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ARTICLE INFO ABSTRACT

Keywords:
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Deep learning

Deep learning (DL) has shown great potential in medical image enhancement problems, such as super-resolution
or image synthesis. However, to date, most existing approaches are based on deterministic models, neglecting
the presence of different sources of uncertainty in such problems. Here we introduce methods to characterise dif-

SRafstyt ferent components of uncertainty, and demonstrate the ideas using diffusion MRI super-resolution. Specifically,
obustness L R - .

s we propose to account for intrinsic uncertainty through a heteroscedastic noise model and for parameter uncer-
Interpretability prop! 3 p

tainty through approximate Bayesian inference, and integrate the two to quantify predictive uncertainty over the
output image. Moreover, we introduce a method to propagate the predictive uncertainty on a multi-channelled
image to derived scalar parameters, and separately quantify the effects of intrinsic and parameter uncertainty

Super-resolution
Image enhancement
Image synthesis

Neuroimaging therein. The methods are evaluated for super-resolution of two different signal representations of diffusion MR
Diffusion MRI images—Diffusion Tensor images and Mean Apparent Propagator MRI—and their derived quantities such as mean
Tractography diffusivity and fractional anisotropy, on multiple datasets of both healthy and pathological human brains. Re-

sults highlight three key potential benefits of modelling uncertainty for improving the safety of DL-based image
enhancement systems. Firstly, modelling uncertainty improves the predictive performance even when test data
departs from training data (“out-of-distribution” datasets). Secondly, the predictive uncertainty highly correlates
with reconstruction errors, and is therefore capable of detecting predictive “failures”. Results on both healthy
subjects and patients with brain glioma or multiple sclerosis demonstrate that such an uncertainty measure en-
ables subject-specific and voxel-wise risk assessment of the super-resolved images that can be accounted for in
subsequent analysis. Thirdly, we show that the method for decomposing predictive uncertainty into its inde-
pendent sources provides high-level “explanations” for the model performance by separately quantifying how
much uncertainty arises from the inherent difficulty of the task or the limited training examples. The introduced
concepts of uncertainty modelling extend naturally to many other imaging modalities and data enhancement
applications.

1. Introduction aims to improve the quality, the information content!, or the quantity

of medical images available for research and clinics by transforming im-

In the last few years, deep learning techniques have permeated the
field of medical image processing (Litjens et al., 2017; Shen et al., 2017).
Beyond the automation of existing radiological tasks—e.g. segmentation
(Kamnitsas et al., 2017b), detection (Roth et al., 2014), disease grading
and classification (Aradjo et al., 2017)—deep learning has been applied
to a diverse set of “data enhancement” problems. Data enhancement
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ages from one domain to another (Isola et al., 2017). Previous research
has shown the efficacy of data enhancement in different forms such as
super-resolution (Chen et al., 2018; Oktay et al., 2016; Ravi et al., 2019),
image synthesis (Kang et al., 2017; Nie et al., 2016), denoising (Benou
et al., 2017; Chen et al., 2017), data harmonisation (Karayumak et al.,
2018; Tax et al., 2019) across scanners and protocols, reconstruction

! Typically done by transferring information from an external source (e.g.,
training data).

Received 12 July 2019; Received in revised form 28 August 2020; Accepted 5 September 2020

Available online 9 October 2020

1053-8119/Crown Copyright © 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.neuroimage.2020.117366
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117366&domain=pdf
mailto:r.tanno@cs.ucl.ac.uk
https://doi.org/10.1016/j.neuroimage.2020.117366
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Tanno, D.E. Worradll, E. Kaden et al.

(i) Intrinsic uncertainty

high-res, y

Blualg"
a"|"a|EalEa

- EH A

* inherent ambiguity in the problem e.g. one-to-
many nature of super-resolution mapping.

low-res, x

« cannot be reduced even with infinite data.

Neurolmage 225 (2021) 117366

(ii) Parameter uncertainty

VR
[ )
y O\
Estimated
. /mean
X
* ambiguity in the choice of “best” model
parameters.

» can be explained away with infinite data

Fig. 1. Illustration of two different types of uncertainty (Hora, 1996). Intrinsic uncertainty (Wang et al., 1996) quantifies the degree of inherent ambiguity in
the underlying problem. For example, in the case of super-resolution, there exist many possible high-resolution images y that would get mapped onto the same
low-resolution input x. Intrinsic uncertainty is irreducible with training data. On the other hand, the parameter uncertainty (Draper, 1995) (a subtype of model
uncertainty) arises from the finite training set. There exist more than one model that can explain the given training data equally well, and the parameter uncertainty
quantifies the ambiguity in selecting the model parameters that best captures the target data-generating process. As illustrated in the figure on the right, parameter
uncertainty decreases with more data; the green line shows the target function, the red line is the estimated mean, and the shaded region signifies the associated
parameter uncertainty (standard deviation), which is higher in regions where we have fewer observations.

(Hammernik et al., 2018; Jin et al., 2017; Schlemper et al., 2018a; Sun
et al., 2016; Yang et al., 2018; Yoon et al., 2019; Zhu et al., 2018), reg-
istration (Balakrishnan et al., 2018; Sokooti et al., 2017) and quality
control (Esses et al., 2018; Wu et al., 2017). These advances have the
potential not only to enhance the quality and efficiency of radiological
care, but also facilitate scientific discoveries in medical research through
increased volume and content of usable data.

However, most efforts in the development of data enhancement tech-
niques have focused on improving the accuracy of deep learning algo-
rithms, with little consideration of risk management. Blindly trusting
the output of a given machine learning tool risks undetected failures
e.g. spurious features and removal of structures (Cohen et al., 2018a). In
medical applications, images inform scientific conclusions in research,
and diagnostic, prognostic and interventional decisions in clinics. There-
fore, translation of current proofs of principle to such safety-critical
applications demands mechanisms for quantifying the risks of failures
i.e. deriving uncertainty/confidence measures and explanation of their
sources (Begoli et al., 2019).

Predictive failures of deep learning systems, by and large, occur due
to two reasons: (i) the task itself is inherently ambiguous or (ii) the
learned model is not adequate to describe the data (Der Kiureghian
and Ditlevsen, 2009; Hora, 1996; Kendall and Gal, 2017; Tanno et al.,
2017), as illustrated in Fig. 1. The former stems from intrinsic uncer-
tainty (Wang et al., 1996), which describes ambiguity in the underlying
data generating process (e.g. presence of stochasticity such as measure-
ment noise and intrinsic ill-posed nature of the problem), and cannot be
alleviated by increasing available training data or model complexity?.
The latter is characterised by model uncertainty (Draper, 1995), which
describes ambiguity in model specification®. Model uncertainty arises
from (a) parameter uncertainty: ambiguity in fitting the model to the tar-
get mapping due to limited training data, or (b) model bias: errors due
to insufficient flexibility of the model class (e.g. fitting a linear model
to a sinusoidal process). These types of uncertainty can be reduced by
collecting more data or specifying a different class of models. With the
expressivity of deep neural networks, which are known to be universal
approximators (Cybenko, 1989) if sufficiently large, one might reason-
ably assume that the model bias is small enough to be discounted. Un-

2 Intrinsic uncertainty is also known as aleaotoric or statistical uncertainty.
3 Model uncertainty is a subclass of epistemic uncertainty (Hora, 1996) which
encompasses types of uncertainties that arise from lack of knowledge.

der this assumption, intrinsic and parameter uncertainty (Fig. 1) fully
characterise the predictive failures of deep learning models. Therefore,
accurate estimation of these uncertainties are needed and would poten-
tially allow practioners to understand better the limits of the models,
flag doubtful predictions, and highlight test cases that are not well rep-
resented in the training data.

In this work, we introduce methods for modelling components of
uncertainty in medical image enhancement systems based on deep
learning. We propose to model intrinsic uncertainty through a input-
dependent (heteroscedastic) noise model (Nix and Weigend, 1994)
and parameter uncertainty through variational dropout (Kingma et al.,
2015). We then combine and propagate these two “source” uncertain-
ties into a spatial map of predictive uncertainty over the output image,
which can be used to assess the output reliability on subject-specific
and voxel-wise basis. Lastly, we propose a method to propagate the pre-
dictive uncertainty to arbitrary derived quantities of the output images,
such as scalar indices that are commonly used for subsequent analysis,
and decompose it into distinct components which separately quantify
the contributions of intrinsic and parameter uncertainty.

The primary goal of this work is to evaluate the practical utility of
the proposed methods for modelling uncertainty in terms of three as-
pects; (i) performance on unseen datasets, including generalisation to
out-of-distribution data and robustness to noise/outliers; (ii) safety as-
sessment of system output; (iii) explainability of failures. We note here
that validating the “correctness” of the derived uncertainty estimates
is an important fundamental problem, that is not the main focus of
this work—a very challenging task as the ground truth is typically un-
known. Here we take a pragmatic approach and focus our study on how
useful, rather than how accurate, uncertainty modelling is in the con-
text of medical image enhancement applications. To this end, we use
Image Quality Transfer (IQT) (Alexander et al., 2014; 2017; Blumberg
et al., 2018; Tanno et al., 2016) as the core test ground*, focusing on its
application to super-resolution of diffusion magnetic resonance imaging
(dMRI) scans. For two different types of diffusion signal representations,
we evaluate the effects of uncertainty modelling on generalisation by
measuring the predictive accuracy on unseen test subjects in the Human
Connectome Project (HCP) dataset (Sotiropoulos et al., 2013) and the

4 IQT is a data-enhancement framework for propagating information from
rare or expensive high quality images to lower quality but more readily available
images.
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Lifespan dataset (Harms et al., 2018). We additionally test the value of
improved predictive performance in a downstream tractography appli-
cation. We then test the capability of the predictive uncertainty map to
indicate predictive errors and thus to detect potential failures on images
of both healthy subjects and those in which pathologies unseen in the
training data arise, specifically from glioma and multiple-sclerosis (MS)
patients. Lastly, we perform the decomposition of predictive uncertainty
on HCP subjects with benign abnormalities, and assess its potential value
in gaining high-level interpretations of predictive performance.

2. Related works

This section provides a review of related works under several differ-
ent themes. We first review the development of learning-based image
enhancement methods in medical imaging applications. We then discuss
the recent advances made to model and quantify uncertainty in such im-
age enhancement problems. Lastly, we describe the existing strands of
research in uncertainty modelling for other medical imaging problems
and fields of applications.

Various forms of image enhancement can be cast as image transfor-
mation problems where the input image from one domain is mapped
to an output image from another domain. Numerous recent meth-
ods have proposed to perform image transformation tasks as super-
vised regression of low quality against high quality image content.
Alexander et al. (2014) proposed Image Quality Transfer (IQT), a gen-
eral framework for supervised quality enhancement of medical images.
They demonstrated the efficacy of their method through a random for-
est (RF) implementation of super-resolution (SR) of brain diffusion ten-
sor images and estimation of advanced microstructure parameter maps
from sparse measurements. More recently, deep learning, typically in
the form of convolutional neural networks (CNNs), has shown additional
promise in this kind of task. For example, Oktay et al. (2016) proposed
a CNN model to upsample a stack of 2D MRI cardiac volumes in the
through-plane direction, where the SR mapping is learnt from 3D car-
diac volumes of nearly isotropic voxels. This work was later extended by
Oktay et al. (2018) with the addition of global anatomical prior based
on auto-encoder. Zhao et al. (2018) proposed a solution to the same
SR problem for brains that utilises the high frequency information in
in-plane slices to super-resolve in the through-plane direction without
requiring external training data. In addition, a range of different ar-
chitectures of CNNs have been considered for SR of other modalities
and anatomical structures such as structural MRI (Chen et al., 2018)
of brains, retinal fundus images (Mahapatra et al., 2017) and computer
tomography (CT) scans of chest (Yu et al., 2017). Another problem of
growing interest is image synthesis, which aims to synthesise an image
of a different modality given the input image. Nie et al. (2018) employed
a conditional generative adversarial network to synthesise CT from MRI
with fine texture details whilst (Wolterink et al., 2017) extended this
idea using a CycleGAN (Zhu et al., 2017) to leverage the abundance of
unpaired training sets of CT and MR scans. In Bahrami et al. (2016), a
variant of CNN was applied to predict 7T images from 3T MRI, where
both contrast and resolution are enhanced. Another notable application
is the harmonisation of diffusion MRIs (Blumberg et al., 2018, 2019;
Karayumak et al., 2018; Tax et al., 2019) where images acquired at dif-
ferent scanners or magnetic field strengths are mapped to the common
reference image space to allow for joint analysis.

