
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Symmetry properties of non-Hermitian -symmetric quantum field
theories
To cite this article: P Millington 2020 J. Phys.: Conf. Ser. 1586 012001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 146.200.210.12 on 14/09/2020 at 10:34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/334578384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1742-6596/1586/1/012001
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstV7kyYW0Z1QrXLtGeD31SIXxkTHqRvCVwA2U1JjYtkQsnTqlvqzSWY7hpHb62AghGS6siOApQpSkei2JIEuWHZvpCuqJHcq6rPJQjHdqZfKVkO1zSvpGFbAiMhLVAGfi3dC74pnXnvsAX4eYv4Hjgt85uD0Sc6e_GwjsGqxVJ6nrx7repJy9QtOBsuCRvwZaaKBgegn92hiJ1T6hbmMgCrZ5-OdwYlfEB-0z4QFDVdw0j0f79i&sig=Cg0ArKJSzGGshTu5Lvzv&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

6th Symposium on Prospects in the Physics of Discrete Symmetries - DISCRETE 2018

Journal of Physics: Conference Series 1586 (2020) 012001

IOP Publishing

doi:10.1088/1742-6596/1586/1/012001

1

Symmetry properties of non-Hermitian PT -symmetric
quantum field theories

P Millington
School of Physics and Astronomy, University of Nottingham,
Nottingham NG7 2RD, UK

E-mail: p.millington@nottingham.ac.uk

Abstract. We describe recent progress in understanding the continuous symmetry properties
of non-Hermitian, PT -symmetric quantum field theories. Focussing on a simple non-Hermitian
theory composed of one complex scalar and one complex pseudoscalar, we revisit the derivation
of Noether’s theorem to show that the conserved currents of non-Hermitian theories correspond
to transformations that do not leave the Lagrangian invariant. We illustrate the impact that
this has on the consistent formulation of (Abelian) gauge theories by studying a non-Hermitian
extension of scalar quantum electrodynamics. We consider the spontaneous breakdown of both
global and local symmetries, and describe how the Goldstone theorem and the Englert-Brout-
Higgs mechanism are borne out for non-Hermitian, PT -symmetric theories.

1. Introduction
The standard lore of quantum mechanics is that operators corresponding to real-valued
observables must be Hermitian. However, not all matrices with real eigenvalues are Hermitian,
and, in the case of the Hamiltonian, it turns out that the reality of the eigenspectrum [1],
and unitary evolution [2], can instead by guaranteed by the weaker condition of unbroken
PT symmetry, that is symmetry under the combined action of parity P and time-reversal T
transformations (for overviews of PT -symmetric quantum mechanics [3], see references [4, 5]).

In this talk, we consider the continuous symmetry properties of non-Hermitian, PT symmetric
field theories, summarising the results of references [6, 7, 8] (see also reference [9]) and focussing,
in particular, on how Noether’s theorem [10], the Goldstone theorem [11, 12, 13] and the Englert-
Brout-Higgs mechanism [14, 15, 16] are borne out. In the context of a complex scalar model,
we show that there exist conserved currents for non-Hermitian theories, but the corresponding
transformations do not leave the Lagrangian invariant [6]. In the case of spontaneously broken
global symmetries, the existence of the conserved current is sufficient to ensure that Goldstone’s
theorem still holds [7], and we obtain a massless Goldstone mode. However, in the case of
gauge theories, coupling minimally to the conserved current means the Lagrangian is not gauge
invariant [8]. As a result, we must couple to a non-conserved current, and, in the case of non-
Hermitian scalar quantum electrodynamics, the consistency of the Maxwell equations precludes,
in general, our working in Lorenz gauge (i.e. setting the four-divergence of the gauge field to
zero) [8]. With these subtleties understood, we find that the Englert-Brout-Higgs mechanism
can still generate a gauge-invariant mass for the vector boson [8]. Throughout what follows, we
focus only on the regimes in which the eigenspectra remain real and avoid the exceptional points
of the theories (see, e.g., reference [17]); for a complementary discussion, see reference [9].
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2. A scalar model
We consider the following non-Hermitian complex-scalar theory with PT symmetry [6]:

L = ∂αφ
∗
1∂

αφ1 + ∂αφ
∗
2∂

αφ2 − m2
1|φ1|2 − m2

2|φ2|2 − µ2(φ∗1φ2 − φ∗2φ1) , (1)

where m2
1,m

2
2, µ

2 ≥ 0. It is PT -symmetric if the c-number fields φ1 and φ2 transform as

P :

(
φ1
φ2

)
→

(
+φ1
−φ2

)
and T :

(
φ1
φ2

)
→

(
+φ∗1
+φ∗2

)
. (2)

Notice that we have chosen φ2 to transform as a pseudoscalar. For a discussion of the discrete
symmetry properties of the corresponding operators in Fock space, see, e.g., reference [9].

