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Abstract: Industry 4.0 is the fourth generation of industry which will theoretically revolutionize
manufacturing methods through the integration of machine learning and artificial intelligence
approaches on the factory floor to obtain robustness and speed-up process changes. In particular,
the use of the digital twin in a manufacturing environment makes it possible to test such approaches
in a timely manner using a realistic 3D environment that limits incurring safety issues and danger of
damage to resources. To obtain superior performance in an Industry 4.0 setup, a modified version
of a binary gravitational search algorithm is introduced which benefits from an exclusive or (XOR)
operator and a repository to improve the exploration property of the algorithm. Mathematical
analysis of the proposed optimization approach is performed which resulted in two theorems which
show that the proposed modification to the velocity vector can direct particles to the best particles.
The use of repository in this algorithm provides a guideline to direct the particles to the best solutions
more rapidly. The proposed algorithm is evaluated on some benchmark optimization problems
covering a diverse range of functions including unimodal and multimodal as well as those which
suffer from multiple local minima. The proposed algorithm is compared against several existing
binary optimization algorithms including existing versions of a binary gravitational search algorithm,
improved binary optimization, binary particle swarm optimization, binary grey wolf optimization
and binary dragonfly optimization. To show that the proposed approach is an effective method
to deal with real world binary optimization problems raised in an Industry 4.0 environment, it is
then applied to optimize the assembly task of an industrial robot assembling an industrial calculator.
The optimal movements obtained are then implemented on a real robot. Furthermore, the digital twin
of a universal robot is developed, and its path planning is done in the presence of obstacles using
the proposed optimization algorithm. The obtained path is then inspected by human expert and
validated. It is shown that the proposed approach can effectively solve such optimization problems
which arises in Industry 4.0 environment.

Keywords: physic inspired optimization algorithms; gravitational search algorithm (GSA);
discrete binary optimization problems; assembly task planning; universal robot

1. Introduction

It is highly desirable to prepare products to be served and used for customers with their own
dominant needs, interests, energy and use standards. Industry 4.0, the forth generation of industry,
is a response to such varied requirements which is predicted to lead to highly customized and
re-configurable production. Such technology rely on big data and benefits from machine learning and
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artificial intelligence approaches. The use of such approaches may even make it possible to update
production procedure to give appropriate response to fast changes in the design of product or make
product customization possible [1]. To implement this on the factory floor, it is required to use robust
intelligent techniques including advanced machine learning and artificial intelligence approaches to
make the production line capable of implementing such varied production modifications. To avoid
safety issues as well as wasting resources, a digital twin [2], a precise electronic replica of the factory
floor, can be utilized. Such digital environments make it possible to design a robust system at lower
cost and times to implement.

There exist different Industry 4.0 applications, in which the decision variables are binary rather
than real values. Optimal task planning [3], flow shop scheduling [4] and assembly line design
problems [5,6] are example applications of binary optimization algorithms in a digital manufacturing
setup. The competition between different factories emerges mass production, while maintaining
robustness and giving appropriate response to continuous design changes. In such an environment,
it is required for the production elements, including robots and other automated machines, to perform
task planning automatically to minimize the costs and time consumed, while maximizing production
rates and profit. More specifically, rapid changes in products shortens the life-cycle time of production
systems [7]. For certain product assembly lines, long-term shut down may be required to redesign the
line and update recipes. Automated optimization of such processes are highly commercially beneficial
to reduce these inefficiencies and improve production. Intelligent optimization algorithms may be
beneficial for automatizing process design on the factory floor [2] which can consider energy, time and
other processes. The requirement for optimization algorithms motivate us to develop a new algorithm,
study its mathematical analysis and use it to perform an automated optimization process in Industry
4.0 applications.

Although classical optimization algorithms such as linear programming approaches, calculus of
variations and gradient based optimization methods have proven to be efficient optimization
algorithms, there are some barriers against use of these algorithms in all applications. When the
function to be optimized is not explicitly defined and/or its partial derivative with respect to its
parameters is hard to obtain because of high dimension and discontinuity, classical optimization
processes fail. Intelligent optimization algorithms may be good candidates for high dimensional
optimization problems. Intelligent optimization algorithms benefit from multiple start point, they are
derivative free and are capable of finding multiple global optimums. Moreover, since these
optimization algorithms are initiated from multiple points, they are less sensitive to initial conditions.
Evolutionary optimization algorithms [8], swarm intelligence [9] and physics-inspired optimization
methods [10] are the main categories of intelligent optimization methods applied in these cases.

Each solution in swarm intelligence approaches is defined in terms of a d-dimensional vector
representing position. A velocity vector updates the positions for the next generation. Velocity vector
benefits from exploration as well as exploitation terms. The third category of optimization algorithms
is physics-inspired approaches in which, other than position and velocity, each particle benefits from
more physical properties such as force, mass, electrical charge, etc. Examples of physics-inspired
optimization algorithms are Big Bang-Big Crunch [11], central force optimization algorithm [12] and
gravitational search algorithm (GSA) [13].

Among physics-inspired optimization algorithms, GSA is one of the most successful optimization
algorithms [14]. Each particle in this algorithm benefits from mass, position vector, velocity vector
and acceleration vector. The value of mass assigned to each particle is proportional to its merit with
highest value being assigned to the best particle and the lowest value being assigned to the worst one.
The gravitational force acting on these particles make the worst particle accelerated towards a low
number of “best” particles, while searching the whole space for a possible “better” solution.

To apply real-valued optimization algorithms to binary optimization problems, they are required
to be modified considerably. In swarm-based and physic-inspired optimization algorithms, a randomly
weighted velocity vector is added to position vector to obtain new position. The well-known
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modification to such problems is to change the definition of velocity to probability of change in
bits of each dimension [15,16]. However, the analysis in this paper shows that in the case of binary
gravitational search algorithm (BGSA), the probability vector does not always behave as expected.
To alleviate this problem, the velocity vector and consequently the probability of change is modified in
this paper to include an exclusive or (XOR) operator.

In this paper, the way mass values are assigned to each object, in the current BGSA, acceleration
equation and formula for update of the change probability and position are fully analysed.
The acceleration term is modified to use an XOR term. A repository is added as well to improve the
performance of the optimization algorithm. To test the efficacy and performance of the proposed
optimization algorithm, it is validated in simulation against a number of benchmark optimization
problems. It is shown that the proposed algorithm is capable of optimizing such benchmark
optimization problems with superior performance when it is compared to BGSA [16], improved binary
particle swarm optimization (IBPSO) [17], binary particle swarm optimization (BPSO) [15], binary grey
wolf optimization (BGWO) [18] and binary dragonfly optimization algorithm (BDA) [19].

Next, two Industry 4.0 applications namely assembly task planning and industrial robot path
planning are considered. Assembly task planning is then validated on a digital twin first and then
implemented on a physical robotic system. For the assembly task planning, a mock industrial calculator
is designed and 3D printed. The studied task is to put bolts in their place using a robot manufactured by
universal robot company namely UR5. Such an optimization process makes the production line robust
as any new configuration for nuts and bolts can be easily given to the robot and it will optimally solve
the sequence. It is shown that the proposed optimization algorithm is capable of planning this task
and the length of path travelled by the robot is decreased by almost 17% in comparison to the human
generated original pathway which leads to reduction in time and cost. Furthermore, path planing
of the same robot in the presence of obstacles in its digital twin is considered. It is shown that the
proposed approach is successful in finding an optimal path. In real-world practice the path generated
in the digital twin would then be sent for human expert approval before transfer to physical robot.
Such an automated optimization task reduces the need for intervention, yet keeps human elements
involved as a safety measure.

This paper is organized as follows: In Section 2, real-valued GSA is discussed. The current version
of BGSA investigated in this paper is presented and analysed in Section 2. In Section 3, the proposed
novel XOR BGSA is introduced and analysed. Moreover, a repository is added in Section 3 to improve
the performance of XOR BGSA. Full theoretical analysis of the proposed method is given in Section 4.
The proposed algorithm is then compared with several existing optimization algorithms for the
optimization of several benchmark examples in Section 5. Implementation of the proposed algorithm
on UR5 is presented in Section 5 as well. Finally, the concluding marks are presented in Section 6.

2. Gravitational Search Algorithm

GSA is an optimization algorithm inspired by the physical forces between objects due to
Newtonian forces between masses. Compared to PSO, in this optimization algorithm, each object
benefits from more features such as acceleration term and the value of mass which is assigned with
respect to the merit of each particle [13].

In this optimization algorithm, better particles are assigned a higher value of mass which causes
other objects to be accelerated towards these better objects while still scanning the whole search space.
In this case, if a particle come up with a better solution, it replaces the position of previous good
solution found and attracts other objects. After a few iterations, all solutions are converged towards
the heaviest mass resulting in termination of the algorithm. The algorithm is explained mathematically
in the upcoming subsection [13].
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2.1. Basic Gravitational Search Algorithm

Each solution in d-dimensional search space is represented by the position of an object and is
represented as follows:

Xi = (x1
i , x2

i , ..., xj
i , ...xd

i ) i = 1, ..., N (1)

where xj
i is the jth component of the position of object and N is the total number of objects. The mass

of particles are updated and normalized at tth iteration as follows [13].