Despite this advancement, all of these methods commit to a single
prediction and lack a mechanism to communicate uncertainty in the
output image. In medical applications where images can ultimately in-
form life-and-death decisions, quantifying reliability of output is crucial.
Tanno et al. (2016) aimed to address this problem for supervised image
enhancement for the first time by proposing a Bayesian variant of ran-
dom forests to quantify uncertainty over predicted high-resolution MRI.
They showed that the uncertainty measure correlates well with the ac-
curacy and can highlight abnormality not represented in the training
data. In our preliminary work (Tanno et al., 2017), we made an ini-
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tial attempt to extend this approach with probabilistic deep-learning
formulation, and showed that modelling different components of uncer-
tainty—intrinsic and parameter uncertainty—allows one to build a more
generalisable model and quantify predictive confidence. Kendall and
Gal (2017) concurrently investigated the same problem in computer vi-
sion, suggesting its utility for safety-critical applications such as self-
driving cars. More recently, Shi et al. (2019) extended these works in
the context of medical image segmentation and proposed a mechanism
to learn the intrinsic uncertainty in a supervised manner, when multiple
labels are available. Dalca et al. (2018) proposed a CNN-based proba-
bilistic model for diffeomorphic image registration with a learning al-
gorithm based on variational inference, and demonstrated the state-of-
the-art registration accuracy on established benchmarks while providing
estimates of registration uncertainty. An alternative approach is ensem-
bling where the variance of the predictions of multiple networks is used
to quantify the predictive uncertainty (Lakshminarayanan et al., 2017).
Schlemper et al. (2018b) proposed a novel combination of the cascaded
CNN architecture and compressive sensing, equipped with a variant of
ensemble techniques, which enabled robust reconstruction of highly un-
dersampled cardiovascular diffusion MR images, and quantification of
reconstruction uncertainty. Bragman et al. (2018) studied the value of
uncertainty modelling for multi-task learning in the context of MR-only
radiotherapy treatment planning where the synthetic CT image and the
segmentation of organs at risk are simultaneously predicted from the
input MRI image.

We should also note that, although not the focus of this work, re-
search on uncertainty modelling in deep learning techniques extend to
other medical image processing tasks beyond data enhancement, such
as segmentation, detection and classification. For example, Nair et al.
(2018, 2020) demonstrated for lesion segmentation of multiple scle-
rosis that the voxel-wise uncertainty metrics can be used for quality
control; by filtering out predictions with high uncertainty, the model
could achieve higher lesion detection accuracy. A concurrent work by
Eaton-Rosen et al. (2018) showed for the task of brain tumour segmenta-
tion that the Monte Carlo (MC) sample variance from dropout (Gal and
Ghahramani, 2015) can be calibrated to provide meaningful error bars
over estimates of tumour volumes. Similarly, Roy et al. (2019) intro-
duced ways to turn voxel-wise uncertainty score into structure-wise
uncertainty metrics for brain parcellation task, and showed their val-
ues in performing more reliable group analysis. The uncertainty met-
ric based on MC dropout has also shown promise in disease grading
of retinal fundal images (Leibig et al., 2017; Worrall et al., 2016), and
more recently an extension based on test-time augmentation was intro-
duced by Ayhan and Berens (2018). An alternative approach to these
works is to train a model that predicts the uncertainty score directly;
Raghu et al. (2019) showed that this approach is more effective when
opinions from multiple experts are available for each image. In a simi-
lar vein, Eaton-Rosen et al. (2019) proposed a means to estimate con-
fidence intervals of any desired percentiles based on quantile regres-
sion, and tailored it to the task of counting objects in an given image
with successful demonstration in estimating uncertainty over the mea-
surements of different biomarkers such as histopathological cell count-
ing and white matter hyperintensity counting. Kohl et al. (2018) and
Baumgartner et al. (2019) proposed methods to generate a set of di-
verse and plausible segmentation proposals on a given image, capturing
more realistically the high inter-reader annotation variability, which
is commonly observed in medical image segmentation tasks. Lastly,
Raykar et al. (2010) and Tanno et al. (2019) demonstrated for the clas-
sification of mammograms and cardiac ultra-sound images, respectively
that modelling uncertainty of human annotators enables robust learning
from noisy labels in the presence of large disagreement.

However, within the context of medical image enhancement, these
lines of research performed only limited validation of the quality and
utility of uncertainty modelling. In this work, we formalise and extend
the preliminary ideas in Tanno et al. (2017) and provide a comprehen-
sive set of experiments to evaluate the proposed uncertainty modelling
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Fig. 2. Tllustration of the patch-wise regression in super-resolution application. The conditional distribution over the high quality image p(Iyg|I;,,) is assumed to
factorise over local neighbourhoods {(x;, y;)};. In this case, for each input subvolume x; (in yellow), the high resolution version of the smaller centrally located

neighbourhood, y; (in orange) is regressed.

techniques in a diverse set of datasets, which vary in demographics,
scanner types, acquisition protocols or pathology. Our proposed frame-
work models different components of uncertainty, namely intrinsic and
parameter uncertainty, and provides conclusive evidence that this im-
proves performance thanks to different regularisation effects. In addi-
tion, we propose a method to decompose predictive uncertainty over
an arbitrary function of the output image (e.g. morphological measure-
ments) into its sources, in order to provide a high-level explanation of
model performance on the given input.

3. Methods

This section describes the methods for modelling different compo-
nents of uncertainty that arise in data enhancement. Firstly, we provide
an overview of Image Quality Transfer (IQT) which formulates data en-
hancement as a supervised learning problem. Secondly, using the IQT
framework, we introduce methods to model intrinsic and parameter un-
certainty, separately, focusing on the application of super-resolution. We
then combine the two approaches and estimate the overall uncertainty
over prediction (predictive uncertainty) by approximating the variance of
the predictive distribution (Eq. (9)). Lastly, we propose a method for
decomposing predictive uncertainty into its sources—intrinsic and pa-
rameter uncertainty—in an attempt to provide quantifiable explanations
for the confidence on model output (Eq. (13)).

3.1. Background: image quality transfer

Alexander et al. (2014) proposed Image Quality Transfer (IQT), the
first supervised learning based framework for data enhancement of med-
ical images, and here we survey its general formulation which forms
the testing ground of this work. IQT performs data enhancement via
regression of low quality against high quality image content. In order
to overcome the memory demands of processing 3-dimensional medical
images, along with other subsequent work such as (Bahrami et al., 2016;
Oktay et al., 2016; 2018; Yang et al., 2016), IQT assumes factorisability
over local neighbourhoods (also called patches) and models the condi-
tional distribution of high-quality image Iy;, given the corresponding
low-quality input I, as:

P prign o) = [ [ pilx0) o)
ieSs

where {y,},cs is a set of disjoint high-quality subvolumes with S de-
noting the set of their indices, which together constitute the whole im-
age Iy, while {X;};cs is a set of potentially overlapping low-quality
subvolumes, each of which contains and is spatially larger than the cor-
responding y;, as illustrated in Fig. 2. In other words, here we assume
that the high-resolution neighbourhoods are statistically independent
given the corresponding low-resolution versions. We define each local
neighbourhood as a cubic sub-volume. The locality assumption reduces
the problem of learning p(Iygy |I14) to the much less memory intensive
problem of learning p(y|x). In other words, IQT formulates the data en-
hancement task as a patch-wise regression where an input low-quality
image I, is split into smaller overlapping sub-volumes {x; },c ¢ and the
corresponding non-overlapping high-quality sub-volumes {y, },cs are in-
dependently predicted according to the patch regressor p(y|x). The final
prediction for the 3D high-quality volume Iy, is constructed by tesel-
lating the output patches {y,};cs.

The original implementation of IQT (Alexander et al., 2014; 2017;
Tanno et al., 2016) employed a variant of random forests (RFs) to model
p(y|x) while more recent (Bahrami et al., 2016; Oktay et al., 2016; 2018;
Yang et al., 2016) approaches use variants of convolutional neural net-
works (CNNs). Either way, the machine learning algorithm is trained
on pairs of high-quality and low-quality patches D = {(x,-,y,-)}l_’;' | ex
tracted from a set of image volumes, and is used to perform the data-
enhancement task of interest. Typically, such patch pairs D are synthe-
sised by down-sampling a collection of high quality images to approxi-
mate their counterparts in a particular low-quality scenario (Alexander
et al., 2014; Oktay et al., 2016). In this work, we focus on the task of
super-resolution (SR) where the spatial resolution of I, is higher than
the input image I;,,.

3.2. Baseline super-resolution model: 3D-ESPCN

As the baseline architecture for modelling p(y|x), we adapt efficient
subpixel-shifted convolutional network (ESPCN) (Shi et al., 2016) to 3D
data. ESPCN is a recently proposed method with the capacity to perform
real-time per-frame SR of videos while retaining high accuracy on 2D
natural images. We have chosen to base on this architecture for its sim-
plicity and computational performance. Most CNN-based SR techniques
first up-sample a low-resolution input image (e.g. through bilinear in-
terpolation, Dong et al., 2016; deconvolution, McDonagh et al., 2017;
Oktay et al., 2016; fractional-strided convolution, Johnson et al., 2016,
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Fig. 3. 2D illustration of an example baseline network (ESPCN Shi et al., 2016) with upsampling rate, » = 2. The receptive field of the central 22 pixels in the output
patch is 52 pixels in the input patch and is shown in yellow. The shuffling operation at the end periodically rearranges the final feature maps from the low-resolution

space into the high-resolution space.

etc.) and then refine the high-resolution estimate through a series of con-
volutions. These methods suffer from the fact that (1) the up-sampling
can be a lossy process and (2) refinement in the high-resolution space
has a higher computational cost than in the low-resolution space. By
contrast, ESPCN performs convolutions in the low-resolution-space, up-
sampling afterwards. The reduced resolution of feature maps dramat-
ically decreases the computational and memory costs, which is more
pronounced in processing 3D data.

More specifically the ESPCN is a fully convolutional network, with
a special shuffling operation on the output, which identifies individual
feature channel dimensions with spatial locations in the high-resolution
output. Fig. 3 shows a 2D illustration of an example ESPCN when the
fully convolutional part of the network consists of 3 convolutional lay-
ers, each followed by a ReLU, and the final layer has cr? feature maps
where r is the upsampling rate and c is the number of channels in the
output image (e.g. 6 in the case of DT images). The shuffling operation
takes the feature maps of shape h x w x cr?> and remaps pixels from
different channels into different spatial locations in the high-resolution
output, producing a rh X rw x ¢ image, where h and w denote height
and width of the pre-shuffling feature maps. This shuffling operation in
3D is given by S(F); ke = Fii/r.1/r1k/r1.3=1)e-mod(irytr-mody.r+r modkr)
where F is the pre-shuffled feature maps. The combined effects of the
last convolution and shuffling is effectively a learned interpolation, and
an efficient implementation of deconvolution layer (Zeiler et al., 2011)
where the kernel size is divisible by the size of the stride (Shi et al.,
2016). Therefore, it is less susceptible to checker-board like artifacts
commonly observed with deconvolution operations (Odena et al., 2016).

