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The existence of fundamentally identical particles represents a foundational distinction between classical
and quantum mechanics. Because of their exchange symmetry, identical particles can appear to be
entangled—another uniquely quantum phenomenon with far-reaching practical implications. However, a
long-standing debate has questioned whether identical particle entanglement is physical or merely a
mathematical artifact. In this work, we provide such particle entanglement with a consistent theoretical
description as a quantum resource in processes frequently encountered in optical and cold atomic systems.
This leads to a plethora of applications of immediate practical impact. On the one hand, we show that the
metrological advantage for estimating phase shifts in systems of identical bosons amounts to a measure of
their particle entanglement, with a clear-cut operational meaning. On the other hand, we demonstrate in
general terms that particle entanglement is the property resulting in directly usable mode entanglement
when distributed to separated parties, with particle conservation laws in play. Application of our tools to an
experimental implementation with Bose-Einstein condensates leads to the first quantitative estimation of
identical particle entanglement. Further connections are revealed between particle entanglement and other
resources such as optical nonclassicality and quantum coherence. Overall, this work marks a resolutive step
in the ongoing debate by delivering a unifying conceptual and practical understanding of entanglement
between identical particles.

DOI: 10.1103/PhysRevX.10.041012 Subject Areas: Condensed Matter Physics,
Quantum Physics, Quantum Information

I. INTRODUCTION

Identical particles in quantum mechanics have a char-
acter quite distinct from those in classical mechanics.
Classically, indistinguishability comes from limited abil-
ities of the experimenter; in the quantum world, two
particles of the same type, such as electrons, are funda-
mentally indistinguishable [1,2]. This feature applies not
only to fundamental particles but is also crucial in

describing identical composite particle systems such as
Bose-Einstein condensates (BECs) [3]. Notably, exchang-
ing two identical quantum particles results in an overall
phase change in the wave function: no change for bosons
and a minus sign for fermions.
These exchange statistics require a symmetric or anti-

symmetric wave function in the first-quantized formalism.
For example, let us denote by jn0; n1i a state of identical
bosons inwhichn0,n1 particles have the internal state j0i; j1i
respectively. In the first-quantizedpicture,we represent j1; 1i
not as a two-mode state but a symmetric two-particle state,

j0i1j1i2 þ j1i1j0i2ffiffiffi
2

p ; ð1Þ

in which we have attached the fictional labels 1,2
to the particles. Formally, the state (1) is entangled.
However, it may be argued [4–9] that this “entanglement”
is unphysical—since the particles are identical, the labels
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1,2 are meaningless as it is impossible to say which particle
has which label. Throughout this work we refer to this
manifestation of correlations due to exchange symmetry as
particle entanglement (PE) [10].
A consensus on the nature of this entanglement has so far

been out of reach [12–28]. Some authors view PE as a
failure of the mathematical formalism and argue that it
should be disregarded in favor of other definitions of
identical-particle entanglement [4,5,8,13–17,21,26]. One
class of approaches requires talking only about correlations
between observables [15–17,21,24,26]; other authors pur-
sue entirely new definitions of entanglement tailored to the
identical-particle setting [4–6,12–14]. Many of these
approaches are summarized in a recent review [29].
In order to determine whether there is any meaningful

interpretation of PE per se, we follow the modern approach
to entanglement within quantum information theory [30].
Here, entangled states are defined as those which cannot be
prepared by two or more separated parties that are unable to
send quantum information, and are as such limited to local
operations (within their own laboratories) and classical
communication (LOCC). Entanglement is then regarded as
a resource for parties operating under such constraints, and
can enable them to perform better at a vast range of tasks
including quantum communication [31], computation [32],
key distribution [33], and metrology [34], to name a few.
In systems of identical particles, the usable entanglement

is that between modes [9,11,35–42]. This is because
(orthogonal) modes are by definition distinguishable sys-
tems and so can be addressed individually. Note that these
modes need not be spatially separated; we require only that
there exist some degree of freedom (such as momentum or
internal spin) via which they can be separately addressed.
Mode entanglement is distinct from entanglement between
particles. For instance, a single particle existing in a
superposition of two locations can be viewed as an
entangled state of two spatial modes—but this state clearly
contains no PE since there is only one particle. So if mode
entanglement is the operationally useful quantity, and is not
directly related to PE, why are we interested in the latter?
There are strong reasons to believe that PE is a property
worth quantifying and may be a resource in certain
scenarios. For instance, many-body entangled states of
cold atoms, such as spin-squeezed states, can increase
precision in metrology thanks to their PE [43–48].
In order to justify PE as a resource, one needs to provide

the appropriate setting—what is the analog of LOCC for
indistinguishable particles? In this work, in Sec. III,
we first answer that question by finding a physically
relevant set of quantum operations in which PE cannot
be created. These operations are constructed from combi-
nations of appending vacuum states, performing passive
linear unitaries and making either nondemolition measure-
ments of total particle number, or else arbitrary but
destructive measurements. We prove that each of these

sets of elements is as general as possible while resulting in a
consistent theory. In particular, the set of unitaries is
physically motivated as “easy” in many settings, corre-
sponding to beam splitters and phase shifters in optics, and
to number-conserving noninteracting Hamiltonians in con-
densed matter systems. These operations, which we call
particle separable, define the basis of a resource theory for
PE. Such an approach has been widely employed recently
to pin down a variety of quantum properties beyond
entanglement, such as quantum thermodynamics [49],
quantum coherence [50], and asymmetry [51]. With this
structure in place, one can begin to rigorously quantify PE
and lay the ground for its systematic utilization in prac-
tical tasks.
As a first application, in Sec. IV we consider the

metrological value of PE, in the context of sensing rotations
around a collective spin observable. It is known that PE can
result in a greater quantum Fisher information (QFI), a key
figure of merit for the estimation precision achievable with
a given state [52,53]. Beyond just acting as a witness for
PE, we show that the enhancement in the quantum Fisher
information, suitably quantified, is a monotone under
particle-separable operations. It thus follows that operations
with particle-entangling power are needed to increase the
utility of a state for metrology. This provides a fundamental
quantitative assessment of the power of PE as a resource in
quantum metrology tasks.
In Sec. V we use our framework to find the complete

setting in which PE is a resource for generating useful mode
entanglement between parties. This fully generalizes earlier
observations by Yurke and Stoler [54] and more recently by
Killoran et al. [41], the latter providing a starting impetus
for this work. Specifically, by “useful” mode entanglement
we mean that which is accessible to parties who are
constrained not only by LOCC but also by a local
particle-number superselection rule [55]. The latter con-
straint renders superpositions of different particle numbers
unobservable, and applies when particle number is con-
served and the two parties do not have access to a shared
phase reference [56]. In practical terms, this corresponds to
the inability to share laser light with a stable relative phase
(in optics) or to share a coherently delocalized BEC (with
cold atoms). Under this limitation, less entanglement can be
utilized [11,36]. We show that useful entanglement can be
generated from an initial state by a particle-separable
operation exactly when the initial state contains nonzero
PE. Furthermore, we find quantitative relations between the
amount of input PE and the output useful entanglement.
This shows that PE mirrors other quantum resources which
may be similarly “activated” into useful entanglement
[57–59]. These results provide a full generalization of
the observations in Ref. [41]. There, it was found that the
Schmidt coefficients of a pure PE state remain invariant
during its activation into a useful entangled state under a
specific class of unitary operations involving nonpolarizing
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beam splitters. Thus we have explored the full resource-
theoretic meaning of this activation, for the most general
states and operations, and quantified it via large classes of
entanglement measures.
Our results have direct applications to real systems of

indistinguishable bosons, in particular entangled states of
BECs [28,60]. In Sec. VI we analyze one of a set of recent
experimental advances witnessing mode entanglement in
BECs [61–63]. We show that these fit into our framework
and implement the above resource conversion. In particular,
our results enable for the first time a quantitative determi-
nation of the PE content of the states produced in the
experiment, based on quantifiers validated within our
resource theory framework.
Finally, in Sec. VII we find novel and surprising

connections between PE and nonclassicality as employed
in quantum optics. In that context, classical states are
probabilistic mixtures of coherent states [64,65]. States
lying outside this set are nonclassical, and are essential in
many quantum technological applications [66]. Aided by a
recent resource theory formulation of nonclassicality [67–
70], several parallels can be formed between the two
disparate topics. We find nonclassicality to be a necessary
but not sufficient prerequisite for PE—however, nonclas-
sicality can be “unlocked” by using multiple copies of a
state. Thus we have a remarkable link between two
uniquely quantum resources.

II. PARTICLE IDENTITY AND
SUPERSELECTION RULES

We work with bosonic systems, for which m orthogonal
modes have associated annihilation and creation operators
ai; a

†
i , i ¼ 0;…; m − 1, satisfying the canonical commu-

tation relations ½ai; aj� ¼ 0; ½ai; a†j � ¼ δi;j. For a particular
choice of modes, the second quantized description is given
in terms of the occupation numbers ni of each mode:
jn0;…; nm−1i ∝ ða†m−1Þnm−1…ða†0Þn0 j0;…; 0i. All bosonic
states then live in the Fock space spanned by such vectors.
In order to make statements about entanglement between

particles, it is necessary to ensure that it is even sensible
to talk about the particles comprising a state. Such state-
ments are meaningless when a state contains a superposition
of different particle numbers. Therefore, we permit our-
selves only to describe states of definite total particle number
[71]—or probabilistic mixtures of such states [9,35].
Mathematically, this is described by a particle-number
superselection rule (SSR), which forces any state ρ under
consideration to be block diagonal with respect to the total
number operator N̂, also expressed as ½ρ; N̂� ¼ 0. (We
distinguish between the operator N̂ and its eigenvalues
N.) Similarly, all considered operations E (i.e., completely
positivemaps on the set of states)must respect the SSR. This
is ensured by taking only covariant operations, defined by
commutation ½E;Uθ� ¼ 0 with the phase rotation channel

UθðρÞ ¼ e−iθN̂ρeiθN̂ for all θ [56]. Equivalently, covariant
operations can be performed via a dilation involving an
initially number-diagonal (ND) environment and a global
particle-number-conserving unitary interaction [72].
Any state of definite particle number N ¼ P

i ni can be
written in the first quantized picture, where each particle
has an internal state in the single-particle space H1 of
dimension m (so that there is 1 degree of freedom for each
mode). The overall state then lies in the symmetric sub-
space of the N-system space, denoted byHN ¼ S½H⊗N

1 �. A
general mixture of particle numbers ρ ¼ P

N pNρ
ðNÞ can be

described as being a state on S½H⊗N
1 � with probability pN.

