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ABSTRACT 35 

BACKGROUND: Hypertrophy of the nucleolus is a distinctive cytological feature of 36 
malignant cells and corresponds to aggressive behaviour. This study aimed to identify the 37 
key gene associated with nucleolar prominence (NP) in breast cancer (BC) and determine 38 
its prognostic significance. 39 

METHODS: From The Cancer Genome Atlas (TCGA) cohort, digital whole slide images 40 
identified cancers having NP served as label and an information theory algorithm was 41 
applied to find which mRNA gene best explained NP. Dyskerin Pseudouridine Synthase 1 42 
(DKC1) was identified. DKC1 expression was assessed using mRNA data of Molecular 43 
Taxonomy of Breast Cancer International Consortium (METABRIC, n=1980) and TCGA 44 
(n=855). DKC1 protein expression was assessed using immunohistochemistry in 45 
Nottingham BC cohort (n=943).  46 

RESULTS: Nuclear and nucleolar expressions of DKC1 protein were significantly 47 
associated with higher tumour grade (p<0.0001), high nucleolar score (p<0.001) and poor 48 
Nottingham Prognostic Index (p<0.0001). High DKC1 expression was associated with 49 
shorter BC specific survival (BCSS). In multivariate analysis, DKC1 mRNA and protein 50 
expressions were independent risk factors for BCSS (p<0.01). 51 

CONCLUSION: DKC1 expression is strongly correlated with NP and its overexpression in 52 
BC is associated with unfavourable clinicopathological characteristics and poor outcome. 53 
This has been a detailed example in the correlation of phenotype with genotype. 54 
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INTRODUCTION 65 

Breast cancer (BC) is the most common cancer diagnosed in women worldwide, accounting 66 
for approximately 1 in 10 new cancer diagnoses each year and is the second most common 67 
cause of death1,2 due to cancer. BC is a heterogeneous disease with variable morphologies 68 
and response to therapy. Some morphological features, especially histological grade, have 69 
been well validated to have a strong prognostic value and their assessment helps in 70 
prognostic stratification of BC patients for treatment decisions3. 71 

In the Nottingham cohort, nucleolar prominence (NP) has recently been shown to be a 72 
significant predictor for patient outcome as well as of being highly correlated with tumour 73 
grade. Since the NP is a distinctive morphological attribute, it is hypothesised to possibly 74 
serve as a substitute for the highly subjective pleomorphism component score of the 75 
Nottingham BC grading4. Consequently, it is deemed imperative to explore the correlations 76 
between the nucleolar phenotype and genotype. 77 

The major function of the nucleolus is synthesis and assembly of ribosomes5 where both 78 
are associated with malignant transformation and cancer progression6,7. Indeed, ribosome 79 
biogenesis depends on the cancer growth rate which is directly related to nucleolar size of 80 
malignant cells. Nucleolar size and cell kinetics’ parameters are interrelated because of 81 
the increasing rate of ribosome biogenesis in proliferating cells8. In some solid cancer and 82 
haematological malignancies, the ribosome biogenesis rate increases as a consequence of 83 
overexpression of the oncogene c-Myc which controls all the steps of ribosome biogenesis9. 84 
Despite the biological and clinical significance of NP in BC, the key gene associated with 85 
NP and its prognostic significance remains to be defined.  86 

Dyskerin Pseudouridine Synthase 1 (DKC1) is a predominantly nucleolar protein encoded 87 
by DKC1 gene and mapped at Xq2810. DKC1 is a crucial component of the telomerase 88 
complex and is required for normal telomere maintenance and post-transcriptional 89 
processing of precursor rRNA. Therefore, DKC1 is necessary for tumour cell progression 90 
through mechanisms related to its function in the processing of rRNA precursor11. Usually, 91 
clinically indolent and slow-growing tumours express lower levels of DKC1 and its inhibition 92 
slows or hinders the proliferation in most cell types11,12. Through various deprivation of 93 
function approaches, emerging evidence suggests that DCK1 may regulate other cellular 94 
processes, including IRES-mediated translation, telomere maintenance independent of 95 
telomere length regulation, mitosis, transcription, and possibly microRNA processing13,14. 96 
Upregulation of DKC1 expression has been reported in several human cancers including 97 
hepatocellular carcinoma15, neuroblastoma16, lymphoma17, melanoma18, prostate 98 
cancer19, colorectal cancer20, and ovarian carcinoma21.  99 