At test time, the prediction of higher resolution volume is per-
formed through shift-and-stitch operation. The network takes each sub-
volume x in a low-resolution image, and predicts the corresponding
high-resolution sub-volume y. By tessellating the predictions from ap-
propriately shifted inputs x, the whole high-resolution volume is recon-
structed. With convolutions being local operations, each output voxel is
only inferred from a local region in the input volume, and the spatial
extent of this local connectivity is referred to as the receptive field. For
a given input subvolume, the network increases the resolution of the
central voxel of each receptive field e.g. the central 23 output voxels are
estimated from the corresponding 5° receptive field in the input volume,
as coloured yellow in Fig. 3.

Given training pairs of high-resolution and low-resolution patches
D = {(x;, yi)}’?i |» We optimise the network parameters by minimising the
sum of per-pixel mean-squared-error (MSE) between the ground truth y
and the predicted high-resolution patch y,(x) over the training set. Here
0 denotes all network parameters. This is equivalent to minimising the
negative log likelihood (NLL) under the Gaussian noise model p(y|x, 0) =

N (y; 1p(x), 62T) with fixed isotropic variance 2.

3.3. Intrinsic uncertainty and heteroscedastic noise model

Intrinsic uncertainty quantifies the inherent ambiguity of the underly-
ing problem that is irreducible with data as illustrated in Fig. 1(i). Here
we capture intrinsic uncertainty by estimating the variance of the target

conditional distribution p(y|x, 6). In medical images, intrinsic uncer-
tainty is often spatially and channel-wise varying. For example, super-
resolution could be fundamentally harder on some anatomical structures
than others due to signal variability as shown in Tanno et al. (2016). It
may also be the case that some channels of the image volume might
contain more complex, non-linear and noisy signals than other channels
e.g. higher order terms in diffusion signal representations. To capture
such potential variation of intrinsic uncertainty, we model p(y|x, 6) as
a Gaussian distribution with input-dependent varying variance:

p(YIX,0,,8,) = N (y; u(x:8)), 2(x; 0,))
exp( (v = #x: 0) "= (x:0)(y - u(x:0)) )

_ . (2)
\/(zﬂ)dlm(y) - det =(x; 6,)

where the mean u(x; 0;) and the covariance X(x; 6,) are functions of
input x and modelled by two separate 3D-ESPCNs (as shown in Fig. 4),
which we refer to as “mean network” and “covariance network”, and
are parametrised by 6; and 6,, respectively. Here dim(y) denotes the
dimension of the output patch y. We note that the input patch x varies
spatially, which makes the estimated variance spatially varying and dif-
ferent for respective channels. Fig. 4 shows a 2D illustration of our 3D
architecture. For each low-resolution input patch x, we use the output
of the mean network u(x; 6;) at the top as the final estimate of the
high-resolution ground truth y whilst the diagonal elements of the co-
variance X(x; 6,) quantify the corresponding intrinsic uncertainty over
individual components in u(x; 6;) and over different channels. Lastly,
we note that this is a specifc instance of a broad class of models, called
heteroscedastic noise models (Nix and Weigend, 1994; Rao, 1970) where
the variance is a function of the value of the input. In contrast, the base-
line 3D-ESPCN can be viewed as an example of homoscedastic noise mod-
els with y = y,(x) + o€, € ~ N'(0, I) with constant variance o2 across all
spatial locations and image channels, which is highly unrealistic in most
medical images.

We jointly optimise the parameters 6 = {0,,0,} of the mean network
and the covariance network by minimising the negative loglikelihood
(NLL)®:

LoyD)= Y, —log p(ylx.0;,0,) 3)
(x;.y,)€D

= Y —log N(y;: u(x;:0)), 2(x;; 0,)) @)
(x;.y,)ED

= My(D)+ Hy(D) +c 5)

5 One may wonder how it is possible to estimate the heteroscedastic variance
when you observe only one possible output patch y for each input x in the
training data. Here we are assuming that the conditional distribution p(y|x, 6)
is locally “smooth”; if two input low-res patches are similar x; ~ x,, then we
should also have p(y|x;, 6) ~ p(y|x,, 6). Therefore, intuitively speaking, by
minimising the negative log-likelihood Eq. (5), the model estimates the mean
and the variance of the conditional distribution for each x based on the output
labels of other similar input samples.
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Fig. 4. 2D illustration of the proposed dual-path architecture which estimates the mean and diagonal covariance of the Gaussian conditional distributions as functions
of the input low-resolution subvolume x. The “mean network” u( -) at the top generates the high-resolution prediction, while the “covariance network” X( -) at the
bottom estimates the corresponding covariance matrix at the selected location in the volume. The diagonal entries of the covariance are used to quantify the intrinsic
uncertainty. The parameters of both networks are learned by minimising the common loss function (Eq. (5)).

where c is a constant and the remaining terms are given by

N
My(D) = < 3 (3 = 1053 00)TZ7 (%3 09) (3, = (x:0)),

i=1

N
Hy(D) = % Y log det Z(x;; 60,).
i=1

Here M, (D) denotes the mean squared Mahalanobis distance with
respect to the predictive distribution p(y|x, 6). For simplicity, in this
work we assume diagonality of the covariance matrix X(x; 6,). This
means that the Mahalanobis distance term M,(D) equates to the sum of
MSEs across all pixels and channels in the output, weighted by the in-
verse of the corresponding variance (estimated intrinsic uncertainty)°.
This term naturally encourages assigning high uncertainty to regions
with higher MSEs, robustifying the training to noisy labels and outliers.
On other other hand, H,(D) represents the mean differential entropy
and discourages the spread of X, (x) from growing too large. We note
that the covariance network is used to modulate the training of the mean
network and quantify intrinsic uncertainty during inference while only
the mean network generates the final prediction, requiring a single 3D-
ESPCN to perform super-resolution.

3.4. Parameter uncertainty and variational dropout

Parameter uncertainty signifies the ambiguity in selecting the param-
eters of the model that best describes the training data as illustrated in
Fig. 1.(ii). The limitation of the previously introduced 3D-ESPCN base-
line (Section 3.2) and its heteroscedastic extension (Section 3.3) is their
reliance on a single estimate of network parameters. In many medical
imaging problems, the amount of training data is modest; in such cases,
this point estimate approach increases the risk of overfitting (Gal and
Ghahramani, 2015).

We combat this problem with a Bayesian approach. Specifically, in-
stead of resorting to a single network of fixed parameters, we consider
the (posterior) distribution over all the possible settings of network pa-
rameters given training data p(6|D). This probability density encapsu-
lates the parameter uncertainty, with its spread of mass describing the
ambiguity in selecting most appropriate models to explain the training
data D. However, in practice, the posterior p(0|D) is intractable due
to the difficulty in computing the normalisation constant. We, there-
fore, propose to approximate p(f|D) with a simpler distribution q,,(0)
(Blei et al., 2017). Specifically, we adapt a technique called variational
dropout (Kingma et al., 2015) to convolution operations from its original
version introduced for feedforward NNs.

6 In the case of full covariance, M,(D) becomes the MSE in the basis of prin-
ciple components, weighted by the corresponding eigenvalues.

Binary dropout (Srivastava et al., 2014) is a popular choice of
method for approximating posterior distributions (Gal and Ghahra-
mani, 2015) with demonstrated utility in medical imaging applications
(Bragman et al., 2018; Eaton-Rosen et al., 2018; Leibig et al., 2017; Nair
et al., 2018; Roy et al., 2019; Worrall et al., 2016; Yang et al., 2016).
However, typically hyper-parameters (dropout rates) need to be pre-set
before the training, requiring inefficient cross-validation and thus sub-
stantially constraining the flexibility of approximate distribution family
qs(-) (often a fixed dropout rate per layer). This limitation motivates us
to use variational dropout (Kingma et al., 2015) that extends such ap-
proach with a way to learn the dropout rate from data for every single
weight in the network and theoretically enables a more effective ap-
proximation of the posterior distribution. Another established class of
methods is stochastic gradient Markov chain Monte Carlo (SG-MCMC)
method (Chen et al., 2014; Ma et al., 2015; Neal, 1993; Welling and
Teh, 2011). However, in this work, we do not not consider SG-MCMC
methods because they remain, although unbiased, computationally in-
efficient due to the requirement of evaluating an ensemble of models for
posterior computation, and are slow to converge for high-dimensional
problems.

Variational dropout (Kingma et al., 2015) employs a form of vari-
ational inference to approximate the posterior p(0|D) by a mem-
ber of tractable family of distributions ¢,(0) = [1,; N'(6;;m;. @; j’7,~2j)
parametrised by ¢ = {;;,@;;};;, such that Kullback-Leibler (KL) diver-
gence KL(q,(0)||p(0|D)) is minimised. Here, 6; denotes an individual
element in the convolution filters of CNNs as a random variable with
parameters aij(dropout rate) and nij (mean), and the posterior over the
set of all weights is effectively approximated with a product of univariate
Gaussian distributions. In practice, introducing a prior p(6) and applying
Bayes’ rule allow us to rewrite the minimisation of the KL divergence
as maximisation of the quantity known as the evidence lower bound
(ELBO) (Blei et al., 2017). Here during training, we learn the varia-
tional parameters ¢ = {#;;,;;};; by minimising the negative ELBO (to
be consistent with the NLL cost function in Eq. (3)):

Ly = Y (Egyol-108 piIx; 0)] + KLiay©)l1p(6) ) ©)
(x;.y;)ED

An accurate approximation for the KL term for log-uniform prior p(6)
is proposed in Molchanov et al. (2017), which is employed here. On the
other hand, the first term (referred to as the reconstruction term) cannot
be computed exactly, thus we employ the following MC approximation
by sampling S samples of network parameters from the posterior:

S
l S S
Eqp0l—108 pyIx, 001 ~ = 3 ~log p(yIx,0*)), 6% ~ g,(0) )
s=1

Adapting the local reparametrisation trick presented in
Kingma et al. (2015) to a convolution operation, we derive the
implementation of posterior sampling 6 ~ q4(0) such that the vari-



R. Tanno, D.E. Worradll, E. Kaden et al.

Neurolmage 225 (2021) 117366

=
s
Low-res input H H § %
o o S
I 3 3 B > s
] 5] o Q
g g - =
e e = =3 shuffle (o)
#(XLR) - 3
" - o
‘ g g g c
| 2 2 ) >
XLR S S ’% ’ 2 8
124 =4 [}
5] o =
J 5 5 13 —+
| 5] el ] shuffle Soan) B 2
=
<

Fig. 5. 2D illustration of a heteroscedastic network with variational dropout. Diagonal covariance is again assumed. The top 3D-ESPCN estimates the mean and the
bottom one estimates the covariance matrix of the likelihood. Variational dropout is applied to feature maps after every convolution where Gaussian noise is injected

into feature maps F,, = uy + oy O € where € ~ N'(0, I) (see Eq. (8)).

ance of gradients over each mini-batch is low”. In practice, this amounts
to replacing each standard convolution kernel with a “Bayesian” con-
volution, which proceeds as follows. Firstly, we define two separate
convolution kernels: n € Rexk? (“mean” kernels) and a © #* € Rexk?
(“variance” kernels) where © denotes the element-wise multiplication,
¢ is the number of input channel and k is the kernel width. Input
feature maps F;, and its elementwise squared values are convolved
by respective kernels to compute the “mean” and “variance” of the
output feature maps uy=F;,*n and o3 £ F2 * (« © #%) (Fig. 5). Lastly,
the final output feature maps F,,; are computed by drawing a sample
from N (uy, 0')2,) i.e. computing the following quantity:

Fou 2y +oy 0€, €~N(,I). (8)

Every forward pass (i.e. computation of each p(y|x, ) with vari-
ational dropout is thus performed via a sequence of Bayesian con-
volutions. Since the injected Gaussian noise ¢ is independent of the
variational parameters ¢ = {#; 7 % Yigs the approximate reconstruction
term in Eq. (7) is differentiable with respect to them (Kingma and
Welling, 2014).