Where necessary, we distinguish between the first- and
second-quantized forms of a pure state using the notation
jψi• and jψi, respectively, and similarly ρ• and ρ for a
mixed state.

III. PE AS A RESOURCE

A resource theory is defined by two components: the set
of free states S, which possess no resource, and the set of
free operations O, which do not add any new resource into
the system. (One also tends to think of free operations as
possible to perform without any resource, although this
interpretation is not always clear.)
The set of free states for PE is straightforward to define.

For fixed particle number N, they must be nonentangled
(separable) states in the first-quantized picture. Because of
symmetry, a pure N-particle free state is thus of the form
jΨi• ¼ jψi⊗N , also known as a coherent spin state [44,73].
In second-quantized form, we have jΨi ∝ ðc†ψÞN j0i, where
c†ψ ¼ P

i ψ ia
†
i creates a single particle in an arbitrary mode

ψ . A mixed N-particle free state is by definition symmetric
and separable—it turns out (see the Appendix A) that this is
equivalent to the form

ρ• ¼
X
i

λijψ iihψ ij⊗N; λi ≥ 0;
X
i

λi ¼ 1: ð2Þ

Then the full set of free states—which we name particle
separable—consists of those ρ ¼ P

N pNρ
ðNÞ such that

each of these components in the first-quantized picture
is of the form (2).
We may then choose as free operations any set that

preserves particle separability. This is required in order to
ensure a consistent notion of a resource. There is often
tension between the desire for mathematical generality of
these operations and wanting them to have a known
physical implementation. In our approach, we do not take
the largest set of quantum operations preserving particle
separability, but instead construct a physically transparent
set from elementary types of operations. We prove that each
of these elements is as general as possible.
In the spirit of the Stinespring dilation for quantum

operations [74], we construct our free operations out of
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three basic steps: (i) appending ancilliary modes, (ii) global
unitary operations, and (iii) projective measurements. We
investigate each of these in turn.

(i) Appending ancilliary modes.—In mathematical
terms, the action of appending to a state ρ another
set of modes in a fixed state σ means ρ → ρ ⊗ σ in
second quantization. In order to consider this a free
operation, we restrict σ ∈ S. In most resource
theories this operation would preserve the set of
free states [75]. However, the present theory is
unusual in that this generally fails—the simplest
example is appending the single-particle state j1i to
another copy of itself, as j1; 1i≡ j1ij1i is not
particle separable. The reason for this is that
appending particles in new modes requires symmet-
rization in the first quantized picture, which creates
PE. As we show in Appendix B, the only ancilliary
state σ that guarantees preservation of free states is
the vacuum.

(ii) Unitaries.—The covariance condition for unitaries
means that they preserve particle number: ½U; N̂� ¼ 0.
Consider first the component UðNÞ acting on the N-
particle subspace. We see thatUðNÞ preserves S if and
only if it has the first-quantized action UðNÞ•jψi⊗N ¼
jϕi⊗N for every jψi ∈ H1, where jϕi can depend on
jψi. Perhaps unsurprisingly, this is equivalent to
UðNÞ• ¼ u⊗N for any single-particle unitary u,
although the argument is not immediate and invokes
Wigner’s theorem on inner-product-preserving trans-
formations [76] (see Appendix C). In principle, this u
could be different for each number N—however, the
introduction of number measurements below implies
that we lose no generality by taking a fixed u.
Such unitaries have a simple second-quantized
description via their action on ladder operators:
U†a†i U ¼ P

j uija
†
j , where uij are the elements of

a unitary matrix. They describe single-particle rota-
tions without interaction, acting identically on all
particles, and correspond to passive linear operations
in optics, which are easily generated by beam splitters
and phase shifters [77].

(iii) Projective measurements.—A projective measure-
ment is given by a set of projectors Πi which are
orthogonal and complete:ΠiΠj ¼ δi;jΠi;

P
iΠi ¼ 1.

As for unitary operations, these must adhere to the
SSR, ½Πi; N̂� ¼ 0, and preserve the set of particle-

separable states, Π•ðNÞ
i jψi⊗N ∝ jϕi⊗N . However, we

find that these conditions are only met by a measure-
ment of total particle number (see Appendix D). In
order to enlarge the set of availablemeasurements, we
allow destructive measurements, in which the mea-
sured modes are subsequently discarded. In Appen-
dix D we demonstrate that this relaxation allows any
measurement adhering to the SSR to be performed on
the system without introducing PE. Such destructive

measurements correspond to the majority of exper-
imental photon- and atom-counting techniques.

The setO of particle-separable operations is defined as all
possible protocols which result from combinations of the
above elements, including possible conditioning of future
operations on the results of measurement outcomes. We also
allow for the use of classical randomness and coarse graining
—i.e., forgetting measurement outcomes. Mathematically,
an element in O is represented as a quantum instrument,
which is a set of completely positive maps Ei, where each i
labels a single (possibly coarse-grained) measurement out-
come and the sum

P
i Ei is deterministic (trace preserving).

Note that an instrument can equivalently be represented as a
deterministic channel, F ðρÞ ¼ P

i EiðρÞ ⊗ jiihijX, where
the outcome is stored in a classical system X [78].
With this structure in place, we can now move naturally

to define measures MPE of PE. As is standard in quantum
resource theories [75], we require that any measure of PE
fulfills the following three conditions. Condition (i): It must
not detect PE when there is none, meaningMPEðρÞ ¼ 0 for
all ρ ∈ S (and optionally the converse may be required).
Condition (ii): MPE must be a monotone, i.e., cannot
increase under the action of any particle-separable oper-
ation. This reflects the idea that particle-separable oper-
ations cannot inject additional PE into the system.
Monotonicity can be stated either deterministically,
MPEðρÞ ≥ MPEðE½ρ�Þ for any channel E ∈ O, or probabil-
istically, MPEðρÞ ≥

P
i piMPEðρiÞ for an instrument fEig

in O with outcomes piρi ¼ EiðρÞ. Condition (iii): Con-
vexity, i.e., being nonincreasing under probabilistically
mixing different states,

P
i piMPEðρiÞ ≥ MPEð

P
i piρiÞ.

A straightforward class of PE measures is given by the
minimal distance between a state and the set of particle-
separable states:

MD
PEðρÞ ≔ min

σ∈S
Dðρ; σÞ; ð3Þ

where D is any suitable measure of distinguishability
between two quantum states. Conditions (i) and (iii) and
the deterministic version of (ii) are met whenever D is
contractive under quantum channels [so that D(EðρÞ;
EðσÞ) ≤ Dðρ; σÞ for any channel E] and jointly convex
in its arguments; other properties may guarantee ensemble
monotonicity (ii) (see Appendix E and Ref. [75]).

IV. QUANTIFYING METROLOGICAL
POWER OF PE

Now that we have determined the set of protocols under
which PE may abstractly be considered a resource, we are
in a position to demonstrate concrete tasks in which it is
useful. In this section, we use our resource theory to
demonstrate a quantitative connection between PE and
quantum metrology. A typical metrological setting involves
a parameter θ encoded into a system, such that the
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experimenter is given one of a parametrized family of states
ρθ, and the task is to estimate θ via measurements. Here, we
focus on the case of unitary encoding, whereby an initial
state ρ evolves under a given Hamiltonian H, so that
ρθ ¼ e−iθHρeiθH. An important figure of merit is the quan-
tum Fisher information, F ðρ; HÞ ≔ −4∂2

θfidðρ; ρθÞjθ¼0,
where fidðρ; σÞ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
is the fidelity between two

states. The QFI can be thought of as a measure of speed of
evolution for ρθ under the dynamics generated by H. Its
importance for metrology is given by the (quantum) Cramér-
Rao bound, which says that the uncertaintyΔθ in estimating
θ is lower bounded by ðΔθÞ2 ≥ 1=½nF ðρ; HÞ� with n copies
of ρθ provided [79].
PE is known to be a necessary resource for quantum-

enhanced metrology [43,44]. For N qubits, one can define
total spin components Sα ≔

P
N
i¼1 σ

α
i =

ffiffiffiffi
N

p
; α ¼ x, y, z,

where σαi is a Pauli matrix acting on the ith particle; the
spin in any direction n ¼ ðnx; ny; nzÞ, with jnj ¼ 1, is
denoted as n · S. Then, for any particle-separable state,
we have F ðρ; n · SÞ ≤ 1 [52,53]. Exceeding this bound
witnesses PE, with the maximum possible QFI being N. A
tighter bound, applicable to any Hamiltonian of the form
H ¼ P

N
i¼1 hi=

ffiffiffiffi
N

p
, was more recently proven [80]:

ρ ∈ S ⇒ F ðρ; HÞ ≤ 4
XN
i¼1

V
�
ρ;

hiffiffiffiffi
N

p
�

¼ 4Vðρ; h1Þ: ð4Þ

Based on this inequality, we define the following quantity
as the amount by which the QFI exceeds the limit for
particle-separable states:

MF
PEðρÞ ≔ max

h∶khk¼1
½F ðρ; HÞ − 4Vðρ; hÞ�þ; ð5Þ

where H ¼ ⨁NH
ðNÞ; HðNÞ• ¼ P

N
i¼1 hi=

ffiffiffiffi
N

p
, ½x�þ ¼

maxfx; 0g denotes the positive part of x, and the maximi-
zation is performed over all single-particle observables h
with unit operator norm. The expectation value of a
single-particle operator h in a number-varying state ρ ¼P

N pNρ
ðNÞ is defined as

hhiρ ≔
X
N

pNTr½ρðNÞ•h1� ¼
X
N

pN
1

N
Tr

�
ρðNÞ•XN

i¼1

hi

�
; ð6Þ

so that Vðρ; hÞ ≔ hh2iρ − hhi2ρ.
We can also extend the measure to include settings where

one recordsmeasurement outcomes in a classicalmemoryM.
In this case, a state is in “quantum-classical” form
ρSM ¼ P

m pmρSjm ⊗ jmihmjM, wherepm is the probability
of outcomem, ρSjm the corresponding conditional state of the
system S, and the states fjmig form an orthonormal basis for
the memory M. For such a state, the observable h is
understood to only act on S and not on the memory M, i.e.,