MATERIALS AND METHODS 100 
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Principle of DKC1 selection 101 

We have applied an information theory (IT) approach to The Cancer Genome Atlas (TCGA) 102 
breast cancer dataset. The IT approach was used for feature selection to identify the key 103 
gene associated with NP which was assessed morphologically in full face invasive BC 104 
sections stained with haematoxylin & eosin (H&E) using digital whole slide images (WSI) 105 
as explained in our previous study4. The TCGA BC cohort was employed since it contains 106 
satisfactory whole slide images and mRNA-seq2 data present in 743 cancers. In the IT 107 
approach utilised, the nucleolar score served as a label and 20,339 mRNA transcripts 108 
served as predictor variables. The IT algorithm is a ‘greedy’ algorithm and reduces the 109 
number of features selected.  “Greedy” is the term used in the machine learning 110 
community to describe an algorithm which selects the optimal feature at each step and 111 
does not alter any choices already made based on findings from future choices22. The 112 
analysis showed that the attribute which exhibited the highest mutual information 113 
(information gain) with NP was DKC1. Moreover, the detection of DKC1 was supported by 114 
LASSO regression feature selection. The required functions for LASSO were obtained from 115 
R library Glmnet23. LASSO regression is also capable of reducing the number of predictors 116 
and thereby allowing for a focused study of a few attributes24. Therefore, by applying the 117 
IT approach and LASSO regression, the selection was limited to a single gene (DKC1). This 118 
was followed by evaluating DKC1 mRNA and DKC1 protein expression in large clinically 119 
annotated cohorts of BC to evaluate its clinicopathological and prognostic value in invasive 120 
BC as described below. 121 

Study cohorts for transcriptomic analysis 122 

The discovery of DKC1 was by study of TCGA cohort. The TCGA was also used to assess 123 
the possible correlation between DKC1 mRNA expression and the variables recorded in 124 
this cohort25. The Molecular Taxonomy of Breast Cancer International Consortium 125 
(METABRIC) cohort (n=1980) was used to evaluate DKC1 gene copy number (CN) 126 
aberrations and gene expression26. Genomic and transcriptomic data for the METABRIC 127 
cohort had been obtained using the Affymetrix SNP 6.0 and Illumina HT-12v3 platforms, 128 
respectively26. The association between DKC1 mRNA expression, copy number aberrations 129 
and clinicopathological parameters, molecular subtypes, and patient outcome was 130 
investigated. Breast Cancer Gene Expression Miner online dataset v4.3 131 
(http://bcgenex.centregauducheau.fr/BC-GEM/GEM-requete.php) was also used as 132 
external validation of DKC1 mRNA expression. 133 

Study cohort for protein expression 134 

The Nottingham BC patient cohort was used to evaluate the immunohistochemical (IHC) 135 
expression of DKC1. This cohort is a well-characterised large series (n=943) of invasive 136 
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BC patients aged ≤70 years and presented at Nottingham City Hospital between 1999 and 137 
2006. The cohort has long-term clinical follow-up and clinicopathological data included 138 
patient’s age at diagnosis, histological tumour type, tumour grade, tumour size, lymph 139 
node status, Nottingham Prognostic Index (NPI), and lymphovascular invasion (LVI). 140 
Patient outcome data was obtained including BC-specific survival (BCSS), defined as the 141 
time (in months) from the date of primary surgical treatment to the time of death from 142 
BC and distant metastasis free survival (DMFS) defined as time (in months) from  primary 143 
surgical treatment until the first event of distant metastasis. Patients were treated based 144 
on tumour features, NPI and hormone receptor status. Endocrine therapy was given to 145 
patients who had oestrogen receptor positivity (ER+) tumours with high NPI scores (>3.4), 146 
whereas no adjuvant therapy was given to patients with ‘good’ NPI scores (≤3.4). 147 
Premenopausal patients with moderate and poor NPI scores were candidates for 148 
chemotherapy, while postmenopausal patients with ‘moderate’ or ‘poor’ NPI scores were 149 
given hormonal therapy only. Classical treatment of cyclophosphamide, methotrexate and 150 
fluorouracil (CMF) was used as a therapy for patients presented with absence of ER 151 
expression and clinically fit to receive chemotherapy. None of the patients in the current 152 
study cohort received neoadjuvant therapy. Data related to the expression of ER, 153 
progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) as well 154 
as Ki67 were available27-30. Molecular subtypes were based on tumour 155 
immunohistochemical (IHC) profile and the Elston–Ellis31 mitotic score as ER+/HER2−; low 156 
proliferation (mitotic score 1), ER+/HER2− high proliferation (mitotic scores 2 and 3), 157 
HER2-positive class: HER2+ regardless of ER status, TN: ER−, PR−, and HER2−32. There 158 
was no significant differences in the distribution of the clinicopathological parameters 159 
between the Nottingham and the METABRIC cohorts (all correlation coefficients ≥0.948, 160 
all p < 0.0001)33 (Supplementary Table 1).  161 

