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SUMMARY

Casparian strips (CSs) are cell wall modifications of vascular plants restricting extracellular free diffusion into
and out of the vascular system [1]. This barrier plays a critical role in controlling the acquisition of nutrients
and water necessary for normal plant development [2–5]. CSs are formed by the precise deposition of a band
of lignin approximately 2 mmwide and 150 nm thick spanning the apoplastic space between adjacent endo-
dermal cells [6, 7]. Here, we identified a copper-containing protein, Uclacyanin1 (UCC1), that is sub-compart-
mentalized within the CS. UCC1 forms a central CS nanodomain in comparison with other CS-located pro-
teins that are found to be mainly accumulated at the periphery of the CS. We found that loss-of-function
of two uclacyanins (UCC1 and UCC2) reduces lignification specifically in this central CS nanodomain,
revealing a nano-compartmentalized machinery for lignin polymerization. This loss of lignification leads to
increased endodermal permeability and, consequently, to a loss of mineral nutrient homeostasis.

RESULTS AND DISCUSSION

Plant roots perform the critical function of controlling the uptake

of water and mineral nutrients from the soil essential for plant

growth and development. A specialized cell layer in the root

called the endodermis plays a key role in the selective uptake

of mineral nutrients into the stele for translocation to the shoot

[2, 5, 6, 8]. Of vital importance to this function are Casparian

strips (CSs), which are belt-like lignin structures surrounding

each endodermal cell, that interlock to form a barrier to diffusion

in the apoplast [9, 10]. This barrier is thought to enable the endo-

dermis to exert control over uptake of water and solutes from the

environment into the plant and perhaps also to control biotic in-

teractions [1, 11].

The precise deposition of lignin for CS formation requires

a signaling pathway involving the kinases SGN1 and SGN3

controlling the spatial production of reactive oxygen species

(ROS) through the activation of the RBOHF NADPH oxidases

[5, 9, 12–14]. Lignin polymerization requires the localized

action of a peroxidase (PER64) [15] and a dirigent-like protein

(ESB1) [6]. This biosynthetic machinery is likely placed at the

CS deposition site by association with CASPARIAN STRIP

MEMBRANE DOMAIN PROTEINS (CASPs) [7]. The CASPs

form a highly scaffolded transmembrane domain guiding

where the CS forms. Furthermore, the receptor-like kinase

SGN3 acts as a sensor of CS integrity by inducing over-

lignification of the endodermal cells when the CS is defective

[4, 5].

A network of transcriptional factors involving SHR, SCR, and

MYB36 controls endodermal differentiation [16, 17]. The

MYB36 transcription factor controls the expression of most of

the described genes associated with CS formation, including

CASPs, ESB1, and PER64 [2, 18]. Characterization of other

MYB36-regulated genes could thus lead to the identification of

new actors involved in CS formation.

Among the genes downregulated in a myb36 loss-of-function

mutant [2, 18], we identified a Uclacyanin1 gene (UCC1) that be-

longs to the copper-containing phytocyanins family [19] (Fig-

ure 1A). This family is divided into three sub-families according

to their copper binding amino acid: uclacyanins, stellacyanins,

and plantacyanins. The functional role of these proteins remains

unknown. However, biophysical and structural data of several

phytocyanins suggest their implication in redox reactions with

small molecular weight compounds [19–24]. The expression of

several members of this family have been previously shown to

be associated with lignified tissues [25–27]. We looked at the

endodermal spatiotemporal expression pattern of the different

members of this family (Figure 1A). We found that UCC1,

UCC2, and, to a lesser extent, UCC8 and STC1 are expressed

in the endodermis similarly to that observed for CASP1 and

ESB1. Additionally, UCC1 and UCC2 were found among the

top 15 marker genes for endodermal specificity in a single-cell
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Figure 1. Uclacyanins UCC1 and UCC2 Are Required for a Functional Casparian Strip

(A) Left: figure shows a phylogenetic analysis of phytocyanins protein family in A. thaliana. The tree was built using the full-length amino acid sequences for all

proteins. Different colors represent the three phytocyanins subfamilies: uclacyanins, stellacyanins, and plantacyanins (39). In the tree, branch lengths are pro-

portional to the number of substitutions per site. AT3G17675 has been previously annotated as a stellacyanin (STC4), however, the signal peptide for the secretion

pathway and the hydrophobic extension for Glycosylphosphatidylinositol (GPI) anchoring are missing. Right: heatmap showing the endodermal expression of the

phytocyanins family inA. thaliana across the different root zones (Meristematic, Elongation, Maturation). For the analysis, expression data were collected from the

Bio-Analytic Resource database, AtGenExpress Consortium. The expression of two endodermal localized proteins, CASP1 and ESB1, were added to the

analysis as a reference. Asterisks indicate a significant downregulation in a myb36 mutant according to [18].

(B) Schematic representation of theUCC1 andUCC2 proteins showing the different protein domains and the types ofmutations. Domainswere defined according

to [19] (see also Figure S1A).

(C) Boxplot analysis showing the number of the cells from the onset of elongation permeable to propidium iodide in wild-type (WT) plants, ucc1mutants (ucc1.1

and ucc1.2), ucc2mutant (ucc2.1 and ucc2.2), and the double ucc1 ucc2mutants (ucc1.2 ucc2.1 and ucc1.2ucc2.2). Data were collected from two independent

(legend continued on next page)
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RNA sequencing dataset [28]. Due to the lack of T-DNA inser-

tional mutants in the UCC1 gene, we generated two loss-of-

function mutants, ucc1.1 and ucc1.2, using CRISPR/Cas9 tech-

nology (Figure 1B). These mutants bear a single base deletion

(ucc1.1) and an insertion (ucc1.2), leading to shifts in the reading

frame in both. For UCC2 characterization, we used two T-DNA

mutants, ucc2.1 presenting an insertion in the coding sequence

(Figure 1B) and ucc2.2 presenting an insertion in the 30UTR. The
two ucc1 alleles show a slight although significant delay in for-

mation of an apoplastic barrier, as visualized by the uptake of

the apoplastic tracer propidium iodide (PI) after 10min of staining

(Figure 1C). The T-DNAmutants ucc2.1 and ucc2.2 did not show

an increase of PI permeability. Notably, in ucc1ucc2 double mu-

tants, with strong reduction in expression of both UCC1 and

UCC2 in ucc1.2ucc2.1 (Figure S1A), a strong increase of PI

permeability is observed similar to that found in other CS mu-

tants such as esb1 and casp1casp3 (Figure S1B). However,

the number of cells permeable to PI in ucc1.2ucc2.1 is highly var-

iable in comparison with casp1casp3 and esb1. When the incu-

bation time with PI is increased to 20min, ucc1.2ucc2.1 displays

an enhanced permeability in comparison with esb1. Taken

together, these results highlight the redundant role of UCC1

and UCC2 for establishing a functional apoplastic barrier. No ad-

ditive effect on PI permeability was observed in the triple mutant

ucc1.1casp1casp3 or in the doubles ucc1.2esb1 and

ucc1.2sgn3 in comparison with casp1casp3, esb1, and sgn3,

respectively (Figure S1B). The loss of CS integrity in esb1,

myb36, and casp1casp3 is accompanied by an increased depo-

sition of suberin [2, 5, 6] as a compensatory mechanism under

the control of SGN3 [4]. We analyzed the pattern of suberin

deposition using fluorol yellow 088 staining in the ucc mutants

(Figure 1D). Deposition of suberin did not increase in the single

mutants ucc1.1, ucc1.2, ucc2.1, or ucc2.2. However, the double

mutant ucc1.2ucc2.1 induces an increase in endodermal suber-

ization compared with wild-type (WT) plants. This increase is not

as strong as that observed in esb1 or casp1casp3 (Figure S1C).

