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Abstract

Many types of interactive applications, including reactive systems implemented in hardware, inter-
active physics simulations, and games, raise particular challenges when it comes to testing and de-
bugging. Reasons include de-facto lack of reproducibility and difficulties of automatically generating
suitable test data. This paper demonstrates that certain variants of Functional Reactive Programming
(FRP) implemented in pure functional languages can mitigate such difficulties by offering referential
transparency at the level of whole programs. This opens up for a multi-pronged approach for assisting
with testing and debugging that works across platforms, including assertions based on temporal logic,
recording and replaying of runs (also from deployed code), and automated random testing using
QuickCheck. When combined with extensible forms of Functional Reactive Programming that allow
for constrained side effects, this allow us to not only validate software simulations, but to analyse the
effect of faults in reactive systems, validate the efficacy of fault tolerance mechanisms, and perform
software- and hardware-in-the-loop testing. The approach has been validated on non-trivial systems
implemented in several existing FRP implementations, by means of careful debugging using a tool
that allows the test or simulation under scrutiny to be controlled, moving along the execution time
line, and pin-pointing of violations of assertions on PCs as well as external devices.
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1 Introduction

Testing software thoroughly is hard in general (Whittaker, 2000). Testing reactive systems
raises specific additional difficulties due to their interactive and real-time aspects (Lewis
et al., 2010). For example, just specifying system input so as to ensure adequate test
coverage is daunting. As a result, much of the testing is often left to final users. Another
difficulty is the lack of reproducibility: in general, the exact same input may produce
different results at different times. This is due to the random nature of real-world signals,
the deliberate random elements in interactive applications, and the effects of interacting
with a constantly changing outside world at points in time that are difficult to control
exactly due to real-time considerations. Consequently, the conditions that led to a bug can
be hard to replicate.

These challenges apply generally, regardless of what language is used to implement a
system. Thus, while using a pure functional language can offer benefits at the level of
unit testing thanks to referential transparency, just using a pure language offers few if any
additional benefits over commonly used languages for reactive system programming when
it comes to testing a system as a whole.

Functional Reactive Programming (FRP) (Elliott & Hudak, 1997; Nilsson et al., 2002;
Courtney et al., 2003) helps express interactive software declaratively in a way that ar-
guably brings the benefits of pure functional programming to the system level. In this paper,
we demonstrate that Arrowized FRP in particular provides enough structure to address
whole-program testing and debugging challenges such as those outlined above. Our work
applies to FRP programs in general, but we put a particular emphasis on reactive hardware
systems, physical simulations, games, and related applications in this paper, as these tend
to highlight the difficulties of interest here.
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There are two sources of uncertainty in FRP programs that may affect system-level
referential transparency. First, some FRP implementations use IO inside core definitions to
increase versatility and performance. This makes those systems susceptible to the problems
discussed earlier. Second, even if we run a simulation twice with the same initial state and
user input, we may obtain different outputs if simulations are sampled at different points in
time, due to differences in system load and OS scheduling decisions outside our control, for
example. This is demonstrated by the force-directed graph simulation depicted in Figure 1,
which does not depend on user input, yet converges to different stable configurations
depending on the sampling step, due to small differences in floating point calculations.

Fig. 1. Two runs of the same graph layout algorithm in which nodes repel each other, unless
directly connected, in which case they also attract. Even with identical initial conditions, two
executions converge to different stable configurations, demonstrating that pure FRP systems exhibit
non-determinism.

Pure Arrowized FRP (Courtney & Elliott, 2001; Nilsson et al., 2002) completely sep-
arates all side effects and time sampling from the data processing, providing referential
transparency across executions. In this variant we can truly run a program twice with the
same input, poll it at the same times, and obtain the same output, enabling a form of testing
unparalleled by other languages and paradigms. Given the same architecture, the results
will be guaranteed by the type system and the compiler to be the same, even across different
devices. This is a key aid for system development, especially on external platforms and for
applications that run on remote devices, since users often find bugs that developers cannot
reproduce.

In this paper we explore how Arrowized FRP enables testing and debugging to be
approached systematically in pure functional languages. This paper extends on prior work
by Perez & Nilsson (2017), revisiting prior contributions and including novel work, as
follows:

• We extend FRP constructs with a notion of temporal predicates based on Linear
Temporal Logic, equipped with an evaluation function, and demonstrate how they
can be used to express temporal properties.

• We provide random input data generators, and demonstrate how they can be used
effectively to test FRP systems using QuickCheck.

• We present a causal subset of Past-time Linear Temporal Logic that can be used to
insert temporal assertions into FRP programs for revealing bugs during execution.

• We present an extension to an FRP implementation that allows users to record and
replay input traces, which can be used to remotely control and debug running appli-
cations.
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• We demonstrate how our system allows for software- and hardware-in-the-loop test-
ing of reactive systems.
• We show that, by combining this work with prior work on fault-tolerant FRP, we

can analyze the effects of faults in reactive systems and the effectiveness of fault
tolerance mechanisms.

Our proposal is applicable for multiple existing FRP implementations, including
Yampa (Nilsson & Courtney, 2003) and Dunai (Perez & Bärenz, 2016). It is capable of
recording, replaying, manipulating and visualizing execution traces from real users, as well
as counter-example traces generated by QuickCheck. Our system lets designers and devel-
opers traverse an input trace and find points where assertions are violated, moving back
and forth along the execution timeline and performing hot-swapping of the application to
verify whether changes to the system fix existing bugs.

2 Background

In the interest of making this paper sufficiently self-contained, we summarize the basics of
FRP and Monadic Stream Functions in the following. For further details on FRP, Arrow-
ized FRP (AFRP), and Monadic Stream Functions, see earlier papers (Elliott & Hudak,
1997; Nilsson et al., 2002; Courtney et al., 2003; Perez et al., 2016). This presentation
draws heavily from the summaries in Perez (2018); Perez & Nilsson (2017); Courtney
et al. (2003).

2.1 Functional Reactive Programming

FRP is a programming paradigm to describe hybrid systems that operate on time-varying
data. FRP is structured around the concept of signal, which conceptually can be seen as a
function from time to values of some type:

Signal α = Time→ α

Time is (notionally) continuous, and is represented as a non-negative real number. The
type parameter α specifies the type of values carried by the signal. For example, the type
of an animation would be Signal Picture for some type Picture representing static pictures.
Signals can also represent input data, like the mouse position.

Additional constraints are required to make this abstraction executable. First, it is neces-
sary to limit how much of the history of a signal can be examined, to avoid memory leaks.
Second, if we are interested in running signals in real time, we require them to be causal:
they cannot depend on other signals at future times. FRP implementations address these
concerns by limiting the ability to sample signals at arbitrary points in time.

The space of FRP frameworks can be subdivided into two main branches, namely Classic
FRP (Elliott & Hudak, 1997) and Arrowized FRP (Nilsson et al., 2002). Classic FRP pro-
grams are structured around signals or a similar notion representing internal and external
time-varying data (originally built around a notion of behaviours and events). In contrast,
Arrowized FRP programs are defined using causal functions between signals, or signal
functions, connected to the outside world only at the top level. In Classic FRP, signals
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(or behaviours and event streams) are first-class entities; in Arrowized FRP, they are not.
While FRP is conceptually continuous, implementations still execute by sampling inputs
at discrete points in time. To give a concrete example, signal functions are commonly
represented like::

newtype SF a b = SF (Time -> a -> (b, SF a b))

The function representing a signal function is invoked on a sample of the input at a discrete
point in time, yielding an output sample as well as a new version of the signal function to
be used at the next time step. Such a representation ensures that signal functions are causal
by construction, meaning that they in effect can carry a state forward in time.

2.2 Monadic Stream Functions

Monadic Stream Functions (MSFs) are an abstraction for Functional Reactive Program-
ming that supports discrete and continuous time, and both Classic and Arrowized variants.
The initial observation was that there often is quite a bit of plumbing in Arrowized FRP
networks; e.g. to thread access to global resources through to all points of use or to do
logging. Of course, monads are great for abstracting away this type of plumbing when
that is desired, suggesting that signal functions ought to be parametrised over a monad.
The resulting notion is very flexible: for example, given the signal function representation
above, time can be seen as being part of an environment, rather than being hard-wired into
the fundamental abstraction at a specific type, as (Time ->) is just a reader monad.

In this section we briefly introduce MSFs, as well as some of the common use cases and
effects obtained when combined with different monads. We refer the reader to Perez et al.
(2016); Pérez (2018) for further details on MSFs, and to Perez & Bärenz (2016) for an
implementation.

2.2.1 Fundamental Concepts

MSFs are defined by a polymorphic type MSF and an evaluation function that applies an
MSF to an input and returns, in a monadic context, an output and a continuation:

newtype MSF m a b

step :: Monad m => MSF m a b -> a -> m (b, MSF m a b)

The type MSF and the step function alone do not represent causal functions on streams.
It is only when we successively apply the function to a stream of inputs and consume the
side effects that we get the unrolled, streamed version of the function. Causality, or the
requirement that the n-th element of the output stream only depend on the first n elements
of the input stream, is obtained as a consequence of applying the MSF continuations step
by step, or sample by sample.

For the purposes of exposition, we will use the following function to apply an MSF to
a finite list of inputs, with effects and continuations chained sequentially. This is merely a
debugging aid, not how MSFs are actually executed:

embed :: Monad m => MSF m a b -> [a] -> m [b]
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2.2.2 Composing Monadic Stream Functions

Programming with MSFs consists of defining monadic stream functions composition-
ally using a library of primitive stream functions and a set of combinators. MSFs are
Arrows (Hughes, 2000), and so Arrow combinators can be used to create them and com-
pose them. Some central Arrow combinators are arr that lifts an ordinary function to a
stateless signal function, composition >>>, and parallel composition &&&. In our frame-
work, they have the following types:

arr :: (a -> b) -> MSF m a b

(>>>) :: MSF m a b -> MSF m b c -> MSF m a c

(&&&) :: MSF m a b -> MSF m a c -> MSF m a (b,c)

f gf

f

g

Fig. 2. Basic MSF combinators.

We can think of streams and monadic stream functions using a simple flow chart analogy.
Line segments (or “wires”) represent streams, with arrow heads indicating the direction of
flow. Boxes represent MSFs, with the input stream flowing into the input port of the box
and the output stream flowing out of the output port. Figure 2 illustrates the aforementioned
combinators using this analogy. Through the use of these and related combinators, arbitrary
MSF networks can be expressed.

2.2.3 Arrow Notation

Writing arrow code using the basic combinators quickly becomes challenging as the ex-
pressions get larger. Paterson’s arrow notation (Paterson, 2001) mitigates this concern.
At least for basic arrow programming, it can be understood as a textual rendition of the
above flow chart analogy. From our perspective, that means that signal function networks
networks can be described directly, and in particular that signals effectively can be named,
despite signals not being first class values. Note that the notation is syntactic sugar that
gets translated into plain combinator expressions. We review basics of Paterson’s notation
here is it will be used occasionally in the following to simplify the presentation of arrow
code.

Using Paterson’s notation, an expression denoting a signal function has the form:

proc pat -> do

pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

...

patn <- sfexpn -< expn

returnA -< exp
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The keyword proc is analogous to the λ in λ -expressions, pat and pati are patterns
binding signal variables pointwise by matching on instantaneous signal values, exp and
expi are expressions defining instantaneous signal values, and sfexpi are expressions
denoting signal functions. The idea is that the signal being defined pointwise by each expi

is fed into the corresponding signal function sfexpi, whose output is bound pointwise in
pati. The overall input to the signal function denoted by the proc-expression is bound
pointwise by pat, and its output signal is defined pointwise by the expression exp. The
signal variables bound in the patterns may occur in the signal value expressions, but not in
the signal function expressions sfexpi.

2.2.4 Depending on the Past

MSFs must remain causal and leak-free, and so we introduce limited ways of depending on
past values. To remember the past by producing an extra value or accumulator accessible
in future iterations, we use:

feedback :: c -> MSF m (a,c) (b,c) -> MSF m a b

This combinator takes an initial value for the accumulator, runs the MSF, and feeds the
new accumulator back for future iterations.

Example The following calculates the cumulative sum of its inputs, initializing an accu-
mulator and using a feedback loop:

sumFrom :: (Num n, Monad m) => n -> MSF m n n

sumFrom n0 = feedback n0 (arr add2)

where

add2 (n, acc) = let n' = n + acc in (n', n')

A counter, for example, can be defined as follows:

count :: (Num n, Monad m) => MSF m () n

count = arr (const 1) >>> sumFrom 0

2.2.5 Monads

MSFs can be combined with different monads for different effects. We provide a general
function arrM to lift a Kleisli arrow, applied point-wise to every sample:

arrM :: Monad m => (a -> m b) -> MSF m a b

The use of monads with MSFs provides great versatility. For example, we can make
certain values available in an environment in a Reader monad, without having to route
them down manually as inputs to other MSFs. This is particularly useful in interactive
applications, in which settings are adjusted interactively within the application (e.g., game
difficulty, graphics quality) or depend on dynamic aspects (e.g., screen size), yet large parts
of the application can treat those values as “constants”. For example, we can pass the screen
size to an application by putting it in an environment:
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data Env = Env { windowWidth :: Int

, windowHeight :: Int

}

An MSF that rotates the input mouse position by 180 degrees with respect to the center of
the screen can use that implicit environment:

rotateMousePos180 :: MSF (Reader Env) (Int, Int) (Int, Int)

rotateMousePos180 = proc (x,y) -> do

winW <- arrM (ask windowWidth) -< ()

winH <- arrM (ask windowHeight) -< ()

returnA -< (winW - x, winH - y)

Any MSF can use rotateMousePos180 without having to manually route down the envi-
ronment, which is only explicit in the type.