DKC1 validation by Western blotting 162 

The antibody specificity of anti-DKC1 antibody (EPR10399, Abcam, UK) was validated 163 
using western blotting (WB) performed on cell lysates of a wild and transfected MDA-MB-164 
231 human breast cancer cell line (American Type Culture Collection; Rockville, MD, USA). 165 
The forward transfection of siRNA procedure was followed according to DKC1 siRNAs 166 
manufacturer’s instructions. In brief, the cells were seeded in 6 well plate at a cell density 167 
of 3 × 105 cells per well and incubated overnight in 370C 5% CO2 incubator. The following 168 
day, the cells reached about 40% confluence and were transfected with 10nM of three 169 
different IDs of DKC1 siRNA (Cat#:4392420, ThermoFisher Scientific, UK). A transfection 170 
with 10nM scrambled siRNA sequence (Cat#:4390843, ThermoFisher Scientific, UK) was 171 
carried out in the experiment and considered as a negative control. DKC1 protein 172 
expression of untransfected & transfected cells was then determined by the Western 173 
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blotting. Briefly, after collecting the cell lysates, a dilution of 1:1000 of the primary 174 
antibody and 1:15000 IRDye 800CW Donkey anti-rabbit secondary antibody (LI-COR 175 
Biosciences) were applied, and 5% milk /PBS-Tween (0.1%) (Marvel Original Dried 176 
Skimmed Milk, Premier Food Groups Ltd., UK) was used for blocking and antibodies 177 
incubation. Mouse monoclonal anti-β-actin primary antibody (1:5000) (Sigma-Aldrich, UK) 178 
with IRDye 800CW Donkey anti-mouse fluorescent secondary antibody (LI-COR 179 
Biosciences) were used to visualise a marker of endogenous control. Visualisation of DKC1 180 
band was done by using the Odyssey Fc with Image Studio 4.0 (LI-COR Biosciences).  181 
Tissue microarrays and immunohistochemical analysis 182 

Invasive BC tissues were previously arrayed as tissue microarrays (TMA) using the Grand 183 
Master® (3D HISTECH®, Budapest, Hungary)34. IHC staining was performed on 4 µm TMA 184 
thick sections using the Novocastra Novolink™ Polymer Detection Systems kit (Code: 185 
RE7280-K, Leica, Biosystems, Newcastle, UK). Antigen retrieval was performed in citrate 186 
buffer pH 6.0 using a microwave (Whirlpool JT359 Jet Chef 1000W) for 20 min. Rabbit 187 
monoclonal DKC1 was diluted at 1 : 50 in Leica antibody diluent (RE AR9352, Leica, 188 
Biosystems, UK) and incubated with the sections for 60 min at room temperature. A 189 
negative control was obtained by omitting the incubation with primary antibody while 190 
formalin fixed placenta tissue was used as a positive control according to manufacturer’s 191 
datasheet. 192 

Assessment of DKC1 protein expression 193 

Scanning of TMA stained sections into high-resolution digital images was performed by 194 
using a NanoZoomer scanner (NanoZoomer; Hamamatsu Photonics, Welwyn Garden City, 195 
UK) at 20x magnification. Scoring of DKC1 nuclear and nucleolar4 expression was 196 
evaluated based on a semi-quantitative scoring using modified histochemical score (H-197 
score), where the intensity of staining was multiplied by the percentage of positive cells 198 
in the tissue for each intensity, producing a score ranging between 0 and 30035. A score 199 
index of 0, 1, 2, and 3 corresponding to negative, weak, moderate, and strong respectively 200 
were used for intensity. The percentage (0-100) of positive cells for each intensity was 201 
evaluated subjectively. All non-representative cores including folded tissue during 202 
processing and staining, cores with only normal breast tissue and cores with invasive 203 
tumour < 15% of core surface area were excluded from scoring. All the cores were scored 204 
by a trained observer (K. Elsharawy) blinded of histopathological and patient outcome 205 
data. Further, to test the inter-observer’s reproducibility of the scoring, a subset of TMA 206 
cores (10%) was randomly selected and double scored by a second trained observer (M. 207 
Aleskandarany). Moreover, for further evaluation of scoring reproducibility, 20% of the 208 
cases were double scored by the main observer (K. Elsharawy) after 5 months washout 209 
period blind from the first scores. 210 
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Statistical analysis  211 

