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A B S T R A C T   

As Digital Manufacturing transforms traditionally physical work into more system-monitoring tasks, new 
methods are required for understanding people’s mental workload and prolonged capacity for focused attention. 
Many physiological measures have shown promise for detecting changes in cognitive state, and recent advances 
in sensor technology offer minimally-invasive ways to monitor our cognitive activity. Previous research in 
functional near-infrared spectroscopy, for example, has observed changes in cerebral hemodynamic response 
during periods of high demand within tasks. This work investigated the relationships among task demand, 
fatigue, and attention degradation in a sustained attention task, and their effect on heart rate, breathing rate, 
nose temperature and hemodynamic response in the prefrontal cortex and middle temporal gyrus. Analysis 
revealed a small but significant effect of fatigue on heart rate relative to baseline, breathing rate and hemo-
dynamic response. Task demand had a small but significant effect on breathing rate and nose temperature, both 
relative to baseline, but no difference between levels of demand was observed in heart rate or hemodynamic 
response. Our results provide insight into what physiological data can tell us about cognitive state, ability to 
focus, and the impact of fatigue over time.   

1. Introduction 

In the era of Industry 4.0, manufacturing firms are seeking to deploy 
new technology-enabled systems to improve productivity, reduce costs, 
and enhance safe and efficient operations. The integration of novel 
technologies is associated with a step-change in how many tasks are 
performed, with a trend towards increasingly passive, cognitive work 
rather than active, manual work, particularly where automation is 
concerned. In digital manufacturing environments, it is particularly 
important to consider how such changes influence human factors, such 
as mental workload (MWL), fatigue (throughout this manuscript we 
will use fatigue as referring to mental fatigue), and attentional capacity, 
and the role of the human worker. Focused attention is a requirement 
for safe and effective performance of work across a range of domains 
(Edwards et al., 2012; Naweed, 2013), but detection and prediction of 
attention degradation in real-time is challenging due to the subjective 
and potentially disruptive nature of probe-based approaches 
(Smallwood and Schooler, 2006). Mind wandering, or task-unrelated 
thought (TUT), is a form of attentional degradation, and it has been 
defined as a drift in attention away from a task (Durantin et al., 2015), 

where intended or otherwise, executive control shifts away from the 
primary task to the processing of personal goals (Smallwood and 
Schooler, 2006). Research suggests that frequency of this type of at-
tentional degradation this may be inversely related to MWL (Zhang and 
Kumada, 2017). An improved understanding of factors influencing both 
constructs, as well as improved methods for assessing them, may help to 
provide insight into the design of future complex systems. 

Within the literature, a significant amount of attention has focused 
on managing levels of MWL during task performance, particularly in 
relation to MWL imposed by highly demanding or complex tasks, for 
example, avoiding cognitive overload situations during safety-critical 
air traffic control tasks (Edwards et al., 2017). For an overview of the 
MWL construct, the reader is directed to comprehensive reviews such as  
Sharples and Megaw (2015). Here, we define MWL in line with  
Sharples and Megaw (2015), where MWL is a property emerging from 
the relationships among physical and cognitive task demands, operator 
workload, task performance, and external and internal influences. In-
fluences may include an individual’s perceived experience of the task-
load associated with the work, additionally affected by factors in-
cluding temporal demand, individual background experience, and 
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environmental factors (Charles and Nixon, 2019). Assessment of MWL 
in naturalistic contexts remains challenging, however, in part due to the 
degree of disruption that results from the use of de facto subjective self- 
report measures (Marinescu et al., 2018). This is of particular interest in 
domains where work may involve varying levels of temporal, physical, 
and cognitive demand, and where subjective measures would prove to 
be too disruptive or lacking in real-time assessment capability. In digital 
manufacturing, examples of tasks of this nature include automotive 
assembly work involving a high degree of product variation 
(Hermawati et al., 2015) or during work involving human-robot in-
teraction. 

Given the limitations of subjective assessment methods, physiolo-
gical measures have shown promise in their capability to differentiate 
among varying aspects of cognitive state. Fridman et al. (2018), for 
example, estimated MWL while driving using deep learning of pupil 
dilation. Similarly, Svensson and Wilson (2002) demonstrated the use 
of heart rate measurements in the assessment of task performance and 
MWL in pilots. Previous research has also identified an association 
between MWL and patterns of blood oxygenation and deoxygenation 
(hemodynamic response), in various areas of the brain, through the 
application of functional near-infrared spectroscopy (fNIRS) (Jobsis, 
1977; Villringer et al., 1993), with a particular focus in the domain of 
human-computer interaction(Causse et al., 2017; Girouard et al., 2009; 
Maior et al., 2015; Pike et al., 2014; Solovey et al., 2009). Similarly, 
other research has explored additional indicators of MWL, including 
breathing rate (Fairclough and Venables, 2006), electrodermal activity 
(Baldauf et al., 2009), and nose temperature (Marinescu et al., 2018; Or 
and Duffy, 2007). However, few studies have explored the relationship 
among demand, fatigue, and physiological response during prolonged 
work requiring sustained attention. This work sought to address this 
gap through an investigation into the effects of perceptual load and 
fatigue on physiological response, including hemodynamic response in 
the prefrontal cortex (PFC) and middle temporal gyrus, heart rate, 
breathing rate, and facial skin temperature. In accordance with the aim 
to inform the design of future digital manufacturing systems, the study 
employed a task modelled on a quality control work common in certain 
manufacturing industries, which was developed to manipulate MWL 
while evoking fatigue and incidents of TUT. 

Through studying these factors, we make the following contribu-
tions: a novel study of the relationship among task demand, fatigue, and 
physiological response, and an evaluation of fNIRS and other physio-
logical measures for the assessment of MWL and fatigue. 

2. Related work 

Below, we begin by reviewing the key concepts relating to moti-
vating our task scenario from digital manufacturing. In particular, we 
are concerned with increased perceptual load, but also periods of un-
derload which may lead to task-unrelated thoughts. While perceptual 
demand is being manipulated in our study design (see Section 3), we 
believe that several aspects of mental workload are affected in this 
scenario, and so we choose to use this broader construct throughout the 
article. There are many perspectives that could be taken on such tasks, 
and so while we explore fatigue in this article, we recognise that further 
work exists that includes using physiological measures to examine re-
lated constructs such as vigilance (Warm and Parasuraman, 2006), 
sustained attention (Langner and Eickhoff, 2013), stress 
(Alsuraykh et al., 2018) and cognitive load (Fishburn et al., 2014; Shi 
et al., 2007). 

2.1. Perceptual load, task-unrelated thought, and human performance 

Previous studies on TUTs have found that people may experience 
mind wandering up to fifty percent of the time in daily life, a frequency 
only slightly moderated by activity (Killingsworth and Gilbert, 2010). 
Theories surrounding the function of mind wandering include that it 

may support future-oriented thinking and long-term planning (Schooler 
et al., 2011; Smallwood and Andrews-Hanna, 2013), or that stimulus- 
unrelated thoughts may provide a mechanism for individuals to in-
crease their level of cognitive processing, effectively supporting per-
formance on low demand tasks (Mason et al., 2007). 

TUTs are commonly associated with mind wandering episodes 
(hereafter, the terms will be used interchangeably), and occurrence of 
TUTs have been associated with automaticity and degradation of task 
performance (Smallwood and Schooler, 2006). Low-demand tasks that 
require fewer cognitive resources have been associated with more fre-
quent occurrences of TUTs (Forster and Lavie, 2009; Smallwood and 
Andrews-Hanna, 2013). Task demand can be defined in line with task 
performance measures (e.g. response time, performance accuracy), in-
terference from a secondary task, and level of cognitive control required 
to perform a task, among others (Gilbert et al., 2012). In line with the 
cognitive perspective, Forster and Lavie (2009) identified a relationship 
between perceptual load and the frequency of TUTs in a visual search 
task, finding that fewer TUTs in high load conditions as compared to 
low load conditions. This finding relates to Perceptual Load Theory 
(Lavie, 1995), which posits that limited attentional resources influence 
the processing of distractors, and that stimuli that impose a greater 
perceptual load reduce the ability to attend to stimuli that distract from 
a primary task. 