3.5. Joint modelling of intrinsic and parameter uncertainty

We now describe how to combine the methods for modelling intrin-
sic and parameter uncertainty. Operationally, we take the dual archi-
tecture (Fig. 4) used to model intrinsic uncertainty, and apply vari-
ational dropout to every convolution layer in it. The intrinsic uncer-
tainty is modelled in the heteroscedastic Gaussian model p(y|x, ;. 6,) =
N (y; u(x;0,), 2(x; 6,)) while the parameter uncertainty is captured in
the approximate posterior q,(6,,6,) ~ p(0;,0,|D) obtained from varia-
tional dropout.

At test time, for each low-resolution input subvolume x, we would
like to compute the predictive distribution p(y|x,D) over the high-
resolution output y. We approximate this quantity by q;(ylx) by
taking the “average” of all possible network predictions p(y|x,8) =
N(y;y(x;el),Z(x;Hz)) from all settings of the parameters 6;, 0,
weighted by the associated approximate posterior distribution g,(6,
0,). More formally, we need to compute the integral below:

U0 2 [ N ux:0)),2(x:6,)) - 44(61,6,) d6,d6, 9)
—_——

Approx. posterior

Network prediction
~ /P(YIX,91,92)-p(01,92ID)d91d92 =p(y|x, D) (10

where the last line represents the true predictive distribution p(y|x, D)
which is estimated by our model q;‘)(ylx). However, in practice, the inte-
gral q;(ylx) cannot be evaluated in closed form because the likelihood

7 See the proof for feedforward networks given in Kingma et al. (2015) which
generalises to convolutions.

N (y; u(x; 6)), £(x; 6,)) is a highly non-linear function of input x as given
in Eq. (2). At test time, we therefore estimate, for each input x, the mean
and covariance of the approximate predictive distribution q:';)(ylx) with
the unbiased Monte Carlo estimators:

T
N 1
Ayix® 7 2 ux: ) —— Egsamly] (1)
t=1
1 T
Sy 7 X (200 + a6 0 07 ) = iyl > €OV, g ly.¥]

t=1

12)

where {(9§ R 0;)},11 are samples of the network parameters (i.e. convolu-
tion kernels) drawn from the approximate posterior q,(6;, 6,). In other
words, the inference performs T stochastic forward passes at test time
by injecting noise into features according to Eq. (8), and amalgamates
the corresponding network outputs to compute the sample mean fy,
and sample covariance ﬁy|x. We use the sample mean fy, as the final
prediction of an high-resolution output patch y and use the diagonal
elements of the sample covariance iylx to quantify the corresponding
uncertainty, which we refer to as predictive mean and predictive uncer-
tainty, respectively.

3.6. Uncertainty decomposition and propagation

Predictive uncertainty arises from the combination of two source ef-
fects, namely intrinsic and parameter uncertainty, for which we have
previously introduced methods for estimation. Lastly, we introduce a
method based on variance decomposition for disentangling these effects
and quantifying their contributions separately in predictive uncertainty.
We consider such decomposition problem in the presence of an arbitrary
transformation of the output variable y.

The users of super-resolution algorithms are often interested in the
quantities that are derived from the predicted high-resolution images,
rather than the images themselves. For example, quantities such as the
principal direction (first eigenvalue of the DT), mean diffusivity (MD)
and fractional anisotropy (FA) are typically calculated from diffusion
tensor images (DTIs) and used in the downstream analysis. We there-
fore consider an generic function® g : - R™ which transforms the
high-resolution multi-channel data y to a quantity of interest of dimen-
sion m e.g. MD and FA maps, and propose a way to propagate the pre-
dictive uncertainty over y to the transformed domain (i.e. compute the
variance of p(g(y)|D,x)) and decompose it into the “intrinsic” and “pa-
rameter” components. Specifically, by using the law of total variance’

8 We assume here that the transform g is a measurable function with well-
defined expectation and variance.

9 The total law of variance (also known as Eve’s Law) states that if random
variables if A and B are random variables on the same probability space, and
the mean and the variance of A and B are well-defined, then V[A] = V[E[A|B]] +
E[V[A|B]].
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(Weiss, 2006), we perform the following decomposition:
Vyx o8] = 4,(&[¥) + A;(g(y) (13)

where the respective component terms are defined as:

8,80 2 Epoip) Vot 1o.x 0)[8W] = Vgeyios, o) [gWI0N] (14)
= Vo) [Epeyiox.p) (81611 as)

propagated parameter uncertainty

A& £ E o0y Veiy)io.x 0y [EWIO]] (16)

propagated intrinsic uncertainty

We refer to the components A,(g(y)) and A;(g(y)) as “propagated”
parameter and intrinsic uncertainty. Intuitively, the first term quantifies
the difference in variance between the cases where we have variable
parameters and fixed parameters. In other words, this quantifies how
much predictive uncertainty on the derived quantity arises, on average,
from the variability in parameters. The second term on the other hand
quantifies the average variance of the model prediction when the param-
eters are fixed, which signifies the model-independent uncertainty due
to data i.e. intrinsic uncertainty. Assuming that the considered neural
network is identifiable'® and sufficiently complex to capture the under-
lying data generating process, as the amount of training data increases,
the posterior p(6|D) tends to a Dirac delta function and thus the first term
diminishes to zero while the second term remains. A similar variance de-
composition technique was employed in Bowsher and Swain (2012) to
understand how the variation in cell signals of interest (e.g. gene expres-
sion) in a bio-chemical network is caused by the fluctuations of other
environmental variables (e.g. transcription rate and biological noise). In
our case, we employ the variance decomposition technique to separate
the effects of network parameters from the intrinsic uncertainty in the
prediction of g(y).

We first consider a special case where the transform g is an
identity map i.e. g(y)=y. Since the likelihood is modelled by a
Gaussian distribution with heteroscedastic noise i.e. p(y|6,,6,,x,D) =
N (y; u(x;0,),2(x; 6,)), we see that the parameter and intrinsic uncer-
tainty are given by
AP(Y) = \/p(glm)[llgl ™1 Ay = [Ep(.92|D)[292 )] (17)

which can be approximated by the components of the MC variance es-
timator in Eq. (12) :

T

A= % D H 0D 0T = iy (18
=1

~ 1 I

Ay=o Y =(x; 04) 19

where {(0!, 6’;)}IT= , are drawn from the approximate posterior g, (61, 65).

More generally, when the transform g is complicated, MC sampling
provides an alternative implementation. Given samples of model pa-
rameters {6}~ q(0|D) and {g;}j!zl ~ p(gy)6,,x,D) for t =1,...,T,
we estimate both the progapated parameter and intrinsic uncertainty
by simply using sample mean and sample variance:

B 2 2 X6 - (577 %}(g;»)Z 0)

10 We note that a neural network is, in general, not identifiable i.e. there ex-
ist more than a single set of parameters that capture the same target distri-
bution p(g(y)|x). In such cases, the posterior distribution p(6|D) does not col-
lapse to a single Dirac Delta function with infinite amount of observations—it
rather converges to a mixture of all sets of network parameters ® such that
p(g(y)|0*,x) = p(g(y)|x)Vo* € ©. However, the expectation Epeioxp 801 is
the same for all § € © and thus the propagated parameter uncertainty A,(g(y))
converges to zero.
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These estimators are, although unbiased, higher in variance than the
case where g is the identity (Egs. (18) and (19)), due to two sources of
sampling, thus requiring more samples for reliable estimation of respec-
tive uncertainty components.

4. Experiments and results

In this section, we evaluate the proposed uncertainty modelling tech-
niques for super-resolution of diffusion MR images. First, we quantita-
tively study the effects of modelling uncertainty on the super-resolution
performance by comparing our probabilistic CNN models against the
relevant baselines in two different types of diffusion signal represen-
tations. Secondly, we evaluate the value of predictive uncertainty as a
realiability metric of output images on multiple datasets of both healthy
subjects and those with unseen pathological structures such as brain tu-
mour (Glioma) and multiple sclerosis (MS).

4.1. Datasets

We make use of the following four diffusion MRI datasets to evaluate
different benefits of the proposed technique:

e Human connectome project dataset: we use the diffusion MRI data
from the WU-Minn HCP (release Q3) (Van Essen et al., 2013) as
the source of the training datasets. The dataset enjoys very high
image resolution, signal levels and coverage of the measurement
space, enabled by the combination of custom imaging, reconstruc-
tion innovations and a lengthy acquisition protocol (circa 59 min)
(Sotiropoulos et al., 2013). Each subject’s data set contains 288 dif-
fusion weighted images (DWIs) of voxel size 1.25° mm? of which 18
have nominal » = 0 and the three high-angular-resolution-diffusion-
imaging (HARDI) shells of 90 directions have nominal b-values of
1000, 2000, and 3000 smm~2 (see Sotiropoulos et al., 2013 for the
full acquisition details). The data are preprocessed by correcting dis-
tortions including susceptibility-induced, eddy currents and motion
as outlined in Glasser et al. (2013).

Lifespan dataset: this dataset (available online at http://lifespan.

humanconnectome.org contains 26 subjects of much wider age range

(8-75 years) than the main HCP cohorts (22-36 years), and is ac-

quired with a shortened version of the main HCP protocol (circa

36 min) with lower resolution (1.5 mm isotropic voxels) and only

two HARDI shells, with 5 = 1000 and 2500 smm~2. Due to the dif-

ferences in sequence timing and voxel resolution, Lifespan dataset
has a different signal-to-noise ratio from HCP dataset. However, we
also note that the protocol still leverages the special features of the

HCP scanners, providing images of substantially better quality than

standard sequences. In this work, we focus the elderly subjects (45—

75 years old) and utilise this out-of-training-distribution dataset to

assess the robustness of our techniques to domain shifts. It is well

known and widely accepted that there are significant differences in
numerous diffusion metrices between young adults and elderly sub-
jects. Most notably, the DTI fractional anisotropy (FA) is significantly
lower and the DTI mean diffusivity (MD) is significantly higher in
elderly subjects compared to young adults. We refer the interested
readers to references Westlye et al. (2009), Lebel et al. (2012), and

Salat (2014) for more details.

e Prisma dataset: two healthy male adults (29 and 33 years old re-
spectively) were scanned twice at different image resolutions us-
ing the clinical 3T Siemens Prisma scanner in FMRIB, Oxford. Both
datasets contain diffusion MRI data with 21 b = 0 images and three
90-direction HARDI shells, b-values of 1000, 2000, and 3000 smm~2,
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Details of training data for two diffusion MR signal representations, DTIs and MAP-MRIs.
The first two columns from the right denote the size of the input x and output patches y of
dimension [width, height, depth, channels] while the third and the fourth columns show the
number of patch pairs (x, y) extracted from each subject, and the total number of training

subjects used, respectively.

Data Size of input x Size of output y No. pairs (%, y) No. subjects
per subject

DTIs 11x11x11x6 14 x 14 x 14 x 6 8000 16

MAP-MRIs 21 x21x21x22 14x14x14x22 4000 16

each for two resolutions, 2.50 mm and 1.35 mm isotropic voxels (see
Alexander et al., 2017 for full acquisition details). In addition, each
of these datasets also includes a standard 3D T1-weighted MPRAGE
(1 mm isotropic resolution). The Prisma scanner is less powerful
than the bespoke HCP scanner and cannot achieve sufficient signal
at 1.25 mm resolution, but the 1.35 mm data provides a pseudo
ground-truth for IQT resolution enhancement of the 2.5 mm data.

e Pathology dataset: we use two separate datasets which consist of
images of brain tumour (Glioma) (Figini et al., 2018) and multi-
ple sclerosis (MS) patients, respectively. The data of each wubject
with glioma contains DWIs with b = 700 s/mm? while the measure-
ment of each MS patient is of 5 = 1200 s/mm?”. Both datasets have
isotropic voxel size 2> mm?, which is closer to the image resolution
of commonplace clinical scanners. We use these datasets to assess
the behaviour of predictive uncertainty on images with pathological
features that are not represented in the training data set.