For |m2
1 −m2

2| ≥ 2µ2, the squared mass eigenvalues

M2
± =

1

2
(m2

1 +m2
2) ±

1

2

√
(m2

1 −m2
2)

2 − 4µ4 (3)

are real, and the theory is in the unbroken phase of PT symmetry. The eigenvectors of the mass
matrix are e+ ∝ (M2

+ −m2
2,−µ2)T and e− ∝ (M2

− −m2
2,−µ2)T. They are not orthogonal with

respect to Hermitian conjugation, i.e. e†±e∓ 6= 0, but they are orthogonal with respect to PT
conjugation, i.e. e‡±e∓ = 0, where e‡ ≡ (Pe∗)T with P ≡ diag(1,−1).1

However, the action is not Hermitian, and it turns out that we cannot simultaneously satisfy

∂L
∂Φ†

− ∂α
∂L

∂(∂αΦ†)
= 0 and

∂L
∂Φ
− ∂α

∂L
∂(∂αΦ)

= 0 , where Φ ≡
(
φ1
φ2

)
, (4)

except for the trivial solution φ1 = φ2 = 0 [6]. This is just the statement that the left and
right eigenspectra of non-Hermitian matrices are, in general, distinct. We are nevertheless free
to choose in which of these the zero mode resides. In other words, we can choose one of the
usual Euler-Lagrange equations to define the equations of motion (see section 3). The two
choices are, however, physically equivalent, since the difference amounts to a sign change on the
non-Hermitian terms (µ2 → −µ2), which can be absorbed into a field redefinition.

Choosing to define the equations of motion by the variation with respect to Φ‡ ≡ (PΦ∗)T (or,
equivalently, with respect to Φ†), we have

(� +m2
1)φ1 + µ2φ2 = 0 and (� +m2

2)φ2 − µ2φ1 = 0 . (5)

Notice that these classical equations of motion are not PT symmetric, such that non-trivial
solutions will, in general, break the PT symmetry spontaneously (see section 4).

3. Noether’s theorem
Turning now to the variational procedure, the variation of the action is

δS =

∫
d4x

[(
∂L
∂Φ
− ∂α

∂L
∂(∂αΦ)

)
δΦ + δΦ‡

(
∂L
∂Φ‡

− ∂α
∂L

∂(∂αΦ‡)

)]
+ ∂α

(
∂L

∂(∂αΦ)
δΦ + δΦ‡

∂L
∂(∂αΦ‡)

)]
. (6)

Since only one of the Euler-Lagrange equations can, in general, be satisfied, requiring δS = 0
means that the other must be supported by an external source or non-vanishing surface terms [6].

1 To the best of our knowledge, the ‡ notation was first introduced in reference [3] for the PT conjugate. The
notation was extended in reference [6] to include matrix transposition, denoted here by a superscript T.
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Alternatively, we see that the Noether current

jαδ =
∂L

∂(∂αΦ)
δΦ + δΦ‡

∂L
∂(∂αΦ‡)

(7)

is conserved only if it corresponds to a transformation that effects a particular variation of the
Lagrangian; that resulting from the non-vanishing of the other Euler-Lagrange equation [6].
Specifically, if we define the equations of motion by the variation with respect to Φ‡, we require

δL =

(
∂L
∂Φ
− ∂α

∂L
∂(∂αΦ)

)
δΦ (8)

in order for the current to be conserved [6] (for a summary, see also reference [18]).
As an example, we can consider the global U(1) transformations of the model in equation (15).

The Lagrangian is invariant under the transformation Φ→ e−iθΦ. The corresponding current

jα+ = i
(
φ∗1∂

αφ1 − [∂αφ∗1]φ1
)

+ i
(
φ∗2∂

αφ2 − [∂αφ∗2]φ2
)
, (9)

however, is not conserved:
∂αj

α
+ = 2iµ2(φ∗2φ1 − φ∗1φ2) . (10)

On the other hand, the transformation Φ → e−iPθΦ, which does not leave the non-Hermitian
terms in the Lagrangian invariant, leads to a conserved current

jα− = i
(
φ∗1∂

αφ1 − [∂αφ∗1]φ1
)
− i
(
φ∗2∂

αφ2 − [∂αφ∗2]φ2
)
. (11)

Under this transformation, the Lagrangian transforms to

Lθ = ∂αφ
∗
1∂

αφ1 + ∂αφ
∗
2∂

αφ2 − m2
1|φ1|2 − m2

2|φ2|2 − µ2(e+2iθφ∗1φ2 − e−2iθφ∗2φ1) , (12)

and the variation δL = 2µ2(φ∗2δφ1 − φ∗1δφ2) is consistent with equation (8). Notice, however,
that the eigenspectrum is invariant under the transformation, and the Lagrangian (12) describes
a one-parameter family of equivalent theories.