Previous studies of TUT have assessed mind wandering with mea-
sures based on task performance (Durantin et al., 2015) or self-reports 
and thought sampling (Christoff et al., 2009; Smallwood and Schooler, 
2006), but these measures are limited in relation to their subjectivity 
and reliance on an individual’s awareness of the focus of their attention 
(Smallwood and Schooler, 2006). Research into brain region activation 
has shed some light on the phenomenon, demonstrating that changes in 
the direction of attention is related to activation of multiple areas 
within the brain. The default mode network, or the set of inter-
connected brain regions commonly deactivated during high demand 
tasks (Gilbert et al., 2012), has been implicated in the occurrence of 
mind wandering (Mason et al., 2007), as have areas within the pre-
frontal cortex (Christoff et al., 2009; Durantin et al., 2015; Mason et al., 
2007) and the middle temporal gyrus (Christoff et al., 2009; 
Dumontheil et al., 2010). Mason et al. (2007) investigated the re-
lationship between the default mode network and TUTs, hypothesising 
that the magnitude of activations across the default mode network 
would be directly related to an individual’s likelihood of mind wan-
dering. Mason et al. (2007) observed that as the experimental task 
become more practiced, cognitive processing demands decreased, and 
both mind wandering and activation within the default mode network 
increased. Similarly, Durantin et al. (2015) detected higher oxyhe-
moglobin concentrations in the medial prefrontal cortex during mind 
wandering episodes evoked during a sustained attention task. 

2.2. Assessment of mental workload 

Most of the work on MWL focuses the evaluation of various tasks 
either in laboratory condition or in real life settings. Due to technology 
limitations, much work involving physiological measures has been 
performed in laboratory conditions. Some of the most widespread 
techniques of inducing higher levels of MWL include the n-back task 
approach (Ayaz et al., 2012; Brouwer et al., 2012) or the Multi-Attri-
bute Task Battery (MATB and MATB-II) (Comstock Jr and Arnegard, 
1992; Dell’Agnola et al., 2018; Santiago-Espada et al., 2011). In this 
paper, we are motivated by the evolving work demands in manu-
facturing imposed by digital technologies; here, we focus on a sustained 
attention task which is representative of visual quality control inspec-
tion. This task was developed to manipulate MWL and related concepts 
by way of a perceptual load variation, which has also been investigated 
by Forster and Lavie (2009). 

Current techniques used to assess MWL frequently involve task 
performance measures or subjective methods in the form of self- 
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reporting techniques. Performance measures are intended to infer the 
level of workload based on the performance achieved on either the 
primary or a secondary task (Young et al., 2015). However, one dis-
advantage of using primary task performance measures is that they may 
not be sensitive to variations in workload while there is spare capacity 
remaining. Using a secondary task can partially address this limitation 
but may become intrusive during periods of high demand in the pri-
mary task (Sharples and Megaw, 2015). 

Among the most widely used subjective measures is the NASA Task 
Load Index (TLX), a multi-dimensional instrument that assesses per-
ceived workload across six scales associated with different aspects of 
the construct (Hart and Staveland, 1988). Within the NASA-TLX, in-
dividuals self-report perceptions associated with the mental, temporal, 
and physical demand imposed by the task in question, as well as per-
ceptions associated with the effort required to perform the task, in-
dividual performance assessment, and frustration levels. NASA-TLX can 
be used either as a weighted measure, with weights based on individual 
feedback on the relative importance of each dimension, or as an un-
weighted measure where each parameter can be considered separately, 
which allows the researcher to diagnose specific aspects of workload 
influenced by system design (Hart, 2006). As a multi-dimensional scale, 
NASA-TLX data is collected retrospectively after a task. Alternatives to 
the NASA-TLX include the Instantaneous Self-Assessment (ISA) tool, a 
subjective assessment method where an individual rates their percep-
tion of MWL during tasks on a uni-dimensional five-point scale 
(Tattersall and Foord, 1996). Compared to the NASA-TLX, the ISA tool 
is relatively easy to implement during real-time operations with a lesser 
degree of disruption, but lacks the diagnosticity of the former. 

In contrast to performance-based or subjective measures of MWL, 
psychophysiological techniques can provide insight into an individual’s 
level of arousal, a state closely connected to human physiology 
(Sharples and Megaw, 2015). Cardiac measures are some of the most 
widely used in this context. In some studies, heart rate and heart rate 
variability measures have not been found to be sensitive to variations in 
workload (Brookings et al., 1996; Casali and Wierwille, 1983), while 
others have found that heart rate significantly differed in pilots between 
different flight phases (Svensson and Wilson, 2002), a finding that was 
consistent even between separate flights (Wilson, 2002). Similarly,  
Verwey and Veltman (1996) observed that interbeat intervals could 
marginally distinguish between two workload conditions. Other psy-
chophysiological measures include electrodermal activity (Collet et al., 
2014), electrical activity within the brain (Magnusson, 2002) and cer-
ebral hemodynamic response (Jobsis, 1977). In more recent develop-
ments, facial thermography has shown promise as technique, nose 
temperature has been found to be negatively correlated with increases 
in workload (Kang and Babski-Reeves, 2008; Marinescu et al., 2018; 
Murai et al., 2008; Or and Duffy, 2007). Eye tracking measures, such as 
pupil diameter and blink rate, have also been observed to vary with 
changes in perceptual load and cognitive load (Chen and Epps, 2014). 

Psychophysiological indicators are of particular interest due to their 
minimally disruptive nature, non-invasiveness, and their potential to 
provide near real-time insight into individual experience 
(Marinescu et al., 2018). However, despite their relative merits, the 
mapping between psychophysiological indicators and various cognitive 
states is not fully understood, and there may be dissociation between 
different types of MWL measures (Young et al., 2015). In the following 
sections, we discuss a range of psychophysiological measures and their 
use in the assessment of MWL and fatigue. 

2.2.1. fNIRS in the assessment of mental workload and fatigue 
Within the range of psychophysiological indicators linked to MWL 

and fatigue assessment within the literature, studies of cerebral he-
modynamic response offers intriguing insight into the relationship 
among cognition, structures, and functions within the brain. Functional 
near-infrared spectroscopy (fNIRS) offers a promising means of cap-
turing brain activity in the form of blood oxygenation and 

deoxygenation concentrations. Functional activation of brain areas is 
typically indicated by an increase in oxygenated blood corresponding to 
a decreased level of deoxygenated blood (Richter et al., 2009). In 
comparison to systems like functional magnetic resonance imaging 
(fMRI), fNIRS offers a more lightweight and portable means of evalu-
ating hemodynamic response, making it suitable for research applica-
tions in more naturalistic settings (Parasuraman and Mehta, 2015). 

Within the fNIRS literature, findings have been mixed in relation to 
its ability to detect changes in MWL. While some studies have observed 
changes in hemodynamic response corresponding to varying levels of 
MWL (Causse et al., 2017; Foy and Chapman, 2018; Maior et al., 2015; 
2018; Solovey et al., 2009), others have argued that fine-scale differ-
ences in MWL may be more difficult to detect with fNIRS (Causse et al., 
2017; Mandrick et al., 2016). In line with previous research indicating 
an association between working memory capacity and blood oxygena-
tion using an N-back task, Mandrick et al. (2016) observed a significant 
difference in the prefrontal cortex (PFC) oxygenation between a 0-back 
and 1-back task as well as the 0-back and 2-back, but not between a 1- 
back and 2-back task. While many studies have identified a positive 
association between fNIRS measures and MWL, further research is 
needed to address conflicting findings related to the sensitivity of the 
tool to measuring fine differences in MWL. 

In addition, there is evidence to suggest that hemodynamic response 
may not only provide insight into detection of MWL, but it may also 
support assessment of human fatigue. Mehta and Parasuraman (2013) 
observed an increase in oxygenation in the PFC towards the end of a 
fatigue-inducing task. Finally, to a lesser degree, some studies have 
explored the relationship between hemodynamic response and episodes 
of mind wandering. Durantin et al. (2015) investigated variations 
within PFC hemodynamic response in order to classify episodes of task- 
related and TUT during a sustained attention task during performance 
of a Sustained Attention to Response (SART) task. Hemodynamic re-
sponse findings revealed activation within the dorsomedial PFC 
alongside high concentration of oxyhemoglobin prior to mind wan-
dering. Although the accuracy of the mind wandering episode classifi-
cation was only slightly better than random chance,  
Durantin et al. (2015) recommended investigation of additional factors 
that may be able to improve the prediction algorithm. However, there 
were several limitations to their study, including a small sample size 
used within the classification analysis and the limited relationship be-
tween performance measures and mind wandering self-report data. 

