
PHYSICAL REVIEW RESEARCH 2, 033480 (2020)
Editors’ Suggestion

Beyond linear coupling in microwave optomechanics
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We explore the nonlinear dynamics of a cavity optomechanical system. Our realization consisting of a
drumhead nanoelectromechanical resonator (NEMS) coupled to a microwave cavity allows for a nearly ideal
platform to study the nonlinearities arising purely due to radiation-pressure physics. Experiments are performed
under a strong microwave Stokes pumping which triggers mechanical self-sustained oscillations. We analyze
the results in the framework of an extended nonlinear optomechanical theory and demonstrate that quadratic
and cubic coupling terms in the opto-mechanical Hamiltonian have to be considered. Quantitative agreement
with the measurements is obtained considering only genuine geometrical nonlinearities: no thermo-optical
instabilities are observed, in contrast with laser-driven systems. Based on these results, we describe a method
to quantify nonlinear properties of microwave optomechanical devices. Such a technique, now available in the
quantum electromechanics toolbox, but completely generic, is mandatory for the development of schemes where
higher-order coupling terms are proposed as a resource, like quantum nondemolition measurements or in the
search for new fundamental quantum signatures, like quantum gravity. We also find that the motion imprints a
wide comb of extremely narrow peaks in the microwave output field, which could also be exploited in specific
microwave-based measurements, potentially limited only by the quantum noise of the optical and the mechanical
fields for a ground-state-cooled NEMS device.
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I. INTRODUCTION

Combining mechanical resonators with dimensions of or-
der a micron or less with superconducting circuit elements
has led to an exciting field of research exploring the quan-
tum properties of nanoelectromechanical systems (NEMS)
[1]. Mechanical components can be efficiently coupled to
superconducting qubits or integrated within optomechanical
resonant cavities, providing a resource for quantum device
engineering [2–5]. With a mechanical mode cooled to its
quantum ground state, these NEMS circuits are also a unique
tool for fundamental experiments at the frontier of quantum
mechanics [6,7].

In the context of quantum electronics, nonclassical me-
chanical states can be used as a support for quantum
information storage and processing [4,6,8–11]. By engineer-
ing the coupling between photons and phonons (i.e., bath
engineering), nonreciprocal microwave quantum-limited on-
chip components are being developed [12–15]; to couple
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quantum processors through optical photons, photon convert-
ers are being built around a quantum-mechanical degree of
freedom [16,17].

The capabilities offered by quantum NEMS devices are
thus extremely rich, but are essentially all building on the
linear parametric coupling between light and motion [18]. For
instance, using a pump properly detuned from the resonance
cavity (i.e., anti-Stokes sideband pumping), one can actively
cool down a mechanical mode to its quantum ground state,
or reversely (i.e., Stokes pumping) amplify the mechanical
motion [11,19–23]. From two-tone schemes, one can devise
backaction evading measurements [24,25] that enable us to
beat the standard quantum limit by measuring one quadrature
while feeding the backaction noise of the detector to the other
one.

Beyond the standard optical frequency pulling proportional
to mechanical position x, higher-order couplings appear to
also be significant or even desirable for specific realiza-
tions: From an x2 coupling, one can measure the energy
of the mechanics and build quantum nondemolition (QND)
measurements [26,27], i.e., measuring an eigenstate of the
Hamiltonian while not perturbing its evolution. Successful
experimental implementations of such nonlinear couplings
have been realized using optics with membrane-in-the-middle
configurations [28] and superfluid optomechanics [29]. On
a more fundamental level, experiments which seek to use
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optomechanical systems to probe gravity’s quantum signa-
tures, a completely new frontier of physics [30,31], require
necessarily to have characterized the higher order (be-
yond linear) mechanical couplings in the optomechanical
Hamiltonian [32].

At very strong Stokes sideband pumping power, the me-
chanical mode enters self-sustained oscillations [18]. A rich
multistable attractor diagram has been described theoretically
[33], with specific phase-noise and amplitude-noise properties
[34–36]. The mechanical amplitude of motion becoming very
large, this coherent state dynamics is extremely sensitive to all
nonlinearities present in the system; this had been discussed
already in Ref. [37]. Experiments in this regime have been
performed in the optical domain [38–40] but the strong laser
pump powers always produce dominant thermo-optical non-
linearities that require specific modeling [41].

In the present paper, we report on experiments performed
at low temperatures on a microwave optomechanical setup
driven in the self-oscillating regime. The dynamics imprints a
comb in the microwave spectrum, from which we can measure
more than ten extremely narrow (width of order a few Hz)
peaks. Comb generation has been a revolution in optics [42];
it is thus natural to ask whether this effect could lead to new
technology. Indeed, these combs could potentially be used for
microwave-based readouts in quantum information process-
ing (superconducting Qu-bits) and low-temperature detectors,
where combs are usually synthesized for multiplexing pur-
poses [43]. While efficient digital synthesizers are available
today, routing all required signals down to millikelvin temper-
atures poses undeniable problems solved only by multiplying
coaxial lines and generators. Besides, while superconducting
qubits are not very sensitive to the quality of the GHz sig-
nals, digitally generated tones have a very poor phase noise
at frequencies significantly offset from the carrier. Analog
sources are the only currently foreseen possibility to generate
low-phase noise GHz tones that are indispensable for many
basic research applications, e.g., optomechanics. For instance,
an alternative technology proposed in the literature builds on
the nonlinearity of superconducting quantum interference de-
vices (SQUIDs) [44,45], which enables us to generate signals
inside the cryostat. In comparison, our optomechanical combs
are competitive: the peak width is of the same order (resolu-
tion of 1 part in 108), the distribution of harmonics is much
more homogeneous (equal spacing), and most importantly the
amplitudes are very large (while the critical current of the
SQUID junctions fixes a technological limitation). One could
thus imagine developing a new disruptive technology for on-
chip synthesizing of harmonics, which could be a solution to
the scaling problem faced today by cryogenic experiments.
Furthermore, synchronization of several mechanical modes in
the self-oscillation regime could further improve the phase
noise performance of each individual mode [46]. Ultimately,
with a NEMS cooled to its ground state, the stability of
the output field would be limited only by quantum noise,
and investigating these properties will be of fundamental
interest [36].