The combination of ucc1 mutations in esb1 and casp1casp3 do

not affect the enhanced suberization of esb1 or casp1casp3.

Disruption of CS is known to affect the composition of the leaf

ionome as observed in esb1, myb36, casp1casp3, sgn3, and

lotr1 [2, 3, 5, 6]. In order to determine the contribution of UCC1

and UCC2 in maintaining mineral nutrient homeostasis, we

analyzed the leaf ionome in different mutant combinations (Fig-

ure 1E; Table S1) using inductively coupled plasma mass spec-

trometry (ICP-MS). The ucc1 and ucc2 single mutants have

similar leaf ionomes, which group together in a hierarchical clus-

tering (Figure 1E). However, the leaf ionome of the ucc1.2ucc2.1

double mutant separates from the single mutants, grouping

instead with esb1. The leaf ionome of the double mutants

ucc1sgn3 group with the sgn3 mutant, and the double mutants

ucc1esb1 group with the esb1 mutant (Figure 1E). This confirms

that there is no or little additivity of the leaf ionomic phenotype

between ucc1 and sgn3 or esb1.

The higher endodermal permeability and the atypical ionomic

profile observed in the ucc(s) mutants (Figures 1 and S1) strongly

suggest that UCCs play an important role in CS formation. To

identify the cell type in which the UCC1 promoter is activated,

we fused the UCC1 promoter to GFP (Figure S2A). GFP was

accumulated only in the endodermis, from the elongation zone

and further up into the zone of differentiated endodermal cells.

According to the literature, the phytocyanin proteins are pre-

dicted to be located on the cell surface and anchored to the

plasma membrane via a glycosylphosphatidylinositol (GPI) an-

chor [29]. Several members of this family, including UCC2,

have been shown to be GPI-anchored using a proteomic

approach [29]. In order to determine the precise UCC1 localiza-

tion, we generated a line (pUCC1::mCherry-UCC1) expressing a

tagged UCC1 (Figure 2A). The mCherry-UCC1 fusion accumu-

lates at the endodermal cell junctions where the CS is located

(Figure 2B). It first appears in a discontinuousmanner in the early

stage of endodermal differentiation, and then forms a more

continuous band later in the endodermis development.

When we analyzed the localization of mCherry-UCC1 in plants

expressing CASP1-GFP, we observed a similar pattern of local-

ization at the CS as seen in the maximum projection view of

endodermal cells in Figure 2C. However, at higher magnification,

in both the median and surface views, we observed mCherry-

UCC1 to occupy a more central position in comparison with

CASP1-GFP. This was further confirmed using super-resolution

structured illumination microscopy (Figure S2B). Moreover,

CASP1-GFP does not form a homogeneous domain but is found

to accumulate more at the periphery of the CS and less in the

center where UCC1 is observed. Subsequently, we checked

whether mCherry-UCC1 colocalizes with lignin deposition in

the CS (Figure S2C). At the early stage of endodermal differenti-

ation, lignin presents a nearly perfect colocalization with

mCherry-UCC1. However, the line expressing mCherry-UCC1

also presents ectopic lignification later in development. This

ectopic lignification is similar to that observed in other CS

mutants such as casp1casp3 and esb1 [6, 7]. Expression of

mCherry-UCC1 in two independent lines also delayed the

formation of a functional barrier to PI, and this is not the case

for plants expressing the same construct with no mCherry. It

also promotes a significant increase of suberin deposition

(Figures S2D–S2F). These observations taken together show

that expressingUCC1with a fluorescent tag in aWT background

acts as a dominant negative mutation causing disruption of

the CS.

experiments (nR 29). Different letters represent significant statistical differences between genotypes using one-way ANOVA and Tukey’s test (p < 0.01) (see also

Figure S1B).

(D) Diagram shows the quantification analysis of the endodermal suberization in roots ofWT plants, ucc1.1, ucc1.2, ucc2.1, ucc2.2 and ucc1.2 ucc2.1. Each color

in the graph represents the percentage of the root length (percentage of root length [%]) that is unsuberized (white), discontinuously suberized (yellow),

continuously suberized (orange). Suberin was staining with Fluorol yellow 088. (n R 18). Error bars in the figure are the standard deviation (SD). Different letters

represent significant differences between genotypes using a Mann-Whitney test (p < 0.01) (See also Figure S1C).

(E) Heatmap representing the ionomic profiles (Z-scores) of WT plants, and a collection of mutants with a defective Casparian strip: ucc2.1, ucc1.1, ucc1.2,

ucc1.2 ucc2.1, esb1, ucc1.1 esb1, ucc1.2 esb1, sgn3, ucc1.1 sgn3, and ucc1.2 sgn3 grown in full nutrient conditions on agar plate for 2 weeks (n = 10). Elements

concentration were determined by ICP-MS and the raw data are available in the Table S1. Significant differences were determined in comparison withWT using a

t test (p < 0.01). Genotypes were subjected to hierarchical clustering analysis.
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To establish whether the expression of mCherry-UCC1 can

affect the pattern of accumulation of CASP1-GFP presented in

Figures 2C and S2B, we examined plants expressing CASP1-

GFP only (Figure 2D). CASP1-GFP is still more accumulated at

the periphery, and this was also observed for another member

of the CS machinery ESB1-mCherry. Immunolocalization

confirmed that native UCC1 protein is specifically localized to

the CS (Figures 2E and S2G). Its CS localization was reduced

in ucc1.2, further decreased in ucc1.2ucc2.1mutants, and abol-

ished in anmyb36mutant (Figures S2G and S2H). This difference

between ucc1.2 and ucc1.2ucc2.1 shows that the antibody is

promiscuous and able to bind to UCC2, strongly suggesting a

CS localization for UCC2. Immunolocalization confirmed our

previous observations of a central localization of UCC1 in the

CS as compared with CASP1-GFP (Figure 2E). Quantification

of pixel intensity across the CS reveals that UCC1 is highly accu-

mulated in themiddle of the CS, where CASP1-GFP is less accu-

mulated compared with the periphery of the CS domain

(Figure 2F). The CASP1 domain of the plasma membrane is

defined as a microdomain [30] as its width is around 1.5 mm.

UCC1 with a more central accumulation has a width equal or

slightly smaller than 1 mm, UCC1 can then be classified as a

nanodomain of the CS. This subdomain structure has not been

previously reported. However, previous studies for CASP1,

ESB1, and PER64 [7, 31] do appear to show an enrichment of

these proteins at the periphery of the CS. This means that the

level of organization observed at the plasma membrane for

CASP1 is conserved for cell wall proteins such as ESB1 and

PER64. To date, UCC1 is the only protein found in the central

nanodomain of the CS, revealing a new level of internal structure

within the CS.