Mi(t) =
mi(t)

∑N
k=1 mk(t)

(2)

where mi(t) is non-normalized mass value corresponding to ith particle at iteration number t which
represents the quality of solution and is defined as follows [13].

mi(t) =
f (Xi)− fworst(t)

fbest(t)− fworst(t)
(3)

where fworst(t) is the fitness function value corresponding to the worst particle and fbest(t) represents
the best fitness function observed by any of the particles. Hence, in this case mi(t) satisfies mi(t)∈[0, 1]
and the value of mass of best solution is equal to one while the value of mass corresponding to worst
solution is equal to zero. The parameters fworst(t) and fbest(t) are updated at every iteration as follows:

fworst(t) =max{ f (Xi)}i=1,...,N

fbest(t) =min{ f (Xi)}i=1,...,N (4)

It is to be noted that in this case the best and worst particles are defined based on minimization
problem. In maximization problems, the updating equations for fworst and fbest swap their definition.
Furthermore, kb number of best solutions are selected at each iteration as the masses which attract
other masses.

The overall gravitational force acting on the ith particle is obtained as follows:

Fi(t) = ∑
j∈{1,...,kb}

rjG(t)
Mj(t)Mi(t)(Xj(t)−Xi(t))
‖Xi(t)−Xj(t)‖rp+ε

(5)

where kb represents the number of best solution selected, ‖.‖ stands for Euclidean norm, ε is a
small value added to prevent division by zero, rp is the power considered for the Euclidean distance
between two particles, G(t) is the gravitational constant and rj∈[0, 1] is a uniform random value.
The gravitational constant is updated at each iteration using the following equation.

G(t) =G0exp
(
−β

t
tmax

)
(6)

where G0 has a constant real value and tmax is the maximum value of the iterations of the algorithm.
According to Newton’s second law of motion, the acceleration of particles are calculated by dividing
the applied force to ith mass by its value of mass as follows:

Ai(t) =
Fi(t)
Mi(t)

= ∑
j∈{1,...,kb}

rjG(t)
Mj(t)(Xj(t)−Xi(t))
‖Xi(t)−Xj(t)‖rp+ε

(7)
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where Ai(t)∈Rd is d-dimensional acceleration of the particles. It is further possible to update the
velocity of objects using the following equation.

Vi(t+1) =pi Vi(t)+Ai(t) (8)

where Vi(t)∈Rd is d-dimensional acceleration of the particles at tth iteration and pi∈[0, 1] is a uniform
random number. Finally, the newer position of each particle is updated as follows:

Xi(t+1) =Xi(t)+Vi(t+1) (9)

2.2. Binary Gravitational Search Algorithm

The modification made to GSA to solve binary optimization problems is similar to BPSO [9]. In this
case, the velocity vector in BGSA changes its meaning to the probability of change. Hence, a large
absolute value for velocity in a dimension results in high possibility of change in such direction. Based
on such a description, the function P(V j

i ), the probability of change in jth bit of i th object, is considered
to be a hyperbolic tangent of the velocity vector as follows [16].

P(V j
i (t)) =tanh

(∣∣∣V j
i (t)

∣∣∣) , i= 1, ...,N, j= 1, ...,d (10)

where tanh(.) represents the hyperbolic tangent function as follows:

tanh (x) =
1−e−2x

1+e−2x (11)

Calculating the P(V j
i ), the probability of change in every dimension, the next state in each

dimension is calculated as follows [16].

xj
i(t+1) =

{
xj

i(t) i f rj
i<P(V j

i (t + 1))
xj

i(t) Otherwise
(12)

where xj
i(t) represents the complement of xj

i(t) and rj
i∈[0, 1] has a uniform random value.

2.3. Analysis of Binary Gravitational Search Algorithm

An analysis of BGSA shows that in certain cases, the algorithm does not behave as expected.
Focusing on acceleration term of BGSA as in (7), the following analysis is performed in different cases.

As the value assigned to parameter Xk(t), k= 1, ...,N in each dimension may only be any binary
value of zero and one, the result of subtraction Xj(t)−Xi(t) in each dimension may be any of following
possible conditions. In the following cases, undesirable behaviour of velocity vector, where occurred,
is shown under unchanged sign of the velocity vector condition.

(1) In the case when Xk
i (t) =Xk

j (t) = 0 or Xk
i (t) =Xk

j (t) = 1. One has Xk
i (t)−Xk

j (t) = 0 which results
in no acceleration for the dimension k which is reasonable. In this case, the value of bits in the
kth dimension for the corresponding object and the best solutions are exactly the same and no
change is required in that dimension.

(2) If Xk
j (t) = 1, Xk

i (t) = 0, Xk
j (t)−Xk

i (t) = 1 resulting in a positive acceleration term. In this case,
if the velocity in kth dimension is positive, this acceleration term works fine and adds up
to the speed. However, if the velocity in kth dimension is negative, the acceleration term
decreases the absolute value of velocity and makes the probability of change smaller which is
completely undesirable.

(3) If Xk
j (t) = 0, Xk

i (t) = 1, Xk
j (t)−Xk

i (t) = −1 results in a negative acceleration term. In this case,
if the velocity in kth dimension is positive, this acceleration term decreases the velocity and
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consequently the probability of change. Since Xk
j (t) is different from Xk

i (t), this behaviour is not
desirable. On the other hand, if the velocity in the kth dimension is negative, the acceleration
term increases the absolute value of velocity and makes the probability of change larger,
which is desirable.

Motivated by the cases in which the acceleration term for BGSA does not behave as desired,
this algorithm is modified using an XOR operator. It is shown that using such acceleration term,
the undesirable conditions will never be met again.

3. Proposed XOR Binary Gravitational Search Algorithm

To alleviate the problems mentioned in Section 2, the BGSA is modified to have an XOR operator
in its update rule for the acceleration term as follows:

Ai(t) = ∑
j∈{1,...,kb}

rjG(t)
Mrj(t)(Xrj(t)⊕Xi(t))
‖Xi(t)−Xj(t)‖rp+ε

(13)

where Xrj(t) is the jth solution in the repository and ⊕ represents the XOR operator acting bit-wise on
Xrj(t) and Xi(t) with its truth table being presented in Table 1. Furthermore, the equation used for
G(t) is as follows.

Table 1. Truth table for an exclusive or (XOR) operator.

A B A⊕⊕⊕B

0 0 −1

0 1 1

1 0 1

1 1 −1

G (t) =α0

(
1− t

tmax

)
+ α1 (14)

where α0 and α1 are selected as 0.8 and 0.2, respectively. The probability function P(V j
i ) is modified

as follows:
P
(

V j
i (t)

)
= 0.5 + 0.5tanh

(
0.5V j

i(t)
)

, i = 1, . . . , N, j= 1, ..., d (15)

where tanh(.) is defined as in (11). The update equation for the velocity vector as well as position
vector remains the same as (8) and (9). Moreover, the mass parameter in the proposed algorithm
associated with particles in repository is updated as follows:

Mri(t) =
mri(t)

∑N
k=1 mrk(t)

(16)

and mri(t) is non-normalized mass value corresponding to ith particle at iteration number t which
represents the quality of solution and is defined using the fitness of particles in repository as follows:

mri(t) =
f (Xi)− fr,worst(t)

fr,best(t)− fr,worst(t)
(17)

where f (Xri) is the fitness function associated with particle Xri in the repository, fr,worst(t) and fr,best(t)
represent the worst and the best fitness function of particles in repository.

While the original version of BGSA is memory-less, in the proposed algorithm a repository is
added to the algorithm. In each iteration, a tournaments selection procedure is performed between the
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current generation and old repository and the new repository is updated as a result of this selection
procedure. Tournaments selection is widely known to be an algorithm to preserve the diversity in
the solutions. The flowchart of the proposed XOR BGSA with repository is depicted in Figure 1,
where Vmax refers to the maximum absolute value of velocity in each dimension.

Figure 1. Flowchart of the proposed XOR binary gravitational search algorithm (BGSA).

4. Theoretical Analysis of the Proposed XOR Binary Gravitational Algorithm with Repository

4.1. General Analysis of the Proposed XOR BGSA

The proposed XOR BGSA is investigated statistically to show that it is more compliant with the
expectations of acceleration and velocity vectors of BGSA. Since the parameter Xk(t), k = 1, . . . , N can
only accept binary values of zero and one, the result of XOR operation Xj(t)⊕Xi(t) may fall in each of
the following categories.

(1) If Xk
i (t) =Xk

j (t) = 0 or Xk
i (t) =Xk

j (t) = 1, in these cases Xk
i (t)⊕Xk

j (t) = −1. It is expected from
the acceleration term that since the corresponding bit in the best particle is the same as the bit in
the current particle, the probability of change reduces. This expectation is fulfilled using (13).

(2) In the case Xk
j (t) = 1, Xk

i (t) = 0, Xk
j (t)⊕Xk

i (t) = 1, the acceleration term introduces a positive
value which contributes positively to the probability of change and increases its value.