In the present paper, we demonstrate that the dynamics of
the self-oscillating state is imprinted by genuine geometrical
nonlinearities that can be fit, and we develop the full nonlinear
theory giving the tools to extract nonlinear terms arising from

the pure radiation-pressure coupling up to the third order ∝ x3.
The agreement between experiment and theory is exceptional,
and it gives us confidence in our level of understanding of the
setup. Building on these results, self-sustained oscillations in
microwave optomechanical systems become a tool enabling
the experimental determination of the full nonlinear Hamilto-
nian at stake. This could be employed, for instance, in future
quantum electronics circuits with specific schemes aiming at
QND measurements [26,27].

II. EXPERIMENT

We employ a standard microwave optomechanical sys-
tem [3,47] consisting of a microfabricated lumped microwave
cavity resonator coupled to an aluminum drumhead NEMS
[6] [see Fig. 1(a), right inset]. The chip is installed into a
commercial dilution cryostat with base temperature 10 mK,
equipped with a high electron mobility transistor (HEMT)
detection circuitry. The cryogenics, thermometry, and mea-
surement techniques have been described in Ref. [23].

The chip is designed for reflection measurements. The
aluminum microwave cavity resonates at ωc/2π ≈ 6.8 GHz.
The cavity displays a one-directional external coupling rate
of κext/2π ≈ 2 MHz, and a total damping rate of κtot/2π ≈
4 MHz. We performed the experiment using the fundamental
mode of the drum NEMS device which resonates around
ωm/2π ≈ 6.7 MHz and exhibits a typical damping rate of
about γm/2π ≈ 150 Hz at 50 mK. Details on the geometry
and measured parameters can be found in Appendix A.

The optomechanical coupling mechanism arises from mo-
mentum transfer between light (i.e., photons) and mechanics
(i.e., phonons). In the standard case of a Fabry-Perot cavity,
the displacement of the movable end mirror (the mechanical
degree of freedom) modulates the resonant frequency of the
cavity (the optical mode). Because of the retarded nature of
the radiation pressure force when the laser light is detuned
from the cavity frequency, this interaction gives rise to dynam-
ical backaction allowing either active cooling or amplification
of the mechanical motion. In this respect, our experiment is
analogous to optics but shifted in the microwave domain [3];
the fundamental mode of the drumhead device correspond-
ing to the movable mirror degree of freedom modulating the
capacitance C(x) of the electrical circuit [18]. The Brownian
motion of this mode then imprints sidebands in the microwave
spectrum that we measure. The motion amplitude being very
small, no extra nonlinearity has to be considered and the
optical damping (when cooling) and antidamping (when am-
plifying) observed are linear in applied power Pin [18]. This
is used to calibrate the linear optomechanical interaction of
our setup [23]. We obtain a single photon-phonon coupling
strength |g0|/2π ≈ 10 Hz.

Blue-detuned pumping at ωc + � (with � > 0) gives rise
to downward scattering of photons, leading to the creation of
phonons in the mechanical mode, hence enhancing the Stokes
sideband. This is accompanied by a narrowing of the mechan-
ical peak due to the antidamping backaction. At very strong
powers, the total mechanical damping can thus be totally
canceled: This is called the parametric instability. Above this
threshold, the system enters into self-sustained oscillations,
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FIG. 1. (a) Main: Power spectral density (PSD, in units of pho-
tons of energy h̄ωc) of the Stokes peak (i.e., at the frequency of the
cavity) measured in the self-sustained oscillation regime at 214 mK
(blue-detuned pump power Pin of 6 nW with � = +ωm). To re-
solve the peak, the detection bandwidth was 0.2 Hz, for a span of
±3.5 kHz. Left inset: Time-domain measurement of the coherent
signal (raw data units). Right inset: SEM picture of a drumhead-type
resonator. (b): PSD measurement of the comb produced by the strong
applied power in same conditions [pump signal 6 nW, green arrow at
its frequency (ωc + ωm )/2π ]. The cavity (orange area) is displayed
with an arbitrary amplitude and its linewidth κtot/2π at scale. The
black points are theoretical computations of the output amplitude of
each measured peak (see text).

the amplitude of the mechanical motion being defined self-
consistently [18]. In this regime, the mechanical amplitude
of motion is so large (reaching several nanometers) that the
mechanical sidebands are not limited to a couple of peaks: a
full comb appears and can be measured [see Fig. 1(b)]. The
peaks detected are not Lorentzian anymore, and their shape is
defined by phase noise in the system [34]. They are extremely
narrow (only a few Hz wide at GHz frequencies), essentially
equally spaced (by ωm), and of extremely high amplitude: they
can even be detected without any HEMT preamplification. As
well, all nonlinearities in the device will impact this complex
optomechanical dynamics.

FIG. 2. (a) Measured output photon flux (Stokes peak at ωc + δ)
as a function of input power Pin and detuning δ at 214 mK (pump tone
at ωc + ωm + δ). (b) Corresponding calculated color map from the
basic theory described in Refs. [33,34] (no nonlinearities, g1 = g2 =
0 in Sec. III). The region on the right of the dashed line (high powers,
positive detuning) is bistable and exists only when entering from the
self-oscillating state (upsweeping frequencies). The pink cross marks
the minimum power necessary for self-oscillations, while the red
cross corresponds to the position of the beginning of the hysteresis.
The yellow cross marks the end of this bistable region (at same
power). �P and �δ are discussed in the text.

