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ABSTRACT (245) 

Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The 

literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing 

rates of central auditory neurons resulting from modification of neural gain. Here, we present an 

alternative model based on evidence that tinnitus is: (i) rare in people who are congenitally deaf, (ii) 

common in people with acquired deafness, and (iii) potentially suppressed by active cochlear implants 

used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity 

has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and 

projecting neurons in the ascending auditory path and co-activated fronto-striatal networks after hearing 

onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by 

PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus 

resolution, attention-driven contrast improvement, and augmentation of auditory responses in central 

auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is 

lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden 

hyperexcitability, enhanced cortical synchrony, elevated spontaneous gamma oscillations, and impaired 

attention/stress-control that have been described in previous tinnitus models. Moreover, because fast 

processing is gained through sensory experience, tinnitus would not exist in congenital deafness. 

Electrical cochlear stimulation may have the potential to re-establish tonic inhibitory networks and thus 

suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may 

catalyze cooperative efforts to develop tinnitus therapies. 

 

INTRODUCTION  

Chronic, subjective tinnitus, an auditory phantom sensation, affects approximately one-sixth of the 

general population (Shargorodsky et al., 2010). Tinnitus can be triggered by a variety of causes that 

may act synergistically (Tyler et al., 2008a; Henry et al., 2014; Moller et al., 2015), but hearing loss is 

the biggest risk factor for tinnitus (Roberts et al., 2010; Knipper et al., 2013; Lanting et al., 2014; Bauer, 

2018). The majority of tinnitus researchers assume that tinnitus is linked to damage or dysfunction in 

the periphery of the auditory system (Demeester et al., 2007). Because tinnitus can occur without 

hearing threshold elevation (Roberts et al., 2010; Geven et al., 2011; Langers et al., 2012; Lanting et 

al., 2014) and normal hearing thresholds rely on the proper function of outer hair cells (OHC) (Dallos, 

2008), OHC dysfunction is unlikely to be a primary cause of tinnitus. Instead, de-afferentation of inner 

hair cells (IHC) by auditory nerve fibers is suggested to be linked to tinnitus in animal models (Müller et 

al., 2003; Bauer et al., 2007; Roberts et al., 2010; Knipper et al., 2013; Rüttiger et al., 2013; Singer et 

al., 2013) and in humans (Weisz et al., 2006; Geven et al., 2011; Langers et al., 2012; Boyen et al., 

2014; Gilles et al., 2016; Guest et al., 2017; Milloy et al., 2017; Hofmeier et al., 2018). Other risks for 



 

 

tinnitus include anxiety and stress-related disorders (Canlon et al., 2013; Durai and Searchfield, 2016; 

Mazurek et al., 2017).  

From studies on auditory neurons, tinnitus has been linked to hyperexcitability and elevated 

spontaneous activity in the brain. Such increases in activity are observed, for example, in the cochlear 

nucleus (CN) (Auerbach et al., 2014; Gao et al., 2016), the inferior colliculus (IC) (Bauer et al., 2008), 

the medial geniculate body (MGB) (Kalappa et al., 2014), and the auditory cortex (AC) (Norena and 

Farley, 2013; Eggermont and Tass, 2015) after acoustic trauma, ototoxicity, or deafferentation of 

auditory nerve fibers. There is an ongoing debate about the source of hyperexcitabililty and elevated 

spontaneous activity, however. Most previous tinnitus literature suggested that tinnitus is the result of 

homeostatic increases in central neural gain (see reviews: (Norena, 2011; Schaette and McAlpine, 2011; 

Schaette and Kempter, 2012; Auerbach et al., 2014; Sedley et al., 2016; Shore et al., 2016; Roberts, 

2018; Roberts and Salvi, 2019). In contrast, other studies propose that tinnitus is not related to increased 

central gain (Zeng, 2013; Möhrle et al., 2019; Sedley, 2019), but instead occurs when auditory input 

falls short of thresholds for increasing neural gain, so stimulus-evoked responses are diminished in the 

ascending auditory path (Rüttiger et al., 2013; Singer et al., 2013; Zeng, 2013; Hofmeier et al., 2018; 

Möhrle et al., 2019). In the present review, we question the previous hypotheses that neural gain is the 

source of tinnitus, and propose instead that hyperexcitability during tinnitus is the result of a failure to 

generate central neural gain due to impairment of an inhibitory network that had developed with 

maturation of fast auditory fibers to enable high stimulus resolution. In this view, a loss of fast auditory 

fibers would reduce the drive for tonic inhibition in auditory-specific circuits, resulting in the emergence 

of hyperactivity that underlies tinnitus. Hence, tinnitus may only develop after fast auditory fibers have 

stimulated the development of tonic inhibition within these auditory-specific circuits and would not 

develop in persons with congenital deafness. This hypothesis would explain why congenital deafness is 

rarely associated with tinnitus, while acquired deafness is often associated with tinnitus (Eggermont and 

Kral, 2016). We moreover suggest that fast auditory fibers that mature with sensory experience 

improve stimulus resolution through BDNF-dependent synapse formation between fast-spiking 

parvalbumin-positive (PV+) inhibitory interneuron complex dendritic networks and pyramidal 

projection neurons in the ascending auditory path, as shown for the AC (Xu et al., 2010). Thereby the 

representation of specific auditory stimuli can be integrated in distributed fronto-striatal networks that 

control attention-driven amplification processes. Through the activation of this network, precisely-



 

 

timed, stimulus-driven bottom-up feed-forward, and top-down feed-back activity can accentuate 

relevant over irrelevant stimuli by contrast amplification, as we discuss in more detail later in this 

article. The loss of the critical drive that maintains baseline tonic inhibitory PV+ network activity may 

cause an increase in spontaneous firing rates in central auditory circuits and impair input for specific 

contrast amplification in affected frequency-specific auditory regions, resulting in tinnitus. This view is 

consistent with various earlier findings that link tinnitus with (i) insufficient gain control, (ii) central 

hyperexcitability, (iii) excessive cortical synchrony, elevated gamma oscillations and corrupted noise-

cancellation, (iv) increased spontaneous neural activity generated through stochastic resonance, (v) 

disrupted functional connectivity between auditory-specific and fronto-striatal microcircuits, or (vi) 

amplification of a tinnitus precursor through attention or stress. This view is also consistent with 

previous findings that suggest that tinnitus can be suppressed by cochlear implant stimulation or by 

hearing aids (Punte et al., 2013; Knopke et al., 2017). By bringing together the single parts in this review, 

we trust that new synergies and mutual scientific exchange will help to develop a cure for tinnitus.  