In all the experiments, super-resolution is performed on diffusion
parameter maps derived from the DWIs in the above datasets. In par-
ticular, we consider two diffusion MRI models, namely the diffusion
tensor (DT) model (Basser et al., 1994) and Mean Apparent Propaga-
tor (MAP) MRI (Ozarslan et al., 2013), where the former is the sim-
plest and most standard diffusion parameter map, and the latter is
a high-order generalisation of the former with the capacity to char-
acterise signals from more complex tissue structures (e.g. fibre cross-
ing regions), a requirement for successful tractography applications.
We compute both of these diffusion parameter maps using the imple-
mentation from Alexander et al. (2017), which is available at https:
//github.com/ucl-mig/iqt.

We fit the DT model to the combination of b =0 images and b =
1000 s/mm? HARDI shell for the HCP and Lifespan datasets, and b =
700 s/mm? shell for the brain tumour dataset. In all cases, weighted
linear least squares are employed for the fitting, taking into account
the spatially varying b-values and gradient directions in the HCP
dataset. On the other hand, in the case of MAP-MRI, 22 coefficients
of basis functions up to order 4 are estimated via (unweighted) least
squares to all three shells of the HCP, Lifespan and Prisma datasets. As
noted in Alexander et al. (2017), the choice of scale parameters (see
Ozarslan et al., 2013) u, = My =, =12X 10~ mm empirically min-
imises the fitting error in the HCP dataset, and is used for all datasets.

Training datasets in all experiments are constructed by artificially
downsampling very high-resolution images in the HCP dataset. In par-
ticular, we employ the following downsampling procedure: (i) the raw
DWIs of selected subjects are blurred by applying the mean filter of
size r X r X r independently over channels with r denoting the up-
sampling rate; (ii) the DT or MAP parameters are computed for every
voxel; (iii) the spatial resolution of the resultant parameter maps are re-
duced by taking every r pixels. A coupled library of low-resolution and
high-resolution patches is then constructed by associating each patch
in the downsampled DTI/MAP-MRI with the corresponding patch in the
ground truth DTI or MAP-MRI. In this case, we ensure the low-resolution
patch to be centrally and entirely contained within the corresponding
high-resolution patch (as illustrated by the yellow and orange squares in
Fig. 3). We then randomly select a pre-set number of patches from each

subject in the training pool to create a training dataset as detailed in
Table 1. In addition to the 8 subjects used in the prior work (Alexander
et al., 2014; Tanno et al., 2016; 2017), we randomly select additional 8
subjects from the HCP cohort and include them in the training subject
pool. Patches are standardised channel-wise by subtracting the mean of
foreground pixel intensities of the corresponding subject and dividing
by its standard deviation. Moreover, since MAP-MRI datasets contain
outliers due to model fitting, in large enough quantity to influence the
training of the baseline 3D-ESPCN model, we remove them by clipping
the voxel intensity values of the respective 22 channels separately at
0.1% and 99.9% percentiles computed over all the foreground voxels in
the whole training dataset.

4.2. Network architectures and training

For the training of all CNN models, we minimised the associated loss
function using Adam (Kingma and Ba, 2014) for 200 epochs with initial
learning rate of 103 and g = [0.9,0.999], with minibatches of size 12.
We hold out 50% of training patch pairs as a validation set. The best
performing model was selected based on the mean-squared-error (MSE)
on the validation set.

For the super-resolution of DTIs, as in Shi et al. (2016), we use a
minimal architecture for the baseline 3D-ESPCN, consisting of three 3D
convolutional layers with filters (32, 50) — (13, 100) — (33, 6r°) where
r is upsampling rate and 6 is the number of channels in DTIs. As il-
lustrated in Fig. 3, the dimensions of convolution filters are chosen, so
each 5% - 6 low-resolution receptive field patch maps to a r° - 6 high-
resolution patch, which mirrors competing random forest based meth-
ods (Alexander et al., 2014; Tanno et al., 2016) for a fair comparison. On
the other hand, for MAP-MRI, which is a more complex image modality
with 21 channels, we employ a deeper model with 6 convolution lay-
ers (53, 256) — (33, 256) — (33, 128) — (3%, 128) — (33, 64) — (33,
2173) prior to the shuffling operation, which expands the receptive field
on each r3 - 21 high-resolution patch to 153 - 21 input low-resolution
patch. Every convolution layer is followed by a ReLU non-linearity ex-
cept the last one in the architecture, and batch-normalisation (Ioffe and
Szegedy, 2015) is additionally employed for MAP-MRI super-resolution
between convolution layer and ReLU non-linearity.

The mean and variance networks in the heteroscedastic noise model
introduced in Section 3.3 are implemented as two separate baseline 3D-
ESPCNs of the architectures, specified above for DTIs and MAP-MRIs.
Positivity of the variance is enforced by passing the output through a
softplus function f(x) = In(1 + ¢¥) as in Lakshminarayanan et al. (2017).

For variational dropout, we considered two flavours: Var.(I) opti-
mises per-weight dropout rates, and Var.(II) optimises per-filter dropout
rates. More formally, the “drop-out rate” «;; in the approximate posterior
q5(0;;) = N (8, 73 Mijs X j ;1‘.21.) is different for every element in each convolu-
tion kernel in the former while the latter has common a;; shared across
each kernel. In preliminary analysis, we found that the number of sam-
ples per data point for estimating reconstruction term (Eq. (7)) can be
set to S = 1 so long as the batch size is sensibly large (M = 12).

We also note the default training with binary and Gaussian dropout
also employs S = 1 (Srivastava et al., 2014) along with other MC vari-
ational inference methods for neural networks such as Kingma and
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Welling (2014), Kingma et al. (2015), and Gal et al. (2017a). Variational
dropout is applied to both the baseline and heteroscedastic models with-
out changing the architectures. For both binary and Gaussian dropout
modes, we incorporate the dropout operations of fixed rate p in every
convolution layer of the baseline 3D-ESPCN architecture.

All models are trained on simulated datasets generated from 16 HCP
subjects as detailed in Section 4.1. We also retrained the random for-
est models employed in Tanno et al. (2016), Alexander et al. (2017) on
equivalent datasets. It takes under 60/360 min to train a single net-
work on DTI/MAP-MRI data on a single TITAN X GPU. All models
are implemented in the TensorFlow framework (Abadi et al., 2016)
and the codes will be released at https://github.com/rtanno21609/
UncertaintyNeuroimageEnhancement.

4.3. Benefits on super-resolution performance

We evaluate the effects of modelling different components of uncer-
tainty on the prediction performance of our models for super-resolution
of DTI and MAP-MRI on two datasets—HCP and Lifespan as detailed in
Section 4.1. The first dataset contains 16 unseen subjects from the same
HCP cohort used for training, while the second one consists of 10 sub-
jects from the HCP Lifespan dataset. The latter tests generalisability, as
they are acquired with a different protocol at lower resolution (1.5 mm
isotropic), and contain subjects of a different age range (45-75 years)
to the original HCP data (22-36 years). We perform x 2 upsampling
in all spatial directions. The reconstruction quality is measured with
root-mean-squared-error (RMSE), peak-signal-to-noise-ratio (PSNR) and
mean-structural-similarity (MSSIM) (Wang et al., 2004) on two separate
regions: (i) “interior”; the set of pixels whose the 5% cubic neighbour-
hood is entirely contrained within the brain mask; (ii) “exterior”; the
remaining set of pixels in the brain mask, as shown in Fig. 6. This is
because the current state-of-the-art methods based on random forests
(RFs) such IQT-RF (Alexander et al., 2017) and BIQT-RF (Tanno et al.,
2016) are only trained on patches from the interior region and requires

Fig. 6. Visualisation of “interior” (yellow) and “exterior” regions (red). The
interior region consists of a set of patches contained entirely within the brain
while the exterior region consists of partial patches that contain mixtures of
brain and background voxels.
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a separate procedure on the brain boundary. In addition, the estimation
problem is quite different in boundary regions, but remains valuable
particularly for applications such as tractography where seed or target
regions are often in the cortical surface of the brain. We only present
the RMSE results, but the derived conclusions remain the same for the
other two metrics (see Section C in the Supplementary materials). Aside
from the interpolation techniques, for each method an ensemble of 10
models are trained on different trainings set (generated by randomly
extracting patch pairs from the common 16 HCP training subjects) and
for each model, the average error metric over the test subjects are first
calculated. The mean and standard deviations of such average errors are
computed across the model ensemble and reported in Tables 2 and 3.

Table 2 shows that our baseline achieves 8.5%/,/39.8% reduction in
RMSE for the super-resolution of DTIs on the HCP dataset on the inte-
rior/exterior regions with respect to the best published method, BIQT-
RF (Tanno et al., 2016). While the standard deviations are higher, the
improvements are more pronounced in MAP-MRI super-resolution, re-
ducing the average RMSEs by 49.6% and 63.5% on the interior and ex-
terior regions. We note that that IQT-RF and BIQT-RF are only trained
on interior patches, and super-resolution on boundary patches requires
a separate ad hoc procedure. Despite including exterior patches in train-
ing our model, which complicates the learning task, the baseline CNN
out-performs the RF methods on both regions. We see similar improve-
ments in the out-of-distribution Lifespan dataset.

Reconstruction is faster than the RF baselines; the 3D-ESPCN is capa-
ble of estimating the whole high-resolution DTI/MAP-MRI under 10/60
seconds on a CPU and 1/10 second(s) on a GPU. On the other hand,
BIQT-RF takes ~ 10 min with 8 trees on both DTIs and MAP-MRIs. The
fully convolutional architecture of the model enables to process input
patches of different size from that of training inputs, and we achieve
faster reconstruction by using larger input patches of dimension 252 - ¢
where ¢ is the number of channels. We also note that the reconstruc-
tion time of the variational dropout based models increases by a factor
of the number of MC samples used at test time, although it is possible,
with more memory, to leverage GPU parallelisation by making multiple
copies of each input patch and treating them as a mini-batch. On the
other hand, the heteroscedastic CNN enjoys the same inference speed of
the baseline since only the mean network is used for reconstruction (the
covariance network is only employed to quantify the estimated intrinsic
uncertainty).

Table 2 shows that, on both HCP and Lifespan data, modelling
both intrinsic and parameter uncertainty (i.e. Hetero. + Variational
Dropout (I), (II)) achieves the best reconstruction accuracy in DTI super-
resolution. We observe that modelling intrinsic uncertainty with the het-
eroscedastic network on its own further reduces the average RMSE of
the baseline 3D-ESPCN on the interior region with high statistical sig-
nificance (p < 1073). However, poorer performance is observed on the
exterior than the baseline. On the other hand, using 200 MC weight sam-
ples'!, we see modelling parameter uncertainty with variational dropout
(see Variational Dropout.(I)-CNN) performs best on both datasets on
the exterior region. Combination of heteroscedastic model and varia-
tional dropout (i.e. Hetero. + Variational Dropout (I) or (II)) leads to
the top 2 performance on both datasets on the interior region and re-
duces errors on the exterior to the level comparable or better than the
baseline.