(3) In the case when Xk
j (t) = 0, Xk

i (t) = 1, Xk
j (t)⊕Xk

i (t) = 1. Similar to the previous case, since the
corresponding bit in the better particle is different than that of the current particle, a positive
acceleration term is obtained which results in higher probability of change. This is an expected
behaviour from the system.

According to this analysis, the issues mentioned earlier for BGSA do not exist in the proposed
XOR BGSA.
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4.2. Full Statistical Analysis of the Proposed Method

To perform theoretical analysis of the proposed XOR BGSA, a single dimensional optimization
problem is considered. The parameter kb in this case is equal to 1. Hence, in this section, we have a
single particle whose behavior is studied and one best particle in the repository. The acceleration term,
velocity term and the probability of change in the case of single dimensional optimization problem is
obtained as follows:

a (t) =
rjG (t) (Mrb (xrb (t)⊕x (t)))
‖xrb (t)−x (t) ‖rp+ε

(18)

v(t+1) =piv(t)+a(t) (19)

P (v(t)) = 0.5 + 0.5tanh (0.5v(t)) (20)

where a(t), v(t), P(v) are single dimensional vectors representing the acceleration, velocity and the
probability of change corresponding to the studied particle. Furthermore, x (t) is the single dimensional
vector representing the current position of studied particle and xrb is its corresponding value in the best
particle in the whole population and Mrb corresponds to the mass of the best particle in the repository.
The minimum value of G (t) is equal to α1.

Two cases are investigated: the case when pi = 1 and the case when 0 < pi <1 .
Case I: pi = 1

Lemma 1. If pi = 1 and x =xrb, ∀t > 0 we have a(t)≤0 and v(t + 1)≤v(t).

Proof. Considering (13), we have the following equation for the acceleration term a(t):

a (t) = −r(t)G(t)MrbD≤0 (21)

where D =
⌊

1
ε

⌋
is the dimension of the optimization algorithm. Consequently, considering (18),

one obtains the following inequality:

v(t + 1)=v(t)− r(t)G(t)MrbD≤v(t) (22)

This implies that vt is monotonically non-increasing function of time.

Lemma 2. If pi = 1 and x(t) =xrb then ∀v, ∃T > 0 s.t. ∀t > T we have E [v(t)]<v.

Proof. In the case when v(t0 − 1) < v, since according to Lemma 1 v(t) is monotonically
non-increasing function of time, we have:

v(t0)≤v(t0 − 1) < v (23)

which means that ∀t0< T Lemma 2 holds. However, in the case when v≤v(t0 − 1), we have:

E [v(T)] =v(t0 − 1) + E

[
T

∑
t−1

r(t)G(t)Mrb (xrb(t)⊕x(t))
‖xb (t)−x (t) ‖rp+1/D

]
(24)

Since x(t) =xrb, we have the following equation:

E [v(T)] =v(t0 − 1) + E

[
T

∑
t−1
−r(t)G(t)MrbD

]
(25)
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Considering the fact that minG (t) =α1, one obtains the following inequality:

v(t0 − 1)− E

[
T

∑
t−1

r (t) G (t) MrbD

]
≤ v(t0 − 1)− α1MrbD E

[
T

∑
t0−1

r(t)

]

To find the appropriate T, the following inequality needs to hold.

v(t0 − 1)− α1MrbD

[
T

∑
t0−1

E[r (t)]

]
≤ v (26)

Considering the fact that r (t) is a random variable uniformly distributed in [0, 1] , the following
equation holds.

E [r (t)] = 0.5 (27)

By applying expected value of r (t) as in (27) to (26), the following equation is obtained.

v(t0 − 1)− 0.5α1MrbD (T − t0 + 1) ≤ v (28)

and finally T is obtained as follows:

2(v(t0 − 1)− v)
Dα1

+ t0 − 1≤T (29)

Since v(t− 1) < v, ∀t0> 1 from (29) we have 0≤T s.t. ∀t > T one obtains E [v(t)]<v.
This concludes the proof.

Remark 1. Lemma 2 implies that in the case when the position in one dimensional optimization problem is the
same as that of best particle, the velocity vector corresponding to that dimension grows in negative direction
resulting in the probability of change to vanish to zero. This in turn results in no change in that dimension.

Lemma 3. If pi = 1 and x(t) 6=xrb, then ∀t > 0, we have a(t)≥0 and v(t + 1)≥v(t).

Considering (17), we have the following equation for the acceleration term a(t):

a (t) =
r(t)G(t)Mrb

1 + 1/D
≥0 (30)

Consequently considering (30), one obtains the following inequality:

v(t)≤v(t + 1)=v(t) +
r(t)G(t)Mrb

1 + 1/D
(31)

This implies that vt is monotonically non-decreasing function of time.

Lemma 4. If pi = 1 and x(t) 6=xrb then ∀v, ∃T > 0 s.t. ∀t > T, we have v < E [v(t)].

Proof. In the case when v < v(t0 − 1) since according to Lemma 3, v(t) is monotonically
non-decreasing function of time we have:

v≤v(t0 − 1) < v(t0) (32)

which agrees with the Lemma 4. However, in the case when v(t0 − 1)≤v, we have:

E [v(T)] =v(t0 − 1) + E

[
T

∑
t−1

r(t)G(t)Mrb (xrb(t)⊕x(t))
‖xrb (t)−x (t) ‖rp+1/D

]
(33)
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Considering the fact that x(t) 6=xrb, the following equation is obtained.

E [v(T)] =v(t0 − 1) + E

[
T

∑
t−1

r(t)G(t)Mrb
1 + 1/D

]
(34)

Considering the fact that minG (t) =α1, the following equation is obtained.

v(t0 − 1) + α1Mrb
D

1 + D
E

[
T

∑
t0−1

r(t)

]
≤ v(t0 − 1) + E

[
T

∑
t−1

r (t) G (t) Mrb
1 + 1/D

]

Hence, to find T which satisfies Lemma 4, the following inequality needs to be hold.

v≤ v(t0 − 1) + α1Mrb
D

1 + D

[
T

∑
t0−1

E[r (t)]

]
(35)

Considering the fact that r (t) is a random variable with uniform probability distribution function,
the following equation holds.

E [r (t)] = 0.5 (36)

By using the property of r (t) as in (36), the following is obtained.

v ≤ v(t0 − 1) +
0.5α1D Mrb (T − t0 + 1)

1 + D
(37)

Hence, the value of T to satisfy Lemma 3 is obtained as follows:

2(1 + D)e(v− v(t0 − 1))
Dα1Mrb

+ t0 − 1≤T (38)

Since v(t0 − 1) < v, ∀t > 1 from (38), we have 0 ≤ T s.t. ∀t > T and one has E [v(t)]< v.
This concludes the proof.

Remark 2. It immediately follows from Lemma 4 that in the case when the position in one dimensional
optimization problem is different than that of the best particle, the velocity vector corresponding to that dimension
grows resulting in the probability of change to increase to one which would result in increase in the probability
of change.

Theorem 1. If pi = 1.

1. In the case when x(t)=xrb, the acceleration term is non-positive and the velocity term is a
non-increasing function of time and the probability of change converges to zero.

2. In the case when x(t) 6=xrb, the acceleration term is non-negative and the velocity vector is a
non-decreasing function of time and the probability of change converges to zero.

Proof. Using Lemmas 1–4, this theorem is concluded.

Case II: 0 < pi< 1:

Lemma 5. In the case when x(t) =xrb, ∀t > 0 the velocity vector v(t) will never be larger than pt
i v(0),

where v(0) is the initial value of the velocity.
In the case when x(t) =xrb, from (17), it follows that

a (t) = −r(t)G(t)D Mrb≤0 (39)
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Considering (18), the following equation is obtained for v(t)

v(t) =pt
i v(0)− D

t

∑
τ=1

r(τ)G(τ) Mrb≤pt
i v(0) (40)

Hence, pt
i v(0) is an upper bound for v(t).

Remark 3. From Lemma 5, it is concluded that in the case when x(t) = xrb, the acceleration term is non-positive
acting in the direction of decreasing the probability of change. However, the impact of pt

i v(0) depends on the
sign of v(0).

Lemma 6. In the case when x(t) 6= xrb, ∀t > 0 the velocity vector v(t) will never be smaller than pt
i v(0).

In the case when x(t) 6= xrb, from (17), it follows that

a (t) = r(t)G(t)D Mrb≥0 (41)

Considering (18), the following equation is obtained for v(t)

pt
i v(0)≤v (t) =pt

i v(0) + D
t

∑
τ=1

r(τ)G(τ) Mrb (42)

Hence, pt
i v(0) is a lower bound for v(t).

Remark 4. From Lemma 6, it is concluded that in the case when x(t) 6= xb, the acceleration term is non-negative
acting in favor of making probability of change in the corresponding bit higher. However, the impact of pt

i v(0)
depends on the sign of v(0).

Theorem 2. In XOR BGSA, considering sufficiently large number for maximum number of iterations,
following properties hold.