 

Tinnitus occurs with low prevalence in congenital deafness but with high 

prevalence in acquired deafness 

Rodents are unable to hear when they are born on embryonic day 21 (E21), and hearing onset is delayed 

until postnatal day (P) 10 (Fig. 1, rodent, E21). This is different from the human fetus, in which hearing 

starts during embryonic week 27 (Fig. 1, human 27th EW). After hearing onset, there is a critical period 

during which hearing experience shapes the acuity and fidelity of hearing (Fig. 1, critical period), In 

rodents, the critical period extends from P10 to P14 (de Villers-Sidani et al., 2007) and in humans, it 

likely occurs between the 27th embryonic week and the 6th to12th month after birth (Sharma et al., 2016).  

Auditory experience has been suggested as a possible prerequisite for tinnitus, because tinnitus has 

been reported to be absent in congenital deafness (Eggermont and Kral, 2016). Several studies have 

surveyed the prevalence of tinnitus in hearing-impaired young adults, and tinnitus does not seem to be 

problematic in younger children (Baguley and McFerran, 2002; Rosing et al., 2016). In responses to 

direct questioning, reports of tinnitus are higher in moderately or severely hearing-impaired youth than 

in those with profound loss. In addition, those with acquired loss are significantly more likely to report 

tinnitus (Fig. 1, high risk of tinnitus) than those with congenital hearing loss (Graham, 1987) (Fig. 1, low 



 

 

risk of tinnitus). However, limited data are available on this topic, and in existing studies, it is not always 

possible to determine when congenital hearing loss occurred. For example, a mid- to late-pregnancy 

infection, or a peripartum event, such as anoxia or the administration of aminoglycoside antibiotics, may 

cause early deafening after some weeks or months of intrauterine auditory experience. Two clinical 

studies, however, indicated that tinnitus may indeed be absent in the population that has had no auditory 

experience. In children with a GJB2 mutation, for whom a complete lack of auditory experience can be 

surmised, there was a near absence of tinnitus (Tsukada et al., 2010). Moreover, a recent study found 

a relationship between deafness and the absence of tinnitus, even for congenital single-sided deafness 

(Lee et al., 2017). In that study, strikingly, none of the 20 subjects with congenital deafness perceived 

tinnitus on the affected side (Fig. 1, congenital deafness), whereas 30 of 44 subjects with acquired 

single-sided deafness did experience tinnitus on the affected side (Lee et al., 2017) (Fig. 1, acquired 

deafness). In contrast to congenitally deaf patients, patients with normal maturation who acquire sudden 

sensorineural hearing loss often experience tinnitus, with a prevalence of 60-90%, often on the deaf 

side (Fig. 1, high risk of tinnitus) (Van de Heyning et al., 2008; Chadha et al., 2009; Eggermont and 

Kral, 2016).  

Based on the findings described above, it was concluded that the development of tinnitus needs to be 

preceded by auditory experience (Eggermont and Kral, 2016; Lee et al., 2017). Specifically, it was 

suggested that the emergence of tinnitus requires the pre-existence of a tonotopic map as a reference 

for the integration of sensory input to `somatic memory` (Eggermont and Kral, 2016). But the proper 

topographically ordered connections are established in the auditory pathway well before hearing actually 

functions (Friauf and Lohmann, 1999; Clause et al., 2014). Additionally, tonotopic maps in the brain 

persist in mice with profound deafness, independently of whether the hearing loss is acquired or 

congenital (Babola et al., 2018). Therefore, tonotopy, per se, is unlikely to cause tinnitus. Instead, a 

sensory-experience-dependent maturation step must be required for the emergence of tinnitus.  

 

Maturation steps that require auditory experience 

Because hearing appears to be essential for the development of tinnitus, properties that arise after the 

onset of hearing are more likely to contribute to tinnitus than properties that emerge before hearing 

onset. One property that develops after hearing onset is the brain’s spontaneous firing rate. The 

developing brain is hyperexcitable, because neurons that release gamma-aminobutyric acid 



 

 

(GABAergic neurons) are excitatory at this time. The effects of GABA depend on the chloride gradient 

across the plasma membrane, which in developing neurons favors chloride efflux and depolarization. A 

maturational shift in chloride transporters is required to reverse the chloride gradient so that GABA 

becomes inhibitory (Marin and Rubenstein, 2001; Ben-Ari, 2002) (Fig. 2A, B, green plus signs). This 

process is predicted to be dependent on BDNF, which has been shown to facilitate the expression of 

potassium chloride cotransporter 2 (KCC2) (Wardle and Poo, 2003), which contributes to this switch (De 

Koninck, 2007). This excitatory-to-inhibitory switch in GABAergic signalling occurs after tangentially 

migrating inhibitory neurons have successfully reached their destinations in higher brain regions, a 

process accomplished in rodents around birth (Marin and Rubenstein, 2001). In the auditory system, 

the switch occurs in a region-specific pattern after hearing onset (Kandler and Friauf, 1995; Friauf et al., 

2011), possibly driven by sensory experience (Shibata et al., 2004), (Fig. 2A, C, orange minus signs).  

We hypothesize that not hearing experience per se, but fast auditory processing resulting from 

maturation of a distinct auditory fiber type after hearing onset, is critical for the BDNF- and sensory-

experience-dependent maturation of inhibitory GABAergic circuits in the auditory system. Whereas at 

the beginning of hearing onset, auditory fibers with low spontaneous firing rates (Fig. 2B, low-SR, green 

fiber) and high activation thresholds (Yates, 1991; Merchan-Perez and Liberman, 1996) dominate, after 

hearing onset, approximately 60% of auditory fibers develop high spontaneous firing rates (Fig. 2C, 

high-SR, orange fiber) and low activation thresholds (Merchan-Perez and Liberman, 1996; Glowatzki 

and Fuchs, 2002; Grant et al., 2010). These high-SR fibers determine the threshold of the summed 

auditory-nerve response, measured by the compound action potential (CAP) (Bourien et al., 2014), and 

are responsible for the shortest-latency auditory responses at any given characteristic frequency. 

