

In the intermediate-level heat transfer, we are more focused on how to per­
form simple energy balance as well as how to discretize the heat conduction 
equation in order to solve the 1-D and 2-D steady-state heat conduction prob­
lems with various BCs by using the matrix inverse method. We also put in 
effort to solve the 1-D and 2-D transient heat conduction problems with var­
ious BCs by using the finite-difference implicit method and explicit method. 
In general, the same technique can be used to solve heat conduction problems 
with cylindrical and spherical coordinates. 

PROBLEMS 

5.1. Refer to Figure 5.4, show the matrices [A], [T], and [C], with the 
following grid distributions: 

(1) m = 1, 2, 3, 4, 5 (2) m = 1, 2, 3, 4 (3) m = 1, 2, 3 
n = 1, 2, 3, 4, 5 n = 1, 2, 3, 4 n = 1, 2, 3 

5.2. Derive finite-difference energy balance equations, and show the 
matrices [A], [T], and [C], for a 1-D hollow cylinder with the 
following BCs: 

http:problems.As
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(1) r = r1, T = T1 (2) r = r1, −k(∂T/∂r) 
= h1(T∞1 − T1) 

r = rN, T = TN r = rN, −k(∂T/∂r) 
= hN(TN − T∞N) 

(3) r = r1, −k(∂T/∂r) = h1(T∞1 − T1) 
"" r = rN, −k(∂T/∂r) = qs 

5.3. A semi-infinite stainless-steel block is initially at Ti = 20◦C. The 
surface has an emissivity ε = 1.0 and is placed in a large enclosure 
of Tsur of 20◦C. Suddenly, the surface is exposed to a hot-air flow 
of T∞ = 600◦C and h = 100 w/m2K. 

At an instant time of t s, temperatures T1 and T2 have been 
calculated as shown below. Predict the surface temperature after 
(t + 100) s. Use the forward-difference energy balance method. 
Given 

3α = 4 × 10−6m2/s k = 15.07 w/m K  ρ = 7900 kg/m
C = 477 J/kg K σ = 5.67 × 10−8w/m2 K4 ε = 0.1 

At time t s: T1 = 400◦C and T2 = 380◦C
 
Find: T1 = ? after (t = Δt) s where Δt = 100 s.
 

5.4. Given a very long and wide fin with a height of 2L. The base of 
the fin is maintained at a uniform temperature of Tb. The top and 
bottom surfaces of the fin are exposed to a fluid whose temper­
ature is T∞ (T∞ < Tb). The convective heat transfer coefficient 
between the fin surfaces and the fluid is h. 
a.	 Sketch the steady 2-D temperature distribution in the fin. 
b. If you were to determine the steady 2-D temperature distribu­

tion in the fin using a finite-difference numerical method, you 
would solve a set of algebraic nodal equations simultaneously 
for the temperatures at a 2-D array of nodes. Derive the equa­
tion for a typical node on one of the surfaces of the fin. Please 
do not simplify the equation. 

c.	 Using the method of separation of variables, derive an expres­
sion for the steady local temperature in the fin, in terms of the 
thermal conductivity of the fin, k, the convective heat transfer 
coefficient, h, the half-height of the fin, L, and the base and 
fluid temperatures, Tb and T∞. 

Note that 

�W 
[cos2 (aw)] dw  (1/4a) 2aW  sin (2aW)

0 
= [ + ]

�W 
and [cos(aw) · cos(bw)] dw = 0, when a = b. 

0 

5.5. A3-mm-diameter rod that is 120 mm in length is supported by two 
electrodes within a large vacuum enclosure. Initially, the rod is in 



equilibrium with the electrodes and its surroundings. Suddenly, 
an electrical current is passed through the rod. 
a.	 Using a first law analysis, what is the energy balance on the 

rod? ( )
b. Using	 Ac = (πD2/4), P = πD , derive the explicit finite-

difference expression for node (n). Recall that heat generation 
follows the I2Re law and that Re is defined as Re = ρeΔx/Ac. 
Express your answer using the Fourier number in the explicit 
finite-difference form. 

c.	 What are the stability criteria at node (n)? 
5.6. Refer to Figure 5.4, use the finite-difference explicit method to 

derive the energy balance during the transient for the following 
grid distributions: 

(1) m = 1, 2, 3, 4, 5 (2) m = 1, 2, 3, 4 (3) m = 1, 2, 3 
n = 1, 2, 3, 4, 5 n = 1, 2, 3, 4 n = 1, 2, 3 

5.7 Refer to Figure 5.4, use the finite-difference implicit method to 
derive the energy balance during the transient for the following 
grid distributions: 

(1) m = 1, 2, 3, 4, 5 (2) m = 1, 2, 3, 4 (3) m = 1, 2, 3 
n = 1, 2, 3, 4, 5 n = 1, 2, 3, 4 n = 1, 2, 3 

5.8. Use	 the finite-difference explicit method, and derive finite-
difference energy balance equations for a 1-D hollow cylinder 
during the transient with the following BCs: 

(1)	 r = r1, T = T1 (2) r = r1, −k(∂T/∂r) = h1(T∞1 − T1) 

r = rN, T = TN r = rN, −k(∂T/∂r) = hN(TN − T∞N) 

(3)	 r = r1, −k(∂T/∂r) 
= h1(T∞1 − T1) 

"" r = rN, −k(∂T/∂r) = qs 

5.9. Use the finite-difference	 implicit method, and derive finite-
difference energy balance equations for a 1-D hollow cylinder 
during the transient with the following BCs: 

(1)	 r = r1, T = T1 (2) r = r1, −k(∂T/∂r) = h1(T∞1 − T1) 

r = rN, T = TN r = rN, −k(∂T/∂r) = hN(TN − T∞N) 

(3)	 r = r1, −k(∂T/∂r) 
= h1(T∞1 − T1) 

"" r = rN, −k(∂T/∂r) = qs 

5.10. Derive Equations 5.23 and 5.25 for 3-D transient heat conduction 
problems. 
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6 
Heat Convection Equations
 

6.1 Boundary-Layer Concepts 

For flow moving over a solid body, a hydrodynamic (or velocity) boundary 
layer is formed near the solid surface. Hydrodynamic (or velocity) bound­
ary layer is the region where the fluid velocity changes from its free-stream 
value to zero at the solid surface. For example, considering the flow over a flat 
plate as shown in Figure 6.1, due to viscosity of the fluid, velocity gradually 
decreases from its free-stream maximum value to zero at the flat plate (assum­
ing that the fluid particle on the surface is not moving). The fluid particle wants 
to move faster as its free-stream value, but viscous force tries to resist it from 
moving over the solid surface. Therefore, a hydrodynamic boundary-layer 
thickness (where velocity is about 99% of the free-stream value) is developed 
over a solid surface due to fluid viscosity. 

The velocity profile and the associated hydrodynamic boundary-layer 
thickness over a flat plate will be solved in the later sections. In general, 
hydrodynamic boundary-layer thickness grows with the square root of dis­
tance from the leading edge of the flat plate. Figure 6.1 shows a typical velocity 
profile over a flat plate in the laminar flow (Re < 300 × 103) and turbulent 
flow (Re > 300 × 103) boundary-layer region, respectively. Once the velocity 
profile over a flat plate, u( y), at a given distance x is determined, the hydro­
dynamic boundary-layer thickness, the shear stress on the surface, and the 
friction factor (or friction coefficient) can be obtained as follows: 

For external flow, 

Inertia force ρU∞x U∞x
Re = = = 

Viscous force μ ν 

The flow is a laminar flow if Re < 300 × 103, and a turbulent flow if Re > 

300 × 103. √ 
Flow boundary-layer thickness δ(x) ∼ x
 
Dynamic viscosity μ,
 
Kinematic viscosity ν = μ/ρ
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Shear stress 
∂u � 1 � (ρU2τw = μ = Cf · ∞ − 0)
∂y 2y=0 

Friction coefficient: 

τw τw μ(∂u/∂y)|y=0 μ (U∞/δ) 1
Cf = = = ∼ ∼ ν 

(1/2)ρU2 (1/2)ρU2 ρ U2(1/2)(ρU∞ 
2 − 0) ∞ ∞ ∞ δU∞ 

Cf is a function of Reynolds number, that is, 

Cf = aReb; Cf = aReb ∼ 
1

;
Re 
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FIGURE 6.1 
Hydrodynamic and thermal boundary layer over a flat plate (if Pr = 1). 

Reynolds number is defined as the fluid inertia force against viscous force 
(i.e., the fluid particle tries to move but viscosity tries to resist it from moving) 
and is a combination of velocity, viscosity, and length (distance measured from 
the leading edge of the plate). When Reynolds number is approximately less 
than 300 × 103, the fluid particle moves like laminar, layer to layer from free-
stream velocity to zero velocity on the solid surface, and creates shear stress 
over the solid surface. When the Reynolds number is greater than 300 × 103, 
the fluid particle tends to become unstable (random motion) and gradually 
transitions into the turbulent flow boundary layer. In the laminar boundary 
layer, the velocity profile gradually changes from free-stream value to zero 
on the surface as a parabolic shape. But, in the turbulent boundary layer, 
the velocity profile remains fairly uniform as the free-stream value till near 
the surface and then suddenly changes to zero on the surface. This is due to 
turbulent mixing (the particle moves up and down, back and forth) so that 
free-stream velocity is able to move closer to the surface. From the application 
point of view, shear stress (viscosity × velocity gradient at the surface, i.e., 
τw = μ(∂u/∂y)|y=0) decreases with decreasing velocity gradient and viscosity. 
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FIGURE 6.2 
Hydrodynamic boundary layer, friction factor, and shear stress profile. 

Since velocity gradient decreases (because boundary-layer thickness grows) 
with increasing distance due to viscosity, shear stress (related to pressure loss) 
and friction factor decrease with increasing distance from the leading edge of 
the flat plate. However, when the flow transitions into the turbulent boundary 
layer, pressure loss is much greater than that in the laminar flow portion. This 
is because a major portion of pressure loss is required in order to maintain 
turbulence random motion in the turbulent boundary layer. 

It is noted that boundary-layer thickness decreases with increasing square 
root of free-stream velocity, and friction factor decreases with increasing free-
stream velocity; however, shear stress increases with increasing free-stream 
velocity (thinner boundary layer and larger velocity gradient) as sketched 
in Figure 6.2. Similarly, friction factor decreases with increasing Reynolds 
number, but, shear stress increases with increasing Reynolds number. 

For hot flow moving over a cold solid body, a thermal (temperature) bound­
ary layer is formed around the solid surface. The thermal (or temperature) 
boundary layer is the region where the fluid temperature changes from its 
free-stream value to that at the solid surface. Heat transfer can take place 
either from hot flow to the cold surface or from the heated surface to cold flow 
as shown in Figure 6.3. For example, considering the hot flow over a cold flat 

Laminar 
flow 

Turbulent 
flow 

T∞ T∞ 

x 

0 Tw 

y 

T (x) 

T∞ 

T (x, y) 
δ 

FIGURE 6.3 
Thermal boundary layer over a heated flat plate. 
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plate as shown in Figure 6.1, due to conductivity of fluid and velocity distri­
bution, the temperature gradually decreases from its free-stream maximum 
value to that at the flat plate. The hot fluid particle conducts heat from the 
free-stream into the cold surface through the velocity boundary layer. There­
fore, a thermal boundary-layer thickness is developed over a solid surface 
due to fluid flow. 

The temperature profile and associated thermal boundary-layer thickness 
over a flat plate is solved in Chapter 7. In an ideal case (assume Pr = 1), 
the thermal boundary layer is identical to hydrodynamic boundary layer as 
shown in Figure 6.1 or 6.3. In this ideal case, the temperature profile is the 
same as the velocity profile through the entire boundary layer over the flat 
plate. Once we determine the temperature profile over a flat plate, T(y) at a 
given distance x, the thermal boundary-layer thickness, the heat flux on the 
surface, and the heat transfer coefficient (or Nusselt number) can be obtained 
as follows: √ 

Thermal boundary-layer thickness δT(x) ∼ x 
If Pr = 1, then δ(x) = δT(x). 
At the body surface, the heat flux is 

∂T � ∂T � 
q = −k = −kf ≡ h(Tw − T∞)w � �∂y ∂yy=0 y=0 

The heat transfer coefficient h with the unit of W/m2 k can be expressed as 

−kf (∂T/∂y) y=0 −kf ((T∞ − Tw)/δT) kf kfh = ∼ ∼ ∼ ∼ kfU∞Tw − T∞ Tw − T∞ δT δ 

In the laminar boundary layer, the temperature profile gradually changes 
from the free-stream value to the surface as a parabolic shape, but, in the tur­
bulent boundary layer, the temperature profile remains fairly uniform from 
the free-stream to near the surface and then suddenly changes to the sur­
face value. This is due to turbulent mixing (particle moves up and down, 
back and forth); the hot (or cold) free-stream particle is able to move next to 
the cold (or heated) surface due to random motion. From application point 
of view, the heat flux (fluid conductivity × temperature gradient at the sur­
face) and heat transfer coefficient (heat flux/temperature difference between 
the free-stream and the surface) decrease with decreasing temperature gra­
dient and fluid conductivity. Since temperature gradient decreases (because 
thermal boundary-layer thickness increases) with increasing distance due to 
fluid thermal conductivity, the heat flux (related to heat transfer rate) and heat 
transfer coefficient decrease with increasing distance from the leading edge 
of the flat plate. However, when flow transitions into the turbulent boundary 
layer, the heat flux (and heat transfer coefficient) is much greater than the 
laminar flow portion. This is because a major portion of heat transfer is due 
to turbulent random motion in the turbulent boundary layer. 
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It is noted that heat flux is proportional to the heat transfer coefficient 
and temperature difference between the free-stream and the surface. The 
heat transfer coefficient increases with increasing free-stream velocity (thin­
ner hydrodynamic and thermal boundary-layer thickness) and fluid thermal 
conductivity as sketched in Figure 6.4. This implies that the heat transfer 
coefficient, heat flux, and Nusselt number (the dimensionless heat transfer 
coefficient) increase with Reynolds number.Another import parameter in heat 
transfer study is the role of Prandtl number (Pr). Prandtl number is a ratio 
of kinematic viscosity to thermal diffusivity, or a ratio of velocity to tempera­
ture boundary-layer thickness as sketched in Figure 6.4. For example, thermal 
boundary-layer thickness is identical to hydrodynamic boundary-layer thick­
ness if Pr = 1 as discussed above. However, in real life, different fluids have 
different Prandtl numbers. In Chapters 7, 8, and 10, we will see that Nusselt 
number is proportional to Reynolds number and Prandtl number for both 
laminar and turbulent flow problems (with different power and constants). 

Nusselt number: 
hx

Nu = = aRebPrn 
k
 

Prandtl number:
 
ν μ/ρ μCp δ

Pr = = = ∼ 
α k/ρCp k δT 

Prandtl number is a property of fluid; it shows the ratio of momentum 
transfer versus heat transfer. 

Air or gas Pr = 0.7 
Water Pr = 2 ∼ 20 
Oil Pr = 100 ∼ 1000 
Liquid metal Pr = 0.01 ∼ 0.001 

When temperature increases, the viscosity and Prandtl number for oil 
decrease. 

FIGURE 6.4 
Thermal boundary layer, heat transfer coefficient, and heat flux profile. 
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∂ρ + ∇ · (ρV) = 0 (6.1)
∂t 

where 

V = iu + jv + kw 

and 

∂ ∂ ∂ ∇ = i + j + k 
∂x ∂y ∂z 

are the velocity vector and the del operator for unit vectors, i, j, and k in the 
x-, y-, and z-direction, respectively. 

Conservation of momentum: 

ρ 
DV = −∇P + μ∇2V + ρg (6.2)
Dt 

Conservation of energy: 

Dh DP 
ρ = + ∇ · k∇T + μΦ + q̇ (6.3)

Dt Dt 

where h = e + (1/2)V · V, and e is the specific internal energy. Φ is often called 
the dissipation function with the form 

� �2 � �2 � �2 � �2
∂u ∂v ∂w ∂u ∂v 

Φ = 2 + + + + 
∂x ∂y ∂z ∂y ∂x 

� �2 � �2
∂u ∂w ∂v ∂w + + + + (6.4)
∂z ∂x ∂z ∂y 

q̇ is the heat generation in unit volume. 
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6.2 General Heat Convection Equations 

For flow moving over a heated or cooled solid body, the general 3-D pres­
sure profiles P(x, y, z, t), velocity profiles u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t), 
and temperature profiles T(x, y, z, t) can be obtained by solving the following 
continuity, momentum, and energy equations inside the hydrodynamic and 
thermal boundary layers over the heated or cooled solid surface [1–3]. 

Conservation of mass (continuity equation): 
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6.3 2-D Heat Convection Equations 

Many real-life applications for flow moving over a solid body can be mod­
eled as a 2-D boundary-layer flow and heat transfer problems. We need to 
know the 2-D velocity profiles u(x, y, t) and v(x, y, t) in order to calculate 
the wall shear stress (related to pressure loss) and the friction factor along 
the surface for a given fluid at given flow conditions, as well as the 2-D tem­
perature profiles T(x, y, t) in order to calculate the wall heat flux (related 
to heat transfer rate) and the heat transfer coefficient along the surface for a 
given fluid at given flow and thermal BCs. Since flow moving due to pressure 
difference between upstream and downstream flow and viscous boundary 
layer effect over the solid surface, it is necessary to perform conservation of 
mass (continuity equation) and momentum (momentum equation) through 
the boundary layer in order to solve for velocity distributions over the sur­
face. Similarly, since heat transfer due to temperature difference between 
the free-stream and the solid surface and flow moving carrying energy, it 
is necessary to perform conservation of energy (energy equation) through 
the thermal boundary layer in order to solve for temperature distributions 
over the heated (or cooled) surface. Consider a small 2-D differential fluid 
element (dxdy) at any point of the boundary layer, the following shows a 
step-by-step derivation of 2-D conservation equations for mass, momentum, 
and energy through hydrodynamic and thermal boundary layers over a solid 
surface [1–3]. 

Conservation of mass: 
Perform mass balance shown in Figure 6.5: 

∂ ∂ ∂ − (ρu dy) dx − (ρv dx) dy = (ρ dx dy) (6.5)
∂x ∂y ∂t 

(ρv dx) dy
y 

∂+ 
∂ 

Δy 

Δx 

U∞ U∞ 

x 

y 

ρv dx 

(ρu dy) dx 
x 

∂+ 
∂ 

ρ dy
ρu dy 

ρ dx 

u 

v 

FIGURE 6.5 
Conservation of mass. 
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If the flow is steady-state, 

∂ ∂ − (ρu dy) dx − (ρv dx) dy = 0 
∂x ∂y 

∂(ρu) ∂(ρv)+ = 0 (6.6)
∂x ∂y 

For incompressible flow, ρ = const, the continuity equation can be simpli­
fied as 

∂u ∂v + = 0 (6.7) 
∂x ∂y 

Conservation of momentum: 
From Newton’s second law, net force exerting on a body equals the 

momentum change. 

Fx = max 

Fy = may 

where ax is the acceleration in the x–direction, and ay is the acceleration in the 
y-direction. 

The force exerting on a control volume and the momentum change are 
shown in Figure 6.6. 

( )∂ ∂ ∂Px ∂ 2 ∂ ∂ 
σx + τxy − = ρu + (ρuv) + (ρu) (6.8)

∂x ∂y ∂x ∂x ∂y ∂t ' -v ' '-v' ' '-v' -v ' ' -v ' 
pressure normal unsteadyshear convective term stress gradientstress term 

By Navier–Stokes for Newtonian incompressible fluid: 

∂u 
σx = 2μ (6.9)

∂x 
∂u ∂v 

τxy = τyx = μ + (6.10)
∂y ∂x 

Substituting Equations 6.9 and 6.10 into Equation 6.8, we obtain 

� � � � �� ( )∂ ∂u ∂ ∂u ∂v ∂Px ∂ ∂ ∂
2μ + μ + − = ρu2 + (ρuv) + (ρu)

∂x ∂x ∂y ∂y ∂x ∂x ∂x ∂y ∂t 
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FIGURE 6.6 
Conservation of momentum. 

For a steady-state, constant-property flow, the left-hand side can be expre­
ssed as 



� � � � 

� � 

� � �� 

The right-hand side can be expanded as 

Substitute the mass conservation equation into and we will obtain the 
x-direction momentum equation 

∂u ∂u 1 ∂P ∂2u ∂2u 
u + v = −  + υ + υ . (6.11) 

∂x ∂y ρ ∂x ∂x2 ∂y2 ' -v ' ' -v ' ' -v ' 
pressure convection stress 

Similarly, we will obtain the y-direction momentum equation from Equation 
6.11 by changing u and v, x and y: 

∂v ∂v 1 ∂P ∂2v ∂2v 
u + v = −  + υ + υ (6.12)

∂x ∂y ρ ∂y ∂x2 ∂y2 

Conservation of energy: 
Unsteady state: 
Perform energy balance shown in Figure 6.7, 

∂qx ∂qy ∂ ( ) ∂ ( )
− dx − dy − ρu dy · Cp · T dx − ρv dx · Cp · T dy

∂x ∂y ∂x ∂y ( )

∂ ρ dx dy · Cp · T= (6.13)
∂t ( )

∂ ρCpT ∂ ( ) ∂ ( )+ ρuCpT + ρvCpT
∂t ∂x ∂y ' -v ' ' -v ' 

unsteady steady convection 

∂ ∂T ∂ ∂T q̇= k + k + + μΦ (6.14)
∂x ∂x ∂y ∂y k '-v' '-v' ' -v ' heat dissipation 

heatheat diffusion source due to fricion generation 

For steady-state constant properties, 

∂ (uT) ∂ (vT) ∂2T ∂2T μ + = α + + Φ. (6.15)
∂x ∂y ∂x2 ∂y2 ρCp 

� �2 � �2 � �2 � �2
∂u ∂v ∂u ∂v ∂u 

μΦ = μ + + 2 + ∼ μ (6.16)
∂y ∂x ∂x ∂y ∂y 
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 qy + ∂ (qy) dy
∂y 

ρvi dx dz + ∂ (ρvi dx dz) dy
∂y 

E Econd, y+dy conv, y + dy 

qx ∂ qx + (qx) dx 
∂x 

Econd,x +dxEcond, x 

Δy 
Econv, x Econv,x +dxΔx 

ρui dy dz ρui dy dz+ ∂ (ρui dy dz) dx
∂x 

Econd,y Econv,y 
i = enthalpy 

qy ρvi dx dz 
p 

P e  C  T  = +  =  
ρ 

Internal energy 

135 Heat Convection Equations 

FIGURE 6.7 
Conservation of energy. 

6.4 Boundary-Layer Approximations 

The above-derived boundary equations are not easy to solve analytically. 
Boundary-layer approximations, as shown in Figure 6.8, can be employed 
to simplify the boundary equations as follows: velocity in the x-direction 
is greater than that in the y-direction, streamwise velocity change in the 
y-direction is greater than that in the x-direction; temperature change in the 

U∞T∞ 

v,y 

u,x 
Tw L

0 

δ, δT 

FIGURE 6.8 
Boundary-layer approximations. 



y-direction is greater than that in the x-direction. 

u » v 

∂u ∂u ∂v ∂v » , , 
∂y ∂x ∂x ∂y 

∂T ∂T » 
∂y ∂x 

Therefore, the continuity equation remains the same. Assume steady-state 
constant properties; the momentum equation in the x- and y-directions can 
be simplified as 

∂u ∂v 1 ∂P ∂2u 
u + u = −  + ν (6.17) 

∂x ∂y ρ ∂x ∂y2 

1 ∂P − = 0 (6.18)
ρ ∂y 

For an incompressible flow, that is, M < 0.2, Φ ∼ 0, and so the energy 
equation becomes 

∂T ∂T ∂2T 
u + v = α (6.19)

∂x ∂y ∂y2 

Outside of the boundary layer, it is potential flow (μ effect → 0, v → 0, 
∂u/∂y → 0); Equation 6.17 reduces to 

∂U∞ 1 ∂P 
U∞ = −  (6.20)

∂x ρ ∂x 
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Note that Equation 6.18 implies that there is no pressure change in the 
y-direction within the boundary layer. Equation 6.20 implies that pressure 
change in the x-direction within the boundary layer can be predetermined 
from velocity and its velocity change in the x-direction outside of the bound­
ary layer. Therefore, Equation 6.20 can be substituted into Equation 6.17 to 
solve for the velocity profiles inside the boundary layer. 

6.4.1 Boundary-Layer Similarity/Dimensional Analysis 

Here we want to generalize the application of the above-derived boundary-
layer approximation equations. Most often, one wants to apply the boundary-
layer equations from a small-scale test model to a large-scale application 
or from a large-scale test model to a small-scale application. This is 
called boundary-layer similarity or dimensional analysis. The following is 



�	 � �	 � �	 � 

� � 
� 

a common way of converting dimensional parameters into nondimensional 
parameters [2]. 

x y u v∗ ∗ ∗ ∗Let x = , y = , u = , v = ,
L L U∞ U∞ 

T − Tw ∗ PT∗ = , P = ,	 (6.21)
T∞ − Tw ρU2 ∞ 

Then, the conservation equations can be written as 

∗ ∗ ∂u ∂v + = 0 
∂x ∗ ∂y ∗ 

∗ ∗ ∗ ∗ ∂u	 ∗ ∂u ∂P∗ υ ∂2u 
u + v = − + · 

∂x ∗	 ∂y ∗ ∂x ∗ U∞L ∂y ∗2 

∂P∗ 

= 0 
∂y ∗ 

∗ ∂T∗ ∗ ∂T∗ α ∂2T∗ 

u + v = · 
∂x ∗	 ∂y ∗ U∞L ∂y ∗2 

And the coefficient is
 

α 1 1
 = =	 (6.22)
U∞L (U∞L/υ) · (υ/α) Re · Pr 

The above similarity functional solutions can be written as 

� ∗ � 
dP∗	 ∗ ∗ u = f1	 x , y , ReL, 
dx ∗ 

∗ ∂u � U∞ ∂u � 
τw = μ = μ 

∂y L ∂y ∗ 
y=0 y ∗=0 

where 

�	 � ∗ � 
∗ ∂u �	 dP∗ � = f2 x , ReL, 

∂y ∗	 dx ∗ 
y ∗=0 

τw m(U∞/L) dP∗ ∗Cf = = f2 x , ReL, 
(1/2)ρV2 (1/2)ρU2 dx ∗ ∞ ∞ � ∗ � 

2 dP∗Cf =	 f2 x , ReL, (6.23)
ReL dx ∗ 

137 Heat Convection Equations 



� � � � 

� � 

∗Special case: when flow over a flat plate dP 
∗ 
/dx = 0, the average friction 

factor can be determined from Reynolds number as 

2
C̄f = f2 (ReL) = aReL 

m (6.24)
ReL 

Similarly, the temperature and heat transfer coefficient can be obtained as 

� ∗ 
� 

∗ ∗T∗ = f3 x , y , ReL, Pr,
dP 
dx ∗ 

� ∗ ∗−k (∂T/∂y) � 
y=0 k ∂T � k dP∗h = ∼ � = f4 x , ReL, Pr,

Tw − T∞ L ∂y ∗ � L dx ∗ 
y ∗=0 

hL dP∗ ∗NuL ≡ = f4 x , ReL, Pr, (6.25)
k dx ∗ 

∗For flow over a flat plate, dP 
∗ 
/dx = 0, the average Nusselt number can be 

determined from Reynolds number and Prandtl number as 

hL 
NuL ≡ = f5 (ReL, Pr) = aReL

mPrn (6.26)
k 
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The above analysis concludes that, for flow over a flat plate, the local friction 
factor (at a given location x) is a function of Reynolds number only, and the 
local heat transfer coefficient or Nusselt number (at a given location x) is a 
function of Reynolds number as well as Prandtl number. 

6.4.2 Reynolds Analogy 

Assuming that Pr = 1 (approximation for air, Pr = 0.7), the above friction 
factor and the Nusselt number can be reduced to the following: 

2 ( )∗Cfx = f2 x , ReL (6.27)
ReL ( )∗Nux = f4 x , ReL, Pr (6.28) 

If f2 = f4, Pr = 1, 

ReLCf = f2 = f4 = Nu
2 

1 Nu (hL/k) h
Cf = = St = = (6.29)

2 Re · Pr (ρVL/μ) · (μCp/k) ρCpV 

http:ReL(6.27


Reynolds analogy: 

1 
Cf = St	 (6.30)

2 

Experimentally, we obtained 

1 
Cf Pr−2/3 = St	 (6.31)

2 
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where 0.6 ≤ Pr ≤ 60. 
The importance of Reynolds analogy is that one can estimate the heat trans­

fer coefficient (or the Stantan number (St)) from a given (or a predetermined) 
friction factor, or one can calculate the friction factor from a given (or pre­
determined) heat transfer coefficient (or the St) for a typical 2-D boundary 
layer flow and the heat transfer problem. The original Reynolds analogy is 
shown in Equation 6.30. However, Equation 6.31 still can be called Reynold’s 
analogy including Prandtl number effect. 

Remarks 

This chapter provides the basic concept of boundary-layer flow and heat 
transfer; it focuses on how to derive 2-D boundary-layer conservations 
for mass, momentum, and energy; boundary-layer approximations; non-
dimensional analysis; and Reynolds analogy. Students have come across 
these equations in their undergraduate-level heat transfer. However, in the 
intermediate-level heat transfer, students are expected to fully understand 
how to obtain these equations. 

PROBLEMS 

6.1. For hot-gas flow (velocity V∞, temperature T∞) over a cooled 
convex surface (surface temperature Ts), answer the following 
questions: 
a.	 Sketch the “thermal boundary-layer thickness” distribution on 

the entire convex surface and explain the results. 
b. Sketch the possible local heat transfer coefficient distribution 

on the convex surface and explain the results. 
c.	 Define the similarity parameters (dimensionless parameters) 

that are important to determine the local heat transfer coeffi­
cient on the convex surface. 

d. Write down the relationship among those similarity parame­
ters and give explanations. 

e.	 Write down how to determine the local heat flux from the 
convex surface. 

6.2. For cold-gas flow (velocity V∞, temperature T∞) over a heated 
convex surface (surface temperature Ts), answer the following 
questions: 
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a.	 Sketch the “thermal boundary-layer thickness” distri­
bution on the entire convex surface and explain the 
results. 

b. Sketch the possible local heat transfer coefficient distri­
bution on the convex surface and explain the results. 

c.	 Define the similarity parameters (dimensionless param­
eters) that are important to determine the local heat 
transfer coefficient on the convex surface. 

d. Write down the	 relationship among those similarity 
parameters and give explanations. 

e.	 Write down how to determine the local heat flux from 
the convex surface. 

6.3. Derive Equations 6.11, 6.12, 6.15, and 6.16. 
6.4. Derive Equations 6.23 and 6.25. 
6.5. Derive Equation 6.30. 
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∂Ψ 
u =	 (7.1)

∂y 

∂Ψ 
v = − 	  (7.2)

∂x 

The continuity equation is automatically satisfied. 

∂ 

∂x 

� 
∂Ψ 

∂y 

� 
+ 

∂ 

∂y 

� 
− 

∂Ψ 

∂x 

� 
= 0 

The x-momentum equation becomes 

∂Ψ 

∂y 

� 
∂2Ψ 

∂x∂y 

� 
− 

∂Ψ 

∂x 
∂2Ψ 

∂y2 = υ 

� 
∂3Ψ 

∂y3 

� 

Ψ(x, y) ⇒ Ψ(η) 

(7.3) 

(7.4) 
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7 
External Forced Convection
 

7.1	 Laminar Flow and Heat Transfer over a Flat Surface: 
Similarity Solution 

External forced convection is that flow moves over the external surface of a 
solid body and forms hydrodynamic and thermal boundary layers around 
the surface. There are two well-known methods to solve external boundary-
layer flow and heat transfer problems. One is the similarity method to obtain 
the exact solution. The other is the integral method to obtain the approxi­
mate solution. This section begins with the similarity method [1–6]. Figure 7.1 
shows stream lines for flow over a flat plate. The velocity along each stream 
line looks quite similar to each other. Define stream function Ψ and derive 
two nonlinear PDEs to one nonlinear PDE, then use the similarity concept to 
derive the nonlinear PDE to the nonlinear ODE. 



� 

� � 

� � � � 

Applying the similarity concept from Figure 7.1, 

√ c2y
y ∼ x ⇒ η = √ (7.5) 

x 
√ Ψ 

Ψ ∼ x ⇒ f = c1 √ = f (η) (7.6) 
x 

η is the similarity variable. 
f is the similarity function. 

u(x, y) ⇒ Ψ(x, y) ⇒ Ψ(η) ⇒ f (η)v(x, y) 

√ 
∂Ψ ∂Ψ ∂η x

f " c2 c2 = = √ = f " 
∂y ∂η ∂y c1 x c1 � √ � 
∂Ψ ∂f x f 1 1 = + √ 
∂x ∂x C1 C1 2 x � √ � 

∂f ∂η x f 1 1 = + √ 
∂η ∂x C1 C1 2 x 

1 1 1 f 1 1 = f " η − √ + √
2 x C1 C1 2 x 

1 1 ( )= √ f − f " η
2 C1 x 

where 
∂f ∂η C2 ∂η 1 η

f " = , = √ , = −  C2yx−(3/2) = −  , 
∂η ∂y x ∂x 2 2x 

Similarly, 

∂2Ψ ∂ ∂Ψ ∂ c2 c2 ∂f " ∂η c2 f "" 
f " 2= = = = √ 

∂y2 ∂y ∂y ∂y c1 c1 ∂η ∂y c1 x 
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Streamline 

U∞ 
U∞ 

y 

x 

FIGURE 7.1 
Stream lines for flow over a flat plate. 



� � � � � � 

� � � � � � 

� 
� 

� 

� 
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C2 f "" C2 "" ∂3Ψ	 ∂ ∂2Ψ ∂ 2 2 ∂ f ∂η = = √ = √ · 
∂y3	 ∂y ∂y2 ∂y C1 x C1 ∂η x ∂y
 

C2 C3 f """
 2 1 
f """ C2 2= √ √ = 

C1 x x C1 x 
( )∂2Ψ ∂ ∂Ψ ∂ C2 ∂ C2 ∂η C2 η

f " f " f "" = = = = − 
∂x ∂y ∂x ∂y ∂x C1 ∂η C1 ∂x C1 2x 

Inserting them into the above stream function momentum equation, we 
obtain 

ff "" + 2υc1c2f """ = 0	 (7.7) 

This is the similarity momentum equation. 
Assume 

υc1c2 = 1 (7.8) 

at 
∂Ψ � 

y = ∞, u = U∞ = � = f " c2 

∂y c1y=∞ 

Let 
c2 = U∞. (7.9)
c1 

From Equations 7.8 and 7.9, we obtain 

U∞ 1 
c2 = , c1 = √ 

υ υU∞ 

Therefore, 

)y y U∞ y
η = C2 √ = √ = Rex (7.10) 

x x υ x 

Ψ Ψ
f = C1 √ = √	 (7.11) 

x υU∞x 

where f and η are similarity functions and similarity variables, respectively. 
Finally, we obtain the following: 

∂Ψ C2 u = = f " = U∞f "	 (7.12)
∂y	 C1 

∂Ψ 1 1 ( ) 1 υU∞ ( )" v = − = −  √ f − f η = f " η − f (7.13)
∂x 2 C1 x 2 x 
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df u" f = = = velocity profile (7.14)
dη U∞
 

d2f d(u/U∞)
"" f = = = velocity gradient (7.15)
dη2 dη 

Boundary conditions:
 
at
 

u" y = 0, u = v = 0, ⇒ η = 0, f = = 0; v = 0, ⇒ f = 0 ⇒ f (0) = 0 (7.16)
U∞ 

at y = ∞, u = U∞, ⇒ f " (∞) = 1 

1
f """ "" = −  ff (7.17) 

2 

Equation 7.17 may be solved numerically by expressing f (η) in a power 
series (1908 Blasius Series Expansion) with the above-mentioned BCs as 

α2η5 α3η8 α4η11αη2 1 11 375
f = fi = − + − + · · ·  for small η (7.18)

2! 2 5! 4 8! 8 11! 
∞ � � � � � �2

η − β 
dη dη . . . for large η (7.19)f = fo = η − β − γ exp − 

2 
η 

where α = 0.332, β = 1.73, and γ = 0.231. Then u and v can be determined. 
Equation 7.17 can also be solved by numerical integration as 

"" d f 1 
2

= − f dη""f 
η 

1 
2

ln f "" = −  f dη + C 

0 
�η 

f "" − 0 1/2(f dη)= e · C1 

η 

f " = df " = 
( )�η 

e− 0 1/2( f dη) dη · C1 + C2 

0 

�η�∞" − " where C2 = 0 at  η = 0, f = 0; C1 = (1/ e 0 1/2( f dη)dη) at η =∞, f = 1.0 

η η 

f = c1 e− 1/2( f dη)dη dη + c3 

0 0 

where C3 = 0 at  η = 0, f = 0. 
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Therefore, 

�η�η �η − 0 1/2( f dη)dη dη0 e
f = 0 

�η (7.20)∞ − 0 1/2(f dη)dηe0 

� � 

145 External Forced Convection 

�

For example, use of the trapezoidal rule for the numerical integrations: 
Choose ηmax = 5 = Δη · N, when N = 50 (the number of integration steps), 

Δη = 0.1 
Let ηi+1 = ηi + Δη for i = 0, 1, 2, . . . , with ηo = 0 
Initial guess fi = ηi 

�ηi �ηi �ηi�ηi − f dη 
�ηi − �ηi 

�ηi −Calculate f dη, e 0 , e 0 f dηdη, and e 0 f dηdη dη0 ( 0 ) 0 0 �ηi�ηmax − f dηdη "" Calculate C1 = 1/ e 0 , fi, f " 0 i , fi �1 − f new/f old�Check convergence i i < ε?, for i = 0, 1, 2, . . . , N. If not, go back 
again. 