2.2.2. Facial thermography in the assessment of mental workload 
Facial thermography is a technique for measuring skin temperature 

on the surface of the face. Skin temperature is strongly influenced by 
the blood flow in the area, which is under sympathetic control of the 
nervous system. A thermal camera is generally used to collect facial 
temperatures, having the advantage of obtaining readings non in-
trusively from the entire visible area of the face, the only downside is 
that it requires advanced image processing techniques for extracting the 
data. 

Facial thermography has been used in a number of studies to test the 
effects of various factors on facial temperature. Naemura et al. (1993) 
investigated the effect of loud noise on nose temperature, reporting 100 
dB noises led to a decrease in nose temperatures whereas no effect was 
noticed for 45 dB noises. Genno et al. (1997) examined the effect of 
stress on facial skin temperature using thermistors, finding that nose 
temperature decreased during the stressful condition while forehead 
temperature remained constant. Or and Duffy (2007) performed a 
driving study in both a simulator and an on-road driving condition, 
reporting a significant drop in nose temperature while participants 
performed mental arithmetic tasks in the simulator. Murai et al. (2008) 
also reported that nose temperature decreased at the onset of a ship- 
handling decision making task involving navigating a ship into a port.  
Kang and Babski-Reeves (2008) found that nose temperature decreased 
significantly during the learning stages of an alpha-numeric task while 
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forehead temperature was not affected. Nose temperature has also been 
reported to be influenced by arousal levels due to time on task, as ex-
amined in a 2-hour driving simulator study. Nose temperature was re-
ported to have increased over the first 75 min and then slowly decrease 
until the end of the study (Diaz-Piedra et al., 2019). 

However, like with fNIRS, findings are mixed; Wang et al. (2019) 
explored the use of low-cost thermal cameras to examine the response 
of face temperature to workload conditions as estimated by an elec-
troencephalography (EEG) device, concluding that the facial thermo-
graphy data could not differentiate between variations in workload 
(Wang et al., 2019). However, this study lacked subjective estimates of 
workload, workload was estimated solely from exceeding thresholds set 
based on the EEG data, and findings validating the EEG thresholds were 
not presented. For these reasons, results of this research are difficult to 
compare with other studies. While the authors correctly point out the 
limitations of subjective measures, we would also argue that MWL is a 
multifaceted concept (Sharples and Megaw, 2015), and that with cur-
rent understanding of physiological indicators, subjective estimators 
still offer a valuable means of understanding the experience of work-
load. 

2.2.3. Cardiac and respiration measures in the assessment of mental 
workload 

The rhythm of the heart is modulated by the sinoatrial node, which 
is influenced by both the sympathetic and parasympathetic branches of 
the autonomic nervous system (ANS). There is a continuous balance 
between the two branches of the ANS; the sympathetic activity in-
creases the heart rate while the parasympathetic branch decreases it. 
Because it is controlled by the ANS, cardiac activity has been con-
sidered a good candidate measure for workload. For these reasons, as 
well as the relative ease of collecting data, cardiac and respiratory 
measures have a long history of being used in workload assessment, 
particularly in the aerospace domain. 

In early work, Casali and Wierwille (1983) found that mean heart 
rate, heart rate standard deviation and breathing rate computed over 
seven minutes time intervals were not sufficiently able to distinguish 
between three levels of demand manipulated by means of commu-
nication call signs, during a flight simulator study conducted on 30 
participants. Brookings et al. (1996) assessed heart rate, breathing rate 
and respiration amplitude during a simulated air traffic control task, 
finding that heart rate and breathing rate amplitude did not demon-
strate significant differences in relation to demand; however, the au-
thors did observe that breathing rate was higher as the complexity of 
the scenarios increased (Brookings et al., 1996). In a more recent ex-
ploratory study, Lehrer et al. (2010) assessed whether cardiac measures 
could be used to measure workload during a flight simulator study 
where seven professional pilots performed 18 flight tasks. The MWL for 
the tasks was rated using the NASA-TLX by both experienced test pilots 
as well as the pilots performing the task. Flight performance was 
evaluated by experts on a five-point scale. They found that standard 
deviation of normal R-R inter-beat intervals (SDNN) was associated 
with expert ratings of MWL even when the NASA-TLX results of the 
participants were not, suggesting that the cardiac measures assess 
something that the NASA-TLX does not (Lehrer et al., 2010). 

Similarly, Bonner and Wilson (2002) recorded heart rate data from 
pilots, copilots and loadmasters during test and evaluation flights, with 
tasks including aircraft handling and normal flight. While due to the 
variable nature of the flights, inferential statistics could not be used, but  
Bonner and Wilson (2002) observed a substantial increase in heart rate 
for the pilot in control which could play a role in identifying sharing of 
workload problems inside the cockpit. The authors also observed that 
increases in heart rate during high workload conditions were reported 
when the crew members were moving through the aircraft, and as such, 
removal of these artefacts should be considered (Bonner and 
Wilson, 2002). In another flight scenario study, Svensson and 
Wilson (2002) recorded heart rate during 35 simulated combat missions 

and found that heart rate averaged over two minutes time intervals and 
significant differences were found between approach and intercept 
phases. 

Despite recent findings offering support to a link between MWL and 
cardiac response, there is no clear agreement with regard to either 
cardiac and respiratory response measures and their association with 
changes in workload; this is most likely because the measures were 
either not sensitive enough to the changes or because of external factors 
that can clearly influence heart rate and breathing rate, as reported by  
Bonner and Wilson (2002). 

3. Method 

3.1. Research question 

Building upon findings within the literature, we explored the 
mapping of physiological response to variations in demand and fatigue 
throughout a prolonged visual inspection task requiring sustained at-
tention. In order to identify the efficacy of physiological measures to 
serve as indicators of MWL, fatigue, and attentional degradation, the 
work sought to investigate the relationship between perceptual load, 
fatigue (as inferred from time on task), and physiological response 
during tasks requiring sustained attention. This question was ap-
proached with the underlying assumption being that there was an as-
sociation between perceptual load, MWL, and frequency of TUT, an 
assumption that was based on the findings of Forster and Lavie (2009). 

3.2. Experimental design 

The present study simulated a quality control inspection task that 
required sustained attention and would vary in MWL and induce fatigue 
over time, with the aim of also creating opportunities for TUT. In line 
with the findings of Forster and Lavie (2009), who identified a re-
lationship between perceptual load and the frequency of TUTs, the 
present study employed perceptual load as an independent variable 
corresponding to demand, hypothesizing that this would manipulate 
experienced MWL, which was supported by early pilot testing. The 
study adopted a two-factor within-subjects approach to investigate the 
effects of varying perceptual load (low vs. high perceptual load) and 
time period (10 levels corresponding to block number) on physiological 
response during the visual search task. Dependent variables included 
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) concentrations in 
the prefrontal cortex (PFC), HbO and HbR concentrations in the middle 
temporal gyrus, heart rate, breathing rate, and facial skin temperature. 
Following each block of tasks, participants were asked to provide sub-
jective estimates of their MWL, their level of fatigue, and whether their 
attention had been on-task or off-task at the time. 

The experimental task was modelled after a visual search task used 
by Forster and Lavie (2009) in an investigation of the influence of 
perceptual load on mind wandering frequency. During the task, parti-
cipants were presented with a set of one or more images of cork coasters 
and were asked to identify whether the set contained a coaster with a 
target defect type. Target defects were cuts and flattened corners, and 
participants were asked to press a specific key (“Space” for cuts and 
“Num Pad 0” for flat corners) to record which defect type was present 
within each set, and each set contained only one target defect type. 

In the low demand condition, participants were shown a single 
image (Fig. 1 - left), while in the high demand condition, participants 
were shown the target defect in addition to three other distractor 
images (Fig. 1 - right), any one of the four images could contain the 
target defect. Distractor images displayed alternative defect types 
(scratched surfaces, glue spills, and dents). For both levels of demand, 
images were displayed at one of six points on the screen, each equidi-
stant from the screen’s centre. 