It is possible to “flatten” an MSF by removing the monadic effect, by means of what are
called MSF running functions. This normally requires extra inputs, extra outputs, or extra
continuations. For example, the running function for the reader monad is defined as:

runReaderS :: MSF (ReaderT r m) a b -> r -> MSF m a b

We can use this function to build an MSF that removes the Reader monad from the
monad stack by providing a specific environment (i.e., screen size):

rotateMouse1024x768 :: MSF m a b

rotateMouse1024x768 = runReaderS (rotateMousePos180) (Env 1024 768)

The behaviour is, as we expect:

ghci> embed rotateMouse1024x768 [(10, 10), (100, 100)]

[(1014, 758), (924, 668)]

Following the same pattern as before, the associated execution function for an MSF on
the Maybe monad would have type:

runMaybeS :: Monad m => MSF (MaybeT m) a b -> MSF m a (Maybe b)

The evaluation function step, instantiated for the Maybe monad, would have the type
MSF Maybe a b -> a -> Maybe (b, MSF Maybe a b), indicating that it may pro-
duce no continuation. The function runMaybeS applied to an MSF outputs Nothing con-
tinuously once the internal MSF produces no result. “Recovering” from failure requires an
additional continuation:

catchM :: Monad m => MSF (MaybeT m) a b -> MSF m a b -> MSF m a b

Either c is another form of MSF that may terminate (in this case, with a result Left cr

for some cr of type c). Recovering from failure requires, once again, an additional MSF,
which in this case may be constructed from the value being provided in the Left branch
of the result. Note that Either c = ExceptT c Identity:

catchS :: Monad m

=> MSF (ExceptT e m) a b

-> (e -> MSF m a b)

-> MSF m a b
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This closely resembles the signature of Yampa’s switch combinator (Nilsson et al., 2002):

switch :: SF a (b, Event c) -> (c -> SF a b) -> SF a b

In Yampa, the SF in the first argument is used by default to transform an incoming
signal of type a into a signal of type b and a discrete signal of type c (note that Event
is isomorphic to Maybe, i.e., data Event e = NoEvent | Event e, encoding the fact
that samples may not exist at specific points). By default, the switch combinator outputs
the value in the first component of the output signal, of type b, so long as the event in the
second component of the output does not hold a value. If the second component holds a
value, the b is discarded and the second argument to switch is immediately applied to the
value in the Event to construct a new signal function that is turned on at that time and used
in place of the original SF for the present and all future inputs. Because only the b or the c
will be used at any sampling time, but not both, this makes the output type a sum of both,
i.e., Either. Therefore, switching emerges for free in MSFs by virtue of combining them
with the Either monad.

Another possibility is to use a list monad, which gives rise to constructs that maintain
dynamic collections of monadic stream functions connected in parallel (Fig. 3).

The first-class status of MSFs, in combination with the extensibility provided by dif-
ferent monad transformers and their running functions makes MSFs unusually flexible for
describing reactive systems.

Fig. 3. System of interconnected signal functions with varying structure

2.2.6 FRP using Monadic Stream Functions

The framework described so far is inherently discrete and focused on functions, not streams.
However, different elections of inputs, outputs and monads lets us realize streams, monadic
streams, Classic FRP signals and Arrowized FRP Signal Functions.

FRP and, in particular, Arrowized FRP, are frameworks built around notions of values
varying over continuous time. We can reintroduce time explicitly by making it available
in a global environment using the Reader monad. This allows us to bridge the ideas
in implementations like Yampa, in which Signal Functions (SFs) are pure, and MSFs,
building the former in terms of the latter:

type SF a b = MSF (Reader DTime) a b

The type DTime conceptually represents real positive time between successive samples.
(A common implementation choice, that also is adopted in the following, is to represent
DTime as a positive Double.) The type constructor SF above, together with the associated
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step function, is isomorphic to Yampa’s internal representation of initialized Signal Func-
tions. This makes it possible to run Yampa simulations on top of an intermediate layer that
implements an API-compatible version of FRP on top of MSFs.

Introducing time allows us to define FRP constructs that depend on time explicitly. For
example, integrals and derivatives are important for application domains like physics sim-
ulations, games and multimedia, and they have well-defined continuous-time semantics.
Their types, just like in Yampa, are as follows (VectorSpace is a class in an auxiliary
library capturing vector spaces, v represents the type of vectors, and s the type of scalars):

integral :: VectorSpace v s => SF v v

derivative :: VectorSpace v s => SF v v

Both integral and derivative are signal functions, transforming one signal into an-
other: the output signal from integral is the integral of the input signal from when inte-
gration started up until the present point in time; the output signal from derivative is the
slope of the input signal at all points in time. Here, just as in typical FRP implementations,
both are computed numerically over the sequence of samples representing the input signal.

Time-aware primitives like the above make specifications highly declarative. For exam-
ple, the velocity v and position p at time t of a falling mass with initial velocity v0 and
position p0 are given by the following equations of motion:

v(t) = v0 +
∫ t

0
−9.8dt

p(t) = p0 +
∫ t

0
v(t)dt

Using Paterson’s Arrow notation, these equations can be transliterated into FRP with very
little syntactic noise yielding a signal function for the time-varying position parametrised
over the initial position and velocity:

fallingMass :: Double -> Double -> SF () Double

fallingMass p0 v0 = proc () -> do

v <- arr (+v0) <<< integral -< (-9.8)

p <- arr (+p0) <<< integral -< v

returnA -< p

Even without the arrow notation, the rendering into FRP is straightforward:

fallingMass :: Double -> Double -> SF () Double

fallingMass p0 v0 = arr (const (-9.8))

>>> integral >>> arr (+ v0)

>>> integral >>> arr (+ p0)

Signal functions (SF) are completely pure: provided that we execute them with the
exact same input signal (i.e., with the exact same input samples obtained at the exact
same sampling times), we will obtain an entirely predictable output. To allow for signal
processing with actual side effects, we introduce Extensible Signal Functions (ESF):

type ESF m a b = MSF (ReaderT DTime m) a b
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Note that the monad is explicit in the type constructor ESF. If a monad with no real-world
side effects is chosen, the result is again a completely pure and reproducible simulation.
We will use this later on to add additional context and controlled side effects.

Monadic Stream Functions can also be used with monads that depend on external input.
If we combine this idea with MSFs that do not depend on their input, we obtain MSFs that
produce a stream of outputs in a monadic context, or Monadic Streams. This allows us to
also implement classic forms of FRP where signals are first class entities by representing
signals as MSFs in the IO monad with a unit input type. Because these Monadic Streams
or Signals are functors and applicatives, we can use a convenient applicative syntax to
combine them and compose them. At the same time, because they are Monadic Stream
Functions, we can use Arrow combinators and all the MSF functions presented so far,
allowing us to merge the key ideas from reactive programming and FRP, both Classic
and Arrowized.

3 A Temporal Logic for FRP

Temporal Logic is a branch of Modal Logic in which propositions are quantified over
time (Emerson, 1990; Pnueli, 1977): just like the value of a signal in FRP varies over
time, so does the truth value of a proposition in temporal logic. Temporal logic thus con-
stitutes a suitable framework for expressing temporal properties of changing and reactive
systems for test and verification. Our immediate interest here is testing. In the following,
we introduce a temporal logic for (arrowized) FRP to that end, aiming at striking a balance
between allowing temporal properties to be expressed at a conceptual level, while also
allowing implementation aspects (specifically sampling) to be considered where needed.
As a starting point, we first give a brief introduction to temporal logic in general, albeit
with a presentation that is geared towards our specific setting and objectives.

3.1 Temporal Logic

3.1.1 The Semantic Domain

In Temporal Logic the nature of time (bounded vs unbounded, discrete vs continuous,
etc.) plays a central role, determining both which modalities can be defined and which
propositions hold. However, the fundamentals remain largely the same irrespective of
these choices, allowing us to treat time mostly in the abstract, only assuming that it is
linear (totally ordered and progressing towards the future) with a starting point denoted 0.
In FRP (as originally conceived), time is conceptually continuous, but discretized during
execution. We will return to the implications of this in more detail when we consider the
FRP-specific temporal logic later.

Guided by the intuitive understanding of temporal logic, and in the spirit of FRP, we
consider a temporal proposition to be a time-dependent Boolean function; that is, a Boolean
whose value changes over time:

TProp = Time→ Bool

The semantics of temporal logics is typically given in terms of sets of states and tran-
sitions between these (Emerson, 1990). For our purposes, an FRP-style denotational se-



ZU064-05-FPR paper 2 June 2020 14:59

12 I. Perez and H. Nilsson

mantics is simpler. In the following, we thus give denotational definitions for the various
temporal operators in a style that follows the denotational semantics for FRP given in Wan
and Hudak’s seminal paper Functional Reactive Programming from First Principles (Wan
& Hudak, 2000).

3.1.2 Point-wise Operations

The standard logical operators, like conjunction and disjunction, are defined pointwise. We
spell out the function names (instead of using operators) and use curried definitions to align
the definitions here with the later FRP-specific logic, which is embedded in Haskell.

neg : TProp→ TProp
neg φ = λ t . ¬(φ t)

and : TProp→ TProp→ TProp
and φ ψ = λ t . φ t ∨ ψ t

or : TProp→ TProp→ TProp
or φ ψ = λ t . φ t ∧ ψ t

impl : TProp→ TProp→ TProp
impl φ ψ = λ t . φ t =⇒ ψ t

The meaning of these point-wise operations should be obvious. For instance, neg φ is true
at a time t if φ is not true at that time.

3.1.3 Temporal Modalities

To make temporal logic meaningfully temporal, operators that refer to other points in time
than the present are needed. The well-known Priorean operators Global, Future, History
and Past (Prior, 1967) constitute one example. We introduce four temporal operators in
that vein:

always at every point in the future
eventually at some point in the future
history at every point in the past
ever at some point in the past
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Their definitions are:

always : TProp→ TProp
always φ = λ t . ∀t ′ ∈ Time . t ′ ≥ t =⇒ φ t ′

eventually : TProp→ TProp
eventually φ = λ t . ∃t ′ ∈ Time . t ′ ≥ t ∧φ t ′

history : TProp→ TProp
history φ = λ t . ∀t ′ ∈ Time . t ′ ≤ t =⇒ φ t ′

ever : TProp→ TProp
ever φ = λ t . ∃t ′ ∈ Time . t ′ ≤ t ∧φ t ′

As an example, the property “φ eventually becomes true forever” can be expressed
as eventually(alwaysφ), and the property “φ will always be true in the future, but has
not always been true in the past” can be expressed as ever (negφ) ‘and‘ alwaysφ , where
we allow ourselves to use the Haskell-convention for infix application of two-argument
functions.

Note that these operators have counterparts with strict inequalities, in which the value
of the predicate argument φ at the current time t is not taken into account. However, the
above versions fit our needs better in the following.

Two modalities next and until are sometimes taken as primitive in terms of which further
modalities such as those above are defined (Emerson, 1990, Sec. 3.2). The modality next
qualifies a proposition to pertain to the next time step, implying a setting where time
is discrete. As time is conceptually continuous in FRP, we will not use next as such in
our FRP-specific temporal logic. Nevertheless, it is helpful to understand its semantics to
provide context for the alternatives that we will use:

next : TProp→ TProp
next φ = λ t . φ (N t)

where N t is the smallest t ′ ∈ Time such that t ′ > t. Until is defined as:

until : TProp→ TProp→ TProp
until φ ψ = λ t . ∃t ′ ∈ Time . t ′ ≥ t =⇒ (ψ t ′∧∀t ′′ ∈ Time . t ′′ < t ′ =⇒ φ t ′′)

That is, untilφ ψ means that φ holds at every point until ψ does.
As was remarked above, the modality next presupposes a setting with discrete time and

is thus not suitable for FRP. Nevertheless, there is a need to qualify propositions to pertain
to some specific future point in time also in a setting where time is notionally continuous.
To that end, we introduce the modalities imminently and after:

imminently : TProp→ TProp
imminently φ = λ t . limt ′→t+ . φ t ′

after : Time→ TProp→ TProp
after ∆t φ = λ t . φ (t +∆t)
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The modality imminently thus refers to a point that is not now, but immediately thereafter,
while after refers to a point ∆t into the future. The former is defined in terms of the right
limit of a proposition as the time approaches a given point in time from above. Again, this
follows the style of denotational semantics in Wan & Hudak’s paper (Wan & Hudak, 2000),
and it is understood that the meaning is ⊥ in case there is no convergence to a definitive
truth value. Both imminently and after work in settings of continuous as well as discrete
time, but in a discrete-time setting the limit construct in the semantics of imminently simply
yields the next point in time meaning that the semantics of imminently coincides with that
of the modality next in this case.

