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ABSTRACT: Currently, researchers spend significant time
manually searching through large volumes of data produced during
scanning probe imaging to identify specific patterns and motifs
formed via self-assembly and self-organization. Here, we use a
combination of Monte Carlo simulations, general statistics, and
machine learning to automatically distinguish several spatially
correlated patterns in a mixed, highly varied data set of real AFM
images of self-organized nanoparticles. We do this regardless of
feature-scale and without the need for manually labeled training
data. Provided that the structures of interest can be simulated, the
strategy and protocols we describe can be easily adapted to other self-organized systems and data sets.
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■ INTRODUCTION

There has been a recent flurry of studies applying machine
learning to scanning probe microscopy (SPM), ranging from
distinguishing otherwise indistinguishable data,1 segmenting
and analyzing surface features and defects,2−6 and assessing
probe quality.7,8 While these studies will undoubtedly allow us
to collect more, higher quality data in the future, we are only
beginning to find ways of better using9,10 existing data left
unanalyzed on old hard drives, CDs, and even floppy discs.11

Indeed, while one of the greatest advantages of atomic force
microscopy (AFM) is its ability to produce huge numbers of
scans on a variety of distinct surfaces, the need to manually
select data to analyze leads to much of it being under used at
best.
In this study, we demonstrate that it is possible to use

simulated AFM images of self-organized nanoparticle assem-
blies12,13 as automatically labeled training data for a neural
network, which then correctly generalizes to real AFM scans.
We employ an optimized preprocessing routine for real images
of these specific structures, which is then combined with a
denoising autoencoder to provide effective, automated
binarisation of real images. We then combine these systems
to quickly find experimental AFM images of these specific
structures in a data set of 5519 scans of multiple structures and
surfaces collected at a wide range of scan qualities and sizes
from 500 nm to 90 μm.

■ SIMULATION AND CNN TRAINING

One of the biggest difficulties in employing supervised machine
learning is the time-consuming task of manually labeling large

training sets. Further, while scanning tunnelling microscopy
(STM) and AFM scans can sometimes be simulated using
density functional theory (DFT), this is only possible for
relatively small system sizes and cannot practically create data
at the scale required for machine learning. Instead, previous
authors such as Aldritt et al.1 and Burzawa et al.14 used a
probe-particle model involving empirical pair potentials or the
Ising model, respectively, to automatically create and label
training data. For the nanoparticle assemblies of interest here,
we employ a highly optimized15 implementation of the Rabani
et al.16 Monte Carlo algorithm, which accurately reproduces
experimental images of 2D nanoparticle assemblies on a variety
of solid surfaces.12,13 Starting with a grid of liquid, substrate,
and nanoparticles, liquid gradually evaporates based on a
Metropolis17 acceptance probability, while the nanoparticles
diffuse across the surface. Over time, this produces one of a
number of distinct, spatially correlated equilibrium or non-
equilibrium structures. These structures have previously been
variously classified as12,18 “labyrinthine”/“fingerlike” when the
nanoparticle growth is worm-like/branching, “cellular” if the
nanoparticles fully enclose pockets of substrate, or conversely
“islands” when the nanoparticles cluster together into isolated
areas. If the solvent has not yet fully evaporated, “holes”/
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“pores” of substrate can form on a largely “liquid” surface.12,19

Examples are shown in Figure 1.
To produce training data, we exploit the strong correlation

of the initial simulation parameters with the final structure
formed.12 As such, simulations with identical input parameters
almost always form images that are visually distinct yet fall
within the same class of structure (cellular, labyrinthine, and so
forth). Additionally, the Euler number, computed as the
number of connected nanoparticle regions minus the number
of connected substrate/liquid regions,20,21 quantifies the
“connected-ness” of a given nanoparticle pattern. To provide
scale invariance, we then divide by the number of nano-
particles. An arbitrary, nonoverlapping range of values12 can
then be used to automatically select and label visually distinct
simulated training data without prior knowledge of what
parameters produce specific structures. We note that Euler
classification performs poorly with real images, as it is
extremely sensitive to instrumental noise, and heavily depends
on the arbitrary ranges of Euler number used to define each
category. Further, supervised CNNs are robust to incorrect
labeling,22 so they only require a broadly correct labeling
scheme. Also, holes cannot be described by Euler numbers and
so were labeled if a simulation had an abundance of liquid and
isolated pockets of substrate. This information is also only fully
known in simulations, and so we cannot label holes in this
manner for real images.
While the automatic labeling was scale-invariant, an image-