IBM-SPSS statistical software 24.0 (SPSS, Chicago, IL, USA) was used in statistical 212 
analysis. Inter-observer agreement in DKC1 IHC scoring was assessed using intra-class 213 
correlation coefficient (ICC). Dichotomisation of DKC1 proteomic and transcriptomic levels 214 
expression was determined based on the prediction of BCSS using X-tile bioinformatics 215 
software version 3.6.1  (School of Medicine, Yale University, New Haven, USA)36. The H-216 
scores of 110 & 10 were the optimal cut-off values of DKC1 nuclear and nucleolar protein 217 
expression. Continuous data of DKC1 mRNA and DKC1 protein expression were used to 218 
assess the association with clinicopathological parameters. Differences between three or 219 
more groups were investigated using one-way analysis of variance (ANOVA) with the post-220 
hoc Tukey multiple comparison test (for parametric data) or Kruskal-Wallis test (for non-221 
parametric distribution). Student t-test (parametric data) or Mann-Whitney test (non-222 
parametric distribution) were used to evaluate the differences between two groups. 223 
Spearman’s correlation coefficient was calculated to examine the association between 224 
continuous variables. Univariate analysis was visualised using Kaplan-Meier curves and 225 
significance was assessed by log-rank test. Cox’s proportional hazard regression models 226 
were built for the multivariate survival analysis to adjust for confounding factors. P-values 227 
were adjusted by using Bonferroni correction for multiple testing. For all tests, 228 
p value < 0.05 was considered as statistically significant. This study followed the reporting 229 
recommendations for tumour markers prognostic studies (REMARK) criteria37. 230 
 231 

RESULTS 232 

In this study, we have applied the bespoke bioinformatics tools to identify the key genes 233 
associated with NP and this identified DKC1 as the target gene. Then, DKC1 was 234 
investigated at the transcriptomic, genetic and protein levels. 235 

DKC1 mRNA expression and CN aberrations 236 

High DKC1 mRNA expression (log2 intensity >9.4) was observed in 709/1970 (36%) of 237 
the METABRIC cases.  In all, 77/1980 (4%) of cases showed DKC1 CN gain, whereas 238 
115/1980 (6%) showed a CN loss. A significant association was observed 239 
between DKC1 CN variation and DKC1 mRNA expression (p<0.0001) (Fig. 1A). 240 

DKC1 protein expression in BC tissues  241 

Prior to IHC staining, the specificity of the antibody used was validated using WB 242 
performed on a DKC1 siRNA transfected BC cell line. A specific band at the predicted DKC1 243 
molecular weight (58 kDa) was detected for proteins extracted from untransfected cells 244 
and those transfected with scrambled siRNA sequences. In addition, the DKC1 band 245 
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intensity was significantly reduced with proteins extracted from DKC1 siRNAs transfected 246 
cells, confirming the specificity of the antibody utilised. A single band was observed at β-247 
actin molecular weight (42 kDa) demonstrating the uniformity of loaded protein quantities 248 
(Fig. 2A). 249 

DKC1 protein expression was observed in the nucleus and nucleoli of invasive BC cells, 250 
with expression levels varying from absent to strong (Fig. 2B, 2C & 2D). Strong 251 
concordance was observed between the two observers in DKC1 immuno-scoring in 10% 252 
of the cases (ICC=0.864, p<0.0001 for nuclear expression & ICC=0.781, p<0.001 for 253 
nucleolar expression). Moreover, second scoring of 20% of cases after 5 months washout 254 
period confirmed concordance ((ICC=0.822, p<0.0001 for nuclear expression & ICC= 255 
0.804, p<0.0001 for nucleolar expression). At the optimal DKC1 cut-off values (H-score 256 
110 & 10, respectively), High DKC1 nuclear and nucleolar expression were observed in 257 
574/942 (61%) and 153/942 (16%) of the informative tumours, respectively. There was 258 
a significant positive correlation between DKC1 nuclear and nucleolar expression (n=429) 259 
(correlation coefficient= 0.143, p<0.0001). 260 