Therefore, fast (high-SR) auditory fibers are suggested to determine perceptual thresholds (Meddis, 

2006; Heil et al., 2008). Hence, high-SR auditory fibers likely contribute to lowered thresholds and 

shortened latency of cortical auditory responses, which can be measured after the sharpening of cortical 

receptive fields (Fig. 2C, cortical resolution) (de Villers-Sidani et al., 2007) at the end of the critical 

period after hearing onset: between P10 and P14 in rodents (de Villers-Sidani et al., 2007) and between 

the 27th embryonic week and 6th to 12th months after birth in humans (Neville and Bavelier, 2002). The 

sharpening of receptive fields, moreover, leads to narrower bandwidth responses, likely as a result of 

stimulus-evoked release of brain-derived neurotrophic factor (BDNF) from cortical pyramidal neurons, 

which is suggested to trigger synaptogenesis in a complex network of fast-spiking parvalbumin-

expressing GABAergic interneurons (PV+ interneurons) that provide perisomatic and dendritic inhibition 



 

 

to cortical pyramidal neurons (Fig. 2C, cortical resolution, BDNF, PV) (Hong et al., 2008; Xu et al., 

2010; Lehmann et al., 2012; Griffen and Maffei, 2014). Fast-spiking, PV+ -interneurons play a key role 

in several higher microcircuit functions, such as feedforward and feedback inhibition, high-frequency 

network oscillations, and pattern separation. For all of these functions, the fast signaling properties of 

these neurons play a critical role (Hu et al., 2014; Hu et al., 2018). Notably, fast-spiking PV+ interneuron 

networks develop in auditory subcortical and cortical projections with sensory experience (Lohmann and 

Friauf, 1996; Chumak et al., 2016), as also described for other sensory systems (Itami et al., 2007; Xu 

et al., 2010; Lehmann et al., 2012; Kimura and Itami, 2019).  

In further support of our hypothesis, fast (high-SR) auditory fiber activity was related to the development 

of perisomatic PV+ interneuron inhibition and the enlargement of dynamic range of auditory responses 

after hearing onset (Chumak et al., 2016). Perisomatic PV+ interneuron activity contributes to 

feedforward inhibition that narrows the window for temporal summation of EPSPs and action potential 

initiation in principle neurons (Pouille and Scanziani, 2001) and thereby promotes both sharpening of 

receptive fields and pattern separation (Leutgeb et al., 2007). Because maturation of fast (high-SR) 

auditory fiber activity was also linked to enhanced auditory fidelity, including increased inhibitory strength 

and shortened latencies (Xu et al., 2010; Chumak et al., 2016), we may predict fast (high-SR) auditory 

fiber activity also contributes to PV+ interneuron-mediated feedback inhibition at principal-cell dendrites 

(Couey et al., 2013), which has been shown to improve stimulus resolution and discrimination above 

noise in sensory systems (Caraiscos et al., 2004; Hu et al., 2014).  

Given that fast inhibitory PV+ interneurons are critical in generating both gamma- (feed-forward 

inhibition) and beta-frequency oscillations (feed-back inhibition) measured with electroencephalography 

(EEG) (Cardin et al., 2009; Sohal et al., 2009; Chen et al., 2017), experiments that used optogenetic 

disruption of inhibitory networks may help to explain changes in oscillations in tinnitus: Through 

optogenetic suppression of PV+ interneuron activity, likely including tonic and phasic activity, increased 

synchronization of spontaneous activity across a broad frequency range was observed, leading to 

increased baseline spontaneous gamma power and occlusion of changes in evoked gamma power 

(Chen et al., 2017). Interestingly, increased baseline spontaneous gamma power linked with reduced 

evoked gamma power was observed in children with deficits in fast auditory processing (Mamashli et 

al., 2017), strengthening the hypothesis that diminished fast (high-SR) auditory fiber processing might 

also be able to cause enhanced baseline spontaneous gamma power and reduced evoked gamma 



 

 

power, a predicted correlate of tinnitus (see next section). Elevated activity in fast-spiking PV+ 

interneurons is predicted to play a role in improved task performance and attention-driven contrast-

amplification (Cardin et al., 2009; Kim et al., 2016; Chen et al., 2017). We therefore suggest that 

diminished fast (high-SR) auditory fiber activity reduces the ability of listeners to properly attend to 

relevant stimuli, while ignoring irrelevant stimuli (Delano et al., 2007; Nunez and Malmierca, 2007; 

Wittekindt et al., 2014; Dragicevic et al., 2019), which is another neural correlate of tinnitus (see next 

section).  

It remains to be clarified in future studies whether fast (high-SR) auditory fibers stimulate the maturation 

of this complex PV+ interneuron network by activating BDNF promoters and synaptogenesis of fast-

spiking PV+ interneuron with projecting neurons, as has been suggested to occur in auditory and other 

sensory cortices (Itami et al., 2007; Xu et al., 2010; Lehmann et al., 2012; Kimura and Itami, 2019) or if 

BDNF acts through the facilitation of inhibitory actions by GABA (De Koninck, 2007). Regardless, both 

the maturation of fast auditory fibers that drive BDNF promoters and BDNF-driven faciliation of GABA-

mediated inhibition would lower the baseline spontaneous firing rate (SFR) in pyramidal neurons in 

cortical and functionally connected networks with auditory experience (Fig. 2A, SFR baseline, white 

dashed line ). The initial hyperexcitability in these circuits resulting from gamma-aminobutyric acid 

(GABAergic neurons) being excitatory would thereby be reduced and the fidelity and specificity of 

responses to auditory input would become enhanced, as hypothesized for the auditory system (Chumak 

et al., 2016; Matt et al., 2018) and cerebellum (Duguid et al., 2012).  