From the tabulated data shown in Table 7.1 [2] or Figure 7.2, for given ( )
Rex = ρU∞x/μ, the velocity profile u x, y at any location (x, y) and the shear 
stress f "" at the wall (y = 0, η = 0) can be determined. 

TABLE 7.1 

Flat Plate Laminar Boundary Layer Functions [2] 
[ 

U∞ u f ""η = y f f " = vx U∞ 

0 0 0 0.332 
0.4 0.027 0.133 0.331 
0.8 0.106 0.265 0.327 
1.2 0.238 0.394 0.317 
1.6 0.420 0.517 0.297 
2.0 0.650 0.630 0.267 
2.4 0.922 0.729 0.228 
2.8 1.231 0.812 0.184 
3.2 1.569 0.876 0.139 
3.6 1.930 0.923 0.098 
4.0 2.306 0.956 0.064 
4.4 2.692 0.976 0.039 
4.8 3.085 0.988 0.022 
5.2 3.482 0.994 0.011 
5.6 3.880 0.997 0.005 
6.0 4.280 0.999 0.002 
6.4 4.679 1.000 0.001 
6.8 5.079 1.000 0.000 



 

 

uf ′ = 
U∞ 

1 

0.5 

Universal 
velocity profile 

Experimental data 

5y
η= Rexx 

� � 

From η, obtain or derive f " and u(x, y). 
The similarity function for temperature is shown in Figure 7.3. 

Let 

T − Tw u − 0∼θ = = = f " (7.21)
T∞ − Tw U∞ − 0 

The energy equation becomes 

∂Ψ ∂θ ∂Ψ ∂θ ∂2θ − = α (7.22)
∂y ∂x ∂x ∂y ∂y2 
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FIGURE 7.2 
raphical sketch of velocity profile from similarity. G

U∞,T∞ 

x 

y 

T∞ 

Tw 

FIGURE 7.3 
Concept of thermal boundary layer. 
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Performing 

∂θ ∂θ ∂η C2" = = θ √ 
∂y ∂η ∂y x 

∂2θ ∂ ∂θ ∂ C2 ∂ C2 ∂η C2 
" " 2 "" = = √ θ = √ θ · = θ 

∂y2 ∂y ∂y ∂y x ∂η x ∂y x 

∂θ ∂θ ∂η −η" = · = θ · 
∂x ∂η ∂x 2x
 

Inserting this into the energy equation we obtain
 

1
"" + " θ Pr f θ = 0 (7.23)
2
 

Boundary conditions:
 

θ (0) = 0 
(7.24) 

θ (∞) = 1 

Equation 7.23 can be solved as 

θ "" Pr
dη = −  f dη 

θ " 2 
η 

Pr" ln θ = −  f dη + C
2 

0 
Pr" −�

0 
η f dηθ = e 2 · C1 

η Pr f dηθ = C1 e−�
0 
η 

2 dη + C2 
0 

at η = 0, θ(0) = 0, C2 = 0
 
at η = 0, θ(∞) = 1,
 

1

C1 = �η 

�η− 0 Pr/2( f dη)dη0 e

Therefore, 
�η�η − 0 Pr/2( f dη)dη 

θ = 0 e
�η (7.25)�∞ − 0 Pr/2( f dη)dηe0 �η �η Pr" θ = θ (0) exp − f dη dη (7.26) 

0 0 2 
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where 
1" θ (0) = �∞ [ �η ]	 (7.27) 

0 exp − 0 Pr/2( f dη) dη 

If Pr = 1, f " = θ, the thermal boundary layer is the same as the hydro­
dynamic boundary layer (Equation 7.20 = Equation 7.25). 

For a given Pr, θ and θ " can be determined if f "" has been solved previously. 
For example, 

f """ 
f = −  "" (1/2)f 

�η "" 
0 f dη = −2 ln  f 

�η 

f "" − 0 1/2( f dη)= e
�η ( f "")Pr dη0θ = �∞ ( )Pr""f dη0 

From the tabulated data or Figure 7.4, the temperature profile T(x, y) at any 
location (x, y) and the heat flux at the wall (y = 0, η = 0) can be determined. 

From η, we obtain θ and T(x, y) for the given Prandtl number. 

  

  

  

  

  
  

  
  

  

  

  

  

T − Tw	 T− T∞θ 
T∞ − Tw Tw − T∞ 

U∞	 
vx η= y U∞η= y 

5 

vx 

5 

Pr>1 
Pr=1 

Pr<1 

1 

Pr > 1 
Pr =1 

Pr< 1 

= θ = 

1 
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7.1.1	 Summary of the Similarity Solution for Laminar Boundary-Layer Flow 
and Heat Transfer over a Flat Surface 

The following outlines that the equations can be used to calculate boundary-
layer thickness, shear stress, and the friction factor for a given Reynolds 
number; as well as heat flux, the heat transfer coefficient, and Nusselt number 
for a given Reynolds number and Prandtl number. 

FIGURE 7.4 
Graphical sketch of temperature profile from similarity solutions. 



"" � � � � � 
� � 

� � � 
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√ 
Let u/U∞ = 0.99 at η = 5, that is, η = (y/x) Rex = 5, where y = δ, and the √ 

edge of the boundary layer, δ = y = 5x/ Rex 

δ 

x 

)
= 5.0/ Rex (7.28) 

� 
τw = μ 

∂u 
∂y 

� � � � 
y=0 

= μ 
∂ 

∂y 

� 
∂Ψ 

∂y 

� � � � � 
y=0 

= μ 
C2 

2 
C1 

f "" (η)√ 
x 

� � � � 
η=0 � 

= μU∞ 

� 
U∞ 

υ 

f "" (η)√ 
x 

� � � � = μU∞f "" (0) 

� 
U∞ 

υx 
η=0 

f "" = 0.332 from the Table 7.1 or Figure 7.2 

"" (0)τw 2f 0.664 1
Cfx = = √ = √ ∼ √ (7.29)

(1/2)ρU2 ρU∞x/μ Rex x∞ 

1.328
C̄fx = 

ReL 

when 

ρU∞L
ReL = 

μ 

∂T � ∂T ∂η � ∂θ U∞ q = −k = −k = k(Tw − T∞) � 
∂y ∂η ∂y ∂η υx � y=0 y=0 η=0 

U∞" = −k(T∞ − Tw)θ (0) 
υx 

θ " (0) = 0.332 Pr1/3 from the Table 7.1 (for Pr = 1) or Figure 7.4 

"" −k (∂T/∂y)q y=0 U∞ 1" h = = = k · θ (0) ∼ √ (7.30)
Tw − T∞ Tw − T∞ υx x 

) )" Nux = 
hx = θ (0) Rex = 0.332 RexPr1/3 
k 
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Remarks 

There are many engineering applications involving external laminar flow 
heat transfer such as electronic components cooling and plate-type heat 
exchangers design. In the undergraduate-level heat transfer, there are many 
heat transfer relations between Nusselt numbers and Reynolds and Prandtl 



� � 

�
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numbers. Students are expected to calculate heat transfer coefficients from 
these relations by giving Reynolds and Prandtl numbers. 

For the similarity method, students are expected to know how to derive 
the similarity momentum and energy equations with proper velocity and 
thermal BCs. Students are also expected to know how to sketch and predict 
velocity profiles inside the boundary layer, for a given Reynolds number, 
from the velocity similarity solution by using tables or figures; how to sketch 
and predict temperature profiles inside the thermal boundary layer, for a 
given Reynolds number and Prandtl number, from the temperature similarity 
solution by using tables or figures. Here we focus on flow over a flat plate 
(zero-pressure gradient flow) with constant surface temperature BC, and do 
not include the one at constant surface heat flux BC. 

In advanced heat convection, the similarity solution can be extended to 
include various constant pressure gradient flows (such as flow acceleration 
or deceleration) with variable surface temperature BCs. These can be solved 
using the fourth-order Runge–Kutta method in order to obtain the velocity 
and temperature profiles across the forced convection boundary-layer flow. 

7.2	 Laminar Flow and Heat Transfer over a Flat Surface: 
Integral Method 

The other powerful method to solve boundary-layer flow and the heat transfer 
problem is using the integral approximate solution [1–6]. Instead of perform­
ing mass, momentum, and energy balance through a differential fluid element 
inside the boundary layer as the similarity method, the integral method 
performs conservation of mass, momentum, and energy across the boundary-
layer thickness at a given differential x-direction. It is noted that, for fluid 
with a Prandtl number different from unity, such as gases, water, and oils, 
the hydrodynamic boundary-layer thickness is different from the thermal 
boundary layer. 

7.2.1 Momentum Integral Equation by Von Karman 

Employing a control volume that is infinitesimal in the x-direction but finite 
in the y-direction across the boundary-layer thickness, as shown in Figure 7.5, 
we apply the mass and momentum conservation to the control volume. 

From mass conservation, 
δ δ 

∂v ∂u = −  v|0 − 
∂u 

dy = −  
∂u 

dyv(δ) = 
∂y ∂x ∂x ∂x 

0 0 

d 
ρv dx = 

dx
(ρu dy) dx	 (7.31) 



ρvdx or d ρudydx δ∫dx 

d
ρudy ∫ ρudy+ ∫ (ρudy)dx∫ dx 

Conservation of mass 

ρvU∞dx or U∞ 
d 

∫ ρudydx δ
dx 

∫ ρuudy+ d 
∫ (ρuudy)dx 

∫ ρuudy dx 

Momentum change 

Pdy 

δ 

Pdydx ∂ 
∂x +∫ ∫Pdy∫ 

Pdδ 

τwdx 
Net force 

� � �

� � 

� � � � 

� � � 

From momentum conservation, 

⎛ ⎞ 
δ 

dδ d d d ⎝−τw dx + P dx − P dy⎠dx = (ρuu dy) dx − U∞ (ρu dy) dx
dx dx dx dx ' -v '0 ' -v ' momentum change 

net force 
(7.32) 

where 

d d dδ dP − P dy = −  P dy = −P − δ
dx dx dx dx 

dP/dx = −ρU∞(dU∞/dx) (from the momentum differential equation, at 
2outside of the boundary layer, u = U∞, v = 0, ∂2U∞/∂y = 0). 

Therefore, 

dδ dδ dU∞ d d − τw + P − P − δ −ρU∞ = ρuu dy − U∞ ρu dy
dx dx dx dx dx 

d dU∞ d − τw = ρuu dy − ρU∞ dy − U∞ ρu dy
dx dx dx 
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FIGURE 7.5 
Integral method. 
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d dU∞ d = ρuu dy − ρU∞ dy − U∞ ρu dy
dx dx dx 

dU∞ dU∞+ ρu dy − ρu dy
dx dx 

d dU∞ d = ρuu dy + ρ (u − U∞) dy − ρuU∞ dy
dx dx dx 

d dU∞ = ρu (u − U∞) dy + ρ (u − U∞) dy
dx dx 

d dU∞ 
τw = ρu (U∞ − u) dy + ρ (U∞ − u) dy (7.33)

dx dx 

For a flat plate flow, dU∞/dx = 0 

∂u � d 
τw = μ = ρu(U∞ − u) dy (7.34)

∂y dxy=0 

7.2.2 Energy Integral Equation by Pohlhausen 

From energy conservation, as shown in Figure 7.6, 

⎛ ⎞ � � δ � δT 
�

d d"" ⎝q dx = ρCpuT dy dx − CpT∞ ρu dy⎠ dx (7.35)s dx 0 dx
 
0
 

δ�T 
d = ρCpu(T − T∞) dy dx

dx
 
0
 

� δ�T 
∂T � d 

qs = −k = ρCpu(T − T∞) dy (7.36)
∂y dxy=0 

0 
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0 

0 
d ρudydxCpT∞ dx ∫ 

q″ sdx 

d 
dx + 

∫ ρCpuTdy δT 

δ 

0∫ ρCpuTdy ( ρCpuTdy)dx 
δT 

δT 

0∫
δT 

FIGURE 7.6 
Conservation of energy. 
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7.2.3 Outline of the Integral Approximate Method 

For a hydrodynamic boundary layer:
 
Step 1: assume the velocity profile, such as
 

u = a + by 

u = a + by + cy2 

3u = a + by + cy2 + dy

4u = a + by + cy2 + dy3 + ey

Step 2: from the velocity BCs to determine the coefficients a, b, c, d, and e 
Step 3: put the velocity profile into momentum integral to solve δ(x) 

Step 4: put δ(x) back to the velocity profile 
Step 5: the friction factor 

τw μ (∂u/∂y)
Cfx = = 0 can be determined 

(1/2)ρU2 (1/2)ρU2 
∞ ∞ 

Similarly, for a thermal boundary layer:
 
Step 1: assume a temperature profile in one of the following forms:
 

T = a + by 

T = a + by + cy2 

3T = a + by + cy2 + dy

4T = a + by + cy2 + dy3 + ey

Step 2: from the temperature BCs to determine the coefficients a, b, c, d, and e 
Step 3: put the temperature profile into energy integral to solve δT(x) 

Step 4: put δT(x) back to the temperature profile and 

"" q −k(∂T/∂y)0h = w = can be determined. 
Tw − T∞ Tw − T∞ 
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Examples 

7.1 Assume third-order velocity and temperature profiles for the boundary layer 
flow to satisfy the BCs: 



� � 

� � � �

� � � �

3u = a + by + cy2 + dy

3T = a + by + cy2 + dy

2 2y = 0 u = 0 ∂2u/∂y = 0 T = Tw ∂2T /∂y = 0
 
y = δ u = U∞ ∂u/∂y = 0 T = T∞ ∂T /∂y = 0
 

( ) ( )3u − 0 3 y 1 y u = − = 
U∞ − 0 2 δ 2 δ U∞ 

Put the above velocity profile into momentum integral to solve for δ(x) 

�δ � ( ) ( )3
� �  ( ) ( )3

�
3 1 d 3 y 1 y 3 y 1 y

μU∞ = ρU2 − 1 − + dy∞2 δ dx 2 δ 2 δ 2 δ 2 δ 
0 

d 39 = δρU2 ∞dx 280 

dδ 140 υ 
δ = 

dx 13 U∞ 

1 140 υ2δ = x + C 
2 13 U∞ 

at x = 0, δ = 0, C = 0√ 
Therefore, δ (x) = 4.64 (υx/U∞) 

Put δ(x) back to velocity profile to obtain the final velocity profile. And the 
friction factor can be calculated as 

τw μ(∂u/∂y)0 μ(3/2)(1/δ)U∞ 0.646 = = = = √ (7.37)Cfx 
(1/2)ρU2 (1/2)ρU2 (1/2)ρU2 Rex∞ ∞ ∞ 

T − Tw 3 y 1 y 3 
= − 

T∞ − Tw 2 δT 2 δT 

or 

T − T∞ 3 y 1 y 3 
= 1 − + 

Tw − T∞ 2 δT 2 δT 

Put the above temperature profile into the energy integral to solve for δT(x). 
If Pr = 1, δ = δT, u = T − Tw 

δT 4.64 = √ 
x Rex 

The coefficient 4.64 is from momentum integral. It equals 5.0 from the 
similarity solution. 

154 Analytical Heat Transfer 



� � 
� � � � � � 

� � � 

� � � 

From the energy integral, we obtain 

� δ�T � ( )∂T � 3 1 d 3 y−k = k (Tw − T∞) = ρCp
∂y 2 δT dx 2 δy=0 

0 

( )3
�31 y 3 y 1 y− U∞ (Tw − T∞) 1 − + dy

2 δ 2 δT 2 δT 

Then, 

� �3 � �
3 1 δT 1 δT 1 d δTk = ρCpU∞ 3δ − 
2 δT δ 10 δ 70 dx δ 

� �2 � �4δT 1 δT 1 dδ +3 − 
δ 20 δ 280 dx 

Let
 
� �3 � �4
δT δT δT r = < 1, ∼ ∼ 0 

δ δ δ 

We obtain
 

dδ α
2 2 dr 32r δ + r δ = 10 
dx dx U∞ 

From above
 

280 υx dδ 140 υ
2δ = , δ = 
13 U∞ dx 13 U∞ 

We obtain 

2 280 υx dr 3 140 υ α 
2r + r = 10 

13 U∞ dx 13 U∞ U∞ 

Then, 

dr 132 34r x + r = 
dx 14Pr
 

3
Let s = r

( )1 d 1 ds2 dr 3r = r = 
dx 3 dx 3 dx
 

4 ds 13
 
s + x = 

3 dx 14Pr 
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� 

133 −3/4 +s = r = C1x
14 Pr 

13 
at x = 0, C1 = 0, r3 = 

14Pr 

( ) /δT 13 −1/3r = = 
1 3 ∼ 0.975(Pr ) ∼ Pr−1/3 = 

δ 14Pr 
4.64 

δT = δ Pr−1/3 = √ · Pr−1/3 
Rex 

−k(∂T /∂y)y=0 3 k 
h = = 

Tw − T∞ 2 δT
 

3 k 3 k
 = = √
2 δPr−1/3 2 x(4.64/ Rex )Pr−1/3 

For this typical case, 

hx 
Nux = 

k 
= 0.323 Rex 

1/2Pr1/3 (7.38) 

From Figure 7.7, 
at x = xo, δT = 0, r = 0 

1 13 13 3/40 = C1 + , C1 = −  xo3/4 14Pr 14Prxo 

Therefore, 

( )3/4
�1/3δT xo r = = 0.975Pr−1/3 1 −

δ x 
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U∞,T∞ 

Tw 

δ 

δT 

0 Apply heatx 

Apply heatx 
x0 

δ 
δT 

U∞,T∞ 

0 

FIGURE 7.7 
Integral approximation method. 



For a typical case, xo = 0, δT = 0, 

δT = 0.975Pr−1/3 � Pr−1/3 
δ 

For the nonheating leading length problem, xo > 0, 

hx 0.323 Re1/2Pr1/3 
xNux = = )	 (7.39)

k 3 1 − (x0/x)3/4 

If x0 = 0, go back to the typical case. 
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Remarks 

For the integral method, students are expected to know how to sketch and 
derive momentum and energy integral equations from mass, force, and heat 
balance across the boundary layer. Students are also expected to know how 
to solve velocity boundary-layer thickness and the friction factor from the 
derived momentum integral equation by assuming any velocity profile to 
satisfy velocity BCs across the boundary layer; as well as how to solve ther­
mal boundary thickness and the heat transfer coefficient from the derived 
energy integral equation by assuming any temperature profile to satisfy ther­
mal BCs (given surface temperature or surface heat flux) across the thermal 
boundary layer. Note that one will get a slightly different velocity boundary-
layer thickness (and friction factor) by using different velocity profiles across 
the boundary layer, and a slightly different thermal boundary-layer thick­
ness (and a heat transfer coefficient) by using different temperature profiles 
across the thermal boundary layer. This is the nature of the integral method. 
Another note is that velocity and thermal boundary-layer thickness is the 
same if Prandtl number unity is assumed. 

PROBLEMS 

7.1. Consider	 a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uni­
form wall temperature TW. Assume that there exist no body 
force and constant thermal and fluid properties. The similarity 
momentum and energy equations are listed here for reference: 
f """ + (1/2)ff "" = 0 and θ "" + (1/2)Prf θ " = 0. 
a.	 From the Blasius solution of the above similarity equations, 

sketch the relations between the similarity functions (f " , θ) and 
the similarity variable (η) for both water and air (i.e., sketch f " 
versus η for both water and air on the same plot; and θ versus 
η for both water and air on the same plot). Explain why they 
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have differences, if any. You do not need to solve the above 
equations. 

b. For a given problem (i.e., U∞, T∞, ρ, μ, Tw, Pr are given), 
explain briefly how to determine the local velocity u(y) and 
temperature T(y) at a specified location x, for both water and 
air, from the sketches in (a)? 

7.2. Consider a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uniform 
wall temperature Tw or at a uniform wall heat flux q"" 

w, respec­
tively. Assume that there exist no body force and constant thermal 
and fluid properties. 
a.	 Based on the approximate integral method, assuming a uni­

form velocity profile inside the boundary layer, that is, u = 
U∞, and assuming a linear temperature profile inside the 
thermal boundary layer as T = a + b × y, determine the local 
thermal boundary-layer growth along the flat plate (i.e., δT 
versus x) at a uniform wall temperature Tw condition. (Note: 
a and b are unknown constants that need to be determined.) 

b. Based on (a), determine the local Nusselt number distribu­
tion along the flat plate (i.e., Nu versus x) at a uniform wall 
temperature. 

7.3. Consider	 a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uni­
form wall temperature TW. Assume that there exist no body 
force and constant thermal and fluid properties. The similarity 
momentum and energy equations are listed here for reference: 
f """ +  (1/2)ff "" = 0 and θ "" + (1/2)Prf θ " = 0. 
a.	 Sketch both the velocity and the thermal boundary-layer thick­

ness distribution for both water and liquid metal, respectively, 
flowing over the flat plate? (i.e., sketch δ versus x and δT versus 
x on the same plot for water, and δ versus x and δT versus x 
on the same plot for the liquid metal). Explain why they have 
differences, if any. 

b. Define the similarity variable (η), the similarity function for 
temperature (θ), and the derivative of the similarity function 
for velocity (f " )? Write the BCs which can be used for this 
problem? 

c.	 From the Blasius solution of the above similarity equations, 
sketch the relations between the similarity functions (f " , θ) and 
the similarity variable (η) for both water and liquid metal (i.e., 
sketch f " versus η for both water and liquid metal on the same 
plot; and θ versus η for both water and liquid metal on the 
same plot). Explain why they have differences, if any. You do 
not need to solve the above equations. 

d. For a given problem (i.e., U∞, T∞, ρ, μ, Tw, Pr are given), 
explain briefly how to determine the local velocity u(y) and 
temperature T(y) at a specified location x, for both water and 
liquid metal, from the sketches in (c)? 
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e.	 Explain briefly how to determine the local heat transfer coef­
ficient from the sketches in (c)? Sketch the local heat transfer 
coefficient over the flat plate for both water and liquid metal 
(i.e., sketch h versus x for both water and liquid metal on the 
same plot), if both are at the same free-stream velocity (U∞)? 
Explain why they have differences, if any. 

7.4. Consider a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uniform 
wall temperature Tw or at a uniform wall heat flux q"" 

w, respec­
tively. Assume that there exist no body force and constant thermal 
and fluid properties. 
a.	 Based on the integral method, sketch and write down the 

momentum balance as well as the energy balance across 
the boundary layers? (If you cannot remember, derive 
it). 

b. Assuming a uniform velocity profile inside the boundary layer, 
that is, u = U∞, and assuming a linear temperature profile 
inside the thermal boundary layer as T = a + b × y, determine 
the local thermal boundary-layer growth along the flat plate 
(i.e., δT versus x) at a uniform wall temperature Tw condi­
tion. (Note: a and b are unknown constants that need to be 
determined.) 

c.	 Based on (b), determine the local Nusselt number distribu­
tion along the flat plate (i.e., Nu versus x) at a uniform wall 
temperature. 

d. Assuming a uniform velocity profile inside the boundary layer, 
that is, u = U∞, and assuming a linear temperature profile 
inside the thermal boundary layer as T = c + d × y, deter­
mine the local thermal boundary-layer growth along the flat 
plate (i.e.,  δT versus x) at a uniform wall heat flux q ""w con-
dition. (Note: c and d are unknown constants that need to be 
determined.) 

e.	 Based on (d), determine the local Nusselt number distribution 
along the flat plate (i.e., Nu versus x) at a uniform wall heat flux. 
Explain and comment on whether the local Nusselt number 
distribution along the flat plate will be higher, the same, or 
lower than that in (c)? 

7.5. Consider	 a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uni­
form wall temperature TW. Assume that there exist no body 
force and constant thermal and fluid properties. The similarity 
momentum and energy equations are listed here for reference: 
f """ + (1/2 ff "" = 0 and  ) θ "" + (1/2)Prf θ " = 0. 
a.	 Sketch both the velocity and the thermal boundary-layer thick­

ness distributions, respectively for both water and air flowing 
over the flat plate? (i.e., sketch δ versus x and δT versus x on 
the same plot for water and for air, respectively). Explain why 
they have differences, if any. 
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b. Define the similarity variable (η), the similarity function for 
temperature (θ), and the derivative of the similarity func­
tion for velocity (f " )? Write the BCs that can be used for this 
problem? 

c.	 From the Blasius solution of the above similarity equations, 
sketch the relations between the similarity functions (f " , θ) and 
the similarity variable (η) for both water and air. (i.e., sketch f " 
versus η for both water and air on the same plot; and θ versus η 

for both water and air on the same plot). Explain why they 
have differences, if any. You do not have to solve the above 
equations. 

d. For a given problem (i.e., U∞, T∞, ρ, μ, Tw, Pr are given), 
explain briefly how to determine the local velocity u(y) and 
temperature T(y) at a specified location x, for both water and 
air, from the sketches in (c)? 

e.	 Explain briefly how to determine the local heat transfer coef­
ficient from the sketches in (c)? Answer whether water or air 
will provide a higher convective heat transfer coefficient from 
the surface, if both are at the same free-stream velocity (U∞)? 
Why? 

7.6. Consider a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U , T ) over a flat plate at a uniform wall 
heat flux q "" 

∞ ∞
w
. Assume that there exist no body force and constant 

thermal and fluid properties.
 
a.	 Based on the integral method, sketch and write down the 

momentum balance as well as the energy balance across the 
boundary layers? (If you cannot remember, derive it.) 

b. Assuming a uniform velocity profile inside the boundary layer, 
that is, u = U∞, and assuming a linear temperature profile 
inside the thermal boundary layer as T = a + b × y, determine 
the local thermal boundary-layer growth along the flat plate 
(i.e., δt versus x). 

c.	 Based on (b), determine the local Nusselt number distribution 
along the flat plat (i.e., Nu versus x). 

d. Consider a parabolic velocity and temperature profile inside 
the thermal boundary layer as u = a + b × y + c × y2, T = 
a + b × y + c× y2, and comment on whether the local Nus­
selt number distribution along the flat plate will be higher, the 
same, or lower than those of a uniform velocity profile and a 
linear temperature profile as indicated in (b)? Explain why. 

e.	 Consider a uniform suction through the wall (i.e., v = −v0), 
and comment on whether the local Nusselt number distribu­
tion along the flat plate will be higher, the same, or lower than 
that without boundary-layer suction? Explain why. 

7.7. Consider	 a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uniform wall 
temperature TW. Assume that there exist no body force and con­
stant thermal and fluid properties. The similarity momentum and 
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energy equations are listed here for reference: f """ +  (1/2)ff "" = 0 
and θ "" + (1/2) Prf θ " = 0. 
a.	 Define the similarity variable (η), the similarity function for 

temperature (θ), and the derivative of the similarity func­
tion for velocity (f " )? Write the BCs that can be used for this 
problem? 

b. From the Blasius solution of the above similarity equations, 
sketch the relations between the similarity functions (f " , θ) and 
the similarity variable (η) for water, air, and liquid metal (i.e., 
sketch f " versus η for water, air, and liquid metal on the same 
plot; and θ versus η for water, air, and liquid metal on the 
same plot). Explain why they have differences, if any. Explain 
briefly how to determine the local velocity (u) and temperature 
(T) from the sketches? You do not need to solve the above 
equations. 

c.	 Explain briefly how to determine the local heat transfer coeffi­
cient from the sketches in (b)? Answer whether water or liquid 
metal will provide a higher convective heat transfer coefficient 
from the surface, if both are at the same free-stream velocity 
(U∞)? Explain why? 

7.8. Consider	 a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uniform 
wall temperature TW. Assume that there exist no body force and 
constant thermal and fluid properties. 
a.	 Based on the integral method, sketch and write down the 

momentum balance as well as the energy balance across the 
boundary layers? (If you cannot remember, derive it.) 

b. Assuming a uniform velocity profile inside the boundary layer 
that is, u = U∞, and assuming a linear temperature profile 
inside the thermal boundary layer as T = a + b × y, determine 
the local thermal boundary-layer growth and the local Nusselt 
number distribution along the flat plate (i.e., δt versus X and 
Nu versus X). 

c.	 Consider a uniform blowing through the wall (i.e., v = v0), and 
comment on whether the local Nusselt number distribution 
along the flat plate will be higher, the same, or lower than that 
without boundary-layer blowing? Explain why. 

7.9. Consider	 a steady, incompressible, low-speed 2-D laminar 
boundary-layer flow (at U∞, T∞) over a flat plate at a uniform 
wall temperature TW. Assume that there exist no body force and 
constant thermal and fluid properties. 
a.	 Based on the integral method, write down the final form of 

momentum integral equation. (If you cannot remember, please 
derive it.) 

b. Based on the integral method, can you remember to write 
down the final form of the energy integral equation? (If you 
cannot remember, please derive it.) 

c.	 Assuming a uniform velocity profile inside the boundary layer 
that is, u = U∞, and assuming a linear temperature profile 
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inside the thermal boundary layer as T = a + by, determine 
the local Nusselt number distribution along the flat plate (i.e., 
Nu versus X). 

d. Consider a uniform suction through the wall (i.e., v = −v0), 
and comment on whether the local Nusselt number distribu­
tion along the flat plate will be higher, the same, or lower than 
those without boundary-layer suction? Explain why. 

7.10. Consider a laminar air flow (at U∞, T∞) over a flat plate at a 
uniform wall heat flux q "" w. 
a.	 Based on the integral method, can you remember to write 

down the momentum and energy integral equations? (if you 
cannot remember, please derive them). 

b. Assuming a linear velocity profile inside the boundary layer 
as u = a + b y, derive the velocity boundary-layer thickness 
distribution along the flat plate (i.e., δ versus X). 

c.	 Assuming a linear temperature profile inside the thermal 
boundary layer as T = c + d y, derive the thermal boundary-
layer thickness distribution along the flat plate (i.e., δT versus 
X). 

d. Based on (b) and (c), determine the local Nusselt number 
distribution along the flat plate (i.e., Nu versus X). 

e.	 Consider a uniform wall temperature (Tw) as a thermal BC at 
the wall, and comment on whether the local Nusselt number 
distribution along the flat plate will be higher, the same, or 
lower than those of uniform wall heat flux as a thermal BC? 
Explain why. 

f. Consider a uniform suction through the wall (i.e., v = −vo), 
and comment on whether the local Nusselt number distribu­
tion along the flat plate will be higher, the same, or lower than 
those without boundary-layer suction? Explain why. 

7.11. The similarity method for laminar flow over a flat plate: 
U∞ is the free-stream velocity, T∞ is the free-stream tempera­

ture, and TW is the flat plate wall temperature. 
a.	 Write down the similarity variable, differential equations, 

and BCs for velocity and temperature, respectively. Then, 
determine velocity (u) and temperature (if Pr = 1) at 

(x, y) = (2 cm, 1/3δ), 

= (4 cm, 1/3δ), 

= (6 cm, 1/3δ). 

b. At any given	 x, if  U∞ increases, the friction factor will be 
increased or decreased. Why? How about shear stress? At any 
given U∞, if  x increases, the heat transfer coefficient will be 
increased or decreased. Why? How about heat transfer rate? 

7.12. The similarity method for laminar flow over a flat plate: 
U∞ – free-stream velocity, T∞ – free-stream temperature, and 

TW – flat plate wall temperature. 
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a.	 Write down the similarity variable, differential equations, 
and BCs for velocity and temperature, respectively. Then 
determine velocity (u) and temperature (if Pr = 1) at 

(x, y) = (1 cm, 1/2δ) and (x, y) = (1 cm, 1/4δ) 

= (3 cm, 1/2δ) = (3 cm, 1/4δ) 

= (9 cm, 1/2δ) = (9 cm, 1/4δ) 

b. At any given	 x, if  U∞ increases, the friction factor will be 
increased or decreased. Why? How about shear stress? At any 
given U∞: if  x increases, the heat transfer coefficient will be 
increased or decreased. Why? How about heat transfer rate? 

7.13. Consider the development of velocity and thermal boundary lay­
ers on a porous flat plate where air passes into the flat plate at a 
velocity Vo. 
a.	 Assume that no pressure gradient exists in either the x- or the  

y-direction and that all fluid properties are constant. Derive 
the differential equation that relates boundary-layer thickness 
δ to distance x. A linear profile may be assumed. 

b. The exact solution of the boundary-layer equations with the 
BCs of part (a) shows that δ approaches a constant value for 
large x, and that for large x, Vx and Vy are given by 

� 
Voy

Vx = V∞ 1 − exp 
� 

v 

�� 

Vy = −Vo 

Suppose now that at some large x = � (i.e., where δ has 
become constant and where Vx and Vy are given above), a 
step change in wall temperature occurs. Using the integral 
technique, derive a differential equation relating the thermal 
boundary-layer thickness δT to x (x > �). Again assume that 
fluid properties are constant. A linear temperature profile may 
be assumed. Integrals and derivatives need not be evaluated. 

7.14. Air at 1 atm and at a temperature of 30◦C flows over a 0.3-m­
long flat plate at 100◦C with a free-stream velocity of 3 m/s. At 
the position x = 0.05 m, determine the values of the boundary-
layer thickness, displacement thickness, moments thickness, wall 
stress, and heat transfer coefficient. Determine the values of the 
velocity parallel and normal to the plate surface, the values of 
the shear stress, and the values of temperature in the fluid at the 
positions (x = 0.05 m, y = 0.002 m); (x = 0.05 m, y = 0.004 m). 

7.15. Using the integral method and assuming that velocity and tem­
perature vary as 

u = a + by + cy2 + dy3

T = a + by + cy2 + dy3
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determine the “x” variations of the heat transfer coefficient and 
wall temperature for the case of laminar flow over a flat plate with 
a uniform wall heat flux (q/A)w. Compare the result of the heat 
transfer coefficient to the solution obtained in the textbook for the 
case of uniform wall temperature. 

7.16. Laminar air flow at 1 atm pressure over a flat plate at a uniform 
Tw. Assume that U = 3 m/s, T = 20◦C, and Tw = 100◦∞ ∞ C, and 
determine local u and T at x = 3 cm and y = 0.2 cm by using the 
similarity solution. Also determine the heat transfer coefficient at 
the same x = 3 cm location. Will the heat transfer coefficient be 
increased or decreased with increasing x for the same U∞? Why? 
Will the Nusselt number be increased or decreased with increasing 
x for the same U∞? Why? 

7.17. Use similarity solutions: air at 300 K and 1 atm flows along a flat 
plate at 5 m/s. At a location 0.2 m from the leading edge, plot the 
u and v velocity profiles using the exact solution to the Blasius 
equation Also, determine the boundary-layer thickness, if it is 
defined as the location where u = 0.99u∞. Plot the temperature 
profile and determine the thermal boundary thickness if the plate 
temperature is 500 K. 

7.18. Using integral method solutions: air at 300 K and 1 atm pres­
sure flows along a flat plate at 5 m/s. For x < 10 cm, Ts = 300 K, 
whereas for 10 cm < x < 20 cm, Ts = 500 K. 

Calculate the heat loss from the plate and compare the result 
with the heat loss if the plate were isothermal at 500 K. Assume 
that there exists a laminar boundary layer. Compare and discuss 
the two cases. 

7.19. Consider a boundary-layer flow over a flat plate. 
a.	 Using the integral method derive the continuity equation in 

the boundary layer for flow over a flat plate. 
b. Using the integral method derive the energy conservation 

equation in the boundary layer for flow over a flat plate. 
c.	 Using appropriate BCs and boundary-layer theory, show that 

for an inviscid fluid, 

Nu = 0.564 Pe1/2 

where Nu is the Nusselt number and Pe is the Peclet number. 
(Hint: Use a plug flow model for velocity.) 

7.20. Consider a fluid approaching the leading edge of a flat plate 
with uniform velocity and temperature profiles U∞ and T∞. The 
flat plate is frictionless and is held at a constant heat flux of q"" 

s . 
The temperature profile at a distance x from the leading edge is 
given by 

T = a + a y + a y2 + a y3 0  1  2  3

a.	 Using appropriate BCs evaluate a0, a1, a2, and a3. 
b. Qualitatively sketch velocity and temperature profiles at a 

distance x1 and x2, respectively, from the leading edge. 
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c.	 Determine the local heat transfer coefficient (hx) and the Nus­
selt number Nux. Express the answer in terms of the thermal 
boundary-layer thickness δt. 

7.21. Consider a 2-D laminar air flow over a friction less plate. The flow 
approaches the leading edge of the plate with uniform velocity 
U∞and temperature T∞. The plate is subjected to a constant wall 
temperature, Ts(> T∞). 
a.	 Qualitatively sketch hydrodynamic (δ) and thermal boundary 

layer (δt) growth as a function of distance x from the leading 
edge. 

b. Qualitatively sketch velocity and temperature profiles at a 
distance x from the leading edge. 

c.	 A third-order polynomial of the form 

T − Ts	 = 2 3  a0  a1(y/δt)  a2(y/δ δ− t)  a3 y/ tT∞  Ts 
+ + + ( )

is used to describe the temperature profile. Determine the 
constants a0, a1, a2, and a3 using appropriate BCs. 

d. Express local Nusselt numbers (Nux) in terms of local thermal 
boundary-layer thickness δt. 

e.	 Set up an integral energy balance equation. Do not attempt to 
solve the equation. 

7.22. Consider a 2-D, steady, incompressible laminar flow over a flat 
plate. The flow approaches the leading edge with free-stream 
velocity of U∞ and temperature T∞. The flat plate is frictionless 
and it is kept at a uniform temperature of Ts(> T∞). 
a.	 State clearly all the boundary-layer assumptions. 
b. If the temperature	 distribution at any axial distance x is 

approximated by a linear profile (T − Ts)/(T∞ − Ts) = y/δt, 
derive an expression for the local Nusselt number distribution. 