One can also consider the following non-Hermitian extension of the Dirac Lagrangian [19]:

Lψ = ψ̄
(
iγα∂α −m− µγ5

)
ψ . (13)

The parity-odd, anti-Hermitian mass term ((γ5)† = γ5) treats left- and right-handed chiralities
unequally (cf. reference [20]), allowing, e.g., for novel scenarios of flavour oscillations [21, 22] and
neutrino mass generation [23, 24], or the chiral magnetic effect to occur in equilibrium [25]. The
conserved current is [26]

jαψ = ψ̄γα
(

1 +
µ

m
γ5
)
ψ , (14)

corresponding to the transformation ψ → e−iθ(1+µγ
5/m)ψ, for which the variation δLψ =

− 2µψ̄γ5δψ is consistent with choosing the equations of motion by varying with respect to ψ̄ [6].

4. Global symmetries and the Goldstone theorem
The proof of the Goldstone theorem [11, 12, 13] relies on the existence of a conserved current
(see, e.g., reference [27]), and it should therefore hold also in the non-Hermitian case.

We consider the following theory with a spontaneously broken global U(1) symmetry [7]:

L = ∂αφ
∗
1∂

αφ1 + ∂αφ
∗
2∂

αφ2 + m2
1|φ1|2 − m2

2|φ2|2 − µ2(φ∗1φ2 − φ∗2φ1) −
g

4
|φ1|4 . (15)
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Choosing the equations of motion to be defined by the variation with respect to Φ‡, as before,
the symmetry-breaking vacua of the theory are given by the solutions to [7][
g

2
|φ1|2φ1 − m2

1φ1 + µ2φ2

]
φ1,2 = v1,2

= 0 and
[
m2

2φ2 − µ2φ1

]
φ1,2 = v1,2

= 0 . (16)

Up to an overall complex phase, we find(
v1
v2

)
=

√
2
m2

1m
2
2 − µ4

gm2
2

(
1
µ2

m2
2

)
. (17)

Notice that v2 depends on the sign of µ2, and the spontaneous breaking of the PT symmetry
manifests in non-PT -symmetric terms in the action at linear order in the fluctuations [7, 8].

The equations of motion for the fluctuations φ̂1,2 = φ1,2 − v1,2 read [7]

−�


φ̂1
φ̂∗1
φ̂2
φ̂∗2

 =


m2

1m
2
2−2µ4
m2

2

m2
1m

2
2−µ4
m2

2
µ2 0

m2
1m

2
2−µ4
m2

2

m2
1m

2
2−2µ4
m2

2
0 µ2

−µ2 0 m2
2 0

0 −µ2 0 m2
2



φ̂1
φ̂∗1
φ̂2
φ̂∗2

+O(φ̂2) . (18)

The eigenspectrum depends only on µ4, as before, and it remains real for (2m2
1m

2
2−3µ4−m4

2)
2 ≥

4µ4m4
2 and positive semi-definite for µ4 < m4

2 (when m2
1 > m2

2). Moreover, it contains one zero
eigenvalue, corresponding to the Goldstone mode

G ∝ Im φ̂1 −
µ2

m2
2

Im φ̂2 , (19)

consistent with the Goldstone theorem, as we could have confirmed directly from the conserved
current (see reference [7]). As pointed out in reference [9], the Goldstone mode is normalisable
with respect to the PT inner product only away from the exceptional point, which lies at
µ2 = ±m2

2, when the mass matrix above becomes defective and we lose an eigenvector.

5. Local symmetries and the Englert-Brout-Higgs mechanism
We turn our attention now to the case of spontaneously broken local symmetries in non-Hermitian
theories (see reference [8]). Motivated by the fact that ∂α∂βFαβ vanishes identically due to the
antisymmetry of the field-strength tensor Fαβ = ∂αAβ − ∂βAα, we might be tempted to gauge
the U(1) symmetry of the model of sections 2 and 3 by minimally coupling a gauge field Aα to
the conserved current via the covariant derivative Dα = I2∂α + iqPAα of the complex doublet
Φ. Proceeding in this way, we obtain the Lagrangian

L− = [D+
αφ1]

∗Dα
+φ1 +[D−αφ2]

∗Dα
−φ2−m2

1|φ1|2−m2
2|φ2|2−µ2(φ∗1φ2−φ∗2φ1)−

1

4
FαβF

αβ , (20)

where Dα
± = ∂α ± iqAα. The conserved current is

jαA,− = iq
(
φ∗1D

α
+φ1 − [Dα

+φ1]
∗φ1
)
− iq

(
φ∗2D

α
−φ2 − [Dα

−φ2]
∗φ2
)
, (21)

corresponding to the transformations

Φ(x) → e−iqPf(x)Φ(x) and Aα(x) → Aα(x) + ∂αf(x) . (22)
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However, these transformations do not leave the non-Hermitian part of the Lagrangian invariant.
This loss of gauge invariance, while not affecting the classical scalar eigenspectrum, leads to a
(problematic) non-transverse one-loop polarisation tensor [8]:

kαΠαβ(k2 = 0) =
q2

8π2
kβµ4(

M2
+ −M2

−
)3[M4

+ −M4
− + 2M2

+M
2
− ln

(
M2
−

M2
+

)]
. (23)