1. If x(t) = xrb, ∃T s.t. ∀t > T, the probability of change becomes smaller than 0.5:

P (x (t + 1) = x(t)) ≤ 0.5

2. If x(t) 6= xrb, ∃T s.t. ∀t > T, the probability of change becomes larger than 0.5:

P (x (t + 1) = x(t)) ≥ 0.5

In the case when pi = 1, from Theorem 1 it follows that when x = xrb, as mentioned earlier in
Remark 1, the velocity value grows in negative direction which results in:

P (x (t + 1) = x(t)) =
1

1 + e−v(t)
→ 0 ≤ 0.5 (43)

Moreover, in the case when pi = 1, from Theorem 1 it follows that when x(t) 6= xrb, as mentioned
earlier in Remark 2, the velocity value grows larger which results in:

P (x (t + 1) = x(t)) =
1

1 + e−v(t)
→ 1≥0.5 (44)

Hence in the case of pi = 1, Theorem 2 holds. When 0 < pi < 1, two cases are considered.
The case when v(0) = 0 and v(0) 6= 0.
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If v0 = 0, in the case of x = xrb, the velocity term according to (18) is obtained as follows:

v(t) =− D
t

∑
τ=1

r(τ)G(τ) Mrb≤0 (45)

Hence:
P (x (t + 1) = x(t)) =

1
1 + e−v(t)

≤ 0.5 (46)

In the case of x(t) 6= xrb, the velocity term according to (13) is obtained as follows:

v(t) =D
t

∑
τ=1

r(τ)G(τ) Mrb≥0 (47)

Hence:
P (x (t + 1) = x(t)) =

1
1 + e−v(t)

≥0.5 (48)

If v(0) 6= 0, in the case of x(t) = xrb, considering the fact that

v (t) =pt
i v(0)− D

t

∑
τ=1

r(τ)G(τ) Mrb (49)

If v(0) < 0, from (49), it can be seen that v (t) is the result of addition of two negative terms
resulting in a negative value for v (t). However, if v(0) > 0, considering the fact E [r(t)] = 0.5, we have:

E[v (t) ] =pt
i v(0)−DE

[
t

∑
τ=1

r (τ) G (τ) Mrb

]
≤pt

i v(0)−α1.D Mrb E

[
T

∑
0

r (t)

]
=pt

i v(0)−0.5Tα1. MrbD (50)

Hence, the time T after which we have E[v (t)] < 0, is obtained from

pT
i v(0)− 0.5Tα1.D Mrb < 0 (51)

and
2pT

i v(0)
α1D Mrb

< T . (52)

Hence, after a sufficiently large value of iterations specified by T, v (t) becomes negative and stays
negative onwards. After that considering (19), we have the following:

P (x (T + 1) = x(T)) =
1

1 + e−v(T+1)
≤0.5 (53)

However, if v(0) 6= 0, in the case of x(t) 6= xb, considering the fact that

v (t) =pt
i v(0) + D

t

∑
τ=1

r(τ)G(τ) Mrb (54)

If v(0) > 0, from (54), it can be seen that v (t) is the result of addition of two positive terms
resulting in a positive value for v (t). However, if v(0) < 0, similar to the analysis which resulted
in (50) and considering the fact E [r(t)] = 0.5, we have:

E[v (t) ] =pt
i v(0)+DE

[
t

∑
τ=1

r (τ) G (τ) Mrb

]
≤pt

i v(0)+α1.D Mrb E

[
T

∑
0

r (t)

]
=pt

i v(0)+0.5Tα1.D Mrb (55)
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Hence, the time T after which we have v (t) > 0, is obtained from the following inequality

pT
i v(0) + 0.5Tα1.D Mrb > 0 (56)

and
−2pT

i |v(0)|
α1D Mrb

< T . (57)

Hence after sufficiently large value of iterations specified by T in (57), v (t) becomes positive and
stays positive on-wards. After that, considering the probability of change as in (19), it follows that:

P (x (T + 1) = x(T)) =
1

1 + e−v(t)
≥ 0.5 (58)

This concludes the proof.

Remark 5. It immediately follows from Theorem 2 that if the value of a particle in one dimension is different
than that of the best particle, the probability of change if not immediately, after sufficiently large number of
iterations becomes larger than 0.5 making change in the corresponding dimension more probable than not.
Moreover, if the value of particle in a dimension is similar to that of the best particle, the probability of change in
that dimension if not immediately, after sufficiently large number of iterations becomes smaller than 0.5 making
change in the corresponding dimension less probable.

Remark 6. The results obtained in Section 4 are valid for the case when kb = 1. However, these results can
be easily extended to the case when kb has a greater value in which case the value of kb particle effect other
particles with a gain proportional to their mass. Hence, the overall probability of change is influenced by each of
kb particles disproportionately.

5. Simulation Results

5.1. Benchmark Optimization Problem

To evaluate the efficacy and performance of the proposed XOR BGSA with repository, it is tested
against several benchmark problems. In optimization of benchmark problems, 20 bits are used to
decode numerical values into the binary domain. The number of solutions considered (population
size) is equal to 25, maximum number of generations are then selected to be equal to 1000. Two sets of
comparisons are presented. In the first set of optimization, the proposed XOR BGSA is compared to
BGSA [16], IBPSO [17], BPSO [15], BGWO [18] and BDA [19]. The main goal in these simulations is
to demonstrate how the modifications proposed in this paper including the addition of XOR to the
acceleration equation for BGSA as well as the repository effect its performance.

As in the real world, an optimization problem may be applied to a wide range of different functions
including unimodal and multimodal problems, the proposed optimization algorithm is tested against
both classes of optimization problems. The ability of the proposed optimization algorithm in dealing
with problems with multiple local minimas is required to be investigated as well. For having such
study, some of the optimization problems considered as the benchmark optimization problems include
multiple local minimas. The benchmark problems considered are a collection of functions with single
optimum solutions and functions with multiple local optimums. Other than these specifications,
it is required to illustrate the performance of the proposed optimization algorithm in dealing with
non-differentiable problems. The specifications of benchmark optimization problems are mentioned in
front of them for ease of reference. The parameter N represents the dimension of these optimization
problems which is considered to be equal to either 1, 2, 5 and 10 to test the optimization algorithms
for different dimensions. These dimensions are multiplied by the number of bits taken for decoding
real values, which results in optimization in 20, 40, 100 and 200 dimensional space. The mathematical
formulas for the test functions as well as their specifications are as follows [20].
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Sphere function [21]: a differentiable, separable, unimodal function without local minima

f1(X) =
N

∑
i=1

x2
i (59)

Multiplication of squares: a differentiable, non-separable, unimodal function without
local minima

f2(X) =∏N
i=1ix2

i (60)

Griewark function [22]: a differentiable, non-separable, multimodal function with local minimas

f3 (X) =
1

4000

N

∑
i=1

x2
i−∏N

i=1cos
(

xi√
i

)
(61)

Schwefel function [23]: a differentiable, separable, multimodal function with local minima

f4(X) = −
N

∑
i=1

xisin(
√
|xi|) (62)

Rastrigin Function [22]: a differentiable, separable, multimodal function with local minima

f5(X) = 10.N+
N

∑
i=1

(
x2

i − 10cos (2πxi)
)

(63)

Styblinski-Tang [24]: a differentiable, separable, multimodal function with local minima

f6(X) =
1
N

N

∑
i=1

(
x4

i − 16x2
i + 5xi

)
(64)

Michalewicz function [22]: a differentiable, separable, multimodal function with local minima

f7(X) = −
N

∑
i=1

sin(xi)
(

sin(ix2
i /π)

)20
(65)

Ackley function [25]: a differentiable, non-separable, multimodal function with local minima

f8 (X) = −ae
−b
√

1
d ∑30

i=1 x2
i −e

1
d ∑30

i=1 cos(cxi)+a+e1 (66)

Rotated hyperellipsoid function [22]: a differentiable, scalable, unimodal function without
local minima

f9 (X) =
N

∑
i=1

i

∑
j=1

x2
j (67)

Alpine 1 function [22]: a non-differentiable, separable, multimodal function with local minima

f10 (X) =
N

∑
i=1
|xisin (xi) + 0.1xi| (68)

Cosine mixture function [22]: a differentiable, separable, multimodal function with local minima

f11 (X) = −0.1
N

∑
i=1

cos (5πxi) −
N

∑
i=1

x2
i (69)
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The results of comparison between the proposed algorithm and five other existing binary
optimization algorithms are presented in Table 2. Optimization process in each case is repeated
for 30 times and the mean values are reported. It can be seen that the proposed optimization algorithm
performs well in optimizing uni-modal as well as multi modal optimization problems. In 28 cases
out of 44 cases, the proposed method outperforms other investigated optimization algorithms. It is
further observed that when the proposed method is not the best optimization algorithm, it is still very
close to the desired results. For instance, in the case of optimization function number 1, a uni-modal
optimization problem, the proposed version of BGSA outperforms other algorithms in all different
number of dimensions except for the case of n = 1 where it is the second best optimization algorithm
after BDA. Optimization function number 11, f11(x), is a multi-modal optimization problem with
several local minimums for which the proposed XOR BGSA outperforms the other five investigated
optimization algorithms in all four dimensions. It can further be observed from the Table 2 that BDA
ranks the second after the proposed optimization algorithm.