7.23. Consider a steady laminar viscous fluid with a free-stream veloc­
ity V∞ and temperature T∞ flows over a flat plate at a uniform 
wall temperature Tw. Assume that the thermal fluids properties 
are constant. 
a.	 If the fluid has a Prandtl number of one (i.e., Pr = 1.0), deter­

mine the local heat transfer coefficient along the plate. You may 
use the method of integral approximation with the assump­
tions of the linear velocity and temperature profiles across the 
boundary layers, that is, u = a + by and T = c + dy, where a, b, 
c, and d are constants. 

b. If the fluid’s Prandtl number is not equivalent to one (i.e., Pr > 

1 or  Pr < 1), outline the methods (no need to solve) in order 
to determine the surface heat transfer. You may use the same 
assumptions as in part (a). Does the heat transfer coefficient 
increase or decrease with the fluid Prandtl number? Explain 
your answers. 

7.24. Aflat horizontal plate has a dimension of 10 cm × 10 cm. The plate 
is maintained at a constant surface temperature of 300◦K with a 
water jacket. 
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a.	 If the plate is placed in a hot air stream with a pressure of 1 atm, 
temperature of 400◦K, and velocity of 10 m/s, sketch the local 
heat transfer coefficient, hx, along the plate. Also, determine 
the surface heat flux at the trailing edge of the plate. 

Given: air properties at 350◦K, k = 30 
6 2

× 10−3 w/mk, v = 20.92 × 
10− m /s, Pr = 0.7: 

Nux = a RemPrn 
x ,

where a = 0.332, m = 1/2, n = 1/3 for laminar flow 

a = 0.0296, m = 4/5, n = 1/3 for turbulent flow 

7.25. Constant properties laminar viscous fluids (ρ, Cp, K, μ = constant) 
with a free-stream velocity U∞ and temperature T∞ move over a 
flat plate at a uniform wall heat flux (q "" = w constant).
a.	 Determine the local Nusselt number (Nux = hx · x/k) along the 

plate by using the integral approximation method with the 
velocity and temperature profiles across the boundary layers 
as u = a + by and T = c + dy, respectively. Assume Pr = 1 for 
this problem. 

b. On the same plot, sketch hx, Nux versus x for the uniform 
wall heat flux (q   ""

w = constant) and uniform wall temperature 
(Tw = constant) BCs, respectively. For the same flow velocity, 
which wall BC (q"" 

w or Tw) will provide a higher heat transfer 
coefficient or Nusselt number? Explain why. 
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8 
Internal Forced Convection
 

8.1	 Velocity and Temperature Profiles in a Circular Tube 
or between Parallel Plates 

Internal forced convection is that flow moves through the internal surface of 
a passage and forms an internal boundary layer on the surface. For exam­
ple, fluid flowing through a circular tube or between two parallel plates is a 
most common application. Figure 8.1 shows the hydrodynamic boundary-
layer development (due to viscosity) for flow entering a circular tube 
(or between two parallel plates). The boundary layer starts from the tube (or 
plate) entrance and grows along the tube (or plate) length. The velocity profile 
keeps changing in the entrance region of the tube (or plate). The flow becomes 
a “hydrodynamic fully developed flow” when the boundary thickness is the 
same as the tube radius (or half-spacing between the two plates). The veloc­
ity profile no longer changes after a fully developed flow. For a laminar flow, 
the entrance length to tube diameter ratio is about 5% of Reynolds number 
(based on the tube diameter). This implies that the entrance length increases 
with increasing Reynolds number (because a thinner boundary layer requires 
longer distance for the boundary layer to merge). Figure 8.1 also shows that 
shear stress decreases from the entrance along the tube and becomes a con­
stant value when the flow reaches the fully developed condition, and shear 
stress increases with Reynolds number (because of a thinner boundary layer 
from the entrance and the longer entrance length). For a turbulent flow, the 
entrance length is harder to determine; the entrance length is around 10–20 
tube diameter. It is hard to distinguish whether the turbulent flow is fully 
developed or not from 10 to 20 tube diameter downstream [1–4]. 

Figure 8.2 shows the thermal boundary-layer development (due to thermal 
conductivity and velocity) for flow entering a circular tube (or between two 
parallel plates). The thermal boundary layer starts from the tube (or plate) 
entrance and grows along the tube (or plate) length. The temperature profile 
keeps changing from the entrance due to adding heat along the tube (or plate) 
wall. The flow becomes “thermally fully developed flow” when the thermal 
boundary thickness is the same as the tube radius (or half-spacing between the 
two plates). The dimensionless temperature profile no longer changes after 
being thermally fully developed (but the temperature still keeps increasing). 
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FIGURE 8.1 
Velocity profile and shear stress distribution in a circular tube or between two parallel plates. 

FIGURE 8.2 
Hydraulic entrance length and thermal entrance length in a circular tube or between two parallel 
plates. 
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For the laminar flow, the thermal entrance length to tube diameter ratio is 
about 5% of Reynolds number (based on the tube diameter) times Prandtl 
number. This implies that the thermal entrance length increases with increas­
ing Reynolds number (because a thinner boundary layer requires longer 
distance for the boundary layer to merge) and Prandtl number (because lower 
thermal conductivity requires longer distance to merge) [1–4]. 

Figure 8.2 also shows that the heat transfer coefficient decreases from the 
entrance along the tube and becomes a constant value when thermal boundary 
layer reaches the fully developed condition, and the heat transfer coefficient 
increases with Reynolds number (because of a thinner boundary layer from 
the entrance and the longer entrance length). It is noted that the thermal 
entrance length is identical to the hydrodynamic entrance length if Pr = 1. 
For the turbulent flow, the thermal entrance length is harder to determine; 
just like the hydrodynamic entrance length, the thermal entrance length is 
around 10–20 tube diameter. It is hard to distinguish whether the turbu­
lent flow is thermally fully developed or not from 10 to 20 tube diameter 
downstream. 

8.2	 Fully Developed Laminar Flow and Heat Transfer 
in a Circular Tube or between Parallel Plates 

For fluid flow in a circular tube, the Reynolds number is defined as 

ρVD VD 4ṁ
ReD = = =	 (8.1)

μ ν πDμ 

Laminar flow is observed if ReD ≤ 2300. 
At a certain distance from the entrance, the velocity profile u(r) remains 

unchanging along the tube (if the fluid properties remain constant). Corre­
spondingly, there will be no velocity component in the radial direction. Also, 
the axial pressure gradient required to sustain the flow against the viscous 
forces will be constant along the tube (no momentum change). The flow is 
hydrodynamically fully developed. The differential governing equations for 
the flow inside a circular tube are [1–4] 

∂u 1 ∂(vr)+ = 0	 (8.2)
∂x	 r ∂r 

∂u ∂u 1 ∂P 1 ∂ ∂u 
u + v = −  + υ r	 (8.3)

∂x ∂y ρ ∂x r ∂r ∂r 

∂ (uT) ∂ (vT) 1 ∂ ∂T + = α r	 (8.4)
∂x ∂y r ∂r ∂r 
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If the flow is hydrodynamically fully developed, then 

v = 0 (8.5) 

∂u = 0 (8.6)
∂x 

1 ∂P 1 ∂ ∂u
0 = −  + υ r (8.7) 

ρ ∂x r ∂r ∂r 

and u = u(r) only. 
Solve momentum equation 

1 dP 1 d du = υ r 
ρ dx r dr dr 

dP du 
r dr = μd r

dx dr 

dP 1 du 
r2 = μr + C1dx 2 dr 

at r = 0, du/dr = 0, C1 = 0 

dP 1 
r dr = μ du

dx 2 

dP 1 
r2 = μu + C2dx 4 

at r = R, u = 0, C2 = (1/4)R2(dP/dx) 

1 2 dP 1 
R2 dP 

r = μu +
4 dx 4 dx 

( )1 dP 2 − R2
4μ dx 

and r = 0, u = umax = −(1/4μ)R2(dP/dx). 
We obtain u = −umax(r2 − R2)/R2 

( )2 

u = r

u r = 1 − (8.8)
Umax R 
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The bulk mean velocity is defined as 

R 
1 

u2πr dr (8.9)V = 
πR2 

0 

R � �
1 

πR2 

)2( r
1 − umax2πr dr= 

R 
0 

2umax 1 1 4 � R 
2 − � = r r

R2 2 4R2
0 

1
V = Umax (8.10)

2 

8.2.1 Fully Developed Flow in a Tube: Friction Factor 

∂u � 2r � 
τw = μ = μUmax − (8.11) 

∂y R2 
y=0 r=R 

where u/Umax = 1 − (r/R)2 

−2 
τw = μUmax R 

τw μUmax(−2/R) 16μ 16 1 
f = = ( ) = = ∼ (8.12)2 (1/2)ρ (1/2)U 2 ρUD ReD ReD(1/2)ρU max

where ReD = ρUD/μ. 
Figure 8.3 shows the force balance in the fully developed flow region: 

ΔPAc + τwπDΔx = 0 

τwπDΔx 
ΔP = −  

(1/4)πD2 

ΔP −4τw 4 1 2 = = −  f ρU (8.13)
Δx D D 2 

4 1 2 16 32μU 32μ ρ D μ 32μ2 ρDU = −  ρU = −  = −  U = −  
D 2 ReD D2 D2 ρ D μ D3ρ μ 

32μ2 
= −  ReD ∼ ReD (8.14)

D3ρ
 

And pumping power can be obtained as P ∼
= ΔP (volume flow). Figure 8.4 
shows that the friction factor decreases and the pressure drop increases with 
Reynolds number. 
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FIGURE 8.3 
Force balance in fully developed flow region. 

Laminar flow heat transfer depends on thermal BCs. However, turbu­
lent flow heat transfer is fairly independent of thermal BCs (particularly for 
Prandtl number around one such as air). Typical thermal BCs are case 1, 
uniform heat flux and case 2, uniform wall temperature. 

8.2.2 Case 1: Uniform Wall Heat Flux 

Figure 8.5 shows the laminar flow in a circular tube with a uniform surface 
heat flux condition and the thermal boundary layer, temperature, and the heat 
transfer coefficient (Nusselt number) along the tube. The following outlines, 
step by step, how to obtain the results shown in Figure 8.5. 

FIGURE 8.4 
Friction factor and pressure drop versus Reynolds number in fully developed flow region. 



    

    (a) qw = constant 

Ti 

(b) 
Temp 

Ti 

Tw 

q ″ w 
Tw 
T(r) 
Tb 

x 

Xf,t Thermally fully developed 

(c)
 
15
 

hD
 
k
 

hD4.3 = Nu = 
k 

x 

"" q = 
qw = h(Tw − Tb) (8.15)w As 

"" q = 
qw = h(Tw − Tb) (8.16)w '-v' As ' -v ' 

const. const. 

Bulk mean temperature 

From energy balance, 

"" q = w 

"" q = w 

�
0 
R 

ρuT · 2πr dr 
Tb = (8.17) �

0 
R 

ρu · 2πr dr 

qw = ˙ (8.18)mCp(Tb,o − Tb,i)/AsAs 

˙ dTb dTbmCp ⇒ = const (8.19)
πD dx dx 
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FIGURE 8.5 
Laminar flow in a circular tube with uniform surface heat flux condition. (a) Thermal boundary 
layer; (b) temperature; and (c) heat transfer coefficient. 
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For thermally fully developed flow, 

∂ T − Tw = 0 (8.20)
∂x Tb − Tw 

T − Tw = f (r) = f (x)
Tb − Tw 

∂T ∂Tw T − Tw ∂Tb ∂Tw− − − = 0 
∂x ∂x Tb − Tw ∂x ∂x ' -v ' 

=0 

∂T ∂Tw ∂Tb = = = constant (8.21)
∂x ∂x ∂x 

From energy equation 8.4, 

∂T 1 ∂ ∂T 
ρCpu = k r = T(r) only (8.22)

∂x r ∂r ∂r 

� � ( )2
� "" � � � 

ρCp r q dT 
r 2V 1 − w dr = d r 

k R mCp/πD˙ dr ' -v ' ' -v ' 
u ∂T 

∂x 

And thermal BCs are 

∂T 
r = 0, T = Tc or = 0 

∂r 

r = R, T = Tw 

ρCp dT r2 r4 
T − Tc = −Umaxk dx 4 16R2 

ρCp ∂T R2 R4 ρCp ∂T 3
Tw − Tc = Umax − = Umax R2 

k ∂x 4 16R2 k ∂x 16 

where 

�R 
0 ρuT · 2πr dr 7 ρCp dT

Tb = �R = Tc + UmaxR2 
96 k dx 

0 ρu · 2πr dr 

ρCp dT 3 7
Tw − Tb = Umax R2 − R2 (8.23)

k dx 16 96 
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Therefore, h can be determined by substituting Equations 8.19 and 8.23: 

"" mCp/πD)(dTb/dx)q ( ̇wh = = (
Tw − Tb ρ(Cp/k)(dT/dx)umax (3/16)R2 − (7/96)R2

) 

(ρπR2 ¯ (ρCpπR2(1/2)umax/π2R)(dT/dx)VCp/π2R)(dT/dx) = = 
(ρCp/k)(dT/dx)umax(11/96)R2 (ρCp/k)(dT/dx)umax(11/96)R2 

k 96 k = = 
(44/96)R 22 D 

hD 96
NuD ≡ = = 4.314 (8.24)

k 22 

8.2.3 Case 2: Uniform Wall Temperature 

For the case of uniform wall temperature (Tw = constant), 

∂T ∂Tb T − Tw = (8.25)
∂x ∂x Tb − Tw 

The energy equation becomes 

( )2r dTb T − Tw 1 ∂ ∂T 
ρCp2V̄ 1 − = k r (8.26)

R dx Tb − Tw r ∂r ∂r 

Assuming a temperature profile, a final temperature distribution may be 
obtained by using an iterative procedure. The resulting Nusselt number is 

hD
NuD = = 3.66 (8.27) 

k 
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Examples 

8.1. Internal flow, fully developed laminar forced convection: Consider a low-
speed, constant-property, fully developed laminar flow between two parallel 
plates at y = ±H, as shown in Figure 8.6. The plates are electrically heated 
to give a uniform wall heat flux. Determine the velocity profile, the friction 
factor, and the Nusselt number. 
Assumptions: 

Low speed ⇒ Φ = 0 
Constant properties:
 

Fully developed ⇒ du/dx = 0
 
Thermally fully developed ⇒ dT /dx = const
 



� � 

a. Velocity profile
 
Continuity equation:
 

∂u ∂υ ∂u + = 0 ⇒ = 0 
∂x ∂y ∂x 

Momentum equation: 

∂u ∂u 1 ∂P ∂2u ∂2u 
u + υ = −  + ν + 

∂x ∂y ρ ∂x ∂x2 ∂y2 

υ = 0 

∂u ∂2u = 0 ⇒ = 02∂x ∂x 

1 ∂P ∂2u = ν ⇒ Governing equation (8.28)
ρ ∂x ∂y2 

with solution 

u = 
1 ∂P

y2 + c1y + c2 (8.29)
2μ ∂x 

where ν = μ/ρ 

Boundary conditions:
 
At y = 0, ∂u/∂y = 0 (maximum velocity)
 
At y = H, u = 0
 
c1 = 0
 

1 ∂P 
c2 = −  H2 

2μ ∂x 
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FIGURE 8.6 
Two parallel plates at a uniform wall heat flux. 
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Substituting this into Equation 8.29 and rearranging 

2H2 ∂P y
u = −  1 − (8.30)

2μ ∂x H2 

umax at y = 0 

H2 ∂P 
umax = −  

2μ ∂x 

2y
u = umax 1 − (8.31a)

H2 

�H 2 � 2 umax 1 − y dy0 H2ρudA 
um = = 

ρA 2H 

H 
umax y − (y3/3H2) 

0 umax ((2/3)H) 
um = = 

H H 
2 

um = umax3 

Thus, 

23 y
u = um 1 − (8.31b)

2 H2 

b. Friction factor: 

− (∂P/∂x) Dhf ≡ 2ρum/2 

ΔPAc + τw(2w)Δx = 0 

ΔP −2τww −2τww τw = = = −  
ΔX Ac 2wH H 

� � � �H∂u � 3 2y um 
τw = μ = μ um = 3μ 

∂y 2 H2 Hy=H 0 

Therefore, 

ΔP −3μum= −  
Δx H2 

4Ac 4(2wH)
DH = = = 4H 

P 2w 
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Thus,
 

(3μum/H2)(4H) 24μumH

f = = 2 2ρum/2 ρumH2 

24μ 
f = 

umHρ 

But,
 

ρumDH 4umHρ
 
ReDh= = 

μ μ 

Finally,
 

96

f = (8.32)

ReDh 

c. Energy equation: 

∂T ∂T ∂2T ∂2T 
ρCp u + υ = k + + q̇ + Φ 

∂x ∂y ∂x2 ∂y2
 

Φ = 0 (because of low-speed flow)
 
q̇ = 0 (no internal heat generation)
 

dT d2T
 = const ⇒ = 0 
dx dx2
 

The governing equation becomes
 

∂2T u ∂T
 = (8.33) 
∂y2 α ∂x
 

With solution (after substitution of Equation 8.31b)
 

3 um y2 y4 dT
T = − + c1y + c22 α 2 12H2 dx 

Boundary conditions:
 
y = 0, dT /dy = 0 → c1 = 0
 
y = b, T = Ts
 

5 um H2 dT 
c2 = Ts − 

8 α dx 
2 43 um y y 5 dT

T = H2 − − + Ts (8.34)
2 α 2H2 12H4 12 dx 
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ρcv uT dA 
Tm ≡ 

ρcv umA � � �� � � � � 
H 2 2 4 � 3 y 3 um y y 5 dT

2 ρcv um 1 − H2 − − + Ts dy
2 H2 2 α 2H2 12H4 12 dx0

Tm = 
ρcv um(2H) 

9 umH2 1 1 5 1 1 5 dT 3 TsTm = − − − + + + Ts − 
4 α 6 60 12 10 84 36 dx 2 3 

17 umH2 dT 
Tm = −  + Ts (8.35)

35 α dx 
"" q = h(Ts − Tm)s 

∂T � 
q = −  ks ∂y � y=H [ ]

k (3/2)(um/α) · (2/3)H (dT /dx)
h = 

Ts + (17/35)(um/α)H2(dT /dx) − Ts 

35 k 
h = 

17 H 

h(4H) 35 k 4H
NuD = = 

k 17 H k 

140
NuD = = 8.235 

17 
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Remarks 

There are many engineering applications such as electronic equipments, mini-
scale channels, and compact heat exchangers that required laminar flow heat 
transfer analysis and design. In the undergraduate-level heat transfer, stu­
dents are expected to know many heat transfer relations between Nusselt 
numbers and Reynolds and Prandtl numbers for developing and fully devel­
oped flows inside circular tubes at various surface thermal BCs. Students are 
expected to calculate heat transfer coefficients from these relations by giving 
Reynolds and Prandtl numbers. 

In the intermediate-level heat transfer, this chapter focuses on how to solve 
fully developed heat transfer problems for flow between two parallel plates or 
inside circular tubes at uniform surface heat flux BCs. Students are expected 
to know how to analytically determine the velocity profile, the friction factor, 
the temperature profile, and the Nusselt number for these cases. Here we 
do not include how to analytically determine the heat transfer coefficient at 
uniform surface temperature BCs. 

In advanced heat convection, students will learn how to analytically predict 
heat transfer in both developing flow and thermal entrance regions; with 
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various thermal BCs such as variable surface heat flux as well as variable 
surface temperature BCs; for flow in rectangular channels with various aspect 
ratios and flow in annulus with various thermal BCs. They require more 
complex mathematics and are beyond the intermediate-level heat transfer. 

PROBLEMS 

8.1. Consider a steady constant-property laminar flow between two 
parallel plates at y = ±�. The plates are electrically heated to give a 
uniform wall heat flux. The differential equations for momentum 
and energy are listed here for reference: 

∂ u ∂ u 1 ∂ P ∂2u ∂2u 
u + v = −  + ν + 

∂ x ∂ y ρ ∂ x ∂ x2 ∂ y2 

∂ T ∂ T ∂2T ∂2T ν ∂ u 2 
u + v = α + + 

∂ x ∂ y ∂ x2 ∂ y2 cp ∂ y 

a.	 Assume a low-speed, slug flow velocity profile (i.e., a uni­
form velocity profile) between two parallel plates, and also 
assume a thermally, fully developed condition, and write 
down the simplified equations for momentum and energy and 
the associated BCs that can be used for this problem. 

b. Under the assumption in (a), determine the Nusselt number 
on the plate. 

c.	 Consider a fully developed velocity profile (i.e., a parabolic 
velocity profile) between two parallel plates and a thermally, 
fully developed condition, and comment on whether the Nus­
selt number on the plate will be higher, the same, or lower than 
those of symmetry linear velocity profile (uniform velocity 
profile). Explain why. 

8.2. Consider a steady constant-property laminar flow between two 
parallel plates at y = ±�. The plates are electrically heated to give a 
uniform wall heat flux. The differential equations for momentum 
and energy are listed here for reference: 

∂ u ∂ u 1 ∂ P ∂2u ∂2u 
u + v = −  + ν + 

∂ x ∂ y ρ ∂ x ∂ x2 ∂ y2 

∂ T ∂ T ∂2T ∂2T ν ∂ u 
�2 

u + v = α + + 
∂ x ∂ y ∂ x2 ∂ y2 cp ∂ y 

a.	 Assume a low-speed, symmetry linear velocity profile (i.e., u = 
a + by with maximum velocity at y = 0, zero velocity at y = 
±�) between two parallel plates, and also assume a thermally, 
fully developed condition, and write down the simplified 
equations for momentum and energy and the associated BCs 
that can be used for this problem. 
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b. Under the assumption in (a), determine the Nusselt number 
on the plate. 

c.	 Consider a fully developed velocity profile (i.e., a parabolic 
velocity profile) between two parallel plates and a thermally, 
fully developed condition, and comment on whether the Nus­
selt number on the plate will be higher, the same, or lower 
than those of the symmetry linear velocity profile (u = a + by)? 
Explain why. 

8.3. Internal flow, fully developed laminar forced convection: Con­
sider a low-speed, constant-property, fully developed laminar 
flow between two parallel plates, with one plate insulated and 
the other uniformly heated. Determine the Nusselt number. 

8.4. Consider a concentric circular-tube annulus with a radius ratio 
of ri/ro = 0.6. Let the inner tube wall be heated at a constant 
rate and the outer tube wall remains insulated. Let the fluid be 
a low-Prandtl number fluid, and assume a slug flow inside of the 
annulus. Develop an expression for the Nusselt number at the 
inner surface by means of the following steps: 
a.	 Discuss how temperature and velocity profiles develop in the 

system by considering Pr and the type of flow present. Indi­
cate the system conditions. (Is the flow and or temperature 
developed?) 

b. Let Tm be the mass average fluid temperature, and Ts,ri the sur­
face temperature at the inner surface with radius ri. Form the 
thermal BCs; what can be said about 

(
Tm − Ts,r ∂ /∂i x

c.	 

)
and T ? 

Draw a diagram, indicating BCs for both temperature and 
velocity and indicate the assumptions used to simplify the 
energy equation. 

d. Solve for T using the simplified velocity profile, BCs, and the 
energy equation. 

e.	 Find the heat transfer coefficient and the Nusselt number by 
calculating Tm, the mass average fluid temperature, and heat 
flux at the inner surface. 

Remember that the energy equation in cylindrical coordinates is 
given by 

�	 
∂T ∂T vθ ∂T ∂T 

ρc vr vx 
∂t 

+
∂r

+
r ∂θ 

+
∂x 

� 

1 ∂= 

� 
∂T 

rk 
� 

1 ∂ ∂T ∂ ∂T + 
r ∂r ∂r r2 ∂θ 

� 
k 

� 
+ 

� 
k 

� 
+ q̇, 

∂θ ∂x ∂x 

where x represents the axial direction of the cylinder. 
8.5. Consider a low-speed, constant-property fluid, fully developed 

laminar flow between two parallel plates located at y = ±b. The 
plates are electrically heated to give a uniform heat flux. 
a.	 Determine the velocity profile and define the bulk velocity (ub) 

in terms of the pressure gradient driving the flow. 
b. Using the hydraulic diameter	 Dh = 4Ac/P, show that the 

friction factor is given by f = 96/ReDh . 
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c.	 Obtain an expression for the heat convection coefficient and 
the Nusselt number. 

(Hint: Consider the fully developed condition to approximate 
∂ /∂

�bT x; and define Y(y) = T − Tb, where Tb = 2 uTdy/2bub.) 0 
8.6. Consider a steady constant-property laminar flow between two 

parallel plates at y ± �. The plates are electrically heated to give a 
uniform wall heat flux. The differential equations for momentum 
and energy are listed here for reference: 

∂ u ∂ u 1 ∂P 
u  v  v 

∂ x 
+

∂ y 
=

ρ ∂x 
+

� 
2∂ u 2∂ u + 2 ∂x2 ∂y

� 

2 ∂ T ∂ T 2∂ T 2∂ T ν ∂ u 
u 

∂ x 
+ v = α 

� 
∂ x

+  
∂ y 2 ∂ y2 

� 
+

cp 

� 
∂ y 

�

a.	 Assume a low-speed, linear velocity profile (i.e., u = um (
1 − y/�

)
with maximum velocity at y = 0, and zero velocity 

at y ± �) between two parallel plates, and also assume a ther­
mally, fully developed condition, and write down the simpli­
fied equations for momentum and energy and the associated 
BCs that can be used for this problem. 

b. Under the assumption in (a), determine the Nusselt number 
on the plate. 

c.	 Consider a fully developed velocity profile (i.e., a parabolic 
velocity profile) between two parallel plates and a thermally, 
fully developed condition, and comment on whether the Nus­
selt number on the plate will be higher, the same, or lower than 
those of symmetry linear velocity profile in (a)? Explain why. 

8.7. Consider an incompressible laminar 2-D flow in a parallel plate 
channel as shown below. The top plate is pulled at a constant 
velocity UT . The top and bottom plates are maintained at constant 
heat flux qs. Flow is both hydrodynamically and thermally fully 
developed. Assume that the pressure gradient is zero in a parallel 
plate channel. 
a.	 Obtain differential equations governing the velocity U(Y) and 

temperature T(Y) fields. 
b. Use appropriate BCs to evaluate U(Y). Obtain T(Y). Do not 

attempt to evaluate constants of integration for the tempera­
ture field. 

8.8. Find the Nusselt number for the following problems. 
a.	 Fully developed Couette flow (i.e., assume that velocity and 

temperature profiles do not change along the channel) with 
the lower plane wall at uniform wall temperature T0 and the 
upper plane wall at T1. If the velocity profile is a linear profile 
(U = 0 at the lower plane wall, U = V at the upper plane wall), 
find the temperature profile from the energy equation. 

b. Fully developed Poiseuille flow (i.e., assume that velocity and 
temperature profiles do not change along the channel) with 
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the lower plane wall at uniform temperature T0 and the upper 
plane wall at T1. If the velocity profile is a parabolic profile, 
find the temperature profile from the energy equation. 

8.9. A 2-D channel flow is subjected to a uniform heat flux on one wall 
and insulated on the other wall. Assume that the viscous dissipa­
tion is negligible and the properties are constant. Determine the 
following. 
a.	 The governing momentum and energy equations with the 

appropriate BCs for the developing region. Do not solve the 
equations; however, show the details of simplifying the gov­
erning equations. Sketch the temperature and velocity profiles 
with respect to y at two x positions. 

b. Repeat (a) for the fully developed region. 
c.	 Sketch the temperature profile in the fully developed region 

if both walls are insulated. Consider two cases: (1) viscous 
dissipation is negligible and (2) viscous dissipation is not 
negligible. 

8.10. Consider liquid metal flow in a parallel-plate channel at a uniform 
wall heat flux condition. 
a.	 Using the momentum and energy differential equations and 

making the appropriate assumptions, derive the surface Nus­
selt number if flow is laminar and the temperature profile is in 
a fully developed condition. 

b. Using the momentum and energy differential equations and 
making the appropriate assumptions, outline the methods (no 
need to solve) in order to determine the surface Nusselt num­
ber if the flow is laminar and the temperature profile is in a 
developing condition. Describe that the surface Nusselt num­
bers for (b) will be higher or lower than those for (a). Explain 
why. 

c.	 Nu, Tw, and Tb versus x from the entrance to the fully 
developed region. 

8.11. Consider a steady constant-property laminar flow between two 
parallel plates at y = ±�. The plates are electrically heated to give a 
uniform wall heat flux. The differential equations for momentum 
and energy are listed here for reference: 

u u 1 P 
� 

2 2∂ ∂ ∂ ∂ u ∂ u 
u   

∂ 
+ v 

x ∂ 
= − ν 

y ρ ∂ x 
+

∂ x2 + ∂ y2 

� 

T 
� 

2T 2 2∂ ∂ T ∂ ∂ T 
� 

ν 

p 

�
∂ u 

u + v = α + + 
∂ x ∂ y ∂ x2 ∂ y2 c ∂ y 

�

a.	 What is the physical meaning of the last term shown in the 
above differential energy equation? Explain under what con­
ditions the last term should be included in order to solve the 
temperature distribution between two parallel plates. 

b. Assume a low-speed, slug-flow velocity profile (i.e., a uni­
form velocity profile) between two parallel plates, and also 
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assume a thermally, fully developed condition, and write 
down the simplified equations for momentum and energy and 
the associated BCs that can be used for this problem. 

c.	 Under the assumption in (b), determine the Nusselt number 
on the plate. 

8.12. Water at 43◦C enters a 5-cm-ID pipe at a rate of 6 kg/s. If the pipe is 
9 m long and maintained at 71◦, calculate the exit water tempera­
ture and the total heat transfer.Assume that the Nusselt number of 
the flow in the pipe is 3.657. Also, the thermal properties of water 
are ρ = 1000 kg/m3, cp = 4.18 kJ/(kg K), and k = 0.6 W/(m K). 
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gβ(Tw − T∞)x3 
Grx = (9.1)

ν2 

Rax = Grx · Pr	 (9.2) 

Continuity 

∂u 
∂x 

+ 
∂v 
∂y 

= 0 (9.3) 

9 
Natural Convection
 

9.1	 Laminar Natural Convection on a Vertical Wall: 
Similarity Solution 

Natural convection can occur when the solid surface temperature is different 
from the surrounding fluid. For example, natural convection can take place 
between a heated (or cooled) vertical (or horizontal) plate or tube and the sur­
rounding fluid. Figure 9.1 shows the velocity profile, temperature profile, and 
heat transfer from a hot vertical wall to a cold fluid due to natural convection. 
The hot vertical wall conducts heat to the fluid particle (fluid layer) next to 
the wall and the heated fluid particle (fluid layer) conducts heat to the next 
cooler fluid particle, and so on. Therefore, the fluid particle near the hot wall 
is lighter than that is away from the hot wall and natural circulation takes 
place (near the wall, the hot fluid moving up and away from the wall, cold 
fluid moving down) due to gravity. This buoyancy-driven natural convection 
flow is primarily due to density gradient (temperature gradient) from the hot 
vertical wall and cold surrounding fluid. The key parameter/driving force to 
determine natural convection is Grashof number, a ratio of buoyancy force 
to viscous force (buoyancy force tries to move the fluid up but viscous force 
tries to resist it from moving). Another parameter is Prandtl number, a fluid 
property showing the ratio of kinematic viscosity to thermal diffusivity. The 
product of Grashof number with Prandtl number is called Rayleigh num­
ber, another way of measuring the natural convection. The following shows 
the definition of Grashof number, Rayleigh number, and 2-D laminar natural 
convection boundary-layer equations from a heated vertical wall [1–4]. 
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ρw, Tw = C 

τw 

x 

g 

y 

dP 
dx 

0 

T∞, ρ∞ 

FIGURE 9.1 
Natural convection boundary layer from a heated vertical wall. 

Momentum 
∂u ∂u ∂2u 

u + v = gβ(T − T∞) + ν (9.4)
∂x ∂y ∂y2 

Energy 

∂T ∂T ∂2T 
u + v = α (9.5)

∂x ∂y ∂y2 

The following shows how to derive the above natural convection momen­
tum equation from the original momentum equation: 

∂u ∂u 1 ∂P ∂2u 
X-momentum u + v = −  − g + ν 

∂x ∂y ρ ∂x ∂y2 

From outside of the boundary layer 0 = −(1/ρ∞)(∂P/∂x) − g 

1 ∂ρ 1 ρ∞ − ρ∼∵ β = −  = − 
ρ ∂T ρ T∞ − TP 

∴ ρ∞ − ρ = ρβ(T − T∞)
 

∂P 1 ∂P
∴ = −ρ∞g ⇒ −  − g
∂x ρ ∂x
 

1 g
= −  (−ρ∞g) − g = (ρ∞ − ρ) = gβ(T∞ − T)
ρ ρ



� � �1/4 
4 gβ(Tw − T∞) y Grx 

η = y = (9.6)
4ν2x x 4 

where 

gβ(Tw − T∞)x3 
Grx = 

ν2 

Similarity functions for velocity and temperature: 

Ψ(x, η)
f (η) = (9.7) 1/44ν (Grx/4)

T − T∞ 
θ = (9.8)

Tw − T∞ 

Put them into the above momentum equation and energy equation, 
respectively: 

∂Ψ 
u = = · · ·  

∂y 

∂Ψ 
v = −  = · · ·  

∂x 
∂T = · · ·  
∂x 
∂T = · · ·  
∂y 
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From the above momentum equation, one can see that natural convection is 
due to temperature difference between the surface and fluid and the gravity 
force. This implies that there is no natural convection if there exists no temper­
ature gradient or no gravity force. The larger delta T and gravity (means larger 
Grashof number) will cause larger natural circulation and results in thinner 
boundary-layer thickness and higher friction (shear) and higher heat transfer 
coefficient. The Grashof number in natural convection plays a similar role 
as Reynolds number does in forced convection; the larger Grashof number 
causes higher heat transfer in natural convection as the greater Reynolds num­
ber has higher heat transfer in forced convection. Prandtl number plays the 
same role in both natural and forced convection, basically the fluid property. 

Just like in forced convection, both similarity and integral methods can be 
used to solve natural convection boundary-layer equations. The following 
only outline the similarity method from Ostrach in 1953. 

Similarity variable: 
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The resultant similarity momentum and energy equations are 

f """ + 3ff "" − 2f "2 + θ = 0 (9.9) 
" θ "" + 3Pr f θ = 0 (9.10) 

The related BCs are 

f (0) = f " (0) = 0, f " (∞) = 0 (9.11) 

θ(0) = 1, θ(∞) = 0 (9.12) 

These can be solved by the fourth-order Runge–Kutta method in order 
to obtain the velocity and temperature profiles across the natural convec­
tion boundary layer. Figure 9.2 shows typical dimensionless velocity and 

FIGURE 9.2 
Dimensionless velocity and temperature profiles from heated vertical wall. 



� 

temperature profiles from the heated vertical wall, for different Prandtl 
fluids. 

u T∞f " = √
2 gx Tw − T∞ 

ux 
G−1/2 = x2ν 

u = ( ) (9.13) 
G1/2 

x (2ν/x)

From the dimensionless velocity and temperature profiles, the associ­
ated heat flux and the heat transfer coefficient (or Nusselt number) can be 

y=0 

determined. 

q "" w = −k 
∂T � k Grx 

∂y x 4 

� 
� � 
0 

= −  (Tw − T∞) 

� �1/4 dθ � 
dη 

� 
� � 
y=0 

(9.14) 

where 

dθ � 
dη 

� � � 
y=0 

= θ (0) = f (Pr) " 

∴ h = 
q "" w 

Tw − T∞ 
= 

−k(∂T/∂y)0 

Tw − T∞ 

Nu = 
hx 
k 

= −  

� 
Grx 

4 

�1/4 dθ � 
dη 

� � � (9.15) 

Numerical results: for laminar natural convection: 

Pr 0.01 0.733 

− 
dθ 

dη 

� � � � 
0 

0.081 0.508 

For air, Pr = 0.733, 

1 

0.567 

2 

0.716 

10 

1.169 

100 

2.191 

1000 

3.966 

Nux = 
hx 
k 

= 0.359Gr1/4 
x 

Nux = 
hxL 

k 
= 

4 
3 

NuL = 0.478Gr1/4 
L 

(9.16) 

(9.17) 
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where 

L � � �1/4 � 
1 4 k GrL dθ � 4

hx = hxdx = − 	  = hLL 3 L 4 dη 30 
0 

gβ(Tw − T∞)L3 
GrL =	 (9.18)

ν2 

�1/4 
3 2Pr 1/4Nux = (	 ) (GrxPr) (9.19) 
4 5	 1 + 2 Pr1/2 + 2 Pr

Nux = 0.6(GrxPr2)1/4, if  Pr → 0	 (9.20) 

Nux = 0.503(GrxPr)1/4, if  Pr → ∞ 	  (9.21) 

In general, 

bNux = a(GrxPr) = a Rab 
x 

where Rayleigh number, 

gβ(Tw − T∞)x3 
Grx Pr = Rax = 

να 

Compared to forced convection 

Nux = a Rem Prn 
x 

Note: The following is a simple guideline whether the problem can be solved 
by forced convection, natural convection, or mixed (combined forced and 
natural) convection. 