Note that these definitions require refinement in a setting where time is bounded from
above, as they would otherwise refer to points outside the designated time domain. In the
setting of FRP, this is not a concern at the conceptual level, as time is unbounded from
above. However, when it comes to execution and testing, we need to account for the fact
that the time domain, as defined by the points at which observations are made, necessarily
becomes discrete and finite. We will return to this and related points in the next section,
where we develop a testable temporal logic for FRP.

3.2 Testable Temporal Predicates

The semantic domain of temporal logic, as given above, is bigger than that of FRP. While
FRP Signal Functions must be causal, functions over temporal propositions may not be so.
For example, modalities like always make the present depend on the future and thus cannot
be implemented faithfully in Arrowized FRP as Boolean-carrying signals. There are also
efficiency concerns: even if we only consider modalities that look to the present or the past,
history, for example, depends on all the past, which could lead to memory leaks.

We can address these problems by limiting our attention to testing after-the-fact on a
given, discretized time-bounded input signal, what we can think of as the observed input,
letting this implicitly define the time domain, and adapting the semantics of the temporal
modalities accordingly.

In this section, we use this idea to present a testable encoding of a version of Linear
Temporal Logic (LTL). In Section 5, we complement this approach with an encoding of
a variant of Past-time Linear Temporal Logic (ptLTL) that can be implemented efficiently
in FRP in the form of Boolean-carrying Signals, to define monitors or temporal assertions
checked on the fly as applications run live.

The following encoding of LTL, framed as temporal predicates on an input signal of type
a, allows us to look into the present and the future. We redeploy a selection of the modali-
ties from the previous section, turned from propositions into predicates by abstracting over
the input. In addition we introduce a basic value constructor SP, for Signal Predicate, to
allow the full power of FRP to be used to define basic predicates on signals.

data TPred a where

SP :: SF a Bool -> TPred a

And :: TPred a -> TPred a -> TPred a

Or :: TPred a -> TPred a -> TPred a

Not :: TPred a -> TPred a

Implies :: TPred a -> TPred a -> TPred a
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Always :: TPred a -> TPred a

Eventually :: TPred a -> TPred a

Until :: TPred a -> TPred a -> TPred a

Imminently :: TPred a -> TPred a

After :: Time -> TPred a -> TPred a

The semantics is as given for the corresponding temporal propositions in the previous
section, with a couple of exceptions as the time domain is now discrete and bounded. The
semantics of the pointwise operations carries over unchanged, as these do not depend on
the nature of time. The semantics of the propositions always, eventually, and until also
carries over unchanged, except time is now quantified over a finite number of time points.

In contrast, the semantics for the temporal predicates Imminently and After needs a
bit of refinement. For a discrete time domain, as discussed above, the limit construct used
to define the semantics of the proposition imminently simply degenerates to N, the next
point in time, so were it not for the fact that time now also is bounded, the semantics of
Imminently would be like that of next. However, because time now is bounded by the
period over which input was observed, there is a possibility that predicates constructed
using Imminently and After may refer to time points outside the time domain of the
specific input signal under consideration.

The question, then, is how to evaluate temporal predicates at such time points: are they
true or false? The honest answer is that we do not know, suggesting that a three-valued
logic should be used. But in practice, as unknown is “contagious”, one would have to be
quite careful to avoid stating properties in such a way that unknowns do not mask useful
information. Thus, for simplicity, we define both Imminently and After to be true for
time points outside the current domain. This is also consistent with the setting of testing:
tests pass in the absence of evidence of failure.

Consequently, for the most part, temporal properties can be stated at a conceptual level,
as if time were continuous and unbounded from above, as long as we keep in mind that
testing on a specific discretized input signals might be successful even if a property actually
does not hold in continuous, unbounded time. For example, if we claim that something
is always true, but, as it happens, is is only almost always true, it may take many runs
before we find a failing case. This is to be expected: after all, we are testing, not proving
properties. Our chances of successfully identifying properties that do not hold increase
greatly if we employ techniques for automated, principled testing, such as QuickCheck,
which we explore in Section 4.

Nevertheless, sometimes properties that would hold if time were continuous may fail
under adverse sampling conditions. For example, imagine a control system designed to
keep a position of an object within certain boundaries as long as disturbances are within
predetermined bounds (e.g., an inverted pendulum). Such a system would often be provably
correct. However, if a discretized realisation were sampled sufficiently sparsely, it would
fail to maintain the position within the expected bounds.

One way to address this is to only test on discretized input signals with a sufficiently
high sampling rate. This is our current main approach, but it has the drawback that the
sampling assumptions are not captured by the stated temporal properties. An alternative is
to introduce predicates on the “quality” of the input signal sampling, such as a minimal
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difference between sample times or a sufficiently high running average of the sampling
frequency. Obviously, such predicates break FRP’s continuous-time abstraction, but does
allow stating that sampling meeting certain criteria implies desired correctness properties.
This is already possible using SP, but such properties could also be stated declaratively
at the level of temporal predicates. An advantage of the latter would be that system-wide
minimal quality requirements could be inferred. This remains future work.

There are many different approaches to implementing FRP, some of which may be less
susceptible to problems like that outlined above. The point here is not the pros and cons of
various implementation approaches, but rather that effectively employing property-based
testing for FRP may necessitate going beyond supporting stating ideal properties and also
cater for operational aspects. The specifics of the latter of course depend on the nature of
the underlying implementation.

3.3 Evaluation of Temporal Predicates

We can think of a TPred a for some type a as a possibly non-causal function that takes
a Signal of type a defined on a time domain and returns a Temporal Proposition (a Signal
of type Bool) on the same time domain. To evaluate a TPred, we thus need to provide an
input signal. In our implementation, we provide both the signal and the time domain in the
form of a finite input or sample stream:

type SignalSampleStream a = (a, [(DTime, a)])

SignalSampleStream represents the signal starting from the first sample, always at
time 0, and a subsequent streams of samples samples spaced by strictly positive delays.

We can now give an evaluation function that takes a Temporal Predicate and a sample
stream and evaluates the temporal predicate at the initial time:

evalT :: TPred a -> SignalSampleStream a -> Bool

When we evaluate a TPred by providing a stream of input samples, we are effectively
restricting the time domain to a subset defined implicitly by the times of the samples in
the input stream, as discussed earlier. Note that the function evalT only lets us query the
value of a TPred at the initial time, but we can always refer to specific future times using
After.

3.4 Examples

Let us now introduce an example of an FRP program, define temporal assertions and verify
them. The presentation should be reasonably self-contained, but as the main focus of this
paper is not FRP programming as such, the reader may wish to consult a suitable reference
on FRP such as (Nilsson et al., 2002) for details, in particular in relation to events and
switching.

We start with a simple animation of a falling ball, considering only the vertical axis:

fallingBall :: Double -> SF () Double

fallingBall p0 = proc () -> do

v <- integral -< -9.8
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p <- integral -< v

returnA -< (p0 + p)

To check, for example, that the position of the falling ball at any time is lower than the
initial position, one can define the following property:

ballFellLower :: Double -> TPred ()

ballFellLower p0 = SP (fallingBall p0 >>> arr (\p1 -> p1 <= p0))

We now test this property in a session, using an input stream stream01 of 42 samples
spaced by 0.1 seconds, carrying no data (that is, a stream ((), [(0.1, ()),

(0.1, ()), ...]) with 42 samples in total).

> evalT (ballFellLower 100) stream01

True

However, with the given definition we are only checking this proposition at time 0. In
order to check that the proposition always holds, we define:

ballFallingLower :: Double -> TPred ()

ballFallingLower p0 = Always (ballFellLower p0)

Testing it now tests it for every position in the stream:

> evalT (ballFallingLower 100) stream01

True

To obtain further guarantees, we may want to check that the new position of the ball is
always lower than the previous one. We can express that idea by looking at the derivative
of the position and ensure it is always strictly negative:

ballTrulyFalling :: Double -> TPred ()

ballTrulyFalling p0 =

Always (SP (fallingBall p0 >>> derivative >>> arr (\v -> v < 0)))

However, this predicate does not hold at time 0 as the derivative is not defined there.1

We could explicitly initialize the derivative to some specific negative value, but a more
appealing approach is to say that the derivative should always be negative immediately
after time 0:

ballTrulyFalling' :: Double -> SF () Double

ballTrulyFalling' p0 =

Imminently

(Always

1 Mathematically, differentiability of functions of one variable is defined on open intervals,
as differentiability at some point p requires the function to be defined everywhere in some
neighbourhood around p. To avoid depending on future time points, derivative in FRP-
implementations is typically a numerical approximation of the mathematical notion of a left
derivative, requiring a function to be defined everywhere in some neighbourhood to the left of
a point p to be differentiable at that point. Either way, in FRP, derivative is not defined at time
0 as FRP’s signals are not defined prior to time 0.
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(SP (fallingBall p0 >>> derivative >>> arr (\v -> v < 0)))

> evalT (ballTrulyFalling' 100) stream01

True

Let us now consider the case that the ball changes direction and bounces up when it
hits the floor. To implement this behaviour, we use a mechanism known as switching,
implemented by the combinator switch, in which a signal function is applied to a signal
until a condition holds, and a different signal function is applied from that point on (Nilsson
et al., 2002). Switching can also be used to restart a signal function with different initial
conditions, as demonstrated by this example.

bouncingBall :: Double -> Double -> SF () (Double, Double)

bouncingBall p0 v0 =

switch (fallingBall'' p0 v0 >>> (identity &&& hit))

(\(p0', v0') -> bouncingBall p0' (-v0'))

fallingBall'' :: Double -> Double -> SF () (Double, Double)

fallingBall'' p0 v0 = proc () -> do

v <- arr (v0 +) <<< integral -< -9.8

p <- arr (p0 +) <<< integral -< v

returnA -< (p, v)

hit :: SF (Double, Double) (Event (Double, Double))

hit = arr (\(p0, v0) -> if (p0 <= 0 && v0 < 0)

then Event (p0, v0)

else NoEvent)

The signal function bouncingBall starts with a ball falling down, until it hits the floor,
and restarts the signal from the point of collision, inverting the direction of the velocity.
The signal function fallingBall’’ is the same as fallingBall, except that it takes an
initial velocity and outputs the current velocity. The signal function hit creates an Event

when the ball hits the floor, that is, when the position is not positive and the ball is going
down. The switch combinator uses the information in the Event, if present, to switch on
the second signal function, which, in this case, refers to bouncingBall with the velocity
negated.

If we were to translate the property ballFellLower to this new definition, we could
assume that, with perfect elasticity and if the initial velocity is 0, the ball would never
bounce higher than the initial position:

ballLower :: Double -> TPred ()

ballLower p0 =

Always (SP (bouncingBall p0 0 >>> arr (\(p1,v1) -> p1 <= p0)))

If we now test this predicate with a stream we see that it does not hold in our program.
To give the ball enough time to bounce back up, we use a stream of 42 samples spaced by
0.5 seconds.
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> evalT (ballBouncingLower 100) stream05

False

If we print the ball position at every time, we obtain:

[ 100.0, 100.0, 97.55

, 92.65, 85.3 , 75.5

, 63.25, 48.55, 31.400000000000006

, 11.800000000000011, -10.249999999999986, 14.25000000000001

, 36.30000000000001, 55.900000000000006, 73.05

, 87.74999999999999, 99.99999999999999, 109.79999999999998

, 117.14999999999998, 122.04999999999997, 124.49999999999996

, 124.49999999999996, 122.04999999999997, 117.14999999999996, ...

The ball, dropped from 100 points with no vertical velocity, bounces up to 124.5 points.
This is not the result of small floating-point inaccuracies or rounding errors, which could be
accounted for by introducing a margin of error in the equality for floating-point numbers.
Instead, it is caused by errors introduced by the implementation of integral using the
rectangle rule. We could address this particular issue by providing a more accurate integral,
or by manually capping bouncingBall to be lower than p0. This, however, is out of the
scope of this paper.

Another problem with this simulation is that the simulated physics is not time-continuous
and that the ball is not pulled out of the floor when it collides. Thus, the ball will temporar-
ily be rendered as if it had penetrated the floor. This can be seen in the previous trace, with
the ball position being −10.25 on the 11th sample, which the following property detects:

ballOverFloor :: Double -> TPred ()

ballOverFloor p0 =

Always (SP (bouncingBall p0 0 >>> arr (\(p1, v1) -> p1 >= 0)))

> evalT (ballOverFloor 100) stream05

False

For a proposal on how to address this problem by implementing continuous physics in
Arrowized FRP, see Perez et al. (2016).