Table 2. Optimization results using various optimization algorithms for the minimization of several
benchmark optimization problems.

Function
Number

n d Proposed BGSA
[16]

IBPSO
[17]

BPSO
[15]

BGWO
[18]

BDA
[19]

f1 (X) 1 1 3.64E-10 6.55E-10 0.003499 2.98E-07 0.079185 9.09E-11

f1 (X) 1 2 7.28E-10 0.000421 0.110086 0.004851 3.173297 8.66E-08

f1 (X) 1 5 1.82E-09 0.01808 3.837217 3.492558 54.25284 0.025257

f1 (X) 1 10 1.24E-07 1.640722 23.62139 43.34931 212.2319 0.892732

f2 (X) 2 1 3.64E-10 3.64E-10 8.62E-05 2.73E-07 0.153546 9.09E-11

f2 (X) 2 2 2.65E-19 2.81E-18 0.000454 2.5E-07 0.358629 2.25E-16

f2 (X) 2 5 7.65E-46 7.08E-34 7.45E-05 7.57E-05 2.79E-05 1E-22

f2 (X) 2 10 8.3E-82 2.57E-56 12.26801 1274.831 2.09E-11 5.44E-22

f3 (X) 3 1 −1 −0.9999 −0.99705 −1 −0.98737 −1

f3 (X) 3 2 −0.99488 −0.99375 −0.98506 −0.99787 −0.94229 −0.99901

f3 (X) 3 5 −0.95717 −0.96513 −0.90313 −0.91313 −0.74288 −0.96923

f3 (X) 3 10 −0.90475 −0.89211 −0.64083 −0.5024 −0.51453 −0.88339

f4 (X) 4 1 −19.4256 −19.4253 −3.94361 −3.9453 −18.4693 −3.9453

f4 (X) 4 2 −38.8511 −38.8511 −7.8514 −7.8897 −31.8297 −7.89018

f4 (X) 4 5 −97.1278 −97.1165 −19.0216 −19.1181 −55.8132 −19.6948

f4 (X) 4 10 −194.255 −193.588 −35.5675 −31.5541 −79.5703 −39.2195

f5 (X) 5 1 3.64E-10 3.64E-10 7.76E-05 3.32E-07 0.372345 9.09E-11

f5 (X) 5 2 3.64E-10 0.006168 0.140178 0.002341 1.452548 1.08E-09

f5 (X) 5 5 3.64E-10 0.13037 9.419671 4.551582 2659.276 0.002952

f5 (X) 5 10 3.64E-10 17.81345 4293.123 2334.993 1.06E+08 4.71886

f6 (X) 6 1 −78.3323 −78.1186 −77.5076 −78.3323 −67.8744 −78.3323

f6 (X) 6 2 −156.094 −147.94 −151.238 −156.496 −116.85 −156.659

f6 (X) 6 5 −338.666 −327.884 −314.902 −322.303 984.8181 −369.827

f6 (X) 6 10 −641.095 −630.392 −431.271 −400.089 21937.59 −645.258

f7 (X) 7 1 −0.99419 −0.97691 −0.88143 −0.98787 −0.88543 −0.98792

f7 (X) 7 2 −1.95034 −1.95069 −1.68317 −1.89381 −1.66732 −1.95806

f7 (X) 7 5 −4.66631 −4.67197 −3.45559 −2.81238 −3.45303 −4.40256
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Table 2. Cont.

Function
Number

n d Proposed BGSA
[16]

IBPSO
[17]

BPSO
[15]

BGWO
[18]

BDA
[19]

f1 (X) 1 1 3.64E-10 6.55E-10 0.003499 2.98E-07 0.079185 9.09E-11

f7 (X) 7 10 −8.83999 −9.00763 −5.11393 −3.84276 −5.97745 −7.38148

f8 (X) 8 1 7.63E-05 7.63E-05 0.17688 0.001563 1.270744 3.82E-05

f8 (X) 8 2 7.63E-05 0.002378 0.873989 0.346521 3.054737 0.00026

f8 (X) 8 5 7.63E-05 0.497182 4.210083 4.515039 9.078786 0.311861

f8 (X) 8 10 0.07325 1.479706 6.721189 8.003571 11.92714 2.243791

f9 (X) 9 1 3.64E-10 3.64E-10 0.000344 2.89E-07 0.052176 9.09E-11

f9 (X) 9 2 1.09E-09 1.09E-09 0.285221 0.005263 3.989166 2.82E-08

f9 (X) 9 5 5.46E-09 0.267058 10.71721 7.755365 108.3779 0.011655

f9 (X) 9 10 3.09E-07 7.555599 125.9897 176.937 1128.728 5.058231

f10 (X) 10 1 4.63E-06 2.32E-06 0.000547 2.03E-05 0.008308 2.88E-06

f10 (X) 10 2 0.000948 0.000326 0.015704 0.003854 0.111948 0.000223

f10 (X) 10 5 0.045093 0.021953 0.898418 1.041691 1.199264 0.080774

f10 (X) 10 10 0.189655 0.304581 3.68566 6.668867 5.377988 0.748952

f11 (X) 11 1 −400.1 −400.1 −99.9787 −100.093 −398.391 −100.1

f11 (X) 11 2 −800.2 −799.77 −196.958 −198.57 −786.66 −200.195

f11 (X) 11 5 −2000.5 −1996.02 −461.362 −442.035 −1900.74 −498.794

f11 (X) 11 10 −4000.99 −3983.41 −839.887 −740.219 −3875.63 −974.665

5.2. Application to Knapsack

As the second class of benchmark optimization problem, the multi knapsack problem is considered.
The problem formulation of 0/1 knapsack problem is discussed in summary in this part. Let there be n
items with each having a positive profit pi > 0 and a positive resource consumption ri > 0. The main
objective is to fill several knapsacks with resource capacity of Cj such that the accumulated profit of the
items is maximized. Considering the constraints imposed by capacity of knapsacks, this problem is a
constrained binary optimization problem. Such problems arises in various real-world applications such
as in a distributed computer systems, warehouse optimization, cargo loading and stock problems [5,26].
This problem is explicitly formulated as follows:

f (x) = max
n

∑
i=1

pixi (70)

s.t.
n

∑
i=1

rijxi ≤ Cj, j = 1, . . . ,m (71)

xi∈ {0, 1} ∀i∈{1, . . . ,n}

where n represents the item number, m is the number of constrains, pi ≥ 0 represents the profit value
for each item, resource consumption is expressed by rij ≥ 0 and the capacity is denoted by another
positive value Cj ≥ 0. The cost function is multiplied by negative value of −1 to change maximization
to minimization problem. The constraints are added as penalty terms to the cost function to obtain an
unconstrained optimization problem as follows:

fuc (x) = −
n

∑
i=1

pixi+β
n

∑
i=1

m

∑
j=1

min
(
Cj−rijxi, 0

)
(72)
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where the parameter β is used as the penalty coefficient and assigned the value equal to 1010.
Several standard databases for knapsack optimization problems exist to provide means for comparison
between the algorithms which provide special values for pi’s, Cj’s and rij’s. Among these database
of multi knapsack optimization available at the website of Queen Mary University of London
(http://www.eecs.qmul.ac.uk/~jdrake/mkp.html) formerly hosted at University of Nottingham
(http://www.cs.nott.ac.uk/~jqd/mkp/index.html) are selected for performance comparison of the
proposed algorithms with several state-of-the-art binary optimization algorithms. The total number
of populations are taken to be equal to 10 with maximum number of iterations selected to be equal
to 1000.

Table 3 presents the results obtained using the proposed optimization algorithm versus other
optimization problems. The solutions are the optimization solutions to the function represented by (72)
which are multiplied by minus one to reflect the solutions to the original problem of (70) and (71).
There exist several negative values in the table which show that in some cases, algorithms could not
fulfil the constraints of optimization at least once. Such problem does not occur for the proposed XOR
BGSA with repository. The best result obtained for each dimension is made bold faced to demonstrate
its superior performance. The values used for optimization are collected from the website of Queen
Mary University of London and their file names are presented for ease of reference. Problems have
also been given a number for further discussions. As can be seen from Table 3. The proposed XOR
BGSA with repository outperforms all other investigated optimization problems in almost all cases.

The convergence property of the proposed approach versus previous optimization methods
for optimizations number 7 to 12 are demonstrated in Figure 2. As can be seen from this figure,
the convergence of the proposed algorithm towards the solution is well above other investigated
algorithms. Although during the first few iterations, some of the algorithms rise faster towards optimal
solutions, after 100 iterations, the proposed XOR BGSA speeds up and becomes the dominant one.
It can be concluded from the figure that other than quality of solutions, the speed of the proposed
approach is well above other investigated optimization methods.

Table 3. Optimization results using various optimization algorithms for the maximization of the
knapsack problem.