At milliKelvin temperatures, heating arising from mi-
crowave absorption in dielectrics does not produce any
thermal expansion: there are thus no thermo-optical non-
linearities in our system, in strong contrast with devices
actuated by laser beams where they dominate [38–41]. How-
ever, the strong pump signal required to reach the threshold
of the parametric instability does give rise to heating ef-
fects. This is carefully characterized and taken into account
experimentally, see Appendix B. As such, the nonlinearities
that prevail in microwave-based systems are of geometrical
origin.

The experiment is performed in the mechanical self-
induced oscillation regime by measuring the output mi-
crowave signal corresponding to the Stokes peak (at frequency
ωc + δ), varying the detuning δ and the power Pin of the
input blue-detuned pump (at frequency ωc + ωm + δ). The
measured photon flux is shown in Fig. 2(a). It is obtained
with a bandwidth of more than ten times the width of the
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Stokes peak, such that the detected signal corresponds to
the integrated PSD of the peak (as opposed to Fig. 1 which
resolves its shape). As a comparison, the calculation based on
the basic model of Refs. [33,34] is displayed in the bottom
panel. The two plots are very similar and strikingly display
a bistable region at high powers and large positive detunings.
However, calculation and theory do not match perfectly, which
is expected: This has to be the signature of nonlinear effects
which were neglected so far.

The region of the stability diagram which seems to be the
most impacted by nonlinearities is precisely the hysteretic one
(Fig. 2 beyond the dashed line). Therefore, in addition to the
overall topography of the measured signal in the (Pin, δ) space,
we shall measure the importance of nonlinear features by
reporting the position of the bistability in powers with respect
to the beginning of the self-sustained region �P and its width
in detuning �δ [see Fig. 2(b)].

The question that arises is thus: Which nonlinearities
need to be included in a quantitative model? One would
immediately think about the Duffing effect in mechanical
devices [48] and, correspondingly, to the Kerr effect for
the microwave cavity [49]. Both are discussed in Sec. IV
and within the Appendices but are not the dominant nonlin-
ear features essentially because small frequency shifts have
only a marginal impact on the optomechanical scheme itself.
This is in strong contrast with mechanics of directly driven
systems, where the Duffing nonlinearity generates a rich
bistable dynamics, involving one or even more mechanical
modes (through nonlinear mode coupling) [50–53]. In ad-
dition to geometrical nonlinearities, bottom-up devices have
demonstrated a specific material-dependent feature: nonlinear
damping [54]. While it could modify the dynamics if large
enough, for top-down fabricated structures, these effects are
essentially negligible, even for high-amplitude motion of can-
tilever beams [55]; we discuss the point in Appendix B. We
thus have to consider nonlinearities in the coupling itself, that
is higher-order derivatives in the Taylor expansion of the cou-
pling capacitance C(x), which generate a modulation of the
optomechanical interaction at harmonics of the mechanical
resonance frequency.

III. THEORY

We investigate the influence of nonlinear position coupling
on the dynamics of self-sustained oscillations. The wide sepa-
ration of timescales together with weak coupling and damping
allows for a self-consistent approach in which the mechanical
amplitude is slowly changing [33–37]. We start by writing
a modified optomechanical Hamiltonian of the form (in the
rotating frame of the drive optical field)

Ĥ = −h̄

[
� + g0(b̂ + b̂†)

+ g1

2
(b̂ + b̂†)2 + g2

2
(b̂ + b̂†)3

]
â†â

+ h̄ωmb̂†b̂ + h̄�(â† + â) + Ĥγ , (1)

where â and b̂ are the photon and phonon annihilation op-
erator, respectively. g0 ∝ dC/dx is the usual linear single

photon-phonon coupling strength while we introduce g1 ∝
d2C/dx2 and g2 ∝ d3C/dx3, respectively, the quadratic and
cubic coupling strengths. This expansion order is necessary
and sufficient to provide quantitative fits of the data, see
Sec. IV. C(x) is the cavity mode total capacitance while
x denotes the position collective degree of freedom of the
first mechanical flexural mode (see Appendix A for details).
Ĥγ represents the external bath coupling Hamiltonian and
�2 = κextPin/[h̄(ωc + �)] is the normalized driving term. In
this case, the equations of motion for both operators take the
following form:

〈 ˙̂a〉 = (i� − κtot/2)〈â〉 + ig0〈(b̂ + b̂†)â〉
+ i

g1

2
〈(b̂ + b̂†)2â〉 + i

g2

2
〈(b̂ + b̂†)3â〉 − i�, (2)

〈 ˙̂b〉 = −(iωm + γm/2)〈b̂〉 + ig0〈â†â〉
+ ig1〈(b̂ + b̂†)â†â〉 + i

3g2

2
〈(b̂ + b̂†)2â†â〉. (3)

When the amplitudes of both fields are large enough, we can
neglect quantum fluctuations and use the standard semiclassi-
cal approach. We write for both the optics 〈â〉 → α and the
mechanics 〈b̂〉 → β, leading to

α̇ = (i� − κtot/2)α + ig0(β + β∗)α

+ i
g1

2
(β + β∗)2α + i

g2

2
(β + β∗)3α − i�, (4)

β̇ = −(iωm + γm/2)β + ig0|α|2

+ ig1(β + β∗)|α|2 + i
3g2

2
(β + β∗)2|α|2. (5)

This system of coupled equations can be solved by means of
the ansatz for β [34],

β = βc + Be−iφe−iωt , (6)

βc being related to a static deflection xc of the drum, and Be−iφ

corresponding to the (complex valued) coherent motion. In
the following, we shall neglect the βc term; it is indeed re-
sponsible only for a tiny frequency shift of the mechanical
resonance, which impacts only marginally the thought limit
cycle state. For the same reason, we did not include the me-
chanical (Duffing) nonlinearity in Eq. (1), see Appendix C for
a detailed discussion on these issues.