4 QuickChecking

In the previous section we saw how to express and test Temporal Properties of an FRP
program. The input streams, however, were manually generated, which limits the coverage
of our tests. As explained in Sec. 3.2, this limits the conclusions we can draw from testing,
unless we can use a more principled approach to explore the space of possible inputs. For
instance, if we test the predicate ballOverFloor dropping the ball from a slightly higher
height, the property would not be violated for a stream stream05’ with 21 samples spaced
by 0.5 seconds, but it would be for one stream with 42 samples or one with 0.1-second
delays instead:

> evalT (ballOverFloor 110.24999999999999) stream05'

True
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> evalT (ballOverFloor 110.24999999999999) stream05

False

QuickCheck (Claessen & Hughes, 2000) is a tool that combines random data generation
with a property language in order to test code more thoroughly. Properties are defined using
combinators to express conditions on values. For example, a property stating that reversing
a list twice leaves it unchanged could be defined and tested as follows:

propReverseTwice :: [Int] -> Property

propReverseTwice xs = reverse (reverse xs) == xs

> quickCheck propReverseTwice

+++ OK, passed 100 tests.

If we state an incorrect predicate, for instance, that reverse is the identity function on
lists, QuickCheck finds and prints a counter-example that invalidates our assertion (in this
case, the predicate is false for the input [1,0]):

propReverseOnce :: [Int] -> Property

propReverseOnce xs = reverse xs == xs

> quickCheck propReverseOnce

*** Failed! Falsifiable (after 3 tests and 1 shrink):

[1,0]

The confidence we can place in tests against randomly generated data depends on the
nature of such data. We may want to constrain data to meet a function’s precondition or
mimic expected user input. Pre-conditions can be defined by means of filters, like the
following, which states that the property defining how the functions head and tail relate
to one another only makes sense for non-empty lists:

propHeadTail :: [Int] -> Property

propHeadTail xs = not (null xs) ==> (head xs) : (tail xs) == xs

Filtering data can make the search inefficient when most of the data generated does
not meet the preconditions. Additionally, randomly-generated data may not explore the
corner cases of our solution. To address these concerns, QuickCheck defines a language
of generators, consisting of a series of types, classes and combinators operating on values
that can be randomly generated.

In this section we demonstrate how to use the Temporal Language described in Section 3
to test temporal properties of FRP programs with QuickCheck. We do so by providing
a series of input stream generators, together with combinators to constrain the kinds of
streams generated. In Section 8 we demonstrate how this approach helped us find bugs in
real systems.

4.1 Stream Generators

Generating suitable inputs for our tests requires that we provide random, but reasonable,
input signal values and sampling times, constructing what we called a sample stream or
input stream.
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Our basic definition of input streams are signal samples paired with strictly positive time
deltas. The data corresponding to each input is application-specific, but we can provide
general-purpose generators to create random sampling times.

In order to generate lists of time samples, we use the following general function:

generateStream :: Arbitrary a

=> Distribution

-> Range

-> Length

-> Gen (SignalSampleStream a)

where Gen is QuickCheck’s type constructor for value generators. This function takes three
parameters whose types are defined as follows:

data Distribution = DistConstant

| DistNormal (DTime, DTime)

| DistRandom

type Range = (Maybe DTime, Maybe DTime)

type Length = Maybe (Either Int DTime)

The type Distribution represents how the values for the time deltas are chosen within
the ranges specified. The case DistConstant represents the case in which the time delta
is random, but the same for all samples in the stream. DistNormal represents a normal
(Gaussian) distribution with a given average and sigma coefficients. The case DistRandom
represents a more general scenario, where the time deltas are uniformly distributed in
the given range, if the range has an upper bound (the smallest time delta is considered
a lower bound if there is none), and otherwise rely on QuickCheck’s standard generator
for values of type DTime (positive Doubles). The type Range describes possible lower
and upper boundaries for the generated time deltas. The smallest representable positive
double-precision floating point number is considered the lower bound in the range if none
is specified. The type Length describes the length of the stream, either in number of
samples or in time length. This parameter may be nothing, in which case the function
generateStream initially picks a random number of samples for the generated stream.

The following auxiliary function allow us to generate streams with an auxiliary generator
that depends on the sample number and the absolute time:

generateStreamWith :: Arbitrary a

=> (Int -> DTime -> Gen a)

-> Distribution

-> Range

-> Length

-> Gen (SignalSampleStream a)

We provide additional facilities to make code shorter:

uniDistStream :: Arbitrary a

=> Gen (SignalSampleStream a)

uniDistStream =

generateStream DistRandom (Nothing, Nothing) Nothing
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uniDistStreamMaxDT :: Arbitrary a

=> DTime -> Gen (SignalSampleStream a)

uniDistStreamMaxDT maxDT =

generateStream DistRandom (Nothing, Just maxDT) Nothing

fixedDelayStream :: Arbitrary a

=> DTime -> Gen (SignalSampleStream a)

fixedDelayStream dt =

generateStream DistConstant (Just dt, Just dt) Nothing

4.2 Streams

The previous API lets us generate random streams, but in order to pre-feed existing data or
express complex properties such as that a signal function behaves the same regardless of
how often it is sampled, we need additional ways to constrain streams. Recall that streams
in our framework are defined as follows:

type SignalSampleStream a = (a, [(DTime, a)])

Streams can be concatenated, as well as merged. Because streams start at time zero,
stream concatenation requires an additional time difference (DTime) to separate the last
sample of the first stream from the first sample of the second stream. Merging needs an
auxiliary function to determine what to do if the two streams provide a sample for the
same time:

sConcat :: SignalSampleStream a

-> DTime

-> SignalSampleStream a

-> SignalSampleStream a

sMerge :: (a -> a -> a)

-> SignalSampleStream a

-> SignalSampleStream a

-> SignalSampleStream a

We also provide clipping functions that allow us to drop samples before or after a specific
time:

sClipAfterFrame :: Int -> SignalSampleStream a

-> SignalSampleStream a

sClipAfterTime :: DTime -> SignalSampleStream a

-> SignalSampleStream a

sClipBeforeFrame :: Int -> SignalSampleStream a

-> SignalSampleStream a

sClipBeforeTime :: DTime -> SignalSampleStream a

-> SignalSampleStream a
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These functions work in the intuitive way, and do not re-adjust the time deltas to make up
for samples being removed. For example, the function sClipAfterTime drops any sample
that takes place after the given time, leaving the stream unchanged if the time is after the
last sample in the stream.

4.3 Examples

We can define the QuickCheck property quantified over input streams as follows:

propTestBallOverFloor =

forAll myStream (evalT (ballOverFloor 110.24999999999999))

where myStream :: Gen (SignalSampleStream ())

myStream = uniDistStream

QuickCheck finds a counter-example in only four tries:

> quickCheck propTestBallOverFloor

*** Failed! Falsifiable (after 4 tests):

((),[(4.437746115172792,()),(1.079898766664353,())

,(3.0041170922472684,())])

The counter-example generated by QuickCheck contains very large time deltas. In a
realistic scenario, with a screen refresh rate of 60Hz standard on PC and phones, time
deltas would approximate 0.016s. We can test the previous property with this different
generator and see how it behaves in ideal conditions:

propTestBallOverFloorFixed =

forAll myStream (evalT (ballOverFloor 110.24999999999999))

where myStream :: Gen (SignalSampleStream ())

myStream = fixedDelayStream (1/60)

> quickCheck propTestBallOverFloorFixed

+++ OK, passed 100 tests.

The fact that this test passes is, however, a result of exploring few and small traces.
Before, our ball was not bouncing until several seconds into the simulation, and with a time
delta of barely 16ms, it takes several hundred samples to reach the floor. If we explore more
cases and larger input streams, we again find situations in which the program misbehaves:2

> quickCheckWith (stdArgs {maxSuccess = 1000, maxSize = 300})

propTestBallOverFloorFixed

*** Failed! Falsifiable (after 897 tests):

((),[(1.6666666666666666e-2,()),(1.6666666666666666e-2,())

,(1.6666666666666666e-2,()),...

2 This hints to a bigger problem with our physics simulation: Because we do not use information
about the objects in the system and their positions, velocities and accelerations, to determine when
to sample the simulation, there is always a chance that we may miss the exact time when the ball
hits the floor, and only sample too early or too late. This is known as tunneling or the bullet-
through-paper effect, and is discussed further in Sec. 8 and in Perez et al. (2016).
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While the generator fixedDelayStream simulates ideal conditions, in realistic sce-
narios we cannot expect every frame to last exactly 1/60 seconds. In practice, we find
it useful to have more control over how small or uniform delta times are, by means of
uniDistStreamMaxDT, setting instead a maximum time delta and accepting that, if, for
example, a simulation runs slower, the physics may not be as realistic.

We can use the given interface to generate sampling streams prefixed with real user
input, and have QuickCheck generate random samples after a particular point in time when
we suspect a bug may exist. The following generator completes a run after 1 minute for
approximately 10 additional seconds with 16ms delays:

tenAdditionalSecondsAfterMinute :: SignalSampleStream ()

-> Gen (SignalSampleStream ())

tenAdditionalSecondsAfterMinute userStream = do

qcStream <- generateStream (DistNormal (0.016, 0.002))

(Nothing, Nothing)

(Just (Right 10))

let clippedUserStream = sClipAfterTime 60 userStream

return (sConcat clippedUserStream 0.016 qcStream)

In Section 8 we show how we used QuickCheck to test properties of more complex
applications, and explain how it helped us find and address a fundamental problem in a
game.

4.4 Testing Abstract Properties

Our approach to purely functional reactive testing is also useful to test properties of FRP
implementations, general properties of Signal Functions, such as statelessness, or check
that the Temporal Logic is sound by testing tautologies.

We begin with a simple test of equality between two signal functions. This is useful for
checking that an optimized implementation fulfills a specification:

alwaysEqual :: Eq b => SF a b -> SF a b -> TPred a

alwaysEqual sf1 sf2 =

Always (SP ((sf1 &&& sf2) >>> (arr (uncurry (==)))))

propTestAlwaysEqual =

forAll myStream (evalT (alwaysEqual (arr (**2)) (arr (^2))))

where myStream :: Gen (SignalSampleStream Double)

myStream = uniDistStream

We can use this generic predicate to test if two specific signal functions perform the
same transformation:

> quickCheck propTestAlwaysEqual

+++ OK, passed 100 tests.

This approach can be used to test underlying properties of reactive frameworks like
Yampa and Dunai. For instance, we could check whether certain arrow laws (Hughes,
2000; Paterson, 2001) hold for signal functions:
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propArrowIdentity =

forAll myStream (evalT (alwaysEqual identity (arr id)))

where myStream :: Gen (SignalSampleStream Double)

myStream = uniDistStream

> quickCheck propArrowIdentity

+++ OK, passed 100 tests.

The above property expresses, for a limited input domain, that the identity for signal
functions (identity) is always equal to lifting (arr) the identity function (id). Testing
more complex laws requires that we generate, again, suitable random data. Consider, for
instance, the following attempt at testing that composition with identity leaves a signal
function unchanged:

propCompositionRightIdentity =

forAll myStream

(evalT (alwaysEqual (arr (**2) >>> identity) (arr (**2))))

where myStream :: Gen (SignalSampleStream Double)

myStream = uniDistStream

> quickCheck propCompositionRightIdentity

+++ OK, passed 100 tests.

This test is rather limited, since it only checks that a specific SF, arr (**2), has a right
identity for >>>. We can use QuickCheck’s function generators to quantify our predicate
over functions from Int to Int:

propTestAlwaysEqualIntFunctions =

forAll dataStream $ \s ->

forAll streamFunction $ \f ->

evalT (alwaysEqual (arr (apply f) >>> identity)

(arr (apply f)))

s

where dataStream :: Gen (SignalSampleStream Double)

dataStream = uniDistStream

streamFunction :: Gen (Fun Int Int)

streamFunction = arbitrary

This property holds as we would expect:

> quickCheckWith (stdArgs {maxSuccess = 1000, maxSize = 300})

propTestAlwaysEqualIntFunctions

+++ OK, passed 1000 tests.

5 Debugging

The previous facilities allow us to treat the program as a closed box and test its behaviour
from the outside against a complete execution trace. This section introduces two facilities
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to debug programs as they run: temporal assertions, checked during runtime, and tools for
analysing the progress of an FRP simulation. This will help us determine not only whether
programs fail, but also exactly when and where. For simplicity we use the definition of
Signal Functions without a monad, introduced in Section 2, to which we refer as Yampa’s
Signal Functions. Our system, however, also works for general Monadic Stream Functions,
as will be exemplified in Sections 6 and 7.

5.1 Temporal Assertions

Some of the temporal constructs presented in previous sections require arbitrary amounts of
past or non-causality (depending on the future). Modalities like always and eventually,
which look into the future, only become decidable once we reach the end of the input
stream. Until that point, they are semi-decidable: always can be falsified, if we find that
the condition does not hold at some point, while eventually can be verified, if we find
out that the condition holds at some point.

To monitor temporal assertions as programs execute without the need for a multi-valued
logic, we are limited in the language to causal modalities we can implement efficiently.
Non-causal temporal propositions will need to be transformed into causal ones, and asked
with respect to a later point in time. For example, if one examines a limited trace with
sampling times [t0, t1, . . . , tn] it is clear that if a condition holds for all points greater or
equal than t0, then it holds for all points earlier or equal to tn.

