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Abstract 

Background 

Human enteroviruses (hEV) are the leading cause of viral meningitis. hEV genotyping is 

predominantly performed through amplification and sequencing of viral capsid protein-1 (VP1), 

frequently by national reference laboratories (NRLs).  

Objective 

To determine the frequency of genotyping failure in our NRL-submitted samples and apply a 

superior alternative assay to resolve untyped specimens. 

Study design 

We initially audited genotyping data received for a cohort of patients in the East Midlands, UK by the 

NRL between 2013 and 2017, then identified an alternative RT-PCR typing method by literature 

review and evaluated primers from both assays in silico against comprehensive publicly available 

genomic data. The alternative assay was further optimised and applied to archived nucleic acids 

from previously untypable samples.  

Results 

Genotyping data showed a significant increase in untypable hEV strains through the study period (p 

< 0.005). Typing failure appeared unrelated to sample type or viral load. In silico analyses of 2,201 

hEV genomes showed high levels of mismatch between reference assay primers and clinically 

significant hEV-species, in contrast to a selected alternative semi-nested RT-PCR VP1-typing assay.  

This alternative assay, with minor modifications, successfully genotyped 23 of 24 previously 

untypable yet viable archived specimens (EV-A, n=4; EV-B, n=19). Phylogenetic analyses identified no 

predominant strain within NRL untypable isolates, suggesting sub-optimal reference assay sensitivity 

across hEV species, in agreement with in silico analyses.  

Conclusion 



This modified highly sensitive RT-PCR assay presents a suitable alternative to the current English 

national reference VP1-typing assay and is recommended in other settings experiencing typing 

failure. 



Highlights 

 32% of enteroviral samples referred to a national reference laboratory failed typing 

 Regular re-evaluation of RT-PCR primers is required in enteroviral diagnostics 

 Recommended WHO primers remain optimal for contemporary genomes, including EV-D68 

 23 of 24 (96%) viable but samples were typed by this alternative assay 

 Simple and effective in-house enteroviral typing could support national surveillance 
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Introduction  1 

Enteroviral infections in humans are caused by species A-D, commonly referred to as the 2 

human enteroviruses (EV). Transmission of EVs occurs via the faecal-oral or respiratory route 3 

through person-to-person contact (direct) or from contaminated environmental sources (indirect) 4 

[1-3]. The majority of EV infections (50-80%) are asymptomatic or result in mild, self-limiting febrile 5 

or respiratory illnesses that do not require treatment [1]. However, EVs are responsible for a diverse 6 

range of clinical syndromes, from hand foot and mouth disease to acute haemorrhagic conjunctivitis, 7 

and site of infection and severity varies by species, serotype and host physiology.  8 

Due to their inherent neurotropism, EVs are the leading cause of viral meningitis and 9 

meningoencephalitis in all age groups [1]. Young age, immunocompromise and diagnosis delay are 10 

documented risk factors for developing severe or fatal EV infection [4-6].  Therapeutic options for 11 

severe infections are limited, with sufficient evidence lacking to justify clinical use [7]. Symptom 12 

management is the mainstay of patient management, with fast implementation of appropriate 13 

infection prevention control (IPC) procedures the principle method of preventing and controlling 14 

nosocomial outbreaks [8]. 15 

Fast, accurate diagnostic assays and international EV surveillance are essential for identifying 16 

emerging virulent strains, monitoring shifts in serovar circulation and outbreak control [3, 8-10]. 17 

Reverse-transcription polymerase chain reaction (RT-PCR) assays, which target the highly conserved 18 

 genomic region, are the new gold standard for EV diagnosis due to their 19 

superior sensitivity and turn-around time (TAT) compared to the previously favoured cell culture [3]. 20 