Problem
N

um
ber

D
im

ension

Tightness
R

atio

m N Filename Proposed BGSA
[16]

IBPSO
[17]

BPSO
[15]

BGWO
[18]

BDA
[19]

1 100 0.25 5 10 OR5x100-0.25 1.dat 21675.33 20,742.73 −7E+13 −1.4E+14 −3.6E+14 20,278.77

2 100 0.25 5 10 OR5x100-0.25 2.dat 21,223.93 20,663 −9.2E+13 −1.4E+14 −3.4E+14 19,938.63

3 100 0.5 5 10 OR5x100-0.50 1.dat 39,835.93 39,302.37 37,097.47 37,573.93 37,093.93 38,813.2

4 100 0.5 5 10 OR5x100-0.50 2.dat 39,812.4 39,372.73 36,388.13 37,300.47 36,902.1 38,704.93

5 100 0.75 5 10 OR5x100-0.75 1.dat 57,626 56,945.5 52,385.83 50,954.87 55,652.37 56,107.47

6 100 0.75 5 10 OR5x100-0.75 2.dat 59,946.2 59,272.1 55,457.23 53,529.87 57,861.93 58,294.9

7 250 0.25 5 10 OR5x250-0.25 1.dat 49,323.17 46,860.27 −5.9E+14 −7.6E+14 −1.1E+15 46,805.43

8 250 0.25 5 10 OR5x250-0.25 2.dat 51,256.37 49,071.9 −6.1E+14 −7.7E+14 −1.2E+15 48,596.37

9 250 0.5 5 10 OR5x250-0.50 1.dat 99,682.27 99,393.17 94,943.5 94,993.6 94,801.07 97,535.43

10 250 0.5 5 10 OR5x250-0.50 2.dat 99,759 99,000.57 94,482.33 94,256.9 94,158.23 97621.53

11 250 0.75 5 10 OR5x250-0.75 1.dat 142,598.2 140,975.2 120,843.3 115,794.4 139,086.3 139,172.7

12 250 0.75 5 10 OR5x250-0.75 2.dat 147,544.4 145,975.8 124,749.9 119,751.7 143,700.6 144207.3

http://www.eecs.qmul.ac.uk/~jdrake/mkp.html 
http://www.cs.nott.ac.uk/~jqd/mkp/index.html
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Table 3. Cont.

Problem
N

um
ber

D
im

ension

Tightness
R

atio

m N Filename Proposed BGSA
[16]

IBPSO
[17]

BPSO
[15]

BGWO
[18]

BDA
[19]

13 500 0.25 5 15 OR5x500-0.25 1.dat 98,610.83 97,553.3 −1.5E+15 −1.9E+15 −2.4E+15 −3.2E+11

14 500 0.25 5 15 OR5x500-0.25 2.dat 96,512.53 96,034.53 −1.4E+15 −2E+15 −2.5E+15 92,190.13

15 500 0.5 5 15 OR5x500-0.50 1.dat 197448.2 200,036.1 189,901.2 188,863.1 189,116.2 194,592.8

16 500 0.5 5 15 OR5x500-0.50 2.dat 199,792.7 202,340 192,444.5 190,561.9 191,162.6 196,350

17 500 0.75 5 15 OR5x500-0.75 1.dat 278,893.6 278,751.9 228,713.8 215,389.8 274,491.7 272,973.2

18 500 0.75 5 15 OR5x500-0.75 2.dat 289,925.9 289,654.3 238,158.3 223,533.2 285,228 284,254.3

19 100 0.25 10 10 OR10x100-0.25 1.dat 20,393.63 18,793.87 −1.8E+14 −2.9E+14 −7.4E+14 18,583.23

20 100 0.25 10 10 OR10x100-0.25 2.dat 19,867.93 18,857.43 −1.8E+14 −2.6E+14 −7.1E+14 18,583.03

21 100 0.5 10 10 OR10x100-0.50 1.dat 39051.77 38,258.77 35,430.33 36,021.43 35,607.37 37669.33

22 100 0.5 10 10 OR10x100-0.50 2.dat 40,356.13 39,734.97 37007.3 37,450.4 36,969.97 38,926.1

23 100 0.75 10 10 OR10x100-0.75 1.dat 55,408.4 54,477.57 50,067.83 49,302.2 53,058.4 53,580.87

24 100 0.75 10 10 OR10x100-0.75 2.dat 56,950.7 56,234.7 51,602.53 50,940.77 54,119.3 55,144.23

25 250 0.25 10 10 OR10x250-0.25 1.dat 49,901.6 49,401.6 46,393.33 46,438.4 46,738.6 48,197.13

26 250 0.25 10 10 OR10x250-0.25 2.dat 49,978.63 49,191.07 46,514.7 46,100.77 46,874.6 48,557.03

27 250 0.5 10 10 OR10x250-0.50 1.dat 101,134.7 100,792.5 96,179.27 95,810.07 −4.8E+11 99,126.03

28 250 0.5 10 10 OR10x250-0.50 2.dat 98,053 97,841.1 92,281.53 92,293.1 −8.8E+11 95,604.23

29 250 0.75 10 10 OR10x250-0.75 1.dat 144,205 141,717.6 121,695.7 117142 139,645.4 139,894.6

30 250 0.75 10 10 OR10x250-0.75 2.dat 141,698.4 139,494.2 120,037.3 115,081.9 137,321.4 138,109.7

31 500 0.25 10 15 OR10x500-0.25 1.dat 97,327.1 96,654.03 −2.9E+15 −3.9E+15 −4.9E+15 93,571.07

32 500 0.25 10 15 OR10x500-0.25 2.dat 96,865.7 96,662.67 −3.1E+15 −4.1E+15 −5.1E+15 93,284.37

33 500 0.5 10 15 OR10x500-0.50 1.dat 195,540.6 199,151.9 188,580.9 187,265 −8.1E+11 192,963.6

34 500 0.5 10 15 OR10x500-0.50 2.dat 196,987.5 199,922.2 189,706.1 187,867.3 188,244 194,179

35 500 0.75 10 15 OR10x500-0.75 1.dat 286,164.6 285,945.3 237,022 220,772.4 281,163.6 279,953.5

36 500 0.75 10 15 OR10x500-0.75 2.dat 284,177.3 283,569.9 235,502.1 219,917.2 278,756.1 277,475.7

In most real-world optimization problems, the cost function evaluation requires high volume of
computation. Hence, it would be highly desired for an optimization algorithm to result in superior
performance after its single run. Box plot is a graphical method which gives more information about
the diversity of the results rather than just its mean value. A small standard deviation leads to a
smaller interquartile range which can be interpreted as its ability to avoid local minima. Outliers can
also be easily spotted from box plot. In Figure 3 while the interquartile is illustrated using a blue box,
the minimum and the maximum associated with data are demonstrated using the black line. There is a
50 percent chance that for a new experience, the result falls within the interquartile range. The outliers
in this figure are represented by “+” sign. The median values are demonstrated with red line. The box
plot obtained using different optimization algorithms for optimization problems 7 to 18 are illustrated.
It can be observed from the figure that not only the median values obtained for the proposed approach
in 10 cases out of 12 cases are the best, interquartile range obtained for the proposed approach in
most cases is smaller meaning that it is more repeatable than in other investigated optimization
algorithms. Furthermore, for optimization problems numbers 7, 8, 11 and 12, it can be observed
that the interquartile range obtained for the proposed approach is well above the other optimization
algorithms. This means that for every single run of the proposed optimization algorithm, there is
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an appreciable chance we can obtain superior performance for the proposed optimization algorithm
compared to other investigated optimization methods.

(a) Problem #7
zz

(b) Problem #8
zz

(c) Problem #9
zz

(d) Problem #10
zz

(e) Problem #11
zz

(f) Problem #12
zz

Figure 2. Trend of Cost function obtained from proposed XOR BGSA vs. four other algorithms
namely: BGSA [16], improved binary particle swarm optimization (IBPSO) [17], binary particle
swarm optimization (BPSO) [15], binary grey wolf optimization (BGWO) [18] and binary dragonfly
optimization algorithm (BDA) [19]. Knapsack optimization problems numbers 7 to 12.
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(a) Problem #7
zz

(b) Problem #8
zz

(c) Problem #9
zz

(d) Problem #10
zz

(e) Problem #11
zz

(f) Problem #12
zz

(g) Problem #13
zz

(h) Problem #14
zz

(i) Problem #15
zz

(j) Problem #16
zz

(k) Problem #17
zz

(l) Problem #18
zz

Figure 3. Box plot obtained for the knapsack problem using the proposed XOR BGSA vs. three other
algorithms namely: BGSA [16], BGWO [18] and BDA [19]. Knapsack optimization problems 7 to 18.

6. Industry 4.0 Applications

In current manufacturing environments, modifications made to a product often require redesign
and retraining/programming of production elements on the factory floor. Optimal or sub-optimal
solutions to design changes in a process is the goal of decision-making processes. Recent work has
explored showing that systematic optimization is possible in a well-defined detailed digital twin
in which searching algorithms can perform multiple trial and errors without safety and resource
restrictions. Additionally, current robot programming techniques require highly talented professionals
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to perform programming, which increases response times and increases costs [27]. Real-time
decision making and robot programming is therefore highly desirable and is a stated requirement of
Industry 4.0 [28]. However, autonomous programming of robots will impact safety and certification
requirements as well. To mediate such impacts, one solution is to tie the digital twin solutions
to the real-production methods. Such a digital twin needs to be as accurate as possible to ensure
compatibility of actions with real world. The simulated movements in such an environment can then
be transformed to the real robot after full examination of resulting optimization solutions by a human
expert. This framework makes the most of machine learning and artificial intelligence approaches.
In this part, the proposed XOR BGSA with repository is used to find an optimal solution for assembly
task planning and motion planning for an industrial robot namely UR5 that would then be passed
to a human for certification before implementation. Previously the proposed XOR BGSA is tested
against different types of optimization problems including uni-modal, multi-modal, those with single
optimum solution, those which suffer from multiple local minimums and knapsack optimization
problem which is a constrained one. The fact that the proposed optimization procedure obtained the
best results among six binary optimization problems in most cases motivates us to use it in Industry
4.0 optimization problems.