based CNN is only scale-invariant if the training images have
different feature-scales. Because the visual feature size of the
simulated structures depended on the simulation parameters,
this was not the case by default. In particular, simulated cellular
structures appeared physically larger than labyrinths, and
islands were larger still. As such, the classifier would incorrectly
base classifications on feature scale, rather than the features
themselves. To overcome this issue, we exploited the
coarsening of the nanoparticle structures from a kinetically
hindered state toward their equilibrium configuration.16,23 In
regimes with fast liquid evaporation, simulations reach a
metastable structure, and then grow in feature size with
additional simulation steps as nanoparticles diffuse from
regions of low average co-ordination to more highly

coordinated sites. Larger structures therefore grow as the
result of the decay of smaller features. We can therefore create
different visual scales in the training data by running additional
simulations for each structure type, but allowing the system to
move further toward equilibrium (i.e., coarsen) by simply
increasing the total simulation time. Further scale invariance
was also introduced by varying simulation resolution and
upscaling with nearest-neighbor interpolation to a common
size of 200 × 200 pixels. Alternatively, we could instead base
classification on statistics (such as the widely used24−26

Minkowski characteristics of Euler number, perimeter, and
area,27 made scale invariant by considering number and size of
particles) and a more traditional classifier instead of images
and a CNN. However, we found this method to perform
poorly at filtering while also being less generalizable as the
statistics used must be specifically selected for the desired
structures and wider data set in a manner that becomes
increasingly complicated. While we therefore based our final
implementation on a CNN, optimal data mining comes from
thoughtfully combining machine learning and alternative
statistics.
To train the classifier network, a simple CNN classifier

based on the Oxford VGG28 model was used. This model
features heavily in many common machine learning
applications, and a simpler implementation was used in our
case as our images are discrete and lack fine detail, making the
extra learning capacity unnecessary. This implementation
consisted of two 2D convolutional layers with a kernel size
of 32 and 3 × 3 strides and ReLu activation, followed by max
pooling with 2 × 2 strides. This was then repeated with kernel
sizes of 64, drop-out regularization added, and then final
classification outputted with softmax activation and categorical
cross entropy loss. For simplicity, we used the common Adam
optimizer29 and standard hyper-parameters29 of α = 0.001, β1
= 0.9, β2 = 0.999, and ϵ = 10−7. To massively augment the
∼75 000 images in the training set, the periodic boundaries of
the simulations allowed random circular shifts in the x- and y-
axes. To simplify the learning task further, the three-level
simulations were flattened to two levels, first because ideal
scans have a negligible amount of liquid, and second because it
is easier to binarize rather than trinarize real images. This was

Figure 1. Monte Carlo simulations of substrate (black), liquid (white), and generic nanoparticles (orange) are used to train a convolutional neural
net to classify AFM scans of nanoparticle structures. Unlike experimental images, the simulations can be programmatically classified by their Euler
number (due to noise sensitivity). The trained CNN can then find the same structures in a varied data set of experimental images.

Nano Letters pubs.acs.org/NanoLett Letter

https://dx.doi.org/10.1021/acs.nanolett.0c03213
Nano Lett. 2020, 20, 7688−7693

7689

https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03213?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03213?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03213?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03213?fig=fig1&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c03213?ref=pdf


done by replacing the least common level randomly with the
other two, producing speckle noise in the process. Additional
random speckle noise, level randomizing, and vertical and
horizontal flips and rotations were also applied. We note that
because of the relatively simple task and large variety of
augmentations, only a fraction of the data was required,
making the method more applicable to more intensive
simulations. Because multiple model structures and hyper-
parameters were not compared or tuned, performance could
significantly improve by hyperparameter and structure tuning
an ensemble of multiple CNNs. Because training progress was
sensitive to random initialization, we did not train for a fixed
number of epochs but instead until the loss on a testing set of
∼2,500 images plateaued. After training, over 95% accuracy
was found for a validation set of 2290 additional simulations.