Routine RT-PCR targeting the has led to a rise in UK cases of EV being reported [11]. However, 21 

high levels of genetic conservation make an unsuitable target for EV typing assays. EV 22 

type is ideally determined through amplification and alignment of variable regions within the VP1 23 

gene [3]. It is well established that prevalent EV genotypes are constantly evolving both temporally 24 

and spatially [12] and typing assays must be robust enough to detect and characterise all EV 25 
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subspecies to reflect this changing epidemiology. However, the effect of epidemiological changes on 26 

current genotyping methodologies remains unknown. 27 

In our regional diagnostic laboratory EV detection is determined -28 

based assay, then positive predominantly neurological specimens are referred to the national 29 

reference laboratory (NRL) for confirmation and genotyping [13, 14]. Due to an apparent increase in 30 

diagnostically untypable specimens, we conducted a four-year audit of submissions, evaluated both 31 

the current assay and an alternative recommended by the World Health Organisation (WHO, [8]), on 32 

all available complete genome sequences in silico, then applied the optimised alternative assay on 33 

available residual specimens previously determined as untypable. 34 

 35 

Materials and Methods 36 

Specimens and ethics 37 

All positive EV investigations performed within NUH Clinical Microbiology from October 1st 38 

2013 to September 30th 2017 were included in this study. Samples were previously detected and 39 

quantified predominantly by the Fast Track Diagnostics viral meningitis multiplex assay, generating 40 

cycle threshold (cT) values and by the AusDiagnostics viral CSF multiplex generating copies per 10 µl 41 

from September 2016 onward. Duplicate results were removed with neurological entries 42 

preferentially retained if multiple EV positive specimens were investigated per patient. In the event 43 

of duplicate specimens from the same anatomical site, the earliest total nucleic acid (TNA) extract 44 

with an available typing result was retained. Ethical approval for the use of residual material was 45 

provided under the Nottingham Health Science Biobank Research Tissue Bank, REC reference 46 

15/NW/0685. 47 

cDNA Synthesis and Semi-Nested Polymerase Chain Reaction (snPCR) 48 

TNA extraction ® easyMAG® system [15].  and 49 

resulting TNA  -80°C long term. cDNA was synthesized  50 

using RNA to  51 
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, except lyophilised RT mastermix was resuspended -treated 52 

H2 TNA and 1 pmol  enterovirus specific primers (AN32, AN33, 53 

AN34 and AN35, Table 1) [16, 17]. 5µl cDNA was used in a modified version of the first round PCR 54 

(PCR1) as described by Nix and colleagues [16, 17]. PCR1 comprised 1xHotStarTaq PCR buffer 55 

(QIAGEN), primers p224/p222 (Table 1) at 50 pmol, 56 

polymerase (QIAGEN) and molecular grade H2 , then thermocycled at 95°C (15 57 

min), followed by 40 cycles at 95°C for 30 sec, 42°C for 30 sec, 72°C for 2 min, then 72°C for 2 min.  58 

This PCR1 product (1µl) was used in a semi-nested (sn) l volume), as per PCR1 except with 59 

primers AN89/AN88 (10 pmol, Table 1), 0.625 U of HotStarTaq DNA polymerase and 40 cycles at 60 

95°C for 30 sec, 60°C for 20 sec, 72°C for 30 sec.  61 

snPCR products were separated and visualised on a 2% agarose gel and ranged from ~350-62 

400 bp due to variation in VP1 gene lengths across serotypes, as previously described [16, 18]. PCR 63 

reactions were repeated once if no PCR product resulted. If unsuccessful after repeat, cDNA was 64 

subjected to two quality control PCRs using primer pairs EQ1/EQ2 [19] and EQ2 with primer 91F 65 

targeting EV genome and generating ~150 bp and ~480 bp fragments respectively. 66 

Reactions were performed in reactions under conditions above for snPCR with 55°C 67 

annealing, 45 secs elongation time and 55 cycles total. 68 

cDNA Synthesis     
GTYTGCCA VP1 3009-3002 [16]
GAYTGCCA VP1 3009-3002 [16]
CCRTCRTA VP1 3111-3104 [16]
RCTYTGCCA VP1 3010-3002 [16]