Each block included fifty tasks in which the stimuli were presented 
for 1700 ms, followed by a 1300 ms blank screen during which 
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participants could respond. A block consisted of either high or low 
demand tasks. Before each of the task blocks, the participants per-
formed a baseline task during which they were asked to follow a “plus” 
sign moving on the screen. In between each baseline task and task block 
the participants were presented with the text: “The task will start in 
10 s” on a dark background. The main reason for this was so that 
participants were not surprised by the sudden start of the task. 

3.3. Participants 

A total of 36 participants took part in the study (52.8% female and 
47.2% male), with a mean average age of 28.2 years ( = 8.4). 
Participants were required to have normal or corrected-to-normal vi-
sion and were recruited from the University of Nottingham and sur-
rounding community. Participants were provided with a 15 voucher 
upon completion of the study. This study was approved by the 
University of Nottingham’s Faculty of Engineering Ethics Committee. 

3.4. Equipment 

Several sensor systems were used to collect physiological measures 
from participants, including an Artinis Octamon+ fNIRS device, a 
Zephyr Bioharness 3, a FLIR thermal camera, and a video camera placed 
facing the participant. 

The Artinis Octamon+ device included 8 optodes split into two 
groups. One group was placed over the prefrontal cortex and also in-
cluded a short separation channel (distance to receiver 35 mm and 
10 mm for the short separation channel), while the second group was 
placed over the mid-temporal gyrus. The emittors use 760 nm and 
850 nm wavelengths and the fNIRS data was acquired at 10 Hz. The 
optodes were positioned on a full headcap. Two sizes were available for 
the headcap with slightly different available positions for the front 
optodes, as presented in Fig. 2 (right and center). Fig. 2 (left) shows the 
optode positioning on the side of both the medium and large headcaps. 
The influence of headcap size on the optode positioning will be re-
visited in the discussion section. 

In addition to the physiological sensors, the materials also included 
a questionnaire capturing background experience and demographic 
data, a NASA-TLX questionnaire (Hart and Staveland, 1988), and a 9- 
point fatigue rating scale. The laboratory setup consisted of a desk and 
computer workstation which displayed the training and experimental 
tasks via PsychoPy2 (Peirce et al., 2019), based upon a dataset of 
images of cork coasters with visible defects. 

The Zephyr BioHarness 3, used to collect heart and breathing 
measures, is a physiological monitoring module attached to a chest 

strap. The device reports heart rate and breathing rate at 1 Hz and heart 
rate R-R intervals per R peak detection. 

Facial thermography data was collected with the FLIR A65sc, un-
cooled microbolometer type, thermal camera (45 degree lens) using the 
ResearchIR software at a mean frame rate of 7.45 FPS. The spectral 
range of the camera is 7.5-13μm, which is not overlapping with the 
wavelengths emitted by the fNIRS device. 

3.5. Procedure 

The researcher introduced the study’s objectives and procedure to 
each participant, and after discussing any questions, the participant 
provided informed consent and then completed the questionnaire. The 
participant was then shown how to fit the bioharness, which they 
completed independently. The participant then completed a training 
which demonstrated the low and high demand tasks. Performance 
feedback was provided during the training. After the participant con-
firmed that they felt comfortable with the task, the researchers worked 
with the participant to fit the remaining physiological sensors and to 
configure the thermal and video cameras. 

The main body of the experiment began by collecting a set of 
baseline physiological measures from each participant; in the first two- 
minute baseline activity, the participant was instructed to maintain a 
calm state while watching a “+” symbol float around the monitor. The 
second baseline activity required the participant to sit calmly and re-
flect upon a positive memory from a vacation, also for two minutes. 
Following the baseline, participants completed five blocks of the low 
demand task and five blocks of the high demand task, presented in a 
fully randomized order. Participants responded to probes between 
blocks relating to MWL, fatigue, and mind wandering experienced 
during the previous block. Afterwards, participants provided estimates 
of their perceived workload in line with the raw NASA-TLX instrument, 
which assesses MWL across six dimensions (mental demand, physical 
demand, temporal demand, effort, performance, and frustration). 

3.6. Data processing and analysis 

Prior to analysis, one participant’s data was removed due to a lack of 
engagement with the task, leading to a sample of 35 participants being 
included in the study. 

3.6.1. fNIRS pre-processing 
The pre-processing of the fNIRS data began with a visual inspection 

of data quality, where channels were excluded if they had high levels of 
noise or if a heart beat could not be observed in the raw signal. Table 1 

Fig. 1. Task screenshot: low demand condition on the left and high demand condition on the right  
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describes the proportion of data included in the analysis for each of the 
channels. Data from the short separation channel (4) were not included 
in this analysis. For some participants, where possible, specific blocks of 
data within the channels were removed, rather than entire channels. 
The included data were pre-processed using Homer21 with a pipeline 
inspired by Pinti et al. (2019), detailed below, involving conversion 
from raw data to optical density, a baseline shift and motion artifact 
correction step, bandpass filtering with a Butterworth filter, conversion 
of optical density data to concentration, and block averaging across a 
range of 20 s before the start of each block and 146 s following the start 
of each block.  

1. Raw data was converted to optical density using the 
‘hmrIntensity2OD’ function  

2. The optical density data was corrected for baseline shifts and motion 
artifacts using the ‘hmrMotionCorrectPCArecurseCh_SG’ function 
that performs a tPCA on each channel and a Savitzky-Golay 
smoothing; the parameters used were:  
• tIncMan: all included data was considered, this was a vector of 1’s  
• nSV: 0.97, removing the first n components accounting for 97% of 

the variance  
• maxIter: 100  
• FrameSize_sec: 10  
• turnon: 1  
• the Savitzky-Golay filtered was used with the default polynomial 

order of 3  
3. The resulting data was bandpass filtered using the ‘hmrBandpassFilt’ 

function, between 0 and 0.5 Hz on the default Butterworth filter.  
• high pass filter: 0  
• low pass filter: 0.5  
• filter type: the default Butterworth filter  
• filter order: the defaults in Homer2 were used, 3 for the low pass 

and 5 for the high pass  
4. The bandpass filtered data was converted from optical density to 

concentration using the ‘hmrOD2Conc’ function with partial path-
length factor 6 for each wavelength.  

5. The concentration data was block averaged using the ‘hmrBlockAvg’ 
function with a range of −20 s (baseline) and 146 s as the block 

duration 

The recovered hemodynamic response function for each of the task 
blocks was averaged across optodes from each of the two main brain 
regions analysed. This resulted in having one hemodynamic response 
function for the prefrontal cortex and one for the middle temporal 
gyrus; these were averaged over the interval [0,146] seconds for both 
HbO and HbR. The hemodynamic response function graphs below were 
generated using the Matlab function shadedErrorBar.2 

3.6.2. Facial thermography pre-processing 
The first stage of the analysis involved the extraction of tempera-

tures from various areas of the face, for which generating facial land-
marks for every frame in each video was needed. The second stage 
involved filtering the data, removing task blocks during which the fa-
cial landmark tracking under-performed and running the statistics on 
the remaining data. 

For the landmark tracking, the DeepLabCut (Mathis et al., 2018;  
Nath* et al., 2019) package for markerless pose estimation was used. 
The workflow included the following steps:  

• Create a dataset that will be used for training and testing: a sample 
of 20 frames per participant were used 

• Manually label each of the sampled frames with the 7 facial land-
marks shown in Fig. 3  

• Split the dataset into training and testing: the default 0.95 split was 
used  

• Choose a pre-trained neural network and refine end-to-end to adapt 
its weights: the ResNet-50 weights were used to initialize the model 
and the model was trained for 210000 iterations  

• Evaluate performance on the test dataset  
• Analyze: use the new weights to estimate the landmark positions in 

all videos. This generates the coordinates of each landmark in each 
frame, which were later used to extract the temperatures from the 
frames containing the thermal data. 