If Grx/Re2 < 1, the problem can be treated as forced convection. x 
∼If Grx/Re2 = 1, the problem can be treated as mixed convection. x
 

If Grx/Re2 > 1, the problem can be treated as natural convection.
 x 
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9.2	 Laminar Natural Convection on a Vertical Wall: Integral 
Method 

Integral approximate solution by Pohlhausen 1921: We apply the momentum and 
energy balance to the control volume across the boundary layer as shown in 
Figure 9.3. 

http:GrxPr)(9.19
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Net force = Momentum change 

−τw − ρg dy − ∂P ∂ 
ρuu dydy = 

∂x ∂x

where ∂P/∂x = ∂P∞/∂x = −ρ∞g (outside of the boundary layer). 
Also ρ − ρ∞ = −ρ∞β (T − T∞) from β ≡ −1/ρ (∂ρ/∂T)P 

� δ δ 

(T − T∞) dy − 
d 

dx 
τw μ ∂u 

u2 dy (9.22)= gβ= 
ρ∞ ρ∞ ∂y 0 

0 0 

δT 

q 
∂T � d"" = −k � = 
∂y dx0 

ρcpu (T − T∞) dy (9.23) 

0 

Boundary conditions: u (x, 0) = 0 T (x, 0) = Tw 

u (x, δ) = 0, T (x, δT) = T∞ 

∂u (x, δ) ∂T (x, δT ) = 0, = 0 
∂y ∂y 

FIGURE 9.3 
Integral method. 
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Assuming velocity and temperature profiles to satisfy boundary-layer 
conditions, 

( )
u = u x, y = u1η (1 − η)2 (9.24) 

( )T − T∞ 2= (1 − η) = f x, y (9.25)
Tw − T∞ 

where η = y/δ(x); u1 = c1xm; δ (x) = c2xn; 

1 1 
m = ; n = 

2 4 

Put this into momentum and energy integral equations: 

� �1/2 � �1/280 Gx ν 
u1 (x) = 

3 (20/21) + Pr x 
�1/4 �1/4

δ (x) 240 (1 + (20/21Pr)) x = → δ (x) ∼ 
x Pr · Gx Tw − T∞ 

∂T � 2k (Tw − T∞) 
qw = −k = = h (Tw − T∞)

∂y δ (x)0 

hxx 2x Pr
Nux = = = 

�1/4 

· Ra1
x 
/4 (9.26)

k δ (x) 15 ((20/21) + Pr) 

∼Nux = 0.413Rax 
1/4 for Pr = 0.733 (9.27) 

Note: Nux = 0.359Ra1
x 
/4 for Pr = 0.733 by using the exact similarity solu­

tion. 

gβ (Tw − T∞) x3 
Rax = < 108 − 109 − Laminar natural convection 

να 
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Remarks 

In the undergraduate-level heat transfer, we have heat transfer correlations 
of external natural convection for a vertical plate, an inclined plate, a hor­
izontal plate, a vertical tube, and a horizontal tube as well as heat transfer 
correlations of internal natural convection for a horizontal tube, between two 
parallel plates, and inside a rectangular cavity with various aspect ratios. 
These correlations are important for many real-life engineering applications 
such as electronic components. 

In the intermediate-level heat transfer, this chapter focuses on how to 
analytically solve the external natural convection from a vertical plate at 



PROBLEMS 

9.1. Consider the system of boundary-layer equations 

∂ u ∂ v + = 0 
∂ x ∂ y 

∂ u ∂ v ∂2u 
u + v = R (T − T∞) + ν 

∂ x ∂ y ∂ y2 

∂ (T − T∞) ∂ (T − T∞) ∂2 (T − T∞) 
u + v = α 

∂ x ∂ y ∂ y2 

subject to the BCs 

y = 0 u = 0, v = 0, qw = constant 

y = ∞  u = 0 T = T∞ 

where the quantities R, ν, and α are constants. Determine the sim­
ilarity variables that will transform the equations to two ODEs. 
Derive the resultant ODEs. 

9.2. Consider a natural convection flow over a vertical heated plate at 
a uniform wall temperature T0. Let T∞ be the free-stream tem­
perature. The following correlation holds for the heat transfer 
coefficient hx at height x: 

hx x 1/4= 0.443 (Grx Pr)
k 

The Grashof number is 

Grx = gβx3(T(x) − T∞)/ν2 

where g is the acceleration due to gravity, β is the coefficient of 
thermal expansion, and ν is the kinematic viscosity. 
a. Draw a diagram of the system. 
b. Sketch a plot of hx along the plate length. 
c. Find the average heat transfer coefficient. 
d. Show that the average heat transfer coefficient between heights 

0 and L is given by Nu = 0.59(GrL Pr)1/4. 
9.3. Derive similarity momentum and energy equations shown in 

Equations 9.9 and 9.10. 
9.4. Derive Equations 9.16 and 9.17. 
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a uniform surface temperature by using the similarity method as well as 
the integral method. In advanced heat transfer, these methods can be modi­
fied and extended to solve mixed convection (combined natural and forced 
convection) problems for vertical, horizontal, and inclined plates or tubes, 
respectively, for various Prandtl number fluids. 
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9.5. Derive Equations 9.20 and 9.21. 
9.6. Derive Equations 9.22 and 9.23. 
9.7. Derive Equations 9.26 and 9.27. 
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Turbulent Flow Heat Transfer
 

10.1 Reynolds-Averaged Navier–Stokes (RANS) Equation 

When flow transitions into turbulence, both shear stress and heat transfer 
from the surface increase due to turbulent mixing. However, in a fully turbu­
lent region, both shear stress and heat transfer slightly decrease again due to 
turbulent boundary-layer thickness growing along the surface. In this section, 
we discuss external and internal flow and heat transfer problem in a fully tur­
bulence region. Figure 10.1 shows a sketch of a typical 2-D turbulent boundary 
layer for heated flow over a cooled flat surface and the fairly uniform velocity 
and temperature profiles across the boundary layer due to turbulent mixing. 
A laminar sublayer is developed at a very-near-wall region where turbulent 
mixing is damped due to viscous effect. This laminar sublayer thickness is 
the major resistance for velocity and temperature changing from the free-
stream value to the wall. In a fully turbulent region, velocity and temperature 
change with time at a given location inside the turbulent boundary layer, that 
is, u(x, y, t), v(x, y, t), T(x, y, t). These time- and location-dependent behaviors 
make turbulent flow and heat transfer much harder to analyze as compared 
to laminar boundary-layer flow and heat transfer problem. 

The following is to show how to obtain the Reynolds-averaged Navier– 
Stokes (RANS) equation for a fully turbulent boundary-layer flow [1–6]. The 
idea is to treat a fully turbulent flow as purely random motion superimposed 
on a steady (time-averaged) mean flow. This means that the time-dependent 
value (such as instantaneous velocity and temperature, etc.) equals the time-
averaged value (Reynolds-averaged value) plus the fluctuation value (due to 
random motion). For example, the steady (time-averaged) x-direction velocity 
over a period of time can be shown as 

t 
1

lim u(t) dtu = 
t→∞ t 

0 

and t 

u " = lim 
1 

t→∞ t 
u " (t) dt ∼= 0 

0 
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FIGURE 10.1 
Typical turbulent boundary-layer flow velocity and temperature profile. 

where t is a large enough time interval, time-averaged velocity u is not affected 
by time, and time-averaged fluctuation u is around zero. This can apply to 
the y-direction velocity as well as to temperature, pressure, and density. 

Figure 10.2 shows the sketches for time-dependent (instantaneous) and 
averaged velocity and temperature over a period of time at a given location 
(x, y) inside a turbulent boundary layer. The positive and negative fluctu­
ation values (up and down values) is about to cancel each other; averaged 
u velocity is much greater than averaged v velocity; however, the fluctuating 
u value is about the same as the fluctuating v value with out of phase (when 
fluctuating u is positive, fluctuating v is negative); and the fluctuating T value 
is also about the same as the fluctuating u value. This is under the condition or 
assumption of an isotropic turbulence case. In general, turbulent fluctuating 
quantities may not be necessarily the same value. 

The following shows the step-by-step method toward the RANS equation. 

Turbulent (instantaneous) velocityV 

v 

u Mean velocity 

Turbulent (instantaneous) temperature 

T 

T 

t 

FIGURE 10.2 
Instantaneous time-dependent velocity and temperature profiles inside a turbulent boundary 
layer. 
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Reynolds time-averaged method: 
Time dependent (instantaneous) = time averaged (Reynolds averaged) + 

fluctuation. 

" " u = u + u ≡ u + u 
" " v = v + v ≡ v + v 

T = T + T " ≡ T + T " 

P = P + P " ≡ P + P " 

" " ρ = ρ + ρ ≡ ρ + ρ 

Since 

t t+Δ �
u " dt = 0 

t 

t+Δt 

v " dt = 0 

t 

t+Δt 

P " dt = 0 

t 

t+Δt 

T " dt = 0 

t 

Therefore, 
v " ∼= T" = ρ " = P" = 0 

Substitute the above instantaneous quantities into the original conservation 
of mass, momentum, and energy equation, respectively, and then performing 
time average over a period of time. 

10.1.1 Continuity Equation 
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Therefore, 
∂ 

∂x 
(ρu) + 

∂ 

∂y 
(ρv) = 0 (10.2) 

and 
∂ 

∂x 

(
ρ " u "

) 
+ 

∂ 

∂y 

(
ρ " v "

) 
= 0 (10.3) 

10.1.2 Momentum Equation: RANS 

Therefore, 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 
ρu2 + ρuv + ρu "2 + ρu " v " + ρ " u "2 + ρ " u " v " + 2uρ " u " 

∂x ∂y ∂x ∂y ∂x ∂y ∂x 

( )∂ ∂P ∂2u ∂2u + uρ " v " + vρ " u " = −  + ρfx + ρ "f " + μ +x∂y ∂x ∂x2 ∂y2 

Rearranging, 

( ) ( )∂u ∂u ∂P ∂2u ∂2u 
ρu + ρ " u " + ρv + ρ " v " = − + ρfx + ρ "f " + μ +x∂x ∂y ∂x ∂x2 ∂y2 

(10.5) ⎫ ( ) ⎪ ⎪+ 
∂ 

ρu "2 + ρ " u "2 + uρ " u " ⎬ 
∂x ( ) 6 Reynolds Stress ∂ 

ρu " v " + ρ " u " v " + vρ " u " ⎪ ⎪+ ⎭ 
∂y 

For incompressible flow,
 
ρ " = 0
 
X-Momentum:
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Y-Momentum: 

∂v ∂v ∂v 1 ∂P μ ∂2v ∂2v ∂u " v " ∂v "2 
u + v + = − + + − − + fy

∂x ∂y ∂t ρ ∂y ρ ∂x2 ∂y2 ∂x ∂y ' -v ' ' -v ' 
Reynolds stress, Turbulent stress viscous forces 

(10.7) 
From boundary-layer approximation, Y-Momentum equation is not impor­

tant as compared with X-Momentum equation. 

10.1.3 Enthalpy/Energy Equation 

Therefore, 

( )∂T ∂T 
cp (ρu + ρ " u " ) + ρv + ρ " v "

∂x ∂y 

∂ ∂T ∂ ∂T ∂P ∂P = k + k + u + v + Φ + ρε (10.9)
∂x ∂x ∂y ∂y ∂x ∂y 

( ) 2
∂ ∂u + cp ρu "T" + ρ " u "T" + uρ "T" + + . . .  
∂x ∂x 

2 ( )∂ ∂u " + cp ρv "T" + ρ " v "T" + vρ "T" + + . . .  
∂y ∂x ' -v ' 

6 Reynolds Flux 

where Φ is the viscous dissipation and ε is the turbulent dissipation. 
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For incompressible flow, 
" ρ = 0 

Φ = 0 

ε = 0 

10.1.4 Concept of Eddy or Turbulent Diffusivity 

The following is a summary from the above RANS equation. The continuity 
equation is no useful. The Y-momentum equation is small as compared with 
the X-momentum equation. Therefore, only one of six Reynolds stresses and 
one of six Reynolds fluxes remain in the RANS equation for a 2-D steady, 
incompressible and constant property fully turbulent boundary-layer flow. 
In addition to a laminar-type shear stress due to viscous effect, turbulent 
stress due to random velocity fluctuation plays the major contribution to 
the total pressure loss over a turbulent boundary layer. Similarly, turbulent 
flux due to random velocity with temperature fluctuation dominates the total 
heat transfer over the turbulent boundary layer. The real problem is how 
to quantify the time-averaged Reynolds stress and Reynolds flux because 
they are varying with the location (x, y) inside the turbulent boundary. It 
is assumed that Reynolds stress is proportional to the velocity gradient and 
the proportional constant (actually is not a constant value) is called eddy 
or turbulent diffusivity for momentum (turbulent viscosity divided by fluid 
density); similarly, Reynolds flux is proportional to temperature gradient and 
the proportional constant (actually is not a constant value) is called eddy or 
turbulent diffusivity for heat. Therefore, the real turbulent flow problem is 
how to determine or how to model the turbulent diffusivity for momentum 
(turbulent viscosity) and turbulent diffusivity for heat because they depend 
on the location (x, y). It is important to note that molecular Prandtl number 
is a ratio of fluid kinematic viscosity to thermal diffusivity and is a fluid 
property depending on what kind of fluid is (e.g., air or water has different 
molecular Prandtl numbers); however, turbulent Prandtl number is a ratio of 
turbulent diffusivity for momentum to turbulent diffusivity for heat and is 
a flow structure behavior depending on how turbulent flow is (e.g., air and 
water have the same turbulent Prandtl number at the same turbulent flow 
condition). For a simple turbulent flow problem, turbulent Prandtl number is 
about one (say 0.9 for most of the models), which implies that one can solve 
for turbulent diffusivity for heat if turbulent diffusivity for momentum has 
been determined/modeled. Therefore, the first question is how to determine 
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or model turbulent diffusivity for momentum (turbulent viscosity divided 
by fluid density). Once turbulent viscosity is given, one almost solves the 
turbulent flow and heat transfer problem. 

∂u ∂u 1 ∂ ∂u 1 ∂ 
u + v = μ − ρu " v " = (τviscous + τturb.) (10.11) 

∂x ∂y ρ ∂y ∂y ρ ∂y 

∂T ∂T 1 ∂ ∂T 1 ∂ ( )"" "" u + v = k − ρCpv "T" = qmolecular + qturb.∂x ∂y ρCp ∂y ∂y ρCp ∂y 
(10.12) 

∂u ∂u 
τtotal = τm + τt = μ + ρεm (10.13)

∂y ∂y 

where −ρu " v " = ρεm(∂u/∂y), eddy diffusivity for momentum εm = υt = 
(μt/ρ), turbulence viscosity μt = ρεm 

∂T ∂T"" "" "" q = q + q = k + ρCpεH (10.14)total m t ∂y ∂y 

where −ρCpv "T" = ρCpεH (∂T/∂y), eddy diffusivity for heat εH = αt 

∂u 
τtotal = ρ (ν + εm) (10.15)

∂y 

∂T"" q = ρCp(α + εH ) (10.16)total ∂y 

Turbulence Prandtl number 

υt εmPrt = = ∼ 1 (10.17) 
αt εH 

So the unknowns are 

• Turbulent viscosity μt 

• Turbulent diffusivity υt = (μt/ρ) = εm 

• Turbulent diffusivity for heat εH = αt 

The following shows how to determine the turbulent diffusivity for 
momentum. 
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From force balance in a circular tube as shown in Figure 10.3, 

dP 1 ∂ = (rτ)
dx r ∂r 
dP d 

r = (rτ)
dx dr 

dP d 
r dr = (rτ) dr

dx dr 

Therefore, 
1 dP 

τ = r ∼ r
2 dx 

From BCs, 

r = 0, τ = 0, 

r = R, τ = τw 

One obtains 

r 
τ = τw (10.18)

R ( )r R − y y ∂u 
τ = τw = τw = 1 − τw = ρ(ν + νt)R R R ∂y 

( ) ( )∂u νt y τw 
ν 1 + = 1 − 
∂y ν R ρ 

y+ ( ) ( ) du+νt ∂u ν νt1 − = 1 + √ √ = 1 + 
R+ ν ∂y (τw/ρ) τw/ρ ν dy+ 

where 
∗ + u + yu 

R+ Ru∗ ∗ τw u = y = , = , u = 
u ∗ , v v ρ 

ΔP 
y 

r P1 P2 

R 

τw 

FIGURE 10.3 
Force balance in a circular tube. 
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Therefore, 

vt εm 1 − (y+/R+) = = − 1 (10.19)
v ν (du+/dy+) 

Similarly, the turbulent diffusivity for momentum for a boundary-layer flow 
can be obtained by replacing R+ by δ+ (where δ is turbulent boundary-layer 
thickness as shown in Figure 10.4) as 

vt εm 1 − (y+/δ+) = = − 1 (10.20)
v ν (du+/dy+) 

where 
∗ 

δ+ δu = 
v 

10.1.5 Reynolds Analogy for Turbulent Flow 

The following outlines the simple Reynolds analogy between momentum and 
heat transfer for a turbulent boundary-layer flow. 

τ ρ(ν + εm)(∂u/∂y) (∂u/∂y) = = (10.21)
q "" ρCp(α + εH)(∂T/∂y) Cp(∂T/∂y) 

If ν = α ⇒ Pr = (ν/α) ≈ 1, then εm ≈ εH ⇒ Prt = (εm/εH ) ≈ 1 
The turbulence Prandtl number is the flow structure. 
Assume a linear velocity and temperature profile, 

τw 1 Δu = (10.22)
q "" w Cp ΔT 

q "" w = 
τw 

Cp(Tw − T∞) U∞ 
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U∞,T∞ 

Turbulent 
flow Very small 

Fully
turbulent 

δ 

δL 

FIGURE 10.4 
Concept of 2-D turbulent boundary layer flow. 



where 

τw = 
1 
ρU2 · Cf∞2 

1 ρU∞x μCp
Nu = Cf · 

2 μ k 

Nu 1 1 = Cf ⇒ Cf = St (10.23)
Re · Pr 2 2 

1 
Cf = St · Pr2/3 (10.24)

2 

For 0.7 ≤ Pr ≤ 60 for air, water, and oil. 
where 

"" Nu (hx/k) qh wSt = = = = 
Re · Pr (ρU∞x/μ) · (μCp/k) ρCpU∞ ρCpU∞(Tw − T∞) 

(10.25) 
There are two kinds of problems: 

1. For given Cf to determine St or h; 
2. For given h or St, to determine Cf
 

For a turbulent pipe flow
 

0.046 
Cf = (10.26)

Re0.2 
D 

1 0.046 Nu = Pr2/3 

Re0.22 Re · PrD 

NuD = 
hD 

D Pr1/3 for cooling (10.27) = 0.023 Re0.8 
k 

NuD = 
hD = 0.023 ReD 

0.8Pr0.4 for heating (10.28)
k 

For a turbulent boundary-layer flow,
 

0.0592
 
Cf = (10.29)

Re0.2 
x 

1 0.0592 Nux = Pr2/3 
Re0.22 RexPrx 

Nux = 
hx = 0.0296 Re0.8Pr1/3 (10.30)xk 
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u+u =	 (10.31)
u ∗ 

∗ yu+y =	 (10.32)
ν 

τw (1/2)CfρU2 1 
u ∗ = = ∞ = U∞ Cf (10.33)

ρ ρ 2 

where u ∗ is the friction velocity and Cf is the predetermined friction factor by 
experiment. 

For example, 

= 0.046 Re−0.2, for turbulent flow in a tube Cf D 

Cf = 0.0592 Re−0.2, for the turbulent flow over a flat plate x 

and y+ is the dimensionless wall coordinate or the roughness Reynolds 
number. 
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10.2	 Prandtl Mixing Length Theory and Law of Wall 
for Velocity and Temperature Profiles 

In a laminar boundary-layer flow, universal velocity and temperature profiles 
can be obtained by solving conservation equations for mass, momentum, and 
energy using the similarity method. In the turbulent flow boundary layer, we 
hope to obtain universal velocity and temperature profiles too. The follow­
ing outlines step by step how Prandtl mixing length theory can be applied 
to achieve the law of the wall for velocity and temperature profiles (a kind 
of universal velocity and temperature profiles for turbulent boundary-layer 
flow). Unlike the laminar boundary, however, there is no complete analytical 
solution for the turbulent boundary layer due to turbulent random motion 
as indicated before. The law of wall for the velocity profile still requires a 
predetermined shear stress (or the friction factor from the experimental data) 
for a given turbulent flow problem. Therefore, we can only obtain a semithe­
oretical (or semiempirical) velocity profile for turbulent boundary-layer flow. 
Figure 10.5 shows the analytical universal velocity profile for a laminar 
boundary layer and the semiempirical law of the wall velocity profile for 
the turbulent boundary layer. 

The following is the details of Prandtl mixing length theory and the law 
of the wall for velocity and temperature profiles [3–6]. First, we define the 
dimensionless x-direction velocity and y-direction wall coordinate. 



uf '  
U∞ 

= 

1 

0 

Blausius 
Laminar flow 

5η = 
y 

Re xx 

u u+ 
u* = 

5 

5 
Data by Martinelli, Von
Karman for pipe or B. L. 

Turbulent wake 
(core flow) 

20 

30 500 1000 

Laminar buffer 
sublayer zone Turbulent core 

ln y + = 
yu* 
ν 

� � � 
� � 
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FIGURE 10.5 
Analytical universal velocity profile for laminar boundary layer and semiempirical law of wall 
velocity profile for turbulent boundary layer. 

Consider a laminar sublayer region, very close to the wall region where 
viscosity is dominated and turbulence is damped at the wall. 

du 
τ = ρν (10.34)

dy 

τw du � u = ν ≈ ν 
ρ dy yw 

τw τw du = ν 
ρ ρ dy 

du∗ ∗ u u = ν
dy 

Therefore, 
∗ u yu= 

u ∗ ν 



� 
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and 
+ +u = y (10.35) 

Now, consider a turbulent region, as sketched in Figure 10.6, away from 
the wall where turbulence is dominated. From Prandtl mixing length theory, 
assuming velocity fluctuation is proportional to velocity gradient and the 
mixing length is linearly increasing with distance from the wall, 

∂u ∂u 
u " ∼ = l (10.36)

∂y ∂y 

l ≈ y = κy (10.37) 

where κ = 0.4, a universal constant from the experimental data by Von 
Karman. 

And 
∂u 

v " = −u " = −κy (10.38)
∂y 

Since wall shear is dominated by turbulence and can be approximated as 
� �2

∂u" " 2 2τw ≈ −ρu v = ρκ y (10.39) 
∂y 

Therefore, from the above Prandtl mixing length assumption, 

τw ∂u = κy
ρ ∂y 

∂u∗ u = κy 
∂y 

du 1 = dy
u ∗ κy 

+ 1 1 +du = dy = dy
ky ky+ 
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FIGURE 10.6 
Concept of turbulence in 2-D turbulent boundary-layer flow. 
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Therefore, the law of wall velocity profile can be obtained as 

1+ + + Cu = ln y (10.40)
κ 

From the experimental data curve fitting for y+ ≥ 30, 
κ = 0.4 or 0.41 

+u = 2.5 ln y+ + 5.0 (10.41) 

Or 
+u = 2.44 ln y+ + 5.5 (10.42) 

Then, consider the buffer zone between the laminar sublayer and the 
turbulence region, 5 ≤ y+ ≤ 30, the velocity profile can be obtained as 

+u = 5 ln  y+ − 3.05 (10.43) 

It is important to mention that the above three-region velocity profile has 
been validated and can be applied for turbulent flow over a flat plate or in a 
tube with air, water, or oil as the working fluid. In addition, before showing 
the law of wall for temperature profile, it is interesting to point out, just like 
for the laminar boundary-layer case, the law of wall for temperature profile 
is identical to the law of wall for velocity profile if Prandtl number is unity 
(Pr = 1) by replacing the above dimensionless velocity with the appropri­
ate dimensionless temperature with the same dimensionless y-direction wall 
coordinate. The effect of Prandtl number on the law of wall for temperature 
profile will be discussed in Section 10.3. 

10.3 Turbulent Flow Heat Transfer 

Consider a fully turbulent flow in a circular tube with uniform wall heat flux 
"" (q = C) as the thermal BC [4–6], as sketched in Figure 10.7. From the energy w 

equation, 

∂T ∂T 1 ∂ ∂T ∂2T 
u + v = r(α + εH ) + α (10.44)

∂x ∂r r ∂r ∂r ∂x2 

y = R − r 

r = R − y 

dr = −dy 
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R 

ΔTb 

Δx 

q"w 

FIGURE 10.7 
Turbulent flow heat transfer in a circular tube. 

For a fully developed flow (v = 0) and assuming (∂2T/∂x2) « (1/r) 
(∂/∂r)[r(α + εH)(∂T/∂r)], the energy equation becomes 

∂T 1 ∂ ∂T 
u = (R − y)(α + εH)

∂x R − y (−∂y) (−∂y) 

Assume 

u = V
 

∂T ∂Tb
 = 
∂x ∂x 

From energy balance, 

"" q 2πR dx = ρCpVAc dTbw

"" "" dTb q 2πR 2q
V = w = w ≡ C

dx ρCpπR2 ρCpR 

And applying BCs, 

y = 0 T = Tw 
y = R ∂T = 0

∂y 

The energy equation becomes 

dTb ∂T 
V (R − y) d(−y) = d (R − y)(α + εH)

dx −∂y 

dTb 1 dT
V (R − y)2 = (R − y)(α + εH) + C

dx 2 −dy 



� 

� � 

� 

1 dTb dT C 
(R − y)V = (α + εH) +

2 dx −dy R − y 

where C = 0 at  R − y = 0, (dT/dy) = 0. 
Therefore, 

1 dTb y − R
dT = V dy

2 dx α + εH 

T y 
1 dTb

� 

0 

y − R 
α + εH 

dydT = V
2 dx 

Tw 

y y+ 

"" 1 − (y+/R+) 

(1/Pr) + (εH/ν) 

1 ∂Tb y − R q√ dy+wdy =T − Tw = V
2 ρCpα + εH∂x τw/ρ 

0 0 

Therefore, 

y+ 

1 − (y+/R+) 

(1/Pr) + (εH /ν) 

Tw − T
T+ ≡ 

(q "" /ρCpu ∗ )w
= +dy (10.45) 

0 

The above equation can be integrated if one assumes 

εH εm εm≈ or Prt = ≈ 1 
ν ν εH 

And from Equation 10.19, 

εm 1 − (y+/R+) = − 1 
υ (du+/dy+) 

For the laminar sublayer region, 

du+ + + + εm0 ≤ y+ ≤ 5, y « R+ , u = y , = 1, = 0
dy+ ν 

For the buffer zone, 

+ du+ 5
5 ≤ y+ ≤ 30, u = 5 ln  y+ − 3.05, = 

dy+ y+ 

For the turbulent region 

y+ ≥ 30, u+ = 2.5 ln y+ + 5.0, 
du+ 

dy+ = 
2.5 
y+ 
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The above energy integral equation 10.45 can be obtained in the following 
three-regions and the Prandtl number effect is shown in Figure 10.8. 

y+ 

1 − (y+/R+)
T+ = +dy

(1/Pr) + (εH /ν) 
0 

εH = 
εm 

ν ν 

For the region 0 ≤ y+ ≤ 5 with y+ ≈ 0 and (εm/ν) ≈ 0, 

y+ 

T+ = Pr +dy = Pr y+ 

0 

+ +u = y , T+ = Pr y+ (10.46) 

For the region 5 ≤ y+ ≤ 30 with u+ = 5 ln  y+ − 3.05 and (y+/R+) ≈ 0, 

εm εH y+ 

= = − 1 
ν ν 5 

y+ 

1 
(1/Pr) + (y+/5) − 1

T+ − T+ 
5 

+dy= 

5 

y+ 

1 1 y+ 

= 5 d − 1+ 
(1/Pr) + (y+/5) − 1 Pr 5 

5 

    

  

 
u += u
u* 20 

(T −T )w T + 

⎛ q" ⎞ 
= 

w 
⎝ ρCpu* ⎠ 5 

Pr 

If Pr=1, 
u+ ≅ T+ 

5 30 500 1000 
yu* +ln y = ν 
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FIGURE 10.8 
Law of wall temperature profile for turbulent boundary layer. 
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Therefore, 

1 y+ 1 5 
T+ − T5 

+ = 5 ln  + − 1 − 5 ln  + − 1 
Pr 5 Pr 5 

(1/Pr) + (y+/5) − 1 = 5 ln  
(1/Pr) 

Pr y+ 

= 5 ln  1 + − Pr (10.47) 
5 

For the region 30 ≤ y+ with u+ = 2.5 ln y+ + 5.0, (du+/dy+) = (2.5/y+) and 

εH εm 1 − (y+/R+) = = − 1 
ν ν (2.5/y+) 

− 1{[ }] 

Therefore, 
T+ − T+ = 2.5 ln y+ − 2.5 ln 30 (10.48)30 

The next question is how to determine heat transfer coefficient from the law 
of wall for temperature profile. This is shown in the following. 

One assumes the simple velocity and temperature profiles as 

( )1/7 ( )1/7u y r∼= = 1 − 
Umax R R ( )1/7 ( )1/7T − Tw y r∼= = 1 − 

Tc − Tw R R 

Therefore, 

∫ u2πr dr 
ub or V = = 0.82Umax∫ 2πr dr 

∫R 
0 (Tw − Tc)(1 − (r/R))1/7Umax(1 − (r/R))1/7 · r dr 

Tw − Tb = ∫R 
0 Umax(1 − (r/R))1/7 · r dr 

15∼= (Tw − Tc)18
 

= 0.833(Tw − Tc)
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where 

(Tw − Tc) = (Tw − T5) + (T5 − T30) + (T30 − Tc) 

"" R+q= 5Pr + 5 ln(5Pr + 1) + 2.5 ln 
ρCpu ∗ 30 

Therefore, 

"" "" q q
h = w = w 

Tw − Tb 0.833(q "" /ρCpu ∗ )[5Pr + 5 ln(5Pr + 1) + 2.5 ln(Ru∗ /v30)] 

The final heat transfer coefficient and the Nusselt number are expressed as 

√ 
hD Re · Pr Cf/2

NuD ≡ = [ ( √ )] (10.49)
k 0.833 5Pr + 5 ln(5Pr + 1) + 2.5 ln (ReD Cf/2)/60

where 

0.046 0.079
Cf = or Cf = 

Re0.2 Re0.25 
D D 

For given ReD, and Pr, the above prediction is fairly close to the following 
experimental correlation: 

D Pr0.3 
D Pr0.4NuD ≡ 

hD ≈ 0.023 Re0.8 or ≈ 0.023 Re0.8 
k 

Consider a fully turbulent boundary-layer flow over a flat plate with 
uniform wall temperature as the thermal BC (Tw = C) [4–6]. From energy 
equation, 

∂T ∂T ∂ ∂T 
u + v = (α + εH ) (10.50)

∂x ∂y ∂y ∂y 

For a fully turbulent boundary-layer flow (v = 0) and assume 

∂T ∂Tw∼ ≈ 0 
∂x ∂x 

One can obtain the law of wall for temperature profile as 

y+ 

1
T+ += dy

(1/Pr) + (εH /ν) 
0 
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Follow a similar procedure as in the previous case; one can obtain three-region 
temperature profile. 

"" where c = (−q /ρCp).w
Therefore, 

"" ∂T q− w(α + εH ) = 
∂y ρCp 

"" ∂T −q /ρCpw= 
∂y α + εH 

y"" ∗1 uq− w 
ρCp 

T − Tw = dy 
u ∗ υ((1/Pr) + (εH/υ)) 

0 

y"" 1 
((1/Pr) + (εH/υ)) 

dy+q
Tw − T = w 

ρCpu ∗ (10.51) 

0 

where εH � εm. 
And from Equation 10.20, 

εm 1 − (y+/δ+) = − 1 
υ (du+/dy+) 

Follow the same procedure as outlined before: 

+ + +0 < y < 5, u = y

T+ = Pr y+ (10.52) 
+5 < y+ ≤ 30, u = 5 ln  y+ − 3.05 

Pr y+ 

T+ − T+ = 5 ln  1 + − Pr (10.53)5 5 
+ +30 ≤ y , u = 2.5 ln y+ + 5.0
 

T+ − T+ = 2.5 ln y+ − 2.5 ln 30 (10.54)
30 
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Note that ΔT+ = Δu+ at y+ ≥ 30 

+T+ − T+ = u+ − u30 30 

T+ + + ∞ − T+ = u∞ − u30 30 

where 

+ + u∞ 1 
u = 14, u = = √30 ∞ u ∗ Cf/2 

Therefore, 

Tw − T∞ = (Tw − T5) + (T5 − T30) + (T30 − T∞)
 

""
 q 
∞ − T+w= [5Pr + 5 ln(5Pr + 1) + (T+ 

30)]ρCpu ∗
 

"" ""
 q q
h = w = w √ 

Tw − T∞ (q "" /ρCpu ∗ )[5Pr + 5 ln(5Pr + 1) + ((1/ Cf/2) − 14)]w

The final heat transfer coefficient and the Stantan number can be obtained as 

( )
where Nux = (hx/k), Rex = (ρU∞x/μ), Cf = 0.0592/Re1/5 .x 

For given Rex and Pr, the above predict Nux value is very close to the 
following experimental correlation: 

Nux = 0.0296Re0.8Pr1/3 
x 
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Remarks 

In undergraduate heat transfer, students are expected to know how to 
calculate heat transfer coefficients (Nusselt numbers) for turbulent flows over 
a flat plate at uniform surface temperature and inside a circular tube at uni­
form surface heat flux, by using heat transfer correlations from experiments, 
that is, Nusselt numbers relate to Reynolds numbers and Prandtl numbers. 
There are many engineering applications involving turbulent flow conditions. 
These turbulent flow heat transfer correlations are very useful for basic heat 
transfer calculations such as for heat exchangers design. 

In intermediate-level heat transfer, this chapter focuses on how to derive 
RANS equation; introduce the concept of turbulent viscosity and turbulent 
Prandtl number; Reynolds analogy; Prandtl mixing length theory; law of 
wall for velocity and temperature profiles; and turbulent flow heat transfer 
coefficients derived from law of wall velocity and temperature profiles and 
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∂u ∂u ∂ ∂u 

u + v = (ν + εM)
∂x ∂y ∂y ∂y 

∂T ∂T ∂ ν εM ∂T 
u + v = + 

∂x ∂y ∂y Pr Prt ∂y 

+ +a.	 Define dimensionless parameters, u , T+, and y , respec­
tively, for universal velocity and temperature profiles for 
turbulent flow and heat transfer problems. 

b. Based on the Prandtl’s mixing length theory, derive and plot 
+(u versus y+) the following universal velocity profile (make 

necessary assumptions): 
+u = y+ for a viscous sub-layer region 

+u = 1/κ�ny+ + C for a turbulent layer (the law of the wall 
region) 

c.	 Based on the heat and momentum transfer analogy, derive 
and plot (T+ versus y+) for various Pr the universal temper­

+ature profile (i.e., temperature law of the wall, T+ (y , Pr)) 
for a turbulent boundary layer on a flat plate. Make necessary 
assumptions. 

10.2. Consider a fully developed turbulent pipe flow with a uniform 
"" q	 . If a two-layer universal velocity profiles can be assumed as w

+	 + +u	 = y for 0 ≤ y < 13.6 

+ + +u	 = 5.0 + 2.44�ny for 13.6 ≤ y

Derive the corresponding two-layer university temperature 
profiles. 

Also, predict the local u and T at y = 0.05 cm from the pipe wall 
∗under the following conditions: friction velocity u = 10 m/s ∼= 
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their comparisons with the heat transfer correlations from experiments. 
This classic turbulent flow theory is important to provide students with 
fundamental background in order to handle advanced turbulence models. 

In advanced turbulent heat transfer, students will learn many more top­
ics such as flow transition and transitional flow heat transfer; unsteady high 
turbulence flow and heat transfer; surface roughness effect and heat trans­
fer enhancement; rotating flow, and heat transfer; high-speed flow and heat 
transfer; and advanced turbulence models including the two-equation model 
and the Reynolds stress model. 

PROBLEMS 

10.1. Consider	 a steady low-speed, constant-property, fully turbu­
lent boundary-layer flow over a flat surface at constant wall 
temperature. Based on the Reynolds time-averaged concept, 
the following momentum and energy equations are listed for 
reference: 
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"" = 3◦C ∼


temperature Tw=100◦C, air flow Prandtl Pr = 0.7
 

√ 
τw/ρ, friction temperature T∗ = qw/(ρcpu ∗ ), pipe wall 

10.3. Consider the Von Kaŕman–Martinelli heat–momentum analogy 
for a turbulent pipe flow: 
a.	 If a two-layer universal velocity profile will be employed, 

that is, 

+ + +ū = y for 0 < y < 10 

+	 +ū	 = 5.0 + 2.5 � n y+ for 10 < y

For a constant wall heat flux, determine the universal tem­
perature profiles at the corresponding two-layer region. Then 
determine the NuD where NuD = function (ReD, Pr, f ). 

b. If ReD = 104, Pr = 1, calculate NuD from (a) and then com­
pare it with correlation NuD = 0.023 Re0.8 · Pr0.4. If velocity D 
increases, the laminar sublayer thickness will be increased or 
decreased? Why? How about NuD? 