MF
PEðρSMÞ ≔ max

hS∶khSk¼1
½F ðρSM;HSÞ − 4VðρSM; hSÞ�þ: ð7Þ

As a consequence of this definition, the QFI part can be
expressed as an average over measurement outcomes,P

m pmF ðρSjm;HSÞ, while the variance part is calculated
for the whole ensemble ρSM.
Remarkably, we find that MF

PE is not only a witness of
PE, but also a monotone under particle-separable oper-
ations (without feed forward).
Theorem 1.—MF

PE is convex and satisfies MF
PEðρÞ ¼

0 ∀ ρ ∈ S. Moreover, let ES→SM ∈ O contain a single
measurement round, such that no conditional operations
are performed after the measurement. We may write
ES→SMðρSÞ ¼

P
m EmðρSÞ ⊗ jmihmjM, where Em is the

operation applied to ρS conditioned on outcome m. Then

MF
PEðρSÞ ≥ MF

PEðES→SM½ρ�Þ: ð8Þ

The proof is presented in Appendix F. Note that MF
PE

may vanish for some particle-entangled states—however,
for pure states, it does faithfully detect PE [80]. The
monotonicity result demonstrates that, beyond being a
witness, MF

PE captures the ordering of particle-entangled
states under the free operations in the resource theory
developed in this paper. From a practical perspective, this
shows the limitations on particle-separable operations for
enhancing the utility of a state for metrology, and ultimately
provides an original and operationally motivated tool to
quantify PE by means of its metrological value, in addition
to the distance-based measures presented earlier.
A simplification is possible in the special case of two

modes (i.e., when the particles are qubits). Given khk ¼ 1,
without loss of generality we can write h ¼ j0ih0j þ
λj1ih1j in some basis, where jλj ≤ 1. Since the QFI and
variance are invariant under constant shifts of the observ-
able, we can shift h to h − ½ð1þ λÞ=2�I ¼ ½ð1 − λÞ=2�σz,
thus getting

½F ðρ; HÞ − 4Vðρ; hÞ�þ ¼
�
1 − λ

2

�
2

½F ðρ; ZÞ − 4Vðρ; σzÞ�þ

≤ ½F ðρ; ZÞ − 4Vðρ; σzÞ�þ; ð9Þ

where ZðNÞ• ¼ P
N
i¼1 σ

z
i =

ffiffiffiffi
N

p
. Equality is obtained for

λ ¼ −1, i.e., h ¼ σz. Hence, in this case, the only remain-
ing degree of freedom is the eigenbasis of h, which can be
translated into a spin direction n:

dimH1¼ 2⇒MF
PEðρÞ¼ max

n∶jnj¼1
½F ðρ;n ·SÞ−4Vðρ;n ·σÞ�þ:

ð10Þ

Note how, in addition to generalizing (and tightening)
the QFI witnesses proposed in Refs. [52,53], our measure
MF

PE differentiates itself by explicitly including the variance
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of the single-particle observable, rather than being used to
bound the measure. The importance of its inclusion is
apparent in the proof of Theorem 1, specifically in order
to show that MF

PE is invariant under the addition of vacuum
modes. When new modes are included, the set of possible h
observables increases, allowing for a greater possible QFI—
we may have maxh0F ðρS ⊗ j0ih0jA;H0Þ > maxhF ðρS; HÞ.
The variance component nontrivially compensates for this
effect.

V. ACTIVATING PE

Here, we describe another important task for which the
utility of PE as a resource is manifest. The original seeds of
the activation protocol that we analyze here are in work by
Yurke and Stoler, who noted that two particles produced
from separated, independent sources can in fact be used to
violate a Bell inequality [54]. The protocol that we present
is a direct application of our resource-theoretic formulation
and constitutes a full generalization of [41].
Consider two separated parties, A and B, that want to

perform some joint quantum information protocol but are
constrained to classical communication and additionally
lack a shared phase reference (conjugate to the number
observable N̂A or N̂B). A phase reference would be
provided by a shared state containing coherence with
respect to the local number observable N̂A (or N̂B). In
optics, a typical example is a laser coherently split into
modes held by each party, maintaining a fixed phase
relationship. The analog in cold atoms is a coherently
distributed BEC. Extensive discussions of the relationship
between SSRs and phase references can be found in
Refs. [9,56].
While each party may be unconstrained in their local

operations, without sharing a phase reference, the amount
of entanglement accessible to them is reduced by the
application of an effective local SSR [56]. This SSR
corresponds to both local particle numbers N̂A and N̂B.
A third party C is tasked with providing A and B with a
shared entangled state that they can use. To accomplish
this, C has an initial resource state ρC of m modes and can
process it using any particle-separable operation E before
distributing mA and mB modes to each of A and B. (Recall
that the operation E may introduce new vacuum modes and
trace out some modes; see Fig. 1.) The question is then,
how much useful entanglement can be extracted in this way
from ρC?
Let σAB ¼ EðρCÞ be the output state sent to A and B,

where E ∈ O is the distribution operation performed by C.
(Without loss of generality, using classical flags, we can
take this to be deterministic.) Because of the local SSR,
from the perspective of A and B, this state is operationally
as useful as the state ΦA ⊗ ΦBðσABÞ [81], where ΦS is
the dephasing channel local to subsystem S, removing

quantum coherences between states of differing local
number N̂S [82].
For any measure E of bipartite entanglement, we can

then define the corresponding measure of entanglement
accessible to A and B [56]:

ESSRðσABÞ ≔ E½ΦA ⊗ ΦBðσABÞ� ≤ EðσABÞ: ð11Þ

We say that a state σAB is SSR separable whenever it
has vanishing accessible entanglement—i.e., when ΦA⊗
ΦBðσABÞ is separable—and SSR entangled otherwise. The
inequality in Eq. (11) follows from the fact thatΦA ⊗ ΦB is
a local operation—the local SSR generally reduces the
amount of accessible entanglement. The aspect of the
entanglement in σAB that is inaccessible, sometimes
referred to as “fluffy bunny entanglement” [83], is con-
nected with superpositions of local number. Note that
Wiseman and Vaccaro [35] proposed the same class of
measures (11) and found such SSR entanglement to require
nonzero PE in the case of two particles.
We prove that PE in the initial state ρC is precisely

the resource enabling the distribution of SSR entanglement.
Our first result is that the mapping between the two
types of entanglement is faithful, in that SSR entanglement
can be extracted exactly when there is nonzero PE (see
Appendix H for the proof).

FIG. 1. (a) Conversion protocol between PE and SSR entangle-
ment via the quantum operation E ∈ O. The operation E converts a
system of identical particles with PE into a bipartite state, whose
SSR entanglement can be extracted and utilized in quantum
information tasks. The above diagram depicts the transformation

j2; 2iC !E∈O ðj1; 1iAj1; 1iB þ j2; 0iAj0; 2iB þ j0; 2iAj2; 0iBÞ, hav-
ing postselected NA ¼ NB ¼ 2. (b) An example of a particle-
separable operation is the action of a beam splitter (BS) with
a vacuum, which can be used to activate the PE present in the
state ρC.
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Theorem 2.—There exists an activation operation
EC→AB ∈ O creating an SSR-entangled state σAB from
ρC if and only if ρC ∉ S.
Moreover, almost any operation of the following type is

sufficient to activate PE into nonzero SSR entanglement:
for each mode i in C, attach a new mode in the vacuum
state, and perform a global passive-linear unitary coupling
the modes [as in Fig. 1(b)]. We say “almost all” because the
unitary must not be trivial by failing to couple some of the
modes. Reference [41] examined activation for a specific
class of unitary interactions, namely a set of beam splitters
with identical transmission coefficients. However, we see
that a much more general statement is possible, expanding
the scope to all particle-separable operations.
Beyond the faithful mapping between nonzero resources,

we now quantitatively relate the input and output forms of
entanglement. One approach uses measures of both PE and
SSR entanglement constructed in the same way. Recall the
distance-based measure of PEMD

PE; by the same recipe, one
can construct a measure of SSR entanglement (see
Appendix H):

ED
SSRðρABÞ ¼ EDðΦA ⊗ ΦB½ρAB�Þ

≔ min
σAB∈sep

DðΦA ⊗ ΦB½ρAB�; σABÞ: ð12Þ

As shown in Appendix G, when ρ respects the local SSR,
the minimization can be equivalently performed over the
smaller set of σAB being separable and respecting the local
SSR. Using this, we have the following theorem.
Theorem 3.—For any activation EC→AB ∈ O;

ED
SSRðEC→AB½ρC�Þ ≤ MD

PEðρCÞ.
This shows that the amount of accessible entanglement

extracted never exceeds the initial amount of PE. Note,
however, a subtlety: in general, this inequality is strict
(apart from when both sides are zero), due to a necessary
reduction in entanglement after applying the dephasing
operation ΦA ⊗ ΦB and removing the fluffy bunny
entanglement.
Alternatively, we can take any measure of SSR entan-

glement and use it to construct a new measure of PE. This is
given by the maximal amount of SSR entanglement which
can be created from a certain initial state.
Theorem 4.—For any (convex) entanglement measure E,

the quantity defined as

ME
PEðρÞ ≔ sup

EC→AB∈O
ESSRðEC→AB½ρC�Þ ð13Þ

is a (convex) measure of PE.
In other words, for any entanglement measure E, the

corresponding quantity ME
PE satisfies criteria (i)–(iii).

Theorem 4 gives a precise quantitative version of the
statement that PE is the resource for producing SSR
entanglement.