For convenience, we now introduce a shifted detuning
�′ = � + g1B2 and two renormalized coupling parameters
G = 2g0 + 3B2g2 and Ḡ = 2g0 + 6B2g2. The optical ampli-
tude equation takes now the form

α̇ = [i�′ − κtot/2 + iGB cos(ωt + φ)

+ ig1B2 cos(2ωt + 2φ)

+ ig2B3 cos(3ωt + 3φ)]α − i�. (7)

The solution can be found via the mathematical transform
described in Ref. [33]. We define α̃ = αei� with

�(t ) = −GB

ω
sin(ωt + φ) − g1B2

2ω
sin(2ωt + 2φ)

− g2B3

3ω
sin(3ωt + 3φ), (8)
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leading to the simpler dynamics equation:

˙̃α =
(
i�′ − κtot

2

)
α̃ − i�ei�. (9)

We now use the Jacobi-Anger expansion three times (on the
three terms defining �):

f (t ) = −i�ei�(t ) = −i�
∑
n∈Z

fnein(ωt+φ), (10)

where

fn =
∑
m∈Z

∑
p∈Z

(−1)m+p

× Jp

(−g2B3

3ω

)
Jm

(−g1B2

2ω

)
J3p+2m+n

(−GB

ω

)
. (11)

Here, Jn is the Bessel function of the first kind. Fourier trans-
forming Eq. (9), we write α̃(t ) = ∑

n∈Z α̃neinωt with

α̃n = −i�einφ fn

i(nω − �′) + κtot/2
, (12)

and hence

|α|2 = |α̃|2 =
∑

(n,n′ )∈Z2

α̃nα̃
∗
n′ei(n−n′ )ωt (13)

=
∑

(n,n′ )∈Z2

�2 ei(n−n′ )ωt ei(n−n′ )φ fn fn′

hnh∗
n′

=
∑
q∈Z

e−iqωt e−iqφ �2

[∑
n∈Z

fn fn+q

hnh∗
n+q

]

=
∑
q∈Z

e−iqωtηq, (14)

where hn = i(nω − �′) + κtot/2 and we used the change of
variable q = n′ − n in the penultimate line.

Inserting Eq. (14) into Eq. (5) and preserving only terms
oscillating at −ω (rotating wave approximation), we obtain
the dynamics equation for the mechanics:

β̇ = −
(
iωm + γm

2

)
β + i

Ḡ

2
η1e−iωt

+ ig1η0β + ig1η2β
∗e−2iωt

+ i
3

2
g2η−1β

2eiωt + i
3

2
g2η3(β∗)2e−3iωt . (15)

We can now recast this expression introducing the optical
backaction terms, namely, the optical spring term δω and the
damping term γBA,

β̇ = −[
iω + 1

2 (γm + γBA)
]
β, (16)

with ω = ωm + δω now explicitly defined, and

γBA = −2
[X ], (17)

δω = −�[X ], (18)

where X is written as

X = i�2

[
Ḡ

2B

∑
n∈Z

fn fn+1

hnh∗
n+1

+ g1

∑
n∈Z

f 2
n

|hn|2 + g1

∑
n∈Z

fn fn+2

hnh∗
n+2

+ 3g2B

2

∑
n∈Z

fn fn+1

hn+1h∗
n

+ 3g2B

2

∑
n∈Z

fn fn+3

hnh∗
n+3

]
. (19)

One can thus find all the stable states by solving self-
consistently the equation which cancels the effective damping
γm + γBA, ensuring that

Ḃ = 0. (20)

In practice, it is sufficient to solve the limit-cycle equation
neglecting all kinds of mechanical shifts, assuming ω = ωm

in Eq. (11). Details on the self-consistent determination of
optomechanical stable states can be found in Appendix D.

Following the same procedure as for α̃, the optical field
amplitude in the cavity takes the form α = ∑

n∈Z αneinωt with

αn =
∑
q∈Z

−i�einφ fq fq−n

hq
. (21)

This expression highlights the fact that the optomechanical
coupling imprints a comb structure in the photon field. We
can then compute the output photon flux Ṅout,n of each comb
peak n as

Ṅout,n = κext|αn|2, (22)

where we made use of the well-known input-output relation
linking intracavity fields and output traveling fields [56]. n = 0
corresponds to the pump tone at frequency ωc + ωm, n = −1
to the Stokes sideband at ωc, and n = 1 to the anti-Stokes
sideband at ωc + 2ωm [see black dots in Fig. 1(b)].

IV. ROLE OF GEOMETRIC NONLINEARITIES

The aim is thus now to go beyond Fig. 2, and obtain quan-
titative agreement between theory and experiment. The theory
in the previous section allows us to calculate the amplitude of
the mechanical motion including geometrical nonlinearities in
the couplings. However, to obtain estimates of the mechanical
frequency, we need to also include important contributions
from other effects, especially the Duffing nonlinearity of the
drum.