First-step PCR (PCR1) 
GCIATGYTIGGIACICAYRT VP3 2207-2226 [16]
CICCIGGIGGIAYRWACAT VP1 2969-2951 [16]

Semi-nested PCR (snPCR) 
CCAGCACTGACAGCAGYNGARAYNGG VP1 2603-2628 [16]
TACTGGACCACCTGGNGGNAYRWACAT VP1 2977-2951 [16]

cDNA Quality Control PCR (cDNA-QC-PCR) 
ACATGGTGTGAAGAGTCTATTGAGCT  408-433 [19]

CCAAAGTAGTCGGTTCCGC  549-531 [19]
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ACCYTTGTRCGCCTGTTTT  69-87 N/A
Table 1: Primers used in the study. Sequence locations are relative to the PV1 Mahoney strain 69 
(GenBank accession number V01149), with ascending and descending coordinates indicating forward 70 
and reverse primers respectively. 71 

Sequencing and Sequence Analysis 72 

PCR products of expected size were diluted 1:10 in H2O and subject to Sanger sequencing (Source 73 

BioScience) with primer AN88 (3.2 pmol, [16]). Sequence identity was assessed using NCBI Standard 74 

Nucleotide BLAST (BLASTn) [20] and the Genome Detective enterovirus typing tool: 75 

https://www.genomedetective.com/app/typingtool/etv/  [21]. Resulting sequences and metadata 76 

were submitted to Genbank under accession numbers MT614252-MT614274. 77 

Statistical Analyses 78 

Significance values were calculated in IBM SPSS Statistics for Mac (version 24.0) and GraphPad Prism 79 

(version 8.3). 80 

 81 

Results  82 

Audit of Local Enterovirus Typing Data 83 

A retrospective audit of all EV investigations performed at NUH Clinical Microbiology from 84 

October 1st 2013 to September 30th 2017 (inclusive, n=41,088) yielded 390 EV positive results.  After 85 

omission of duplicate patient results (n=69, see supplementary file) 321 unique infective episodes 86 

were identified. These positive specimens principally included cerebrospinal fluid (CSF) (41.74%), 87 

swabs (including skin) (24.92%), and samples from the upper respiratory tract (24.92%) and 88 

gastrointestinal tract (4.98%).  89 

EV typing at the NRL was requested for 138/321 positives (42.99%, Figure 1, A), 47 of which 90 

(34.06%) were deemed untypable  or no typing result was received. For samples passing NRL quality 91 

control (QC), no correlation between specimen type or EV viral load and an untypable result was 92 

observed (see supplementary file). When analysed by date, a 5-fold increase in untypable results 93 

(11.1% to 50.0%)  was seen between 2013-14 and 2016-17 (Figure 1, B). This change in untypable 94 
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strain frequency was significant (p value = 0.0073) despite the declining number of specimen 95 

referrals in 2016-17.  96 
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 97

 98

 99

 100

101
102
103

Neurological specimens, cerebrospinal fluid; upper respiratory tract, nasopharyngeal 104
aspirate, throat swabs and mouth swab; lower respiratory tract, tracheal aspirate; blood, EDTA; 105
swabs from other sites include wound, skin and swabs from undefined sites. n = number of positive 106
EV specimens referred to the NRL for typing within each time period. 107

108

A 

B 
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Re-screening of previously untypable enteroviruses 109 

Our literature review identified a RT-snPCR assay by Nix and colleagues [16] as the most 110 

widely adopted worldwide for the typing of EVs (see supplementary file). Our in silico analysis of 111 

primers from this publication [16] and the current NRL typing assay [13] was performed against 112 

2,201 EV A-D complete genome sequences (see supplementary file). Primers designed by Nix and 113 

colleagues gave the greatest coverage: o114 

observed in a single primer / strain combination, in contrast to f primer / 115 

strain combinations for the NRL assay (see supplementary file). This provided strong evidence that 116 

the pan-EV primers designed by Nix et al [16] still offer sufficient coverage of clinically relevant EV 117 

species and serotypes since their design 14 years ago. A modified Nix VP1 RT-snPCR protocol was 118 

therefore optimised on a panel of twelve EV positive TNA of known genotype (four EV-As, four EV-119 