Regarding the lower risk of tinnitus in congenital deafness and the prediction that tinnitus requires 

auditory experience in children (see above) it is interesting to consider when fast (high-SR) auditory 

fibers and PV+ interneurons, whose activity is reflected in gamma-and beta-frequency oscillations 

(Cardin et al., 2009; Sohal et al., 2009; Gill and Grace, 2014; Chen et al., 2017), might mature in children. 

Gamma oscillations develop in humans between the onset of hearing function prior to birth, 

approximately between the 27th embryonic week and 6th to 12th months after birth (Neville and Bavelier, 

2002), with predictions that increased gamma oscillations, associated with feedforward inhibition, 

precede the development of increased beta oscillations (reflecting feedback inhibition) before 6 months 

after birth (Sowell et al., 2001; Ortiz-Mantilla et al., 2016). From 6th months onwards, the development 

of functional connectivity in children`s brains proceeds, becoming more clustered and specific for 

sensory modalities (Sowell et al., 2001; Neville and Bavelier, 2002; Ortiz-Mantilla et al., 2016), a process 



 

 

that is paralleled by enhanced speech comprehension in noise (Obleser et al., 2007; Youssofzadeh et 

al., 2018) and improvement of attention-driven contrast amplification for auditory stimuli, improved 

auditory discrimination capacity, and improved temporal discrimination (Sowell et al., 2001; Miller and 

Buschman, 2013) (Fig. 2C, cortical resolution). We thus can conclude that maturation of fast (high-SR) 

auditory fiber processing and inhibitory PV+ interneuron microcircuits mature in the first months after 

birth, providing a good rationale for tinnitus occurring with low prevalence in congenital deafness but 

with high prevalence in acquired deafness (see above).  

We conclude that the onset of fast (high-SR) auditory nerve fiber activity with the onset of auditory 

experience stimulates the development of a feedforward PV+ interneuron network that is a prerequisite 

for the development and maintenance of feedback inhibitory PV+ interneuron networks in auditory-

specific circuits. The lack of fast auditory processing distinguishes congenital deafness, with a low risk 

of tinnitus (Fig. 2B), from mature acquired hearing loss, with a high risk of tinnitus (Fig. 2C). 

PROPOSED NEURAL CORRELATES OF TINNITUS REFLECTED IN THE 

CONTEXT OF FAST AUDITORY PROCESSING  

We next reflect on the various predicted neural correlates of tinnitus in the context of fast (high-SR) 

auditory nerve activity and its predicted functions for central auditory processing described above.  

Neural gain 

Most previous tinnitus literature suggested that tinnitus is the result of homeostatic increases in central 

neural gain (see introduction). We argue against the hypothesis that tinnitus results from neural-gain-

related hyperexcitability, instead suggesting that central neural gain describes a compensating central 

response to hearing loss that is not related to tinnitus, as explicated in the following. Central neural gain 

mechanisms typically include memory-dependent homeostatic modifications to restore the overall firing 

rate to its baseline or `setpoint` (Barnes et al., 2015; Gainey and Feldman, 2017). Considering that tonic 

PV+ interneuron activity may set baseline levels for homeostatic modifications, as discussed above, 

central neural gain would keep tonic PV+ interneuron network activity, first established with auditory 

experience, intact. This may be different in the case of tinnitus, as will be discussed later in this review.  

Central neural gain that aims to restore an overall stable firing rate in neural networks after auditory 

deprivation (Fig. 3A, Neural gain), is predicted to require the strengthening of synapses via a learning-

dependent, positive feedback cycle (for a review see: (Davis and Bezprozvanny, 2001; Rich and 



 

 

Wenner, 2007; Turrigiano, 2012). The occurrence of this in the auditory system can be concluded from 

the observation of compensating auditory output activity following reduced auditory input after mildly 

traumatic (100 dB SPL) sound exposure in mice. This neural gain is linked with elevated hippocampal 

long-term plasticity (LTP) and with altered PV+ interneuron labeling and enhanced BDNF promoter 

activity in auditory and hippocampal pathways (Matt et al., 2018). Such a complex brain response after 

auditory trauma is indicative of a positive feedback cycle that includes co-activation of auditory and 

fronto-striatal circuits (for a review see: (Irvine, 2018b). Compensating central neural gain has moreover 

been observed after traumatic sound exposure in animals that did not exhibit tinnitus (Möhrle et al., 

2019). Here, the restored late ABR wave IV was linked with shortened response latencies (Möhrle et 

al., 2019), revealing that central neural gain may include shorter response latency and increased 

population-discharge synchrony, which are characteristics of attention-driven contrast-amplification 

processes (Siegle et al., 2014; Kim et al., 2016; Chen et al., 2017; Galuske et al., 2019). We therefore 

propose that central neuron gain, and likewise, attention-driven contrast amplification of auditory 

responses, involves co-activation of auditory and fronto-striatal regions such as the (i) basal forebrain 

(BasF), to accentuate particular auditory stimuli (Fig. 3A, BasF), (Kilgard et al., 2002; Kraus and White-

Schwoch, 2015; Irvine, 2018a), (ii) inferior frontal gyrus (IFG) activity (Fig. 3A, IFG), to distinguish new 

or deviant signals from previous ones (Schonwiesner et al., 2007; Malmierca et al., 2014), (iii) 

hippocampus (HC), to extract and memorize the behaviorally relevant signal (Kraus and White-

Schwoch, 2015; Weinberger, 2015; Irvine, 2018a) and synaptic-adjusted strength (Fig. 3A, HC), and 

(iv) dorsolateral (dlPFC) and medial (mPFC) prefrontal cortex (Fig. 3A, dlPFC, mPFC), to balance 

attention-driven plasticity responses (de Kloet, 2014; Irvine, 2018a; Viho et al., 2019) by inhibiting or 

enhancing stress responses (Sullivan and Gratton, 2002). We moreover suggest that only after auditory 

experience has enabled fast (high-SR) auditory fibers to stimulate the development of PV+ inhibitory 

microcircuits, can BDNF promoters that are specifically activated by fast (high-SR) auditory fiber activity 

(Fig. 3A, BDNF) drive the required compensating PV+ microcircuit changes in the fronto-striatal path, 

leading to restored ABR wave IV responses (neural gain) (Matt et al., 2018). This positive feedback 

cycle is not sufficient for initiating tinnitus, however, as suggested in previous studies (Knipper et al., 

2013; Zeng, 2013; Sedley, 2019). Previous findings that link neural gain to tinnitus (Roberts et al., 2010; 

Norena, 2011; Schaette and Kempter, 2012; Shore et al., 2016), may be explained by unmatched 

hearing impairment between participants with and without tinnitus (Adjamian et al., 2009), or by the co-



 

 

occurrence of tinnitus with decreased sound tolerance (hyperacusis) (Melcher et al., 2009; Hickox and 

Liberman, 2014; Auerbach et al., 2019; Möhrle et al., 2019). 