■ PREPROCESSING AND FILTERING REAL DATA

After training the network on automatically labeled simulations
(rather than manually labeled data), the network can then be
used to find similar structures in real AFM scans even if the
wanted scans are mixed with unwanted scans in a large, messy
data set. The idea of using target images to find similar data is
becoming of increasing interest, such as when performing
reverse image searches30 or other content-based-retrieval tasks.
However, for AFM nonidentical scanning conditions means
that preprocessing/binarizing data is first required before
classification can take place. Because automating this process is
not trivial, preprocessing is typically done manually.31

However, unlike other automated methods4,32 which maximize
aesthetic quality for a large visual variety of images, we are not
interested in aesthetic quality, and only need a broadly
reasonable preprocessing method. By optimizing the routine
for the target structures, we can also assume that images unable
to be processed are of low quality and/or not the structures
being searched for and so can be discarded.
Before classifying each image, we first applied several layers

of preprocessing and filtering. After converting33 from
proprietary file format into Python (and discarding any corrupt

files), we normalize and median-of-difference align the image
data from the scan. Noisy scans were arbitrarily discarded if
over 5% of rows had over 95% of data single-valued and/or
with row mean more than 2σ from the overall image mean. A
fifth order polynomial plane fit was then used for plane
removal along both x and y-axes. We discarded images that
were not self-similar by testing the stability of Minkowski
numbers as a subsampling window was moved around the
image frame. Binarization was then performed with a multiple-
layered Otsu threshold,21 which has been previously shown to
be broadly optimal for AFM images.4 We note that the shape
of the structures can be significantly altered by the binarization
routine,4 resulting in the network correctly assessing the
binarized image but not the actual image. However, we also
note that a given image may have multiple valid binarizations
and therefore multiple valid structure classifications (which
itself often leads to subconscious human bias, an issue avoided
by this automated approach). Regardless, classification is
limited by preprocessing quality. It is also for this reason that
we used multiple filters.
Further, because of preprocessing artifacts the susceptibility

of CNNs to noise34 and the inherent lack of instrumental noise
in simulated training data, we found poor classification
performance without denoising. To this end, we employed
an autoencoder. In the same manner as a supervised CNN, an
autoencoder is taught to encode an input image into a set of
latent features, then decode (i.e., reverse) the encoding to
reproduce the original input.34 This semisupervised technique
is often employed in anomaly detection,35,36 as the network
only learns to correctly reproduce “correct” data, so struggles
to reproduce “incorrect” data. In the similar task of denoising,
we input simulated data plus speckle noise (in this case 40 ±
5%) and teach it to output the original, noiseless simulations.
The network therefore learns to remove noise. For simplicity,
we used the above network structure (minus the final dense
classification layer) for encoding, inversed this structure for
decoding, and employed identical optimizer and hyper-
parameters. Not only did denoising improve aesthetic quality

Figure 2. Results of a denoising autoencoder used to remove noise and artifacts from subsections of AFM dewetting images. Starting with
simulated scans and adding speckle noise, the autoencoder removes noise by learning to recover the original simulated scan before noise was
applied. This network can then be applied to real, preprocessed/binarized scans, where it is able to remove noise and artifacts from a wide variety of
images.
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dramatically (as seen in Figure 2, in which scanning artifacts
such as noise and short tip crashes were removed), but
classification performance also improved as a result.
At this stage, any remaining images could then be classified

by the CNN. Because the network input was smaller than the
total resolution of each image, multiple assessments could be
made for each single image by sliding a window around the
scan frame. This is key, as it allows for images of any size to be
classified. Because neural networks require fixed image
resolution, new simulations and networks would otherwise
be required for every different scan resolution. Additionally,
this method gives a distribution of network confidences over
the entire image, which can then be used as another filtering
stage to remove nonhomogenous images and/or those
containing different structures. Examples of this process are
shown in Figure 3. To further improve filtering, receiver-
operator-characteristic (ROC) curves were used to tune the
threshold value used to filter/pass each image. Filtering could
be further improved by simulating larger images and using the

subimages as an additional input dimension when training the
CNN.8

■ SEARCHING THROUGH DATABASES

To assess filtering performance, we first consider if a
reasonable number of images in total are discarded by the
filter. From a manual assessment of 100 random, unprocessed
images (so as to avoid analysis being skewed by incorrect
processing), we expected approximately 60% of images to be
discarded by the filter. Despite the difficulty of the task, this
was approximately the case with 70% discarded. Examples of
final classifications are shown in Figure 1 with the full data set
available at the end of this paper.
To determine if the correct images were discarded (i.e., not

just the correct number), two data sets of 61 “good” and 59
“bad” images were then hand-selected from the final data set
(without denoising). Ideally, all of the good images should not
be filtered out, whereas all the bad images should be. As
expected, 49/59 (83% specificity) bad images were correctly