Bs, one EV-C and three EV-D, see supplementary file) and 100% concordance was observed with 120 

previous NRL typing.  121 

 The assay was then applied to the 28 available TNAs from the 47 samples that failed typing 122 

by the NRL, with successful amplification achieved in 23 instances (82.1%), all of which were 123 

successfully sequenced and typed (Table 2). Of the five extracts that failed RT-snPCR, two (Samples 4 124 

and 10) failed cDNA quality control (QC) PCR (cDNA-QC-PCR) [19] indicating failure of the RT step 125 

and likely degradation of extracted RNA. Two extracts (Samples 7 and 126 

extract available for analysis and cDNA was produced in half  which was insufficient for 127 

repeat after RT-snPCR failure. The final extract (Sample 11) failed RT-snPCR on repeat but passed 128 

-QC-PCRs with sequencing  UTR PCR suggestive of EV-A species 129 

(Table 2).  130 

Typing by phylogenetic analyses [21] showed broad distribution across EV-A and B species 131 

(Table 2). The majority of the 23 newly genotyped samples were EV-B (n=19), with a predominance 132 

of echoviruses (n=14, 73.7%): types E9 (n=3), E6 (n=3) and E5 (n=3) being the most common (Table 133 
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2). All CSF specimens were positive for EV-B, concurring with previous data showing predominance 134 

of this species for causing viral meningitis [1].  135 

 In addition to multiple EV-B species, three A6 sequences (Table 2) were also observed and 136 

collectively support reference laboratory typing failure by primer mismatch, rather than alternative 137 

sporadic means. As samples were from deduplicated patient data, it is assumed they are separate 138 

infective episodes and may be related to a local outbreak or cluster, however investigation of sample 139 

clinical details was beyond the scope of this study.  140 
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 141 