As soon as the system self-oscillates, the actual cavity fre-
quency is slightly renormalized in ω′

c = ωc − g1B2. Besides,
there is also a material-dependent shift with a logarithmic
power dependence that is attributed to two-level systems
present in the dielectrics [57], which is taken into account
(Appendix B). On the other hand, the cavity Kerr nonlin-
earity ξc is expected to be extremely small for our device
[49,58]; we give an upper bound in Table I, see discussions in
Appendices B and C for details. The mechanical resonance
is also renormalized by the optomechanical coupling, with a
tiny frequency shift δω (see Sec. III). However, the dominant
source of mechanical frequency shift is due to the Duff-
ing effect (i.e., the mechanical nonlinearity arising from the
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TABLE I. Fitted parameters at different temperatures. cryo. is
the cryostat measured temperature, while Teff is the characteristic
fit temperature; nonlinear couplings are given in units of g0, with
g0 > 0. The Kerr parameter of the cavity is estimated (see text).

T (mK) Teff(mK) g1/g0 g2/g0 ξm(Hz) ξc(Hz)

cryo. ±20 % within ×2 within ×2 ±10 % est.
417 520 +1.×10−7 −10.×10−14 +2.1×10−9 −10−4

215 320 idem idem idem idem
50 290 idem idem idem idem

stretching of the drum [59]), leading to ω′
m = ωm + δω +

ξmB2, with a normalized Duffing parameter ξm in Hz per
phonon. For simplicity, we will omit the prime on ωc and ωm,
remembering in the following that the measured mechanical
frequency shift includes all terms.

The measured output photon flux is plotted in Fig. 3 as
a function of detuning δ and power Pin (same data as Fig. 2
top panel, 214 mK). The amplitude of the signal is extremely
large, but the most striking feature is the bistable region at
high powers and positive detunings. The measured mechani-
cal frequency shift is shown in Fig. 4; strikingly, we find that
it is largest in the bistable regime.

This mechanical shift cannot be captured by the optome-
chanical contribution δω alone. One has to take into account
the Duffing effect to quantitatively fit it (see below). However,
the mechanical frequency shifts remain very small (a few
kHz at most, see Fig. 4); we thus verified that they have
only a marginal impact on the limit cycle dynamics (i.e., the
amplitudes, B), see Appendix C.

In the hysteretic region, the amplitude B becomes very
large, hence the optomechanical response becomes sensitive
to the nonlinear coupling coefficients, g1 and g2. For symme-
try reasons (see Appendix A), the sign of the g0 parameter is
irrelevant and we take it to be positive for simplicity. However,
then the sign of the other coefficients is uniquely defined.

To calculate the amplitudes of the limit cycles (and hence
the photon flux) using the approach in Sec. III, the only free
parameters are the quadratic and cubic nonlinear coupling
terms g1 and g2, respectively. These two coefficients have a
different impact on the calculated flux: Around our best fit
parameters, g1 narrows/broadens the self-oscillating region
with respect to detuning (altering the �δ parameter), while g2

mostly shifts the bistable feature to higher/lower powers (�P
parameter). This is represented in Fig. 5; in Appendix E, full
color maps calculated for different nonlinear parameters are
also displayed (Fig. 8). Indeed, at the same time, the overall
shape of the theoretical maps displayed in Figs. 3 (flux) and
4 (mechanical frequency) are very sensitive to the nonlinear
parameters. We can therefore reasonably well determine the
values of these two terms, typically within a factor of 2 (see
Appendix E). The theoretical fits are displayed as green dots
in Figs. 3 and 4; as a comparison, the color map of Fig. 2
bottom panel is computed for g1 = g2 = 0.

We performed this procedure at various cryostat temper-
atures. However, because of microwave absorption in the
materials, the drum temperature is not homogeneous over

FIG. 3. (a) Output photon flux of the self-oscillating (Stokes)
peak at frequency ωc + δ, as a function of both the power Pin and the
detuning δ of the input pump signal (pump frequency ωc + ωm + δ,
with −7 MHz < δ <+7 MHz) at 214 mK. The color map is exper-
imental data measured upsweeping both the pump detuning (from
δ = −7 MHz to δ = +7 MHz) and the pump power, and green points
are theoretical fits computed by solving self-consistently Eq. (20),
γm + γBA = 0, see text. (b) Experimental color map measured down-
sweeping the pump detuning (from δ = +7 MHz to δ = −7 MHz)
with pump power swept upward. Green points are also theoretical
computations; the hysteresis of the large power and large detuning
region is clearly visible.

the complete measured range of (δ, Pin ). This effect is taken
into account, see Appendix B. The most constrained point for
the definition of the couple (g1, g2) is the junction between
the main stable region and the bistable part, defined by the
red cross mark in Fig. 2. We shall thus define an effective
temperature Teff characteristic of the fit at this precise point.

From the measured mechanical frequency shift (Fig. 4),
we can finally fit the Duffing term ξm. The summary of our
results is given in Table I. Within our error bars, we can infer
a unique set of parameters that fits all temperatures. This
is strong evidence that the nonlinear features g1, g2 and ξm

are of geometrical origin. We give in Appendix A theoreti-
cal estimates obtained from basic arguments: a circular plate
stretching nonlinearity for ξm [59], and a corresponding plate-
capacitor nonlinear expansion for g1, g2 [60]. The magnitudes
match our findings within typically a factor of 2, apart from
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FIG. 4. (a) Mechanical frequency shift of the self-oscillating
(Stokes) peak as a function of both the power Pin and the detuning
δ of the input pump signal (same conditions as Fig. 3, sweeping
δ toward positive values). Note that in the hysteretic region, the
calculated points lie slightly below the experimental ones, but obvi-
ously match the threshold position of Fig. 3. (b) Experimental color
map measured down sweeping the pump detuning. Green points are
theoretical computations, see text.

g2, whose prediction is the worst because of the crudeness of
the plate capacitor analytic expansion.