5.1.1 Implementation of Temporal Logic inside FRP

We introduce the type SPred as a signal carrying a Boolean, which represents causal
Temporal Predicates that can be defined as signal functions.

type SPred a = SF a Bool

Point-wise operators like not or and have straightforward implementations by lifting
the existing Haskell implementation of those logical operators over Booleans to the signal
function level:

notSP sp = sf >>> arr not

andSP sp1 sp2 = (sp1 &&& sp2) >>> arr (uncurry (&&))

orSP sp1 sp2 = (sp1 &&& sp2) >>> arr (uncurry (||))

implySP sp1 sp2 = orSP sp2 (notSP sp1)

Temporal modalities that refer to the past can be easily described using signal func-
tion combinators. We implement history, which checks a condition at every point and
becomes False forever as soon as the internal condition becomes False, as follows:3

history :: SPred a -> SPred a

history sf = feedback True $ proc (a, last) ->

3 We use the combinator feedback for consistency with prior sections. In Yampa, this function is
called loopPre.
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b <- sf -< a

let cur = last && b

returnA -< (cur, cur)

Similarly, we can define ever, which checks if a condition ever held.

ever :: SPred a -> SPred a

ever sf = feedback False $ proc (a, last) ->

b <- sf -< a

let cur = last || b

returnA -< (cur, cur)

We can also insert simple predicates into signal functions, for example:

ballAboveFloor :: SF () (Double, Bool)

ballAboveFloor = proc () -> do

ballPos <- bouncingBall -< ()

let aboveFloor = ballPos >= 0

returnA -< (ballPos, aboveFloor)

This temporal language, based on Past-time Linear Temporal Logic (ptLTL), comple-
ments the definitions in section 3 based on (future-time) Linear Temporal Logic (LTL).
In particular, the type SPred matches the type of the argument required by the SP value
constructor of the TPred data type. Both approaches can be used in combination, making
for a very expressive temporal logic language.

Definitions like the one above produce Boolean signals but, in order to report these vio-
lations (e.g., to print them or to record them in a log), they need to be passed as output of the
signal function, affecting the types and definitions of the function that use that signal func-
tion, and so on, all the way up to the top-level signal function. This makes this approach
suboptimal when we try to debug programs with minimal changes. Low-level workarounds
with Debug.Trace are not portable to mobile platforms, and unsafePerformIO might
hinder referential transparency across executions unless introduced with care.

Using the full power of Monadic Stream Functions, we could, instead, define a debug-
ging monad that logs assertions that are violated and the times when that happens. We use
the type synonym ESF, introduced in Section 2, to extend signal functions with additional
monads using MSF combinators:

type AssertionId = String

type DebuggingMonadT = WriterT [(AssertionId, DTime)]

assert :: AssertionId -> ESF (DebuggingMonadT m) Bool ()

assert assertionId = proc (val) -> do

let optionallyLog (t1, v1) = when v1 (tell (assertionId, t1))

t <- localTime -< ()

() <- arrM optionallyLog -< (t, val)

returnA -< ()
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While this also changes the types in our program, we only need to make this change
once to introduce the debugging monad regardless of how many assertions we introduce.
We could then use assertions as follows:

ballAboveFloorM :: ESF (DebuggingMonadT m) () Double

ballAboveFloorM = proc () -> do

ballPos <- bouncingBall -< ()

() <- assert "Ball must be above the floor" -< (ballPos >= 0)

returnA -< ballPos

5.2 Time-travel Debugger

Debugging systems using the facilities provided so far is technically possible, but can be
cumbersome. In many cases, visual inspection is needed to understand whether a problem
has occurred and why.

With pure, Arrowized FRP, users can record the inputs and sampling times while they
play and send them to developers indicating the time when a bug manifested. Developers
can later replay these traces and move forward to that time, run additional tests, introduce
assertions and visualize the problem with total reliability.

To facilitate this task, we have created an FRP time-travel debugger for Yampa. Our
system consists of two components: a extension to Yampa’s main execution function that
allows controlling and recording simulations, and a Graphical User Interface that connects
to running Yampa applications via the network and allows controlling the debugger. This
implementation uses internal Yampa definitions, and it does not currently work for full
Monadic Stream Functions. We discuss this further in Section 10.

5.2.1 Yampa time-travel debugger

We have extended Yampa’s main execution function with a communication channel to send
messages to and receive commands from an external debugger. Our implementation also
carries additional state, saving the history of all the inputs and sampling times, as well as
simulation preferences.

At every main loop iteration, our program checks for incoming commands. Features
supported by our system include saving the input trace to a file, loading or substituting
input samples, communicating the contents and time of an input sample, pausing, stopping
and playing the simulation, moving or skipping steps forwards and backwards, playing
until a certain condition is met and indicating when assertions are violated.

The communication with the remote debugger takes place via two sockets: a synchronous
one to receive commands and send responses, and an asynchronous one to notify inter-
esting events to the remote debugger. The remote debugger listens on the asynchronous
channel and, when it detects an event, or when instructed by the user, uses the synchronous
socket to send commands and obtain results. This lets us implement the remote debugger
in a reactive way, with less knowledge of the internals of how signal function execution is
implemented, as described in Perez & Nilsson (2015). The FRP simulator runs locally on
the device where we want to test the system, which can be a developer’s computer, but also
can be an external device.
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5.2.2 FRP Time-travel Debugger GUI

The second component of our system consists of a Graphical User Interface (Figure 4) that
allows us to connect to, follow and control an application running remotely on a phone, a
tablet, or a computer. Apart from executing the commands provided by the extended FRP
execution function, this GUI enables two advanced use cases.

Fig. 4. Screenshot of our FRP system debugger, with the central area showing a loaded input stream
being used to execute a simulation on an external device. The screenshot shows a sample in which a
temporal assertion was violated (red), the current sample according to the FRP program running on
a phone (orange), a breakpoint (dot), and the sample selected by the user (grey).

First, because we can save and reload traces and they are fully referentially transparent,
developers can run the traces provided by users and visualize, with absolute guarantee,
what the user saw, provided that the bug was not in the Input/Output layer of the system.
Once a bug is detected, they can go back in time, step by step or as far back as desired, and
find the points when assertions were violated. As the FRP program, running on a phone or
other device, follows the debugging GUI as it moves along the trace, it will actually show
the animation going backwards, forwards and jumping steps as instructed, which is an
excellent visual aid for developers. Furthermore developers can hot-swap the application,
that is, make changes to the program, recompile it, restart it on the phone, and take it back
to the same point in time to see if the bugs persist, all without having to close the debugger.
This is discussed further in Sec. 10.

Second, and aided by this first feature, we can take the user traces and feed them to
QuickCheck in order to find bugs. When users see the effect of a bug in a game, we can use
the Stream Manipulation API presented in Section 4 to instruct QuickCheck to take only a
portion of that stream and add random samples to it, to try and find an earlier point in time
at which the bug already manifests. Because QuickCheck generates new input traces as
counter-examples, we can save them in files, load them in the debugger and on the phone,
and visualize the issue. So, in effect, we can see QuickCheck play.

As an example, let us show how we can use this approach to debug the input stream
provided by QuickCheck invalidating the property propTestBallOverFloor (Section 4).



ZU064-05-FPR paper 2 June 2020 14:59

30 I. Perez and H. Nilsson

Fig. 5. Screenshots of a sample simulation running on an external device being remotely controlled
using the FRP debugging GUI, executing the counter-example generated by QuickCheck, step-by-
step. The ball is under the floor after 1 frame and takes 2 frames to come back to the screen area.
Frames #2 and #3 produce assertion violations while the ball is below the floor.

If we connect an external device running this application with the debugger, we can use the
GUI to load the counter-example input stream generated by QuickCheck and visualize on
the device the point at which our assertion fails (Figure 5).

The fact that we can rely on Haskell’s purity and explicit, strong types to obtain the
referential transparency needed to debug deterministically supports the idea that pure Func-
tional Programming is a very good fit for developing many kinds of applications, including
reactive systems, physics simulations, multimedia systems, and games.

6 Testing Hardware and External Systems

FRP can be used to program software simulations and games, as well as to model reac-
tive systems that can later be implemented in hardware or in a different language. While
simulations can help us understand how a system may behave under some conditions, the
real-world realisation may differ from expectations. In order to provide any guarantee of
reliability, we need to be able to compare the realization (software or hardware) with a
model, and to introduce monitors to detect property violations.

Because MSFs are inherently extensible, we can trivially replace one component in a
large MSF network by an external system implementing the same functionality, what is
known as software- and hardware-in-the-loop simulation.

Fig. 6. A depiction of an MSF that combines hardware (represented by the Arduino board) and
software components (represented by the black rectangles) to perform hardware-in-the-loop testing.
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We can verify that the new MSF with the external component behaves as expected in
multiple ways, such as by running it in parallel with the old model and comparing the
outputs, or by running a battery of tests against on it. In both of these cases, we can take
advantage of the randomized testing and temporal languages introduced earlier to produce
simpler, more comprehensive tests with lower production and maintenance costs.

For simplicity, the temporal languages described in earlier sections were based on signal
functions without side effects, as defined in Yampa. This and the following section assume
to have a similar language for Monadic Stream Functions, in which TPred has an addi-
tional monad argument (i.e., data TPred m a), the value constructor SP takes a Monadic
Stream Function as argument (i.e., SP :: MSF m a Bool -> TPred m a), and the eval-
uation function evalT returns a Boolean in a monadic context (that is,
evalT :: TPred m a -> SignalSampleStream a -> m Bool). Due to the way that
MSFs work, the type SignalSampleStream in this context is defined as the type synonym
SignalSampleStream a = [(DTime, a)], and the generators in our implementation
simply generate 0 always for the time delta of the first sample. The implementation of SP
for Monadic Stream Functions requires an ESF, which always includes time in a Reader

environment and is required to give semantics to modalities such as After. As time is not
essential in this section, we omit that detail. This simplification does not invalidate our
claims.

Determinism and external systems Our approach to testing reactive systems depends
greatly on tests being referentially transparent. While determinism is guaranteed by the
compiler for pure or monad-polymorphic MSFs, the same is not true for MSFs that enclose
or communicate with external software or hardware components.

To apply the same testing approach to MSFs with stateful components in-the-loop, we
need to have available a mechanism to “reset” their state. Such a mechanism is likely
to be very dependent on the specific component, and there is no simple way to capture
that requirement in our language. In this section we assume to have a resetting operation
available, like, for example, a function reset :: IO () that resets the state of the system
under test.

6.1 Software in the Loop Testing

We can now take a simple implementation and replace one component by a piece of
hardware that implements the same functionality.

Let us demonstrate with an example of an adder, an MSF that adds all incoming numbers
and outputs the sum so far, which we can implement with our language by keeping the
current sum in an accumulator and feeding that value back to the same MSF, as follows:

adder :: MSF m Int Int

adder = feedback 0 (arr (dup . uncurry (+)))

We can implement similar functionality in a different programming language, for ex-
ample, by saving the current sum in a file, parsing the input as a number, adding it to the
value in the accumulator, and printing it both to the file and to stdout. The specifics of
how to write that program are irrelevant; here, we simply assume to have it available as
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externalAdder. The connection between that external program and an MSF can be done
using IO actions that execute the program, passing the input and parsing the result. We can
create a trivial connection by means of the function System.Process.readProcess,
executing externalAdder in a separate process, passing the MSF input as input via stdin
and obtaining the standard output as a String:

adderC :: MSF IO Int Int

adderC = arrM $ \a ->

fmap read $ readProcess "./externalAdder" [show a] ""

This example assumes that we are only testing whether externalAdder actually adds
the numbers correctly, but it assumes that it always returns some valid number as output.
Failure to do so could make adderC crash (e.g., throw an exception). It would be trivial to
modify the definition to handle incorrect outputs, as well as other possible exceptions and
errors (e.g., the program not existing in the current path).

Using the Always temporal operator, we can check whether both are equivalent. Because
one of the components is in the IO monad (adderC), the whole monadic function is IO,
and so is the evaluation of that MSF with a specific input stream. Note that, in between
tests, we need to reset the accumulator for the external process, which we do by calling
reset before evalT:

pred stream = do

reset

evalT (Always $ SP ((adder &&& adderC) >>> arr (uncurry (==))))

stream

We evaluate this IO property using the auxiliary QuickCheck function ioProperty,
necessary to test properties with side effects:

ghci> quickCheck $ ioProperty pred

+++ OK, passed 100 tests.

Introducing an error in the external implementation makes that error manifest in our
testing framework. For example, if we add twice the input in externalAdder (or provide
it with double the number), our framework immediately detects the error.

Although this section does not explore resetting in depth, the existence of such an
operation is key to making tests reproducible. If, for example, we do not reset the exter-
nal component in between tests, both the counter-example provided by QuickCheck and,
potentially, its own shrinking mechanisms, would not work as expected. If we try to use
a counter-example provided by QuickCheck after manually re-setting the component, the
example might work, violating our expectation that tests should be reproducible.