It is required for robots to be able to optimally plan their own task autonomously otherwise
massive resources may be used to redesign, reconfigure and reprogram them. To fulfil this goal, it is
required to decode the planning process in the form of an optimization problem and use artificial
intelligence approaches to solve the problem on a UR5 capable of handling 5 Kg loads to a precision of
order of 0.1 mm .

The assembly task planning to be optimized in this application is to put bolts in their respective
places while minimizing the distance. The bolts used in this study are from three different types of
of M6× 20 mm, M8× 20 mm and M10× 20 mm. Hence, we have three different type of nuts which
must be fastened using the bolts. The place and the position of the nuts and bolts are depicted in
Figure 4 with the z component of position for nuts being on 5.7 cm and for bolts being equal to 7 cm.

Such an assembly task is similar to the benchmark problem frequently solved in computer science
projects called the travelling salesperson. The cost function to be optimized in this case is the total
distance travelled with main difference between the assembly task designed to test the proposed XOR
BGSA and the travel salesperson being that in the current experiment, we have certain bolts which can
be used to fasten certain nuts; this imposes some constrains on the optimization problem.

To encode the optimization problem, 31 bits are considered for each individual. Inspired by the
results obtained by the proposed optimization procedure, it is used to minimize the total distance
travelled by UR5 during the assembly task of industrial calculator (See Figure 5). In this case, there exist
231 = 2.1475× 109 different combinations for performing the assembly task. As can be seen from
Figure 5, the first two bits determine which bolts are used to fasten nut #1, the bits numbers 3 and 4 are
used to determine which bolts are used for nuts number 2, the fifth bit is for nut number 3. Since we
have four M10× 20 mm bolts, the remaining bolt goes to nut number 4. Bit number 6 determines
which M8× 20 mm is used to fasten nut number 5, the other one is used to fasten bolt number 6.
The bit number 7 is used for bolts numbers 7 and 8. However, since the order of performing these tasks
effects the cost function, it is required to determine the order of performing the tasks using the next
24 bits. All 3 of them making an integer value from the interval of [0, 7]. In this case, if the ith value
after converting to decimal value is equal to j, the ith and jth task swap their position. This results in
avoiding forbidden conditions which is difficult to avoid otherwise. The cost function to be optimized
is the total distance travelled by robot with its initial conditions being at point (10, 30, 10).

The evolution of total distance travelled by the robot is depicted in Figure 6. The total number of
particles in this optimization is chosen to be 10 with the maximum number of iterations being equal to
200. As can be seen from this figure, the best random initialization for the total distance travelled by
robot is 328.0 cm which decreases to 273.2 cm after optimization, resulting in a 16.7% improvement.
The optimum solution of the problem is represented in Table 4 and the assembly process done by
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UR5 is illustrated in Figure 7. The total assembly time is 116 seconds. Where for our laboratory safety
reasons, the joint speed of the robot is limited to 90/s. However, as the UR5 is capable of working with
joint speed equal to 180/s, the total assembly time could be reduced if it works under full speed.

Table 4. Optimal assembly solution obtained from the optimization algorithm.

Action Bolt Nut

Step 1 #8 #8

Step 2 #7 #7

Step 3 #4 #1

Step 4 #5 #5

Step 5 #3 #4

Step 6 #6 #6

Step 7 #2 #3

Step 8 #1 #2

Figure 4. 2D position of nuts and bolts in assembly task.

Figure 5. Encoding assembly sequence to a particle.
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Figure 6. Evolution of total distance travelled by UR5 versus iterations.

Figure 7. Movements obtained from optimization.

6.1. Motion Planning of Industrial Robots Inside a Digital Twin Created by V-REP Software

Proposed XOR BGSA with repository is used to find the optimal path for an industrial robot in its
digital twin environment. The industrial robot used in this part is of a cobot type namely UR5. Cobot is
a slang which refers to collaborative robot, generally accepted as any robot designed to operate in
close proximity to human workers without need for a separating cage. The problem considered here is
to find the shortest collision free path for the robot in 3D space while undergoing a pick and place task.
Figure 7 illustrates the digital twin of the manufacturing environment simulated in V-REP software,
where there exist a human worker working closely to the robot.

Simulations have been carried out using V-REP software, a user-friendly software, which works
under various operating systems including Windows. This software V-REP is designed around a
versatile architecture with different independently working functions. The options embedded in this
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software can be easily enabled or disabled as required. The communication with this software is
possible from ROS using rostopics as well as directly from Python or Matlab using respective API
developed specially for this software. A wide range of robots including industrial robots from different
companies including Universal Robots are available in this software. The driver included in this
software for each of these robots possesses much of real robot features including stopping movement
in the case of collision with an object. Real features of robot including maximum speed, maximum
joint angles and maximum torque are available in the robot and may be modified at user desire making
it replicate the real robot as much as possible. Another feature which exist under V-REP software is its
ability to compute the inverse kinematic of robot and find the joint angles of the robot automatically
which considerably facilitates robotic simulation.

The obstacles in this environment are possible obstacles in real manufacturing environments such
as other machines, tools and devices. V-REP software is a robust software for simulating the physical
behaviours of objects, including collision between them as well as forces such as gravity and friction
that can all be included as part of the software environment. In this way, the user can easily define
object positions and orientations while the V-REP software takes care of updating movement of the
various other objects and collisions which may happen during motion. As the result is a game like
3D interface, examination of the movement can be easily achieved by the human expert. In this way
the human expert can ascertain if there may be problems with the solution that are not specified in
the programming. To perform the automated optimization, it is required that the robot movements
be encoded in terms of an evolvable array which may then be translated to motions to evaluate cost
function and make changes to optimize the problem. A similar approach has been previously done
using Ant colony optimization in another software namely Gazebo [28]. However, the benefit of
using V-REP versus Gazebo is that the former benefits from built-in inverse kinematic which makes
it possible to perform the simulations in a timely manner. A comparative study has been performed
previously in [29] which compared V-REP software and Gazebo. It is concluded that V-REP is a more
user-friendly and intuitive software than Gazebo in which intelligent optimization can be carried out
with more comfort.

While Figure 8 depicts the real robot, its digital twin developed in V-REP is depicted in Figure 9.
As can be seen from these figures, digital twin matches with real robot in terms of dimensions and
position of robot and obstacles, respectively. As can be seen from this figure, several objects as well
as the UR5 robot exist in this digital twin. The obstacles are in the form of several cubic boxes which
replicate the machines and devices which exist close to the robot.

Figure 8. Setup of real UR5 robot in Nottingham Advanced Robotic Laboratory (NARLy).
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Figure 9. Digital twin of manufacturing environment developed in V-REP.

6.1.1. Encoding Movements

To optimize movements, they are encoded in terms of an evolvable array according to the
proposed XOR BGSA with repository which is implemented under Matlab software. In this paper, it is
assumed that the initial orientation of the robot remains the same during optimization and its position
needs to be changed to perform the displacement from the start point to the end point. Considering
three x, y and z dimensions and the fact that they can be increased and decreased, there would
be six movements which can be represented by any integer value from the set S = {0, 1, . . . , 5}.
However, the proposed optimization algorithm would generate three bits for each movement. To avoid
infeasible solutions, the set is considered to have all eight conditions and duplicate movements may be
added. Moreover, during optimization duplicate coordinates may occur as a result of back and forth
in the movements. To avoid such loops in robot movement, all coordinates are compared with each
other and all intermediate movements which result in a loop are eliminated. The interpretation of
movements are presented in Table 5.

Table 5. Interpretation of values of array generated by the proposed XOR BGSA.