To characterize the formation of the UCC1 and CASP1 subdo-

mains, we tracked endodermal differentiation cell-by-cell.

CASP1-GFP and mCherry-UCC1 are found to be accumulated

in the endodermis concomitantly between 4 and 6 cells after

the onset of elongation, at the periphery of the cells and not

A

B
C

D E

F

Figure 2. UCC1 Defines a New Central Sub-

domain in the Casparian Strip

(A) Diagram representing the construct

pUCC1::mCherry-UCC1 (UTR, untranslated re-

gion; SP, signal peptide; H Cter, hydrophobic C

terminus for GPI anchoring).

(B) Maximum intensity projection, orthogonal, me-

dian, and surface views of confocal sections of

plants expressing pUCC1::mCherry-UCC1 (red) in

cleared roots. In the case of maximum intensity

projection (maximum projection), the figure repre-

sents different regions of the root measured as

number of cells after the onset of elongation. For the

orthogonal, median, and surface views, cell walls

were stained with Calcofluor white (gray in the fig-

ures). Scale bar, 20 mm for the maximum projection

and orthogonal views. Scale bar, 5 mm for the me-

dian and surface views. Ep, epidermis; Co, cortex;

End, endodermis (see also Figure S2A).

(C) Maximum intensity projection, median, and

surface view of confocal sections of plants ex-

pressing CASP1-GFP (cyan) and mCherry-UCC1

(red). Signal was captured at the 10th endodermal

cell after the onset of elongation observed in vivo.

Scale bar, 20 mm formaximumprojection and 3 mm

for median and surface view (see also Figure S2B).

(D) In vivo observation of the surface view of an

endodermal cell expressing pESB1::ESB1-

mCherry or pCASP1::CASP1-GFP. Scale bar,

2 mm.

(E) Immunolocalization assay of UCC1 protein

(red) in plant expressing pCASP1::CASP1-GFP

(cyan). A primary polyclonal antibody targeting

UCC1 was used in combination with a secondary

antibody conjugated with Dylight 633. Scale bar,

2 mm see also Figures S2C–S2H.

(F) Graph presenting the distribution of normalized

pixels intensity (relative pixel intensity, 0–1) across

the Casparian strip (distance in mm) for CASP1-

GFP fluorescence (cyan) and UCC1 immunofluo-

rescence (red, Dylight 633). Light curves represent

individual replicates coming from individual plants

(n = 4). Each replicate is the average pixel intensity

across a segment of 25 mm along the Casparian

strip axis. Dark curves represent the mean values

for CASP1-GFP and UCC1 immunofluorescence.
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Figure 3. Relations between UCC1 Positioning and Other Components of the Casparian Strips Machinery

(A) Analysis of the spatial distribution of CASP1 and UCC1 at the endodermal cell junctions. Images were generated from the same plant co-expressing CASP1-

GFP and mCherry-UCC1 using confocal microscopy. The numbers at the bottom of the figure indicate the number of cells after the onset of elongation. White

arrows indicate the central accumulation for CASP1-GFP or mCherry-UCC1. Scale bar, 6 mm.

(B) Histograms showing the frequency distribution (Frequency [%]) of the onset of expression (upper plot, n = 18) and the onset of localization at the Casparian

strip of CASP1-GFP and mCherry-UCC1 (lower plot, n = 28).

(C) Maximum intensity projection (left) and surface view (right) of UCC1 immunolocalization (red) at 10 cells after the onset of elongation in WT plants and a

collection of Casparian stripsmutants: casp1 casp3, esb1, sgn3, esb1 sgn3. White arrows show gaps in the UCC1 localization. Scale bar, 20 mm for themaximum

projections and 2 mm the surface views. see also Figure S3A.

(D) Maximum intensity projection of CASP1-GFP localization in cleared root of WT plants and the mutants ucc1.1 and ucc1.1 ucc2.1. Scale bar, 20 mm.

(E) Surface view of the localization of CASP1-GFP in cleared root of WT plants and the mutants: ucc1.1, ucc1.2, and ucc1.1 ucc2.1. Scale bar, 2 mm.

(F) Quantification of normalized pixels intensity (relative pixel intensity; 0–1) across the Casparian strip in plants expressing CASP1-GFP. The plots are showing

the intensity profile for individual replicates (nR 10), themean value (black line), and the 95%confidence interval (gray interval). Each replicate corresponds to the

(legend continued on next page)
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yet at theCS (Figures 3A and 3B), which is consistent with a com-

mon transcriptional regulation by MYB36. We then tracked the

central accumulation of CASP1-GFP and mCherry-UCC1 at

the CS. We observed that the localization of CASP1-GFP and

mCherry-UCC1 at the CS mainly occurs at the eighth endo-

dermal cell after the onset of elongation (Figure 3B). However,

mCherry-UCC1, but not CASP1-GFP, was observed to be cen-

trally localized in several independent events at the seventh

cell after the onset of elongation. This suggests that CASP1

localization at the CS is not required for the recruitment of

UCC1. This was further confirmed by the normal accumulation

of UCC1 at the CS in a casp1casp3 mutant (Figures 3C and

S3A). However, UCC1 is not able to form a continuous domain

in casp1casp3 as in WT. This was also observed in the esb1,

sgn3, and esb1sgn3 mutants. We then tested the reciprocity to

know whether UCC1 and UCC2 are required for CASP1-GFP

localization (Figure 3D). In the ucc1.1 and ucc1.1ucc2.1mutants,

CASP1-GFP is able to localize at the CS domain and form a

continuous domain without disruption. This demonstrates that

UCC1 and UCC2 are not required for CASP1 localization to the

CS domain. However, the absence of UCC1 and UCC2 does

affect CASP1-GFP localization at a nanoscale resolution (Figures

3E and 3F). The exclusion of CASP1-GFP from the central nano-

domain of the CS is reduced in the ucc1 mutants and tends to

disappear in the double ucc1.1ucc2.1 mutant. This indicates a

role for UCC1 and UCC2 in the formation of the central CS nano-

domain. We then tested whether ROS production and lignin

polymerization are required for the exclusion of CASP1-GFP

from the central nanodomain. We observed that CASP1-GFP is

still more accumulated at the periphery of the CSwhen ROS pro-

duction is abolished in a rbohfmutant (Figures S3B and S3C) [12,

15] and when lignin polymerization is prevented using piperoni-

lyc acid, an inhibitor of the phenylpropanoid pathway [10, 32].

This suggests a direct role for UCC1 and UCC2 in excluding

CASP1-GFP from the central nanodomain of the CS.

Knowing that UCC1 localizes at the CS (Figures 2C–2F) and

mutations in UCC1 and UCC2 cause a strong defect in root apo-

plastic permeability (Figures 1C and S1B), we looked at lignin

deposition at the CS in ucc1&2 mutants (Figure S4A). Mutations

in UCC1 and/or UCC2 do not cause an obvious disruption in

the CS as observed in casp1casp3, esb1, sgn3 (Figure S4A),

and other previously identified CS mutants, where clear gaps

can be observed [3, 5–7, 11, 13–15, 33]. Further, there is no addi-

tivity between ucc1, esb1, and casp1casp3 observed for the

deposition of ectopic lignin (Figure S4A). Importantly, mutations

inUCC1 do reduce the amount of lignin in the central nanodomain

of the CS, as observed using confocal imaging (Figure 4A), and

super-resolution structured illumination microscopy (Figure 4B).