In conclusion, we suggest that active feedforward and feedback PV+ interneuron microcircuits, first 

established with the emergence of fast (high-SR) auditory fiber activity during auditory experience, form 

the base substrate on which overall firing rates can be enhanced after hearing onset in response to 

hearing loss. However, this memory-dependent positive feedback cycle that leads to enhanced output 

activity after reduced auditory input (neural gain) is unlikely to be sufficient for tinnitus. 

 

Loss of GABAergic inhibition in tinnitus 

Numerous studies have suggested that the hyperexcitability linked to tinnitus is associated with acute 

GABAergic disinhibition in the ascending auditory pathway (Norena, 2011; Schaette and McAlpine, 

2011; Schaette and Kempter, 2012; Norena and Farley, 2013; Auerbach et al., 2014; Kalappa et al., 

2014; Eggermont and Tass, 2015; Gao et al., 2016; Sedley et al., 2016; Shore et al., 2016; Roberts, 

2018; Roberts and Salvi, 2019). From a traditional position, this hyperexcitability has most often been 

interpreted as resulting from a central neural gain response (see introduction). We go further in 

suggesting that the hyperexcitability rather results from critical loss of fast (high-SR) auditory drive that 

triggers re-emergence of GABAergic excitation, instead of GABAergic inhibition (Ben-Ari, 2002).  

A notable facet of tinnitus is its rapid onset after acquired deafness. For example, an immediate onset 

of tinnitus occurred in 60-90% of cases in children with cochlear implants when the implants were not in 

use (Van de Heyning et al., 2008; Chadha et al., 2009). Likewise, acquired monaural or binaural sudden 

sensory hearing loss in rodents has been linked to disinhibition in nearly all ascending auditory nuclei 

(Abbott et al., 1999; Milbrandt et al., 2000; Mossop et al., 2000). In some cases in rodents the generation 

of hyperexcitability was observed in auditory nuclei within a few minutes of deafening or nerve 

transection (McAlpine et al., 1997; Mossop et al., 2000). Thus, the time frame of hyperexcitability 

associated with acquired deafness in rodents is congruent with the fast onset of acute tinnitus after 

cochlear implants are turned off in humans.  

Given the rapid time scale (minutes to hours) of activity-dependent functional down- or upregulation of 

KCC2 (Khirug et al., 2010; Lee et al., 2011; Nardou et al., 2011) a re-emergence of GABAergic excitation 

can occur within the time frame of acute tinnitus. Furthermore auditory nerve transection has been 

shown to lead to a decline of KCC2 and a re-emergence of depolarizing GABAergic signaling (Tighilet 

et al., 2016). To date, however, this has only been analyzed 3 to 30 days after auditory-nerve transection 



 

 

(Tighilet et al., 2016). Considering that in the auditory system, the GABAergic switch from depolarization 

to inhibition occurs in a region-specific pattern after hearing onset (Kandler and Friauf, 1995; Friauf et 

al., 2011) and BDNF-driven facilitation of inhibitory signaling by GABA (De Koninck, 2007) may be 

maintained through critical fast auditory fiber drive (see above), future studies are urgently needed to 

determine whether loss of fast (high-SR) fiber processing causes hyperexcitability in affected frequency 

regions by inducing re-emergence of depolarizing GABAergic signaling, thus leading to tinnitus.  

Excessive cortical synchrony and enhanced gamma oscillations in tinnitus  

Hyperexcitability and a rapidly enhanced spontaneous firing rate during chronic tinnitus have both 

been linked to neuronal bursting and excessive neuronal synchrony in the AC (Norena and Farley, 

2013; Eggermont and Tass, 2015). This abnormal neural synchrony has been suggested to be confined 

to specific oscillation frequency bands (Eggermont and Tass, 2015), particularly to enhanced 

spontaneous gamma oscillations (30 to 80 Hz), which were observed in tinnitus patients (Weisz et al., 

2007; Ortmann et al., 2011; Vanneste et al., 2019) and in animal models of tinnitus (Tziridis et al., 2015). 

Currently, the tinnitus theory of thalamocortical dysrhythmia describes enhanced gamma oscillations in 

tinnitus patients as an overactive feedback loop (De Ridder et al., 2015; Sedley, 2019; Vanneste et al., 

2019). But we suggest that increased cortical synchrony in tinnitus might result from underactive, rather 

than overactive feedback inhibition, specifically from underactive tonic PV+ interneuron activity in 

auditory microcircuits. We reason that during tinnitus, a pathological reduction of tonic (perisomatic) 

inhibition of cortical pyramidal neurons by monosynaptically coupled PV+ interneurons in auditory 

circuits (Fig. 3B, PV) might diminish feedback inhibition. Under these conditions, pyramidal neurons 

would fire synchronously and independently of input. Such a reduction of tonic inhibition mediated by 

PV+ interneurons leads to a rapid increase in bursting and a reduced signal-to-noise ratio in neurons in 

the cerebellum (Duguid et al., 2012) and has been discussed in the context of excessive cortical 

synchrony shown for epilepsy (Rossignol et al., 2013; Hsieh et al., 2017). Moreover, diminished activity 

in tonic fast-spiking PV+ interneuron networks were shown in rodent models (Lodge et al., 2009; Gill 

and Grace, 2014) and in children with fast auditory processing deficits (Mamashli et al., 2017) linked 

with enhanced baseline spontaneous gamma power and reduced evoked gamma power. The same 

neurobiological deficits that lead to enhanced baseline spontaneous gamma power in children with fast 

auditory processing deficits (Mamashli et al., 2017), as is autism spectrum disorder, is also associated 

with elevated gap-discrimination thresholds and a diminished ability to detect short gaps (Foss-Feig et 



 

 

al., 2017), an often mentioned phenotypical characteristic of tinnitus (Fournier and Hebert, 2013; 

Lobarinas et al., 2013; Galazyuk and Hebert, 2015).  