We can restore gauge invariance in the weak sense by going beyond the minimal coupling
prescription and modifying the non-Hermitian terms to include factors of the Wilson line [28]

W (x) ≡ exp

[
iq

∫ x

dyα Aα

]
, (24)

where the path starts at the boundary (infinity) and ends at x. The Lagrangian takes the form [8]

LW = [D+
αφ1]

∗Dα
+φ1 + [D−αφ2]

∗Dα
−φ2 − m2

1|φ1|2 − m2
2|φ2|2 − µ2(W ∗2φ∗1φ2 −W 2φ∗2φ1)

− 1

4
FαβF

αβ . (25)

The Wilson line transforms as W (x)→W (x)eiqf(x) for gauge transformations that vanish at
infinity, and the Lagrangian in equation (25) is gauge invariant. However, we have restored
gauge invariance at the cost of introducing a path dependence [8]. Moreover, the direct coupling
to the non-Hermitian term may, in general, be inconsistent with the reality of the gauge field.

Alternatively, we can couple minimally to the non-conserved current, assigning like charges to
the complex scalar fields φ1 and φ2. In this case, however, the Maxwell equation is inconsistent
unless we can extend the gauge Lagrangian in an appropriate way. It turns out that a sufficient
ingredient is the usual gauge-fixing term [8], and we take

L+ = [Dαφ1]
∗Dαφ1 + [Dαφ2]

∗Dαφ2 − m2
1|φ1|2 − m2

2|φ2|2 − µ2(φ∗1φ2 − φ∗2φ1)

− 1

4
FαβF

αβ − 1

2ξ
(∂αA

α)2 , (26)

with Dα ≡ Dα
+ and the gauge symmetry restricted to transformations involving gauge functions

that satisfy �f = 0. The Maxwell equation becomes

�Aα− (1−1/ξ)∂α∂βA
β = iq

(
φ∗1D

αφ1− [Dαφ1]
∗φ1
)

+ iq
(
φ∗2D

αφ2− [Dαφ2]
∗φ2
)

= jαA,+ , (27)

and its divergence leads to the constraint

�π0 = 2iqµ2(φ∗1φ2 − φ∗2φ1) , (28)

where π0 = − ∂αAα/ξ is the conjugate momentum to A0. This precludes the usual Lorenz gauge
condition ∂αAα = 0. (While φ∗1φ2 − φ∗2φ1 may vanish classically, we have 〈φ∗1φ2〉 − 〈φ∗2φ1〉 6= 0.)

Having defined a consistent non-Hermitian deformation of scalar quantum electrodynamics, we
are now in a position to consider the extension of the Englert-Brout-Higgs mechanism [14, 15, 16]
to non-Hermitian Abelian theories. Taking the Lagrangian

L = [Dαφ1]
∗Dαφ1 + [Dαφ2]

∗Dαφ2 + m2
1|φ1|2 − m2

2|φ2|2 − µ2(φ∗1φ2 − φ∗2φ1) −
g

4
|φ1|4

− 1

4
FαβF

αβ − 1

2ξ
(∂αA

α)2 , (29)

we have the same symmetry-breaking vacuum as the global case in section 4. Expanding around
this vacuum, equation (17), we find that the gauge field obtains a mass

M2
A = 2q2(|v1|2 + |v2|2) , (30)

such that we can indeed generate a gauge-invariant vector boson mass via a non-Hermitian
extension of the Englert-Brout-Higgs mechanism [8] (cf. reference [9]). The generalisation to the
non-Abelian case [29] may be presented elsewhere.
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6. Concluding remarks
We have discussed global and local symmetries in the context of a non-Hermitian complex-scalar
model that exhibits PT symmetry. We have shown that a careful treatment of Noether’s theorem
indicates that there exist conserved currents for non-Hermitian models but that these correspond
to transformations that do not leave the Lagrangian invariant. In the case of gauge symmetries,
we have argued that it is necessary to couple to the non-conserved current in order to preserve
gauge invariance but that the non-Hermitian nature of the theory leads to a constraint on the
gauge field, precluding the Lorenz gauge condition. In the case of spontaneously broken global
and local symmetries, we have illustrated that the Goldstone theorem and the Englert-Brout-
Higgs mechanism are still borne out. These results pave the way for further studies aiming to
construct consistent non-Hermitian extensions of the Standard Model of particle physics.
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