V. CONCLUSION

We report on microwave optomechanical experiments per-
formed in the self-sustained oscillation regime. The output
spectrum of a microwave cavity resonating around 6.8 GHz
coupled to a 6.7 MHz drumhead mechanical device is mea-
sured as a function of input power Pin, pump frequency
detuning δ, and temperature. A high amplitude and narrow-
peak comb structure is measured in the output spectrum and
fit to theory.

We demonstrate that the limit cycle dynamics is sensitive
to nonlinearities in the optomechanical coupling. We there-
fore present a theory that goes beyond the standard linear
optomechanical Hamiltonian, introducing quadratic and cubic
terms g1 and g2. Data is fit quantitatively, and we show that
these g1 and g2 must be of geometrical origin, as opposed to

FIG. 5. (a) Calculated �P parameter as a function of g1, g2 coef-
ficients. (b) Calculated �δ parameter as a function of g1, g2. Both
are essentially described by plane equations, with each nonlinear
coefficient being the leading one for one of the parameters (g1 for
�δ and g2 for �P, see text). Full color maps are also presented in a
matrix form in Appendix E, Fig. 8.

the thermo-optical nonlinear features present in laser driven
systems.

The work described here can thus be proposed as a method
to characterize nonlinearities in microwave nanomechanical
platforms. With the development of quantum-limited optome-
chanical schemes building on higher-order couplings [27,32],
it represents a very useful resource. The method is also par-
ticularly straightforward since it simply relies on the strong
pumping of the mechanics via the microwave field. Besides,
the generated comb itself could be used in schemes re-
quiring microwave multiplexing. One could imagine specific
designs with multiple cavities and NEMS producing much
wider combs; adding DC gates would also enable frequency
tuning [61].

Finally, we note that our microwave-coupled mechani-
cal devices are fully compatible with ultralow-temperature
cryostats capable of operating below 1 mK [23]. Assuming
equilibration of devices like the one used here can be achieved
under such conditions, then they will naturally operate within
the quantum regime. Further work will be needed to under-
stand the extent to which the nonlinear coupling terms will
squeeze the quantum fluctuations leading to an amplitude of
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motion that is more precisely defined than that of a coher-
ent state [36]. Furthermore, measuring the rate at which the
system switches between the coexisting dynamical states that
arise in the nonlinear regime when the system is in the quan-
tum regime will provide important insights into fundamental
processes such as quantum activation [62,63].
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APPENDIX A: DRUMHEAD CHARACTERISTICS

The mechanical device used in this work is a typical alu-
minum drumhead [6]. As can be seen on the SEM picture in
Fig. 1, the actual structure is rather complex; we will simply
approximate it as two discs of radius R (one being fixed and
the other movable) separated by a gap d . The thickness of the
drum is e. These geometrical characteristics are summarized
in Table II together with typical material parameters.

These numbers are estimated from the Kirchhoff-Love
theory of plates, producing the right mechanical resonance
frequency of 6.7 MHz: assuming either high-stress limit (in-
built stress of 60 MHz and neglecting the Young’s modulus) or
low-stress (zero in-built stress). In addition, from Ref. [59] we
can produce a theoretical estimate for the Duffing parameter
ξm in Hz/m2. We obtain about 2.×1019 Hz/m2 for a device
in the high-stress limit (a drum), and about 1.×1019 Hz/m2 in
the low-stress case (a membrane). From the fit value quoted in

TABLE II. Typical drumhead NEMS parameters; the in-built
stress is estimated to be <60 MPa (see text). Corresponding
mode effective mass meff = 2.3×10−14 kg and spring constant keff =
41. N/m.

R (nm) d (nm) e (nm) E (GPa) ρ (kg/m3) ν

est. est. est. bulk val. bulk val. bulk val.
8 500 150 170 70 2 700 0.35

Table I in units of Hz/phonons, we get a number in between
these two numerical estimates: this validates the quantitative
evaluation within ±50 %.

The linear coupling strength g0 is defined as

g0 = −G xzp f , (A1)

G = dωc

dx
= dωc

dC

dC

dx
, (A2)

with xzp f = √
h̄/(2meff ωm) the zero-point-fluctuation, de-

fined from the mode effective mass meff. For simplicity, we
will neglect the mode shape here and consider two planar
electrodes; as such, we will take as reference for the mode
mass and spring constant calculation the center of the drum
(i.e., maximum of mode shape equal to 1). Numbers are given
in the caption of Table II.

In Eq. (A2), we have dωc/dC = −ωc/(2C0) with C0 the
mode-effective capacitance. From standard electromagnetism,
we write dC/dx = +ε0πR2/d2, neglecting fringing effects
which are small in the limit d/R  1 (ε0 being the vacuum
permittivity) [60]. By definition, we take the direction of the
x axis pointing toward the fixed electrode. Reversing the di-
rection of the x axis changes the sign of g0 but also of g2,
producing an overall (−1)n in Eq. (11). This has no impact on
physical quantities (such as γBA, δω, and |αn|2): The problem
at stake is invariant under a mirror symmetry. We then ob-
tain from Eq. (A1) a value of about 20 Hz for g0 (choosing
g0 > 0), taking for the cavity mode C0 ≈ 100 fF, which is
consistent with the microwave design. This overestimates g0

(by about a factor of 2) since in reality not all the drum
electrodes move, the borders being clamped.