We therefore suggest that the excessive cortical synchrony and enhanced spontaneous gamma 

oscillations observed in tinnitus patients and tinnitus animal models (Weisz et al., 2007; Ortmann et al., 

2011; Tziridis et al., 2015; Vanneste et al., 2019) may be related to reduced tonic activity in PV+ 

interneuron microcircuits resulting from critical diminution of fast (high-SR) auditory fiber drive.  

Stochastic resonance as a putative cause of tinnitus  

A predicted noise source located within the somatosensory system has been suggested to drive a 

stochastic resonance mechanism at the level of the dorsal cochlear nucleus (DCN) during tinnitus 

(Krauss et al., 2016; Krauss et al., 2017). Stochastic resonance is a phenomenon that may occur 

whenever noise helps to lift a subthreshold input signal above a threshold. This noise source was 

hypothesized to be up-regulated, e.g., following reduced cochlear input, and to contribute to central 

hyperexcitability that on short time scales of milliseconds to seconds could be amplified through neural 

gain and thereby contribute to a tinnitus percept (Krauss et al., 2016; Krauss et al., 2017). Within our 

proposed framework, we suggest that the noise source that lifts spontaneous firing rate above threshold 

results from elevated spontaneous firing rates in dispersed auditory-specific regions as a consequence 

of critically reduced fast auditory processing and loss of tonic PV+ interneuron activity in auditory 

microcircuits. In such cases, the stimulus resolution and specificity for the particular sensory modality 

would be reduced and stochastic resonance may manipulate the excitability at the level of the dorsal 

cochlear nucleus. 

Disrupted auditory/fronto-striatal connectivity and impaired noise cancellation 

as correlates of tinnitus  

Numerous studies have suggested that dysregulation in fronto-striatal brain regions and the limbic 

system is a neural correlate of tinnitus (Muhlau et al., 2006; Vanneste and De Ridder, 2012; Schmidt et 

al., 2017). More specifically, disruption of a fronto-striatal network has been suggested to contribute to 

tinnitus by impairing `noise cancellation` (Rauschecker et al., 2015).  

We here suggest that a dysregulation of fronto-striatal microcircuits in tinnitus can be well explained 

through reduced tonic activity in PV+ interneuron microcircuits that are diminished after critical loss of 

fast (high-SR) fibers. A critical reduction of fast (high-SR) auditory processing was suggested to be a 



 

 

correlate of tinnitus (Knipper et al., 2013; Hofmeier et al., 2018; Möhrle et al., 2019), as it is expected to 

impair fast communication between auditory-specific and fronto-striatal regions and would, therefore, 

diminish memory-dependent adjustment of stimulus-evoked responses following, e.g., acoustic trauma. 

This was verified in tinnitus patients through a reduced and delayed late ABR wave V linked to reduced 

sound-evoked BOLD fMRI activity in the auditory cortex (Hofmeier et al., 2018; Koops et al., 2020), 

reduced functional connectivity observed during sound-evoked activity (Boyen et al., 2014; Lanting et 

al., 2014), and reduced resting-state functional r-fcMRI connectivity between auditory-specific brain 

regions and fronto-striatal regions (Leaver et al., 2016; Hofmeier et al., 2018).  

Disrupted functional connectivity between auditory-specific and frontal-striatal regions (Fig. 3B), is 

expected to result in a breakdown of contrast amplification that accentuates relevant over irrelevant 

stimuli (Delano et al., 2007; Dragicevic et al., 2019). Importantly, contrast amplification relies on an intact 

temporal, top-down feedback circuit and on intact fast PV+ interneuron activity (Cardin et al., 2009; Kim 

et al., 2016; Chen et al., 2017). As a result of critically impaired fast (high-SR) auditory fiber processing 

and the resulting diminished drive to tonic inhibitory PV+ interneuron microcircuits (see above) central 

hyperexcitability in deprived frequency regions may occur. Because this hyperactivity cannot be 

suppressed through contrast amplification processes, it results in the perception of phantom sounds 

(tinnitus).  

In summary, critical reduction in fast (high-SR) auditory fiber processing after auditory trauma can 

reduce functional connectivity between auditory-specific regions and fronto-striatal microcircuits and 

thereby impair neural processing that allows one to ignore spurious activity in the deprived auditory 

regions. 

Impaired attention/stress control as a correlate of tinnitus  

In tinnitus patients, a tinnitus precursor has been suggested to exist, but it is normally ignored as 

imprecise evidence against the prevailing percept of ‘silence’ (Sedley et al., 2016). This precursor is 

amplified (i) through focused attention (Sedley et al., 2016), or (ii) through fear, anxiety, or stress 

(Jastreboff et al., 1996), or (iii) through a combination of these facilitators that influence individual tinnitus 

severity, depending on the context of each individual`s culture and experience (Searchfield, 2014).  

The conscious perception of a tinnitus precursor through focused attention has been discussed in the 

context of a prediction error in auditory sensation (Sedley et al., 2016; Hullfish et al., 2019). Auditory 

predictions can only be made, however, after learning about predictable, relevant, auditory signals as 



 

 

distinct from those that are irrelevant. The remembrance of predictable stimuli requires fast (high-SR) 

auditory fiber activity and maturation of PV+ interneuron networks that develop only with sensory 

experience. We hypothesize that a prediction error might be caused by hyperexcitability resulting from 

impaired tonic PV+ interneuron activity. This hyperexcitability produces activity that cannot be 

suppressed by contrast-amplification processes, as discussed in the previous section (Fig. 3B, impaired 

SSR baseline, red dashed line).  