VI. EXPERIMENTALLY MEASURING PE

In this section, we demonstrate that our resource theory
for describing PE and its activation encompasses recent
experimental investigations [61–63] converting PE into
useful mode entanglement. This enables us to promptly
analyze the experimental data from Ref. [61] in order to
extract a lower bound to a measure of PE. To the best of our
knowledge, this constitutes the first instance of quantitative
estimation of PE in an experiment.
The experimental method is as follows; see Ref. [61] for

more details. The BEC is initialized in a spin-squeezed
state, which possesses PE. The BEC is then released from
its trap and allowed to expand, and the spin components of
the two spatially separated regions are measured. During
the expansion, the effect of interactions between atoms on
their spin state is negligible such that this step can be
regarded as a beam-splitter operation and hence falls within
our set of particle-separable operations [84]. Furthermore
the measurement of spin components of the spatially
separated regions adheres to the local SSR [86]. The
correlations between the two spatial regions are held in
the spin components of the condensate atoms. In particular,
the z component of the spin in regions A, B is defined as

ŜðA;BÞz ≔ ð1=2ηðA;BÞeff ÞðN̂ðA;BÞ
1 − N̂ðA;BÞ

2 Þ, where 1,2 corre-
spond to the internal degree of freedom of the atom and

ηðA;BÞeff accounts for finite spatial resolution in the detection

of the BEC. Other spin components, e.g., ŜðA;BÞx and ŜðA;BÞy ,
can be measured by applying appropriate spin rotations
before detection, these local rotations also being allowed
within SSR constraints.
In Ref. [61] the authors showed how these local spin

measurements can violate the inequality [87]

4VðgzŜAz þ ŜBz ÞVðgyŜAy þ ŜBy Þ
ðjgzgyjjhŜAx ij þ jhŜBx ijÞ2

≥ 1; ð14Þ

in terms of variances and average values of spin observ-
ables. The condition (14) is satisfied by all separable states
and for any real constants gy;z, therefore certifying entan-
glement between system A and B whenever a violation is
measured.
In Appendix I, we linearize Eq. (14) and use Theorem 4

to derive a lower bound on a measure of PE:

MTr
PEðρÞ ≥

−1
N

½VðgzŜAz þ ŜBz Þρ þ VðgyŜAy þ ŜBy Þρ
−hjgzgyjŜAx þ ŜBx iρ�;

N ≔
1

4

�jgzjNA
1

ηAeff
þ NB

1

ηBeff

�
2

þ 1

4

�jgyjNA
1

ηAeff
þ NB

1

ηBeff

�
2

þ
�jgzgyjNA

1

ηAeff
þ NB

1

ηBeff

�
; ð15Þ
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where MTr
PE is defined according to Eq. (3) with the trace

distanceDTrðρ; σÞ ≔ 1
2
Trjρ − σj. We show an evaluation of

this bound using experimental results in Fig. 2. The
parameters gy;z are optimized numerically so that the
left-hand side of Eq. (14) is minimized, as this expression
is more robust than Eq. (15) against experimental noise.
This plot clearly shows a positive amount of PE has been
activated from a spin-squeezed BEC and none from a
coherent spin BEC state, as predicted from our theory.
The case study presented in this section reveals how our

resource-theoretic characterization of PE unlocks useful
quantitative tools that can be readily employed by the cold
atoms community to benchmark present and future experi-
ments, including demonstrations of entanglement produc-
tion and manipulation, sensing and metrology tasks, and
other quantum technology protocols empowered by PE.

VII. CONNECTIONS TO NONCLASSICALITY

While coherent spin states are considered classical in
cold atoms settings with fixed particle number, continuous-
variable coherent states in quantum optics provide the
model of classical light. Nonclassical states display features
such as photon antibunching, sub-Poissonian statistics, and
squeezing [88], and form the basis of many quantum
technological applications [66]. As has been recently
appreciated [67,69,70], nonclassicality can also be quanti-
fied with its own resource theory. In this section, we
demonstrate some remarkable connections between the
resources theories for PE and nonclassicality.

Recall that a single-mode coherent state jαi is an
eigenstate of the annihilation operator, ajαi ¼ αjαi, and
a multimode coherent state may be written as
jαi ≔ jα1i…jαmi, where α ¼ ðα1;…; αmÞ ∈ Cm. A state
is called classical if it can be written as a probabilistic
mixture of coherent states:

ρ ¼
Z

d2mαPðαÞjαihαj; PðαÞ ≥ 0: ð16Þ

Because of the SSR employed here, we restrict to number-
diagonal classical states; i.e., those satisfying ½ρ; N̂� ¼ 0.
The operationally motivated free operations for non-

classicality, presented in Ref. [69], are very close to
particle-separable operations. The only differences are that
(i) rather than only the vacuum, any classical state may be
prepared for free in a new mode, and (ii) nondestructive
measurements of total particle number can create non-
classicality. Moreover, there is an entirely analogous
protocol activating nonclassicality into mode entanglement
[89–91] (which in fact extends to more general notions of
nonclassicality [92]). Whereas PE can be activated under
particle-separable operations into SSR entanglement, non-
classicality activates into entanglement accessible without
local SSR constraints—equivalently, entanglement which
can be accessed when a shared phase reference is available.
This observation immediately implies a relation between

the free states of the two resource theories: all ND classical
states are particle separable. This follows from the fact that
a classical state is always activated onto a separable state,

FIG. 2. Based on the measurements [61] we are able to extract the lower bound given by the right-hand side of Eq. (15) on the PE
measure MTr

PE. The two sets of points correspond to initializing the BEC either in a spin-squeezed state (green), where particle
entanglement is present, or in a coherent spin state (orange), which is particle separable. Along the horizontal axis we vary the relative
size of the two regions A and B from which we extract the spin values as explained in Ref. [61]. In the experiment, technical limitations
in the resolution of assigning the atomic spins to the regions can lead to classical correlations, resulting in apparent entanglement. We
give an upper bound for these correlations as the blue dashed line. For intermediate splitting ratios we find significant entanglement in
the case of the spin-squeezed state while the coherent spin state remains compatible with no particle entanglement within experimental
error. On the right we show single-shot absorption images of the atomic densities for the two internal degrees of freedom, with an
example of regions A and B used to define the collective spins ŜA and ŜB entering in Eq. (15).
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which is always also SSR separable, implying via Theorem2
that the input is particle separable. In fact, this can be shown
by a more direct argument, with details in Appendix J.
Essentially, any multimode coherent state jαi can be
regarded as a single-mode state—for any choice of mode
decomposition, there is always a passive linear unitary U
such that Ujαi ¼ jᾱij0…0i, where jᾱj2 ¼ P

m
i¼1 jαij2. So

any classical state is a probabilisticmixture of terms inwhich
all particles occupy the same mode.
Evidently, ND classical states form a strict subset of

particle-separable states. Consequently, we may say that
nonclassicality is lower bounded by PE in the sense that, for
any distance measure of nonclassicalityMD

NC constructed in
the manner of Eq. (3), the inequality MD

NC ≥ MD
PE holds.

What distinguishes the two sets of free states? As noted
earlier, a striking property of PE is that multiple copies of a
free state ρ do not in general jointly form a free state.
Viewed through the activation protocol, this is equivalent to
saying that two copies of an SSR-separable state may be
SSR entangled. This is possible because of the way the SSR
behaves for multiple copies of a system [11,36]. If A and B
share two pairs of entangled systems, ðA1; B1Þ and
ðA2; B2Þ, then the particle number local to A is N̂A ¼
N̂A1

þ N̂A2
and similarly for B. The local SSR is applied by

ΦA ⊗ ΦB ≠ ΦA1
⊗ ΦA2

⊗ ΦB1
⊗ ΦB2

. The lack of fac-
torization is due to degeneracy in the eigenvalues of
N̂A; N̂B. For example, ðj0iAj1iB þ j1iAj0iBÞ=

ffiffiffi
2

p
is

entangled but SSR separable; the two copy state,

1

2
ðj0iAj1iBþj1iAj0iBÞ⊗2

¼ 1

2
ðj00iAj11iBþj01iAj10iBþj10iAj01iBþj11iAj00iBÞ;

ð17Þ

is SSR entangled thanks to correlations in the block
NA ¼ NB ¼ 1. This phenomenon is closely related to work
locking in quantum thermodynamics, whereby coherence
in one copy of a state is useless for work extraction but
becomes usable in two copies [93].
A tensor product of two classical states is always

classical; hence, multiple copies of a ND classical state
always have zero PE. Are these the only states with this
property? We first consider number-bounded states, those
for which the expansion

P
N pNρ

ðNÞ terminates at a finite
maximum. In this case, the resource content of two copies
is sufficient to distinguish the classical subset of particle-
separable states (note that all classical states apart from the
vacuum are necessarily unbounded in number).
Theorem 5.—Two copies ρ⊗2 of a number-bounded state

ρ are particle separable if and only if ρ is the vacuum.
(See the proof in Appendix J.) In the general unbounded

case, let us first take pseudopure states, by which we mean
those obtained by applying the SSR to a pure state:

ρ ¼ Φðjψihψ jÞ. It is known that in the limit k → ∞ of
many copies jψi⊗k of a pure entangled state, the SSR is
effectively lifted in that the full entanglement entropy is
distillable [36]. One may then argue from the activation
protocol as follows: a nonclassical state at the input results
in entanglement at the output; many copies of this state
must therefore result in a SSR-entangled state. Hence, any
nonclassical pseudopure state must fail to be particle
separable with sufficiently many copies. An even stronger
statement is in fact possible.
Theorem 6.—Two copies Φðjψihψ jÞ⊗2 of a pseudopure

state are particle separable if and only if jψi is classical.
Therefore we see that nonclassicality of any pseudopure

state, even if particle separable, can always be unlocked
into nonzero PE by taking only two copies.
Finally, we prove the strongest possible connection

between particle-separable and classical states, which
concerns the case of arbitrarily many copies. The only
assumption here is of a finite mean particle number [and, as
usual, ρ ¼ ΦðρÞ].
Theorem 7.—Let ρ have finite mean particle number,

Tr½ρN̂� < ∞, and suppose that ρ⊗k is particle separable for
some k. Then the trace-distance nonclassicality of ρ is
bounded by

MTr
NCðρÞ ≤

1

k
: ð18Þ

Consequently, ρ⊗k is particle separable for all k if and only
if ρ is classical.
The importance of this result is the realization that every

(finite mean number) nonclassical state has the potential to
contain particle entanglement, and thus all of the associated
resource value, once sufficiently many copies are taken.
The proof (in Appendix J) follows from a novel de Finetti–
type theorem, which may be of independent interest.