Sample 1 CSF 33.28 Untypable E7 
Suggestive of 

EV-B 
n/a 

Sample 2 CSF 39.92 
Untypable 

(confirmed non D-68 strain) 
E25 n/a n/a 

Sample 3 CSF 37.4 - E6 n/a  

Sample 4 NPA 27.02 x Untypable Untypable 
Suggestive of 

EV-B 
RNA QC Fail 

Unable to sequence 

Sample 5 STHR 20.39 Untypable E18 
Suggestive of 

EV-B 
n/a 

Sample 6 CSF 30.2 Untypable E9 
Suggestive of 

EV-B 
n/a 

Sample 7 CSF 33.0 Untypable Untypable 
Suggestive of 

EV-B 

RNA QC Pass 
Insufficient extract for 
5' UTR sequencing 

Sample 8 Whole Blood 36.19 Untypable E9 n/a n/a 

Sample 9 STHR 30.3 Untypable E9 
Suggestive of 

EV-B 
n/a 

Sample 10  CSF 38.0 x x None None 
No RNA 
detected 

RNA QC Fail 
Unable to sequence 

Sample 11 STHR 31.6 Untypable Untypable n/a 
RNA QC Pass 

Suggestive of E-71 
Sample 12 CSF 29.85 Untypable E6 n/a n/a 

Sample 13 NPA 17.7 
Untypable 

(confirmed non D-68 strain) 
CVB1 n/a n/a 

Sample 14 CSF Unavailable 
Untypable 

(confirmed non D-68 strain) 
Untypable n/a 

RNA QC Pass 
Insufficient extract for 
5' UTR sequencing 

Sample 15 CSF 33 Untypable E6 n/a n/a 
Sample 16 STHR 22.3 Untypable CVA6 n/a n/a 
Sample 17 CSF 33.63 Untypable CVB5 n/a n/a 
Sample 18 Swab 28.9 Untypable CVA6 n/a n/a 
Sample 19 Skin Swab 28.6 Untypable CVA6 n/a n/a 
Sample 20 STHR 30.75 Untypable CVB1 n/a n/a 
Sample 21 CSF 38.27 Untypable E5 n/a n/a 
Sample 22 CSF 33.81 Untypable CVB3 n/a n/a 
Sample 23 CSF 33.78 Untypable E25 n/a n/a 
Sample 24 CSF 32.78 Untypable CVB3 n/a n/a 
Sample 25 STHR 13* Untypable EV-A71 n/a n/a 
Sample 26 CSF 44* Untypable E5 n/a n/a 
Sample 27 CSF 34* Untypable E5 n/a n/a 
Sample 28 CSF 584* Untypable E30 n/a n/a 
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Original specimens from which extracts were produced, viral loads 142 

(copies/ µl) or Ct values (cycle threshold) and typing data received from the NRL for each specimen is shown for each sample. E, Echovirus; CVB, Coxsackievirus B; CVA, 143 

Coxsackievirus A; EV-A71, Enterovirus 71. NPA, nasopharyngeal aspirate; SWAB, swab from undefined site; STHR, swab from throat; CSF, cerebrospinal fluid; NRL, national 144 

reference laboratory; RT snPCR, reverse transcriptase semi-nested polymerase chain reaction. Enteroviral sequences located on Genbank under accession numbers 145 

MT614252-MT614274. 146 
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Discussion  147 

We observed a significant (p 0.0028) rise in untypable EVs from clinical specimens processed by the 148 

main EV typing and epidemiological data collection service in England so re-evaluated available 149 

residual sample TNA extracts by an alternative methodology recommended by the WHO [8]. PCR-150 

based typing assays of RNA viruses requires regular primer review to monitor genome changes that 151 

result from high rates of evolution and frequent recombination events, notably in some species of 152 

EV between structural and non-structural genes [3, 22, 23]. EV typing is further challenged by the 153 

extensive diversity of clinically relevant isolates, spanning 116 types across 4 species often sampled 154 

in specimens with low viral load [24]. The current assay utilised by the English NRL employs species-155 

specific primers to amplify the N-terminus of the VP1 gene in EV species A-C only, overlooking EV-D 156 

entirely [13]. Sequencing of this region is the gold standard for EV typing [3] and species-specific 157 

primers can offer increased sensitivity compared to generic primers [3, 25, 26]. However, an in silico 158 

review identified multiple mismatches between the primers, designed in 2006 [13] and publicly 159 

available EV genomes in 2018. This concurs with an overall English NRL typing success rate of 69% 160 

between 2015 and 2017 [10] and 68% in our cohort, highlighting not only the importance of 161 

designing sufficiently degenerate primers to accommodate naturally occurring variation across EV 162 

genomes, but also regular re-appraisal of primers for clinical diagnostics. If surveillance data are to 163 

be consistent and reliable, this accommodation should be within and across EV species without 164 

losing sensitivity and specificity [24].  165 

Primer mismatch is one explanation for NRL typing failure. However, the sustained increase 166 

in untypable isolates would not occur without also continued genetic drift or prevalence change in 167 

circulating EV isolates [23], such as the recent emergence of EV-CVA6 [10] of which we identified 3 168 

previously untypeable isolates.  Previous analyses of NRL typing results demonstrated complex EV 169 

epidemiology, with differing patterns of circulation and no evidence of any exclusively predominant 170 

EV strains [10, 11]. Clinical audit and typing data presented here concurred with this finding, but EV-171 
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B species were the most commonly isolated between 2013 and 2017 (Figure 1b and Table 2). The 172 

diverse range of EVs typed in this study shows a cross-species reduction in reference laboratory 173 

assay sensitivity. 174 

Further coordination of surveillance data and genotyping methods from laboratories in the 175 