Once the temperatures were extracted, the timeseries data was 
smoothed using a robust local regression approach with a second 

Fig. 2. Frontal positioning of the optodes on the medium size headcap (left) and large size headcap (center). Channel 4 is a short separation channel and is labelled as 
“Ref” in the figure. Side positioning of the optodes on both the medium and large size headcaps (right). The emitters (green) are marked with an X sign, the short 
separation emitter (blue) is marked with a + sign while the receiver (yellow) is marked with a black circle in the middle. The dotted circles represent the positions of 
some 10/20 system locations relative to our optode placement. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
Total channels included in the analysis across participants            

PFC MTG  

Optode 1 2 3 4 5 6 7 8 
No. kept (out of 36) 25 20 17 15 13 15 15 16 
Percentage kept 69.4% 55.5% 47.2% 41.6% 36.1% 41.6% 41.6% 44.4% 

1 https://homer-fnirs.org/ 2 https://github.com/raacampbell/shadedErrorBar 
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degree polynomial model and a span of 1% of the data. The tempera-
ture timeseries for each participant were compared against the block 
conditions. A few factors influenced the quality of the data, including 
face orientation for the accuracy of the landmarks and the presence of 
an automatic non-uniformity correction (NUC) performed by the 
thermal camera. Data blocks influenced by these factors were removed 
from the analysis, and about 54.2% of the blocks were kept for the final 
analysis; these limitations are further explored in the discussion 
chapter. The final step was extracting the difference between the mean 
temperatures during the task blocks and the mean temperatures during 
the baseline before each block. 

3.6.3. Heart rate pre-processing 
Out of the 35 participants in the study, we have heart rate data for 

34 participants as for one, the device did not record the data. Another 
participant stopped their participantion after 8 blocks of the study, 
resulting in 338 block being recorded. Heart rate was inspected for 
outliers. In the heart rate data, values less than 35 beats per minute 
were considered to be inaccurate and associated with sensor malfunc-
tion or poor fit. Values below this threshold were removed from the 
analysis, resulting in a sample of 335 data points out of 338 recorded 
being included in the heart rate analysis. Two of the participants had 
10%, respectively 20% of the heart rate data removed. 

3.6.4. Breathing rate pre-processing 
Out of the 35 participants in the study, we have breathing rate data 

for 34 participants as for one, the device did not record the data. 
Another participant stopped their participantion after 8 blocks of the 
study, resulting in 338 block being recorded. Similar to heart rate, 
breathing rate was inspected for outliers. Out of the total of 338 blocks 
captured during the study, 1 were associated with poor data quality in 
the breathing rate sensor, with mean values of 0 breaths per minute. 
One participant had 10% of the breathing rate data removed. These 
data points were removed from the final analysis, resulting in a sample 
of 337 blocks being considered. 

3.6.5. Subjective measures 
In addition to the physiological measures, subjective data was col-

lected including a questionnaire capturing background experience and 
demographic data, a NASA-TLX questionnaire Hart and Staveland 
(1988), and a 9-point fatigue rating scale. 

3.6.6. Statistical analyses 
All dependent variables were checked for normality and equal 

variance. Differences in task performance were investigated using a two 
tailed t-test with a 0.05 significance level, while differences in MWL 
between demand condition were investigated with a series of Wilcoxon 
Signed-Rank tests. The association between reports of TUTs and task 
demand was assessed with a crosstabulation analysis. A series of linear 
mixed effects models were used to assess the relationship between 
perceptual demand and block number, and their collective effects on 
heart rate, breathing rate, nose temperature, and hemodynamic re-
sponse variables in the prefrontal cortex and middle temporal gyrus. 

All linear mixed effects models were run using the Matlab (version 
R2019b) function fitglme. A random intercept and slope was included 
for participant, as well as the correlation among perceptual load and 
block number. The formula for the models is described below using the 
Wilkinson notation. Block number is denoted by blockNo and the par-
ticipant by participantNo. The same model was used for each of the 
physiological measure, so in the notation, “Physiological measure” 
stands for: heart rate, breathing rate, nose temperatures and all the 
fNIRS measures reported in the paper. 

Physiological measure  ~  1 + blockNo*condition + (1 | 
participantNo) + (1 + perceptualLoad | participantNo) + (1 + 
blockNo | participantNo) 

3.7. Hypotheses 

It was hypothesized that perceptual load would be associated with 
significantly different blood oxygenation patterns in the two brain re-
gions. It was also hypothesized that increases in perceptual load would 
be associated with higher, mean heart rate and mean breathing rate, 
but lower levels of facial skin temperature. We enumerate these below:   

H1 Perceived MWL will be higher in the high task demand condition 
than in the low.   
H2 Frequency of TUTs will decrease in the higher demand task 
condition.   
H3 Self-reported fatigue rating will increase over time.   
H4 Heart rate will increase in the high task demand condition as 
compared to the low.   
H5 Breathing rate will increase in the high task demand condition as 
compared to the low.   
H6 Hemodynamic response will vary between the low versus high 
task demand condition. 
H7 Nose temperature will decrease in the high task demand con-
dition as compared to the low.   
H8 Heart rate will decrease as time progresses.   
H9 Breathing rate will vary as time progresses.   
H10 Hemodynamic response will vary as an individual progresses 
through the 10 task blocks.   
H11 Nose temperature will vary as as an individual progresses 
through the 10 task blocks. 

4. Results and analysis 

Below, we begin by checking that the manipulation of our primary 
independent variable was successful using task performance data. After 
that, we first examine H1-H3 relating to the subjective ratings of ex-
perience, before moving on to H4-H11 relating to physiological mea-
sures. 

Fig. 3. Facial thermography landmarks  
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4.1. Task performance 

Error rates and response time during each block were used as a 
performance measure, and Table 2 shows the mean and standard de-
viation of these measures during the low and high demand conditions. 
It is important to note that in this and the following analyses, data were 
not considered to be completely independent as the same participant 
was represented up to ten times in the analyses, due to sampling data 
during and following each block. The error rate data was compared 
using a t-test, showing a significant difference between the low and 
high demand conditions t(34)=-6.1, p<0.001 (95% CI, -0.034 to 
-0.017), Hedges’s g=-1.05, CI(-1.48, -0.64). Response time was also 
significantly different between the low and high demand conditions, as 
tested using a t-test t(34)=-21.02, p<0.001 (95% CI, -0.38 to -0.31), 
Hedges’s g=-2.89, CI(-3.63, -2.24). We conclude that the significant 
drop in both performance measures confirms that perceptual load ma-
nipulation was successful. 

4.2. Subjective ratings 

This section presents the subjective ratings of experience provided 
by participants during the tasks. 

4.2.1. Mental workload 
In line with Hypothesis H1, that the variations in perceptual load 

would reflect differences in MWL, the raw NASA TLX instrument was 
used to capture subjective ratings of parameters reflecting participant 
MWL levels. This hypothesis was supported, with a series of Wilcoxon 
Signed-Rank Sum tests indicating that workload ratings were sig-
nificantly higher in the high perceptual load condition than in the low 
perceptual load condition in terms of mental demand ( =z 4.4,
p < 0.01, =d 0.74), temporal demand ( =z 4.86, p < 0.01, =d 0.82), 
performance ( =z 3.98, p < 0.01, =d 0.67), and effort ( =z 4.53,
p < 0.01, =d 0.76). There was no significant difference between low 
and high perceptual load conditions in terms of physical demand 
( =z 1.94, =p 0.05, =d 0.33) and frustration ratings ( =z 0.94,

=p 0.35, =d 0.16). These results provide further evidence that the 
chosen perceptual load task successfully created two distinct condi-
tions. 

4.2.2. Frequency of task-unrelated thought 
A crosstabulation analysis and Chi-square test was used to examine 

the relationship between perceptual load and the occurrence of TUTs 
during the task, as subjectively rated by the participants. A significant 
relationship was identified, finding that participants were less likely to 
experience TUTs in the high perceptual load condition than in the low 
demand condition ( =2(1) 10.30, =p 0.0013, = 0.55). This finding is 
consistent with findings in the literature and supported the hypothesis 
that perceptual load would manipulate frequency of TUT episodes 
(Hypothesis H2). 