Pixel quantification across the CS reveals that ucc1 mutants

show a lower lignification in the central nanodomain (Figure 4B)

where UCC1 accumulates (Figures 2C–2F). This decrease is not

observed in ucc2.1. A further decrease is observed in the double

mutant ucc1.2ucc2.1 in comparison with ucc1 mutants. This is

consistent with the increased root permeability observed in

ucc1.2ucc2.1 in comparison with the single mutants (Figures 1C

and S1B). This reveals that CS permeability can be strongly

affected in the absence of clear gaps in the CS. Furthermore,

we observed ectopic lignification on the cortical side of the endo-

dermis on a fewoccasions in the ucc1mutants and at a higher fre-

quency in the double mutant ucc1.2ucc2.1 (Figures 4A, 4B, and

S4). This is a typical phenotype, along with increased suberin

deposition, that is due to the SGN3-dependent compensatory

mechanism observed in most mutants with defective CS

[2, 5–7, 12]. However, the ectopic lignification and enhanced

suberization are observed to a lesser degree in ucc1.2ucc2.1 in

comparison with other CS mutants such as casp1casp3 and

esb1 mutants (Figures 1D, 4, S1C, and S4). This could be ex-

plained by a more conditional leakiness of the CS in ucc1ucc2

mutants. Discontinuities below the resolution of light microscopy

could occur in ucc1ucc2mutants. This could lead to a full perme-

ability for low molecular weight compounds, such as ions and PI,

but an intermediate permeability for high molecular weight com-

pounds, such as theCIF peptides required for ectopic lignification

and enhanced suberization [13, 14].

In conclusion, this study reveals the first loss-of-function

phenotype formembers of the plant-specific blue copper protein

family of phytocyanins. Several studies suggested their implica-

tion in lignin polymerization [25–27], but this has never previously

been shown. Our analysis indicates a role for the uclacyanins in

the deposition of lignin in a newly discovered nanoscale domain

within the CS. Further, the subcellular localization of UCC1, and

the phenotype of the ucc(s) mutants, reveals a sub-compart-

mentalization of the machinery required for lignin polymerization

at the CS.
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et al. (2020). SCHENGEN receptor module drives localized ROS produc-

tion and lignification in plant roots. EMBO J. 39, e103894.

13. Doblas, V.G., Smakowska-Luzan, E., Fujita, S., Alassimone, J., Barberon,

M., Madalinski, M., Belkhadir, Y., and Geldner, N. (2017). Root diffusion

barrier control by a vasculature-derived peptide binding to the SGN3 re-

ceptor. Science 355, 280–284.

14. Nakayama, T., Shinohara, H., Tanaka, M., Baba, K., Ogawa-Ohnishi, M.,

and Matsubayashi, Y. (2017). A peptide hormone required for Casparian

strip diffusion barrier formation in Arabidopsis roots. Science 355,

284–286.

15. Lee, Y., Rubio, M.C., Alassimone, J., andGeldner, N. (2013). Amechanism

for localized lignin deposition in the endodermis. Cell 153, 402–412.

16. Li, P., Yu, Q., Gu, X., Xu, C., Qi, S., Wang, H., Zhong, F., Baskin, T.I.,

Rahman, A., and Wu, S. (2018). Construction of a Functional Casparian

Strip in Non-endodermal Lineages Is Orchestrated by Two Parallel

Signaling Systems in Arabidopsis thaliana. Curr. Biol. 28, 2777–2786.e2.

17. Drapek, C., Sparks, E.E., Marhavy, P., Taylor, I., Andersen, T.G., Hennacy,

J.H., Geldner, N., and Benfey, P.N. (2018). Minimum requirements for

changing and maintaining endodermis cell identity in the Arabidopsis

root. Nat. Plants 4, 586–595.

18. Liberman, L.M., Sparks, E.E., Moreno-Risueno, M.A., Petricka, J.J., and

Benfey, P.N. (2015). MYB36 regulates the transition from proliferation to

differentiation in the Arabidopsis root. Proc. Natl. Acad. Sci. USA 112,

12099–12104.

19. Nersissian, A.M., Immoos, C., Hill, M.G., Hart, P.J., Williams, G.,

Herrmann, R.G., and Valentine, J.S. (1998). Uclacyanins, stellacyanins,

and plantacyanins are distinct subfamilies of phytocyanins: plant-specific

mononuclear blue copper proteins. Protein Sci. 7, 1915–1929.

20. Guss, J.M., Merritt, E.A., Phizackerley, R.P., Hedman, B., Murata, M.,

Hodgson, K.O., and Freeman, H.C. (1988). Phase determination by multi-

ple-wavelength x-ray diffraction: crystal structure of a basic ‘‘blue’’ copper

protein from cucumbers. Science 241, 806–811.

21. Guss, J.M., Merritt, E.A., Phizackerley, R.P., and Freeman, H.C. (1996).

The structure of a phytocyanin, the basic blue protein from cucumber,

refined at 1.8 A resolution. J. Mol. Biol. 262, 686–705.

22. Battistuzzi, G., Borsari, M., Loschi, L., and Sola, M. (1997). Redox thermo-

dynamics, acid-base equilibria and salt-induced effects for the cucumber

basic protein. General implications for blue-copper proteins. JBIC 2,

350–359.

23. Nersissian, A.M., Mehrabian, Z.B., Nalbandyan, R.M., Hart, P.J.,

Fraczkiewicz, G., Czernuszewicz, R.S., Bender, C.J., Peisach, J.,

Herrmann, R.G., and Valentine, J.S. (1996). Cloning, expression, and

spectroscopic characterization of Cucumis sativus stellacyanin in its non-

glycosylated form. Protein Sci. 5, 2184–2192.

24. Hart, P.J., Nersissian, A.M., Herrmann, R.G., Nalbandyan, R.M., Valentine,

J.S., and Eisenberg, D. (1996). Amissing link in cupredoxins: crystal struc-

ture of cucumber stellacyanin at 1.6 A resolution. Protein Sci. 5, 2175–

2183.

25. Drew, J.E., and Gatehouse, J.A. (1994). Isolation and characterization of a

pea pod cDNA encoding a putative blue copper protein correlated with

lignin deposition. J. Exp. Bot. 45, 1873–1884.

26. Sterky, F., Regan, S., Karlsson, J., Hertzberg,M., Rohde, A., Holmberg, A.,

Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., et al. (1998). Gene dis-

covery in the wood-forming tissues of poplar: analysis of 5, 692 expressed

sequence tags. Proc. Natl. Acad. Sci. USA 95, 13330–13335.

27. Allona, I., Quinn, M., Shoop, E., Swope, K., St Cyr, S., Carlis, J., Riedl, J.,

Retzel, E., Campbell, M.M., Sederoff, R., and Whetten, R.W. (1998).

Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl.

Acad. Sci. USA 95, 9693–9698.