6.2 Hardware in the Loop Testing

The same mechanism that allows us to communicate with an external program in place
of an MSF also allows us to test hardware in the loop. For example, we can run the same
algorithm in an Arduino, and communicate with the device via USB, exposed to both the
Arduino and the PC as a serial port.
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The connection of the Arduino with an MSF network requires two additions, akin to
what we discussed for external software: a communication layer, to exchange data between
the computer and the device, and a resetting mechanism, to return the device to its initial
state. These additional layers must be implemented both on the Arduino and on the MSF
(Haskell) side.

Implementation in Arduino In order to simplify the exposition, we discuss the Arduino
implementation in three parts: the adder itself, the communication layer, and the resetting
mechanism. Structuring programs this way can help test each part independently, to make
sure that errors are not due to incorrect communication with the device.

The implementation of an adder in Arduino language is as trivial as in MSFs:4

unsigned long accum = 0;

unsigned long step (unsigned long val) {

accum += val;

return (accum);

}

The additional layer required to communicate with Arduino needs to perform two func-
tions: detect when the Arduino needs to be restarted (to restore its original state), and
pass the incoming data to the step function and its result back to the computer. We can
implement the communication as follows:

void resetUponRequest ();

void setup() {

Serial.begin(9600);

}

void loop() {

if (Serial.available() > 0) {

resetUponRequest();

unsigned long input = (unsigned long)(Serial.parseInt());

unsigned long result = step(input);

Serial.println(result, DEC);

while (Serial.available()) {

Serial.read(); // clear buffer

}

}

}

4 For simplicity, this code uses C’s unsigned long type, which is different from Haskell’s Int and
not directly compatible. The Haskell code that corresponds to this implementation uses Word8 as
input and output types.
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The types of the input and the result are specific to this application, but the general idea
is applicable to other cases as well.

To make tests reproducible, it is crucial that the Arduino behave the same after a reset.
Different mechanisms exist to reset the device depending on the model. In our example,
tested on an Arduino Duemilanove, we reset the device in resetUponRequest when a
character * is sent via the serial port (by calling a function at address 0x0):

// Declare reset function at address 0

void(* resetFunc) (void) = 0;

// Reset the arduino when a '*' is sent via serial

void resetUponRequest () {

char maybeEOL = Serial.peek();

if (maybeEOL == '*') {

Serial.end();

resetFunc();

}

}

Connecting to external system via MSFs In this example, the Arduino is connected
to the USB as a serial port, which can be accessed from Haskell as a file handle using
standard IO operations like hGetLine :: Handle -> IO String. We assume to have
an operation available that executes an IO action that depends on the handle used to
communicate with the device:5

withArduino :: (Handle -> IO a) -> IO a

This operation also resets the device at the beginning by sending an initial ’*’ character and
introducing a short delay before the execution of the auxiliary action to give the Arduino
time to reset.

A simple wrapper allows defining an MSFs that communicate with the Arduino using
the handle provided by withArduino:

adderArduino :: Handle -> MSF IO Int Int

adderArduino handle = arrM $ \i -> do

hPutStr h $ show i ++ "\n"

read <$> hGetLine h

Testing with Hardware in the Loop The encoding of this property is rather trivial and,
like before, simply compares the results of both implementations, side by side. We pass the
handle to communicate with the Arduino as an argument, needed by adderArduino:

propA h =

Always $

SP ((adder &&& adderArduino h) >>> arr (uncurry (==)))

5 Such an operation should open the device in binary mode, reset it by sending in a * character,
execute the operation, and close it at the end. The function openSerial from the package serial
can be used to open the device at the right speed of 9600 baud for communication with a PC.
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We use ioProperty to run the effectful evaluation, with withArduino and evalT,
using QuickCheck:

pred = \stream -> ioProperty $ withArduino $ \h ->

evalT (propA h) stream

Because Arduino’s parseInt, used in the implementation before, cannot handle neg-
ative integers, we only test this property for all streams of positive integers. We use the
primitives defined in Section 4 to generate those streams:

positiveSignalStream :: Gen (SignalSampleStream Int)

positiveSignalStream = generateStreamWith (\_ _ -> genPos)

DistRandom (Nothing, Nothing) Nothing

where

genPos :: Gen Int

genPos = do

Positive x <- arbitrary

return x

Like before, the standard test works as expected:

ghci> quickCheck $ forAll positiveSignalStream pred

+++ OK, passed 100 tests.

Introducing a small fault in the Arduino results in the test failing on the machine. For
example, if we modify the Arduino program to include adder += 2 * val;, we obtain
the following:

ghci> quickCheck $ forAll positiveSignalStream pred

*** Failed! Falsifiable (after 3 tests and 6 shrinks):

[(0.0,25),(1.3866281957553916,26)]

This results in perfectly reproducible executions, provided that the hardware behaves
according to specification and that both resetting and communication with the device
are implemented correctly. In the following we shall explore how to deal with potential
hardware failures, and how QuickCheck and FRP can help us introduce reliable fault
tolerance mechanisms.

7 Fault Analysis, Injection and Tolerance in Reactive Systems

In normal conditions, we work under the assumption that the hardware works perfectly,
that the values obtained from input devices are accurate, and that the memory is never
corrupted. However, this is not true in practice, and critical systems that carry out im-
portant operations or function over long periods of time in hostile environments without
maintenance, like a satellite, warrant extra levels of reliability.

In particular, in prior sections, nothing tells us whether data is inaccurate, how inaccu-
rate it can be, and what kinds of faults may have lead to such incorrect results. If we expect
systems to fail, it is unclear what conclusions we can draw in practice from a battery of
tests having succeeded under ideal conditions.
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The use of techniques to minimize the impact of system failures is grouped under the
umbrella term of fault tolerance (Avižienis, 1967, 1976). In fault tolerance, a distinction
is made between a fault (a potential error that has not manifested yet), an error (a defect
that has already affected the internal state of the system, but whose effect has not had an
impact on the service yet), and a failure (an error that has affected the service provided).
The goal of fault tolerance is, therefore, to minimize faults and to detect and correct errors
before they result in system failure.

Redundancy can be used either to compare results from multiple units and disable
those that fail, or to average them and lower the impact of minor deviations (a process
called voting). Apart from adding extra redundancy, and to limit the possibility of multiple
redundant units failing for the same reason, we may choose to divide our architecture into
independent subsystems, which may be both physically and electrically isolated, constitut-
ing independent Fault Containment Regions (FCRs).

The combination of these fault tolerance mechanisms helps determine which faults may
still affect system operations, and defines the fault model. Total reliability is never possible,
so our fault model is likely to determine both the kinds of faults that are handled and also
how many simultaneous faults may be tolerated. For instance, a system may be able to
deal with a value not being available, but not be able to deal with a value being incorrect.
Others are capable of handling Byzantine errors, those in which different subsystems have
different incorrect values for the same conceptual element, whereas others may only be
able to do so, so long as the error is corrected before another simultaneous error occurs.

The study of how to introduce fault tolerance mechanisms in Functional Reactive Pro-
gramming systems was first introduced in (Perez, 2018), from which we borrow part of the
introduction in this section and the introductory example that follows. We then extend that
work to use Temporal Logic and QuickCheck to study the behaviour of a reactive system
when faults are present in the system, and to determine if fault tolerance mechanisms can
handle faults as expected.

7.1 Faults in Reactive Systems

Imagine that we are building a system to control a satellite and show that it will be able to
carry out its mission without colliding with other satellites, falling off its orbit or drifting
away.

To move and orient the satellite as required for a mission, we carry out a phase of
attitude determination (determining the position and direction of the spacecraft) prior to
attitude control (corrections to position and direction via a series of actuators). To estimate
the satellite’s attitude, we obtain data from a star tracker, which determines the position
and orientation relative to stars whose locations in space we know, and from an inertial
measurement unit (IMU), which combines gyroscopes and accelerometers to provide an
estimate of the spacecraft’s acceleration, linear velocity, orientation and surrounding mag-
netic fields.

Errors in these calculations can lead to the satellite falling out of its orbit and being lost,
or colliding into other spacecraft. It is therefore crucial that we understand how systems
can fail and introduce errors in our calculations, how we are dealing with potential faults,
and what effect that may have on our system overall.
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A schematic definition of our control system follows. Our reactive control MSF receives a
desired attitude as an input stream, and produces a stream with actions as output. Internally,
it gathers data from a star tracker and the IMU. We use a monad, StateT Universe m,
to represent the fact that the satellite’s position affects what stars it sees and its inertial
measurements, where Universe represents the state in the transformer that changes as
satellites and other elements move over time. This abstract Universe, which captures the
changing environment in which the simulation takes place, can also include a clock, under
the assumption that time can be considered global and absolute in our simplified example.
The use of feedback allows us to calculate the new attitude based on the last known
attitude and the information gathered from the sensors:

controlSystem :: Monad m

=> Attitude

-> MSF (StateT Universe m) Attitude [Action]

controlSystem initialAttitude = proc (desiredAttitude) -> do

stars <- starTrackerSense -< ()

inertialInfo <- imuSense -< ()

attitude <- feedback

initialAttitude

(arr (dup . calculateAttitude))

-< (stars, inertialInfo)

let actions = calculateActions desiredAttitude attitude

returnA -< actions

-- Predefined elsewhere

type Action = ...

type Attitude = ...

type StarInfo = ...

type InertialInfo = ...

starTrackerSense :: Monad m

=> MSF (StateT Universe m) () [StarInfo]

imuSense :: Monad m

=> MSF (StateT Universe m) () InertialInfo

calculateAttitude :: (([StarInfo], InertialInfo), Attitude)

-> Attitude

calculateActions :: Attitude -> Attitude -> [Action]

dup :: a -> (a, a)

For the purposes of simulating our example, this control system is part of a larger pro-
gram that executes the actions of the control system, affecting its position in the Universe,
and simulates other spacecraft as well.
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simulation :: Monad m

=> MSF m (DTime, ()) Universe

simulation = runReader $ runStateS initialUniverse $ sat1 >>> sat2

where

sat1 = controlSystem >>> actuators

sat2 = ... -- different expression

Fig. 7. A schematic simulation of two satellites moving around the Earth (not to scale), as
implemented below, extended with runtime verification to detect and report loss of separation (i.e.,
two satellites passing each other too closely.

Temporal Properties To understand if our simulation behaves correctly, let us express
some of the properties we would desire our system to have. We will first encode basic
properties, and then express more complex properties that take advantage of temporal logic
combinators.

A basic property would be that the main satellite, whose control system we have pro-
grammed, remains in orbit around the Earth, never getting too close to the other satellite.
We can express this property by saying that the distance between the satellites is greater
than a threshold:

propNoLossOfSeparation = Always $ SP $

simulation

>>>

(\s -> let (p1x,p1y) = position (sat1 s)
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(p2x,p2y) = position (sat2 s)

distance = abs (sqrt((p1x-p2x)^2 + (p2x - p2y)^2))

in distance > 110)

Testing this property is not entirely straightforward. If we do not sample frequently
enough, therefore adjusting the speed and the propulsion to correct the velocity, the satel-
lites will not avoid each other:6

ghci> quickCheck

$ forAll uniDistStream $ evalT propNoLossOfSeparation

*** Failed! Falsifiable (after 5 tests):

[(0.0,()),(13.67361148360696,()),(3.247598098323074,())]

Instead, we use our stream combinator library to produce a stream with a limit to the
sampling rate:

ghci> quickCheck

$ forAll (generateStream DistConstant (Just 0.5, Just 0.5)

Nothing)

$ evalT propNoLossOfSeparation

+++ OK, passed 100 tests.

We can be more conservative in the sampling rate, assuming that small deviations from
the perfect rate will exist, and checking whether our simulation is correct:

ghci> quickCheck

$ forAll (generateStream DistRandom (Nothing, Just 0.5)

Nothing)

$ evalT propNoLossOfSeparation

+++ OK, passed 100 tests.

We can even use this idea to try to find the highest sampling rate at which a problem
manifests. For example, incrementing the maximum time delta by 0.30 results in:

ghci> quickCheck

$ forAll (generateStream DistRandom (Nothing, Just 0.8)

Nothing)

$ evalT propNoLossOfSeparation

*** Failed! Falsifiable (after 83 tests):

[(0.0,())

,(0.6337967097559944,())

,(0.6552991075588447,())

,(0.38588618564678595,())

,(0.17043590981341944,())

,(0.7511450842519329,())

... (multiple times) ...

]

6 In the subsequent sessions, we manually adapt the layout of the code and introduce new lines for
presentation purposes.
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A more sophisticated property that we might want to check is that, even with a relatively
low sampling rate or if the sampling rate drops temporarily, the satellite will always correct
its course towards the safe orbit:

ghci> quickCheck

$ forAll (generateStream DistRandom (Nothing, Just 0.79)

Nothing)

$ \stream -> evalT propNoLossOfSeparation

(sConcat stream (sConcat [(0.8, ())] stream))

*** Failed! Falsifiable (after 63 tests):

[(0.0,())

,(0.730513278034849,())

,(0.7438086357750868,())

,(1.8471818310137077e-2,())

,(0.5480596195116617,())

... (multiple times) ...