VIII. DISCUSSION

We have shown that entanglement between identical
particles, despite its seemingly fictitious nature, is
described by a consistent resource theory whose free
operations are implementable in a wide range of physical
systems. Far from just an abstract quantity, this particle
entanglement can be quantified by virtue of the advantage it
yields for quantum metrology, and can be activated, via the
same types of free operations, into directly accessible mode
entanglement. This occurs in a setting where phase refer-
ences are not easily shared between separated parties,
enforcing a local SSR.
While we have found the most general form that such an

activation may take, some important questions remain
open. Theorem 4 expresses the maximum activated SSR
entanglement from a given state as a measure of PE—
however, because of our construction we can raise the
following question: What is the optimal operation to
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activate this entanglement? This may depend on the
measure being employed, but it is plausible that such an
optimal operation should be unitary; Lemma 5 in
Appendix H proves a simplification from the full space
of passive linear unitaries down to only one real parameter
per mode, making the optimization feasible.
Our formulation reveals PE as fundamentally connected

not only to entanglement under SSRs, but also to continu-
ous variable nonclassicality. In particular, we have shown
that SSR-compliant classical states possess no PE.
Consequently, PE is a stronger (rarer) resource than non-
classicality. Nevertheless, by utilizing multiple copies of a
state, one may unlock its nonclassicality into PE. This
unlocking is possible with two copies of any pure non-
classical state; in general, nonclassicality always results in
PE after taking sufficiently many copies. Hence, in a sense,
nonclassicality emerges as a many-copy limit of PE. It is
worth exploring other quantitative ways in which this limit
may manifest itself.
It is also worth noting some similarity with other

resource theories. For instance, the structure of particle-
separable operations bears some resemblance to “strictly
incoherent operations,” a set of free operations for quantum
coherence [94]. Without measurements, particle-separable
operations coincide with the zero-temperature limit of a
recent treatment of continuous-variable thermodynamics
[95] (see also the related approach [96]). One could
therefore explore thermodynamical consequences of PE
in future work.
Finally, we would like to motivate the wider theoretical

and experimental applicability of our framework for PE. In
addition to describing the metrological power and the
activation of entanglement from a BEC, the framework
applies to any system of identical bosons, opening up the
possibility of investigating PE beyond BECs and optics, to
other condensed matter systems in which entanglement is
of interest, such as superfluid helium [97].
A study of PE in fermionic systems could also be

pursued, as this would have additional relevance for
condensed matter. However, there are significant
differences with the bosonic case. For instance, in the
fermionic counterpart of the resource theory reported here,
the free states, being both antisymmetric and particle
separable, would be just the single-particle and vacuum
states.
It is hoped that the results presented here will stimulate

further theoretical and experimental studies, across the
communities of quantum information, quantum optics, and
condensed matter, in order to gain valuable insight into
genuinely quantum properties of identical particles and
their technological applications.
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APPENDIX A: FORM OF FREE STATES

Here we show that every particle-separable state of N
particles is of the first-quantized form:

ρ• ¼
X
i

λijψ iihψ ij⊗N; λi ≥ 0: ðA1Þ

By assumption, ρ• is separable, so we can write
ρ• ¼ P

i λi ⊗N
k¼1 jψk

i ihψk
i j. Since

⨂
N

k¼1

jψk
i i ∈ suppρ• ⊆ HN; ðA2Þ

each term ⊗N
k¼1 jψk

i i is in the symmetric subspace. It
follows from this symmetry that all jψk

i i are the same
for a given i.

APPENDIX B: APPENDING FREE STATES

Theorem 8.—The operation EðρÞ ¼ ρ ⊗ σ, which
appends a fixed state σ in a new set of m modes, preserves
the set of free states if and only if σ ¼ j0ih0j.
Proof.—It is sufficient to let ρ be the simplest free

state, a single particle in a single mode: ρ ¼ j1ih1j:σ ¼P
N pNσ

ðNÞ is arbitrary and may have unbounded particle
number. Then

ρ ⊗ σ ¼
X
N

pN j1ih1j ⊗ σðNÞ: ðB1Þ

The (N þ 1)-particle component of this state is
j1ih1j ⊗ σðNÞ. In order to be particle separable, it must
be possible to express as

j1ih1j ⊗ σðNÞ ¼
X
i

λiUijN þ 1; 0;…ih1jU†
i ; ðB2Þ

in terms of some set of mþ 1 modes, with λi ≥ 0 and the
Ui being free unitaries. The left-hand side has exactly one
particle in the first mode and N in the remainder, so the
same must be true of every term on the right-hand side.
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So for each i, UijN þ 1; 0;…i ¼ j1ijψ ii, which is impos-
sible unless N ¼ 0. To see this, note that we can write

UijN þ 1; 0;…i ∝ ða†1 þ b†i ÞNþ1j0i; ðB3Þ

where bi is some linear combination of annihilation
operators on the rightmostN modes. Expanding the bracket
ða†1 þ b†i ÞNþ1, we can never have a single term linear in a†1
unless N ¼ 0.
Therefore, pN ¼ 0 for N ≥ 0, so σ ¼ j0ih0j. Conversely,

it is trivially seen that appending vacuum modes always
preserves the set of free states. ▪

APPENDIX C: FREE UNITARIES

Here, we work with states of N particles and always in
the first-quantized picture, so we drop the additional
notation for convenience.
Theorem 9.—A unitary U on HN maps free states into

free states if and only if U ¼ u⊗N .
Proof.—Note that we only specify the restriction of U to

HN rather than the “full” Hilbert spaceH⊗N
1 . For example,

permutations between particles are not of the given form
but have trivial action on the symmetric subspace.
By assumption, for any jΨi ¼ jψi⊗N, we have UjΨi ¼

jΦðΨÞi ≔ jϕðψÞi⊗N . Taking an inner product for two
arbitrary ψ ;ψ 0:

hΨ0jΨi ¼ hΦðΨ0ÞjΦðΨÞi ⇒ hψ 0jψiN ¼ hϕðψ 0ÞjϕðψÞiN:
ðC1Þ

The Nth root of this gives

hϕðψ 0ÞjϕðψÞi ¼ hψ 0jψie2πinðψ ;ψ 0Þ=N;

nðψ ;ψ 0Þ ∈ f0; 1;…; N − 1g: ðC2Þ

Both sides of this equation must be continuous in ψ ;ψ 0. But
nðψ ;ψ 0Þ is a continuous integer-valued function, so must be
constant. In particular, nðψ ;ψÞ ¼ 0, so we conclude
that n≡ 0.
By Wigner’s theorem [76], any transformation of states

that preserves the inner product must be unitary. Therefore
there exists unitary u such that jϕðψÞi ¼ ujψi ∀ ψ , which
proves the result. ▪

APPENDIX D: FREE MEASUREMENTS

As inAppendixC,we temporarily drop the first-quantized
notation. As a first step in the investigation of nondestructive
measurements, we need the following Lemma.
Lemma 1.—Let Π be a projector with support on the

symmetric subspace of N particles, i.e., Π ¼ PNΠPN ,

where PN projects onto HN . Then Π is nonentangling if
and only if there exists a projector π on H1 such that

Π ¼ PNπ
⊗NPN: ðD1Þ

Proof.—It is immediate that any Π of the form (D1)
preserves symmetric product states, so we need only prove
the converse. We start from the observation that for any
jψi ∈ H1 there is a (normalized) jϕi ∈ H1 such that
Πjψi⊗N ¼ cjϕi⊗N , where either c ¼ 0 or else c ≠ 0 and
jϕi⊗N ∈ suppΠ. If c ¼ 0 ∀ jψi, then Π ¼ 0, since states
of the form jψi⊗N span HN [98]. Otherwise, there must
exist some j0i such that j0i⊗N ∈ suppΠ.
If rankΠ ¼ 1, then Π ¼ j0ih0j⊗N and we are done. If

rankΠ > 1, then consider any jψi orthogonal to j0i. Again,
we must have Πjψi⊗N ¼ cjϕi⊗N . Note that

ch0jϕiN ¼ ch0j⊗N jϕi⊗N

¼ h0j⊗NðΠjψi⊗NÞ
¼ h0j⊗N jψi⊗N ¼ 0; ðD2Þ

having usedΠj0i⊗N ¼ j0i⊗N . So either c ¼ 0 or else c ≠ 0
and jϕi is orthogonal to j0i. Considering all jψi orthogonal
to j0i, it follows that either Πjψi⊗N ¼ 0 for all such jψi, or
else there exists j1i orthogonal to j0i, with j1i⊗N ∈ suppΠ.
Continuing this procedure, we are able to construct a

complete basis fjkig of H1 such that

jki⊗N ∈
�
suppΠ 0 ≤ k ≤ r − 1

kerΠ r ≤ k ≤ d − 1;
ðD3Þ

for some r.
Now take an arbitrary jψi ∈ H1, written in terms of the

chosen basis as jψi ¼ P
d−1
k¼0 ψkjki. Given the properties of

this basis, it follows that

hkj⊗NΠjψi⊗N ¼
� hkj⊗N jψi⊗N ¼ ψN

k 0 ≤ k ≤ r − 1

0 r ≤ k ≤ d − 1:

ðD4Þ

But since Π preserves product states, Πjψi⊗N ¼ jϕi⊗N

(where jϕi need not be normalized). Expressing
jϕi ¼ P

d−1
k¼0 ϕkjki, hkj⊗N jϕi⊗N ¼ ϕN

k , thus

ϕk ¼
�
ψke2πink=N 0 ≤ k ≤ r − 1

0 r ≤ k ≤ d − 1;
ðD5Þ

where nk ∈ f0;…; N − 1g. In principle, nk may be a
function of jψi; however, the continuity of the mapping
under Π ensures that nk is continuous and hence constant.
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Furthermore, since jϕi⊗N is invariant under this mapping,
we must have nk ≡ 0, so that ϕk ¼ ψk ∀ k ≤ r − 1.
The action of Π on an arbitrary product jψi⊗N is

therefore identical to the action of π⊗N , where

π ≔
Xr−1
k¼0

jkihkj: ðD6Þ

Again, since such product states span HN , this gives
Eq. (D1). ▪
Theorem 10.—Let fΠigki¼1 be a set of nonzero orthogo-

nal projectors onto subspaces of HN (where N > 1) such
that

P
k
i¼1Πi ¼ PN and each Πi preserves the set of

particle-separable states. Then k ¼ 1 and

Π1 ¼ PN: ðD7Þ

Proof.—From Lemma 1, there exist projectors πi such
that Πi ¼ PNπ

⊗N
i PN ∀ i. It follows from this that the

orthogonality relation ΠiΠj ¼ δi;jΠi implies πiπj ¼ δi;jπi.
Hence there exist orthogonal jψ ii such that jψ ii ∈ suppπi.
From these, we construct jψi ≔ ð1= ffiffiffi

k
p ÞPk

i¼1 jψ ii. The
action of Πi on jψi⊗N is

Πijψi⊗N ¼ ðπjψiÞ⊗N; ðD8Þ

from which the completeness relation gives

1 ¼
Xk
i¼1

hψ j⊗NΠijψi⊗N ¼
Xk
i¼1

hψ jπijψiN: ðD9Þ

Using the form of jψi, the right-hand side evaluates to

Xk
i¼1

hψ jπijψiN ¼
Xk
i¼1

�
1

k

�
N
¼ 1

kN−1 : ðD10Þ

Hence there is a contradiction unless k ¼ 1, which forces
the single projector to be Π1 ¼ PN . ▪
Theorem 10 says that any nondestructive free projective

measurement in the N-particle subspace must be trivial.
Extending this to measurements over the whole Fock space,
respecting the SSR, shows that only a measurement of the
number observable N̂ is permissible.
Theorem 11.—Any destructive measurement respecting

the SSR preserves the set of particle-separable states S.
Proof.—It is sufficient to prove this for a single projector.