Expanding the plate capacitor expression in a Tay-
lor series of x/d , we obtain for the cavity resonance
frequency,

ωc(x) = ωc(0) −
[

g0
x

xzp f

+ g1

2

(
x

xzp f

)2

+ g2

2

(
x

xzp f

)3

+ · · ·
]
, (A3)

at third order, where we identify

g1 = g0

[
+ 2

xzp f

d
− 3

g0

ωc(0)

]
,

g2 = g0

[
+ 2

(
xzp f

d

)2

− 6
xzp f

d

g0

ωc(0)
+ 5

(
g0

ωc(0)

)2]
. (A4)

In our case, only the first terms in the above are relevant: the
magnitude with respect to g0 of these gn coefficients is thus
fixed by (xzp f /d )n. Computing numerical estimates, we see
that with the chosen value of d we underestimate g1 by only
about 20%, but underestimate |g2| by a factor of 7 approxi-
mately. The sign of g2 is also not captured, which shows that
this crude modeling fails for high-order derivatives.

APPENDIX B: HEATING AND MATERIAL-
DEPENDENT EFFECTS

Since we work at very large microwave powers, some
material-dependent effects have to be taken into account to
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FIG. 6. Mechanical device temperature versus applied mi-
crowave power (expressed in terms of intracavity photons ncav). Dots
are experimental data measured by red-detuned pumping, integrating
the anti-Stokes power spectrum peak (see text). The curves are em-
pirical expressions used for the extrapolation in the self-oscillating
range (above 108 photons). At high enough powers, all the curves
collapse (the starting temperature is irrelevant compared to the added
energy). The discrepancies in the numerics in the extrapolated range
are smaller than ±20%.

be quantitative in the fitting. The first of these is microwave
heating of dielectrics due to absorption of the radiation. Note,
however, that technical heating is not a fundamental effect;
it can be minimized by means of phase-noise filtering and
remains small for most devices with reasonable g0 coupling
(see, e.g., Ref. [6]). In the present experiment, the setup has
been kept basic and no filtering has been used. To charac-
terize heating independently of the self-oscillating regime,
we use red-detuned sideband pumping. As we increase the
injected power Pin, we measure the area of the anti-Stokes
peak. Knowing the theoretical dependence of this parame-
ter on both Pin and NEMS temperature TNEMS [18], we can
recalculate TNEMS for each setting, see Fig. 6. This effect
being local, the absorbed power has to be proportional to
the intracavity field, i.e., the photon population ncav. We can
therefore extrapolate what should be the heating effects in
the self-oscillating regime using the actual intracavity photon
number �|αn|2. Empirical fits are shown in Fig. 6 (see lines).
The curves merge when the heating effect dominates over the
starting temperature; we therefore estimate that our extrap-
olation in the region of interest is accurate within ±20 %,
see Fig. 6. Of the parameters appearing in the theory of
Sec. III, the only temperature-dependent ones are ωc, ωm,
and γm. The mechanical damping (in Hz) is fit to measure-
ments performed in the Brownian regime by the expression
γm/(2π ) = 70.5 + 1300 TNEMS, while the mechanical reso-
nance frequency (in Hz) is fit by ωm/(2π ) = 6.747×106 +
430 ln(TNEMS), with in both expressions TNEMS in K.

While for this sample, the mechanical element is very
sensitive to heating, the microwave cavity seems to be rather
insensitive. We attribute this to the fact that the cavity is much
larger than the drum and directly coupled to the substrate
instead of being suspended. However, we do measure a power

dependence of the microwave resonance frequency which
shifts upward logarithmically with increasing powers. At the
same time, we do not measure any change in the cavity Q
factor within our resolution. These power dependencies of su-
perconducting microwave resonators are commonly attributed
to microscopic two-level systems present in the devices [57].
Pragmatically, we take into account this effect by adding this
logarithmic frequency shift to the calculation of ωc when
fitting the 3D maps: δωc/(2π ) = 1.8×105 ln(Pin) in Hz.

Similarly to the Duffing effect of the mechanics, there is
an equivalent nonlinearity in the microwave resonance called
Kerr nonlinearity. This leads to an additional frequency shift
∝ ncav. This effect comes from the nonlinear behavior of the
mode effective inductance L0 when the current density J flow-
ing in the superconductors becomes too large [49,58],

L0(J ) = L0(0)

[
1 + αl

J2

J2∗

]
, (B1)

with J∗ = (2/3)3/2JC and JC the critical current density, and
αl = Lkin/L0 the fraction of the total inductance of kinetic
origin. For our Al film of about 100 nm, αl should be smaller
than 0.1, typically. The cavity resonance frequency thus
shifts as

ωc(ncav) = ωc(0) + ξc ncav, (B2)

with

ξc = − αl h̄ωc

L0A2(2/3)3J2
c

, (B3)

and A the cross-section of the microwave cavity strip. A crude
estimate taking the bulk value for the critical current density
leads to ξc ≈ −10−4 Rad/s, which is completely negligible.

Finally, nonlinear friction has been reported in bottom-
up electromechanical structures made of carbon (nanotubes,
graphene) [54]. It is taken into account by modifying the
mechanical equation of motion such that γmdx/dt → (γm +
γ2 x2)dx/dt [48]. In contrast for bulk top-down objects, this
mechanism seems to be very small, even in cantilever devices
sustaining large motion amplitudes [55]. Experimentally, it is
then rather difficult to distinguish such anelastic effects from
basic Joule heating; assessing a reasonable number for the
nonlinear friction coefficient γ2 is essentially out of reach
here. On the other hand, we do have reasonable estimates
for the order of magnitude of the g1, g2 coefficients. The
quantitative fits do match these values. Applying Ockham’s
razor, we therefore keep the minimal set of variables necessary
for the quantitative description, which is also the reason why
the expansion was cut at order 3 in nonlinear coupling.