10.4. Consider a fully developed turbulent flow between two paral­
lel plates with a gap of b and a uniform wall heat flux (q/A)w. 
Using the Kaŕman–Martinelli analogy, determine the turbulent 
heat transfer coefficient. The result should be in a format such as 

h2b 
Nu = = function of (Re, Pr, f )

k 

If Re = (V2b/υ) = 2 × 103, 2  × 104, 2  × 105, and Pr = 0.7, com­
pare your result of Nu to those of semiempirical correlations, such 
that Nu = (h2b/k) = 0.023Re0.8Pr0.4 

10.5. Consider the turbulent flow heat transfer. 
a.	 Derive the following momentum and energy equations 

for a turbulent boundary-layer flow, a 2-D flat plate, 
incompressible, constant properties: 

∂u ∂u ∂ ∂u 
u + v = (ν + εM)

∂x ∂y ∂y ∂y 

∂T ∂T ∂ ν εM ∂T 
u + v = + 

∂x ∂y ∂y Pr Prt ∂y 

b. Derive the following momentum and energy equations for a 
fully developed turbulent flow in a circular tube, incompress­
ible, constant properties: 

1 d du 1 dP 
r(v + εM) = 

r dr dr ρ dx 

∂T 1 ∂ ∂T 
u = r(α + εH)

∂x r ∂r ∂r 

10.6. Consider a fully developed turbulent pipe flow in a circular tube 
with a 5.0 cm I-D, constant properties. 
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a.	 Draw the velocity distribution from Martinelli Universal 
Velocity Profile (i.e., law of the wall) for air flow at 1 atm, 25◦C, 
and ReD = 30, 000. 

b. Calculate the laminar sublayer thickness. 
10.7. Consider the turbulent boundary-layer flow heat transfer: Air at 

300 K, 1 atm, flows at 12 m/s along a flat plate maintained at 600 K. 
Plot the temperature profile T(y) across the boundary layer for the 
following two cases: 
a.	 At a location x = 0.1 m for a laminar boundary layer. 
b. At a location x = 1.0 m if the transition Reynolds number is 

105.
 
Plot both profiles on the same graph to show significant
 
differences.
 

∗	 "" c. Determine Cfx, τs, u , Stx, Nux, hx, and q for case (b). s 
10.8. Consider a 2-D incompressible turbulent flow in a pipe. 

a.	 Specialize (simplify) the given continuity and Navier–Stokes 
equations for a fully developed turbulent flow in a pipe. 
Write appropriate BCs to solve the flow equations for a fully 
developed turbulent flow. Do not attempt to solve the problem. 

b. The velocity profile (u(r)) for a fully developed turbulent flow 
in a pipe is given by 

�1/7u R − r = 
umax R 

where R is the pipe radius, r is the radial distance measured 
from the pipe axis, and Umax is the maximum velocity. Calcu­
late mean or the bulk velocity (Um) for a fully developed flow 
in terms of Umax. 

c.	 Obtain an expression for the skin friction coefficient (Fanning 
friction factor) for a fully developed turbulent flow in terms 
of ReD, where ReD is the Reynolds number based on the pipe 
hydraulic diameter. 

10.9. Consider	 a steady low-speed, constant-property, fully turbu­
lent boundary-layer flow over a flat surface at constant wall 
temperature. 
a.	 Based on the Reynolds time-averaged concept, derive the fol­

lowing momentum and energy equations (make necessary 
assumptions): 

∂u ∂u ∂ ∂u 
u + v = (ν + εM)

∂x ∂y ∂y ∂y 

∂T ∂T ∂ ν εM ∂T 
u + v = + 

∂x ∂y ∂y Pr Prt ∂y 

+ +b. Define dimensionless parameters, u , T+, and y , respec­
tively, for universal velocity and temperature profiles for tur­
bulent flow and heat transfer problems. Based on the Prandtl’s 
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mixing length theory, the following universal velocity profile 
has been derived: 
+u = y+ for the viscous sublayer region. 
+u = (1/κ) ln y+ + C for the turbulent layer (the law of the 

wall region). 
Now, based on the heat and momentum transfer analogy, 

derive and plot (T+ versus y+ for various Pr) the universal 
+temperature profile (i.e., temperature law of the wall, T+(y , 

Pr)] for a turbulent boundary layer on a flat plate? Make the 
necessary assumptions. 

10.10. Consider a steady low-speed, constant-property, fully turbulent 
boundary-layer flow over a flat surface at constant wall tempera­
ture. Based on the Reynolds time-averaged concept, the following 
momentum and energy equations can be derived: 

∂u ∂u ∂ ∂u 
u + v = (ν + εM)

∂x ∂y ∂y ∂y 

∂T ∂T ∂ ν εM ∂T 
u + v = + 

∂x ∂y ∂y Pr Prt ∂y 

a.	 Explain why the turbulent viscosity and turbulent Prandtl 
number should be included in the above equations. Explain 
the physical meaning and the importance of the turbulent 
viscosity and turbulent Prandtl number, respectively. 

b. Based on the Prandtl’s mixing length theory, the following 
universal velocity profile has been obtained: 

+u	 = y+ for the viscous sublayer region. 
u+=(1/κ) ln y+ + C for the turbulent layer (the law of the 

wall region). 
Based on the heat and momentum transfer analogy, derive and 
plot (T+ versus y+ for various Pr) the universal temperature 
profile for a turbulent boundary layer on a flat plate. Make 
necessary assumptions. 
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Fundamental Radiation
 

11.1 Thermal Radiation Intensity and Emissive Power 

Any surface can emit energy as long as its surface temperature is greater 
than absolute zero. Thermal radiation can refer to (1) surface radiation and 
(2) gas or volume radiation. Surface radiation is that radiation which comes 
from an opaque material surface (such as a solid or liquid surface,1 μm thick 
from the surface). Gas radiation is that radiation which comes from a volume 
of gas (such as, CO2, H2O, CO, or NH3). But gas radiation does not occur 
from a volume of air (air cannot emit or absorb radiation energy). Modern 
theory describes the nature of radiation in terms of electromagnetic waves 
that travel at the speed of light. The various forms of radiation differ only 
in terms of wavelength. In this chapter, the discussion will be confined to 
thermal radiation [1–4], as shown in Figure 11.1. Thermal radiation primarily 
depends on wavelength (spectral distribution, 0.1–100 μm, from visible light 
to infrared (IR)), direction (directional distribution, θ, φ), and material tem­
perature (absolute temperature, ◦K or  ◦R) and material radiation properties. 
Figure 11.2 shows the nature of spectral and directional distributions. 

What follows try to establish the relation between surface radiation flux 
(i.e., radiation rate per unit surface area, or called emissive power) and radi­
ation intensity. Here we assume that radiation intensity from a surface is 
given. The later section will discuss how to obtain the radiation intensity value 
from Planck. Figure 11.3 shows the conceptual view of a hemispheric radi­
ation from a surface (consider radiation from the upper surface only) [4]. 
Monochromatic directional radiation intensity (function of wavelength and 
temperature in all directions) is defined as differential radiation rate per unit 
surface area and unit solid angle, 

dq 
Iλ(θ, ϕ, λ, T) = (11.1) 

dAn dω 

where dω is the unit solid angle, 

dAn rdθ · r sin θ · dϕ
dω = = = sin θ dθ dϕ 

r2 r2 
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FIGURE 11.1 
Conceptual view of hemispheric radiation. 

and 
dAn = dA cos θ 

Therefore, differential surface radiation flux (or differential emissive power) 
becomes 

dq ≡ dEλ = Iλ(θ, ϕ, λ, T) sin θ cos θ dθ dϕ
dA 

After integration in all directions, the monochromatic hemispherical emis­
sive power is 

2π π/2 

Eλ = Iλ(θ, ϕ, λ, T) sin θ cos θ dθ dϕ (11.2) 
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FIGURE 11.2 
(a) Spectral radiation varies with wavelength. (b) Directional distribution. 



  

(a) (b) 

(c) 

dAn = r2 sin θ dθ dφ 

r 

n 

θ 

dθ 

dφ 

r sin θ 
r dθ 

r sin θ dφ 

r 

dα = dl/r 

r 

dl 

dω = dAn/r2 

dA dAn 

� 

� 
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The total hemispherical emissive power (integration over wavelength) is 

∞ 

E(T) = Eλ(λ, T) dλ	 (11.3) 

0 

For the isotropic surface (independent of circumferential direction angle), 
for most of the surfaces, 

π/2 

Eλ = 2π Iλ(θ, λ, T) sin θ cos θ dθ 

0 

For the isotropic and black surface (independent of vertical direction angle), 

π/2 

Eb,λ = 2πIb,λ(λ, T) sin θ cos θ dθ = πIb,λ (11.4) 

0 
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FIGURE 11.3 
(a) Conceptual view of hemispheric radiation from a differential element area. (b) Definition of 
plane angle. (c) Definition of solid angle. 

11.2	 Surface Radiation Properties for Blackbody 
and Real-Surface Radiation 

Total emissive power for black surface (ideal surface) 

Eb = πIb = σT4 (11.5) 



Total emissive power for real surface 

E = πI = εσT4 (11.6) 

Monochromatic emissivity, a surface radiation property, is defined as 
monochromatic emissive power from a real surface to an ideal surface. 

E(θ, ϕ, λ, T)
ελ,θ(θ, ϕ, λ, T) = (11.7) 

Eb(λ, T) 

Therefore, the total hemispherical emissivity can be obtained as a ratio 
of total emissive power from a real surface to an ideal surface. The total 
emissivity varies from 0 to 1. 

E(T)
ε(T) = = 0 ∼ 1 (11.8) 

Eb(T) 

 

    

θελ Non conductor 

Gray surface ε ≅ ελ = const Diffuse surface ε ≅ εθ = const 
0 45° 90° 
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0.1 

0.9ε 

λ θ 
ε 

ε 
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Gray surface is defined as if surface emissivity is independent of wavelength 
as sketched in Figure 11.4. Diffuse surface is defined as if surface emissivity is 
independent of direction as sketched in Figure 11.4. In general, the experimen­
tal data show that normal emissivity of nonconductive materials (about 0.9, 
such as nonmetals) is much higher than conductive materials (about 0.1, such 
as metals). Emissivity is the most important radiation property and slightly 
depends on temperature. Emissivity is measured from experiments and is 
available for various materials from any heat transfer textbook. 

In addition to emission, a surface can reflect, absorb, or transmit any 
oncoming radiation energy (irradiation). Figure 11.5 sketches an energy bal­
ance between irradiation (radiation coming to the surface) and reflection, 
absorption, and transmission. Absorptivity, reflectivity, and transmissivity 
are defined as the portions of irradiation that are absorbed, reflected, and 
transmitted, respectively. For many engineering gray and diffuse materials, 
we can assume that surface absorptivity is the same as surface emissivity 
(ελ,θ = αλ,θ, ελ = αλ, then ε = α, but in general ε = α), and transmissivity is 

ε

FIGURE 11.4 
Definition of gray surface and diffuse surface. 
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G, irradiation ρG irradiation 

αG absorption 

τG transmission 

FIGURE 11.5 
Radiation energy balance on a surface. 

about zero (except window glasses); therefore, reflectivity can be found from 
emissivity too. 

Absorptivity α = Ga/G 
Reflectivity ρ = Gρ/G 
Transmissivity τ = Gτ/G 
From radiation energy balance, α + ρ + τ = 1 
If τ = 0, and assume α = ε, then ρ = 1 − α ≈ 1 − ε 

Blackbody radiation is the maximum radiation from an ideal surface. 
Blackbody is a diffuse surface and can emit the maximum radiation and can 
absorb the maximum radiation (i.e., α = 1and ε = 1). Therefore, blackbody 
radiation intensity is not a function of direction (= (θ, ϕ)), but a function of 
wavelength and temperature (= (λ, T)). Planck obtained blackbody radiation 
intensity from quantum theory as 

2hC0
2 

Iλ,b(λ, T) = 
λ5 

[ ] (11.9) 
exp (hC0/λkT) − 1

where h is the Planck’s constant = 6.626 × 10−34J s,  C0 is the speed of light in 
vacuum = 2.998 × 108m/s, k is the Boltzmann’s constant = 1.381 × 10−23J/K, 
and T is the absolute temperature, ◦K or  ◦R. Or, it can be shown as follows: 

C1λ
−5 

Eλ,b = πIλ,b = 
e(C2/λT) − 1 

2where C1 = 2πhC2 = 3.742 × 108W μm4/m0 

C2 = hC0/k = 1.4389 × 104 μm K  

Therefore, Planck emissive power for the black surface can be shown as 

2hC2 C1Eλ,b(λ, T) = πIλ,b(λ, T) = π 0 = 
λ5[exp (hC0/λkT) − 1] λ5[exp(C2/λT) − 1] 
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Performing integration over the entire wavelength, one obtains Stefan– 
Boltzmann law for blackbody radiation as 

∞ ∞ 

Eb(T) = Eλ,b(λ, T) dλ = 2πIλ(λ, T) dλ = σT4 W/m (11.10) 

0 0 

with the Stefan–Boltzmann constant 

σ = f (C1, C2) = 5.67 × 10−8W/m2 K4 

However, for a real surface the emissive power is lower than Planck’s black­
body radiation (because the emissivity for the real surface is less than unity). 
Therefore, the emissive power for the real surface is 

E = εσT4 (11.11) 

Figure 11.6 shows emissive power versus wavelength over a wide range of 
temperatures [1–4]. In general, emissive power increases with absolute tem­
perature; emissive power for the black surface (solid lines) is greater than that 
for the real gray surface (lower than the solid lines, depending on emissivity) 
for a given temperature. 
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FIGURE 11.6 
Spectral blackbody emissive power. 
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FIGURE 11.7 
Radiation between hot coal bed and cold brick wall with nongray. 

From Figure 11.6 we see that the blackbody emissive power distribution has 
a maximum and that the corresponding wavelength λmax depends on tem­
perature. Taking a derivation on Equation 11.9 with respect to λ and setting 
the result as equal to zero, we obtain Wien’s displacement law as 

λmaxT = C3 = 2898 μm K (11.12) 

The focus of Wien’s displacement law is also shown in Figure 11.5. According 
to this result, the maximum emissive power is displaced to shorter wave­
lengths with increasing temperature. For example, the maximum emission 
is in the middle of the visible spectrum (λmax ≈ 0.5 μm) for solar radiation 
at 5800 K; the peak emission occurs at λmax = 1 μm for a tungsten filament 
lamp operating at 2900 K emitting white light, although most of the emission 
remains in the IR region. 

There are many engineering surfaces with diffuse but not gray behaviors. In 
this case, surface emissivity is a function of wavelength and is not the same as 
absorptivity. Figure 11.7 shows the radiation problem between a hot coal bed 
and a cold brick wall with an emissivity function of wavelength [4]. To deter­
mine emissive power from the cold brick wall, one needs to determine the 
average emissivity from the brick wall first. The following outlines a method 
to determine average emissivity and absorptivity. 

The following shows how to determine ε(Ts), E(Ts), and α(Ts). Average 
emissivity can be determined by adding three regions of wavelength shown 
in Figure 11.7. Then treat each region as a product of constant emissivity and 
fraction of blackbody emissive power to total blackbody emissive power as 
shown in Figure 11.8. The fraction value is a function of wavelength and 
temperature, and can be obtained from integration in each region (e.g., see 
Figure 11.9 or Table 11.1) [4]. 

�∞ 
ε(λ)Eb dλ 

ε(Ts) = 0 (11.13) 
Eb �λ1 

�λ2 
�λ3Eb dλ Eb dλ Eb dλ

0 λ1 λ2= ε1 + ε2 + ε1 (11.14) 
Eb Eb Eb 



 

T 

0 
∫Eλ,b dλ 

E(λ,b)
(λT ) 

λ 

0 λ λ1 λ2 λ3 

�

�
� � 

� �

= ε1F0−λ1 + ε2[F0−λ2 − F0−λ1 ] + ε3[1 − F0−λ2 ] (11.15) 

= 0.1 × 0 + 0.5 × 0.634 + 0.8 × (1 − 0.634) 

where 

λ 

0 
∞ 

Eλ,b dλ λTλ 

0 Eλ,b dλ Eλ,b d(λT)
F0−λ = = f (λT) (11.16) = = 

σT4 σT5 

0 

λ2 

Eλ,b dλ 0 

λ1 

σT4 

From Table 11.1 or from Figure 11.9, F0−λ is a function of λT(μm K), with 
T = Ts = 500 K, emission from the brick wall. 

Eλ,b dλ − Eλ,b dλ0 0Fλ1−λ2 = F0−λ2 − F0−λ1 (11.17) =

   

1.0 

0.8 

0.6
 
F(0→λ)
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FIGURE 11.8 
Concept of fraction method from a blackbody. 

FIGURE 11.9 
Fraction of the total blackbody emission in the spectral band from 0 to λ as a function of λT. 
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TABLE 11.1 

Blackbody Radiation Functions 

λT(μm · K) F(0→λ) 

200 
400 
600 
800 

1000 
1200 
1400 
1600 
1800 

2000 
2200 
2400 
2600 
2800 
2898 

3000 
3200 
3400 
3600 
3800 
4000 

4200 
4400 
4600 
4800 
5000 

5200 
5400 
5600 
5800 
6000 

6200 
6400 
6600 
6800 
7000 
7200 
7400 

0.000000 
0.000000 
0.000000 
0.000016 

0.000321 
0.002134 
0.007790 
0.019718 
0.039341 

0.066728 
0.100888 
0.140256 
0.183120 
0.227897 
0.250108 

0.273232 
0.318102 
0.361735 
0.403607 
0.443382 
0.480877 

0.516014 
0.548796 
0.579280 
0.607559 
0.633747 

0.658970 
0.680360 
0.701046 
0.720158 
0.737818 

0.754140 
0.769234 
0.783199 
0.796129 
0.808109 
0.819217 
0.829527 

continued 
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TABLE 11.1 (continued) 

Blackbody Radiation Functions 

λT(μm · K) F(0→λ) 

7600 
7800 
8000 

8500 
9000 
9500 
10,000 
10,500 

11,000 
11,500 
12,000 
13,000 
14,000 

15,000 
16,000 
18,000 
20,000 
25,000 

30,000 
40,000 
50,000 
75,000 
100,000 

0.839102 
0.848005 
0.856288 

0.874608 
0.890029 
0.903085 
0.914199 
0.923710 

0.931890 
0.939959 
0.945098 
0.955139 
0.962898 

0.969981 
0.973814 
0.980860 
0.985602 
0.992215 

0.995340 
0.997967 
0.998953 
0.999713 
0.999905 

Source:	 Data from F. Incropera and D. Dewritt, 
Fundamentals of Heat and Mass Transfer, 
Fifth Edition, John Wiley & Sons, New 
York, NY, 2002. 

The radiation constants used to generate these 
blackbody functions are 

4/m2 C1 = 3.7420 × 108μm
C2 = 1.4388 × 104μm · K 

2 K4 σ = 5.670 × 10−8W/m · 

Therefore, the average emissivity can be calculated as 

ε(Ts) = 0.61 

and the total emissive power is 

E 2(T 4 
s) = ε(Ts)σT = 2161 W/s m
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The brick wall is not a gray surface, and hence α(Ts) = ε(Ts). But it is a diffuse 
surface, and hence α(λ) = ε(λ). The irradiation from the black coal bed (at 
temperature Tc = 2000 K) to the brick wall is G(λ) ∝ Eb. The following shows 
a similar way to determine brick wall absorptivity. 

�∞ �∞ 
0 α(λ)G(λ) dλ 0 ε(λ)Eb dλ 

α(Ts) ≡ �∞ = (11.18) 
0 G(λ) dλ Eb 

= ε1F0−λ1 + ε2[F0−λ2 − F0−λ1 ] + ε3[1 − F0−λ2 ] (11.19) 

= 0.1 × 0.275 + 0.5 × (0.986 − 0.273) + 0.8 × (1 − 0.986) 

where the fraction value can be found from Table 11.1, or from Figure 11.9, 
with T = Tc = 2000 K, irradiation from the black coal bed. 

Therefore, average absorptivity can be calculated as 

α(Ts) = 0.395 < 0.61 for ε(Ts) 

11.3 Solar and Atmospheric Radiation 

Solar radiation is essential to all life on earth. Through the thermal and 
photovoltaic process, solar radiation is important for the design of solar collec­
tors, air-conditioning systems for buildings and vehicles, temperature control 
systems for spacecrafts, and photocells for electricity. The sun is approxi­
mate as a spherical radiation source with a diameter of 1.39 × 109 m and is 
located around 1.50 × 1011 m from the earth. The average solar flux (solar 
constant) incident on the outer edge of the Earth’s atmosphere is about 
1353 W/m2. Assuming a blackbody radiation, the sun’s temperature can be 
estimated at about 5800 K. Figure 11.10 shows the spectral distribution of 
solar radiation [2]. The radiation is concentrated in the low-wavelength region 
(0.2 ≤ λ ≤ 3 μm) with the peak value of 0.50 μm. 

The magnitude spectral and directional distributions of solar flux change 
significantly as solar radiation passes through the Earth’s atmosphere. The 
change is due to absorption and scattering of the radiation by the atmo­
sphere particles and gases. The effect of absorption by the atmosphere gases 
O3 (ozone), H2O vapor, O2, and CO2 is shown by the lower curve in Figure 
11.10. Absorption by ozone is strong in the UV region, providing considerable 
attenuation below 0.3–0.4 μm. In the visible light region (0.4–0.7 μm), absorp­
tion is contributed by O3 and O2; in the IR region (0.7–3.0 μm), absorption is 
due to H2O vapor and CO2. The effect of scattering by particles and gases is 
that about half goes back to atmosphere and half comes to the earth surface. 
Therefore, the average solar flux incident on the Earth’s surface is reduced 
to about 300–800 W/m2, depending on the time of the day, the season, the 
latitude, and the weather conditions. 
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FIGURE 11.10 
Solar spectra outside the Earth’s atmosphere and on the ground. 

It is known that H2O vapor and CO2 gas in the atmosphere not only absorb 
solar radiation but also absorb radiation from the Earth’s surface at around 
300 K that give radiation of wavelengths from 10 to 20 μm with an emissivity 
about 1.0. In addition, H2O vapor and CO2 gas in the atmosphere (sky) can 
also emit energy at wavelengths of 5–10 μm at the effective sky temperature 
around 250–270 K (assume an emissivity of about 0.8–1.0). 

Figure 11.11 shows a typical setup for a solar collector. A special glass is 
used as a cover for the collector and a specialized coating is used on the 
collector plate and tubes where the solar energy is collected to maximize the 
performance of the collector. 

FIGURE 11.11 
A typical setup for a solar collector. 
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FIGURE 11.12 
A typical design for a house with the skylight. 

Figure 11.12 shows a typical design for a house with the skylight. The thin 
glass of the skylight of a house has a specific spectral emissivity or absorptivity 
distribution. For a given solar flux, atmospheric emission flux, interior surface 
emission flux, inside and outside house convection conditions, the thin glass 
temperature or the inside house temperature can be predicted. 

Examples 

11.1. A simple solar collector plate without the cover glass has a selective absorber 
surface of high absorptivity α1 (for λ < 1 μm) and low absorptivity α2 (for 
λ > 1 μm). Assume that solar irradiation flux = Gs, the effective sky tem­
perature =Tsky, the absorber surface temperature =Ts, and the ambient air 

"" temperature =T∞; determine the useful heat removal flux (quseful) from the 
collector under these conditions. What is the correspondent efficiency (η) 

of the collector? 

SOLUTION 

Performing an energy balance on the absorber plate per unit surface area, 
we obtain 

"" "" q − Euseful = αsGs + αskyGsky − qconv 

"" qusefulη = 
Gs 

where αs = α1 

αsky = α2 

= σT 4Gsky sky 

E = εσT 4 
s 
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ε ∼= α2 

"" q = h(Ts − T∞)conv 

11.2. A thin glass is used on the roof of a greenhouse. The glass is totally trans­
parent for λ < 1 μm, and opaque with an absorptivity α = 1 for λ > 1 μm. 
Assume that solar flux = Gs, atmospheric emission flux = Gatm, thin glass 
temperature = Tg, and interior surface emission flux=Gi , where Gatm and Gi 
are concentrated in the far IR region (λ > 10 μm), and determine the tem­
perature of the greenhouse ambient air (i.e., inside room air temperature, 
T∞,i). 

SOLUTION 

Performing an energy balance on the thin glass plate per unit surface 
area, and considering two convection processes (inside and outside green­
house), two emissions (inside and outside the glass plate), and three 
absorbed irradiations (from solar, atmospheric, interior surface), we obtain 
T∞,i from 

αsGs + αatmGatm + ho(T∞,o − Tg) + hi (T∞,i − Tg) + αiGi − 2εσTg
4 = 0 

where αs = solar absorptivity for absorption of Gλ,s ∼ Eλ,b(λ, 5800 K) 

= α1F0−1 μm + α2[1 − F0−1 μm 

= 0 × 0.72 + 1.0[1 − 0.72] 
= 0.28(Note that from Table 11.1, λT = 1 μm × 5800 K, F0−1 μm = 0.72) 

αatm = absorptivity for λ > 10 μm = 1 
αi = absorptivity for λ > 10 μm = 1 
ε = αλ for λ » 1 μm, emissivity of the glass for long wavelength 

emission = 1 
ho = convection heat transfer coefficient of the outside roof 
hi = convection heat transfer coefficient of the inside room 

Remarks 

This chapter covers the same topics as in the undergraduate-level heat trans­
fer. These include spectrum thermal radiation intensity and emissive power 
for a blackbody as well as a real surface at elevated temperatures; surface radi­
ation properties such as spectral emissivity and absorptivity for real-surface 
radiation; how to obtain the total emissivity or absorptivity from the fraction 
method; how to perform energy balance from a flat surface including radi­
ation and convection; and solar and atmospheric radiation problems. This 
chapter provides fundamental thermal radiation and surface properties that 
are useful for many engineering applications such as surface radiators, space 
vehicles, and solar collectors. 



235 Fundamental Radiation 

PROBLEMS 

11.1. A diffuse surface having the following spectral distributions 
(ελ = 0.3 for 0 ≤ λ ≤ 4 μm, ελ = 0.7 for 4 μm ≤ λ) is maintained 
at 500 K when situated in a large furnace enclosure whose walls 
are maintained at 1500 K. Neglecting convection effects, 
a.	 Determine the surface’s total hemispherical emissivity (ε) and 

absorptivity (α). 
b. What is the net heat flux to the surface for the prescribed 

conditions?
 
Given: σ = 5.67 × 10−8(W/m2K4)
 

11.2. An opaque, gray surface at 27◦C is exposed to an irradiation of 
1000 W/m2, and 800 W/m2 is reflected. Air at 17◦C flows over the 
surface, and the heat transfer convection coefficient is 15 W/m2 K. 
Determine the net heat flux from the surface. 

11.3. A diffuse surface having the flowing spectral characteristics (ελ = 
0.4 for 0 ≤ λ ≤ 3 μm, ελ = 0.8 for 3 μm ≤ λ) is maintained at 
500 K when situated in a large furnace enclosure whose walls are 
maintained at 1500 K: 
a.	 Sketch the spectral distribution of the surface emissive power 

Eλ and the emissive power Eλ,b that the surface would have 
if it were a blackbody. 

b. Neglecting convection effects, what is the net heat flux to the 
surface for the prescribed conditions? 

c.	 Plot the net heat flux as a function of the surface temperature 
for 500 ≤ T ≤ 1000 K. On the same coordinates, plot the heat 
flux for a diffuse, gray surface with total emissivities of 0.4 and 
0.8. 

d. For the prescribed spectral distribution of	 ελ, how do the 
total emissivity and absorptivity of the surface vary with 
temperature in the range 500 ≤ T ≤ 1000 K? 

11.4. The spectral, hemispherical emissivity distributions for two dif­
fuse panels to be used in a spacecraft are as shown. 

For panel A: ελ = 0.5 for 0 ≤ λ ≤ 3 μm, ελ = 0.2 for 3 μm ≤ λ. 
For panel B: ελ = 0.1 for 0 ≤ λ ≤ 3 μm, ελ = 0.01 for 3 μm ≤ λ. 

Assuming that the backsides of the panels are insulated and that 
the panels are oriented normal to the solar flux at 1300 W/m2, 
determine which panel has high steady-state temperature. 

11.5. From a heat transfer and engineering approach, explain how 
a glass greenhouse, which is used in the winter to grow veg­
etables, works. Include sketches of both the system showing 
energy flows and balances, and of radiation property data (radio­
active properties versus wavelengths) for greenhouse compo­
nents (glass and the contents inside the greenhouse). When appli­
cable, show the appropriate equations and properties to explain 
the greenhouse phenomenon. When finished with the above for 
a glass greenhouse, extend your explanation to global warm­
ing, introducing new radioactive properties and characteristics if 
needed. 
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11.6. The glass of the skylight of a house as shown in Figure 11.12 
has a spectral emissivity, ελ(λ) [or absorptivity, αλ(λ)] distri­
bution as shown: ελ = 0.9 for 0 ≤ λ ≤ 0.3 μm, ελ = 0 for 0.3 ≤ 
λ ≤ 2.0 μm, ελ = 0.9 for λ ≥ 2.0 μm. During an afternoon when 
the solar flux is 900 W/m2, the temperature of the glass is 
27◦C. The interior surfaces of the walls of the house and the 
air in the house are at 22◦C, and the heat transfer coefficient 
between the glass of the skylight and the air in the house is 
5 W/(m2 K). 
a.	 What is the overall emissivity, ε, of the skylight? 
b. What is the overall absorptivity, α, of the skylight for solar 

irradiation? You may assume that the sun emits radiation as a 
blackbody at 6000 K. 

c.	 What is the convective heat flux on the outer surface of the 
"" skylight, q	 , in W/m2? Is the temperature convection outside air

of the outside air higher or lower than the temperature of the 
skylight? Please assume that the sky is at 0◦C. 

11.7. Consider a typical setup for a solar collector as shown in Figure 
11.11. A special glass is used as a cover for the collector and a 
specialized coating is used on the collector plate and tubes, where 
the solar energy is collected, to maximize the performance of the 
collector. 
a.	 If you had to specify the value of the glass transmissiv­

ity, τλ, as a function of λ to maximize the performance of 
the collector, what would you choose and why? Explain. 
Use illustrations or sketches if needed to help explain your 
answer. 

b. If you had to specify the value of the collector plate and tube 
absorptivity, αλ, as a function of λ to maximize the perfor­
mance of the collector, what would you choose and why? 
Explain. 

c.	 A manufacturing process calls for heating a long aluminum 
rod that is coated with a thin film with an emissivity of ε. 
The rod is placed in a large convection oven whose surface is 
maintained at Tw (K). Air at T∞ (K) circulates in the oven at a 
velocity of u (m/s) across the surface of the rod and produces 
a convective heat transfer coefficient of h [W/(m2 K)]. The rod 
has a small diameter of d (m) and has an initial temperature 
of Ti (K). Here, Ti < T∞ < Tw. What is the rate of change of 
the rod temperature (K/s) when the rod is first placed in the 
oven? 

11.8. Asolar collector consists of an insulating back layer, a fluid conduit 
through which a water–glycol solution flows to remove heat, an 
absorber plate and a glass cover plate. The external temperatures 

"" Tair, Tsky, and Tground are known. Solar radiation of intensity qs 
"" (W/m2) is incident on the collector and collected heat q (W/m2)c 

is removed by the fluid. The absorber plate is painted black with 
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an average solar absorptivity of 0.8 and an average emissivity 
of 0.8. Assume that the collector plate is so large that you may 
treat the problems as 1-D heat flow with heat sources and/or 
sinks. 
a.	 Identify and label all significant heat transfer resistances and 

flows and draw the steady-state thermal network diagram for 
the collector. 

"" b. Write the heat balance equations needed to solve for q . Do not c 
solve. 

c.	 If the absorber plate is replaced with a black chrome surface 
with an average solar absorptivity of 0.95 and an average emis­
sivity of 0.1, what values will change in the thermal network 

"" diagram? How will q change and why? c 
11.9. A solar collector consists of an insulating back layer, a fluid con­

duit through which a water–glycol solution flows to remove heat, 
an absorber plate and a glass cover plate. The external tempera­
tures Tair, Tsky, and Tground are also shown in the diagram. Solar 

"" radiation of intensity q (W/m2) is incident on the collector and s "" collected heat q (W/m2) is removed by the fluid. The absorber c 
plate is painted black with an average solar absorptivity of 0.9 
and an average emissivity of 0.9. Assume that the collector is so 
large that you may treat the problems as 1-D heat flow with heat 
sources and/or sinks. 
a.	 Identify and label all significant heat transfer resistances and 

flows and draw the steady-state thermal network diagram for 
this collector. 

"" b. Write the heat balance equations needed to solve for q . Do not c 
solve. 

c.	 If the absorber plate is replaced with a black chrome surface 
with an average solar absorptivity of 0.9 and an average emis­
sivity of 0.1, what values will change in the thermal network 

"" diagram? How will q change and why? c 
11.10. An opaque, gray surface	 at 27◦C is exposed to an irradia­

tion of 1000 W/m2, and 800 W/m2 is reflected. Air at 17◦C 
flows over the surface and the heat transfer convection coef­
ficient is 15W/m2 K. Determine the net heat flux from the 
surface. 

11.11. Consider an opaque, horizontal plate with an electrical heater 
on its backside. The front side is exposed to ambient air that is 
at 20◦C and provides a convection heat transfer coefficient of 
10 W/m2 K, a solar irradiation (at 5800◦K) of 600 W/m2, and an 
effective sky temperature of −40◦C. What is the electrical power 
(W/m2) required to maintain the plate surface temperature at 
Ts = 60◦C (steady state) if the plate is diffuse and has designated 
spectral, hemispherical reflectivity (reflectivity = 0.2 for wave­
length less than 2 μm, reflectivity = 0.7 for wavelength greater 
than 2 μm)? 
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View Factor
 

12.1 View Factor 

In addition to surface radiation properties such as emissivity, reflectivity, and 
absorptivity, view factor is another important parameter for determining radi­
ation heat transfer between two surfaces. View factor is defined as the fraction 
of radiation energy (the so-called radiosity including emission and reflection) 
from a given surface that can be seen (viewed) by the other surface. It is purely 
a geometric parameter, depending on the relative geometric configuration 
between two surfaces (depending on how the surfaces can see each other). A 
view factor is also called an angle factor or shape factor. The following shows 
how to define the view factor between two surfaces [1–4]. Figure 12.1 shows 
radiation exchange between the two diffuse isothermal surfaces (i.e., each 
surface has uniform emission and reflection from the surface). The differen­
tial radiation rate (including emission and reflection) from unit surfaces i to j 
is proportional to its intensity and the unit solid angle as discussed before. 

cos θj
dqi−j = IidAi cos θi dwj−i = Ii cos θi dAj dAi (12.1)

R2 

cos θi cos θj= πIi dAi dAj
πR2 

Performing integration over surface area i and surface area j, one obtains 
radiation rate from surface i to surface j as 

qi−j = Ji
cos θi cos θj 

dAj dAi (12.2)
πR2 

Ai Aj 

where πIi ≡ Ji = radiosity (emission plus reflection). 
If the radiosity Ji is uniform, that is, diffuse reflection and isothermal 

emission, then 

Engery intercepted by Aj qij 1 cos θi cos θj 

πR2 dAj dAi (12.3)Fij = = = 
Radiosity leaving Ai AiJi Ai

Ai Aj 
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Similarly, 

Fji = 
1 
Aj 

� 

Aj 

� 

Ai 

cos θi cos θj 

πR2 dAi dAj (12.4) 

Therefore, we obtain the Reciprocity Rule 

AiFij = AjFji (12.5) 

For enclosure N surfaces, as shown in Figure 12.2, 

n 

j=1 

Fij = 1 (12.6) 
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FIGURE 12.1 
Radiation exchange between two diffuse isothermal surfaces. 
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N surfaces 

FIGURE 12.2 
View factor for a N-surface enclosure. 



That is, 

F11 + F12 + F13 + · · · = 1 

F21 + F22 + F23 + · · · = 1 

. 

. 

. 

FN1 + FN2 + FN3 + · · · = 1 

Figure 12.3 shows the differential view factor between two differential areas 
i and j, and between area i and differential area j. The differential view factor 
between differential area i and differential area j can be obtained as 

dqij cos θi cos θj dAj
dFdAi−dAj = = ;

Ji dAi πR2 

dqji cos θi cos θj dAi
dFdAj−dAi = = 

Jj dAj πR2 
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FIGURE 12.3 
Concept of view factor between two differential areas. 
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Similarly, the differential view factor between area i and differential area j is 

Ji(cos θi cos θj/πR2) dAi dAj dAj cos θi cos θj
dFAi−dAj = = dAiJiAi Ai πR2 

Ai 

And the view factor between differential area j and area i is 

Jj(cos θi cos θj/πR2) dAi dAj cos θi cos θj
FdAj−Ai = = dAiJj dAj πR2 

Ai 

From reciprocity rules for diffuse and isothermal surfaces, 

AiFAi−Aj = AjFAj−Ai 

dAi dFdAi−dAj = dAj dFdAj−dAi 

Ai dFAi−dAj = dAjFdAj−Ai 

dAi dFdAi−Aj = Aj dFAj−dAi 

Example 12.1 

Determine the view factor between two parallel discs as shown in Figure 12.4. 
Assume that Ai « Aj , the distance between two surfaces is L, and the larger disc 
has a diameter D. 
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FIGURE 12.4 
View factor between two parallel disks. 
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From Equation 12.3, 

1 cos θi cos θj 

πR2Fij dAi dAj= 
Ai

Ai Aj 

cos θi cos θj 
dAj

πR2 =
Aj 

Ai 

= θ, R2 
where Ai =
with θi = θj 

dAi , 
2 + L2, cos θ = L/R, and dAj = 2πr dr ,= r

2 θcos
Fij dAj=

πR2 
Aj 

D 2/ �
r dr D2 

= 
(r2 + L2)2 D2 + 4L2 = 2L2 

0 
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12.2 Evaluation of the View Factor 

View factor is a function of geometry only. The following shows several well-
known methods to obtain the view factor for common geometry for radiation 
heat transfer applications [3]. 

Elongated surfaces—use Hottel’s String method for 2-D geometry. 
Direct integration—need to perform double-area integration (difficulty). 
Contour integration—use Stoke’s theorem to transform area-to-line 

integration. 
Algebraic method—determine the unknown view factor from the 

known value. 