Correlation of DKC1 mRNA and protein expression with 261 

clinicopathological parameters 262 

High DKC1 mRNA expression was significantly associated with younger patient age, larger 263 
tumour size, higher tumour grade and poorer NPI (p<0.001, p=0.024, p<0.0001 & 264 
p<0.0001) as shown in Fig. 1B-E, respectively. These associations were confirmed using 265 
the Breast Cancer Gene-Expression Miner v4.3 (Supplementary Fig. 1A-C) 266 

In the TCGA BC dataset, similar associations, as described above, were observed with 267 
clinicopathological parameters. In particular, high DKC1 mRNA expression was 268 
significantly associated with high nucleolar score 3 4 (p<0.0001, Supplementary Table 269 
2). 270 

High expression of DKC1 protein whether in the nucleus and/or nucleoli was associated 271 
with aggressive features of BC including higher tumour grade (p<0.0001), larger tumour 272 
size (p=0.04 only with nucleolar expression), higher mitotic scores (p<0.0001), increased 273 
nuclear pleomorphism (p<0.0001), higher scores of nucleolar prominence (p<0.001), poor 274 
NPI (p<0.0001) and the invasive ductal no special histological type (NST) (p<0.0001), 275 
Table 1. 276 

DKC1 expression and other markers 277 

The correlation of DKC1 mRNA with other relevant genes was investigated using the 278 
METABRIC and TCGA datasets. The genes were chosen based on published information, 279 
being either regulatory genes or those that share or support DKC1 biological function 280 
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especially those primarily involved in the ribosomal biogenesis. DKC1 was positively 281 
associated with GAR1 (p<0.0001), NOP10 (p<0.001), and NHP2 (p<0.0001). Moreover, 282 
there was a significant association between DKC1 MKI67 and the regulatory genes c-Myc 283 
(all p<0.001) (Supplementary Table 3). High DKC1 mRNA expression was associated 284 
with those tumours which showed TP53 mutations (p<0.0001, Supplementary Table 4). 285 
Also, the statistical analysis showed a significant positive association of high DKC1 protein 286 
expression with high Ki67 (χ2=8.815, p = 0.003).  287 

DKC1 mRNA and protein expression in BC molecular subtypes 288 

At the transcriptomic level in METABRIC cohort, high DKC1 expression was significantly 289 
associated with hormone receptor negative (ER- and PR-), HER2+ tumours and TNBC (all 290 
p<0.0001) as shown in Supplementary Table 4. Similar results were observed upon 291 
analysing the publicly available gene expression data available on the Breast Cancer Gene-292 
Expression Miner v4.3 online platform (Supplementary Fig. 1D-G) and TCGA datasets 293 
(Supplementary Table 4). 294 

Regarding the association with the intrinsic PAM50 subtypes38, high expression of DKC1 295 
mRNA was observed in basal-like, HER2+ and Luminal B tumours (Fig. 1F, p<0.0001). 296 
These findings were confirmed using the Breast Cancer Gene-Expression Miner v4.3 297 
(Supplementary Fig. 1H). In the SCMGENE subtypes, high expression of DKC1 mRNA 298 
was observed in the ER-/HER2- cases followed by ER+/HER2- high proliferation class 299 
(p<0.0001, Fig. 1G). 300 

DKC1 nuclear and nucleolar protein expression was associated with negative ER status 301 
(p=0.04 & p<0.0001 respectively). Moreover, DKC1 nucleolar protein showed a significant 302 
correlation within HER2+ and triple negative (TN) tumours (both p<0.0001), Table 2.  303 

There was a higher protein expression of DKC1 (nuclear & nucleolar) in the ER+ high 304 
proliferative tumours than in the other molecular subtypes (p<0.0001) as shown in Table 305 
1. 306 