4.2.3. Relationship between time and fatigue rating 
In addition to rating perceived MWL and attentional direction, 

participants also provided a subjective estimate of their level fatigue in 
between task blocks. It was hypothesised that fatigue would increase 
over time, so a one-tailed Wilcoxon Signed-Rank test was performed to 

test this assumption. Findings provided support for this hypothesis, 
identifying a significantly higher level of self-reported fatigue following 
the final block than following the first block ( =z 4, p < 0.001, 

=d 0.67). These results show that the participants perceived a higher 
level of fatigue at the end of the task as compared to the beginning, 
indicating that as the variable block number increases, so does the level 
of fatigue. In line with these findings, physiological data was analysed 
with respect to block number as opposed to the fatigue rating. 

4.3. Physiological measures 

In this section, we focus on the physiological measures taken during 
the study. We examine whether they are affected by the two perceptual 
demand levels, and consequently how they relate to differences ex-
perienced in MWL and fatigue. 

4.3.1. Heart rate 
A Kolmogorov-Smirnov test indicated that heart rate did not follow 

a normal distribution, =D (335) 0.96, p < 0.001. In support of 
Hypothesis H8, a linear mixed effects model indicated that in relation to 
the heart rate task-baseline difference, block number (time) had a small 
but significant effect, with heart rate difference from baseline de-
creasing as time progressed ( = 0.17, 95% CI = ( 0.33, 0.0056), 

=p 0.042). Task demand did not have a significant effect on heart rate 
task-baseline difference ( = 1.05, 95% CI = (−0.24, 2.35), =p 0.11), 
a finding which failed to support Hypothesis H4. Likewise, the task 
demand-block number interaction was not significant ( = 0.18, 95% 
CI = ( 0.39, 0.031), =p 0.094). These results indicate that heart rate 
difference from baseline decreased as the task progressed while the 
same measure was not influenced significantly by changes in demand. 

4.3.2. Breathing rate 
A Kolmogorov-Smirnov test indicated that breathing rate was not 

normally distributed, =D (337) 0.34, p < 0.001. A linear mixed effects 
model indicated that in relation to the breathing rate task-baseline 
difference, block number had a small but significant effect, with 
breathing rate difference from baseline increasing as time progressed 
( = 0.19, 95% CI = (0.062, 0.33), =p 0.0041). Task demand also had a 
significant effect, with breathing rate difference from baseline in-
creasing by a factor of 1.51 in the high demand versus low demand 
condition ( = 1.51, 95% CI = (0.50, 2.53), =p 0.0036). Similarly, the 
task demand-block number interaction was also significant, ( = 0.17,
95% CI = (−0.34, −0.0038), =p 0.045). The increasing breathing rate 
trend over time is shown in Fig. 4, while the increase in breathing rate 
with task demand is presented in Fig. 5. These results indicate that 
breathing rate difference from baseline increased as the task progressed 
as well as the fact that the same measure was influenced by changes in 
demand, increasing in the higher demand condition as compared to the 
lower demand one. 

4.3.3. Cerebral hemodynamics in the pfc and middle temporal gyrus 
A Kolmogorov-Smirnov test indicated that the fNIRS data for both 

the PFC and MTG did not follow a normal distribution, =D (347) 0.49,
p < 0.001. Table 3 shows the results of the linear mixed effects model 
for hemodynamic respnse (HbO and HbR) in both the prefrontal cortex 
and mid temporal gyrus. It can be observed that both independent 
variables and their interaction had no significant effect on HbO or HbR 
concentration in both the PFC and MTG areas. Findings failed to pro-
vide support for either Hypotheses H6 or H10, indicating that the he-
modynamic response was not influenced by either the change in de-
mand or changes in fatigue. To illustrate, the hemodynamic response 
curves comparing low versus high demand levels are shown in Fig. 6. 

4.3.4. Nose temperature 
A Kolmogorov-Smirnov test indicated that nose temperature re-

lative to baseline did not follow a normal distribution, =D (194) 0.3,

Table 2 
Performance data including error rates and response times for both low and 
high demand conditions        

Low demand condition High demand condition  

Mean SD Mean SD  

Error rate [Percentage] 1.1 2.1 3.6 4.3 
Response time [s] 0.85 0.094 1.2 0.17 
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p < 0.001. A linear mixed effects model indicated that in relation to 
nose temperature task-baseline difference, block number (time) did not 
have a significant effect on nose temperature ( = 0.01, 95% 
CI = (−0.03, 0.02), =p 0.65), a finding which did not support 
Hypothesis H11. However, Hypothesis H7 was supported; task demand 
had a significant effect, with nose temperature decreasing by a factor of 
-0.25 in the high demand versus low demand condition as compared to 

the baseline ( = 0.25, 95% CI = (−0.45, −0.04), =p 0.02) (Fig. 7). 
Task demand-block number interaction was not significant, ( = 0.03,
95% CI = (−0.005, 0.05), =p 0.1). These results indicate that nose 
temperature difference from baseline was not influenced by changes in 
fatigue while the same measure was influenced by the level of demand. 

5. Discussion 

During a prolonged visual inspection task, we explored the re-
lationship among task demand, fatigue (represented by block number), 
and their collective effect on task performance, MWL, TUT, and phy-
siological response. The MWL ratings as well as task performance 
measures reflected the expected behavior of our primary independent 
variable manipulations. The difference in the performance data, for 
both response time and error rate, indicated that responses to the 
NASA-TLX scale reflected workload differences across multiple di-
mensions, confirming the hypothesis that the contrasting levels of 
perceptual load would manipulate the perceived experience of MWL. 

5.1. Mental workload and task-unrelated thought in a visual inspection 
tasks 

The prolonged visual inspection task with two levels of demand was 
used as a means of manipulating the level of MWL experienced by the 
participants. Task performance as well as subjective MWL ratings 
confirmed the difference between the two levels succeeded in manip-
ulating the level of perceived MWL. 

In addition to confirming the hypothesis that perceptual load would 
manipulate MWL, findings also revealed that participants were less 
likely to experience TUTs during the high perceptual load condition as 

Fig. 4. The effect of time on breathing rate was significant, the data showing a small increase in breathing rate compared to baseline as time progressed  

Fig. 5. Demand level had a significant effect on breathing rate difference from 
baseline, showing an increase in the higher demand condition 

Table 3 
Summary of the linear mixed effects models for both the Pre-frontal Cortex (PFC) and Middle Temporal Gyrus (MTG)                 

Block Number Task Demand Interaction    

β 95% CI p β 95% CI p β 95% CI p   

Lower Upper  Lower Upper  Lower Upper   
PFC HbO 0.015 −0.03 0.06 0.49 −0.11 −0.46 0.24 0.52 0.02 −0.04 0.08 0.47  
PFC HbR 0.01 −0.01 0.03 0.47 −0.05 −0.21 0.12 0.6 0 −0.03 0.02 0.77  
MTG HbO 0.032 −0.023 0.087 0.25 0.2 −0.245 0.645 0.38 −0.021 −0.096 0.053 0.57  
MTG HbR −0.01 −0.04 0.02 0.56 −0.09 −0.33 0.15 0.48 0.02 −0.02 0.06 0.29  
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compared to the low perceptual load one, supporting Hypothesis H1. 
These findings are similar to those described by Forster and 
Lavie (2009), who found that engagement with internal distractors was 
a function of a task’s perceptual load. 

It is worth noting, though, that mind wandering is a challenging 
phenomenon to observe. Although it has been demonstrated that TUT 
frequency can be manipulated by varying perceptual load (Forster and 
Lavie, 2009) and working memory load (Teasdale et al., 1993), it is 
difficult to assess reliably whether an individual’s attention is directed 
towards task-related or TUTs. Equally, because the phenomenon is not 
directly activated by a manipulation in the protocol, it is difficult for 
participants to report how long internally-directed thoughts were, or 
even when they began and ended (such that we can mark those times in 
the data). Considering these challenges, it is interesting to find a sig-
nificant result that confirms previous research indicating a relationship 

between perceptual load and TUTs. In addition, it is intriguing that the 
analysis of breathing rate and nose temperature revealed a significant 
difference between perceptual load conditions, albeit a difference ac-
counting for a small amount of variance. 