12.2.1 Method 1—Hottel’s Crossed-String Method for 2-D Geometry 

Hottel proposed the following view factor between surface i and surface j for 
2-D geometry (with surfaces elongated in the direction normal to the paper 
as shown in Figure 12.5. 

Find 

(1) 
L1 + L2 − LacF1−2 = (12.7) 

2L1 



(2)
 
L1 + L4 − Lbd
F1−4 = (12.8)

2L1 

(3)
 
Lac + Lbd − (L2 + L4)
F1−3 = (12.9)

2L1 

(1) F1−2 + F1−ac = 1 

F1−2 = 1 − F1−ac 

Lac = 1 − Fac−1L1 

Lac = 1 − (1 − Fac−2)L1 

Lac Lac L2 = 1 − + · · F2−acL1 L1 Lac 

Lac L2 = 1 − + · (1 − F2−1)L1 L1 

Lac L2 L2 L1 = 1 − + − · · F1−2L1 L1 L1 L2 

Lac L2 = 1 − + − F1−2L1 L1 

L1 + L2 − Lac∴ F1−2 = 
2L1 

(2) Similarly, F1−4 = ((L1 + L4 − Lbd)/2L1) 

(3) F1−2 + F1−3 + F1−4 = 1 

∴ F1−3 = 1 − F1−2 − F1−4 

L1 + L2 − Lac L1 + L4 − Lbd = 1 − −
2L1 2L1 
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FIGURE 12.5 
Concept of Hotell’s cross-string method for 2-D geometry. 
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2L1 − L1 − L2 + Lac − L1 − L4 + Lbd = 
2L1 

Lac + Lbd − L2 − L4 = 
2L1 

The concept of the following examples (2) through (4) comes 
from [3]. 

Example 12.2 

Determine the view factor between two parallel plates with partial blockages as 
shown in Figure 12.6. 

)
Length of each crossed string = l2 + c2 

( )2c 
Length of each uncrossed string = 2 b2 + 

2 

From Hottel’s crossed-string method, the view factor can be determined as 

) ) � ( )2 
�2 ( )2l2 + c2 − 2 b2 + (c/2)2 c 2b c 

F1−2 = = 1 + − + 
l l l l 

Example 12.3 

Determine the view factor between two opposite circular tubes as shown in Figure 
12.7. From Hottel’s cross-string method, the view factor is 

2L1 − 2L2 L1 − L2F1−2 = = 
2A1 πR 

where 

L1 − crossed string abcde 

L2  uncrossed string ef L2  D  2R 
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FIGURE 12.6 
View factor between two parallel plates with partial blockages. 
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R 
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θ 

b a 
21 D 
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Let X = 1 + D/(2R) 

2F1−2 = 
2 

(x − 1)1/2 + sin−1 1 − X 
π X 

2 π 12 1/2 + −1F1−2 = (x − 1) − cos − X 
π 2 X 
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FIGURE 12.7 
View factor between two opposite circular tubes. 

Example 12.4 

Determine the view factor between two circular tubes with partial blockage as 
shown in Figure 12.8. From Hottel’s cross-string method, the view factor can be 
determined as follows: 

The sum of the length of crossed strings: LA−B−D−G−I + LH−C−D−E−F 

The sum of the length of uncrossed strings: LA−F + LH−C−D−G−I 

Therefore, 

LA−B−D−G−I + LH−C−D−E−F − LA−F + LH−C−D−G−ILA−B−C−HF1−2 = 2 
2 

Table 12.1 shows many useful view factors for 2-D geometries that can be 
determined by using Hottel’s cross-string method [2,4]. 
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FIGURE 12.8 
View factor between two circular tubes with partial blockage. 



TABLE 12.1 

View Factors for 2-D Geometries 

Geometry Relation 

Parallel plates with midlines [(Wi + Wj)
2 + 4]1/2 − [(Wj − Wi)

2 + 4]1/2 
connected by perpendicular Fij = 

2Wi
 wi Wi = wi/L, Wj = wj/L
 
i 

L 

j 
wj ( )α 

Inclined parallel plates of equal width Fij = 1 − sin 
2 

and a common edge 

jw 

α i 
w 

1 + (wj/wi) − [1 + (wj/wi)
2]1/2 

Perpendicular plates with a common Fij = 
2 

edge 

j 

wj 

i 
wi 

wi + wj − wk
Three-sided enclosure Fij = 

2wi 

wj 
wk k j

i 

wi {
Parallel cylinders of different radii 1

π + [C2 − (R + 1)2]1/2 − [C2 − (R − 1)2]1/2 Fij = 
2π �� � � �� 

R 1−1+(R − 1) cos − rj C C ri �� � � ��� 
R 1−1−(R + 1) cos + 
C C 

i j R = rj/ri , S = s/ri 

C = 1 + R + S S 
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continued 



TABLE 12.1 (continued) 

View Factors for 2-D Geometries 

Geometry Relation � �r
Cylinder and parallel rectangle Fij = tan−1 s1 − tan−1 s2 

s1 − s2 L L 

r 

j 
L 

i 

s2 
s1 

� �1/2 � � �2 � � �1/2 2 − D2 D D s  
Infinite plane and row of cylinders Fij = 1 − 1 − + tan−1 

s s D2 

s 
D 

j 

i 

Concentric cylinders A1F12 = 1; F21 = 
A2A2 A1F22 = 1 − F21 = 1 − 

A2 

A1 

1
Long duct with equilateral triangular F12 = F13 = 

2 
cross-section 

1 2 

3 
� ( )2

�1/2 ( )c c
Long parallel plates of equal width F12 = F21 = 1 + − 

a a 

1 
c 

2 

a 
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continued 



TABLE 12.1 (continued) 

View Factors for 2-D Geometries 

Geometry Relation 

1 Long cylinder parallel to a large plane F12 = 2 
area 

1 

2 

s
Long adjacent parallel cylinders of Let X = 1 + , then 

d � � equal diameters 1 
(X2 − 1)1/2 +F12 = F21 =   sin−1 1 − X 

1 2 π X

d d 

s 

Concentric spheres A1F12 = 1; F21 = 
A2A2 A1F22 = 1 − F21 = 1 − 

A2 

A1 

1
Regular tetrahedron F12 = F13 = F14 = 

3 

3 
2 

4 

1 
1

Sphere near a large plane area F12 = 
2 

1 

2 
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continued 
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12.2.2 Method 2—Double-Area Integration 

Use direct integration to determine the view factor between two adjacent 
surface areas i and j as shown in Figure 12.9. 

1 cos θi cos θj 
dAi dAj

πR2FAi−Aj = 
Ai

Ai Aj
where 

2R2 = (xi − xj)
2 + (yi − yj)

2 + (zi − zj)

1 [ ]
cos θi = li(xj − xi) + mi(yj − yi) + ni(zj − zi)R 

1 
cos θj = lj(xi − xj) + mj (yi − yj) + nj (zi − zj)R 

Therefore, the view factor can be determined by performing the following 
integration: 

b b a c 
1 

dxj dxi zj dzj 
yi dyi 

2 2π[(xi − xj)2 + yi + zj ]2 
(12.10)FAi−Aj = 

bc 
0 0 0 0 
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TABLE 12.1 (continued) 

View Factors for 2-D Geometries 

Geometry 

Small area perpendicular to the axis of 
a surface of revolution 

Relation 

F12 = sin2 θ 

2 

θ 

1 

Area on the inside of a sphere F12 = 
A2 

4πR2 

A1 

A2R 

Source: Data fromA. Mills, Heat Transfer, Richard D. Irwin, Inc., Boston, MA, 1992; F. Incropera 
and D. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Fifth Edition, 2002. 
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⎡ ⎤ 
1 ( )⎥ln R dxi dxj + ln R dyi dyj + ln R dzi dzj ⎦ (12.11) FAi−Aj = ⎢ ⎣

2πAi 
ci cj 

Apply Stokes’ theorem to reduce quadric to double integrations as 

⎧ ⎡ b b 
1 

dxj 

⎨ 
⎩ ln (xi − xj)

2 + a2 1/2 
FAi−Aj dx⎣ = 

2πbc 
0 0 ⎫

0 ⎬1/22 + c2 + a2ln (xi − xj) dxi+ ⎭ 
b ⎧
0 b 

1/2 
dxj 

⎨ 
⎩ ln (xi − xj)

2 + 02 dx+ 

b 0 ⎫ ⎤0 ⎬ 
ln (xi − xj)

2 + c2 + 02 1/2
dxi ⎦ (12.12)+ ⎭ 

b 
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θi 
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FIGURE 12.9 
View factor between two adjacent surfaces. 

12.2.3 Method 3—Contour Integration 

Use Stokes’ theorem to transform area to line integration. 
Determine the view factor between two adjacent surfaces as shown in 

Figure 12.9. 
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The following shows how to use Stokes’ theorem to determine the view factor 
between two opposite surfaces [3] as shown in Figure 12.10. 

⎡ ⎤ 
1 ( )

ln R dxi dxj + ln R dyi dyj + ln R dzi dzjFAi−Aj 
⎢ ⎥ ⎦ = ⎣

2πAi 
ci cj ⎧ ⎫ 

c 
1 ⎨ 

⎩ 2 2ln xi + (yj − yi)
2 + a

1/2 ⎬ 
dyj dyiFAi−Aj = 

2πbc ⎭ 
ci 0 

⎧ ⎫
b 

1 + 
2πbc

⎨ 
⎩ 2ln (xj − xi)

2 + (c − yi)
2 + a

1/2 ⎬ 
dxj dxi ⎭ 

ci 0 

⎧ ⎫
0 

1 + 
2πbc

⎨ 
⎩

� 

c 

2ln (b − xi)
2 + (yj − yi)

2 + a
1/2 ⎬ 

dyj dyi ⎭ 
ci ⎧ ⎫

0 
1 

2πbc

1/2⎨ 
⎩ 

⎬ 
2 2 2 2ln (xj − xi) x + y + a dxj dxi+ ii ⎭ 

ci b 

0 c 
1/2 1/22 2ln (yj − yi)

2 + a + ln b2 + (yj − yi)
2 + a

1 = 
2πbc 

dyj dyi 

c 0 

+ other integrals 

2a2 (1 + (b/a)2)(1 + (c/a)2) = ln 
πbc 1 + (b/a)2 + (c/a)2 

b b/a + [1 + (c/a)2]1/2 tan−1 
a [1 + (c/a)2]1/2 

� �2 
�1/2 

c b c/a + 1 + tan−1 
a a [

1 + (b/a)2
]1/2 

� � � ��
b b c c − tan−1 − tan−1 (12.13)
a a a a 

Table 12.2 shows several useful view factors for 3-D geometries [4] that 
can be determined by using Stoke’s theorem to transform area-to-line 
integration. 
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z 

A2(x2, y2, c) 

A1(x1, y1, 0) 

a 

b 

b 

c 

c 

FIGURE 12.10 
View factor between two opposite surfaces. 

Example 12.5 

Determine view factors F1−2 and F2−1 for the following geometries shown in 
Figure 12.11. 

For geometries (a) and (b), 

F1−1 + F1−2 + F1−3 = 1 

F1−1 = 0 

∴ F1−2 = 1 − F1−3(can be obtained from Table 12.2) 

A1F1−2 = A2F2−1 

A1∴ F2−1 = F1−2A2 

12.2.4 Method 4—Algebraic Method 

Determine the unknown view factor between surface areas A1 and A2, as  
shown in Figure 12.12, from the known value of view factors. 

A1F1−2 = A1F1−j − A1F1−4 

= Aj(Fj−i − Fj−3) − A4(F4−i − F4−3) (12.14) 

where Fj−i, Fj−3, F4−i, and F4−3, are available from formulas or charts. 

Example 12.6 

Determine view factors F1−4 and F4−1 from Figures 12.13a and b:
 

A1F1−4 = A2F2−3
 

AiFi−j = A1F1−j + A2F2−j
 

= A1F1−3 + A1F1−4 + A2F2−3 + A2F2−4
 

= A1F1−3 + 2A1F1−4 + A2F2−4
 



Hence,
 

1

A1F1−4 = [AiFi−j − A1F1−3 − A2F2−4] (12.15)

2 

where Fi−j , F1−3, and F2−4, are available from Table 12.2 formulas or charts. 
And, A1F1−4 = A4F4−1. 
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TABLE 12.2 

View Factors for 3-D Geometries 

Geometry Relation 

X = X/L, Y = Y/L ⎧ � �1/2Aligned parallel rectangles ⎨2 (1 + X2)(1 + Y2)
Fij = ln 

πXY ⎩ 1 + X2 + Y2 

Y 

L 
i 

j +X(1 + Y2)1/2 tan−1 X 

(1 + Y2)1/2 

+Y(1 + X2)1/2 tan−1 Y 

(1 + X2)1/2 ⎫ ⎬X −X tan−1 X − Y tan−1 Y ⎭ 
Coaxial parallel disks Ri = ri/L, Rj = rj/L 

rj 1 + R2 
jj 

i 

S = 1 + 
R2 

i
1 

L Fij = 
2 
{S − [S2 − 4(rj/ri)

2]1/2} 
ri 

Perpendicular rectangles with a 
H = Z/X, W = Y/X ⎛ 

1 ⎜ 1 1 
common edge 

Fij = ⎝ W tan−1 + H tan−1 
πW W H 

XZ i 

j 
−(H2 + W2)1/2 tan−1 1 

(H2 + W2)1/2 ⎧
 ⎪
 � �W4 ⎨1 (1 + W2)(1 + H2) W2(1 + W2 + H2)+ ln
4 ⎪ 1 + W2 + H2 (1 + W2)(W2 + H2)⎩ ⎫ ⎞Y � �H2 ⎪ ⎬H2(1 + H2 + W2) ⎟ ⎠ ⎪ × 

(1 + H2)(H2 + W2) ⎭ 

Source: F. Incropera and D. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 
Fifth Edition, New York, NY, 2002. 
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1 (top) 

2 (side) 
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(a) (b) 
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FIGURE 12.11 
(a) A cylindrical furnace. (b) A cubic furnace. 

A3 

A4 

A1 

A2 

Ai 

Aj 

FIGURE 12.12 
Algebraic method. 

A3 
A3 

A4 

A4 

A1 A1A2 
A2 

FIGURE 12.13 
Applications of shape factor algebra to opposing and adjacent rectangles. 

Remarks 

This chapter covers the same information as in the undergraduate-level heat 
transfer. In the undergraduate-level heat transfer, students are expected to 
know how to use those view factors available from tables or charts in order to 
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calculate radiation heat transfer between two surfaces for many engineering 
applications. However, at the intermediate-level heat transfer, students are 
expected to focus more on how to derive view factors instead of how to use 
them. In particular, students are expected to know how to determine the view 
factors by using Hottel’s string method for many 2-D geometries. For 3-D 
geometry view factors, we do not go into much detail because of the required 
double-area integrations that belong to advanced radiation heat transfer. 

PROBLEMS 

12.1 Determine the view factors for Examples 1, 2, 3, and 4, respectively. 
12.2 Determine the view factors shown in Table 12.1. 
12.3 Determine the view factors shown in Table 12.2. 
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13
 
Radiation Exchange in a Nonparticipating 
Medium 

13.1	 Radiation Exchange between Gray Diffuse Isothermal 
Surfaces in an Enclosure 

Since we know how to get surface radiation properties such as emissivity, 
reflectivity, and absorptivity and how to determine the view factor between 
two surfaces, the following shows how to determine radiation heat transfer 
between surfaces in an enclosure [1–4]. Assume that there are N gray diffuse 
and isothermal surfaces. This implies that each surface at Ti has uniform 
radiosity Ji (emission plus reflection). Figure 13.1 shows an energy balance 
on each surface i and an energy balance between surface i and the rest of 
enclosure surfaces j. 

Based on the assumptions, each surface radiation properties can be given 
as follows. 

αi = εi, for gray and diffuse surfaces 
τi = 0, for the opaque body 

ρi = 1 − αi = 1 − εi 

There are three types of radiation problems for electric furnace applica­
tions. 

1. Given each surface temperature Ti to determine each surface heat 
flux (q/A)i =? 

2. Given each surface heat flux	 (q/A)i to determine each surface 
temperature Ti =? 

3. Combination of 1 and 2, some surfaces given temperature but heat 
flux unknown, and some surfaces given heat flux but temperature 
unknown. 

Perform energy balance on the i surface: net energy = energy out (radios­
ity) − energy in (irradiation) 

qi  Ai( Ji  Gi)	 (13.1) = −
257 



j 

q Gi 
A i N 
Ai 

Ti i 
ρiGi } Ji 

Ei 
εi 

  

 

� � � � 

� � 

also 

Ji = εiEbi + (1 − εi)Gi (13.2) 

Therefore, 

Ji − εiEbi Ji − εiJi − Ji + εiEbi qi = Ai Ji − = Ai1 − εi 1 − εi 

εi (Ebi − Ji) = Ai 1 − εi 

So that energy from surface i 

Ebi − Ji⇒ qi = (13.3)
(1 − εi)/(εiAi) 

Then perform energy exchange between surface i and the rest of surfaces j: 
net energy = energy out (radiosity) − energy in (irradiation) 

qi = Ai( Ji − Gi) 

where 
N N 

AiGi = FjiAjJj = FijAiJj (13.4) 
j=1 j=1 

Therefore, ⎛ ⎞ 
N ⎝ ⎠qi = Ai Ji − FijJj 

j=1 
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FIGURE 13.1 
Radiation heat transfer between N surfaces in an enclosure. 



 

  

  

  

  

 

NBy using 1 Fij = 1, and multiplying to Ji,j=
⎛ ⎞ 

N N ⎝ ⎠qi = Ai FijJi − FijJj 
j=1 j=1 

So that energy transfer between surface i and the rest of enclosure surfaces 
j becomes 

N N 

qi = AiFij( Ji − Jj) = qij (13.5) 
j=1 j=1 

Combining Equations 13.3 and 13.5, we have 

Ebi − Ji
N N 

qi = = AiFij( Ji − Jj) = qij
(1 − εi)/εiAi j=1 j=1 

Ebi − Ji
N NJi − Jj

qi = = = qij (13.6)
(1 − εi)/(εiAi) (1/AiFij) ' -v ' j=1 ' ' j=1 -v 
surface resistance geometrical resistance 
due to emissivity due to view factor 

In addition, combining Equations 13.2 and 13.4, we get 

N 

Ji = εiEbi + (1 − εi) FijJj (13.7) 
j=1 

= emission from surface i + reflection from surface i. 

13.1.1 Method 1: Electric Network Analogy 

Electric network analogy [3] can be used to solve the aforementioned radiation 
heat transfer problem as shown in Figure 13.2. The following shows a few 
special cases for radiation heat transfer applications. 

Special case 1—Radiation between a two-surface enclosure as shown in Figure 13.3: 
(a) hemicylinder, (b) parallel plates, (c) rectangular channel, (d) long concentric 
cylinders, (e) concentric spheres, (f) small convex object in a large enclosure: 

σ(T1
4 − T2

4) 
q1 = q12 = −q2 = (13.8)

(1 − ε1)/(A1ε1) + 1/(A1F12) + (1 − ε2)/(A2ε2) 

If for a blackbody, ε1 = ε2 = 1, then 

q1 = A1F12σ(T1
4 − T2

4) (13.9) 
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1− εi 

( ) 1 
1i iA F  − 

( )−1AiFiN 

( AiFi3 

J2 

)−1 

( AiFi2 )−1 J3 

( AiFi(N–1))−1 

Ebi Ji 

εiAi 
JN−1 

JN 

J1 

qi1 

qi2 

qi3qi 

q ( −i N  1) 

Node corresponding
to the surface i 

qi N  

  

–q2 A2 T2 ε2 –q2 A2 T2 ε2 2 

2 2 

1q1 A1 T1 ε1 q1 A1 T1 ε1 

–q2 
r2 A2T2 ε2 

q 

q 

A1 

q1 
ε1T1 

r2 

r1 

r1 

4 4Eb1 = σT 1 Eb2 = σT 2 

Eb1 J1 J2 Eb2 

1– ε1 1 1– ε2 
A1ε1 A1F12 A2ε2 

1q –q2 

260 Analytical Heat Transfer 

FIGURE 13.2 
Network representation of the radiative exchange between surface i and the remaining surfaces 
of an enclosure. 

FIGURE 13.3 
Radiation between a two-surface enclosure. 



Special case 2—Radiation between two parallel surfaces with middle shields as 
shown in Figure 13.4: 

A1σ(T1
4 − T2

4) 
q1 = q12 = 

(1 − ε1)/ε1 + (1/F13) + (1 − ε31)/ε31 
+(1 − ε32)/ε32 + (1/F32) + (1 − ε2)/ε2 (13.10) 

A1σ(T1
4 − T2

4) = = −q2 
(1/ε1) + (1 − ε31)/ε31 + (1 − ε32)/ε32 + (1/ε2) 

where F13 = F32 = 1. 
To cut down radiation heat loss, ε31 and ε32 should be small, that is, ρ31 is 

large. 
Special case 3—Reradiating surfaces (insulated surface, qR = 0): The following 

electric furnaces, as shown in Figure 13.5, can be modeled as radiation heat 
transfer between two opposite surfaces (hot and cold) with a third reradiation 
side surface (perfect reflection and perfect insulation). 

q12 

Radiation 
shield 

q1 

ε31 ε32 

1 3 2 
A1 A3 A2 

ε1 ε2 

σT 41 σT 41 
Eb1 J1 J31 Eb3 J31 J2 Eb2 

1– ε1 1 1– ε31 1– ε32 1 1– ε2 
A1ε1 A1F13 A3ε31 A3ε32 A3F32 A2ε2 

1q 2q−
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FIGURE 13.4 
Radiation between two parallel surfaces with middle shield. 



  

A2 T2 ε2 A2 T2 ε2 ARTR εR A2 T2 ε2 

AR ARAR TR TRTR q
1 

2
1 q2εR εRεR 

A1 T1 ε1 A2 T2 ε2 

A1 T1 ε1 
A1 T1 ε1 A1 T1 ε1 

EbR 

σT 1
4 

JR EbR = 

J2J1 
1Rq

q12 

2Rq

qR = 0
1– εR 
ARεR 

1 
A1F1R 

1 
ARFR2 σT 42 

q1 
Eb1 Eb2 

1– ε1 
A1ε1 

1 
A1F12 

1– ε2 
A2ε2 

−q2 

∵ qR = 0, therefore, q1 = −q2 

σT1
4 − σT4 

q1 = −q2 = 2 

(1 − ε1)/A1ε1 + 1/(A1F12 + 1/[(1/A1F1R) + (1/A2F2R)]) 
+(1 − ε2)/A2ε2 

(13.11) 
where T1, and T2 are given 

ARFR2 = A2F2R 

And surface emissivity, area, and view factors are also given or predeter­
mined. 

If q1 = −q2 is determined from above and if qR = 0, how to determine 
reradiation surface temperature TR =? 

From energy balance on the reradiation surface, 

J1 − JR JR − J2 q1R = = qR2 = 
1/A1F1R 1/ARFR2 

and 

Eb1 − J1 1 − ε1 q1 = ⇒ J1 = σT1
4 − q1 

(1 − ε1)/A1ε1 A1ε1 

J2 − Eb2 1 − ε2 q2 = ⇒ J2 = q2 + σT4 
(1 − ε2)/A2ε2 A2ε2

2 

FIGURE 13.5 
Electric furnaces with a reradiating surface. 
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from 
J1 − JR JR − J2 A1F1RJ1 + ARFR2J2 = ⇒ JR = 

1/A1F1R 1/ARFR2 A1F1R + ARFR2 

Therefore, �1/4JRJR = Eb,R = σTR 
4 ⇒ TR = (13.12)

σ 

Special case 4—A radiant heater panel problem: A long radiant heater panel 
consists of a row of cylindrical electrical heating elements, as shown in 
Figure 13.6. 

The above Equations 13.11 and 13.12 can be used to determine heat trans­
fer rate q1 = −q2, and TR, respectively. However, we need to calculate view 
factors F11, F12, and F1R(or F13). In Table 12.1, 

1 
F11 = (X2 − 1)1/2 + sin−1 1 − X 

π X 

with X = 1 + (s/d). 
∼Assume F12 = F13 for symmetry and F11 + F12 + F13 = 1. 

Therefore, F12 = 1/2(1 − F11). 
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2 d s 1 

2 

2 

FIGURE 13.6 
A radiant heater panel model. 

13.1.2 Method 2: Matrix Linear Equations 

Applying energy balance on each surface, one can obtain N radiosity linear 
equations for N surfaces in an enclosure. The matrix and its inverse matrix can 
be used to solve these N radiosity linear algebraic equations. The following 
shows how to solve this type of problems for either given surface temperature 
or surface heat flux in an enclosure with N surfaces [3–4]. 



 

 

Case A—Given each surface temperature to determine its heat flux,Ti given, ⇒ 
qi = ? 

Use energy balance on surface i and energy exchange between surface i and 
the rest of surfaces j, from Equation 13.6, 

N
Ebi − Ji Ji − Jj
= (13.13)
(1 − εi)/(εiAi) 1/AiFijj=1 

Applying the above equation to each surface (1, 2, 3,…, and N), respectively, 
one obtains the following N radiosity linear equations (after rearranging 
them). 

a11J1 + a12J2+ · · · + a1NJN = c1 

a21J1 + a22J2+ · · · + a2NJN = c2 

. . . 

aN1J1 + aN2J2+ · · · + aNNJN = cN 

Then coefficient matrix [A], column matrix [ J], and column matrix [C] can 
be formed to satisfy the N linear equations. Therefore, the unknown radiosity 
matrix [ J] can be determined by solving the given inverse matrices [A] and [C]. 

[A][ J] = [C] 
[ J] = [A]−1[C]  = · · ·  

a11 
⎡ 

a12 · · ·  a1N 
⎤ ⎡ 

J1 
⎤ ⎡ 

c1 
⎤ 

[A] =  
⎢ ⎢ ⎣ a21 

· · ·  
a22 
· · ·  

· · ·  
· · ·  

a2N 
· · ·  

⎥ ⎥ ⎦ [ J] =  
⎢ ⎢ ⎣ J2 

· · ·  

⎥ ⎥ ⎦ [C] =  
⎢ ⎢ ⎣ c2 

· · ·  

⎥ ⎥ ⎦ 
aN1 aN2 · · ·  aNN JN cN 

Once the unknown radiosity J from each surface i has been solved from the 
aforementioned matrix relation, radiation heat transfer from each surface can 
be shown from Equation 13.6 as 

σT4 − JiEbi − Ji iqi = = (13.14)
(1 − εi)/εiAi (1 − εi)/εiAi 

Special example for a three-surface enclosure problem: If surface temperatures 
shown in Figure 13.7 are given (T1, T2, T3), how to determine surface heat 
transfer rates (q1, q2, q3)? 

From Equation 13.13, 

NEbi − Ji Ji − Jj= 
(1 − εi)/Aiεi 1/AiFijj=1 
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FIGURE 13.7 
Radiation heat transfer among a three-surface enclosure. 

Apply for surface 1: 

where a11 = (A1ε1/(1 − ε1) + A2F12 + A1F13), a12 = −A2F12, a13 = −A1F13, 
c1 = (A1ε1/(1 − ε1))σT1

4. 
Apply for surface 2: 

where a21 = −A2F21, a22 = ((A2ε2/1 − ε2) + A2F21 + A2F23) , a23 = −A2F23, 
c2 = (A2ε2/(1 − ε2))σT2

4. 



Apply for surface 3: 

where a31 = −A3F31, a32 = −A3F32, a33 = (A3ε3/(1 − ε3) + A3F31 + A3F32), 
c3 = (A3ε3/(1 − ε3))σT3

4. 
From the above three linear equations, the following matrix can be formed: 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
a11 a12 a13 J1 C1 

A = a21 a22 a23 J = J2 C = C2⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 
a31 a32 a33 J3 C3 

[A][ J] = [C] 
[ J] = [A]−1[C] 

Alternatively, we can apply Equation 13.7 to each surface and get 

J1 = ε1Eb1 + (1 − ε1)[F11J1 + F12J2 + F13J3] 
J2 = ε2Eb2 + (1 − ε2)[F21J1 + F22J2 + F23J3] 
J3 = ε3Eb3 + (1 − ε3)[F31J1 + F32J2 + F33J3] 

Similarly, the above three linear equations can be rearranged in order to 
obtain the matrix relation as [A][ J] = [C] and then solve for [ J] = [A]−1[C]. 

Once matrix [ J] is determined, that is, J1, J2, and J3 have been determined, 
then use Equation 13.14 to find surface heat transfer rates as 

σT4Eb1 − J1 1 − J1⇒ q1 = = 
(1 − ε1)/(A1ε1) (1 − ε1)/(A1ε1) 

σT4Eb2 − J2 2 − J2⇒ q2 = = 
(1 − ε2)/A2ε2 (1 − ε2)/A2ε2 

σT4Eb3 − J3 3 − J3⇒ q3 = = 
(1 − ε3)/A3ε3 (1 − ε3)/A3ε3 
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Case B—Given each surface heat flux to determine its temperature, qi given, ⇒ 
Ti = ? 

Use energy exchange between surface i and the rest of surfaces j, from  
Equation 13.6, 

N Ji − Jj
qi = (13.15)

1/AiFijj=1 

Apply the above to each surface (1, 2, 3, …, and N) and obtains N radiosity 
linear equations as 

a11J1 + a12J2+ · · · + a1NJN = c1 

a21J1 + a22J2+ · · · + a2NJN = c2 

. . . 

aN1J1 + aN2J2+ · · · + aNNJN = cN 

The following matrix can be used to solve for [ J]: 

[A][ J] = [C] 
[ J] = [A]−1[C]  = · · ·  

Once matrix [ J] has been solved, use Equation 13.14 on each surface i to 
determine surface temperature on each surface 

σT4 − JiEbi − Ji i⇒ qi = = 
(1 − εi)/εiAi (1 − εi)/εiAi 

or 
1 − εiEbi = σTi 

4 = qi + JiAiεi 

Therefore, �1/4qi(1 − εi)/Aiεi + JiTi =	 (13.16)
σ 

Case C—Combined Case A and Case B 
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•	 Some surfaces are given temperatures but heat fluxes are unknown. 
•	 Some surfaces are given heat fluxes but temperatures are unknown. 
•	 Use the same procedure shown for Case A and Case B in order to 

form matrix [A], column matrix [ J], and column matrix [C]. 
•	 After determining matrix [J], either heat fluxes or temperatures can 

be determined. 

Special case for the blackbody radiation problem: Use the aforementioned results 
for any blackbody surface with unity emissivity (εi = 1). 



 

 

13.2	 Radiation Exchange between Gray Diffuse 
Nonisothermal Surfaces 

The following shows how to solve radiation heat transfer between non-
isothermal surfaces [4–5]. In this case, one shall consider radiation exchange 
between two differential surfaces (which can be assumed as a uniform tem­
perature over each differential element) as shown in Figure 13.8. Then the 
aforementioned analysis method can be applied. 

Consider radiosity from a differential element i, 

Ji(ri) = εiσT4 
i (r̄i) + (1 − εi)Gi(r̄i) 

= εiσT4 
i (r̄i) + (1 − εi) 

N 

j=1 

� 

Aj 

Jj(r̄j) dFdAi−dAj (13.17) 

Define known quantity 

K(r̄i, ̄rj) ≡ 
dFdAi−dAj 

dAj 

Therefore, 

Ji(ri) = εiσT4 
i (r̄i) + (1 − εi) 

N 

j=1 

� 

Aj 

Jj(r̄j)K(r̄i, ̄rj) dAj (13.18) 
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For Case A problem, obtain N equations, where Ti is known, solve the 
integral and Ji(r̄i) can be obtained. 

dAi 

dAi 
Aj 

rjri 

AjAi 
Ai 

dAj 

dAj 

N 

FIGURE 13.8 
Radiation exchange between nonisothermal surfaces. 
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When Ji(r̄i) is determined by using the matrix method, and for given Ti(r̄i), 
then ( )q εi 

(r̄i) = σTi 
4(r̄i) − Jj(r̄j) (13.19)

A i 1 − εi 

can be solved. 

Example 

Apply the numerical method—Simpson’s rule (Trapezoidal rule) for the nonisother­
mal surfaces shown in Figure 13.9. 

Given: εa = 0.9, Ta = 1000−1500◦C 

εb = 0.2, Tb = 300◦C 

1. q̄a=? 

2. Compare qa = qa1 + qa2 =?
 

For case B problem, if (q/A)i is given, then
 
( )( ) N Ji (r̄i ) − Jj r̄jq = 

A i 
j=1

1/dFdAi −dAj 

( ) N ( ( )) ( )q = ¯ K ¯
A i 

j=1 

Ji (r̄i ) − Jj rj ri , r̄j dAj 

( )
when Ji (ri ) is determined by the matrix method, and for given q/A i (ri ), then 

( )1 − εi q
σTi 

4(r̄i ) = (r̄i ) + Ji (r̄i )
εi A i 
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FIGURE 13.9 
Radiation between nonisothermal surfaces. 



 

EA1−A4 = FA1−A4 ' -v ' 
diffuse 

+ ρs 
3FA1(3)−A4 ' -v ' 

specular reflection 

EA2−A4 = FA2−A4 + ρs 
3FA2(3)−A4 

(13.22) 

(13.23) 

( ) � ( )
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13.3	 Radiation Exchange between Nongray Diffuse 
Isothermal Surfaces 

The following (a) integral model or (b) band model can be used to deter­
mine radiation exchange among isothermal diffuse nongray surfaces [4,5] as 
sketched in Figure 13.10. 

a. Integral model 

∞ 
q q= dλ	 (13.20)
A i A i 

0 

b. Band model 

( ) N ( )q q= Δλk	 (13.21)
A i A i

k=1 

13.4	 Radiation Interchange among Diffuse and Nondiffuse 
(Specular) Surfaces [4,5] 

Exchange factor by using the image method, as shown in Figure 13.11, 

Reciprocity Rules AiEAi−Aj = AjEAj−Ai 

Metal 

ελ 

Δλ1 Δλ2 Δλ3 

ελ 

Nonmetal 

λ	 λ 

FIGURE 13.10 
Radiation exchange among diffuse, isothermal, nongray surfaces. 
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11(3) 

4(3) 4 

2(3) 2 
Specular surface 

FIGURE 13.11 
Radiation exchange among diffuse and specular surfaces. 

13.5	 Energy Balance in an Enclosure with Diffuse 
and Specular Surface 

Nd is the diffuse reflection surface, 
N − Nd the specular reflection surface. 

Assume all surfaces shown in Figure 13.12 are diffuse emitting, gray, and 
isothermal; then 

= εiσT4 + (1 − εi)GiJi i 

where Gi = Gi
d + Gs

i . 
From the diffuse surface, 

Nd 

Gd 
i = JjEAi−Aj (13.25) 

j=1 

where 
ρsEAi−Aj = FAi−Aj + kFAi(k)−Aj 

k 

i 

q 

i }Ti 
Ei 

Ji 

Gi 

Ai 

A 

j 

N 

εi 

ρiGi 

FIGURE 13.12 
Radiation heat transfer between N surfaces (including diffuse and specular) in an enclosure. 



 
From the specular surface, 

N 

Gs 
i = εjσTj 

4EAi−Aj (13.26) 
j=Nd+1 

for given Ti, from the above equations, Ji can be solved. 
If Ti is given, Gi can be solved (Gi = Gi 

d + Gi 
s). 

For the Nd diffuse surfaces, 

( ) ( )q 1 = σTi 
4 − Ji (13.27)

A i (1 − εi)/εi 

or for the N − Nd specular surfaces, 
( ) ( )

A
q 

i 
= εi σT4 − Gi (13.28) i 
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Remarks 

In undergraduate-level heat transfer, students are expected to know how to 
calculate radiation heat transfer between two surfaces or between two sur­
faces with a third reradiating surface by using the electric network analogy 
method for many engineering applications such as electric heaters, radia­
tion shields, and electric furnaces with insulating side walls, and so on. In 
intermediate-level heat transfer, this chapter focuses on how to analyze and 
solve radiation heat transfer problems in an N-surfaces enclosure by using the 
matrix linear equations method for more complicated electric or combustion 
furnaces applications. Students are expected to know how to set up a matrix 
from linear equations by applying energy balance on each of N-surfaces 
with given surface temperatures or surface heat fluxes BCs. Here we assume 
that each N-surface has gray and diffuse properties and keeps at isother­
mal condition. We do not go into much details for any N-surface behaving 
as nongray, nondiffuse (specular), or nonisothermal condition. These require 
more complex mathematics and belong to advanced radiation topics. 

PROBLEMS 

13.1. A rectangular oven is 1 m wide, 0.5 m tall, and 2 m deep into the 
paper and is used to bake a carbon-fiber cloth with an electric 
heater at the top. All vertical walls are reradiating (reflectory and 
insulated). Take ε1 = 0.7, ε2 = 0.9, and ε3 = 0.8. The heater tem­
perature is 650◦C when 20 kW of power is supplied. Convection 
is negligible. 

Given: 
W 

σ = 5.67 × 10−8 
m2 K4 
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a.	 Based on the analogy of electric resistance network, draw 
radiation heat transfer network from surface 1 to surface 2. 

b. Determine the cloth (surface 2) temperature. 
13.2. A rectangular oven is 1 m wide, 0.5 m tall, and very deep into the 

paper and is used to bake a carbon-fiber cloth with an electric 
heater at the top. All vertical walls are reradiating (reflectory and 
insulated). Take ε1 = 0.7, ε2 = 0.9, and ε3 = 0.8. When 20 kW of 
power is supplied, the heater temperature is 650◦C. Neglecting 
convection, what is the cloth temperature? 