Let the measurement be performed on mB modes of an
ðmA þmBÞ-mode system, having the action

ρAB → σA ¼ TrB½ð1A ⊗ ΠBÞρAB�; ðD11Þ

where ΠB is a projector such that ½ΠB; N̂B� ¼ 0. Any
particle-separable pure state has the form jψi ∝ ðc†ÞN j0i,

where c is a single-particle annihilation operator. Choosing
some orthogonal mode set faig, where i ¼ 1;…; mA for
the unmeasured modes and i ¼ mA þ 1;…; mA þmB for
the measured modes, we can write c ¼ aþ b, where a and
b are linear combinations of the unmeasured and measured
ai, respectively. Thus we can effectively treat jψi as a two-
mode state:

jψi ¼ ða† þ b†ÞN j0iAj0iB
¼

X
NA

rNA
jNAiAjN − NAiB; ðD12Þ

where the rNA
are coefficients.

Then the postmeasurement (unnormalized) state is

σA ¼ TrB

� X
NA;N0

A

rNA
r�N0

A
ð1A ⊗ ΠBÞjNAihN0

AjA

⊗ jN − NAihN − N0
AjB

�

¼
X
NA;N0

A

rNA
r�N0

A
hN − N0

AjBΠBjN − NAiBjNAihN0
AjA

¼
X
NA;N0

A

rNA
r�N0

A
sNA

δNA;N0
A
jNAihN0

AjA

¼
X
NA

jrNA
j2sNA

jNAihNAjA; ðD13Þ

where we have used the fact that ΠB is diagonal in particle
number, ½ΠB; N̂B� ¼ 0, to give hMjBΠBjNiB ¼ sNδN;M.
Hence σA ∈ S; the extension to mixed initial states ρA
follows by linearity. ▪

APPENDIX E: MEASURES OF PE

The following results are used to show that if D satisfies
a few straightforward properties, then the resulting measure
of PE can be expressed as an average over different particle
numbers. We write this in a more abstract form which
shows a generalization to arbitrary resource theories with a
block-diagonal structure.
Lemma 2.—Suppose a distance measure D satisfies
(1) (contractivity) D(EðρÞ; EðσÞ) ≤ Dðρ; σÞ under any

channel E;
(2) (joint convexity)DðPipiρi;

P
ipiσiÞ≤

P
ipiDðρi;σiÞ

for any sets of states ρi, σi and probabilities pi;
(3) (direct sum concavity) Dð⨁ipiρi;⨁iqiσiÞ ≥P

i piDðρi; σiÞ.
Then it also satisfies
(a) (direct sum linearity) Dð⨁ipiρi;⨁ipiσiÞ ¼P

i piDðρi; σiÞ;
(b) (ensemble contractivity)

P
i piDðρi; σiÞ ≤ Dðρ; σÞ,

where fEig is any quantum instrument, and EiðρÞ ¼
piρi; EiðσÞ ¼ qiσi.
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Proof.—To show (a),

X
i

piDðρi; σiÞ≤ð3ÞDð⨁
i
piρi;⨁

i
piσiÞ

¼ D

�X
i

piρi ⊗ jiihij;
X
i

piσi ⊗ jiihij
�

≤
ð2Þ

X
i

piDðρi ⊗ jiihij; σi ⊗ jiihijÞ

¼
ð1Þ

X
i

piDðρi; σiÞ;

where, in the last line, we have used the fact that adding and
removing an uncorrelated system are both reversible
channels which must therefore leave D unchanged. The
left- and right-hand sides are equal; thus the initial inequal-
ity must actually be an equality.
To show (b), we construct from the instrument a channel

EðρÞ ¼ P
i EiðρÞ ⊗ jiihij, so that

X
i

piDðρi; σiÞ≤ð3ÞDð⨁
i
piρi;⨁

i
qiσiÞ

¼ D

�X
i

piρi ⊗ jiihij;
X
i

qiσi ⊗ jiihij
�

¼ D(EðρÞ; EðσÞ)
≤
ð1Þ
Dðρ; σÞ:

▪
From this, we obtain the following.
Theorem 12.—Suppose that D satisfies properties (1)–

(3) listed in Lemma 2. Let F be any convex set of states,
and define

MDðρÞ ≔ min
σ∈F

Dðρ; σÞ: ðE1Þ

ThenMD is an ensemble monotone under instruments fEig
such that each Ei preserves the set F.
Furthermore, if F ¼ ⨁NFN , where each FN is a convex

set of states, then

MDð⨁
N
pNρ

ðNÞÞ ¼
X
N

pNMD
NðρðNÞÞ; ðE2Þ

whereMD
N is defined similarly to MD, but minimizing over

states in FN .
Proof.—For the first part,we take τ to be the closest state to

ρ in F. For any instrument fEig, let piρi ¼ EiðρÞ;
qiτi ¼ EiðτÞ. Then

MDðρÞ ¼ Dðρ; τÞ
≥
ðbÞ

X
i

piDðρi; τiÞ

≥
X
i

pimin
σi∈F

Dðρi; σiÞ

¼
X
i

piMDðρiÞ:

For the second part,

MDð⨁
N
pNρ

ðNÞÞ ¼ min
fqN;σðNÞ∈FNg

Dð⨁
N
pNρ

ðNÞ;⨁
N
qNσðNÞÞ

≥
ð3Þ

X
N

pN min
σðNÞ∈FN

DðρðNÞ; σðNÞÞ

≥
ð2Þ

min
fσðNÞ∈FNg

Dð⨁
N
pNρ

ðNÞ;⨁
N
pNσ

ðNÞÞ;

which shows that the closest state can be chosen to have
qN ¼ pN . Finally, we use (a). ▪
The relative entropy SðρjjσÞ ≔ Tr½ρ log ρ − ρ log σ� sat-

isfies all three assumptions of Lemma 2—in particular,
(3) follows from

Sð⨁
i
piρijj⨁

i
qiσiÞ ¼

X
i

piSðρijjσiÞ þHðfpigjjfqigÞ;

ðE3Þ

where the last term is the classical relative entropy (or
Kullback-Leibler divergence). Hence the relative entropy
measure of PE is

MRE
PE ðρÞ ¼

X
N

pNMRE
PE ðρðNÞÞ: ðE4Þ

The same property also holds for distances defined by
Schatten p-norms, Dpðρ; σÞ ¼ kρ − σkp [75].

APPENDIX F: MONOTONICITY OF
METROLOGICAL MEASURE

The proof of monotonicity of MF
PE makes use of the

following Lemma (which is to our knowledge novel).
Lemma 3.—Let Π be a projector such that Πρ ¼ ρ. Then

F ðρ; HÞ ¼ F ðρ;ΠHΠÞ þ 4Vðρ; HÞ − 4Vðρ;ΠHΠÞ: ðF1Þ

Proof.—Given the spectral decomposition, ρ ¼P
d−1
i¼0 λijiihij, we have λiΠjii ¼ Πρjii ¼ λijii, so Πjii ¼

jii∀ jii ∈ suppρ. Therefore we can write Π ¼ P
i<r jiihij,

such that λj ¼ 0 ∀ j ≥ r, where r ¼ rankΠ ≥ rankρ. It
follows [79] that
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F ðρ;HÞ ¼ 2
X
i;j

ðλi− λjÞ2
λiþ λj

jhijHjjij2

¼ 2
X
i;j<r

ðλi − λjÞ2
λiþ λj

jhijHjjij2

þ 4
X

i<r;j≥r

ðλi− 0Þ2
λiþ 0

jhijHjjij2

¼ 2
X
i;j<r

ðλi − λjÞ2
λiþ λj

jhijΠHΠjjij2

þ 4
X

i<r;j≥r

ðλi− 0Þ2
λiþ 0

jhijHjjij2

¼F ðρ;ΠHΠÞþ 4
X

i<r;j≥r
λihijHjjihjjHjii

¼F ðρ;ΠHΠÞþ 4
X
i<r

λihijH
�X

j≥r
jjihjj

�
Hjii

¼F ðρ;ΠHΠÞþ 4
X
i<r

λihijHðI−ΠÞHjii

¼F ðρ;ΠHΠÞþ 4TrðρH2Þ− 4TrðρHΠHÞ
¼F ðρ;ΠHΠÞþ 4TrðρH2Þ− 4Trðρ½ΠHΠ�2Þ
¼F ðρ;ΠHΠÞþ 4Vðρ;HÞ− 4Vðρ;ΠHΠÞ; ðF2Þ

where the last line uses TrðρΠHΠÞ ¼ TrðρHÞ. ▪
Theorem 1 (main text).—MF

PE is convex and satisfies
MF

PEðρÞ ¼ 0 ∀ ρ ∈ S. Moreover, let ES→SM ∈ O contain a
single measurement round, such that no conditional oper-
ations are performed after the measurement. We may write
ES→SMðρSÞ ¼

P
m EmðρSÞ ⊗ jmihmjM, where Em is the

operation applied to ρS conditioned on outcome m. Then

MF
PEðρSÞ ≥ MF

PEðES→SM½ρ�Þ: ðF3Þ

Proof.—Convexity of MF
PE follows from convexity of

both the QFI and the function ½·�þ, and concavity of the
variance:

MF
PE½pρþ ð1 − pÞσ� ≤ max

h
½pF ðρ; HÞ þ ð1 − pÞF ðσ; HÞ

−4pVðρ; hÞ − 4ð1 − pÞVðσ; hÞ�þ
≤ max

h
p½F ðρ; HÞ − 4Vðρ; hÞ�þ

þ ð1 − pÞ½F ðσ; HÞ − 4Vðσ; hÞ�þ
≤ pMF

PEðρÞ þ ð1 − pÞMF
PEðσÞ: ðF4Þ

We break the proof of monotonicity into the three stages
of a particle-separable operation without feed forward:
(i) appending modes in the vacuum state, (ii) performing a
global passive linear unitary, and (iii) destructively meas-
uring a set of modes.