Correlation of DKC1 mRNA and protein expression with patient outcome 307 

In METABRIC cohort, high DKC1 mRNA expression was associated with poor BCSS in all 308 
cases (HR = 1.5, 95%CI = 1.3–1.8; p<0.0001). Moreover, DKC1 mRNA expression was 309 
predictive of BCSS only in luminal B cases (HR = 1.5, 95%CI = 1.1–2.1; p=0.015) as 310 
shown in Supplementary Fig. 2A-E. The relationship between high DKC1 mRNA 311 
expression and poor patient outcome in ER+ disease, but not ER- disease, was shown 312 
using the TCGA cohort (Supplementary Fig. 3). 313 
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Both high DKC1 nuclear and nucleolar protein expressions, when assessed individually, 314 
were associated with poor outcome (HR = 2.5, 95%CI = 1.7–3.7; p<0.0001 & HR = 1.5, 315 
95%CI = 1.1–2.2; p=0.038 respectively) Fig. 3A, B. When the analysis was limited to 316 
molecular subtypes, high expression of DKC1 nuclear protein, was significantly associated 317 
with poor outcome in ER+ high proliferation tumours (HR = 4.4, 95%CI = 1.6–12.3; 318 
p=0.002), HER2+ tumours (HR = 2.6, 95%CI = 1.1–6.7; p=0.039) and TNBC (HR = 1.5, 319 
95%CI = 1.1–6.2; p=0.035) Fig. 3D-G. However, no significant association of DKC1 320 
nucleolar protein expression was identified with outcome in BC subtypes (p>0.05). 321 

For further analysis, combinatorial DKC1 protein expression groups were created [i.e. low 322 
nuclear/low nucleolar, high nuclear/low nucleolar expression, low nuclear/high nucleolar 323 
and high nuclear/high nucleolar]. A significant difference in patient survival was observed 324 
between these four groups, where tumours with low nuclear and low nucleolar DKC1 325 
expression showed the best outcome, whereas the tumours with high nuclear and high 326 
nucleolar expression showed the worst outcome (p<0.0001) Fig.3C. 327 

The multivariate Cox-proportional models, including other prognostic covariates such as 328 
tumour size, grade and nodal stage, showed that DKC1 nuclear, combinatorial protein 329 
expression and DKC1 mRNA in the METABRIC dataset were independent predictors for 330 
poor prognosis in whole cases (p=0.001, HR 2.037, 95% CI= 1.373–3.023, p=0.003, HR 331 
2.746, 95% CI= 1.484–5.083 & p=0.006, HR 1.316, 95% CI =1.097–1.579) as shown in 332 
Table 3 & Supplementary Table 5. 333 

In addition, high DKC1 nuclear protein expression was significantly associated with shorter 334 
distant metastases-free survival (DMFS) (HR = 2.1, 95%CI = 1.5–2.9; p<0.0001). 335 
Likewise, combinatorial protein expression was associated with shorter DMFS (HR = 1.3, 336 
95%CI = 1.1–1.4; p=0.001) (Supplementary Fig. 4). 337 

  338 
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DISCUSSION 339 

In malignant tumours, the number and size of nucleoli are usually an indication of the rate 340 
of ribosome production which is regarded as a major metabolic requisite for cell growth 341 
and proliferation39,40. Nucleolar function and size are directly related to cell doubling time 342 
in cancer cells and quantitative morphometric evaluation of nucleolar size was considered 343 
as a cytological parameter of the tumour cells proliferation rate4,41. In this study, we 344 
assessed NP in the TCGA breast cancer dataset as previously described 4, and used two 345 
greedy algorithms information theory and validated it using LASSO regression test22-24 to 346 
identify genes driving NP. This demonstrated that out of the 20,339 genes investigated, 347 
DKC1 was the top differentially expressed gene. Then DKC1 expression was evaluated at 348 
the proteomic, transcriptomic and genomic levels in large cohorts of invasive BC.  349 

There were significant associations between high DKC1 mRNA in TCGA breast cancer 350 
dataset and DKC1 protein expression in Nottingham cohort with high nucleolar scoring4. 351 
These findings supported our hypothesis that DKC1 plays a role in the nucleoli appearance 352 
and size likely through its mechanism in ribosomal biogenesis.  353 

Our results also showed positive correlations between nuclear and nucleolar DKC1 protein 354 
expression in the breast tumour cells. It was reported that newly synthesised DKC1 initially 355 
localizes to the nucleoplasm, followed by consecutive translocation to the nucleoli and the 356 
nuclear Cajal bodies. Usually, co-localisation of DKC1 on the nuclear Cajal bodies occurred 357 
only when it had already accumulated in the nucleoli42. DKC1 is involved in the 358 
pseudouridination and processing of small spliceosomal RNAs through its binding to H/ACA 359 
small Cajal body RNAs43. 360 