Similarly, Table 3 shows that the best performance in MAP-
MRI super-resolution comes from the combined models (i.e. Het-
ero. + Variational Dropout.(I) and (II)). We observe that as with the DTI
case, modelling intrinsic uncertainty through the heteroscedastic net-
work improves the reconstruction accuracy on the interior region, whilst
the errors on the exterior are increased with respect to the baseline 3D-
ESPCN. Moreover, the improvement is pronounced when the outliers

11 We observed that drawing more than 200 MC samples at inference time was
sufficient for the average RMSE and its standard deviation to converge.
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Super-resolution results on diffusion tensor images (DTIs) of HCP and Lifespan datasets for different upsampling methods. For each
method, an ensemble of 10 models are trained on different training sets generated by randomly extracting a set of patch pairs from
the common 16 HCP subjects. For each model, the average RMSE (x10~*mm?/s) over subjects in respective datasets is first computed
and the mean/std of such average RMSE over the ensemble are then reported. Best results in bold red, and the second best in blue.

HCP (exterior) Life (interior) Life (exterior)

Models HCP (interior)
CSpline-interpolation 10.069 + n/a
p-Spline interpolation 9.578 + n/a
IQT-RF 6.974 + 0.024
BIQT-RF 6.972 + 0.069
3D-ESPCN(baseline) 6.212 + 0.017
+ Binary Dropout (p =0.1) 6.319 + 0.015
+ Gaussian Dropout (p = 0.05) 6.463 + 0.034
+ Variational Dropout (I) 6.194 + 0.013
+ Variational Dropout (II) 6.201 + 0.015
+ Hetero. 6.135 + 0.029
+ Hetero. + Variational Dropout (I) 6.121 + 0.015
+ Hetero. + Variational Dropout (II) 6.116 + 0.013

31.738 + n/a 32483 + n/a 49.066 + n/a
98.169 + n/a 33.429 + nfa 186.049 + n/a
23.139 + 0.351 10.038 + 0.019 25.166 + 0.328
23.110 + 0.362 9.926 + 0.055 25.208 + 0.290
13.609 + 0.084 8.902 + 0.020 16.389 + 0.114
13.738 + 0.048 9.093 + 0.024 16.489 + 0.099
14.168 + 0.051 9.184 + 0.048 16.653 + 0.092
13.412 + 0.041 8.874 + 0.027 16.147 + 0.051
13.479 + 0.047 8.878 + 0.031 16.230 + 0.075
15.469 + 0.231 8.885 + 0.041 17.208 + 0.211
13.591 + 0.051 8.837 + 0.043 16.261 + 0.053
13.622 + 0.099 8.861 + 0.031 16.387 + 0.098

Table 3

Super-resolution results on MAP-MRIs of HCP and Lifespan datasets for different upsampling methods. For each method, an ensemble
of 5 models are trained on different training sets generated by randomly extracting a set of patch pairs from the common 16 HCP
subjects. For each model, the average RMSE over subjects in respective datasets is first computed and the mean/std of such average
RMSEs (x1072) over the ensemble are then reported. Best results in bold red, and the second best in blue. In addition, the performance
of 3D-ESPCN and its probabilistic variants trained on data without outlier removal are also included.

HCP (exterior) Life (interior) Life (exterior)

Models HCP (interior)
CSpline interpolation 5234 + n/a

p-Spline interpolation 4.852 + nfa

IQT-RF (Alexander et al., 2017) 4538 + 0.113
BIQT-RF (Tanno et al., 2016) 4.838 + 0.129
3D-ESPCN(baseline) 2.285 + 0.126
+ Binary Dropout (p=0.1) 2.283 + 0.154
+ Gaussian Dropout (p =0.1) 2.370 + 0.155
+ Variational Dropout (I) 2.155 + 0.122
+ Variational Dropout (II) 2.172 £ 0.128
+ Hetero. 1.998 + 0.132
+ Hetero + Variational Dropout (I) 1.951 + 0.122
+ Hetero + Variational Dropout (II) 1.969 + 0.119
3D-ESPCN(without outlier removal) 3.425 + 0.163
+ Hetero. 2.264 + 0.153
+ Hetero + Variational Dropout (I) 2.138 + 0.159
+ Hetero + Variational Dropout (II) 2.133 £ 0.188

30.362 + n/a 7.135 + n/a 29.232 + n/a

63.446 + nja 6.523 + nfa 56.937 + n/a

25.541 + 0.131 5.882 + 0.121 26.137 + 0.279
25.523 + 0.175 5.949 + 0.131 27.509 + 0.233
9.316 + 0.127 4.195 + 0.163 11.922 + 0.192
9.272 + 0.132 4120 + 0.178 11.652 + 0.204
9.335 + 0.144 4.327 + 0.157 11.907 + 0.211
9.205 + 0.193 3.997 + 0.153 11.547 + 0.177
9.112 + 0.173 3.972 + 0.132 11.511 £ 0.172
11.294 + 0.216 3.872 + 0.140 12.084 + 0.129
9.102 + 0.181 3.572+0.171 11.037 + 0.192
9.052 +0.162 3.606 + 0.141 11.311 £ 0.195
13.284 + 0.239 6.032 + 0.229 15.513 + 0.273
11.306 + 0.172 3.919 + 0.140 12.821 = 0.150
10.022 + 0.187 3.681 + 0.193 12.133 £ 0.205
9.988 + 0.209 3.690 + 0.184 12.052 + 0.212

due to model fitting errors are not removed in the training data. In this
case, we see that the reconstruction accuracy of 3D-ESPCN dramatri-
cally decreases, whilst in contrast it is only marginally compromised
when equipped with the heteroscedastic noise model, displaying robust-
ness to outliers. Lastly, we note that the top-2 accuracy are consistently
achieved by the joint modelling of intrinsic and parameter uncertainty
(i.e. Hetero. + Variational Dropout.(I) and (II)) on both the interior and
exterior regions on both HCP and Lifespan datasets.

The performance difference of heteroscedastic network between the
interior and the exterior region roots from the loss function. The Maha-
lanobis term M, (D) in Eq. (5) imposes a larger penalty on the regions
with smaller intrinsic uncertainty. The network therefore allocates less
of its resources towards the regions with higher uncertainty (e.g. bound-
ary regions) where the statistical mapping from the low-resolution to
high-resolution space is more ambiguous, and biases the model to fit
the regions with lower uncertainty. However, we note that the perfor-
mance of the heteroscedastic network is still considerably better than the
standard interpolation and RF-based methods. By augmenting the model
with variational dropout, the exterior error of the heteroscedastic model
is dramatically reduced, indicating the “smoothing” regularisation ef-
fect of dropout against overfitting to low-uncertainty areas (i.e., regions
with high data frequency). We also observe concomitant performance
improvement on the interior regions on both datasets, which addition-
ally shows the benefits of such regularisation even in low-uncertainty
areas.

Both Table 2 and Table 3 show that the use of variational dropout
attains lower errors than the models with fixed dropout probabilities p,
namely, Binary and Gaussian dropout (Srivastava et al., 2014). Different
instances of both dropout models are trained for a range of p by linearly
increasing on the interval [0.05,0.3] with increment 0.05, and the test
errors for the configurations with smallest RMSE on the validation set
are reported in Tables 2 and 3. As with variational dropout models, 200
MC samples are used for inference. In all cases, two variants of varia-
tional dropout (I) and (II) outperform the networks with the best binary
or Gaussian dropout models, showing the benefits of learning dropout
probabilities p rather than fixing them in advance. We should also note
that the dropout operation is commonly turned off during test time. Such
point estimate approach based on mean approximation marginally re-
duces the average reconstruction accuracy, as shown in a wide range
of applications in Gal and Ghahramani (2015), and does not give an
estimate of the predictive variance.

Lastly, to test the real world utility of the observed improvement in
reconstruction performance, we further assessed the benefits of super-
resolution with a tractography experiment on the Prisma dataset, which
contains two DWIs of the same subject at two different image resolu-
tions—1.35 mm and 2.5 mm isotropic voxels, as detailed in Section 4.1.
Fig. 13 in the Supplementary materials shows that IQT via our best per-
forming CNN (3D-ESPCN + Hetero. + Variational Dropout (I)) makes
a tangible difference in downstream tractography. For more details, we
refer the readers to Section E in the Supplementary material.
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Fig. 7. Comparison between voxel-wise RMSE and predictive uncertainty maps for FA and MD computed on a HCP test subject (min-max normalised for MD and
FA separately). Low-res input, ground truth and the mean of high-resolution predictions are also shown.

4.4. Reliability assessment of model predictions

In this section, we investigate the utility of uncertainty modelling
in quantifying and understanding the reliability of model predictions.
Firstly, in Section 4.4.1, we investigate the utility of the derived pre-
dictive uncertainty map as a proxy measure of reconstruction accuracy
on healthy test subjects from both HCP and Lifespan datasets. Secondly,
in Section 4.4.2, we study the behaviours of uncertainty maps in the
presence of abnormal features that are not present in the training data.

4.4.1. Healthy test subjects

We employ the most performant CNN model (3D-ESPCN + Hetero.
+ Variational Dropout(I)) to generate the high-resolution predictions
of mean diffusivity (MD) and fractional anisotropy (FA), and their associ-
ated predictive uncertainty maps. Here we draw 200 samples of high-
resolution DTI predictions for each subject from the predictive distri-
bution q(’;(ylx), and then the FA and MD maps of each prediction are
computed. The sample mean and standard deviation are then calculated
from these samples to generate the final estimates of high-resolution
MD/FA maps and their corresponding predictive uncertainty.

Fig. 7 displays high correspondence between the error (RMSE) maps
and the predictive uncertainty on both FA and MD of a HCP test subject.
This demonstrates the potential utility of uncertainty map as a surrogate
measure of prediction accuracy. In particular, the MD uncertainty map
captures subtle variations within the white matter and the cerebrospinal
fluid (CSF) at the centre. Also, in accordance with the low reconstruction
accuracy, high predictive uncertainty is observed in the CSF in MD. This
is expected since the CSF is essentially free water with low signal-to-
noise-ratio (SNR) and is also affected by biological noise such as cardiac
pulsations. The reconstruction errors are high in FA prediction on the
bottom-right quarter of the brain boundary, close to the skull, which is
also reflected in the uncertainty map.

Fig. 7 also shows strong correlation between the intensity value of
the prediction and the predictive uncertainty. This is expected since the
error map itself correlates strongly with the intensity values. However,
we note this is not always the case and we would like to point to some
example cases. For instance, we observe in the top row of Fig. 7 that un-
certainty is lower in a region of grey matter with higher MD intensity,
and also captures the subtle variations in accuracy within the central
CSF, which has approximately uniform intensity. Similarly, the FA map
in the bottom row shows that the uncertainty on the bottom right brain
boundary is particularly high in accordance with high RMSE, while the

FA values there are very low. We also observe similar behaviours even
in the presence of abnormalities (as described in greater detail in the
subsequent section): Fig. 11 (b) shows that the propagated parameter
uncertainty assigns higher or comparable degree of uncertainty to the
MS lesions than the central CSF which has significantly higher MD val-
ues.