(i) Appending modes in the vacuum state.—We append
to the system modes S a set of vacuum ancilla modes
A. Our aim is to show that

MF
PEðρS ⊗ j0ih0jAÞ ¼ MF

PEðρSÞ: ðF5Þ

The proof consists of showing that the optimal
observable for the vacuum-added state always acts
solely on S. Note that the single-particle Hilbert
space of SA splits into H1 ¼ H1;S ⊕ H1;A; we
denote the projectors onto these subspaces by ΠS,
ΠA, respectively. Thus any h can be decomposed
into the terms

h ¼ ΠShΠS þ ΠAhΠA þ ΠShΠA

þ ΠAhΠS ≕ h0 þ g0 þ f þ f†: ðF6Þ

Each term gives rise to its own second-quantized
observable exactly as for H; i.e., H0ðNÞ• ¼P

N
i¼1 h

0
i=

ffiffiffiffi
N

p
and so on.

We apply Lemma 3 using H and the projector
Π ¼ IS ⊗ j0ih0jA. It may be seen that in first
quantization, ΠðNÞ• ¼ Π⊗N

S , so that each particle is
projected on the subspace H1;S. Therefore we see
that ΠHΠ ¼ H0. Thus,

F ðρS ⊗ j0ih0jA;HÞ
¼ F ðρS; H0Þ þ 4VðρS ⊗ j0ih0jA;HÞ
− 4VðρS; H0Þ

¼ F ðρS; H0Þ þ 4TrðρS ⊗ j0ih0jAH2Þ
− 4TrðρSH2Þ

¼ F ðρS; H0Þ
þ 4TrðρS ⊗ j0ih0jA½ΠH2Π −H02�Þ; ðF7Þ

using TrðρS ⊗ j0ih0jAHÞ ¼ TrðρSH0Þ for the sec-
ond line. Now one can also see that ΠH2Π ¼
H02 þ ΠFF†Π, so

F ðρS ⊗ j0ih0jA;HÞ
¼ F ðρS;H0Þ þ 4TrðρS ⊗ j0ih0jAΠFF†ΠÞ: ðF8Þ

From ðFF†ÞðNÞ• ¼ ð1=NÞPN
i;j¼1 fif

†
j , it follows

that

Π⊗N
S ðFF†ÞðNÞ•Π⊗N

S ¼ 1

N

XN
i¼1

fif
†
i ; ðF9Þ

since ΠSfΠS ¼ 0, but ΠSff†ΠS ≠ 0. Consequently,

TrðρS ⊗ j0ih0jAΠFF†ΠÞ ¼ hff†iρS⊗j0ih0jA : ðF10Þ
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Next we have

F ðρS ⊗ j0ih0jA;HÞ − 4VðρS ⊗ j0ih0jA; h1Þ
¼ F ðρS;H0Þ þ 4hff† − h2iρS⊗j0ih0jA
þ 4hhi2ρS⊗j0ih0jA

¼ F ðρS;H0Þ − 4hh02iρS þ 4hh0i2ρS
¼ F ðρS;H0Þ − 4VðρS; h0Þ: ðF11Þ

Now kh0k ¼ kΠShΠSk ≤ khkkΠSk ¼ khk. If
kh0k ¼ 0, then both sides of Eq. (F11) are zero
and there is nothing left to prove; otherwise, we
define h̃ ≔ h0=kh0k, which has unit norm. Putting
this into Eq. (F11) gives

F ðρS ⊗ j0ih0jA;HÞ − 4VðρS ⊗ j0ih0jA; hÞ
¼ kh0k2½F ðρS; H̃Þ − 4VðρS; h̃Þ�
≤ ½F ðρS; H̃Þ − 4VðρS; h̃Þ�þ
≤ MF

PEðρSÞ: ðF12Þ

Maximizing over h gives MF
PEðρS ⊗ j0ih0jAÞ ≤

MF
PEðρSÞ. Conversely, it is clear that equality is

obtained by taking for ρS ⊗ j0ih0jA the same
observable that maximizes the quantity for ρS. Thus
we have established Eq. (F5).

(ii) Passive linear unitaries.—MF
PE is explicitly invariant

under such unitaries, since these correspond to a
rotation of the single-particle basis, and thus just a
basis change for h.

(iii) Destructive measurement.—We start with a state ρSA
on two sets of modes S, A, where the latter ancilla
modes are to be measured with a complete positive
operator valued measure fEmgm respecting the
particle-number SSR. The measurement is repre-
sented with a quantum-classical channel taking A to
a classical memory M:

ρ0SM ≔ EA→MðρSAÞ ≔
X
m

TrA½Em;AρSA� ⊗ jmihmjM:

ðF13Þ

For any given h acting only on S, we have

MF
PEðρSAÞ ≥ ½F ðρSA; HÞ − 4VðρSA; hÞ�þ

≥ ½F ðρ0SM;HÞ − 4VðρSA; hÞ�þ: ðF14Þ

The second inequality follows from the property of
F ðρ; HÞ being monotonically nonincreasing under
operations covariant with respect to the observable
H [99]. Here, covariance holds because EA→M acts

on a different subsystem from H. Next, we see that
the variance part is unchanged since the statistics of
h do not depend on operations performed on sub-
system A, so

MF
PEðρSAÞ ≥ ½F ðρ0SMÞ − 4Vðρ0SM; hÞ�þ: ðF15Þ

Finally, maximizing the right-hand side over all h
gives MF

PEðρSAÞ ≥ MF
PEðρ0SMÞ. ▪

APPENDIX G: SSR ENTANGLEMENT

The activation protocol converts particle entanglement
into entanglement that is of use to two parties A, B that are
limited to local covariant operations that respect the SSR
and classical communication.
Definition 1.—An operation between two or more parties

is said to be covariant LOCC when it is composed of local
operations respecting the local superselection rule and
classical communication [36,81].
Although not spelled out explicitly by Refs. [36,81], the

free states of this resource theory (in a bipartite setting,
easily generalized) are the following.
Definition 2.—A bipartite state ρAB is free in the resource

theory of SSR entanglement when it can be written in the
form

ρAB ¼
X
i

piρ
i
A ⊗ ρiB; ðG1Þ

such that each ρiA; ρ
i
B respects the SSR, i.e., ΦSðρiSÞ ¼ ρiS,

S ¼ A, B. Such a free state is said to be invariant separable
(since it is invariant under local phase rotations).
Of course every invariant-separable state is separable,

but not vice versa. This set of free states may be motivated
as being those accessible from a given primitive state, such
as the vacuum j0ij0i under covariant LOCC.
Lemma 4.—The following statements are equivalent.
(1) ρAB is invariant separable.
(2) ρAB ¼ P

i piψ
i
A ⊗ ψ i

B, where each ψ i
A;ψ

i
B is pure

and contains a definite number of particles.
(3) ρAB is separable and satisfies the local SSR con-

straint ðΦA ⊗ ΦBÞðρABÞ ¼ ρAB.
(4) ðΦA ⊗ ΦBÞðρABÞ ¼ ρAB and, for each NA, NB,

the local-number projected state ðPNA
⊗ PNB

Þ
ρABðPNA

⊗ PNB
Þ is separable.

Proof.—The equivalence of (1) and (2) is easily seen
from the fact that every local-SSR-respecting state ρiA ¼
ΦAðρiAÞ can be written as a mixture of pure states of definite
number. ð1Þ ⇒ ð3Þ is also straightforward. Conversely,
suppose (3) holds, then we have ρAB ¼ P

i piρ
i
A ⊗ ρiB for

arbitrary states ρiA; ρ
i
B. But then the local SSR constraint

implies that ρAB ¼ P
i piσ

i
A ⊗ σiB, where σiS ¼ ΦSðρiSÞ.

Thus ð3Þ ⇒ ð1Þ.