28. Shulse, C.N., Cole, B.J., Ciobanu, D., Lin, J., Yoshinaga, Y., Gouran, M.,

Turco, G.M., Zhu, Y., O’Malley, R.C., Brady, S.M., and Dickel, D.E.

(2019). High-Throughput Single-Cell Transcriptome Profiling of Plant Cell

Types. Cell Rep. 27, 2241–2247.

29. Borner, G.H.H., Lilley, K.S., Stevens, T.J., and Dupree, P. (2003).

Identification of glycosylphosphatidylinositol-anchored proteins in

Arabidopsis. A proteomic and genomic analysis. Plant Physiol. 132,

568–577.

30. Ott, T. (2017). Membrane nanodomains and microdomains in plant-

microbe interactions. Curr. Opin. Plant Biol. 40, 82–88.

31. Kalmbach, L., H�ematy, K., De Bellis, D., Barberon, M., Fujita, S., Ursache,

R., Daraspe, J., and Geldner, N. (2017). Transient cell-specific EXO70A1

activity in the CASP domain and Casparian strip localization. Nat. Plants

3, 17058.

32. Schalk, M., Cabello-Hurtado, F., Pierrel, M.A., Atanossova, R.,

Saindrenan, P., and Werck-Reichhart, D. (1998). Piperonylic acid, a selec-

tive, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase:

A new tool to control the flux of metabolites in the phenylpropanoid

pathway. Plant Physiol. 118, 209–218.

33. Alassimone, J., Fujita, S., Doblas, V.G., van Dop, M., Barberon, M.,

Kalmbach, L., Vermeer, J.E.M., Rojas-Murcia, N., Santuari, L., Hardtke,

C.S., and Geldner, N. (2016). Polarly localized kinase SGN1 is required

for Casparian strip integrity and positioning. Nat. Plants 2, 16113.

34. Karimi, M., De Meyer, B., and Hilson, P. (2005). Modular cloning in plant

cells. Trends Plant Sci. 10, 103–105.

35. Karimi, M., Inz�e, D., and Depicker, A. (2002). GATEWAY vectors for

Agrobacterium-mediated plant transformation. Trends Plant Sci. 7,

193–195.

36. Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C.,

and Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/

Cas9 efficiently generates homozygous mutants for multiple target genes

in Arabidopsis in a single generation. Genome Biol. 16, 144.

37. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,

Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.

(2012). Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682.

38. Goedhart, J. (2020). PlotTwist: A web app for plotting and annotating

continuous data. PLoS Biol. 18, e3000581–e10.

39. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for

Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.

16, 735–743.

40. Cheng, C.-Y., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel,

S., and Town, C.D. (2017). Araport11: a complete reannotation of the

Arabidopsis thaliana reference genome. Plant J. 89, 789–804.

41. Nersissian, A.M., and Shipp, E.L. (2002). Blue copper-binding domains.

Adv. Protein Chem. 60, 271–340.

42. Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N.,

Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., and Lopez, R.

(2019). The EMBL-EBI search and sequence analysis tools APIs in 2019.

Nucleic Acids Res. 47 (W1), W636–W641.

43. Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. (2005). The

Botany Array Resource: e-Northerns, Expression Angling, and promoter

analyses. Plant J. 43, 153–163.

ll
OPEN ACCESS

8 Current Biology 30, 1–9, October 19, 2020

Please cite this article in press as: Reyt et al., Uclacyanin Proteins Are Required for Lignified Nanodomain Formation within Casparian Strips, Current
Biology (2020), https://doi.org/10.1016/j.cub.2020.07.095

Report

http://refhub.elsevier.com/S0960-9822(20)31154-4/sref9
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref9
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref9
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref10
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref10
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref10
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref10
https://doi.org/10.1101/816330
https://doi.org/10.1101/816330
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref12
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref12
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref12
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref12
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref12
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref13
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref13
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref13
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref13
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref14
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref14
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref14
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref14
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref15
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref15
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref16
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref16
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref16
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref16
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref17
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref17
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref17
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref17
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref18
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref18
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref18
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref18
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref19
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref19
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref19
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref19
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref20
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref20
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref20
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref20
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref20
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref20
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref21
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref21
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref21
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref22
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref22
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref22
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref22
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref23
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref23
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref23
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref23
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref23
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref24
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref24
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref24
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref24
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref25
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref25
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref25
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref26
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref26
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref26
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref26
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref27
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref27
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref27
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref27
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref28
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref28
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref28
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref28
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref29
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref29
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref29
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref29
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref30
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref30
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref31
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref31
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref31
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref31
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref31
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref32
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref32
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref32
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref32
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref32
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref34
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref34
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref34
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref34
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref35
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref35
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref36
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref36
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref36
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref36
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref37
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref37
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref37
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref37
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref38
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref38
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref38
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref38
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref39
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref39
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref40
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref40
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref40
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref41
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref41
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref41
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref42
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref42
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref43
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref43
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref43
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref43
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref44
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref44
http://refhub.elsevier.com/S0960-9822(20)31154-4/sref44


44. Logemann, J., Schell, J., and Willmitzer, L. (1987). Improved method for

the isolation of RNA from plant tissues. Anal. Biochem. 163, 16–20.

45. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

46. Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019).

Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat. Biotechnol. 37, 907–915.

47. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15,

550.

48. Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis.

49. Danku, J.M.C., Lahner, B., Yakubova, E., and Salt, D.E. (2012). Large-

Scale Plant Ionomics. In Plant Mineral Nutrients (Totowa, NJ: Humana

Press), pp. 255–276.

50. Ursache, R., Andersen, T.G., Marhavý, P., and Geldner, N. (2018). A pro-
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-UCC1 This paper N/A