The current study confirms the significant association between the high expression of 361 
DKC1, at both protein and mRNA levels, and clinicopathological parameters characteristics 362 
of poor prognosis and with shorter survival; findings which are in line with other 363 
studies15,44,45. Some studies have also confirmed that DKC1 overexpression is involved in 364 
tumourigenic processes and has prognostic value in numerous types of cancer19,21,46. The 365 
association between DKC1 mRNA and shorter survival was identified in both METABRIC 366 
and TCGA cohorts. Moreover, our analysis revealed that the prognostic significance of 367 
DKC1 protein and mRNA in BC was independent of other variables, demonstrating its 368 
potential clinical relevance in improving survival rate prediction. 369 

When BC molecular subtypes were considered, the significant association between DKC1 370 
protein and poor patient outcome was observed in the ER+ high proliferation (i.e. luminal 371 
B), HER2+ and TNBC classes whereas the high mRNA expression was only limited to the 372 
luminal B subtype. The most common type of BC constituting nearly 55–70% is the 373 
ER+/luminal tumour, and those tumours are variable in terms of recurrence, mortality 374 
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rates and disease prognosis47,48. These observations further endorse DKC1 functions in 375 
playing crucial roles in tumour growth and progression 376 

DKC1 performs two fundamental functions for cell proliferation. Firstly, DKC1 is a 377 
component of the H/ACA small nucleolar ribonucleoprotein particles (snoRNPs) involved 378 
the pseudouridylation of ribosomal RNA (rRNA) molecules and necessary for their 379 
processing. Secondly, it is required for telomerase activity by stabilising the telomerase 380 
RNA component11. The faster the rate of cell proliferation, the higher the demand for 381 
protein production which is compatible with increased rRNA synthesis49,50. It has been 382 
reported that any dysregulation of DKC1 levels results in defects of ribosome biogenesis 383 
and a reduction of rRNA pseudouridylation which in turn hinders the normal ribosome rRNA 384 
processing rate51. For instance, Montanaro et al. have demonstrated that reduced DKC1 385 
gene expression by specific RNA interference in BC cell lines resulted in a reduction of 386 
rRNA pseudouridylation which subsequently effected the survival of proliferating cells52.  387 
The role of DKC1 in mitosis was also confirmed11, where dyskerin was identified as one of 388 
seventy genes which correlated with the development of aneuploidy. Alawi et al. have 389 
demonstrated that dyskerin expression peaks during G2/M and loss of dyskerin function 390 
has a widely disruptive effect on mitosis and triggers the spindle-assembly checkpoint13. 391 
Our findings showed that high DKC1 expression was significantly associated with 392 
proliferation as assessed by Ki67 labelling index, which was also observed in other studies 393 
in BC52 hepatocellular carcinoma15 and prostate cancer19; confirming that DKC1 is critical 394 
for mitotic progression and proliferation in these cancers. 395 
DKC1 is the direct and conserved transcriptional target of c-Myc53, which explains the 396 
strong correlation between its up-regulation and active cell proliferation54. In our study, 397 
we observed a significant positive association between DKC1 and c-Myc in mRNA 398 
expression. Previous studies have demonstrated that tumour oncogene c-Myc controls the 399 
transcription of DKC1 gene in addition to other proteins which are required for rRNA 400 
processing9,55. TP53 mutations were also highly prevalent in breast tumours with high 401 
DKC1 mRNA expression in METABRIC. There is mounting evidence that the usual increase 402 
of ribosome biogenesis (one of the main functions of DKC1) in cancer cells is the 403 
consequence of frequent alterations of two major tumour suppressors, TP53 and 404 
retinoblastoma (RB) genes55. In addition, tumours with altered p53 and/or retinoblastoma 405 
protein pRb functions are characterised by significantly larger/more conspicuous nucleoli 406 
than tumours with normally functioning p53 and pRb56.  407 

We further investigated the association of DKC1 expression with other H/ACA 408 
ribonucleoproteins, NHP2, NOP10, and GAR1 which play important roles in disease 409 
progression. DKC1, NHP2, and NOP10 form a core trimer that directly binds to H/ACA 410 
RNAs. The three proteins are interdependent with each other for stability and also regulate 411 
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constancy of the bound RNAs57. GAR1 binds only to DKC1 and is needed for a proper 412 
functioning of the H/ACA RNPs, but its absence does not reduce the stability of the rRNA58. 413 
These findings confirmed the significant positive correlation between H/ACA 414 
ribonucleoproteins and DKC1 in BC43. Alterations in DKC1 expression will potentially 415 
disrupt the biogenesis of H/ACA pathway and consequently affect ribosome synthesis and 416 
impair cell proliferation. 417 