13.3. A cubic furnace (1 m × 1 m  × 1 m). During the steady-state oper­
ation, the top surface is cooled at 250◦C and the bottom floor is 
heated at 1000◦C. The side walls are insulated refractory surfaces. 
The view factor between the top and bottom surfaces is 0.2. 
a.	 Determine the net radiation transfer between the top and 

bottom surfaces. 
b. Determine the temperature of the insulated refractory sur­

faces. 
c.	 Comment on what effect changing the values of emissivities of 

top, bottom, and refractory surfaces would have on the results 
of (a) and (b). 

13.4. Consider two aligned, parallel, square	 planes (0.5 m × 0.5 m) 

spaced 0.5 m apart and maintained at T1 = 500 K and T2 = 1000 K. 
Calculate the net radiative heat transfer from surface 1 for the 
following special conditions: 
a.	 Both planes are black and the surroundings are at 0 K. 
b. Both planes are black with connecting, reradiating walls. 
c.	 Both planes are diffuse and gray with ε1 = 0.6, ε2 = 0.8, and 

the surroundings at 0 K. 
d. Both planes are diffuse and gray (ε1 = 0.6 and ε2 = 0.8) with 

connecting, reradiating walls. 
13.5. A room is 3 m square and 3 m high. The walls can be taken as 

adiabatic and isothermal. The ceiling is at 35◦C and has an emit­
tance of 0.8, while the floor is at 20◦C and has an emittance of 0.9. 
Denote the ceiling as surface 1, the floor 2, and the walls 3. 
a.	 Set up the radiosity equations. Determine and evaluate all 

the shape factors, and tabulate as a 3 × 3 array. Solve these 
equations to determine the heat flow into the floor, q2. 

b. Draw the radiation network. Use the network to obtain an 
expression for q2, and solve for q2 again. 

13.6. A thin plate (surface area A1, emissivity ε1, absorptivity α1) is 
mounted horizontally facing above a larger horizontal surface 
(area A2, emissivity ε2, absorptivity α2). 
a.	 Give the corresponding thermal radiation network associated 

to the problem. 
b. Develop an expression without the radiosities for the radiation 

heat transfer rate from 1 to 2. 
c.	 What is the limit of this expression when the second surface is 

infinite? 
d. Let surface 2 be the sky which is a blackbody at a temper­

ature 15◦C cooler than ambient air, which is at 2◦C. The 
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plate is well insulated at the bottom. Let h be the average 
convective heat transfer coefficient between the surface and 
ambient air. Given h = 10 W/m2 K, ε1 = 0.54 = α1, σ = 5.67 × 
10−8 W/m2 K4. Determine the equilibrium plate temperature. 

13.7. Consider two very large parallel plates with diffuse, gray sur­
faces. Determine the irradiation and radiosity for the upper plate 
(at T1 = 1000◦K, ε1 = 1). What is the radiosity for the lower plate 
(at T2 = 500◦K, ε2 = 0.8)? What is the net radiation exchange 
between the plates per unit area of the plates? 

13.8. A 0.25-m-diameter sphere (surface 1) is located inside of a 0.5-m­
diameter sphere (surface 2). Surface 1 is 200◦C and surface 2 is 
100◦C. Determine all of the view factors and calculate the net heat 
transfer rate (W) between the two spherical surfaces. Show all 
work and list all assumptions. (Note: = 5.67 × 10−8 W m2 K4σ / ) 

13.9. For a three-surface enclosure problem as shown in Figure 13.7, do 
the following problems by using the matrix method. 
a.	 Given T1, T2, T3, determine q1, q2, q3. 
b. Given q1, q2, q3, determine T1, T2, T3. 
c.	 Given T1, T2, q3, determine q1, q2, T3. 
d. Given T1, q2, q3, determine q1, T2, T3. 
e.	 Given q1, q2, T3, determine T1, T2, q3. 
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14
 
Radiation Transfer through Gases
 

14.1 Gas Radiation Properties 

A volume of gases, such as CO2, H2O (water vapor), CO, NO, NH3, SO2, HCl, 
the hydrocarbons, and the alcohols, can emit and absorb energy at a given 
temperature and pressure. It is important to determine gas radiation proper­
ties such as emissivity and absorptivity for combustion furnace designs [1–5]. 
The combustion products (CO2, water vapor, CO, NO, and NH3) have radi­
ation properties but air (oxygen and nitrogen gases), helium, and hydrogen 
have no radiation properties (transparent to radiation). Assume that there is 
no scattering effect, in order to simplify the analysis. In general, gas emissivity 
and absorptivity increase with pressure and volume, but decrease with tem­
perature; gas emissivity and absorptivity vary with wavelength [1] as shown 
in Figure 14.1. Gases absorb and emit radiation in rather narrow wavelength 
bands rather than in the continuous spectrum exhibited by solid surfaces. For 
real gas, gas absorptivity is not the same as emissivity. But under gray gas 
assumption, absorptivity can be equivalent to emissivity. 

Figure 14.2 shows that gas radiation properties (carbon dioxide, water 
vapor) increase with their partial pressure and geometric mean bean length 
(four times volume divided by surface area), decrease with temperature [1]. 
The results were obtained by applying hemispherical gas radiation to an ele­
ment area at the center of the base, as shown in Figure 14.3. Several other 
geometries that contain gases are also sketched in the figure. In general, gas 
emissivity and absorptivity are relatively low, approximately equivalent to 
an order of magnitude 0.1. 

εc = εc(PcL, Tg) ∼ (14.1)= 0.1 

εw = εw(PwL, Tg) ∼ (14.2)= 0.1. 

At 1 atm total pressure, CO2 has partial pressure Pc and water vapor has 
partial pressure Pw. L, geometric mean bean length, is defined as 

4V 4V∼L = = 0.9 (14.3)
As As 

where V is the volume and As is surface area. 
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FIGURE 14.1 
Band emission of carbon dioxide and water vapor. 

FIGURE 14.2 
Gas radiation properties for water vapor and carbon dioxide. 
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dAj 

dAi 

FIGURE 14.3 
Hemispherical gas radiation to an element area at the center of base. 

The concept of geometric mean beam length for other gas mass geometries 
will be discussed in a later section. 

The total gas emissivity for combined CO2 and H2O can be obtained as 

εg = εc + εw − Δε (14.4) 

where Δε ∼= 0.01 is a correction factor of emissivity for overlap of λ for CO2 
and H2O. 

For gray gas, 

εg = αg (14.5) 

14.1.1 Volumetric Absorption 

Consider radiation heat transfer between two parallel plates at T1 and T2, 
filled with absorption gas at a uniform temperature Tg. Spectral radiation 
absorption in a gas is proportional to the absorption coefficient kλ(1/m) and 
the thickness L of the gas. The radiation intensity decreases with increasing 
distance due to absorption [3], as shown in Figure 14.4. 

dIλ(x) = −kλIλ(x) dx (14.6) 

If Kλ is a constant value for a given gas, we obtain 

dIλ(x) = −kλ dx 
Iλ(x) 



T1 T2 

Iλ(x)Iλ,0 Iλ L 

dx L0 
x 

Performing integration, we obtain 

ln Iλ(x) = −Kλx + C1 

(−Kλx+C1) −KλxIλ(x) = e = C e

at x = 0, C = Iλ,0 

Iλ(x) = Iλ,0 e−Kλx 

at x = L 

Iλ,L = Iλ,0 e−KλL (14.7) 

This exponential decay is called Beer’s law. One can define the transmis­
sivity as 

Iλ,L −KλLτλ = = e (14.8)
Iλ,0 

The absorptivity is 
−KλLαλ = 1 − τλ = 1 − e . 

For gases, α = ελ = emissivity. λ 

If we consider both gas emission and the absorption effect, the intensity 
of the beam is attenuated due to absorption and is augmented due to gas 
emission along the distance [2]. Assume a local thermodynamic equilib­
rium, absorption coefficient will equal emission coefficient, and Equation 14.6 
becomes 

dIλ(x) = [−KλIλ(x) + KλIbλ] dx (14.9) 

where K I is intensity gained due to gas emission, KI (x) is the intensity λ bλ − λ

attenuated due to gas absorption. 
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FIGURE 14.4 
Absorption in a gas. 



Performing integration, we obtain: 

dIλ(x) = −Kλ[Iλ(x) − Ibλ] dx 

d[Iλ(x) − Ibλ] = −Kλ dx [Iλ(x) − Ibλ] 
ln[Iλ(x) − Ibλ] = −Kλx + C1 

(−Kλx+C1) −KλxIλ(x) − Ibλ = e = C e

at x = 0, C = Iλ,0 − Ibλ 

Iλ(x) = Ibλ + (Iλ,0 − Ibλ) e−Kλx 

Iλ(x) = Iλ,0 e−Kλx + Ibλ(1 − e−Kλx) 

at x = L, and we obtain 

Iλ(L) = Iλ,0 e−KλL + Ibλ(1 − e−KλL) = Iλ,0τλ + Ibλελ (14.10) 

In general, the absorption coefficient Kλ is strongly dependent on wave­
length. If we use the averaged overall wavelength of total properties, we 
obtain: Kλ = K, α = 1 − τ, α = ε, Iλ = I, 

= σT4Ibλ = Ib g 
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14.1.2 Geometry of Gas Radiation: Geometric Mean Beam Length 

The typical gas emissivity data were obtained by applying radiation to hemi­
spherical (of radius R) collection of gases radiating to an element of area at 
the center of the base, as shown in Figure 14.3. For other furnace shapes, 
there exists an equivalent mean beam length (L), defined as the radius of 
a gas hemisphere which radiates to unit area at the center of its base the 
same as the average radiation over the area from the actual gas volume shape 
[2]. Consider two surface elements dAi and dAj of an enclosure containing 
an isothermal gray gas at temperature Tg, use total properties, as shown in 
Figure 14.5. The irradiation dGi coming to surface dAi from surface dAj is 

dGi = I− cos θi dwj (14.11) i 

where I− is the intensity approaching surface dAi, using the concept devel­i −KR + Ibg(1 − e−KR), I+oped in Equation 14.10, replacing L by R = Ij 
+ e j the 

intensity leaving surface dAj = Jj/π, Jj the radiosity leaving surface dAj = 
emission and reflection from surface dAj, Ibg the intensity from blackbody 
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θj 

θi 

j 

i 

R 

dGi 

dAi 

dAj 

FIGURE 14.5 
Elemental surface for radiation in an enclosure containing an isothermal gray gas. 

gas emission = Ebg/π = σT4/π, Ebg the blackbody gas emission = σT4, dwj = g g

dAj cos θj/R2, R the distance (beam length) between surface dAi and dAj, and 
K the gas absorption coefficient. 

Therefore, 

cos θi cos θj−KR−KR + Ebg(1 − e )dGi = Jj e dAj dAi 
πR2 

Aj 

1
Gi = dGi dAi 

cos θi cos θj−KRJj e−KR + Ebg(1 − e ) 
πR2 dAj dAi (14.12) 

Ai

1 = 
Ai

Ai Aj 

The distance (beam length) R varies over the surface. For convenience, we 
define a mean surface (mean beam length) Lij, such that 

−KLij + Ebg(1 − e−KLij ) 
1 cos θi cos θj

Gi = Jj e Ai πR2 dAj dAi 

Ai Aj 

= Jj e−KLij + Ebg(1 − e−KLij ) Fij (14.13) 
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Comparing Equations 14.12 and 14.13, we obtain 

e−KLij Fij = 
1 
Ai

e−KR cos θi cos θj 

πR2 dAj dAi (14.14) 

Ai Aj 

If KLij is small, for the optically thin gases low pressure, e−KLij ≈ 1 − KLij, 
Equation 14.14 becomes 

1 cos θi cos θj 
dAj dAi (14.15)

πR 
Lij = 

AiFij
Ai Aj 

(14.16)LijAiFij = LjiAjFji 

If a furnace or combustion chamber can be modeled as a single-surface 
enclosure, that is, with a uniform wall temperature and emission (uniform 
radiosity Js), Ai = As, Fij = 1, Lij = Lji = L Equations 14.13 and 14.14 become 

−KLGs = Js e−KL + Ebg(1 − e ) (14.17) 

1 
e−KR cos θ cos θ 

πR2 dAs dAs (14.18)−KLe = 
As

As As 

If KL is small, for the optically thin gases low pressure, e−KL ∼= 1 − KL, 
Equation 14.18 becomes 

L = 
1 

As

cos θ cos θ 
dAs dAs 

πR 
As As 

4V = (14.19)
As 
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where V is the volume of the gas in the enclosure and As is the enclosure 
surface area. 

In general, the geometric mean beam length (Lij) between surfaces i and j of 
an enclosure should be determined from Equation 14.4, and can be deter­
mined by Equation 14.15 for the optically thin gas (i.e., small absorption 
coefficient K, low pressure, and small enclosure Lij, KLij is small). In addi­
tion, it can be determined from Equations 14.18 and 14.19, respectively, for 
a single-surface enclosure with a uniform temperature and emissivity. How­
ever, in some problems, for the optically thick gases (i.e., KL is not small, 
high pressure), the geometric mean beam length (L) is less than the above-
mentioned values. From experience, the geometric mean beam length has 
been proved to be a good approximation for the actual mean beam length. 
For practice, Equation 14.3, L ∼= 0.9(4V/As), can be used. 
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14.2	 Radiation Exchange between an Isothermal Gray Gas 
and Gray Diffuse Isothermal Surfaces in an Enclosure 

Since we know how to obtain gas radiation properties such as emissivity and 
absorptivity and how to determine the view factor between two surfaces, the 
following shows how to determine radiation heat transfer between surfaces 
in an enclosure with radiation gases. Assume that there are N gray diffuse and 
isothermal surfaces [2,4,5]. This implies that each surface at Ti has uniform 
radiosity Ji (emission plus reflection). Also assume that radiation gases are 
gray gases at uniform pressure and temperature (emissivity = absorptivity) 
and have no scattering effect. Figure 14.6 shows an energy balance on surface 
i and an energy balance between surface i and the rest of enclosure surfaces j 
through gases. 

If given surface i temperature (Ti) and gas temperature (Tg), the follow­
ing shows how to determine heat transfer rate from surface i(qi) and from 
radiation gases (qg). Gas transmissivity is inversely proportional to the gas 
absorption coefficient as 

−κLτg = e	 (14.20) 

where κ = is the total absorption coefficient (predetermined), for example, 
κ = 0.3 m−1, L is the mean beam length (predetermined from Equation 14.3). 

Since gas absorptivity+gas transmissivity = 1, αg + τg = 1. 
Therefore, 

−κL1 − αg = τg = e	 (14.21) 

For given Ti, Tg, how to obtain qi, qg? 
Perform energy balance on surface i, net heat transfer rate = 

radiosity (energy out) − irradiation (energy in) 

qi = Ai( Ji − Gi)	 (14.22) 

FIGURE 14.6 
Radiation heat transfer through gases in an enclosure. 
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and 

Ji = εiEbi + (1 − εi)Gi (14.23) 

Therefore, 
Ebi − Ji qi = (14.24)

(1 − εi)/(Aiεi) 

Performing energy balance between surface i and the rest of surfaces j 
through radiation gases, 

qi = Ai( Ji − Gi) 

= Ai Ji − FijJj(1 − αij,g) − Ebgεi,g + Aiεi,gJi − Aiεi,gJi 

= Aiεi,g( Ji − Ebg) + AiFij(1 − αij,g)( Ji − Jj) (14.25) 

where 

AiGi = AjFjiJj(1 − αg) + Aiεi,gEbg 

= AiFijJj(1 − αg) + Aiεi,gEbg (14.26) 

And from the following relationships: 

Ai(Ji − εi,gJi) = AiJi(1 − εi,g) 

= AiJi(1 − αi,g) 

= AiFij (1 − αi,g)Ji 

Therefore, 

NJi − Ebg Ji − Jj
qi = � � + � � (14.27) 

1 1j=1 
Aiεi,g AiFij(1 − αij,g) ' -v ' ' -v ' 

resistance due to resistance due to view factor 
gas emissivity and gas absorptivity 

If gas has no radiation properties, that is, εg = αg = 0, τg = 1, then the above 
equation returns to the one we have seen before as 

N Ji − Jj
qi = 

1/AiFijj=1 
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14.2.1 Matrix Linear Equations 

Apply method 2—the matrix method for N surfaces enclosure with participat­
ing gases. For case A problem, given temperatures to determine heat fluxes. 
Let the right side of Equation 14.24 = the right side of Equation 14.27 to form 
the matrix as before: 

a11J1 + a12J2 + · · · + a1NJN = c1 

a21J1 + a22J2 + · · · + a2NJN = c2 

a31J1 + a32J2 + · · · + a3NJN = c3 

aN1J1 + aN2J2 + · · · + aNNJN = cN 

Therefore, 

[A] [ J] = [C] 
[ J] = [A]−1[C] 

In addition, combining Equations 14.23 and 14.26, we obtain Ji = emission 
from surface i + reflection from surface j 

⎡ ⎤ 
N 

= εiEbi + (1 − εi) FijJj(1 − αg) + εi,gEbg (14.28)⎣ ⎦ 
j=1 

Similarly, Equation 14.28 can be used to form the matrix [A][ J] = [C] as 
follows: 

J1 = ε1Eb1 + (1 − ε1)[F11J1(1 − αg) + ε1,gEbg + F12J2(1 − αg) + ε1,gEbg + · · · ]  

J2 = ε2Eb2 + (1 − ε2)[F21J1(1 − αg) + ε2,gEbg + F22J2(1 − αg) + ε2,gEbg + · · · ]  

. . .
 

.
 . . 

JN = εNEbN + (1 − εN )[FN1J1(1 − αg) + εN,gEbg 

+ FN2J2(1 − αg) + εN,gEbg + · · · ]  

Once matrix [ J] has been solved, then surface heat transfer rate can be 
determined from Equation 14.24 as 

Ebi − Ji⇒ qi = 
(1 − εi)/(εiAi) 
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If we consider energy balance between gases and enclosure surfaces i, the 
heat transfer rate (energy releases) from gases to the enclosure is 

N N E
 
 bg  Ji 

qg = Aiεi,g(Ebg 
−− Ji) = 

 
(14.29)

1/Aiεi,gi=1 i=1 

However, we still need Equations 14.24 and 14.27 or Equation 14.28 to solve 
Ji using the matrix method. The aforementioned gas radiation problems can 
also be solved by method 1—the electric network analogy method. 

14.2.2 Electric Network Analogy 

Special case 1: Figure 14.7a shows several combustion furnaces that can be 
modeled as radiation between two surface enclosures containing hot radia­
tion gases, if Tg > T1 > T2: By using Equations 14.24, 14.27, and 14.29, Figure 

FIGURE 14.7 
(a) Radiation between hot gases and two-surface enclosures; (b) Electric network for radiation 
from hot gas to two-surface enclosure. 
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14.7b shows the associated electric network from hot gas to surfaces 1 and 2. 
Hot gases release energy to surfaces 1 and 2 through their resistances (with 
gas emissivity less than unity); each surface has its own resistance (with sur­
face emissivity less than unity). There is a reduced view factor between two 
surfaces because gas cannot be completely seen through between two sur­
faces (due to the gas absorption effect). If gas absorptivity is zero, the view 
factor is the same as the one with nonparticipating gases (such as air). Energy 
balance on surfaces 1 and 2 must be performed in order to solve for radiosities 
J1 and J2, respectively. Then, energy releases from hot gases, and heat transfer 
to surfaces 1 and 2 can be determined. 

Special case 2: Figure 14.8 shows that several combustion furnaces can be 
modeled as heat transfer between hot gases and a single gray surface enclo­
sure (assume an enclosure at a uniform temperature). The simple electric 
network can be used to solve this type of problem. 

From Equations 14.24 and 14.28, solve for q1 as 

J1 = ε1Eb1 + (1 − ε1)[ J1(1 − αg) + εgEbg] (14.30) 

q1 = (Eb1 − J1)A1ε1/(1 − ε1) (14.31) 

Substituting J1 into q1, we obtain 

A1ε1αgσTs
4 A1ε1εgσTg

4 

q1 = −
1− (1 − ε1)(1 − αg) 1− (1 − ε1)(1 − αg) 

A1ε1 = (αg σT4 −ε σTg
4) (14.32)

1− (1 − ε1)(1 − αg) 
s g 

Special case 3—Net radiation heat transfer between nongray gases and a single 
black enclosure: To further simplify the problem, assume that the whole furnace 

1 

1 
1 

1 
1 

Natural 
gases 

1 

1-gray or black surface 

FIGURE 14.8 
Radiation between hot gases and single-surface enclosure. 



  

Gray gases Tg

CO2 + H2O
 

Black six-surface 
Ts As 
εs = αs = 1 

surface is a blackbody at a uniform temperature as shown in Figure 14.9. Net 
heat transfer rate = hot gas emission and absorbed by the black surface-black 
surface emission and absorbed by gases [1]. 

qnet = (εgAsσT4 
g) · αs − (εsAsσT4 

s ) · αg = Asσ(εgT4 
g − αgT4 

s ) (14.33) ' -v ' ' -v ' 
emission 
from the gas 

emission 
from the surface 

For gray gas, 

εg = αg (Otherwise, εg = αg) 

and for nongray gas 

εg = εc + εw − Δε 

αg = αc + αw − Δα 

Δα = Δε 

For water vapor, 

αw = Cw 

�
Tg 

Ts 

�0.45 

· εw 

� 
Ts, PwL 

Ts 

Tg 

� 
(14.34) 

For carbon dioxide, 

αc = Cc 

�
Tg 

Ts 

�0.65 

· εc 

� 
Ts, PcL 

Ts 

Tg 

� 
(14.35) 
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FIGURE 14.9 
Radiation between hot gases and single black enclosure. 

Note that the problem will be more complicated if we consider radiation 
exchange between nongray gases and a single gray enclosure, or radiation 
exchange between nongray gases and an N-surfaces enclosure, where N = 
1, 2, 3, . . . , N. 
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FIGURE 14.10 
A gray enclosure and a refractory surface filled with a gray gas. 

Special case 4—Gray enclosure filled with a gray gas: Figure 14.10 shows a 
furnace consisting of a hot or a cold gray surface (1), a refractory surface R, and 
a gray gas, g, where each element is assumed to be at a uniform temperature 
−T1, TR, and Tg; determine the radiation heat transfer between the surface (1) 
and gas as 

σ(T1
4 − T4) 

q1g = 
g

(14.36)
(1 − ε1)/A1ε1 + 1/{A1εg1 + 1/[1/(ARεgR) + 1/(A1F1Rτ1gR)]} 

Special case 5—Two gray surfaces with a gray gas: Figure 14.11 shows a furnace 
consisting of a hot gray surface (1), cold gray surface (2), a refactory surface 
R, and a gray gas g; determine the radiation heat transfer [1]. 

Real furnace applications—The zone method: Figure 14.12 shows the concept of 
the zone method for real-furnace applications proposed by Hottle (MIT) [5]. 
In a real furnace, combustion gases as well as furnace surface temperatures are 
nonuniform. The problem can be solved by dividing gases and surfaces into 
a number of gas zones and surface zones, respectively. Energy balance can 
be performed on each subsurface (each zone) and between each subsurface 
and the rest of subsurfaces (zones) through gas zones. View factors need 
to be calculated between subsurfaces too. The solution procedures are quite 
complicated. 

FIGURE 14.11 
An enclosure of a gray hot surface, a gray cold surface, and a refractory surface. 
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Air fuel 

Surface zones 

Gas zones 

Air fuel 

Surface zones 

Gas zones 

FIGURE 14.12 
Concept of zone method for real furnace heat transfer problem. 

Zone for gases Tg,i = Number of gas zones, a uniform temperature in 
each zone 

Zone for surfaces Ti = Number of surface zones, a uniform temperature 
in each zone 

The problem will be even more complicated if convection effects are con­
sidered, which is up to 20% of heat transfer rate for a circulation well-mixed 
furnace. In reality, soot formation and radiation can further make the problem 
harder to model. 

14.3	 Radiation Transfer through Gases with Nonuniform 
Temperature 

14.3.1 Cryogenic Thermal Insulation 

In some applications, such as cryogenic thermal insulation, radiation heat 
is transferred from surface 1 to surface 2 through participating gases with 
varying temperature as shown in Figure 14.13. For a simple 1-D problem, 

FIGURE 14.13 
Radiation heat transfer through gases with varying temperature. 



� 

� 

∂I = 0 
∂φ 

∂I = 0 
∂θ 

ebλ(y) rλGλ(y)
dI+(θ) = −kλI+ ds − rλI+ ds + kλ ds + ds (14.37) λ λ λ π 4π 

where kλ is the absorption coefficient, rλ the scattering coefficient, ebλ the 
emission power, and Gλ(y) the scattering into the area ds from surrounding. 

Also dI−(θ) = . . . .λ 

The net heat flux: 

1. qλ = Iλ(τλ, θ) cos θ dω 

where Iλ = I+ − Iλ 
− , τλ—Number of mean free path, λ 

y 

τλ = (1/λp) dy ⇒ τL = (L/λp) = Lβλ 

0 

With λp the mean free path, βλ volumetric extinction coefficient βλ = 
kλ + rλ. 

2. dq/dy = 0, that is, q = const. if only consider radiation, no conduc­
tion, no convection. 

Boundary conditions:
 
Radiosity at surface 1,
 

J1 ε1σT1
4 + (1 − ε1)G1I+(0) = = 

π π 

J2 ε2σT2
4 + (1 − ε2)G2I−(L) = = 

π π 

From the above (1), (2), and BCs, a solution can be achieved by an 
exponential or numerical method [6]. 
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gray gas temperature changes from gray diffuse surface 1 to surface 2 [5,6]. 

• Nonuniform gas temperature: Cryogenic thermal insulation. 
• For simple case: 1-D gray gas, gray and diffuse surfaces. 

14.3.2 Radiation Transport Equation in the Participating Medium 
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Experimental 
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For 1-D, gray gases, gray and diffuse surface, radiation only, the heat flux 
( )

σ T1
4 − T4 Q 

q = 2 (14.38)
1 + Q ((1/ε1) + (1/ε2) − 2) 

q 1 
Q ≡ ≡ (14.39)

J1 − J2 1 + (3/4)τL 

σT4(τ) − J2 
φ(τ) ≡ (14.40)

J1 − J2 

where Q is the nondimensional heat flux, φ(τ) is the nondimensional 
temperature profile, as sketched in Figure 14.14. 

Temperature profile: 

φ(τ) = 1 − 
1 
2 

Q − 
3 
4 

Qτ (14.41) 

Physical significances: 
Special case (a)—Optical thin medium: τL = Lβλ « 1 ≈ 0, or system dimension 

« mean free path, then, Q → 1 and the physical heat flux is 
( )

σ T1
4 − T4 

⇒ q = 2 (14.42)
(1/ε1) + (1/ε2) − 1 

This equals to surface radiation problem. 
Special case (b)—Optical thick medium: β is large or τL → ∞, then Q = 

(4/3)(1/τL) is small, ( ) 4 
q = σ T1

4 − T4 1 
(14.43)2 3 τL 

If considering black surfaces, ε1 = ε2 = 1, from Equations 14.39 through 
14.41, the temperature profile between two surfaces with participating 
medium can be obtained and sketched in Figure 14.15, 

a. φ = 1/2 = (T4 − T2
4)/(T1

4 − T2
4) for the optical thin medium. 

b. φ = 1 − (τ/τL) = (T4 − T2
4)/(T1

4 − T2
4) for the optical thick medium. 
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FIGURE 14.14 
Nondimensional temperature and heat flux profiles. 



If considering conduction and radiation, 

q = qc + qr = k 
T1 − T2 

L 
+ 

σ 
(
T4 

1 − T4 
2 
) 

Q 
1 + Q((1/ε1) + (1/ε2) − 2) 

(14.44) 

If considering convection and radiation, 

q = qconv + qr = h̄Δ ̄T + 
σ 

(
T4 

1 − T4 
2 
) 

Q 
1 + Q((1/ε1) + (1/ε2) − 2) 

(14.45) 
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FIGURE 14.15 
Temperature profile between two black surfaces through participating gas. 

Remarks 

In the undergraduate-level heat transfer, from charts, students are expected 
to know how to read the emissivity and absorptivity values of water vapor 
and carbon dioxide in a furnace at given size, temperature, and pressure, 
and then apply these properties to calculate radiation transfer between these 
gases and the furnace wall, assuming the blackbody furnace wall at a uniform 
temperature. 

In the intermediate-level heat transfer, this chapter focuses on how to 
derive volumetric absorption; geometric mean beam length; radiation trans­
fer between gray gases at a uniform temperature and an N-surfaces furnace 
with each surface at different gray diffuse uniform temperature conditions. 
Students are expected to know how to analytically solve gas radiation prob­
lems by using the matrix linear equations method for an N-surfaces furnace 
with various surface thermal BCs. By using electric network analogy, this 
chapter has also provided several relevant engineering applications such as 
radiation transfer between gas at a high uniform temperature and one-surface 
furnace assuming the gray diffuse surface at a low uniform temperature; 
or between gas at a high uniform temperature and two-surfaces furnace 
assuming gray diffuse surfaces with each surface at different low uniform 
temperatures. 

This chapter does not go into much detail on real-furnace applications 
with varying gas temperature and surface temperature by using the zon­
ing method. We only deal with the 1-D varying gas temperature, steady-state, 
and gray diffuse surface problem. However, in real-life applications, there are 
many gas radiation problems involving flow convection; 2-D or 3-D varying 
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gas temperature; cylindrical or spherical furnace geometry; nongray gases; 
nongray nondiffuse surfaces; gases with scattering particulates and soot for­
mation; and sphere fillet or fiber porous medium. These topics belong to 
advanced radiation transfer. 

PROBLEMS 

14.1. A hemispherical furnace is shown in Figure 14.7. If the furnace 
contains CO2 + N2 gases at 1 atm pressure and temperature Tg, 
determine the total radiation heat transfer from gases to sur­
faces 1 and 2 (assume Tg > T1 > T2, and make other necessary 
assumptions). 
a.	 Based on the analogy of electric resistance network, draw a 

radiation heat transfer network from gases to surfaces 1 and 2. 
b. Determine the total radiation from gases to surfaces 1 and 2. 

The final solutions should be the function of given tempera­
tures, surface area, and radiation properties. 

14.2. A hemispherical furnace is shown in Figure 14.7. 
a.	 If the furnace contains N2 gas at 5 atm pressure, determine the 

net radiation heat transfer from surface 1 to surface 2 (assume 
T1 > T2, and make other necessary assumptions). 

b. If the furnace contains CO2 + N2 gases at 5 atm pressure and 
temperature Tg, determine total radiation heat transfer from 
gases to surfaces 1 and 2 (assume Tg > T1 > T2, and make 
other necessary assumptions). 

c.	 Reconsider (b), if surface 1 now is a reradiating surface, deter­
mine the total radiation heat transfer to the surface 2 of the 
furnace. In this new condition, comment on whether the radi­
ation transfer to surface 2 will be higher, the same, or lower 
than that of (b) (make necessary assumptions). 

14.3. A long hemicylindrical furnace is shown. 
a.	 Determine the net radiation heat transfer from surface 1 to 

surface 2, q12. 
b. If T2 = T2(θ), describe how to determine q12. 
c.	 Consider combustion gray gas with a uniform temperature Tg 

and emissivity εg inside the furnace, and determine the total 
radiation heat transfer from gas to surfaces 1 and 2, qg. Assume 
T1, T2 constant. 

14.4. A hemispherical furnace, with a reradiating floor and a water-
cooled ceiling, contains CO2 and N2 gases at 1 atm pressure 
and 1000◦C. Take ε1 = 0.8, ε2 = 0.7, D = 1 m, and T2 = 500◦C. 
Determine the radiant heat transfer to the ceiling of the furnace. 
Assume gray gases. 

Given: σ = 5.67 × 10−8(w/m2K4). 

Volume of a sphere = (4/3)π((1/2)D 2 )

Surface of a sphere = 4π((1/2)D 2 )

14.5. A hemispherical furnace, with a reradiating floor and a water-
cooled ceiling, contains 2CO2 and 8N2 gases at 1 atm pressure 
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and 1000◦C. Take ε1 = 0.8, ε2 = 0.7, D = 1 m, and T2 = 500◦C. 
Determine the radiant heat transfer to the ceiling of the furnace. 

14.6. A cryogenic storage chamber has double walls for the purpose of 
insulation against heat loss. The gap between the walls is filled 
with a gas whose properties are 

Thermal conductivity: K(T) = 2 × 10−7 × T◦K (KW/(m − 
◦C)) 

Volumetric radiation extinction coefficient: = 10−6 m2 3β ( /m ) 

a.	 Determine the rate of heat loss if one wall is at 500◦K and the 
other wall is at 100◦K. Take ε1 = ε2 = 0.1, L = 0.2 m. 

b. If β = 100 (m2/m3), what would be the result in (a)? 
14.7. A cryogenic storage chamber has double walls for the purpose of 

insulation against heat loss. The gap between the walls is filled 
with a gas whose properties are 

Thermal conductivity: K(T) = 1×10−7 × T◦K(KW/(m−◦C)) 

Volumetric radiation extinction coefficient: β = 10−6 2 3(m /m ) 

The walls are made of a polished metal, with an emissivity of 0.2. 
The gap between the walls is 0.5 m. 
a.	 Determine the rate of heat loss if one wall is at 300◦K and the 

other wall is at 100◦K. 
b. If β = 100 (m2/m3), what would be the result in (a)? 

14.8. A cryogenic storage chamber has double walls for the purpose of 
insulation against heat loss. The gap between the walls is filled 
with a gas whose properties are 

Thermal conductivity: K(T) = 3 × 10−7 × T◦K(KW/(m − ◦C)) 

Volumetric radiation extinction coefficient: β = 10−6 (m2/m3) 

The walls are made of a polished metal, with an emissivity of 0.1. 
The gap between the walls is 0.3 m. 
a.	 Determine the rate of heat loss if one wall is at 400◦K and the 

other wall is at 100◦K. 
b. If β = 100 (m2 3/m ), what would be the result in (a)? 

14.9. Agas turbine combustion chamber may be approximated as a long 
tube of 0.4 m diameter. The combustion gas is at a pressure and 
temperature of 1 atm and 1000◦C, respectively, while the chamber 
surface temperature is 500◦C. If the combustion gas contains CO2 
and water vapor, each with a mole fraction of 0.15, what is the 
net radiative heat flux between the gas and the chamber surface, 
which may be approximated as a blackbody? 

14.10. Consider a hemispherical furnace, with a reradiating floor and a 
water-cooled ceiling, contains 2CO2 + 8N2 gases at 1 atm pressure 
and 1200◦C. Take ε1 = 0.9, ε2 = 0.6, D = 1.5 m, and T2 = 350◦C. 
Determine the radiant heat transfer to the ceiling of the furnace. 

14.11. Consider a hemispherical furnace radiation heat transfer problem. 
The furnace floor (surface 1) has area A1 and emissivity ε1 at tem­
perature T1, whereas the furnace enclosure (surface 2) has area 
A2 and emissivity ε2 at temperature T2. If the furnace contains 
CO2 + N2 gases at 1 atm pressure and temperature Tg, determine 
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the total radiation heat transfer from gases to surfaces 1 and 2 
(assume Tg > T1 > T2, and make other necessary assumptions). 
a.	 Based on the analogy of electric resistance network, draw a 

radiation heat transfer network from gases to surfaces 1 and 2. 
b. Determine the total radiation from gases to surfaces 1 and 2. 

The final solutions should be the function of given tempera­
tures, surface area, and radiation properties. 

14.12. Consider a hemispherical furnace. The hemispherical furnace wall 
has surface area A1, emissivity ε1, at temperature T1, whereas the 
furnace floor has surface area A2, emissivity ε2, at temperature 
T2. If the furnace contains CO2+N2 gases at 10 atm pressure and 
temperature Tg, determine the total radiation heat transfer from 
gases to surfaces 1 and 2 (assume Tg > T2 > T1, and make other 
necessary assumptions). Assume that the gas emissivity is εg. 
a.	 Based on the analogy of electric resistance network, draw a 

radiation heat transfer network from gases to surfaces 1 and 2. 
b. Determine the total radiation from gases to surfaces 1 and 2. 

The final solutions should be the function of given tempera­
tures, surface area, and radiation properties. 

14.13. For a cylindrical furnace (top wall 1, bottom wall 2, side wall 3) 
with hot gray gases, solve the following problems by using the 
matrix method. 
a.	 Given T1, T2, T3, Tg, determine q1, q2, q3, qg. 
b. Given q1, q2, q3, qg, determine T1, T2, T3, Tg. 
c.	 Given T1, T2, q3, Tg, determine q1, q2, T3, qg. 
d. Given q1, q2, T3, Tg, determine T1, T2, q3, qg. 
e.	 Given T1, T2, T3, qg, determine q1, q2, q3, Tg. 

14.14. For a cubic furnace (top wall 1, bottom wall 2, four side wall 3) 
with hot gray gases, solve the following problems by using the 
matrix method if the side wall is a reradiating surface. 
a.	 Given T1, T2, TR, Tg, determine q1, q2, qR, qg. 
b. Given q1, q2, qR, qg, determine T1, T2, TR, Tg. 
c.	 Given T1, T2, qR, Tg, determine q1, q2, TR, qg. 
d. Given q1, q2, TR, Tg, determine T1, T2, qR, qg. 
e.	 Given T1, T2, TR, qg, determine q1, q2, qR, Tg. 