In the Jastreboff Neurophysiological Model of tinnitus, fear, anxiety, or stress are predicted to be 

involved in the emergence of `pre-tinnitus activity` that, in subjects without symptoms, are typically 

ignored (Jastreboff et al., 1996). We suggest that elevated hyperexcitability following the loss of fast 

(high-SR) auditory fiber processing can lead to imbalanced stress control by disturbing functional 

connections between auditory-specific regions and the mPFC and dlPFC. While mPFC is assumed to 

play a role in the activation of stress responses, dlPFC has been found to be linked to inhibition of stress 

responses (McKlveen et al., 2016). Correspondingly, it was observed that during tinnitus, resting-state 

connectivity involving mPFC and dlPFC was disturbed (Schecklmann et al., 2012; Leaver et al., 2016; 

Hofmeier et al., 2018) (Fig. 3B, mPFC, dlPFC).  

Conscious percepts of sound may be encoded not only in the auditory cortex but also in prefrontal 

cortical regions (de Lafuente and Romo, 2005). Unbalanced PFC activity might impact the tinnitus 

percept itself. According to this view, the observed reduction in selective attention for stimuli outside the 

tinnitus frequency, but increased vigilance for sounds approximating the tinnitus frequency seen in 

tinnitus patients (Mazurek et al., 2017; Brozoski et al., 2019), can be considered to be a response to a 

critically diminished auditory-specific drive after reductions in fast (high-SR) fiber activity and subsequent 

reduction of PFC-dependent contrast amplification of auditory information (Fig. 3B, red curved arrow).  

Finally, the individual variability of stress sensitivity might contribute to the observed individually high 

variability of and susceptibility to tinnitus (Searchfield, 2014; Durai et al., 2017) through, e.g., a predicted 

stress vulnerability for auditory fibers (Singer et al., 2018) or an individual variability in the apparent high 

metabolic vulnerability of particular PV+ interneuron synapses (Kann, 2016).  

In summary. in tinnitus patients, impaired PFC-triggered attention/stress control following reduced fast 

(high-SR)-auditory fiber activity may be linked to a reduced ability to habituate to, or ignore, enhanced 

hyperexcitability in critically deprived frequency regions.  



 

 

Tinnitus can be suppressed when cochlear implants are turned on but induced 

when turned off 

Cochlear implants are the most successful treatment of choice for auditory rehabilitation of patients with 

severe to profound sensory deafness (Kral and O'Donoghue, 2010; Wilson, 2017). Electrical stimulation 

of the auditory nerve via cochlear implants probably re-establishes crucial central functions for fast 

auditory processing by initiating activity in high-SR fibres. This must be concluded from the success in 

achieving nearly normal speech and language development in congenitally deaf children (Rajan et al., 

2018; Albalawi et al., 2019). This partial implementation of fast auditory processing through cochlear 

implants may also be reflected in the observed shortened response-onset latencies observed after 

cochlear electrode implantation in cats (Tillein et al., 2016). 

Strikingly, in children implanted between 3 and 15 years, tinnitus occurred most commonly on the 

implanted side when the implants were not in use (e.g., in bed at night) (Chadha et al., 2009). The 

incidence of tinnitus is 70% to 90% of cases when a CI, implanted following severe bilateral hearing 

loss, is turned off (Baguley and Atlas, 2007; Ramakers et al., 2015) (Fig. 4A, CI Off: Risk of Tinnitus). 

In contrast, increasing evidence suggests that upon full-electrode stimulation through bilateral CI 

implants, tinnitus is suppressed (Fig. 4B, CI On: Silenced Tinnitus) (Baguley and Atlas, 2007; Tyler et 

al., 2008b; Punte et al., 2013; Knopke et al., 2017). Also, in patients with unilateral hearing loss, the 

implantation of a CI suppressed tinnitus (Punte et al., 2013). When tested in their capacity to suppress 

tinnitus, electric-acoustic stimulation (Mertens et al., 2018; Pillsbury et al., 2018; Li et al., 2019), as well 

as hearing aids (Searchfield et al., 2010; Shekhawat et al., 2013), have resulted in at least transient 

tinnitus relief. 

We therefore predict that ongoing electrical stimulation of the auditory pathway may be a prerequisite 

for the suppression of tinnitus. In the future, either persistent stimulation near threshold or stimulation of 

frequency regions higher than 8 kHz (Levy et al., 2015), that are often not reliably covered in hearing 

aids or CI, should be investigated as a driving force to maintain or re-establish tonic PV+ interneuron 

activity in auditory-specific microcircuits. Thereby appropriate activities for auditory-specific contrast-

amplification may be reinstated.  

In summary, auditory experience through initial CI stimulation is potentially sufficient to drive 

feedforward and feedback PV+ interneuron microcircuits in auditory-specific circuits, and this may be a 



 

 

prerequisite for a tinnitus percept to occur in a deaf ear when the CI is turned off. Electrical stimulation 

of the active CI is however essential to suppress the tinnitus percept.  

CONCLUSION AND FUTURE PERSPECTIVES 

In conclusion, we consider that congenital deafness (with a low risk of tinnitus) differs from acquired 

deafness (with high risk of tinnitus). With acquired deafness, the maturation of fast (high-SR) auditory 

fiber processing and emergence of specific inhibitory PV+ interneuron microcircuits, essential for 

accentuation of relevant over irrelevant auditory-stimuli, has already taken place. This maturation does 

not occur in congenital deafness, due to the lack of auditory experience. In this view, fast (high-SR) 

auditory fiber characteristics developing after hearing onset provide the drive to establish feedforward 

and feedback PV+ interneuron microcircuits and to maintain feedback PV+ interneuron microcircuits 

required for memory-linked reinforcement processes. Upon critical loss of fast (high-SR) auditory fiber 

processing, hyperexcitability re-emerges through loss of tonic PV+ interneuron activity and reversion to 

depolarizing GABAergic signaling. Tinnitus sufferers cannot ignore the auditory percepts resulting from 

this hyperexcitability, and this promotes further alertness to the phantom noise (Fig. 3B, 4A, red curved 

arrow, tinnitus). 

Fast (high-SR) auditory fiber processing cannot be lost in either congenital bilateral or single-sided 

deafness, because it was never established. Upon cochlear implantation, however, part of the fast 

auditory processing circuit may develop or be re-established, albeit with lower resolution (Fig. 4A, Risk 

of Tinnitus). In `CI-ON` mode, electrical stimulation through CI may be able to install context-specific 

recruitment of contrast amplification mechanisms, enabling the suppression of tinnitus (Fig. 4B, 

Silenced Tinnitus). 