In the last decade, there have been a few attempts to construct DKC1 inhibitors. However, 418 
one in silico study successfully determined a small molecule inhibitor (Pyrazofurin) that 419 
exerted an ability to weaken the pharmacological and physiological activities of DKC1 420 
through inhibiting its function in pseudouridylation of rRNA. Although Pyrazofurin failed to 421 
progress phase II clinical trials, however, its chemical structure should continue to be 422 
exploited as a pharmacokinetic model to develop a potent, effective and safe DKC1 423 
inhibitor that may eventually be used for BC highly expressing DKC159.  424 
A few limitations of this study findings are worth mentioning. On one hand, the semi-425 
quantitative H-score method used to evaluate the immunohistochemical protein 426 
expression in the Nottingham cohort, might be regarded as having substantial subjectivity. 427 
This was addressed by double scoring a subset of the cancers to ensure the reproducibility 428 
and liability of the procedure. On the other hand, only one representative TMA core from 429 
each tumour tissue was arrayed and scored instead of considering replicates to express 430 
the tumour heterogeneity. This was due to the limited tissue resources in our biobank. 431 
However, to overcome the issue, 20 full face sections of randomly selected breast cancer 432 
cases were stained, prior to TMA application, with DKC1 antibody to assess the staining 433 
homogeneity and to evaluate the pertinence of using tissue microarrays (TMAs). These 434 
showed homogeneously distributed DKC1 expression, deeming the use of TMA to assess 435 
DKC1 an appropriate tissue platform, to mitigate the limited resources as well as testing 436 
the hypothesis a large BC cohort. Finally, the ‘weak’ but significant correlation between 437 
nuclear and nucleolar expression of DKC1 might also be regarded as a weakness point in 438 
the study. This might be due to the subjectivity of the method which has been used in 439 
determining NP in our previous study4.  440 
CONCLUSION 441 

This study reveals a significant correlation between the morphological features of NP and 442 
an underlying molecular and protein description (DKC1). The importance of DKC1 was 443 
demonstrated in three independent datasets where each dataset contributed to the 444 
description of DKC1 from different perspectives. DKC1 is significantly associated with high 445 
nucleolar score and with poor prognostic characteristics and poor patients’ outcome. 446 
Overexpression of DKC1 appears to play a role in the proliferation and progression of the 447 
aggressive BC subtypes including the luminal B, TNBC, and HER2 molecular subtypes. 448 
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Findings here encourage further investigation of DKC1 as it might relate to guiding 449 
targeted therapies and to evaluate its role in response to chemotherapy. 450 

  451 
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Figure legends 707 

Figure 1: DKC1 mRNA expression and its association with copy number variations, 708 
clinicopathological parameters and molecular subtypes (A) DKC1 and gene 709 
copy number variations (B) DKC1 and patient age. (C) DKC1 and tumour 710 
size. (D) DKC1 and tumour grade (E) DKC1 and Nottingham prognostic 711 
index. (F) DKC1 and PAM50 BC subtypes (G) DKC1 and SMCGENE subtypes 712 
in the METABRIC cohort using one-way analysis of variance with the post-hoc 713 
Tukey test. 714 

Figure 2: (A) A representative Western blotting for DKC1 expression in cell lysate of 715 
MDA-MB-231 breast cancer cell line with the lanes (from left to right) of 716 
untransfected, transfected with scrambled siRNA and transfected with three 717 
different IDs ([ID1 represents ID s4110], [ID2 represents ID s4111] and [ID3 718 
represents ID s4112]) of DKC1 siRNA (B) Negative DKC1 IHC expression (C) 719 
Positive DKC1 IHC nuclear expression in invasive breast cancer TMA cores and 720 
(D) Positive DKC1 IHC nucleolar expression. 721 

Figure 3:  DKC1 protein expression and breast-cancer-specific survival (BCSS) (A) DKC1 722 
nuclear expression and BCSS (B) DKC1 nucleolar expression and BCSS (C) 723 
combinatorial DKC1 protein expression and BCSS (D) DKC1 and BCSS in 724 
oestrogen receptor (ER) + low proliferation tumours (E) DKC1 and BCSS in 725 
(ER) + high proliferation tumours (F) DKC1 and BCSS human epidermal 726 
growth factor receptor 2 positive (HER2+) tumours (G) DKC1 and BCSS of 727 
triple negative tumours in the studied cohort. 728 
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