Fig. 8 tests the utility of predictive uncertainty map in discriminating
potential predictive failures in the predicted high-resolution MD map.
We define ground truth “safe” voxels as the ones with reconstruction er-
ror (RMSE) smaller than a fixed value, and the task is to separate them
from the remaining ground-truth “risky” voxels by thresholding on their
predictive uncertainty values. The threshold for defining safe voxels is
set to 1.5 x 10~* s/mm?, such that the risky voxels mostly concentrate
on the outer-boundary and the CSF regions (which account for 17.5%
of all voxels under consideration). Here the positive class is defined as
“safe” while the negative class is defined as “risky”. Fig. 8 (a) shows the
corresponding receiver operating characteristic (ROC) curve of such bi-
nary classification task, which plots the true-positive-rate (TPR) against
the false-positive-rate (FSR) computed based on all the voxels in the 16
HCP training subjects. In this case, TPR decribes the percentage of cor-
rectly detected safe voxels out of all the safe ones, while FPR is defined
as the percentage of risky voxels that are wrongly classified as safe out
of all the risky voxels. We then select the best threshold by maximising
the F1 score, and use this to classify the voxels in each predicted high-
resolution MD into “safe” and “risky” ones for all subjects in the test
HCP dataset and the Lifespan dataset. Fig. 8 (b) shows the inter-subject
average of the TPR and FPR on both datasets. While on average TPR
slightly worsens compared to the results on the training subjects, FPR
improves in both cases—notably, this uncertainty-based classification
is able to correctly identify 96% of risky predictions on unseen sub-
jects from out-of-training-distribution dataset, namely Lifespan, which
differs in demographics and underlying acquisition. Fig. 8 (c) visualises
the classification results to the pre-defined “ground truth” on one of the
Lifespan subjects, which illustrates that the generated “warning” aggres-
sively flags potentially risky voxels at the cost of thresholding out the
safe ones.

Lastly, we have also performed the same quantitative analysis on
the FA map (see Fig. 12 in Section B in the Supplementary material).
We observe similar results with the optimal threshold on predictive un-
certainty, achieving the average detection rate of 10% on both “within-
distribution” HCP test set and 8% on the “out-of-distribution” Lifespan
data set. The slight increase in the TRP can be ascribed to the more noisy
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Fig. 8. Discrimination of “safe” voxels in the predicted high-resolution MD map by thresholding on predictive uncertainty. Here a single 3D-ESPCN + Hetro. +
Variational Dropout (I) model is used to quantify the predictive uncertainty over each image volume. (a) The ROC curve plots the true positive rate (TPR) against
false positive rate (FPR) computed for a range of threshold values on the foreground voxels in the training subjects. Best threshold (black dot) was selected such
that F1 score is maximised and is employed to separate “safe” voxels from “risky” ones; (b) the average TPR and FPR over the 16 test HCP subjects and the 16
Lifespan subjects are shown; (c) an example visualisation of the “ground truth” safe (black) and risky (red) voxels on a Lifespan subject along with the corresponding

classification results denoted as “warning”.

distribution of the high error voxels. In this case, a large proportion
of “risky” voxels concentrate on the brain parenchyma and structural
boundary, which can also be detected with reasonable accuracy.

4.4.2. Unseen abnormalities and uncertainty decomposition

We separately visualise the propagated intrinsic and parameter un-
certainty over the predicted high-resolution MD map on images of sub-
jects with a variety of different unseen abnormal structures, such as be-
nign cysts, tumours (Glioma) and focal lesions caused by multiple scle-
rosis (MS). We emphasise here that all these images have been acquired
with different protocols. Specifically, benign cysts in the HCP datasets
represent abnormalities in images acquired with the same protocol as
the training data, while tumours and MS lesions are examples of patholo-
gies present in out-of-distribution imaging protocols. In all cases, we use
the SR network, Hetero. + Variational Dropout (I), trained on healthy
subjects from HCP dataset. For each of 200 different sets of parameters
{6,}% sampled from the posterior distribution ¢(6|D), we draw 10 sam-
ples of high-resolution DTIs from the likelihood, {y/ }j‘_g , ~ p(yl6,,x, D),
compute the corresponding MD, and approximate the two constituents
of predictive uncertainty with the MC estimators given in Egs. (20) and
21).

Fig. 9 shows the reconstruction accuracy along with the components
of predictive uncertainty over the high-resolution MD map of a HCP test
subject, which contains a benign abnormality (a small posterior midline
arachnoid cyst). The error (RMSE) and propagated intrinsic uncertainty
are plotted on the same scale whereas the propagated model uncertainty
is plotted on 1/5 of the scale for clear visualisation. In this case, the
predictive uncertainty is dominated by the intrinsic component. In par-
ticular, low propagated intrinsic uncertainty is observed in the interior
of the cyst relative to its boundary in accordance with the high accuracy
in the region. This is expected as the interior structure of a cyst is highly
homogeneous with low variance in signals and the super-resolution task
should therefore be relatively straightforward. On the other hand, the
component of parameter uncertainty is high on the interior structure
which also makes sense as such homogeneous features are underrepre-
sented in the training data of healthy subjects. This example illustrates

how decoupling the effects of intrinsic and parameter uncertainty po-
tentially allows one to make sense of the predictive performance.

Fig. 10 visualises the uncertainty components generated by the same
CNN model trained on datasets of varying size. We see that the prop-
agated parameter uncertainty diminishes as the training set size in-
creases, while the propagated intrinsic uncertainty stays more or less
constant. This result is indeed what is expected as described in Fig. 1;
the specification of network weights becomes more confident i.e. the
variance of the posterior distribution decreases as the amount of train-
ing data increases, while the effect of intrinsic uncertainty is only deter-
mined by the underlying problem and is irreducible with the amount of
data. On the other hand, when the standard binary or Gaussian dropout
was employed instead of variational dropout, we observed that the ef-
fect of parameter uncertainty stayed more or less constant with the size
of training data. This may be a consequence of the posterior variance
largely determined by the prespecified drop-out rates, which in turn re-
sults in more static variance of predictive distribution.

We further validate our method on clinical images with previously
unseen pathologies. We note that the pathology data contain images
acquired with standard clinical protocols with voxel size slightly smaller
than that of the training low-resolution images and lower signal-to-noise
ratio.

Fig. 11 shows that pathological areas not represented in the train-
ing set are flagged as highly uncertain. Although the ground truth is
not available in this case, the uncertainty can be quantified instead
to flag potential low accuracy areas. Fig. 11 (a) shows that the prop-
agated parameter uncertainty highlights the tumour core, and speckly
artefacts in the input image, which are not represented in the training
data. On the other hand, the intrinsic uncertainty component is high on
the whole region of pathology covering both the tumour core and its
surrounding edema. Fig. 11 (b) shows that high parameter uncertainty
is assigned to a large part of focal lesions in MS, while the intrinsic un-
certainty is mostly prevalent around the boundaries between anatomical
structures and CSF. We also observe that the super-resolution sharpens
the original image without introducing noticeable artifacts; in particu-
lar, for the brain tumour image, some of the partial volume effects are
cleared.
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Fig. 9. Visualisation of (a) MD, FA and colour
FA maps computed from the DTI of a HCP sub-
ject with a small posterior midline arachnoid
cyst in the central part of the brain. (b) the cor-
responding reconstruction accuracy (RMSE) in
MD and the corresponding components of pre-
dicted uncertainty.
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Fig. 10. Training set size vs propagated intrinsic/parameter uncertainty. (a) shows the quantitative results on the whole HCP test population. For a fixed training
data size, an ensemble of 10 each 3D-ESPCN + Hetro. + Variational Dropout (I) models are trained on different training sets generated by randomly extracting a
set of patch pairs from the common 16 HCP training subjects. The average uncertainty components from each model are first computed over the HCP test subjects,
and the mean/std of such average uncertainty values over the model ensemble are then reported. (b) visualises the respective uncertainty components from a single
model on the MD map of an unseen HCP subject with a benign cyst. The uncertainty maps are normalised across all the figures in each row.

5. Discussion and conclusion

We introduce a probabilistic deep learning (DL) framework for quan-
tifying three types of uncertainties that arise in data-enhancement appli-
cations, and demonstrate its potential benefits in improving the safety
of such systems towards practical deployment. The framework models
intrinsic uncertainty through heteroscedastic noise model and parameter
uncertainty through approximate Bayesian inference in the form of varia-

tional dropout, and finally integrates the two to quantify predictive uncer-
tainty over the system output. Experiments focus on the super-resolution
application of image quality transfer (IQT) (Alexander et al., 2017) and
study several desirable properties of such framework, which lack in the
existing body of data enhancement methods based on deterministic DL
models.

Firstly, results on a range of applications and datasets show
that modelling uncertainty improves overall prediction performance.
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Fig. 11. Visualisation of propagated uncertainty components on clinical images with pathology that was not present in the training data. The super-resolution is
performed on the clinical images due to low-resolution, and thus the ground truths are not available in both cases. (a) shows the results on the data of a Glioma
patient, and the yellow circle indicates the region of tumour. (b) shows the same set of results on a MS patient with labels of focal lesions obtained from a neurologist
indicated in yellow. Each row shows from left to right: (i) MD map computed from the original DTI; (ii) MD map computed from the output of super-resolution; (iii),
(iv) maps of the estimated propagated intrinsic and parameter uncertainty; (v) “warning map” obtained from the same threshold value used in Section 4.4.1, which

flag large parts of the pathological features in both cases.

Tables 2 and 3 show that modelling the combination of both intrinsic and
parameter uncertainty achieves the state-of-the-art accuracy on super-
resolution of DTIs and MAP-MRI coefficients in both of the HCP test
dataset and the Lifespan dataset, improving on the present best meth-
ods based on random-forests (RF-IQT Alexander et al., 2017 and RF-
BIQT Tanno et al., 2016) and interpolation—the standard method to
estimate sub-voxel information used in clinical visualisation software.
In particular, results on the Lifespan dataset, which differs from the
training data in age range and acquisition protocol, indicates the better
generalisability of our method. In addition, Fig. 13 shows that such com-
bined model also benefits downstream tractography in comparison with
the previous methods, illustrating the potential utility of the method
for downstream connectivity analysis. Such improvement in the predic-
tive performance arises from the regularisation effects imparted by the
modelling of respective uncertainty components. Specifically, modelling
intrinsic uncertainty through the heteroscedastic network improves ro-
bustness to outliers, while modelling parameter uncertainty via varia-
tional dropout defends against overfitting. For example, Table 3 shows
that the predictive performance of the 3D-ESPCN + Hetero. model is
only marginally compromised even when the outliers are not removed
from training data, while the baseline 3D-ESPCN results in much poorer
performance. This can be ascribed to the ability of the variance net-
work Zy, (1) in the 3D-ESPCN + Hetero. architecture to attenuate the
effects of outliers by assigning small weights (i.e. high uncertainty) in
the weighted MSE loss function as shown in Eq. (21). However, this
loss attenuation mechanism can also encourage the network to over-
fit to low-uncertainty regions, potentially focusing less on ambiguous
yet important parts of the data—we indeed observe in Table 3 that the
heteroscedastic network performs considerably worse than the baseline
3D-ESPCN on the exterior regions while the reverse is observed on the
interior part. Such overfitting to low-uncertainty interior regions is al-
leviated by modelling parameter uncertainty with variational dropout
(Kingma et al., 2015), as evidenced by the dramatic error reduction in
the exterior region on both HCP and Lifespan datasets.

Secondly, experiments on the images of healthy and pathological
brains have demonstrated the utility of predictive uncertainty as a reliabil-

ity metric of output images. Fig. 13 illustrates the strong correspondence
between the maps of predictive uncertainty and the reconstruction qual-
ity (voxel-wise RMSE) in the downstream derived quantites such as FA
and MD maps. In addition, Fig. 11 shows that such uncertainty mea-
sure also highlights pathological structures not observed in the training
data. We have also tested the utility of predictive uncertainty in dis-
criminating voxels with sufficiently low RMSEs in the predicted high-
resolution MD maps. As shown in Fig. 8, the optimal threshold selected
on the HCP training dataset is capable of detecting over 90% of non-
reliable predictions—voxels with RMSE above a certain threshold—not
only on the unseen subjects in the same HCP cohort but also on subjects
from the out-of-sample Lifespan dataset, that are statistically disparate
from the training distribution (e.g. different age range and acquisition
protocol). These results combined demonstrate the utility of predictive
uncertainty map as a means to quantify output safety, and provides a
subject-specific alternative to standard population-group reliability met-
rics (e.g. mean reconstruction accuracy in a held-out cohort of subjects).
Such conventional group statistics can be misleading in practice; for in-
stance, the information that a super-resolution algorithm is reliable 99%
of the time on a dataset of 1000 subjects may not accurately represent
the performance on a new unseen individual if the person is not well-
represented in the cohort (e.g. pathology, different scanners, etc). In
contrast, predictive uncertainty provides a metric of reliability, tailored
to each individual at hand.