]

If we decrease the sampling rate sufficiently enough, we see that the system becomes
more robust to this kind of fault:

ghci> quickCheck

$ forAll (generateStream DistRandom (Nothing, Just 0.78)

Nothing)

$ \stream -> evalT propNoLossOfSeparation

(sConcat stream (sConcat [(0.8, ())] stream))

+++ OK, passed 100 tests.

This kind of search is, of course, not exhaustive. As it is often the case with QuickCheck,
finding counter examples is meaningful (i.e., the property can definitely be violated), while
passing the tests renders an inconclusive decision (i.e., the property might still be violated
with an input not tested). We can never obtain full confidence in a property by means
of testing alone for very large or infinite input spaces, we can increase our confidence in
an implementation by parameterizing our tests by increasing the number of tests and by
improving the random input generators. The study of how much of the input has actually
been explored remains as future work, as will be detailed in Section 10.

It is worth noting that this example exhibits the same bullet-through-paper effect that
we discussed before (Sec. 4). However, this example further assumes that both the physics
simulation and the computers on the satellites run on the same clock, which is obviously
inaccurate. From the point of view of the user, a change in the clock rate will imply both
that the physics simulation is more accurate, and that the computers are sampling (and
correcting) more frequently, but not necessarily help explain which one is at fault. The
use of different clocks for FRP simulations and their correct coordination has been the
subject of study of Bärenz & Perez (2018). Due to that solution being based on Monadic
Stream Functions, the ideas discussed in this paper are directly applicable to simulations
with multiple clocks.
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7.2 Fault Injection and Correction

To test whether our system is robust to different kinds of faults, we are going to modify
its internal connections to inject the kinds of faults we know may occur. We shall do so
by adding monadic stream functions that alter values depending on predefined fault rates,
fixed for the simulation and provided in a global environment.

We first define the fault profile, or the settings used to inject faults, with a type that
captures fault rates for different subparts, as well as a seed that we can use to inject faults
in a predictable way.

data FaultSettings = FaultSettings

{ seed :: StdGen -- ^ Random number generator seed

, sense1FR :: Double -- ^ Sensing failure rate

, sense1F :: Bool -- ^ Has a fault actually been introduced?

}

deriving (Show, Generic)

It would be trivial to extend this fault profile to include failure rates for other subparts,
such as communication failures, other sensors, the planning system, and the actuators and
propulsion systems.

We can now re-define the satellite position sensor to alter the data inserting a fault. Let
us first insert a random fault that depends on the fault rate defined in the FaultSettings
given above. We modify the monad to provide both the state of the system and the fault
profile or settings in a combined simulation state SimState, which is a pair of Universe
and FaultSettings:

starTrackerSense' :: Monad m

=> MSF (StateT SimState m) () StarInfo

starTrackerSense' = arrM $ \_ -> do

(univ,ft) <- get

let (failT, seed') = randomR (0,1) (seed ft)

fail = failT < sense1FR ft

-- Record that there's a fault

put (univ, ft { seed = seed', sense1F = fail })

-- Produce wrong value

if fail

then return incorrectStarInfo

else return $ sat1 univ

where

incorrectStarInfo = -- fixed bad position and orientation

If we use this in place of our original sensor, QuickCheck can quickly find a fault rate
for which the satellite does not meet the properties we saw before:

ghci> quickCheck

$ forAll (generateStream DistRandom (Nothing, Just 0.5)
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Nothing)

$ evalT propNoLossOfSeparation'

*** Failed! Falsifiable (after 82 tests):

([(0.0,())

,(0.32561791284270414,())

,(0.2939231037169424,())

,(0.2822720676219349,())

,...

]

,FaultSettings {seed = 25 2, sense1FR = 0.8833330397836819

, sense1F = False})

Note that, for a sampling rate for which our system worked perfectly before, the intro-
duction of faults results in properties being violated. We can use a more realistic failure rate
of 0.01 for this kind of device to determine how inaccurate the position may be, and run
the properties again for two maximum time deltas. Our tests succeed for a maximum time
delta of 0.5, like before, but they fail for a max delta of 0.7, which was working perfectly
when failures were not present in the system:

*** Failed! Falsifiable (after 33 tests):

([(0.0,()),(0.47233347953205923,()),(0.32903943890981263,()),...]

,FaultSettings {seed = 12 1, sense1FR = 1.0e-2, sense1F = False})

To detect and correct faults present in our system, we can use multiple redundant units
in parallel and some mechanism to either average their results or detect and ignore the ones
that seem incorrect.

For example, if we modify controlSystem to use three redundant starTrackerSense’
in parallel and average the position and orientation received from them, we see that not
only is it smoother, but it is also more robust. For a sampling rate of up to 0.7, which our
last example failed for, the new run now passes the test without problems. If we increase
the sampling rate to a maximum time delta of 0.37s with fault rates of close to 0.05, the
tests pass correctly, indicating that the fault tolerance mechanisms we have introduced are
increasing the robustness of the calculation.

The approach presented in this section is limited in that we included one random seed
that determines if or when faults are introduced in the system, but exposes no way for
QuickCheck to control it in order to shrink randomly generated streams and produce
shorter or simpler counter-examples. The exploration of shrinking with the techniques
proposed in this paper remains an open problem.

8 Experience

The approach to testing described in this paper has been used to create a testing exten-
sion to the FRP implementation Yampa, and to implement a suite of unit tests for that
library (Perez, 2017c). Similar facilities have also been added to the library dunai, that
implements Monadic Stream Functions (Perez, 2017b).
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While the creation of more suitable generators for signal functions is still work in
progress, the properties we have implemented provide better coverage of the input test
space than Yampa’s previous set of unit tests.

The combination of Temporal Logic, QuickCheck and the debugging GUI applica-
tion has also been used to debug existing demonstration applications like Haskanoid,7

professional iOS/Android games like Magic Cookies!8, 9 and other titles currently under
development.10

In this section, we explore how the combination of QuickCheck and Temporal Logic
helped find bugs in the game Haskanoid. We cannot expect game developers to mirror
realistic user-input using just QuickCheck generators. To produce complex inputs, the use
of the additional recording facilities provided would be useful. We expand on this point in
Sec. 8.4.

8.1 Haskanoid

To demonstrate properties that QuickCheck can detect and how it has helped find bugs
in real applications, we provide examples using an existing cross-platform open-source
Haskell implementation of the popular Breakout that runs on Windows, Linux, Mac, iOS,
Android and can be controlled with devices like Kinects, Wiimotes and accelerometers.

The user controls a paddle which moves only sideways. A ball is initially attached to the
paddle. When the user clicks the mouse, the ball is propelled upwards, bouncing against
walls, blocks and the paddle itself. Blocks disappear when hit three times. The player wins
when all blocks disappear, and loses if the ball hits the floor.

The full system implements more complex features like levels, lives and sound. Here
we present a simplified version to test the application physics and simple, yet important,
invariants.

8.2 Objects

Objects in Haskanoid are defined as signal functions that, depending on some input, present
their new state and any effects that could affect other objects or their own existence (i.e.
requests to create new objects or kill themselves). This idea is described in more detail in
Courtney et al. (2003).

type ObjectSF = SF ObjectInput ObjectOutput

data ObjectInput = ObjectInput

{ userInput :: Controller

7 http://github.com/ivanperez-keera/haskanoid
8 https://itunes.apple.com/us/app/magic-cookies/id1244709871
9 https://play.google.com/store/apps/details?id=uk.co.keera.games.
magiccookies

10 The development of the mobile extensions to the framework presented in this paper and their use
to test these games have been carried out by Keera Studios Ltd., a start-up founded by the first
author.
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, collisions :: Collisions

, knownObjects :: Objects

}

data ObjectOutput = ObjectOutput

{ outputObject :: Object

, objectDied :: Event ()

}

Any object can depend on the user input (Controller), previous collisions, and the
state of other objects. Objects produce an internal state with physical properties and indi-
cate whether the object has died. This is used by blocks hit by the ball, to signal that they
must be eliminated.

A simplified definition for objects, used for for the ball, the paddle, blocks and the walls,
follows. All 2D-suffixed types correspond to tuples of Doubles.

data Object = Object

{ objectName :: String

, objectKind :: ObjectKind

, objectPos :: Pos2D

, objectVel :: Vel2D

, objectAcc :: Acc2D

, objectHit :: Bool

, objectDead :: Bool

, collisionEnergy :: Double

}

8.3 Testing physics simulations

In this simulation, the position of the ball in the output can be extracted using a function
called ballPos. In the following example, the top-level function mainSystem takes user
input (Controller) and returns a system state, which includes a collection of
ObjectOutputs. Like in previous occasions, in this case we were interested in knowing
whether the ball could overlap with the wall, or pass through blocks exhibiting an effect
called tunneling or bullet through paper (Gregory, 2014).

propBallInScreenAreaW = forAll myStream $ evalT

Always

(SP (mainSystem

>>> arr systemObjects

>>> arr (\p -> isInRange (0, systemWidth)

(fst (ballPos p)))))

where myStream :: Gen Controller

myStream = uniDistStream

> quickCheck propBallInScreenAreaW

*** Failed! Falsifiable (after 31 tests):
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(Controller { controllerPos = (8.49338899008, 29.07069391684)

, controllerClick = False},

[ ( 17.68729810519

, Controller { controllerPos = (28.12964084927, 12.4975777242)

, controllerClick = True})

, ( 29.88005602026

, Controller { controllerPos = (51.41061779016, 3.0186952000)

, controllerClick = False})])

In this trace, QuickCheck is telling us that the input controller (e.g. mouse) needs to
start at a particular position with the main button released, moved to another position
with the button pressed, and moved elsewhere with the button released. However, the
delays between one sample and the next are unrealistically large: one new frame every 15
seconds. To make it a bit more realistic we decide to use a stream generator that guarantees
shorter delays. Let’s assume that our simulation runs at around 25FPS (denseStream is
an auxiliary generator that creates streams with very small time deltas following a normal
distribution):

propBallInScreenAreaW' = forAll myStream $ evalT

Always

(SP (mainSystem

>>> arr systemObjects

>>> arr (\p -> isInRange (0, systemWidth) (fst (ballPos p)))))

where myStream :: Gen Controller

myStream = denseStream 0.04

> quickCheck propBallInScreenAreaW'

+++ OK, passed 100 tests.

If we try this property with even higher framerates (lower deltas), it seems to pass all
tests. But that is only an illusion. If, instead of increasing the number of deltas, we choose
to increase the number of tests, we start seeing that not even 0.04 is low enough:

> quickCheckWith (stdArgs {maxSuccess = 100000})

propBallInScreenAreaW'

*** Failed! Falsifiable (after 3443 tests):...

There is one artificial way in which we can prevent the ball from going out of the screen:
with a speed cap. If we cap the maximum speed and introduce a margin of error in the
detection of collisions, then the collision with the ball against any wall will be detected
before they overlap.

Nevertheless, this artificial cap can easily be tested for by checking the magnitude of the
ball’s velocity. This test should work regardless of the sampling rate and detecting that the
ball moves too fast (one condition) is easier than detecting that the ball is out of the screen,
because it was moving too fast (two conditions).

Introducing such a test in this system was particularly useful, as it showed that the
velocity was not being capped right after launching it or after collisions, which implied
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that, if the paddle hit the ball with a quick, sudden movement, it could temporarily “insert”
it into the wall. Before adding the second speed cap, we saw that it was still possible to
interact with the application in a way that the velocity would be too fast:

propVelInRange = forAll myStream $ evalT

Always

(SP (mainSystem

>>> arr systemObjects

>>> arr (\p -> isInRange (0, 800) (norm (ballVel p)))))

where myStream :: Gen Controller

myStream = denseStream 0.004

> quickCheck propVelInRange

*** Failed! Falsifiable (after 67 tests):

(Controller { controllerPos = (130.5942684124, 40.2324487584)

, controllerClick = False},

[ ( 3.9907922435e-3

, Controller { controllerPos = (61.5220268505, 108.729668432)

, controllerClick = True})

, ( 2.1598144494e-3

, Controller { controllerPos = (66.5487565898, 50.682566812)

, controllerClick = False})])

In this trace, the mouse is moved quickly to the left and clicked, propelling the ball
with a velocity of thousands of pixels per second. By adding the cap in other places in
the code, we guarantee that the velocity is within the expected range, making the ball
more likely to remain within the application area even with lower sampling rates. This
solution is, unfortunately, ad hoc and not reusable, and it might not behave properly in
other situations. A general solution for this problem, called tunneling, is to implement a
continuous-collision detection system (CCD).

8.4 Discussion

The approach explored in this section discusses how QuickCheck can be used to detect
property violations. Using the generators provided, it is possible to explore simple prop-
erties in games, models and simulations, as shown in this and earlier sections on fault
tolerance. In recent work, we have used the same approach to evaluate the resilience
of swarms of satellites (Perez et al., 2019), showing that this approach works for more
complex properties.

We would not expect game developers to use the low-level API to try to replicate user
input faithfully. For more complex inputs, especially in interactive games, the recording
facilities provided are crucial. The ability to transport the game to a point of the simulation
where players have witnessed a problem helps replicate the conditions, and the existing API
can help detect if the problems seen are a consequence of violations of basic properties at a
later stage. For most games, the generators provided cannot be used in practice to generate
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whole streams as long as recordings from actual players (which can be minutes or even
hours), but they can be used to complement those streams.