References 

1.	 W. Rohsenow and H. Choi, Heat, Mass, and Momentum Transfer, Prentice-Hall, Inc., 
Englewood Cliffs, NJ, 1961. 

2.	 A. Mills, Heat Transfer, Richard D. Irwin, Inc., Boston, MA, 1992. 
3.	 F. Incropera and D. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition, 

John Wiley & Sons, New York, NY, 2002. 
4.	 R. Siegel and J. Howell, Thermal Radiation Heat Transfer, McGraw-Hill, New York, 

NY, 1972. 
5.	 H. Hottel and A. Sarofim, Radiative Transfer, McGraw- Hill, New York, NY, 1967. 
6.	 J. Chen, Conduction and Radiation Heat Transfer, Class Notes, Lehigh University, 

1973. 



http://taylorandfrancis.com


� � 

� 

� 

� � 

2 3 4x x x xxe = 1 + + + + + · · ·  
1! 2! 3! 4! 

3 5 7x x x
sin x = x − + − + · · ·  

3! 5! 7! 
2 4 6 8x x x x

cos x = 1 − + − + − · · ·  
2! 4! 6! 8! 

3 5 7x x x
sinh x = x + + + + · · ·  
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d sin x = cos x dx; d cos x = − sin x dx
 

d sinh x = cosh x dx; d cosh x = + sinh x dx
 

sin x dx = − cos x + c; cos x dx = sin x + c 

1 1 1 1
sin2 x dx = −  sin x cos x + x + c = −  sin 2 x + x + c

2 2 4 2 

1 1 1 12cos x dx = sin x cos x + x + c = sin 2x + x + c
2 2 4 2 

sinh x dx = cosh x + c; cosh x dx = sinh x + c 

Appendix A: Mathematical Relations 
and Functions 

A.1 Useful Formulas 
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1 1
sinh2 x dx = sinh x cosh x − x + c

2 2

1 1
cosh2 x dx = sinh x cosh x + x + c

2 2 
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A.2 Hyperbolic Functions [1] 

x sinh x cosh x tanh x 

0.00 0.0000 1.0000 0.00000 
0.10 0.1002 1.0050 0.09967 
0.20 0.2013 1.0201 0.19738 
0.30 0.3045 1.0453 0.29131 
0.40 0.4108 1.0811 0.37995 

0.50 0.5211 1.1276 0.46212 
0.60 0.6367 1.1855 0.53705 
0.70 0.7586 1.2552 0.60437 
0.80 0.8881 1.3374 0.66404 
0.90 1.0265 1.4331 0.71630 

1.00 1.1752 1.5431 0.76159 
1.10 1.3356 1.6685 0.80050 
1.20 1.5095 1.8107 0.83365 
1.30 1.6984 1.9709 0.86172 
1.40 1.9043 2.1509 0.88535 

1.50 2.1293 2.3524 0.90515 
1.60 2.3756 2.5775 0.92167 
1.70 2.6456 2.8283 0.93541 
1.80 2.9422 3.1075 0.94681 
1.90 3.2682 3.4177 0.95624 

2.00 3.6269 3.7622 0.96403 
2.10 4.0219 4.1443 0.97045 
2.20 4.4571 4.5679 0.97574 
2.30 4.9370 5.0372 0.98010 
2.40 5.4662 5.5569 0.98367 

2.50 6.0502 6.1323 0.98661 
2.60 6.6947 6.7690 0.98903 
2.70 7.4063 7.4735 0.99101 



(continued) 
x sinh x cosh x tanh x 

2.80 
2.90 

8.1919 
9.0596 

8.2527 
9.1146 

0.99263 
0.99396 

3.00 
3.50 
4.00 
4.50 
5.00 

10.018 
16.543 
27.290 
45.003 
74.203 

10.068 
16.573 
27.308 
45.014 
74.210 

0.99505 
0.99818 
0.99933 
0.99975 
0.99991 

6.00 
7.00 
8.00 
9.00 
10.00 

201.71 
548.32 
1490.5 
4051.5 
11013 

201.72 
548.32 
1490.5 
4051.5 
11013 

0.99999 
1.00000 
1.00000 
1.00000 
1.00000 

� � 

� � 

(x/2)2 (x/2)4 
J0(x) = 1 − + − · · ·  

(1!)2 (2!)2 

x (x/2)3 (x/2)5 
J1(x) = − + − · · ·  

2 1!2! 2!3! 
. . . 

(x/2)v (x/2)2 (x/2)4 
Jv(x) = 1 − + − · · ·  

Γ(v + 1) 1!(v + 1) 2!(v + 1)(v + 2) 

(x/2)2 (x/2)4 
I0(x) = 1 + + + · · ·  

(1!)2 (2!)2 

x (x/2)3 (x/2)5 
I1(x) = − + − · · ·  

2 1!2! 2!3! 
. . . 

(x/2)v (x/2)2 (x/2)4 
Iv(x) = 1 + + + · · ·  

Γ(v + 1) 1!(v + 1) 2!(v + 1)(v + 2) 
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A.3 Bessel Functions 

A.3.1 Bessel Functions and Properties [2] 

Behaviors of Bessel functions for small arguments: 



� 

� 

� � 

� � � 

Behaviors of Bessel functions for large arguments: 

( )2 π vπ
Jv(x) ≈ cos x − − 

πx 4 2 
( )2 π vπ

Yv(x) ≈ sin x − − 
πx 4 2 

ex 4v2 − 1
Iv(x) ≈ √ 1 − 

2πx 8x 

π −x 4v2 − 1
Kv(x) ≈ e 1 +

2x 8x 
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Properties of Bessel functions: 

d d [J0(mx)] = −mJ1(mx), [Y0(mx)] = −mY1(mx)
dx dx
 
d d
 [I0(mx)] = mI1(mx), [K0(mx)] = −mK1(mx)

dx dx 

A.3.2 Bessel Functions of the First Kind [1] 

x J0(x) J1(x) 

0.0 1.0000 0.0000 
0.1 0.9975 0.0499 
0.2 0.9900 0.0995 
0.3 0.9776 0.1483 
0.4 0.9604 0.1960 

0.5 0.9385 0.2423 
0.6 0.9120 0.2867 
0.7 0.8812 0.3290 
0.8 0.8463 0.3688 
0.9 0.8075 0.4059 

1.0 0.7652 0.4400 
1.1 0.7196 0.4709 
1.2 0.6711 0.4983 
1.3 0.6201 0.5220 
1.4 0.5669 0.5419 

1.5 0.5118 0.5579 
1.6 0.4554 0.5699 
1.7 0.3980 0.5778 
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(continued) 
x J0(x) J1(x) 

1.8 0.3400 0.5815 
1.9 0.2818 0.5812 

2.0 0.2239 0.5767 
2.1 0.1666 0.5683 
2.2 0.1104 0.5560 
2.3 0.0555 0.5399 
2.4 0.0025 0.5202 

A.3.3 Modified Bessel Functions of the First and Second Kinds [1] 

x e−xI0(x) e−xI1(x) exK0(x) exK1(x) 

0.0 1.0000 0.0000 ∞ ∞ 
0.2 0.8269 0.0823 2.1407 5.8334 
0.4 0.6974 0.1368 1.6627 3.2587 
0.6 0.5993 0.1722 1.4167 2.3739 
0.8 0.5241 0.1945 1.2582 1.9179 
1.0 0.4657 0.2079 1.1445 1.6361 
1.2 0.4198 0.2152 1.0575 1.4429 
1.4 0.3831 0.2185 0.9881 1.3010 
1.6 0.3533 0.2190 0.9309 1.1919 
1.8 0.3289 0.2177 0.8828 1.1048 
2.0 0.3085 0.2153 0.8416 1.0335 
2.2 0.2913 0.2121 0.8056 0.9738 
2.4 0.2766 0.2085 0.7740 0.9229 
2.6 0.2639 0.2046 0.7459 0.8790 
2.8 0.2528 0.2007 0.7206 0.8405 
3.0 0.2430 0.1968 0.6978 0.8066 
3.2 0.2343 0.1930 0.6770 0.7763 
3.4 0.2264 0.1892 0.6579 0.7491 
3.6 0.2193 0.1856 0.6404 0.7245 
3.8 0.2129 0.1821 0.6243 0.7021 
4.0 0.2070 0.1787 0.6093 0.6816 
4.2 0.2016 0.1755 0.5953 0.6627 
4.4 0.1966 0.1724 0.5823 0.6453 
4.6 0.1919 0.1695 0.5701 0.6292 
4.8 0.1876 0.1667 0.5586 0.6142 
5.0 0.1835 0.1640 0.5478 0.6003 
5.2 0.1797 0.1614 0.5376 0.5872 
5.4 0.1762 0.1589 0.5279 0.5749 

continued 
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(continued) 
x e−xI0(x) e−xI1(x) exK0(x) exK1(x) 

5.6 0.1728 0.1565 0.5188 0.5633 
5.8 0.1696 0.1542 0.5101 0.5525 
6.0 0.1666 0.1520 0.5019 0.5422 
6.4 0.1611 0.1479 0.4865 0.5232 
6.8 0.1561 0.1441 0.4724 0.5060 
7.2 0.1515 0.1405 0.4595 0.4905 
7.6 0.1473 0.1372 0.4476 0.4762 
8.0 0.1434 0.1341 0.4366 0.4631 
8.4 0.1398 0.1312 0.4264 0.4511 
8.8 0.1365 0.1285 0.4168 0.4399 
9.2 0.1334 0.1260 0.4079 0.4295 
9.6 0.1305 0.1235 0.3995 0.4198 
10.0 0.1278 0.1213 0.3916 0.4108 

A.4 Gaussian Error Function [1] 

η erf η η erf η η erf η 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.32 
0.34 

0.00000 
0.02256 
0.04511 
0.06762 
0.09008 
0.11246 
0.13476 
0.15695 
0.17901 
0.20094 
0.22270 
0.24430 
0.26570 
0.28690 
0.30788 
0.32863 
0.34913 
0.36936 

0.36 
0.38 
0.40 
0.44 
0.48 
0.52 
0.56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
0.84 
0.88 
0.92 
0.96 
1.00 

0.38933 
0.40901 
0.42839 
0.46622 
0.50275 
0.53790 
0.57162 
0.60386 
0.63459 
0.66378 
0.69143 
0.71754 
0.74210 
0.76514 
0.78669 
0.80677 
0.82542 
0.84270 

1.04 
1.08 
1.12 
1.16 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 

0.85865 
0.87333 
0.88679 
0.89910 
0.91031 
0.93401 
0.95228 
0.96611 
0.97635 
0.98379 
0.98909 
0.99279 
0.99532 
0.99814 
0.99931 
0.99976 
0.99992 
0.99998 
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The Gaussian error function is defined as 

η 

2 2−uerf η = √ e du 
π 

0 

The complementary error function is defined as 

erfcη ≡ 1 − erf η 

x 
η = √ 

4αt 
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A 

Ablation, 91
 
at flat wall surface, 91
 
problems, 89
 
velocity, 91, 92, 93
 

Absorption coefficient, 277
 
gas transmissivity and, 282
 
wavelength and, 279
 

Absorptivity, 224, 225, 275. See also
 
Emissivity
 

brick wall, 231
 
gas, 278, 286
 

Adiabatic surface, 9, 10, 11
 
at midplane, 19
 

Algebraic method, 243, 253, 255
 
Angle factor. See View factor
 
Atmosphere gases, 231–232
 

B 

Band emission, 276
 
Band model, 270
 
BC. See Boundary condition (BC)
 
Beer’s law, 278
 
Bessel function solutions, 27
 

characteristics, 30, 31
 
heat generation problem, 28
 
heat loss problem, 29
 

Biot number, 72, 115
 
Blackbody, 225
 
Blackbody radiation, 225, 267
 

fraction method, 228
 
functions, 229–230
 
gas emission, 280
 
matrix linear equations, 267
 
in spectral band, 228
 
spectral blackbody emissive
 

power, 226
 
Stefan–Boltzmann law, 226
 
surface radiation properties, 223
 

Boundary condition (BC), 3, 9
 
constant surface temperature, 74
 

convective, 10, 23, 74
 
flat plate heat conduction, 18, 19
 
heat conduction equation, 6
 
surface temperature, 9
 
thin rectangular plate, 60
 
2-D heat conduction, 12, 45, 46, 50, 51
 

Boundary layer, 125
 
approximations, 135
 
concepts, 125–129
 
conservation equations, 137
 
functions, 145
 
hydrodynamic, 125, 126
 
integral approximate method, 153
 
internal forced convection, 167
 
laminar, 128
 
natural convection, 186
 
Reynolds analogy, 138
 
similarity, 136–138
 
thermal, 2, 126, 127, 129, 146, 173
 
turbulent, 128, 195, 196
 
velocity, 2
 
velocity profile, 205, 206
 
wall temperature profile, 211
 

C 

Carbon dioxide
 
band emission, 276
 
gas radiation properties, 276
 
radiation between hot gases and, 287
 

Combustion
 
furnaces, 285
 
products, 275
 

Conduction, 1. See also Heat conduction
 
Bessel function solutions, 27
 
through circular tubewalls, 15, 16
 
critical radius of insulation, 17
 
cylindrical rod heat, 20
 
finite difference method, 119
 
flat plate heat, 18, 19
 
Fourier’s conduction law, 1
 
with heat generation, 18
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Conduction (Continued)
 
heat rate, 7
 
multidimensional heat, 54
 
1-D, 2, 22
 
one-dimensional, 22
 
through plane walls, 13, 14
 
radiation effect, 26, 30
 
thermal resistance, 14
 
through thermal–electrical network
 

analogy, 14
 
2-D conduction equation, 45
 
with uniform cross-sectional area, 21
 

Conservation of energy, 130, 135,
 
152, 199
 

in differential control volume, 6, 7
 
fully developed flow, 209
 
general form, 6
 
for incompressible flow, 136
 
similarity, 146, 188
 
steady-state constant properties, 134
 
uniform wall temperature, 175
 
unsteady state, 134
 

Conservation of mass, 130, 131
 
boundary layer, 150
 
integral method, 151
 
Reynolds time-averaged method, 197


Conservation of momentum, 130,
 
132, 133
 

Continuity equation. See Conservation
 
of mass
 

Contour integration, 251–253
 
Convection, 2
 

advanced heat, 150, 179
 
boundary condition, 23, 51
 
boundary on surface nodes, 106
 
external forced, 141
 
heat convection equations, 130
 
heat transfer, combined modes of, 4, 5
heat transfer coefficient, 3
 
internal forced, 167
 
natural, 185
 
Newton’s cooling law, 2
 
surface, 9, 11
 
thermal resistance, 14
 
type, 3
 

Crossed-string method, 243–246
 
Cryogenic thermal insulation, 289–290
 
Cylindrical coordinate system, 8
 

heat conduction equation, 8
 
2-D heat conduction, 53–54
 

Cylindrical medium, 20
 

D 

Differential element
 
hemispheric radiation from, 223
 
radiation exchange, 268
 

Diffuse surface, 224
 
blackbody, 225
 
brick wall, 231
 

Dimensional analysis. See Boundary
 
layer—similarity
 

Dissipation function, 130
 
Double-area integration, 243, 250
 

E 

Earth’s atmosphere, 231
 
Eddy diffusivity, 200, 201
 
Electric network analogy, 259
 

furnaces with reradiating surface, 262
 
gas radiation problems, 285–289
 
radiant heater panel problem, 263
 
radiation between two-surface,
 

259, 261
 
radiation heat transfer
 

applications, 259
 
 reradiating surfaces, 261
 

Electric network analogy, 259–263
 
Emissivity, 224. See also Surface
 

radiation—properties
 
average, 227, 230
 
gas, 275, 277, 279
 
of metal, 4
 
monochromatic, 224
 
surface, 4, 227
 

Enclosure
 
elemental surface for radiation, 280
 
energy balance, 271
 


 of gray hot surface, 288
 
radiation exchange, 257, 282
 
Reciprocity rule, 240
 
three-surface, 247, 265
 
two-surface, 260
 
view factor for N-surface, 240
 

Energy
 
integral equation, 152, 210
 
storage, 7, 117
 

Energy balance, 264
 
at boundary nodes, 106
 
in enclosure, 271
 
finite-difference, 105, 114
 
at interior nodes, 106, 117
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radiation, 224, 225
 
radiation flux and, 26, 72
 
of small control volume, 22, 27
 

Energy conservation, 6, 152
 
in 3-D system, 8
 

Energy equation. See Conservation of
 
energy
 

Energy exchange, 258
 
Enthalpy/energy equation, 199–200
 
Exchange factor, 270
 
External forced convection, 141, 157–166.
 

See also Internal forced
 
convection; Natural convection
 

integral method, 150
 
similarity solution, 141–148
 

F 

Fin
 
conduction through, 21
 
efficiency, 25–26, 30
 
energy balance, 22
 
heat transfer rate, 21, 24
 
performance, 25
 
temperature distribution, 22
 

Finite heat flux, 9, 10
 
Finite-difference energy balance method,
 

105, 119
 
energy balance equation number, 105
 
explicit method, 114–116, 118
 
implicit method, 117, 118
 
transient heat conduction, 114, 117
 
2-D heat conduction, 105–113
 
uniform heat flux, 107
 

Flow conditions, 3
 
Fourier’s conduction law, 1
 

conduction heat rate evaluation, 7
 
Fraction method, 228
 
Freezing—Neumann solution, 87–89
 

G 

Gas
 
absorption in, 278
 
absorptivity, 275, 282, 286
 
combustion furnaces, 285
 
elemental surface for radiation, 280
 
emissivity, 275, 277, 279
 
geometric mean beam length, 275,
 

279–281
 
hemispherical gas radiation, 277
 

matrix linear equations, 284–285
 
net heat transfer rate, 287
 
optically thick, 281
 
optically thin, 281
 
radiation between hot, 285, 286, 287
 
radiation heat transfer, 282
 
radiation properties, 275
 
radiation transfer through, 275,
 

289–292
 
spectral radiation absorption, 277
 
transmissivity, 282
 
volumetric absorption, 277
 
zone method, 288–289
 

Gas radiation, 221
 
geometry of, 279
 
hemispherical, 277
 
properties, 275–281
 

Geometric mean beam length, 275,
 
279, 281
 

Grashof number, 185, 187
 
Gray diffuse
 

isothermal surface, 257–259, 282–283
 
nonisothermal surfaces, 268–269
 

Gray gas
 
absorptivity and, 275, 278
 
gray enclosure filled with, 288
 
net heat transfer rate, 287
 
surfaces with, 288
 
temperature, 290
 
total emissivity, 277, 287
 

Gray gas, isothermal
 
elemental surface for radiation, 280
 
radiation exchange, 282–283
 

Gray surface, 224. See also Diffuse surface
 
emissive power, 226
 
with gray gas, 288
 
radiation exchange, 270
 

H 

Heat conduction, nonhomogeneous, 56
 
Heat conduction. See also Heat
 

conduction equations
 
ablation, 91–93
 
cylindrical rod, 20
 
finite-difference energy balance
 

method, 105
 
flat plate, 18, 19
 
freezing and solidification problems,
 

87–89
 
melting and ablation problems, 89
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Heat conduction (Continued)
 
with moving boundaries, 86
 
nonhomogeneous, 56
 
numerical analysis, 105, 121–123
 
1-D, 2, 13
 
through solid medium, 6
 
3-D, 54
 
transient, 69, 117–121
 
2-D, 12, 45
 

Heat conduction equations, 1, 10, 12
 
boundary conditions, 9
 
conduction, 1
 
convection, 2
 
derivations of, 6
 
Fourier’s conduction law, 1
 
general heat conduction equations, 6
 
heat transfer combined modes, 4
 
initial conditions, 9
 
Newton’s cooling law, 2
 
1-D, 13, 18, 20, 79, 114
 
radiation, 3
 
simplified, 10
 
Stefan–Boltzmann law, 4
 
3-D, 54, 69
 
3-D coordinate systems, 8
 
2-D, 45, 108
 
velocity and thermal boundary
 

layer, 2
 
volume element, 7
 

Heat convection equations, 125, 131,
 
139–140. See also Convection
 

advanced heat convection, 150, 179
 
boundary-layer approximations, 135
 
boundary-layer concepts, 125–129
 
energy conservation, 130
 
general, 130
 
mass conservation, 130
 
Momentum conservation, 130
 
2-D, 131–135
 

Heat diffusion equation, 81
 
Heat flux, 9, 14, 128, 290. See also Heat
 

transfer rate
 
boundary condition, 84
 
to cooling fluid, 19, 21
 
determination, 264, 189
 
energy balance, 105
 
finite, 9, 10
 
finite difference method, 107, 112
 
Fourier’s conduction law, 1
 
net, 290
 
nondimensional, 291
 

as nonhomogenous boundary
 
condition, 58
 

profiles, 129, 291
 
Reynolds number, 129
 
surface, 11, 49, 83, 84, 116, 128, 173,
 

179, 257, 263, 267
 
total, 5
 
transient temperature, 91
 
2-D heat conduction with, 50
 
uniform, 107, 172, 176
 
variable separation, 49
 
wall, 131
 

Heat resistance. See Thermal—resistance
 
Heat transfer
 

combined modes, 4
 
between two surfaces, 5
 

Heat transfer coefficient, 2, 3, 128. See
 
Nusselt number
 

Heat transfer rate. See also Heat flux;
 
Newton’s law of cooling
 

convection, 14, 16, 289
 
determination, 5, 16, 282, 284
 
through fin, 24, 26, 30
 
gases to enclosure, 285
 
increasing, 21
 
net, 282, 287
 
wall, 13, 15
 

Hemispheric radiation, 221, 222, 223
 
Hemispherical furnace, 285, 293
 
Hydrodynamic boundary layer, 125, 126,
 

127. See also Thermal boundary
 
layer
 

for flow entering circular tube, 167
 
integral approximate method,
 

153–157
 
Reynolds number, 125, 126
 
shear stress, 126
 
thickness, 125, 129, 150
 

Hydrodynamic fully developed
 
flow, 167
 

I
 

Infrared (IR), 221, 222
 
Initial conditions, 9, 10
 
Insulation
 

BCs in surface nodes, 107
 
conductivity of, 18
 
critical radius of, 17
 
cryogenic thermal, 289
 
perfect, 261
 



Index 309 

Integral method, 85, 151, 156, 191. See
 
also Similarity solution
 

energy conservation, 152
 
integral approximate solution, 190
 
integral equation, 150–152
 
laminar flow and heat transfer, 150
 
laminar natural convection, 190–193
 
mass conservation, 150
 
melting and ablation problems, 89
 
1-D transient problem, 69, 86
 
outline, 153–157
 
for semiinfinite solid material, 85–86
 

Integral model, 270
 
Internal forced convection, 167, 175–179, 

180–184. See also External forced 
convection; Natural convection 

entrance length, 168
 
flow in circular tube, 173
 
force balance, 172
 
friction factor, 171–172
 
fully developed flow and heat
 

transfer, 169
 
shear stress distribution, 168
 
uniform wall heat flux, 172–175
 
velocity and temperature profiles,
 

167–169
 
IR. See Infrared (IR)
 
Irradiation, 224
 

from black coal bed, 231
 
energy balance, 225, 257, 258, 282
 
in isothermal gray gas, 280
 

Isothermal surface, 239. See also 
Nonisothermal surface 
radiation exchange 

radiation exchange, 239, 240, 257–267,
 
270
 

L 

Laminar flow and heat transfer 
fully developed, 169–179 
integral method, 150–157 
similarity solution, 141–148 

Laminar natural convection, 190–193 
Laplace transform method, 81–84
 

heat equation, 114
 
1-D transient problem, 69
 
for semiinfinite solid material, 81–84
 

Laplace’s equation, 51
 
Latent heat, 87, 90
 
Low thermal conductivity material, 92
 

Lumped capacitance method, 70
 
Biot number, 72
 
energy balance equation, 73
 
radiation effect, 72–73
 
0-D transient problem, 69
 

M 

Mass conservation, 130, 131, 197
 
incompressible flow, 132
 

Mass conservation, 150
 
Matrix linear equations, 263–267,
 

284–285 
Melting
 

ablation, 91
 
heat conduction with moving
 

boundaries, 86
 
integral technique, 89–91
 
latent heat of, 87, 90
 
slow, 90
 

Momentum conservation, 130, 132, 133
 
Momentum equation, 176. See also 

Conservation of momentum; 
Natural convection 

integral equation, 150–152
 
natural convection, 186
 
RANS, 198
 
similarity, 143, 188
 
2-D heat convection equations, 131
 
x-direction, 134, 141
 
y-directions, 136, 199, 200
 

Monochromatic
 
directional radiation intensity, 221
 
emissivity, 224
 
hemispherical emissive power, 222
 

Multidimensional transient heat 
conduction, 76
 

with heat generation, 77
 
in slab, 75
 

N 

Natural convection, 185, 193–194. See 
also External forced convection; 
Internal forced convection 

boundary layer, 186
 
buoyancy-driven, 185
 
heat transfer coefficient, 3
 
integral method, 190–193
 
numerical results, 189
 
similarity solution, 185–190
 
vertical wall, 185
 
vs. forced convection, 3
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Newton’s law of cooling, 2, 21
 
Nongray diffuse isothermal surfaces, 270
 
Nongray gas
 

net heat transfer, 286–287
 
radiation exchange, 288
 

Nonisothermal surface radiation
 
exchange, 268–269
 

Nusselt number, 129, 213. See also
 
Prandtl number; Reynolds
 
analogy; Reynolds number
 

calculation, 138
 
determination, 180, 181, 182, 184, 189
 
local Nusselt number distribution,
 

158, 159, 160, 161, 162, 164, 165
 
surface, 183
 
uniformwall heat flux, 172
 
uniformwall temperature, 175
 

O 

1-D. See One-dimension (1-D)
 
One-dimension (1-D), 1, 6, 103
 

conservation in, 7
 
energy balance, 116
 
heat conduction, 2, 10, 13, 76, 78, 83,
 

84, 85
 
heat flux, 291
 
with heat sink, 11
 
with heat source, 11
 
hollow cylinder during, 123
 
transient conduction, 70, 78, 181
 
transient heat, 81
 
transient heat equation, 79
 
variable separation, 73
 

One-dimension (1-D) steady-state heat
 
conduction, 1, 13, 31–37, 38–43.
 
See also One-dimension (1-D)
 
transient heat conduction
 

cylindrical medium, 20
 
fin application, 11
 
through fins, 21, 27
 
without heat generation, 15
 
with heat generation, 18
 
heater application, 11
 
through plane walls, 13
 
problem, 1
 
radiation effect, 30
 

One-dimension (1-D) transient heat
 
conduction, 74, 79, 96, 97
 

and characteristic length, 70
 
convection BC, 77, 85
 

Index 

finite difference energy balance
 
method, 114, 116
 

heat diffusion equation, 81
 
without heat generation, 69
 
with heat generation, 76–78, 114
 
integral method, 85–86
 
Laplace transform method, 81–84
 
semiinfinite solid material, 78, 86
 
similarity method, 78–81
 
in slab, 73–74
 
solution, 81
 
surface heat flux boundary
 

condition, 84
 
surface temperature boundary
 

condition, 83
 

P 

Planck emissive power, 225
 
Plane angle, 223
 
Prandtl mixing length theory, 205
 
Prandtl number, 129, 185. See also
 

Nusselt number; Reynolds
 
analogy; Reynolds number
 

of air, 41
 
calculation, 138
 
effect on law of wall, 208
 
entrance length to tube diameter
 

ratio, 169
 
heat transfer coefficient
 

determination, 165
 
molecular, 200
 
turbulent, 200, 201, 203
 
unity, 150, 208
 

Pumping power, 171
 
heat transfer coefficient, 21
 

R 

Radiant heater panel model, 263
 
Radiation exchange, nonisothermal
 

surface, 268–269
 
Radiation heat transfer, 3, 221, 233–237,
 

272–274, 282, 288, 293–296
 
absorptivity determination, 231
 
blackbody, 225
 
between coal bed and brick wall, 227
 
effect, 26, 30
 
electric furnace applications, 257
 
electric network analogy, 259–263, 285
 
emissive power, 221–223
 
between enclosures, 260, 285, 287
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energy balance, 225, 271–272
 
exchange factor, 270
 
flux, 26, 72
 
gas, 221, 275–281, 289
 
between gas and enclosure, 285–289
 
hemispheric, 222
 
matrix linear equations, 263–267
 
net, 286
 
network representation, 260
 
between nonisothermal surfaces, 268
 
nonparticipating medium, 257,
 

272–274
 
solar and atmospheric, 231
 
spectral, 222
 
Stefan–Boltzmann law, 4
 
surface, 4, 221, 223–231, 240, 257–259,
 

264, 268–269, 270
 
between surfaces, 258, 261, 269,
 

270, 271
 
three-surface enclosure, 264–267
 
transport equation, 290–292
 

Radiation intensity, thermal, 221
 
blackbody, 225
 
distance, 277
 

Radiosity, 239, 273, 274, 290. See also
 
Differential element
 

energy exchange, 258
 
gray diffuse isothermal surface, 257
 
linear equations, 263, 264, 267
 
at surface, 290
 
uniform, 281, 282
 
unknown radiosity matrix, 264
 

RANS equation. See Reynolds-averaged 
Navier–Stokes equation (RANS 
equation) 

Rayleigh number, 185. See also Prandtl 
number
 

Reciprocity rule, 240, 270
 
Reflectivity, 224
 

from emissivity, 225
 
hemispherical, 237
 

Reradiating surfaces, 261
 
Reynolds analogy, 138–139
 

for turbulent flow, 203–205
 
Reynolds flux, 200
 
Reynolds number, 125, 126, 129. See also
 

Grashof number; Nusselt
 
number; Prandtl number
 

average friction factor determination,
 
138
 

for fluid flow in circular tube, 169
 

friction factor and pressure drop 
vs., 172
 

function of, 126
 
pressure drop, 171, 172
 
thinner boundary layer, 167
 

Reynolds time-averaged method, 197
 
Reynolds-averaged Navier–Stokes 

equation (RANS equation), 
195–197 

continuity equation, 197–198
 
eddy concept, 200–203
 
enthalpy/energy equation, 199–200
 
force balance in circular tube, 202
 
momentum equation, 198–199
 
Reynolds analogy, 203–205
 
Reynolds flux, 200
 
2-D turbulent boundary layer
 

flow, 203
 

S 

Semiinfinite solid material, 78
 
integral method, 85–86
 
Laplace transform method, 81–84
 
1-D transient heat conduction, 78
 
similarity method, 78–81
 

Shape factor. See View factor 
Shear stress, 126, 163
 

distribution, 168
 
laminar-type, 200
 
profile, 127
 
Reynolds number, 148, 167
 
turbulence, 195
 
wall, 131, 145, 205
 

Similarity functions, 143, 187
 
Similarity method, 78–81, 187, 162
 

freezing and solidification problems,
 
87–89
 

heat conduction, 86
 
laminar flow and heat transfer,
 

141–149
 
1-D transient problem, 69
 
for semiinfinite solid material, 78–81
 
velocity and temperature profile
 

determination, 205
 
Similarity solution, 141, 148–150
 

boundary conditions, 144, 147
 
continuity equation, 141
 
energy equation, 146
 
flat plate laminar boundary layer
 

functions, 145
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Similarity solution (Continued)
 
laminar natural convection, 185–190
 
momentum equation, 186–187
 
numerical integration, 144–145
 
similarity function, 146
 
similarity momentum equation, 143
 
stream lines, 142
 
temperature profile, 148
 
velocity and temperature profiles,
 

188–189
 
velocity profile, 146
 

Similarity variable, 79, 142, 143, 187
 
Single black enclosure
 

net radiation heat transfer, 286
 
radiation between hot gases
 

and, 287
 
Single-surface enclosure, 281
 

radiation between hot gases and, 286
 
Solar collector, 232, 233, 236, 237
 

solar radiation, 231
 
Solar flux, 231
 

in Earth’s atmosphere, 231
 
house with skylight, 233
 
radiation gain, 72
 

Solar radiation, 231–233
 
absorption, 232
 
maximum emission, 227
 
spectral blackbody emissive
 

power, 226
 
Solar spectra, 232
 
Solid angle, 223
 

unit, 221, 239
 
Spectral blackbody emissive power, 226
 
Spectral radiation, 222
 

absorption, 277
 
Spherical coordinate system, 8, 64
 
St. See Stantan number (St)
 
Stantan number (St), 139, 215
 
Steady-state, 10–11
 

ablation velocity, 91, 92
 
constant properties, 134
 
constant-property flow, 133–134
 
cylindrical medium, 20
 
heat conduction, 1, 12, 13, 15, 18, 27,
 

45, 105
 
solid material, 121
 

Stefan–Boltzmann law, 4, 226
 
Superposition, 46–47, 54
 

multidimensional heat conduction,
 
54, 75
 

for nonhomogeneous BCs, 52
 

3-D heat conduction, 54, 56
 
2-D heat conduction, 53–54
 

Surface radiation, 221. See also Thermal
 
radiation
 

blackbody radiation, 225
 
diffuse surface, 224
 
emissive power, 223, 224
 
flux, 221, 222
 
gray surface, 224
 
hemispherical emissivity, 224
 
monochromatic emissivity, 224
 
properties, 223–231, 239, 257
 
radiation transport equation, 291
 
spectral blackbody emissive
 

power, 226
 
Wien’s displacement law, 227
 

Surface temperature boundary
 
condition, 83
 

T 

Temperature, nondimensional, 291
 
Thermal
 

conductivity, 8
 
energy generation, 7
 
resistance, 14
 

Thermal boundary layer, 126, 129, 146,
 
168. See also Hydrodynamic
 
boundary layer
 

over flat plate, 126, 127
 
for flow entering circular tube, 167
 
heat flux, 128, 129
 
heat transfer coefficient, 128, 129
 
integral method, 153
 
over solid surface, 130, 131
 
thickness, 128, 139, 140, 157, 158
 
uniformwall heat flux, 172, 173
 

Thermal radiation, 221
 
for blackbody, 234
 
in hemispheric radiation, 222
 
intensity and emissive power, 221
 

Thermally fully developed flow,
 
167, 174
 

3-D. See Three-dimension (3-D)
 
Three-dimension (3-D), 1
 
Three-dimension (3-D) heat conduction,
 

8. See also Transient heat
 
conduction
 

in cylindrical coordinates, 53–54
 
equation, 8
 
finite difference method, 113
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multidimensional heat conduction, 75
 
problem, 54
 
spherical coordinate system, 8
 
steady-state, 54
 
unsteady, 69
 

Three-surface enclosure, 264–267
 
Total hemispherical emissivity, 224, 235
 
Transient heat conduction, 69, 93–104
 

engineering application problems, 86
 
Fourier’s conduction law, 1
 
lumped capacitance method, 70–73
 
with moving boundaries, 86–93
 
multidimensional, 75–76, 77
 
1-D, 76–86, 91, 114–117, 118
 
3-D, 12, 76
 
2-D, 117–121
 
variable separation method, 73–78
 

Transmissivity, 224, 225, 278. See also
 
Absorptivity; Beer’s law;
 
Reflectivity
 

gas, 282
 
Transport equation, 290–292
 
Turbulent diffusivity. See Eddy
 

diffusivity
 
Turbulent flow heat transfer, 172, 195,
 

208–219
 
in circular tube, 209
 
energy equation, 209
 
energy integral equation, 210–211
 
final heat transfer coefficient, 213, 215
 
law of wall, 205
 
method, 196
 
Nusselt number, 213
 
Prandtl mixing length theory, 205
 
RANS equation, 195–197
 
Stantan number, 215
 
velocity and temperature profile, 196
 

Turbulent mixing, 126, 128, 195
 
2-D. See Two-dimension (2-D)
 
Two-dimension (2-D), 1
 

boundary-layer equations, 3, 185–186
 
boundary-layer flow, 2, 203, 207
 
conduction equation, 45
 
energy conservation, 134
 
heat convection equations, 131–135
 
mass conservation, 131
 
momentum conservation, 132
 
temperature distribution, 49
 

Two-dimension (2-D) steady-state heat
 
conduction, 45, 56–63, 64–68
 

boundary conditions, 46
 

equations, 45
 
finite-difference energy balance
 

method, 105, 106
 
finite-differential format, 108
 
with heat generation, 108
 
nonhomogeneous BCs superposition,
 

52, 54
 
problem, 56
 
temperature distribution, 49, 50, 51
 
variable separation, 45, 49
 

Two-dimension (2-D) transient heat 
conduction, 117–121. See also 
Finite-difference energy 
balance method 

finite difference, 118, 119
 
multidimensional heat conduction, 75
 

U 

Uniform heat flux, 107
 

V
 

Variable separation method, 45, 49
 
boundary conditions, 45–46, 50
 
Laplace’s equation, 51
 
multidimensional transient
 

conduction problems, 75
 
1-D transient conduction problems,
 

73–74, 76–78
 
solution, 69
 
superposition, 46–47
 
surface convection BC, 51
 
surface heat flux BC, 49
 
temperature BC, 45
 
2-D temperature distribution, 49
 

View factor, 239–243, 256
 
algebraic method, 253, 255
 
applications, 255
 
calculation, 263, 274
 
between circular tubes, 246
 
contour integration, 251–253
 
crossed-string method, 243–246
 
between differential areas, 241
 
between disks, 242
 
double-area integration, 250
 
evaluation, 243
 
geometrical resistance, 259
 
N-surface enclosure, 240
 
between plates, 245
 
radiation heat transfer determination,
 

257, 273
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View factor (Continued) 
Reciprocity rule, 240 
resistance due to, 283 
between surfaces, 251, 253, 

286, 288 
3-D geometries, 254 
2-D geometries, 246–250 

W 

Wall, law of, 205 
temperature profile, 211, 213 
velocity profile, 208 

Water vapor 
band emission, 276 
energy emission and absorption, 275 
gas radiation properties, 276 
heat transfer rate, 287 
radiation between hot gases and, 287 

Wien’s displacement law, 227 

Z 

0-D. See Zero-dimension (0-D) 
Zero-dimension (0-D), 69 
Zone method, 288–289 
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