Goat anti-Rabbit IgG (H+L) Secondary

Antibody, DyLight 633

Invitrogen SA5-10034, RRID:AB_2556614

Chemicals, Peptides, and Recombinant Proteins

MS basal salt mixture, powder Sigma-Aldrich M5524

Agar Sigma-Aldrich P49805, CAS: 94-53A7921, CASS: 9002-18-01

Piperonylic acid Sigma-Aldrich P49805, CAS: 94-53-1

guanidine-HCl Sigma-Aldrich G7294

MES Sigma-Aldrich M8250

CAS: 1266615-59-1

EDTA Sigma-Aldrich EDS, CAS:60-00-4

Phenol:chloroform:isoamylalcohol, 25:24:1 Sigma-Aldrich P2069

Acetic acid Sigma-Aldrich A6283

CAS: 64-19-7

Sodium acetate Sigma-Aldrich S2889

CAS, 127-09-3

DNase I, Amplification Grade Invitrogen 18068015

Nitric acid Primar Plus Fisher Chemicals N/2272/PB17

CAS: 7697-37-2

Propidium iodide Invitrogen P1304MP, CAS: 25535-16-4

Calcofluor White Polysciences, CAT#4359

Basic Fuchsin Fluka, Analytical CAS: 58969-01-0

Auramine-O Sigma-Aldrich SLA 1027 CAS: 2465-27-2

paraformaldehyde Sigma-Aldrich P6148, CAS:3052-89-4

xylitol Sigma-Aldrich W507930, CAS: 87-99-0

Sodium deoxycholate Sigma-Aldrich D6750, CAS: 302-95-4

urea Sigma-Aldrich U5378, CAS:57-13-6

Fluorol Yellow 088 Santa Cruz Biotechnology SC215052, CAS: 81-37-8

PIPES Sigma-Aldrich P-3768, CAS: 76836-02-7

EGTA Sigma-Aldrich E3889, CAS: 67-42-5

MgSO4$7H2O Sigma-Aldrich 63138, CAS:10034-99-8

KOH Sigma-Aldrich P5958, CAS:1310-58-3

Methanol Sigma-Aldrich 82762, CAS:67-56-1

Driselase Sigma-Aldrich D9515, CAS:85186-71-6

Macerozyme Duchefa cat. N M8002.0010

IGEPAL CA-630 Sigma-Aldrich I8896, CAS:9002-93-1

DMSO Sigma-Aldrich D8418, CAS: 67-68-5

albumin fraction V BSA Sigma-Aldrich 10735078001

Critical Commercial Assays

Qubit Invitrogen Q10210

TapeStation Aglent G2991A

Lexogen Quant Seq 30 mRNA Seq (FWD)

Library Prep Kit

Lexogen 015

Experimental Models: Organisms/Strains

Arabidopsis thaliana Columbia 0 accession (Col-0)

ucc1.1, CRISPR line in Col-0 This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ucc1.2, CRISPR line in Col-0 This study N/A

sgn3.3, t-DNA line in Col-0 [5] SALK_043282

myb36.2, t-DNA line in Col-0 [2] GK-543B11

casp1.1 casp3.1, t-DNA line in Col-0 [7] N/A

pCASP1::CASP1-GFP, line in Col-0 [7] N/A

pESB1::ESB1-mCherry, line in Col-0 [6] N/A

ucc2.1, t-DNA line in Col-0 N/A GK_250F04

ucc2.2, t-DNA line in Col-0 N/A salk_049638

Rbohf, t-DNA line in Col-0 [15] salk_059888

pUCC1::mCherry-UCC1, line in Col-0 This study N/A

pUCC1::GFP-GUS, line in Col-0 This study N/A

pUCC1::UCC1, line in Col-0 This study N/A

Oligonucleotides

For pUCC1::mCherry-UCC1

GGGGACAACTTTGTATAGAAAAGTTG

GTTGAATTTCGTAAGAGTTAGG

This study N/A

For pUCC1::mCherry-UCC1

GGGGACTGCTTTTTTGTACAAACTTG

CATGGTCAGTAGCTACTGTTAAACC

This study N/A

For pUCC1::mCherry-UCC1

GGGGACAGCTTTCTTGTACAAAGTG

GTAACCATTGGTGGTCCTAGTGGTTGG

This study N/A

For pUCC1::mCherry-UCC1

GGGGACAACTTTGTATAATAAAGTTG

ACCCATATAAATTGTAATAATGTATTATAAAC

This study N/A

For pUCC1::UCC1

GGGGACAACTTTGTATAGAAAAGTTG

GTTGAATTTCGTAAGAGTTAGG

This study N/A

For pUCC1::UCC1

GGGGACTGCTTTTTTGTACAAACTTGG

ATGACATATGGTGTCAAATGTGTG

This study N/A

For pUCC1::UCC1

GACAAGTTTGTACAAAAAAGCAGGCTCG

GCACAAAACATCATCATCTCTTG

This study N/A

For pUCC1::UCC1

GGGGACCACTTTGTACAAGAAAGCTGGGT

CCCATATAAATTGTAATAATGTATTATAAAC

This study N/A

For pUCC1::GFP-GUS

GGGGACAAGTTTGTACAAAAAAGCAGGCT

GTTGAATTTCGTAAGAGTTAGG

This study N/A

For pUCC1::GFP-GUS

GGGGACCACTTTGTACAAGAAAGCTGGGT

ATGACATATGGTGTCAAATGTGTG

This study N/A

Recombinant DNA

pUCC1::mCherry-UCC1 This study N/A

pUCC1::GFP-GUS This study N/A

pEN-L1-mCherry-L2 VIB [34], https://gatewayvectors.vib.be/collection/

pen-l1-mcherry-l2

pB7m34GW,3 VIB [34], https://gatewayvectors.vib.be/collection/pb7m34gw0

pH7m24GW VIB [34], https://gatewayvectors.vib.be/collection/

ph7m24gw2

pBGWFS7 VIB [35], https://gatewayvectors.vib.be/collection/pbgwfs7

pUCC1::UCC1 This study N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David E

Salt (David.Salt@nottingham.ac.uk).

Material Availability
Materials from this study are available on request.

Data and Code Availability
This study did not generate or ANALYZE datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material
Arabidopsis thaliana ecotype Columbia (Col_0) and the following mutants and transgenic lines were used in this study: ucc1.1 (this

study), ucc1.2 (this study), sgn3 (sgn3.3; SALK_043282 [5]), myb36 (myb36.2; GK-543B11 [2]), casp1 casp3 (casp1.1 casp3.1 [7]),

pCASP1::CASP1-GFP [7], pESB1::ESB1-mCherry [6], ucc2.1 (GK_250F04), ucc2.2 (salk_049638) and rbohf (salk_059888 [15]).

The corresponding gene AGI are: UCC1, AT2G32300; UCC2, AT2G44790;

SGN3, At4g20140; MYB36, At5g57620; CASP1, At2g36100; CASP3, AT2G27370;

ESB1, At2g28670; RBOHF, At1g64060.

Growth Conditions
All seeds were surface sterilized, and then stratified for two days at 4�C. Seeds were directly germinated on plates containing MS

medium (Murashige and Skoog, Sigma) solidified with 0.8% agar, pH 5.7, and grown in a vertical position in a growth chamber under

long-day conditions (16 h light 22�C/8 h dark 19�C, light intensity 100mE). The lignin biosynthesis inhibitor piperonylic acid (PA, Sigma

Aldrich) was used at the concentration of 10 mM from germination. Seedlings were analyzed at 6-day-old for microscopy analysis,

and 2-week-old for ionomic analysis.

METHOD DETAILS

Generation of transgenic lines and CRISPR/Cas9 mutants
The line pUCC1::mCherry-UCC1was obtained using Gateway Cloning Technology (Invitrogen). A genomic DNA fragment containing

the UCC1 promoter (�3083bp before ATG), the UCC1 50UTR and the UCC1 signal peptide (+78bp after ATG) was amplified by PCR

using the following primers: F: GGGGACAACTTTGTATAGAAAAGTTGGTTGAATTTCGTAAGAGTTAGG and R: GGGGACT

GCTTTTTTGTACAAACTTGCATGGTCAGTAGCTACTGTTAAACC; and cloned in a pDONR P4-P1R. A second fragment containing

the rest of the genomic UCC1 sequence (from +79 to +1081 from ATG) was amplified by PCR with the primers: F: GGGGA

CAGCTTTCTTGTACAAAGTGGTAACCATTGGTGGTCCTAGTGGTTGG and R: GGGGACAACTTTGTATAATAAAGTTGACCCATA

TAAATTGTAATAATGTATTATAAAC and cloned in a pDONR P2R-P3. Both fragments and a pEN-L1-mCherry-L2 vector were

assembled in the expression vector pB7m34GW [34].