APPENDIX C: IMPACT OF STATIC DEFLECTION,
DUFFING, AND KERR NONLINEARITIES

The ansatz Eq. (6) introduces a static term βc that cor-
responds to a static deflection of the drum xc = xzp f 2
[βc].
It can be deduced by solving Eq. (5) keeping only time-
independent terms. The Duffing contribution can easily be
incorporated in it. This term always remains extremely small
and contributes only for a (tiny) cavity frequency shift ω′

c =
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ωc − g1B2 − δω′
c:

δω′
c = 2g0
[βc] + 2g1
[βc]2 + 4g2
[βc]3

+ 6g2
[βc]B2. (C1)

Since the mechanical motion can be very large (up to about
15 nm), the nonlinear stretching effect of the membrane has
to be considered; this is the so-called Duffing nonlinearity,
which shifts the mechanical resonance by ξmB2. This term
can be taken into account recursively in the calculation of the
stable states, Eq. (20) see Appendix D. The result is that this
term has only a marginal impact on the self-oscillating states
definition. However, it dominates the mechanical frequency
shift over the optical spring terms. We can therefore fit ξm on
the measurement of the drum frequency, Fig. 4. The obtained
value is essentially temperature independent, and given in
Table I.

APPENDIX D: STABLE STATES COMPUTATION

The problem is solved numerically by finding self-
consistently a stable solution B to Eq. (20) for any couple
(δ, Pin). These stability points correspond graphically to the
intersection between the function γBA(B)/γm + 1 and the x
axis (see Fig. 7). The output photon flux is thus calculated by
means of Eq. (22) injecting the found value of B in Eq. (11).
For simplicity, one can neglect mechanical shifts which have
only a marginal effect on stable state amplitudes. The proce-
dure is then repeated over the full range of detunings δ and
input pump powers Pin to draw the theoretical mapping of the
self-oscillating state (see green points in Fig. 3).

For small detunings, the curves are always monotonous.
At low powers, there is no solution since γBA(B)/γm + 1 > 0
(orange line in Fig. 7). Increasing the power eventually brings
the curve below the x axis, creating a single intersection

FIG. 7. Theoretical stability curves giving γBA/γm + 1 as a func-
tion of (2g0/ωm ) × B, calculated at three different positions (δ, Pin )
and demonstrating the typical observed behaviors: unstable (orange
line), one stable state (red line), and unstable (blue circle) plus stable
states leading to hysteresis (magenta line, see text and Figs. 3 and 4).
The self-consistent value of B corresponds to the (light and dark)
green circles.

γBA(B)/γm + 1 = 0 (green circle on the red curve). Fluctu-
ations at small B can thus trigger the self-oscillating state as
the curve smoothly goes below Y = 0.

For large positive detunings, there is a range at (large) pow-
ers where the curve displays two intersections (see magenta
line in Fig. 7). For the low-B valued one (blue circle), the slope
is negative, which means that the state displays antidamping:
it is unstable. On the other hand, for the high-B solution, the
derivative is positive, which means that the state is stable (dark
green circle).

However, this state is at very large amplitudes B and has not
been created by a smooth crossing of the x axis from the whole
curve, starting at the lowest B ≈ 0: This means that it can be
triggered only if one comes already from high amplitude states
and not from thermal motion. This is exactly the hysteretic
behavior that is seen in Fig. 3, sweeping the detuning δ upward
at constant power and increasing the power from typically 2
nW to 30 nW. The same is true sweeping the power downward
from the high-B state at fixed detuning.

The graphs in Fig. 7 are obtained with g1 = +10−7 g0 and
g2 = −10−13 g0 (with g0 > 0). The numerical calculation can
be performed with the static deflection and the Duffing term
taken into account, see Appendix C. The results are essen-
tially identical. The fitting routine is explained in the next
Appendix.

A similar nonlinear effect exists for the cavity: this is the
Kerr effect already discussed in Appendix B. At first order,
this term shifts the position of the resonance by a quantity
ξc|α|2. The expected value for ξc being very small, we can
simply completely neglect any nonlinear effect of that sort.

APPENDIX E: 3D FITTING PROCEDURE

Measurements of the photon flux are compared to the the-
oretical computation in Fig. 3. The two parameters g1 and
g2 affect the shape of the numerical (δ, Pin ) color map in
different ways: We demonstrate this in Fig. 8, varying them
in a dichotomic process (multiplying or dividing the optimal
values by 2). By increasing g1 the self-oscillating region is
getting more narrow in the δ direction, while increasing |g2|
upshifts in power the starting line of the bistable region. This
is discussed in the core of the paper with the parameters
�P, �δ, see Fig. 5. The optimal values match the ex-
perimental findings: �P ≈ 16 nW (±10 %), �δ ≈ 3.5 MHz
(±200 kHz).

We can therefore choose the red cross position in Fig. 8
(central graph, optimal g1 and g2) as a good marker for fitting
these g1 and g2 parameters (equivalent of Fig. 2, but g1 =
g2 = 0 value). Since the NEMS heats with applied power,
this also defines the actual temperature at which the fit is
essentially performed. This is summarized in Tab. I, with error
bars estimated for the coupling nonlinear parameters to be
about a factor of 2. Fits of the mechanical frequency shifts are
discussed in Appendix C; Fig. 4 is essentially an image of the
amplitude of motion squared x2 (or equivalently B2). Note that
the quality of the agreement between experiment and theory
in this graph also imposes strong constraints on the (g1, g2)
couple. This is also the case of the overall shape of the photon
flux maps, Fig. 3.
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FIG. 8. Impact of the variation of g1 and g2 on the theoretical map giving the output photon flux as a function of both the detuning δ and
the input pump power Pin. The color maps are calculated taking into account all mechanical and optical shifts, with g0 > 0. The central one
is the same as in the 3D plot of Fig. 3. From these graphs, one can extract the �P, �δ parameters shown in Fig. 5. The red cross marks the
position of the beginning of the hysteresis for the central graph (optimal g1, g2 fit parameters).
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