5.2. Effects of task demand and fatigue on physiological measures 

Although participants’ perceived differences in demand between the 
two conditions, demand did not produce a significant effect on the task- 
baseline difference for either heart rate or for the concentrations of HbO 
and HbR in both the prefrontal cortex and mid-temporal gyrus. This 
was contrary to Hypotheses H4 (heart rate) and H6 (fNIRS) and con-
trasts with literature that has described an association between in-
creasing oxygenation in the PFC under higher demand conditions 
(Richter et al., 2009). Nevertheless, findings supported Hypotheses H5 
and H7, with results indicating that as perceptual load increased, par-
ticipants experienced a significant increase in the breathing rate task- 
baseline difference and a significant decrease the in nose temperature 
task-baseline difference. In the task-baseline difference for breathing 
rate analysis, breathing rate increased by a factor of 1.51 in the high 
demand condition as compared to the low demand condition. This 
finding aligns with those of Brookings et al. (1996) who observed a 
significant increase in breathing rate for pilots during increasingly 
complex flight tasks. Task-baseline difference for nose temperature 
decreased by a factor of -0.25 in the high demand compared to the low 
demand condition. 

In the present work, findings demonstrated that task-baseline dif-
ference in HbO and HbR concentrations did not effectively distinguish 
between the significantly different levels of perceived MWL, evoked by 
manipulating perceptual load within the task. While the subjective data 
(both NASA-TLX responses and task performance data) reflected the 
expected changes of our primary independent variable manipulation, 
findings failed to reflect differences in the activation in the prefrontal 
cortex. In this case, the difference in the performance data, for both 
response time and error rate, indicated that responses to the NASA-TLX 
scale reflected workload differences, confirming the hypothesis that the 
contrasting levels of perceptual load would manipulate the perceived 
experience of MWL. This, in turn, indicates that although participants 

Fig. 6. Hemodynamic response for both HbO and HbR in the low demand condition as compared to the high demand condition. The shaded areas represent the 
standard deviation 

Fig. 7. Demand level had a significant effect on nose temperature difference 
from baseline 
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perceived differences, the fNIRS measures did not detect a significant 
change in the prefrontal cortex or middle temporal gyrus (although we 
would not, perhaps, expect activation in the middle temporal gyrus 
based upon the existing literature). 

In light of these findings, it is possible that, despite evidence within 
the literature implicating the PFC and middle temporal gyrus in mind 
wandering (Durantin et al., 2015), the prefrontal cortex was not ne-
cessarily involved in the visual inspection task. It is possible that acti-
vation was more prominent elsewhere in the brain, or across multiple 
brain areas, such as the default mode network (Christoff et al., 2009; 
Durantin et al., 2015). However, the prefrontal cortex, in particular, has 
been shown to experience increased oxygenation when an individual is 
exposed to higher workload (Maior et al., 2018), and given that the 
current work identified a significant effect of task demand on perceived 
MWL, one could make the assumption that similar trends would also be 
observed in the PFC. This finding raises several intriguing questions for 
future research, particularly in relation to exploring the mapping be-
tween the embodied experience of workload as reported subjectively by 
individuals and the response of physiological systems during these ex-
periences. For those interested in the relationship between subjective 
ratings of MWL and brain-activation, future work should explore the 
degree to which subjective measures capture experiences associated 
with activation in multiple regions of the brain, rather than specifically 
in prefrontal cortex, where active executive thought typically occurs. 
Although some work already exists that compares how e.g. visual and 
verbal tasks differently affect cognitive concepts, task performance, and 
physiological measures (Klingner et al., 2011; Yekhshatyan and Lee, 
2012), it would be of great value to the human factors and human- 
computer interaction research communities to investigate the specific 
relationship among different types of tasks, regions of brain activation, 
and subjective ratings of MWL. 

Another possibility explaining the fNIRS results may be that the 
measures were not sufficiently sensitive to measure the difference be-
tween these two levels of task difficulty, and that fNIRS is more suitable 
for detecting larger differences. While we chose a sustained attention 
task, similar difficulties in using physiological responses to recognise 
small differences in MWL have been seen in other task manipulations.  
Mandrick et al. (2016), for example, did not find differences in fNIRS 
measures between a 1-back and 2-back task, and other papers often use 
1-back and 3-back as baselines for easy and difficult conditions, re-
spectively. While Fishburn et al. (2014), for example, observed a linear 
increase in activation for n-back tasks, both Herff et al. (2014) and  
Ayaz et al. (2012) found very little difference between 0- to 2-back 
tasks, but clear differences in comparison with 3-back. For the future of 
our research, and indeed any work that is interested in using brain data 
to evaluate the workload involved in everyday work tasks, that the 
sensitivity of fNIRS to small task demand manipulations might pose a 
notable challenge. Such future work may need to complement small 
variations of MWL, with comparable data from more difficult condi-
tions that clearly manipulate MWL. 

Several significant findings were also observed in relation to fatigue 
during the visual inspection task. As fatigue, inferred from time on task, 
increased the heart rate task-baseline difference slowed significantly, 
supporting Hypothesis H8. Time on task was expressed in terms of 
block number [1-10], spanning approximately 45–50 min; although 
block time lengths were held constant, participants spent different 
amounts of time completing the subjective reports. Interestingly, we 
had also hypothesised that breathing rate would vary with fatigue (H9), 
as inferred from time on task, and a significant effect was observed in 
the positive direction. However, the data did not support all hy-
potheses, particularly in relation to hemodynamic response (H10) and 
nose temperature (H11). Similar to variations in task demand, no sig-
nificant difference was identified as time progressed in the task-baseline 
differences in concentrations of HbO and HbR, neither for the PFC nor 
the middle temporal gyrus. 

There were several aspects of the experimental design and analysis 

that may have limited the generalizability of our conclusions. In terms 
of experimental design, the study focused on a perceptual load task 
requiring sustained attention, performed in a stationary, computer- 
based scenario. One of the reasons behind this choice was to minimise 
the potential occurrence of motion artefacts in the fNIRS data. Thus, 
while the results provide insight into the physiological response to task 
demand variations in this type of situation, further research is needed to 
understand the degree to which this response generalizes to more dy-
namic work environments. 

In terms of the analysis, it is important to note that the choice of pre- 
processing pipelines for the physiological data influences later inter-
pretations of the data; for example, in fNIRS data, choice of filtering 
parameters may result in varying levels of motion artefacts left in the 
final data set. In the current work, the fNIRS pre-processing pipeline 
was based on one established within the literature (Pinti et al., 2019), 
but within the broader research community, there is as of yet no 
agreement as to best practice or a single recommended pipeline. 

5.3. Open challenges for using physiological data for operator state 
assessment 

As highlighted in this paper, we encountered multiple challenges in 
collecting physiological data during the study, which led to the removal 
of some data from the analysis. This section aims to clarify the reasons 
for removing data from the analysis as well as provide some guidance 
for other researchers willing to apply similar techniques; this may be of 
particular value as physiological measures are increasingly of interest 
for use in representative environments and even in situ. 

Compared to the other measures, capturing heart rate and breathing 
rate was relatively straightforward, with challenges mainly relating to 
inaccurate readings caused by the chest strap losing contact with the 
skin. One way to address this is to provide participants with the right 
size for the strap as well as provide clear instructions on how this 
should be fitted. 

Facial thermography data presented multiple challenges including 
the depth of field for the far and near limits between which the parti-
cipant would be in focus, big variations in temperature due to the non- 
uniformity correction (NUC) and accuracy of facial landmark tracking. 
The depth of field is important as the accuracy of the temperature 
readings can not be guaranteed when the participant is out of focus. The 
main way of dealing with this is making sure to choose the right lens for 
the application: one that provides enough space between the near and 
far limits of the field of view to allow for the participant’s movements. 
This needs to be balanced against the horizontal and vertical fields of 
view; the larger the difference between the near and far field of view, 
the larger the vertical and horizontal fields of view. This, in turn, may 
cause the image of the participant’s face to be very small making 
landmark tracking difficult. 

Thermal cameras apply a NUC in real time in order to update the 
offset correction coefficients, resulting in a better quality measurement; 
such occurrences can influence the final results of the statistics. Our 
approach was to remove all blocks that had an NUC during the baseline 
or task of that block. An alternative approach could have been to use a 
calibrated black body device set to a temperature similar to that of the 
human skin; these types of devices can be used to correct temperature 
measurements by the estimating the variation recorded by the camera 
in the area of the stable temperature black body device, however, it is 
not always practical to use this type of device, which may limit appli-
cations in live manufacturing environments. 