The line pUCC1::UCC1 was obtained using Gateway Cloning Technology. A genomic DNA fragment containing the UCC1 pro-

moter (�3083bp before ATG) was amplified by PCR using the following primers: F: GGGGACAACTTTGTATAGAAAAGTTGGTTG

AATTTCGTAAGAGTTAGG and R: GGGGACTGCTTTTTTGTACAAACTTGGATGACATATGGTGTCAAATGTGTG; and cloned in a

pDONOR P4-P1R. A second fragment containing the genomic UCC1 sequence was amplified by PCR with the primers: GGGGA

CAAGTTTGTACAAAAAAGCAGGCTCGGCACAAAACATCATCATCTCTTG and R: GGGGACCACTTTGTACAAGAAAGCTGGGTC

CCATATAAATTGTAATAATGTATTATAAAC; and cloned in a pDONOR P1-P2. Both fragments and a vector were assembled in

the expression vector pH7m24GW.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pHEE401 [36] Addgene Plasmid # 71286

Software and Algorithms

Fiji [37] N/A

R The R Project for

Statistical Computing

N/A

PlotTwist [38] N/A

RStudio RStudio N/A
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The construct pUCC1::GFP-GUS was generated using Gateway cloning technology. The UCC1 promoter (�3083bp to �83bp

before ATG) was amplified by PCR with these primers: F: GGGGACAAGTTTGTACAAAAAAGCAGGCTGTTGAATTTCGTAAGAGT

TAGG; Primer R: GGGGACCACTTTGTACAAGAAAGCTGGGTATGACATATGGTGTCAAATGTGTG and cloned in pBGWFS7 [35].

Following Agrobacterium strain GV3101 transformation with the resulting vector, transgenic plants were generated by floral

dipping [39].

The ucc1.1 and ucc1.2 mutants were obtained using CRISPR/Cas9 according to [36]. Two sgRNA targeting UCC1 coding

sequence (GTCCTCGCTACTACACTCA and GGTCCTAGTGGTTGGACTG) were inserted in to the pHEE401 vector following

Agrobacterium strain GV3101 transformation with the resulting vector, transgenic plants were generated by floral dipping [39].

Two individual homozygous lines (ucc1.1; ucc1.2) were identified at the generation T1.

Phylogeny
ABLASTPwas performed using UCC1 amino acid sequence against the Araport11 protein sequences dataset [40]. Only thematches

with an Expect value (E-value) lower than 0.05 were considered. A first alignment was performed to select the protein sequence

containing the amino acid required for copper binding as described in [19]. Genes were named and classified as stellacyanin,

uclacyanin and plantacyanin according to the amino acid binding copper as described in [41]. A second alignment and tree assem-

bling were performed using Clustal Omega with amino acid sequence of the putative copper containing protein [42].

Endodermal spatio-temporal expression pattern
The spatio-temporal endodermal expression pattern of the corresponding genes was checked using the Bio-Analytic Resource

database from the AtGenExpress Consortium [43].

Gene expression analysis
The plants were grown for 6 days on 1/2 M/S plates. Seeds were sown in three parallel lines per square plates (12*12 cm) at high

density. The first 5 mm of root tips were collected. One plate was used as a biological replicate. The samples were snap-frozen

at harvest and ground into fine powder in a 2 mL centrifuge tube. Total RNA was extracted according to [44]. Samples were homog-

enized in 400 mL of Z6-buffer containing 8 M guanidine-HCl, 20 mM MES, 20 mM EDTA pH 7.0 After the addition of 400 ml phenol:-

chloroform:isoamylalcohol, 25:24:1, samples were vortexed and centrifuged (15,000 g 10 min.) for phase separation. The aqueous

phase was transferred to a new 1.5 mL tube and 0.05 volumes of 1 N acetic acid qnd 0.7 volumes 96% ethanol was added. The RNA

was precipitated at �20�C overnight. Following centrifugation (15,000 g 10 min, 4�C), the pellet was washed with 200mL 3M sodium

acetate at pH 5.2 and 70% ethanol. The RNAwas dried and dissolved in 30 mL of ultrapure water and store at�80�C until use. DNase

treatment (DNase I, Amplification Grade, 18068015, Invitrogen) was carried out on the samples to remove genomic DNA. The RNA

Concentration and quality were determined using Qubit (Invitrogen; Q10210) and TapeStation (Agilent; G2991A) protocols. Librairies

were generated using the Lexogen Quant Seq 30 mRNA Seq (FWD) Library Prep Kit (Lexogen; 015) which employs polyA selection to

enrich for mRNA. Library yield wasmeasured by Qubit (Invitrogen; Q10210) and TapeStation (Agilent; G2991A) systems. protocols to

determine concentration and library size, these are then pooled together in equimolar concentrations. The concentration of the pool

of libraries were confirmed using the Qubit and qPCR and then loaded onto an Illlumina NextSeq 500 on a NextSeq 500/550 High

Output Kit v2.5 (75 Cycles) (Illumina; 20024906), to generate approximately 5 million 75bp single-end reads per sample.

Initial quality assessment of the Illumina RNA-Seq reads was performed using FastQC v0.11.8. (Babraham Bioinformatics, Cam-

bridge, UK). Trimmomatic v0.36 was used to identify and RNA-Seq read processing discard reads containing the Illumina adaptor

sequence [45]. The resulting high-quality reads were then mapped against the TAIR10 Arabidopsis reference genome using HISAT2

v2.1.0 with default parameters [46]. The featureCounts function from the Subread package was then used to count reads that map-

ped to each one of the 27,206 nuclear protein-coding genes.

To visualize the expression of the different genes sets we applied the DESeq2 v.1.24.0 package variance stabilizing transformation

to the raw count gene matrix [47]. We then standardized each gene along the samples to generate a standardized matrix. This stan-

dardized matrix was used to visualize the expression of genes across the genotypes assayed. Boxplot of expressions were con-

structed using the R package ggplot2 [48].

Ionome analysis
The shoot elemental content was measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the analysis was

performed as described [49]. Briefly, shoots of 2-week-old plants grown on agar plates were harvested into Pyrex test tubes (16 3

100 mm) to be then dried at 88�C for 20 h. After weighing the appropriate number of samples (these weights were used to calculate

the weights of rest of the sample), the trace metal grade nitric acid Primar Plus (Fisher Chemicals) spiked with indium internal stan-

dard was added to the tubes (1 mL per tube). The samples were then digested in a dry block heater (DigiPREP MS, SCP Science;

QMX Laboratories, Essex, UK) at 115�C for 4 h. The digested samples were diluted to 10 mL with 18.2 MUcm Milli-Q Direct water

(MerckMillipore). Elemental analysis was performed using an ICP-MS, PerkinElmer NexION 2000 equipped with Elemental Scientific

Inc. autosampler, in the collision mode (He). Twenty-three elements (Li, B, Na, Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Mo,

Cd) were monitored. Liquid reference material composed of pooled samples was prepared before the beginning of sample run and

was used throughout the whole samples run. It was run after every ninth sample to correct for variation within ICP-MS analysis run.