It has been suggested that a random input generation method that is guided by the parts
of the properties that are being invalidated could help find violations faster. This would not
be possible with the information available at present in QuickCheck, and we consider this
future work.

9 Related work

The link between FRP and Temporal Logic has been studied extensively. Jeffrey (2012) de-
scribes how LTL can be used to encode FRP’s construct types, making any well-typed FRP
program a proof of an LTL tautology. Jeffrey (2014) also combines LTL with FRP using
dependent types to define streams of types, which themselves type reactive programs and
form a constructive temporal logic, exploiting the Curry-Howard isomorphism between TL
and FRP. The author goes on to define a combination of FRP with past-time LTL, in which
combinators like “always” mean “so far”, making all modalities executable and causal.

Jeltsch (2012) has also described the Curry-Horward isomorphism between Temporal
Logic and FRP, in which FRP programs implement Temporal Logic propositions. The
author shows that behaviours and events can be generalized in terms of the Until operator
from LTL (Jeltsch, 2013). He then gives categorical semantics for LTL with until and
FRP with behaviours and events. This work is used to define Concrete Process Categories
(CPCs), which serve as categorical models of FRP with processes. The author defines a
new semantics, a new temporal logic for CPCs, which captures causality.

Sculthorpe (2011) has described an encoding of Priorean Temporal Logic in a denota-
tional model used to describe FRP signals. In his approach, properties of both the time
domain and FRP signals and signal functions can be described as temporal predicates,
that may or may not hold, depending on the time domain. Sculthorpe also shows how
properties of signal functions, like being temporally decoupled or stateless may be captured
using temporal logic. There are several differences between Sculthorpe’s approach and
ours. First, we use a different kind of time, which is bounded because our simulations can
actually end. Also, because we are interested in executing or checking these properties live,
we cannot depend on the past or the future in the way that Sculthorpe’s semantics does.
Dependencies on the past lead to leaks, dependencies on the future cannot be determined
in the present (which is how Yampa is evaluated).

The link between TL and FRP has been discussed by Winitzki (2014), who explains
the meaning of modalities in Temporal Logic with discrete unbounded time in terms of
streams and samples. The author also lists features desired for implementing Temporal
Logic currently unavailable in existing FRP implementations.

The use of Temporal Logic to specify properties of reactive systems is frequent in other
domains. Hughes et al. (2010) use Temporal Logic to specify parts of an asynchronous
messaging server, and use QuickCheck to prove properties under timing uncertainty. Tan
et al. (2004) provide a metric to understand how well a property specified using Temporal
Logic has been tested by a test suite.

Giannakopoulou & Havelund (2001) presents an approach at verifying a program’s
behaviour against LTL specifications, by translating an LTL formulae into a finite-state
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automata that monitors the program’s behaviour. This approach is based on the next-
free variant of Linear Temporal Logic with Until, as it is guaranteed to be unaffected by
stuttering (receiving the same input several times in succession).

Havelund & Rosu (2001) have also used Linear Temporal Logic to monitor programs by
connecting to them running live via the network. In this work the authors use finite-trace
LTL, a variant of infinite-trace LTL in which always means at every point in the trace, and
next defaults to true at the end of the trace. Like in our case, formulae that always hold in
limited-trace LTL do not hold in infinite-trace LTL and vice-versa, an aspect explored in
also in some detail by Sculthorpe (2011).

Nejati et al. (2005) discuss the construction of a model that approximates a program
of interest, and use CTL to verify properties of the model. The authors use a three-valued
logic in order to indicate when a model needs further refinements and determine whether
a CTL property holds.

In the context of game programming, the idea of recording and replaying programs
deterministically was proposed, among others, by John Carmack (Carmack, 1998, p. 55),
who implemented a single entry point for all input events to a game, and set up a journaling
system that recorded everything the game received, including the time. Carmack also
pointed out that reproducing bugs is key to fixing them, and that it is important to be
able to roll back time in order to find when a bug is first introduced, even if its effect is
only visible later in the execution.

Execution-replay systems have also been studied in the context of general imperative
programming and especially parallel and distributed systems Cornelis et al. (2003); Ronsse
et al. (2000). Much of the focus in those areas has been towards dealing with low-level
issues to guarantee determinism of replays. In contrast, we rely on Haskell’s strong type
system to guarantee the freedom from side effects in FRP programs and hence absolute
determinism, letting us focus on how to exploit such guarantees for declarative testing and
debugging. Our debugger currently records complete input traces, but our approach could
be used to log input to only a subpart of the system, making it more suitable for higher-level
debugging, as opposed to logging low-level system calls.

Mozilla’s tool rr11 monitors a group of Linux processes, capturing the results of kernel
calls and non-deterministic CPU effects. In future replays, memory and register contents
are the same, and all system calls return the same values. This tool has been designed
for general purpose applications, so it works at a very low level. As a result, it is tied
to the Linux kernel, it emulates a single-core machine, and it is difficult to port to other
architectures (ARM and Android support, for example, is still an open issue12). In contrast,
our approach works on all architectures for which there is a Haskell Compiler with a
corresponding back-end (currently iOS, Android, web, Linux, Windows and MacOSX).
To control a simulation with the debugging GUI, the only platform-specific adaptation
required is a way for the Yampa debugger to open two network sockets for communication.

GDB has Process Record and Replay,13 capabilities, which record system calls and the
CPU and memory state at each point. Like Mozilla’s rr, GDB’s replay feature requires

11 http://rr-project.org/http://rr-project.org/
12 https://github.com/mozilla/rr/issues/1373https://github.com/mozilla/rr/issues/1373
13 https://sourceware.org/gdb/wiki/ProcessRecordhttps://sourceware.org/gdb/wiki/ProcessRecord
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adaptations specific for each architecture and system call. An advantage of GDB’s im-
plementation is that actions are undoable, which means that we can move backwards
along the trace. In contrast, FRP signals only move forward, although our system records
intermediate Signal Functions to provide random access to any time point in constant time,
and they can always be reproduced deterministically if only the inputs are recorded. Time-
reversible FRP combinators remain an open problem.

10 Conclusions and Future work

In this paper we have shown how to approach testing and debugging of FRP programs
in variants like Arrowized FRP that completely separate IO from the signal processing.
We have used an encoding of Linear Temporal Logic over FRP to describe temporal
properties of FRP programs and evaluate them against input streams. We have also shown
that this simple approach makes FRP programs easily testable with existing tools like
QuickCheck, and we can add temporal assertions to programs in a similar fashion. Our
implementations of temporal logic and the compatibility layer for QuickCheck work for
two FRP implementations: the pure Arrowized FRP library Yampa, and the Monadic
Stream Function library Dunai.

We have extended an FRP implementation with recording and remote control capa-
bilities, and implemented a Graphical User Interface to communicate with applications
running remotely on PCs, mobile devices, or external hardware like ARM boards and Ar-
duinos. The referential transparency available in pure FRP implementations like Monadic
Stream Functions and Yampa helps developers reproduce the exact same situation wit-
nessed by beta-testers, and move back and forth along the trace adding new assertions or
visualizing the simulation along on an external device to pinpoint possible bugs. These
traces can be fed to QuickCheck for additional help in finding possible property violations,
and the counter-examples found by QuickCheck can be loaded back into a phone for future
study and to visualize them. So, in practice, we can truly see QuickCheck interact with our
applications.

We have shown that the testing facilities, when used in combination with Monadic
Stream Functions, enable hardware- and software-in-the-loop testing, and have provided
examples for both cases. We have also exemplified how to inject faults with different rates
in MSFs, and how to use QuickCheck and the temporal logics provided to evaluate fault
tolerance mechanism.

We would be interested in finding systems for which the temporal languages provided
are insufficient to express desired properties declaratively and concisely. Our encoding of
temporal properties is based on Linear Temporal Logic, but we can answer questions per-
taining to multiple possible futures by means of the quantification provided by QuickCheck
with forAll and the stream generators we provide. It is unclear whether our formalisation
of temporal logic on top of FRP is as expressive as linear temporal logic, or how it com-
pares otherwise.. Nevertheless, the use of a different formalism like Computation Tree
Logic (Clarke & Emerson, 1982) and a comparison with our approach remain as future
work. In the context of real-time systems, we might need to use a metric logic to deal with
the notion of continuous time.
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A question we have not answered is how well the input space is explored. In this respect,
further improvements could be made by adding Signal Function generators, increasing the
confidence in abstract properties about Signal Functions, like the Arrow laws that they are
expected to fulfill. We have also yet to explore further shrinking strategies for input traces,
in order to help QuickCheck find minimal counter-examples.

Our FRP debugger has been implemented for Yampa, but the same approach could be
used with different Arrowized FRP variants like Dunai (Perez et al., 2016). An advantage
of using Dunai over Yampa would be that the former only has one type for Monadic Stream
Functions, which can be parameterised over the time domain (Perez, 2017a), making it
more versatile while reducing code duplication in our debugger. Also, Dunai introduces
monads, which can be used to implement safe debugging facilities, as shown in Section 5.
Additionally, a monad would allow us to introduce the recording system inside a Signal
Function, instead of at the top-level like we do in Yampa. This would let us record high-
level input, like declarative actions, instead of low-level input, like user clicks and mouse
movement, which would be more useful as small variations to the User Interface are more
likely to invalidate the latter. At present, the need to record system inputs at the top-level
for our approach to work is a limitation to hot-swap running applications, since a bug fix
that requires modifying the user interface may lead to a completely different application
state, rendering the recorded input trace useless for the purposes of debugging.

We have also not studied the performance cost of using our solution, or how much it
could affect the behaviour of a program and the detection of bugs. In order for a system
to be fully reproducible, users need to record the complete input trace. It is in principle
possible, for instance, for sampling times to never be fast enough when debugging is
enabled for certain bugs to appear, what is known as a heisenbug (Gray, 1986) (a bug
that is only detectable when debugging tools are not enabled). In some cases we have
reduced the debugging facilities introduced in a binary to only saving the inputs to a file,
to minimize the overhead and hence the possibility of introducing heisenbugs. If a bug is
detected with this minimal debugger and the input is logged accordingly, then it will be
completely reproducible with the full debugger.

A side feature facilitated by our framework is that we could stream input traces over to
another machine to visualize a simulation as it is being executed, or use them to replay a
simulation in a machine with higher visual specifications or to record a video. We could
also replay these simulations later on in higher quality or record videos of the output for
publication online, even if they were produced in devices with lower specifications.

Our system currently requires that the complete input be recorded. If we could
serialize/de-serialize Signal Functions, then we could in principle start the recording only
when desired. This would, of course, affect the meaning of our language of Temporal
Properties and the modalities admitted, since we would be discarding part of the past and
might not be able to answer questions about such past anymore.

FRP is defined in continuous time, but implementations are inherently discrete. Imple-
mentations like Yampa include Signal Functions that diverge in the limit (as the time delta
becomes smaller). It would be interesting to show that the behaviour of Signal Functions
is irrespective of the sampling rate, and that it is bounded in the limit. This would require
using stream refinement or partitioning to express the corresponding QuickCheck proper-
ties.
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It is possible to use the techniques presented in this paper to explore the system be-
haviour when components misbehave. We could parameterise the system by fault injection
rates, and program it with explicit fault injection features to introduce faults based on the
given settings. Alternatively, having a variant of FRP in which changes to an FRP network
are first-class would allow us to use QuickCheck to automatically generate those changes,
and find (small) modifications that make the system fail. This would help us determine
which levels of fault tolerance need to be introduced to make the network robust to certain
kinds of faults.

It would be interesting to combine our system to provide debugging capabilities for
distributed systems. In particular, in the context of games, it is crucial that multiple players
see the same world in order to provide a smooth simulation.14 Differences between each
player’s worlds manifest as inconsistencies during gameplay (e.g., a player being hit by the
opponent and then recovering), which are exacerbated by network lag. In this context, dis-
tributed consensus might provide the necessary requirements for determinism and reliable
testing and debugging.

In terms of implementation, we have implemented this for Yampa and included some
properties of its own battery of unit tests, but not all of them. Similarly, it would be interest-
ing to include properties of the logic itself in the battery of tests, in the form of tautologies
that must hold, to guarantee the consistency of the temporal logic(s) implemented.

Acknowledgements

The authors would like to thank Paolo Capriotti, Graham Hutton, Jan Bracker, Jonathan
Thaler, Csaba Hruska, Alwyn Goodloe, Kerianne Hobbs, and the anonymous referees for
their constructive comments and helpful suggestions.

Fig. 6 uses parts of an image by Philipp Henkel, licensed under the Creative Commons
Attribution-Share Alike 4.0 International license, and is consequently licensed under the
same terms.

Ivan Perez’s contributions to the presented work were partly funded under NASA Co-
operative Agreement 80LARC17C0004. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily
reflect the views, either expressed or implied, of any of the funding organizations. The first
author is also the founder of Keera Studios Ltd., as described in Sec. 8.

Bibliography

Bibliography
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