Facial landmark tracking can be time-consuming to implement, and 
as an added challenge, facial landmark algorithms trained on visual 
images may not always perform as well on thermal images. For these 
reasons, our approach was to label a number of thermal images 
manually and perform transfer learning using DeepLabCut 
(Mathis et al., 2018; Nath* et al., 2019). Even so, tracking accuracy 
decreased at times and affected blocks were also removed. The neural 

E.M. Argyle, et al.   International Journal of Human-Computer Studies 145 (2021) 102522

11



network training stage offers a lot of room for improvement, as labeling 
of additional images for training data and adjusting the parameters for 
training the neural network may offer opportunities to improve 
tracking accuracy. 

In terms of the advances of fNIRS technology, even though great 
progress has been made with regards to their portability, as well as with 
the available data analysis methods in open source packages like 
Homer2, there are still challenges to overcome for both sustained data 
collection and less controlled task contexts. For example, optode posi-
tioning might vary slightly between participants due to different head 
sizes. For our data collection, this was reflected in the varied locations 
of the pre-determined sensor holes in the medium and large headcaps. 
Natural head-shape differences between people, though, mean that 
sensor placement also varies within the same headcap. fNIRS as a 
measure, however, is based on light scattering within a 2-3cm radius, 
and so the variation of placement has only a limited affect on activation 
of a cluster of sensors. In our experience, positioning optodes over the 
mid temporal gyrus was especially challenging due to the presence of 
hair, and in some cases data had to be discarded due to poor signal 
quality. In practical terms, recording changes in hairless areas, such as 
the forehead over the prefrontal cortex, is easier to implement. In ad-
dition, and perhaps most importantly for measurement of sustained 
tasks, wearing a headcap for a long duration (about 45 min) proved to 
be uncomfortable for some participants. The portability and fit of 
modern fNIRS devices would, in practice, need to be considered in the 
context of actual comfort and any negative impact on e.g. ability to 
concentrate. 

Finally, filtering fNIRS data remains extremely challenging, espe-
cially in the presence of motion artifacts. The fNIRS community con-
tinues to discuss what data processing pipelines are broadly acceptable, 
and indeed required or recommended. Different approaches are better 
at removing e.g. motion artifacts and baseline shifts in data (created by 
headcaps shifting slightly on the head). Beyond being difficult, and still 
under debate within the research community, these challenges would 
become more critical in the contexts that our project wishes to study in 
working manufacturing conditions. 

5.4. Implications for theory and practice 

Overall, this work has provided insight into the utility of physio-
logical measures for assessing cognitive state, and as such, has several 
implications from both a theoretical as well as a practical perspective. 
From a practical perspective, findings can inform future research into 
the assessment of fatigue and demand levels for humans at work, fac-
tors that, as we have demonstrated, closely related to MWL and at-
tentional degradation. The current findings indicate that, among the 
measures considered here, breathing rate and nose temperature may be 
most effective for assessing demand, whereas heart rate and breathing 
rate may be most effective for assessing fatigue. This is of particular 
relevance to industries where safety and quality are critical to in-
dividual and organisational effectiveness. Indeed, our work in physio-
logical assessment of operator state has been motivated by challenges 
arising within the manufacturing industry, where certain tasks and 
work environments impose variable demands and constraints upon 
human workers. While the current work focused on an abstracted 
quality control task involving visual inspection, we hypothesise that 
these findings may generalise to other predominantly visual tasks of 
similar natures, and may even overlap with similar challenges in other 
safety-critical domains, such as pilot state monitoring in aviation. 
Further research is needed to identify and exploit appropriate mappings 
between physiological measures and human factors constructs, and 
such work may have greater implications on the design of future work 
systems, particularly those incorporating human-automation interac-
tion. 

In addition to practical implications, this work has revealed several 
overarching questions related to the use of physiological assessment of 

human factors constructs and phenomena such as MWL, fatigue, and 
mind wandering. Although the literature contains evidence supporting 
a relationship between workload and physiological measures such as 
HbO concentration (Causse et al., 2017; Foy and Chapman, 2018; Maior 
et al., 2018) and heart rate (Bonner and Wilson, 2002), our work could 
not replicate these findings in the context of a visual inspection task. 
With regards to the fNIRS data, while it is possible that visual inspection 
and coping with variations in perceptual load were processed in an area 
of the brain not considered within this work, this offers a partial ex-
planation, at best. Oxygenation concentration within the PFC has been 
shown to be associated with variations in MWL during a variety of 
tasks, but in the current work, significant differences in subjective 
perceptions of MWL between the two task demand conditions did not 
translate into clear differences in hemodynamic response. This leads us 
to recommend further investigation into novel methods for assessment 
of human factors constructs. Why some measures are more sensitive in 
certain situations remains an open question, and continued research is 
needed to explore the efficacy of different measures under varying work 
conditions. Furthermore, based on our findings, we argue that, while 
subjective measures of MWL have well-documented limitations 
(Marinescu et al., 2018; Sharples and Megaw, 2015), they still offer 
value in terms of understanding a highly complex phenomenon. It is 
generally accepted that MWL is a function of not only physical and 
cognitive demands, but also external influences and an individual’s 
background experience and perceptions of the work at hand (Charles 
and Nixon, 2019; Sharples and Megaw, 2015). We challenge the as-
sumption that physiological indicators inherently provide a more ac-
curate and objective way to assess such constructs given their innate 
complexities, but we also encourage further exploration and critical 
evaluation of their use in order to further the scientific debate on 
human-centred sensing and its applications for supporting individuals 
at work. 

Lastly, lessons learned during this research have provided several 
insights into effective experimental design and data collection protocols 
that would perhaps be most interesting for others running studies with 
physiological measures over prolonged periods of time. One typical 
challenge is identifying acceptable pre-task baseline conditions; be-
cause parasympathetic and circadian rhythm changes over time, this 
means that baseline recordings also change over time and can also be 
affected by on sedentary behaviour, tiredness, time of day, and time 
since calorie intake. Specific to fNIRS protocols, drift is often algor-
ithmically removed from the data, such that increases and decreases are 
produced by brain activation rather than longitudinal rhythms in oxy-
genation. 

6. Conclusions 

This research contributes to the understanding of the relationship 
between perceptual load, MWL, fatigue, task unrelated tasks, their ef-
fects on physiological response as well as facilitating a discussion about 
the sensitivity of physiological measures and the challenges in applying 
them in human factors studies. The subjective rating results obtained in 
our study showed that participants perceived a significant difference in 
terms of MWL level between the two demand conditions. Performance 
data also revealed significant differences between the two demand 
conditions in terms of error rate and response times, indicating to the 
fact that demand was well manipulated. Findings also showed that the 
frequency of TUTs was lower in the high demand condition. 

The physiological data results indicate that demand did not have a 
significant effect on HbO and HbR concentrations in either the PFC or 
MTG areas nor on heart rate. Breathing rate and nose temperature were 
the two physiological measures that presented significant differences 
between the two demand conditions, with breathing rate increasing and 
nose temperature slightly decreasing. In terms of fatigue having an 
effect on physiological measures, as time progressed, breathing rate 
showed an increase as compared to the baseline, heart rate decreased 
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relative to the baseline, while no effect was observed on nose tem-
perature or changes in HbO or HbR concentrations in the PFC or MTG 
areas. 

This result is important as it potentially indicates that fNIRS might 
not be sensitive to such small changes in workload. Sensing brain ac-
tivity using fNIRS seems to have high face validity as it returns a 
measure directly related to changes that occur in the brain. 
Nevertheless, it is still a recent field of research and a lot of progress still 
needs to be made in understanding this measure. Researchers planning 
to use fNIRS in more naturalistic human factors studies should consider 
the limitations on the study design. Although our findings contrast with 
some of the literature, our work suggests that, for our task, breathing 
rate and nose temperature may be most effective out of the measures 
we considered for assessing demand, whereas heart rate and breathing 
rate may be most effective for estimating fatigue. Physiological mea-
sures may vary in terms of their level of sensitivity to fine variations in 
human factors constructs such as MWL and fatigue, and this should be 
considered when determining whether and how to implement human- 
centred sensing. 
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