The calibration standards (with indium internal standard and blanks) were prepared from single element standards (Inorganic
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Ventures; Essex Scientific Laboratory Supplies Ltd, Essex, UK) solutions. Sample concentrations were calculated using external cali-

bration method within the instrument software. Further data processing was performed using Microsoft Excel spreadsheet.

Histological staining of roots
Propidium iodide (PI) staining was performed as previously described [9]. 6day-old seedlings were incubated in 15 mM propidium

iodide for 10min in the dark, then incubated in water for 30 s, mounted in water using a slide and coverslip and immediately observed

with microscope. Block of PI in the endodermis was quantified as the number of endodermal cells after onset of elongation. Onset of

elongation was defined as the point where the length of an endodermal cell was more than twice its width.

Root clearing and staining with CalcofluorWhite, Basic Fuchsin and Auramine-Owas performed using Clearsee solution according

to [50]. Six-day old seedlings were fixed with 4% PFA for 60–120 min at 20�C. Seedlings were then washed twice for 1 min in 1x PBS

and moved to the Clearsee solution (10% xylitol, 15% Sodium deoxycholate, 25% urea). For Basic Fuchsin staining, the seedlings

were stained overnight in 0.2% Basic Fuchsin prepared in ClearSee. The next day, Basic Fuchsin solution was removed and the

seedlings were washed twice for 60 min in ClearSee with gentle shaking. Auramine-O staining (0.1% in Clearsee) was performed

as for Basic Fuchsin. For Calcofluor White staining, the seedlings were stained for 30 min in 0.1% Calcofluor White in ClearSee so-

lution. The seedlings were washed twice in ClearSee for 30 min.

Fluorol Yellow 088 staining of the suberin was performed as previously described [8, 10]. Seedlings were incubated in Fluorol Yel-

low 088 (0.01%w/v, lactic acid) at 70�C for 30 min, rinsed with water and counterstained with aniline blue (0.5%w/v, water) at RT for

30 min in darkness, washed with water, and observed with a microscope.

UCC1 immunolocalization
Custom affinity-purified polyclonal anti-UCC1 antibodies were produced by Genscript, USA and were used as a primary

antibody. Anti-UCC1 antibodies were generated in rabbits against a recombinant truncated UCC1 (TDHTIGGPSGWTVGAS

LRTWAAGQTFAVGDNLVFSYPAAFHD VVEVTKPEFDSCQAVKPLITFANGNSLVPLTTPGKRYFICGMPGHCSQGMKLEVNVVPTATVA

PTA) produced in E. coli.

UCC1-immunolocalization was performed according to [51]. 6-day-old seedlings were vacuum infiltrated and fixed with 2% form-

aldehyde in MTSB buffer (microtubule-stabilizing buffer) supplemented with 0.1% Triton for 1 h. A stock solution of 2x MTSB was

prepared with: 15 g PIPES, 1.90 g EGTA, 1.22 g MgSO4$7H2O and 2.5 g KOH and dissolved in a total volume of 500 mL water at

pH 7.0 (adjusted with 10 M KOH). Seedlings were washed twice in water that was then replaced by 100%methanol. Methanol con-

tent in the wash was gradually decreased until its final concentration reached�20%. Seedlings were then washed twice in water and

incubated in a cell wall digestion solution (0.2%Driselase, 0.15%Macerozyme in 2mMMES, pH 5.0) for 30min at 37�C. After washing

withMTSBbuffer, the seedlings were incubated in a solution containing 3% IGEPALCA-630, 10%DMSO inMTSBbuffer for 15min at

37�C in order to permeabilize the cell membranes. Seedling were then washed 4 times with MTSB buffer and blocked using a block-

ing solution containing 2% albumin fraction V BSA in MTSB buffer for 20 min at room temperature. The primary anti-UCC1 antibody

was diluted (1/500) in the blocking solution and added to the seedlings for 1 h incubation at 37�C.Then seedlings were washed twice

with MTSB buffer and incubated with the secondary antibody goat anti-Rabbit IgG DyLight 633 (Invitrogen) in MTSB buffer for 1 h at

37�C. After washing three times in MTSB buffer, the seedlings were mounted on microscopic slides in MTSB buffer for the micro-

scopy analysis. Antibody specificity was tested on myb36, ucc1.2 and ucc1.2ucc2.1 mutants and by using no primary antibody

as a negative control. Pixel intensity quantification was performed along a 1.2 mm-wide line following the CS (defined as Dylight

633 signal) in WT, ucc1.2 and ucc1.2 ucc2 using Fiji. For ‘‘No primary Ab’’ control and myb36, pixel intensity was measures in the

endodermal cells at random locations due to the absence of visible CS.

Microscopy
Laser scanning confocal microscopy was performed with a Zeiss LSM500 and a Leica SP8. Structured illumination microscopy was

performed with a Zeiss PS1 Super Resolution Microscope. The following excitation and emission detection settings were applied:

Calcofluor White, 405 nm/425-475 nm; GFP, 488 nm/500-550 nm; Fluorol yellow 088, 488 nm/500-550 nm; Auramine-O 488nm/

505-530nm; propidium iodide, 561 nm/600-620 nm; Basic Fuchsin, 561 nm/570-650 nm; mCherry, 561 nm/ 570-620 nm; Dylight

633, 633 nm/640-670 nm.

Pixel intensity quantification across the Casparian strip
Images of CS surface view were analyzed for CASP1-GFP, lignin (Basic fuchsin), mCherry-UCC1 and DyLight 633 using Fiji [37]. A

segmented line with a width of at least 3.8 mmwas traced along the central part of the CS. This selection was then straighten using the

‘‘Straighten.’’ function. A profile of pixels intensity along the y axis was then generated from the pericycle side toward the cortical

side. Each replicate represents the average value of pixels intensity across 13 mm approximately and it was generated from one pic-

ture. The pixels intensity values were normalized to compare the profile of pixel intensity across the different pictures. The intensity

values were scaled from 0 to 1 using the following formula: (x-xMIN)/(xMAX-xMIN). In order to obtain a normalization based solely on CS

signal and not on ectopic lignification, the values corresponding to ectopic lignification were intentionally omitted, in the cases the

fluorescence signal intensity coming from ectopic lignification (corner of the endodermal cells) was higher than the one coming from

the CS itself in the single picture. The profiles of normalized pixel intensity were plotted using PlotTwist [38] and RStudio. Statistical

analysis was performed on normalized data in the ranges defined in the figures.
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Timing of expression and localization of CASP1 and UCC1
The timing of CASP1 and UCC1 accumulation and localization at the CS domain were quantified as number of cells after the onset of

elongation as previously described [31, 33]. The cell number for the endodermal accumulation of CASP1 and UCC1 was determined

in the first cell after the onset of elongation where GFP or mCherry signal were detectable using confocal microscopy.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all the experiments, detail of statistical tests used and error-bars on barplots are indicated in the figure legends.
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