Movements Rotations

Value Interpretation Value Interpretation

0 x = x + 0.025 4 z = z + 0.025

1 x = x− 0.025 5 z = z− 0.025

2 y = y + 0.025 6 x = x + 0.025

3 y = y− 0.025 7 x = x− 0.025

6.1.2. Kinematic and Inverse Kinematic of UR5

The UR5 robot benefits from 6-degrees of freedom. Position and orientation of this robot and its
end-effector in 3D work-space is represented by x ∈ R6. While the first three dimensions of this vector
present three translational variables, the next three dimensions represent its orientation. The joint
angles, represented by q =

[
q1 q2 . . . q6

]
, are solutions to the inverse kinematic problem.
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The forward kinematic function is the function used to compute the position and orientation of the
robot corresponding to its assigned joint angles.

x = FK(q) (73)

The standard Denavit–Hartenberg (DH) convention to represent the forward kinematics of
the robot is used in this paper. The DH parameters associated with UR5 are presented in Table 6.
Using such convention, inverse kinematic of the robot can be found as follows:

x=T0
1 T1

2 T2
3 T3

4 T4
5 T5

6 (74)

where Ti−1
i presents the homogeneous transformation matrix which makes the transform from frame

i − 1 to frame i defined as follows:

Ti−1
i =


c(qi) −s(qi)c(αi) s(qi)s(αi) ric(qi)

s(qi) c(qi)c(αi) −c(qi)s(αi) ris(qi)

0 s(αi) c(αi) di
0 0 0 1

 (75)

where s(.) and c(.) represent the sinus and cosine of their arguments. The values obtained from the
movement array need to be translated in terms of robot movements. To enable this a transformation
matrix that represents position and orientation of robot is obtained based on work by [30,31].
The transformation matrix for frame 6 with respect to frame 0 is as follows:

6
0T (θ1, θ2, θ3, θ4, θ5, θ6) =

[
0
6R 0

6P
0 1

]
=


0
6X̂x

0
6Ŷx

0
6Ẑx

0
6Px

0
6X̂y

0
6Ŷy

0
6Ẑy

0
6Py

0
6X̂z

0
6Ŷz

0
6Ẑz

0
6Pz

0 0 0 1

 (76)

where 0
6X̂, 0

6Ŷ and 0
6Ẑ are unit vectors defining the axis of frame 6 in relation to frame 0 and:

0
6R = Rx (a)Ry(b)Rz(c)

in which the rotational matrices are obtained as follows:

Rx=

 1 0 0
0 cosa −sina
0 sina cosa

 (77)

Ry=

 cosb 0 sinb
0 1 0

− sinb 0 cosb

 (78)

Rz=

 cosc −sinc 0
sinc cosc 0

0 0 1

 (79)
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Inverse kinematics are then used to find joint angles of robot to move to a desired position given
by proposed XOR BGSA. The angles of the robot are then obtained as [30,31]:

θ1 = atan2
(

0
5yP, 0

5xP
)
+acos

 d4√
0
5xP2 + 0

5yP2

+
π

2

θ2 = atan2
(
−1

4zP,−1
4xP
)
−asin

(
−a3 sinθ3

|14xzP|

)

θ3 = ±acos

(
|14xzP|2− a2

2 − a3
2

2a2a3

)
θ4 = atan2

(
3
4yX̂ , 3

4xX̂
)

θ5 = ±acos

( 0
6xPsinθ1 − 0

6yPcosθ1 − d4

d6

)
θ6 = atan2 (M1, M2)

where:

M1=
−6

0yX̂sinθ1 + 6
0yŶcosθ1

sinθ5
(80)

M2=
6
0yX̂sinθ1 − 6

0yŶcosθ1

sinθ5
(81)

Table 6. Denavit–Hartenberg (DH) parameters representing the forward kinematics.

i di(mm) θ ai(mm) αi(rad)

0 – – 0 0

1 89.16 q1 0 π
2

2 0 q2 −425 0

3 0 q3 −392.25 0

4 109.15 q4 0 π
2

5 94.65 q5 0 −π
2

6 82.3 q6 0 0

6.1.3. Communication between Matlab and V-REP

Communication between Matlab and V-REP is done using API developed by Coppelia robotics.
Figure 10 demonstrates the overall communication requirement between Matlab and V-REP. As can
be seen from this figure, proposed XOR BGSA with repository generates the path in terms of a
binary sequence. This binary sequence is then translated to real movement with required resolution.
Such movements are transmitted to V-REP in terms of positions and orientations of robot which is
translated to joint angles of robot using built in inverse kinematic software. When a collision occurs,
the target position of robot needs to be modified to the last possible point before collision in the system.
After performing simulation, the results including total simulation time and distances are reported
back as the real-world perception of the binary code in terms of a cost function. After all particles are
evaluated, the proposed XOR BGSA iterates for another iteration to generate the next solutions.

The parameters xi, yi, zi, ai, bi and ci are the position and orientation of robot after every movement.
Since obstacles are static objects in V-REP, in case of a collision, the robot stops, and a collision flag is
returned. Furthermore, the desired position given to the robot is not met because of collision. Hence,
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the difference between desired and obtained position of robot is a measure of collision. Such position
difference can be used to penalize the cost function. The increment in the position suggested by the
proposed XOR BGSA would be the actual position of robot plus the decoded increment from Table 5.

Figure 10. Communication between Matlab and V-REP.

6.1.4. Cost Function to Be Optimized

As the goal of the optimization is to obtain a desired position and orientation while ensuring that
no collision happens, total distance between the desired position and the actual position of the robot is
as follows:

DT=∑
i
(xi−xd)

2+(yi−yd)
2+(zi−zd)

2 (82)

where xd, yd and zd are coordinates of PD the desired position of the robot. Other than distance to the
desired position, total time is used as another term in the cost function.

f (x) =KDDT+KTT+DC (83)

where T represents the total time, DC represents the distance between the actual position of robot and
its desired position in every single movement due to collision with obstacles. The parameters KD and
KT are two gains used for optimization which are selected as equal to 10,000 and 1, respectively.

For each individual particle, after performing the movements given by the particle, PD is given as
the final position of the robot. Meanwhile if there exist no obstacles between the last position obtained
from the proposed optimization algorithm and PD, robot moves easily to the final position. Otherwise,
obstacle stops robot from movement. It is further assumed that if the end effector is close to the desired
point robot does not need to continue with the movements given by the proposed XOR BGSA and total
time is considered to this point. When end effector is within obstacle free range of the desired position,
the other movements given by the proposed XOR BGSA are bypassed and the desired position is used
as the next step for robot.
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6.1.5. Simulation Results

The proposed XOR BGSA with repository is iterated for 30 times in Matlab software connected to
V-REP through API using 30 particles. The evolution of cost function during optimization is depicted
in Figure 11 on a logarithmic scale. As can be seen from this figure, the best cost function value among
the 30 particles starts from a high value of 3446 due to collisions and is reduced during optimization
to 6.77, which is a collision free, time optimal solution to the problem which hits the desired point.
This indicates that for the final collision free solution, the total time is equal to 6.77 s.

Figure 11. Cost function values associated with UR5 during path planning application.

The resulting movements are depicted with a red line in Figure 12, which can be inspected by
human expert before final implementation on a real robot.

The 3D environment provided by simulation software provides complete visual demonstration of
movements, which makes it is easy to perform the inspection and ensure suitability of the solution to
real-world implementation before that happens. This can be an important safety feature within any
working environment and such linking between the human and automated elements of production is
a key factor in Industry 4.0 practice.

Figure 12. Optimal path obtained after performing optimization.
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7. Conclusions

In this paper, an analysis of BGSA has been performed on mathematical update formulation
for its acceleration term. Using such analysis, we show the fact that the existing acceleration and
velocity term is not behaving as expected under certain conditions, and therefore conclude that it is
required to modify the acceleration term of BGSA. We then propose the use of an XOR BGSA which
benefits from repository. Analysis of this algorithm illustrates that the behaviour of acceleration and
velocity terms are as expected. A repository is added to maintain best particle and provide a guideline
for the movements of other particles. Complete statistical analysis is provided which demonstrate
how the expected value of particles in each dimension converge to the particle selected from
repository using the proposed version of XOR BGSA. To test the efficacy of the proposed optimization
algorithm, a number of simulation studies are performed against different uni-modal and multimodal
optimization problems. Simulation results indicate that the proposed modification outperforms other
binary optimization algorithms namely BGSA [16], IBPSO [17], BPSO [15], BGWO [18] and BDA [19].
The proposed algorithm is used to solve a constrained maximization problem namely multi-knapsack
problem. It is observed that the proposed algorithm outperforms BGSA [16], IBPSO [17], BPSO [15],
BGWO [18] and BDA [19] for this optimization problem as well. Not only the mean value of results
obtained during 30 times of optimization is better than other five optimization algorithms, but also the
proposed algorithm benefits from a fast convergence rate. Moreover, repeatability of the proposed
algorithm is better in most cases than in other investigated algorithms.

The conclusion made from the first part of simulation is that the proposed XOR BGSA with
repository is an effective optimization algorithm to deal with binary optimization problems. Motivated
by such results the algorithm is used for task planning of robot performing an assembly task.

Industry 4.0 emerges the need for robust machine learning and artificial intelligence approaches
to be used on the factory floor to determine responses to production changes resulting from continuous
design changes. Assembly task planning and path planning in an industrial environment as two
frequent tasks are considered. The assembly task planning problem scenario considered in this paper
is to find the optimum order of bolts to be fastened to minimize the total distance travelled by robot.
Using the proposed optimization algorithm the distance travelled by robot decreased by 16.7%. This is
a practical application of the proposed optimization algorithm in flexible manufacturing. In addition,
the proposed XOR BGSA with repository is utilized to assist in path planning in a manufacturing
environment. Such application would allow the robot to find time optimal path while avoiding
obstacles and moving to a desired position. This demonstrated the ability to successfully perform such
an operation, while enabling human feedback on results for a final implementation of a real robot.
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