UK, Europe and beyond would undoubtedly strengthen confidence in understanding of trends in 176 

enteroviral epidemiology [3, 10]. Notably, surveillance centres identified a rise in cases of the highly 177 

pathogenic strains EV-A71 and EV-D68 across Europe and North America in recent years [27, 28] but 178 

EV-D68 has been missed by other molecular assays [29] and EV-D species are not targeted by the 179 

NRL assay [13] necessitating the implementation of an additional EV-D68 specific assay in England 180 

[30]. The current English NRL protocol therefore requires multiple PCR reactions to be performed 181 

per specimen, increasing cost, and potentially also processing time and risk of contamination, and 182 

may be unsuitable for low volume, low viral load, or non-repeatable samples, such as CSF, which is 183 

critical for diagnosing viral meningitis/meningoencephalitis, neonatal sepsis and acute flaccid 184 

paralysis/myelitis [3]. However, in principle, with suitably improved primers, this approach could 185 

offer a more sensitive typing assay by reducing the diversity of coverage required from each primer. 186 

The alternative RT-snPCR adopted in our study also targets conserved VP1 gene motifs, but 187 

using universal primers designed by the CODEHOP strategy based on conserved amino acid motifs 188 

within the target site, permitting broad target specificity and amplification of EV species A-D in one 189 

workflow [16, 31]. By combining a conserved non- and a 190 

consensus degenerate core these snPCR primers continue to maintain broad 191 

specificity and primer template stability. 192 

Our in silico analyses showed a continued high level of EV genomic coverage and low 193 

mismatch probabilities for all RT-snPCR primers designed by Nix et al. in 2006 [16]. Furthermore, our 194 

retrospective in vitro evaluation showed the successful, specific VP1 amplification of 23 previously 195 

untypable isolates from an array of clinical specimens confirming the method by Nix et al offers 196 

current diagnostic and public health benefits (Table 2). Detection of all clinically relevant EV species, 197 
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including the highly pathogenic serotypes EV-C105 and EV-D68, can be achieved with this assay ([16] 198 

and supplementary file).  199 

Previous investigations of UK EV typing data attributed untypable results to low viral loads 200 

and insufficient sample volume [11]. Samples of insufficient volume or failing initial NRL QC RT-PCR 201 

. Analysis of untypable isolate viral 202 

loads showed EV was detected at Ct values 17.7 to 39.92 on the NUH diagnostic platforms between 203 

2013-2017 (Table 2). No correlation was seen between these and cT values for isolates typed by the 204 

NRL, suggesting typing assay success is not proportional to viral load. RNA quality and specimen 205 

degradation post transit is controlled through additional  [13] so specimen transit is 206 

unlikely to contribute to typing failure.  The modified RT-snPCR assay successfully genotyped 82.1% 207 

(23/28) of re-evaluated samples, failing to amplify VP1 in five samples. However, four had RNA of 208 

poor quality, as determined by our QC PCR, or were of insufficient volume to repeat (Table 2), 209 

leaving only one of the 24 viable samples (Sample 11) without a newly determined typing result. 210 

Although sequencing -A (EV-A71), 211 

UTR is possible and thus this result is inconclusive [23]. 212 

In conclusion, this study highlighted declining reliability of a NRL EV typing assay over time 213 

and a viable alternative assay, readily achievable by local hospital laboratories, was presented. Real-214 

time sharing of surveillance data to improve control of poliovirus and non-poliovirus EV strains, is an 215 

important future direction of EV diagnostics [3, 10]. Therefore, regular evaluation and improvement 216 

of regional and NRL EV molecular assays should be undertaken to ensure optimal coverage is 217 

achieved, although service demand, focus and the available resources can vary considerably at local 218 

and reference levels [10]. The ENPEN Network recently highlighted the variation in the quality of EV 219 

diagnostics (detection and typing) across Europe [24], but also presents a roadmap for international 220 

collaboration in to significantly progress EV diagnostics. Exponential increase in available reference 221 

sequence data generated by contemporary advances in unbiased metagenomics sequencing makes 222 

this target more achievable in the future. 223 
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