The present article is premised on the hypothesis that various tinnitus subtypes and mechanisms have 

a final common pathway that acts between the onset of hearing loss and the appearance of the tinnitus 

percept. Future studies should investigate whether other tinnitus etiologies (Henry et al., 2014; Moller et 

al., 2015) may be related to the framework suggested here. In this context, (i) the extreme sensitivity 

and vulnerability of particular inhibitory PV+ interneuron synapses to any metabolic fatigue or shortfall 

(Kann, 2016), or (ii) the observation that upon injury / trauma or glial inflammation a pathological GABA 

signaling -- that is, excitatory instead of inhibitory (Shih et al., 2017), should be considered as triggers 

for tinnitus.  



 

 

In a unified effort across the tinnitus community, tinnitus research (i) could focus on whether a selective 

loss of one population of auditory nerve fibers (low-SR or high-SR) can explain why some people acquire 

tinnitus and other do not, (ii) may investigate the fragility of fast (high-SR) auditory fiber processing under 

stress, co-morbidities, traumatic, or inflammatory events; (iii) should search for pharmaceutical or 

neuromodulatory tools that enable non-invasive re-instatement of a driving force to maintain feedback 

fast-inhibitory PV+ interneuron microcircuits and feedback control of fronto-striatal, attentional and 

stress-controlling circuits; (iv) might explicitly analyze the restorative capacity of the identified feedback 

mechanisms through non-invasive neuro-stimulation devices, customized sound therapies, CIs, or 

medications; and (v) explore the relationship between positive effects of CI and cognition (Ramakers et 

al., 2015; Bruggemann et al., 2017; Knopke et al., 2017) in the context of fast (high-SR) auditory fiber 

processing and suppression of tinnitus and other co-morbidities. 

 

Figure 1 Timing of hearing onset and major maturation steps in the auditory pathway relative to birth. 

In humans, hearing starts in utero at about embryonic week (EW) 27, followed by a critical period 

with hearing experience. This critical period spans intra-uterine and extra-uterine periods up to at least 

6 to 12 months. Adult-like, mature hearing is reached 2-3 years after birth. In rodents, hearing starts at 

postnatal day (P) 10 followed by the critical period until ~P14. Mature hearing is reached by ~P28. The 

risk of tinnitus is high after the critical time period and in acquired deafness.  

Figure 2. Diagram of auditory excitatory and inhibitory states before (A left, B) and after (A right, C) 

the critical period. A: Immature hearing and congenital deafness go along with a low risk of tinnitus. In 

this state, GABAergic neurons still act in an excitatory manner (green+) on the spontaneous firing rate 

in the brain (SFR, white dashed line). When GABA becomes inhibitory after the critical period (orange 

minus), the lower SFR baseline may initiate a high risk of tinnitus. B: At hearing onset, auditory fibers 

with low spontaneous firing rates (low-SR, green) can already be recorded along the tonotopic 

frequency map (represented by black arrows) when GABAergic neurons in the ascending path are 

likely still excitatory. At that time, excitation dominates over inhibition (green+) and auditory 

discrimination capacity is not yet specific for distinct sensory modalities (low cortical resolution, green 

downward arrow). C: With sensory experience, fast and specific auditory processing evolves with the 

development of fibers with high-spontaneous rate characteristics (high-SR, orange) and the maturation 

of inhibitory circuits (fast spiking parvalbumin-positive (PV) interneuron network, orange minus). The 

high-SR fibers may drive BDNF secretion from ascending auditory projection neurons up to the auditory 

cortex in a stimulus-dependent way. BDNF regulates perisomatic synaptic contacts between PV-

positive interneurons and cortical pyramidal neurons, and sharpens auditory cortical resolution (orange 

upward arrow), enabling improved task performance. AC, auditory cortex, HC, hippocampus. SGN, 

spiral ganglion neurons, upward arrow, increase, downward arrow, decrease. 



 

 

Figure 3 Predicted auditory gating in the absence (A) and presence (B) of tinnitus. A: Auditory gating 

may lead to central neural gain, preventing tinnitus after mild acoustic trauma (damaged region). High-

SR fiber-driven auditory processing may cause activity-dependent BDNF secretion (BDNF) from 

auditory-specific synapses. This context-specific signaling can be strengthened (blue+) in a memory-

dependent positive feedback cycle requiring activity in the basal forebrain (BasF, blue curved arrow), 

inferior frontal gyrus (IFG) and dorsolateral and medial prefrontal cortex (dlPFC, mPFC). This may lead 

to enhanced output activity relative to reduced input (Neural gain). B: Failing central neural gain is 

predicted to result in tinnitus after severe or stressful acoustic trauma. The lack of high-SR fiber-driven 

auditory input in the damaged region critically reduces context-specific recruitment of activity-

dependent BDNF, possibly essential to maintaining inhibitory, tonic PV-positive interneuron network 

activity. The baseline levels of spontaneous firing in affected frequency regions is enhanced by 

hyperexcitability (green+ below red dashed line). The prefrontal stress control becomes unbalanced 

(mPFC up), which leads to uncoupling of auditory-specific and fronto-striatal brain regions, resulting in 

the accentuation of irrelevant hyperexcitability-derived neuronal activity that would otherwise be ignored 

(tinnitus). 

Figure 4 Predicted auditory processing states after cochlear implantation. (A) Cochlear implant (CI) off 

and (B) cochlear implant on. A: Tinnitus occurs with high prevalence when congenital deafness is 

treated with a CI and the implant is not in use. Under these conditions, the activity fails to serve as the 

driving force for context-specific secretion of BDNF. When switching off the implant, initial hyper-

excitablity would reemerge and upon loss of auditory-specific control of fronto-striatal coupling would 

lead to accentuation of irrelevant neural activity in deprived regions (BasF, red curved arrow) leading 

to Risk of Tinnitus. B: With electrical stimulation, the driving force for context-specific secretion of 

BDNF may be partially re-installed. The initial hyperexcitability would be suppressed in deprived regions 

as irrelevant neuronal information (Silenced tinnitus).  
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