Figure 3. Automated preprocessing and CNN assessment of two AFM dewetting images of micro- and nanostructured nanoparticle assemblies on
silicon substrates. Each image is subsampled and assessed with a CNN trained on simulated images of desirable structures. For the top undesirable
image, the network cannot confidently pick a classification and is unsure if the structure is “cellular” (green) or “labyrinthine” (red) (among
others). The bottom desirable image clearly contains cells and is correctly assessed as such by the CNN. This network, alongside other statistics,
forms a system of anomaly detection and classification to find specific structures in a large, variable database.

Figure 4. Filtering results on (a) a large, varied data set of 5517 scans, (b) 59 hand-selected bad images, and (c) 61 hand-selected good images.
Ideally, all of the good images should pass the filter (none, red), and vice versa for the bad images. This system combines general statistical analysis
with a CNN trained on Monte Carlo simulations of the target scans, and each image can fail multiple filters.
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filtered out, while 45/61 (74% sensitivity) of the good images
were correctly passed. Many false cases were due to poor
preprocessing often because of defects or tip changes.
Comparing Figure 4b,c, the filters clearly differentiated the
data correctly. Additionally, many failing good images only
failed a single filter, whereas many bad images failed multiple.
While we chose to balance between the two, sensitivity and
specificity could be adjusted by adjusting filters and their
thresholds.
To assess final classification performance, we considered if a

classification for an image by the entire filter/classier system
was “broadly correct”. This was as classification is extremely
subjective and can have multiple valid outcomes. From the
final output, we manually verified 20 random images from each
category, finding that 15/20 holes, 14/20 cells, 13/20
labyrinths/fingers, and 10/20 islands were broadly correct.
We note that as of the filtering specificity, ∼20% of these
misclassification were images incorrectly passing the filtering.
This was also far superior to random selection from the
original, unfiltered data set, in which 2/20 holes, 2/20 cells, 3/
20 labyrinths, and 0/20 islands were correct. Other
misclassifications were due to misleading preprocessing, were
correct but nonhomogenous, or were between visually similar
categories (e.g., cells and labyrinths).
Finally, while classification was clearly scale invariant (as

seen in Figure 1 and information at the end of this paper),
many misclassifications were made at very small feature scales.
This is understandable, as at this scale the CNN convolutions
would break up connected regions, effectively turning them
into isolated islands and being classified as such. Furthermore,
the CNNs are only as scale invariant as their training data, and
our method of data simulation was unable to produce tiny
feature scales while still being low-resolution enough to allow
windowing. This issue is seen in areas such as painting
recognition37 and could be improved by creating an ensemble
of networks with different convolution sizes trained on
progressively smaller sections of each image. While outputs
from the filtering/classifying system require manual verifica-
tion, it can still clearly find areas of interest in data sets too
large to search manually, making new analysis viable.

■ CONCLUSION
We have shown that it is possible to use simple simulations to
correctly find specific structures in a data set of mixed AFM
images without the need for manually labeled training data.
The method is heavily reliant on good preprocessing and
binarisation. While noise removal is also particularly vital, a
denoising autoencoder trained on the simulated data
performed extremely well at this task and may be applicable
elsewhere to smooth features and remove processing artifacts.
Additional improvements could be made with alternative
network structures, fewer target structures, and/or a machine
learning approach to binarisation,4,38 defect segmentation, and
anomaly detection.35,36

The method we have developed for automated identification
of nanostructured patterns is an effective first stage of file
search, capable of isolating files and locations of interest. It
very significantly reduces the time spent searching data sets to
perform additional analysis. Provided that a simple model of
structure growth and a method to broadly categorize
simulations is available, this CNN protocol can be easily
applied to other forms of SPM, data sets, and target structures.
When rapid simulation is not possible, strategies such as

regression using scale-invariant statistics could also be effective
with a full comparison being the subject of future work.
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