Thirdly, our preliminary experiments show that decomposition of
the effects of intrinsic and parameter uncertainty in the predictive un-
certainty provides a layer of explanations into the performance of the
considered deep learning methods. Fig. 9 shows that the low reconstruc-
tion error in the centre of the benign cyst can be explained by the dom-
inant intrinsic uncertainty, which indicates the inherent simplicity of
super-resolution task in such homogeneous region, whilst the unfamil-
iarity of such structure in the healthy training dataset is reflected in
the high parameter uncertainty. Assuming that the estimates of decom-
posed uncertainty components are sufficiently accurate, we could act
on them to further improve the overall safety of the system. Imagine
a scenario where reconstruction error is consistently high on certain
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image structures, if the parameter uncertainty is high but intrinsic un-
certainty is low, this indicates that collecting more training data would
be beneficial. On the other hand, if the parameter uncertainty is low
and intrinsic uncertainty is high, this would mean that we need to re-
gard such errors as inevitability, and abstain from predictions to ensure
safety or account for them appropriately in subsequent analysis. We,
however, note that in our experiments, the receptive field of the em-
ployed network is relatively small. In consequence, both the intrinsic
and parameter uncertainty are estimated purely based on the statistics
of local patches. Future work will study the effects of accounting for se-
mantic information on the quality of estimated uncertainty components
by comparing networks of varying receptive fields.

The proposed methods for estimating intrinsic and parameter uncer-
tainty make several simplifying assumptions in the form of likelihood
model p(y|d, x) and posterior distributions over network parameters
p(0| D). Firstly, the likelihood model takes the form of a Gaussian distri-
bution with a diagonal covariance matrix. This means that the likelihood
model is not able to capture multi-modality of the predictive distribution
i.e. the presence of multiple different solutions. While the full predictive
distribution (Eq. (9)) is not necessarily unimodal in theory due to the
integration with the posterior distribution, we observe in practice that
the drawn samples are not very diverse. Future work should explore the
benefits of employing more complex forms of likelihood functions such
as mixture models (Bishop, 1994; Kohl et al., 2018), diversity losses
(Bouchacourt et al., 2016; Guzman-Rivera et al., 2012; Lee et al., 2018)
and more powerful density estimators (Huang et al., 2018; Kohl et al.,
2018; Odena et al., 2017; Papamakarios et al., 2017; Rezende and Mo-
hamed, 2015). Also, the diagonality of covariance matrices means that
the output pixels are assumed statistically independent given the in-
put. Although the predicted images display high inter-pixel consistency,
modelling the correlations between neighbouring pixels (Chandra and
Kokkinos, 2016) may further improve the reconstruction quality. Anal-
ogous to the likelihood function, variational dropout (Kingma et al.,
2015), which is used in this work, approximates the posteriors p(6|D) by
Gaussian distributions with diagonal covariance, imposing restrictive as-
sumptions of unimodality and statistical independence between neural
network weights. More recent advances in the Bayesian deep learning
research (Louizos and Welling, 2016, 2017; Oh et al., 2020; Pawlowski
et al., 2017; Zhang et al., 2019; Krueger et al., 2017) could be used to
enhance the quality of parameter uncertainty estimation by allowing
the model to capture multi-modality and statistical dependencies be-
tween parameters. We also refer the readers to a recent review paper by
Zhang et al. (2018) on this topic for a balanced perspetive on possible
approaches. We should note that both the mean and variance MC es-
timators of very high dimensional posterior distribution converge with
only a few hundred samples in our case, because of this simplistic choice
of the variational distributions. However, it is likely that, in order to ap-
proximate the posterior with a more complex family of distributions, a
larger number of samples would be necessary.

The lack of “ground truths” renders the quantitative evaluation of the
“accuracy” of the derived uncertainty estimates extremely challenging.
Unfortunately, the distribution of interest p(y|x) is unknown in real-
world medical imaging applications including the task of dMRI super-
resolution. However, we envision the use of image simulation would
provide new means to quantify the differences of various methods of
modelling uncertainty. For the validation of intrinsic uncertainty esti-
mate, we plan to create a synthetic image dataset with the known tar-
get distribution p(y|x). For example, one possibility is to pass a set of
medical images through a known stochastic transformation to define
the target output images'2. This way, the “ground truth” intrinsic noise

12 For example, one could use a patch-wise cubic transform with diminishing
noise y = %> + ¢ € R where % denotes the sum of all elements in x and ¢ ~
N(0,1). Repeated application of this function to neighbouring patches in the
input image synthesises the target image.
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is known and the fidelity of the intrinsic uncertainty estimate can be
quantified. It would also be interesting to study how the relative accu-
racy of intrinsic uncertainty estimates from different methods measured
on a variety of such synthetic datasets translate to the measure of practi-
cal utility (e.g., detection rate of predictive failures). On the other hand,
the validation of the parameter uncertainty is more challenging since the
target distribution of interest (i.e., the posterior distribution over the pa-
rameters) is not available even if the underlying data distribution p(y|x)
is known as is the case in synthetic datasets. However, controllable and
realistic means to edit input images (Clatz et al., 2005; Park et al., 2019;
Prastawa et al., 2009) (e.g., simulation of pathological structures of dif-
ferent controllable parameters such as size and shape) would allow ones
to study in a systematic fashion what kinds of “out-of-distribution” struc-
tures can be detected through the estimate of parameter uncertainty for
different Bayesian NN models.

Another important future challenge is the clinical validation of pre-
dictive uncertainty as a reliability metric of output images. To this end,
we need to design a more clinically meaningful definition of success and
failure of the data enhancement algorithm at hand. Despite the high
accuracy in distinguishing between predictive failures and successes at-
tained with our method (Fig. 8), our definition of reconstruction quality,
namely voxel-wise RMSE, does not necessarily represent the real utility
of the output image. One possible approach would be to have clinical ex-
perts to label the potential failures in the super-resolved images, be it for
a targeted application (e.g. diagnosis of some neurological conditions)
or for general usage in clinical practice. A more economical alternative,
which does not require extra label acquisition, is to define the predic-
tion success in downstream measurements of interest i.e. functions of the
output images g( - ), such as morphometric measurements of anatomi-
cal or pathological structures (e.g. volumes). The propagation method
(Eq. (13)) introduced in Section 3.6 can be utilised to quantify uncer-
tainty components in the space of target measurement g( - ). Measuring
the correlation between such propagated uncertainty estimates and the
corresponding errors would be a useful indicator of how well the uncer-
tainty measure reflects the accuracy of the chosen measurement g( - ).
Lastly, our initial results on the brain tumour dataset motivate a larger-
scale quantitative validation of uncertainty estimates in the presence of
pathology. Future work must examine the effect of including patients’
dataset in the training data on the estimate of uncertainty components.

There are many ways in which uncertainty information could be
utilised by radiologists or other users of data enhancement algorithms.
First, predictive uncertainty can be used to decide when to abstain
from predictions in high-risk regions of images (e.g. anomalies, out-of-
distribution examples or inherently ambiguous features). For example,
the original input low-resolution image can be augmented by overlaying
the high-resolution prediction only in locations with sufficiently low un-
certainty, before presenting to clinicians. As demonstrated by Fig. 8 in
the context of super-resolution, such uncertainty-based quality control
of predictions is potentially an effective means to maintain high accu-
racy of output images and also to safeguard against hallucination or re-
moval of structures (Cohen et al., 2018a). Second, the uncertainty infor-
mation could be used for active learning (Settles, 2009) to decide which
images should be labelled and included in the training set to maximally
improve the model performance. Prior work (Gal et al., 2017; Gorriz
et al., 2017) define the acquisition function so as to select examples
with high parameter uncertainty, and achieve promising results in clas-
sification and segmentation tasks. In particular, these methods are able
to construct a compact and effective training dataset, and consequently
improve the prediction accuracy while reducing the training time. The
same idea could be naturally extended to data enhancement problems,
that are typically formulated as multivariate regression tasks. For ex-
ample, in the case of IQT, we could simulate a library of low-resolution
and high-resolution image pairs from a large public dataset (e.g. HCP),
and incrementally expand the training data by adding more examples
from such a library. We should note, however, that in many data en-
hancement applications, obtaining a new “label” may require an extra
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acquisition possibly with a different scanner or modality, which may be
logistically challenging. Third, another important application is trans-
fer learning (Pan and Yang, 2010) where uncertainty information could
be used to leverage knowledge from different but related domains or
tasks. In many data enhancement applications, the test distribution can
considerably deviate from the training distribution. For example, the
algorithm might be trained on a synthetic dataset or images acquired
from a scanner that is very different from the one used in the hospi-
tal where one plans to deploy the model. Therefore, a mechanism to
adapt performance within a specific environment (e.g., based on the
local patient population) (Kamnitsas et al., 2017a), possibly in an on-
line fashion (Karani et al., 2018; Baweja et al., 2018), is in demand.
Recent work have shown that the Bayesian formalism provides a natu-
ral framework to use uncertainty in order to account for the difference
and commonality between distributions to guide information transfer in
continual learning (Kirkpatrick et al., 2017; Nguyen et al., 2018) or few-
shot learning (Finn et al., 2018; Yoon et al., 2018) settings. Exploring
the benefits of these ideas in the context of medical image enhancement
remains future work.

Another noteworthy limitation of the current super-resolution ap-
proach is the dependence on a fixed downsampling model, which may
deviate from the test environment. To some degrees, our experiments
already substantiate robustness of our approach; for example, our ex-
periment in Fig. 13 shows that the super-resolution algorithm can im-
prove the quality of tractography on a real low-quality image even in
situations where the input resolution is different from that of the train-
ing data. Moreover, we also found that the preliminary investigations
into alternative downsampling strategies (e.g., replacing the block aver-
aging with bilinear interpolation) produce little variation in the results.
However, a more thorough evaluation is needed for a clinical adoption
to establish when our super-resolution method fails, and whether such
safety boundary can be quantified through the estimated predictive un-
certainty in a range of test environments. In addition, future work will
also investigate whether a more realistic emulation of the image genera-
tion process in place of the simple downsampling (e.g., using a diffusion
MRI simulator) enhances practical applications.

The proposed framework for uncertainty quantification is formu-
lated for multivariate regression in the general form, and thus is nat-
urally applicable to many other image enhancement challenges such as:
rapid image acquisition techniques e.g., compressed sensing (Sun et al.,
2016), MR fingerprinting (Cohen et al., 2018b; Ma et al., 2013) or sparse
reconstruction (Hammernik et al., 2018; Schlemper et al., 2018a); de-
noising (Benou et al., 2017) and dealiasing (Han et al., 2018; Yang
et al., 2018); image synthesis tasks e.g., estimating T2-weighted images
from T1 (Jog et al., 2015; Rousseau, 2008; Ye et al., 2013), estimat-
ing CT images from MRI (Bragman et al., 2018; Burgos et al., 2015;
Nie et al., 2018), and generating a high-field scan from a low-field scan
(Bahrami et al., 2016); data harmonisation (Karayumak et al., 2018;
Mirzaalian et al., 2016; Tax et al., 2019) which aims to learn mappings
among imaging protocols to reduce confounds in multicentre studies.
Our results on image quality transfer (Alexander et al., 2017) illustrate
the potential of the uncertainty modelling techniques to improve the
safety of these applications by not only improving the predictive accu-
racy, but also providing a mechanism to quantify risks and safeguard
against potential malfunction.
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