ENTANGLEMENT BETWEEN IDENTICAL PARTICLES IS A … PHYS. REV. X 10, 041012 (2020)

041012-15



It is clear that (4) ⇒ (3), since

ðΦA ⊗ ΦBÞðρABÞ ¼
X
NA;NB

ðPNA
⊗ PNB

ÞρABðPNA
⊗ PNB

Þ;

ðG2Þ

so that if each term in the rhs is separable, then the lhs
also is.
Finally, we show that ð1Þ ⇒ ð4Þ. We have

ðPNA
⊗ PNB

ÞρABðPNA
⊗ PNB

Þ
¼

X
i

piðPNA
ρiAPNA

Þ ⊗ ðPNB
ρiBPNB

Þ; ðG3Þ

which is separable. ▪
A state can fail to be invariant separable in two different

(but not mutually exclusive) ways: it may break the local
SSR, or it may be entangled. The measures of SSR
entanglement defined here capture the amount of entangle-
ment accessible from a single copy of the state under the
local SSR. However, there are states which have ESSR ¼ 0
yet are not invariant separable—for example, product states
which break the local SSR.
Lemma 5.—The distance-based measure of SSR entan-

glement can be calculated by a restricted optimization over
invariant separable states:

ED
SSRðρÞ ¼ min

σ∈inv−sep
DðΦA ⊗ ΦB½ρAB�; σABÞ: ðG4Þ

Equivalently, the closest separable state to ðΦA ⊗
ΦBÞðρABÞ is invariant separable.
Proof.—Let E0D

SSR be the quantity defined by the right-
hand side of Eq. (G4). We prove an inequality in both
directions. Since invariant-separable states form a subset of
separable states, it is clear that E0D

SSR ≥ ED
SSR. Conversely,

ED
SSRðρABÞ ¼ min

σ∈sep
DðΦA ⊗ ΦB½ρAB�; σABÞ

≥ min
σ∈sep

DðΦA ⊗ ΦB½ρAB�;ΦA ⊗ ΦB½σAB�Þ

≥ min
τ∈inv−sep

DðΦA ⊗ ΦB½ρAB�; τABÞ

¼ E0D
SSRðρABÞ; ðG5Þ

where we have used the monotonicity ofD underΦA ⊗ ΦB
and the fact that ΦA ⊗ ΦBðσABÞ is invariant separable. ▪
A useful consequence of Theorem 12 is that the relative

entropy measure of SSR entanglement can be written as

ERE
SSRðρABÞ

¼
X
NA;NB

pNA;NB
ERE
SSR

�ðPNA
⊗ PNB

ÞρABðPNA
⊗ PNB

Þ
pNA;NB

�

¼
X
NA;NB

pNA;NB
ERE

�ðPNA
⊗ PNB

ÞρABðPNA
⊗ PNB

Þ
pNA;NB

�
;

ðG6Þ

where pNA;NB
¼ Tr½ðPNA

⊗ PNB
ÞρAB�. This measure is

seen to provide an extension of the pure-state measure
defined by Wiseman and Vaccaro [35].

APPENDIX H: ACTIVATION PROTOCOL

The following Lemma shows that a unitary activation
operation can be expressed in a simplified form.
Lemma 6.—Let an activation operation EC→AB ∈ O map

its input m modes on C directly onto A, attach the same
number m of vacuum modes in B, and interact the two sets
by a passive linear unitary U:

σAB ¼ EC→ABðρAÞ ¼ UðρA ⊗ j0ih0jBÞU†: ðH1Þ

Up to local free unitaries, σAB is equivalent to the state
obtained by replacing U with DVA, where VA is a free
unitary on the A modes and D is a set of beam splitters
acting in parallel, with the action

D†aiD¼ riaiþ tibi; ri ¼
ffiffiffiffiffiffiffiffiffiffiffi
1− t2i

q
∈ ½0;1�; i¼ 1;…;m:

ðH2Þ

Proof.—Lemma 2 of Ref. [69] shows that U can be
decomposed as WAWBDVAVB, where VA;B;WA;B are free
unitaries acting locally on their respective subsystems. Up
to final local unitaries, we can replace this by DVAVB;
moreover, VB can be removed since it leaves the initial
vacuum state j0iB unchanged. ▪
It is worth noting that the number of vacuum modes

introduced can always be assumed to be no greater than
m—again, as a consequence of Lemma 2 in Ref. [69].
The faithfulness of the activation is proven below for

almost all such unitaries (apart from those with vanishing
beam-splitter parameters).
Theorem 2 (main text).—There exists an activation

operation EC→AB ∈ O creating an SSR-entangled state
σAB from ρC if and only if ρC not ρC ∉ S.
Moreover, E can be taken to be any of the unitary

operations described in Lemma 6, as long as all of the
parameters ri, ti are nonvanishing.
Proof.—We first prove that any particle-separable initial

state results in no SSR entanglement. This follows from a
more general observation: any bipartite particle-separable
state ρAB is also SSR separable. (This was stated in the
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two-particle case in Ref. [35].) As in the proof of Theorem
11, a particle-separable bipartite state jψiAB can be
regarded as an effective two-mode state—taking a and b
as linear combinations of the modes in A and B, respec-
tively, we have

jψiAB ¼ ða† þ b†ÞN j0iAj0iB
¼

X
NA

rNA
jNAiAjN − NAiB; ðH3Þ

where the rNA
are unimportant coefficients. It is immediate

from this expression that PNA
⊗ PN−NA

jψiAB is separable
for all NA. Since every particle-separable state is a convex
combination of pure particle-separable states, the result
follows for all mixed free states. So if ρC is a particle-
separable state, then for any EC→AB ∈ O, EC→ABðρCÞ is also
particle separable, and hence SSR separable in the A=B
partition.
Conversely, we prove that any unitary operation as in

Lemma 6 with ri; ti ≠ 0 ∀ i is sufficient to activate SSR
entanglement from PE. The simplest case—with a pure
state and a “nonpolarizing beam splitter,” ri ¼ r ∀ i—was
proven in Ref. [41]. Let us first argue that this extends to
mixed states.
Suppose that the output state σAB is SSR separable, so

that each ðPNA
⊗ PNB

ÞσABðPNA
⊗ PNB

Þ is separable. As
shown in Ref. [41], the entanglement structure of ðPNA

⊗
PNB

ÞσABðPNA
⊗ PNB

Þ is equivalent to ρ•ðNAþNBÞ
NA∶NB

, in which
the first-quantized form of the input state is partitioned into
NA versus NB particles. Hence ρ•ðNÞ (with N ¼ NA þ NB)
is biseparable with respect to this partition; i.e.,

ρ•ðNÞ ¼
X
i

λijϕiihϕijNA
⊗ jχiihχijNB

; ðH4Þ

where jϕii ∈ H⊗NA
1 ; jχii ∈ H⊗NB

1 ; λi ≥ 0. Since ρ•ðNÞ has
support in the symmetric subspace HN , we must have
jϕiiNA

jχiiNB
∈ HN ∀ i. But any biseparable symmetric

pure state must also be fully separable. Therefore,
jϕiiNA

jχiiNB
¼ jψ ii⊗N , so ρ•ðNÞ is particle separable.

Finally, we extend to the case of general ri. Via a
straightforward generalization of the argument from
Ref. [41], we find the output of the activation taking a
Fock state jni as input—the details are in Appendix K.
Denote by jξiAB the output of activating jni with beam-
splitter parameters ri ¼ 1=

ffiffiffi
2

p ∀ i, and similarly denote
by jηiAB the output obtained with some arbitrary set of ri.
From Eq. (K5) with two parties and αAi ¼ ri; αBi ¼ ti, we
have

ðPNA
⊗ PNB

ÞjηiAB
¼

�
N
NA

�
1=2

�
N
n

�
−1=2 X

nAP
i
nAi¼NA

nBi¼ni−nAi

�
NA

nA

�
1=2

�
NB

nB

�
1=2

×

�Y
i

rnAii tnBii

�
jnAiAjnBiB: ðH5Þ

It is clear from this expression that jηi can be obtained from
jξi by application of the local operators LA ⊗ LB, where

LA ¼
X
nA

�Y
i

ð
ffiffiffi
2

p
riÞnAi

�
jnAihnAj;

LB ¼
X
nB

�Y
i

ð
ffiffiffi
2

p
tiÞnBi

�
jnBihnBj: ðH6Þ

Since these operators are independent of the choice of
initial Fock state, the same relationship holds for any input
state—that is, the output from an arbitrary set of beam
splitters can be obtained by applying LA ⊗ LB to the output
from a set of balanced beam splitters. As long as
ri; ti ≠ 0 ∀ i, these operators are invertible. The applica-
tion of invertible local operators to a bipartite state does not
change its Schmidt number [100]. This proves that the
faithfulness of activation from a set of arbitrary nontrivial
beam splitters is equivalent to activation from balanced
beam splitters. ▪
Theorem 3 (main text).—For any activation EC→AB ∈ O;

ED
SSRðEC→AB½ρC�Þ ≤ MD

PEðρCÞ.
Proof.—Let τ be the closest particle-separable state to ρ

according to the measure D, then

MD
PEðρÞ ¼ Dðρ; τÞ ðH7Þ

≥ D(EC→ABðρCÞ; EC→ABðτCÞ) ðH8Þ

¼ D(σAB; EC→ABðτCÞ) ðH9Þ

≥ D(ΦA ⊗ ΦBðσABÞ;ΦA ⊗ ΦB∘EC→ABðτCÞ)
ðH10Þ

≥ ED
SSRðσABÞ: ðH11Þ

The first two inequalities use the contractivity of D under
channels. The final inequality uses the fact that τ is free, so
that ΦA ⊗ ΦB∘EC→ABðτCÞ is separable, but not in general
the closest separable state to σAB. ▪
Theorem 4 (main text).—For any (convex) entanglement

measure E, the quantity defined as

ME
PEðρÞ ≔ sup

EC→AB∈O
ESSRðEC→AB½ρC�Þ; ðH12Þ
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where the supremum is over all deterministic particle-
separable operations, is a (convex) measure of PE.
Proof.—The faithfulness of the measure is the content of

Theorem2.Deterministicmonotonicity follows immediately
from the definition and the fact that the set of operationsO is
closed under composition.Nondeterministic (strong)monot-
onicity states that ME

PEðρÞ does not increase on average,

X
i

piME
PEðσiÞ ≤ ME

PEðρÞ; ðH13Þ

where ΛiðρÞ ¼ piσi and fΛigi ∈ O. From the definition
(H12), we have, for every activating channel EC→AB ∈ O,

ME
PEðρÞ ≥ ESSRðEC→AB½ρC�Þ: ðH14Þ

We now continue to prove strong monotonicity by contra-
diction, showing that a violation of strong monotonicity
(H13) implies a violation of (H14). If strong monotonicity
(H13) is violated, then there must exist a set of operations
Ei;C→AB ∈ O such that the following is true:

ME
PEðρÞ <

X
i

piESSRðEi;C→AB½σi;C�Þ: ðH15Þ

Wenow invoke a general property of entanglementmeasures
(and SSR-entanglement measures), namely monotonicity
under the partial trace over a subsystem. We split B into two
subsystems B1, B2, in which B2 contains a classical flag.
Then, for any ensemble of state ρi;AB1

with probabilities pi,

ESSR

�X
i

piρi;AB1
⊗ jiihijB2

�
≥
X
i

piESSRðρi;AB1
Þ:

ðH16Þ

Applying this to (H15), we obtain

ME
PEðρÞ<ESSR

�X
i

piEi;C→AB1
½σi;C�⊗ jiihijB2

�

<ESSR

�X
i

Ei;C→AB1
½Λi;CðρCÞ�⊗ jiihijB2

�
: ðH17Þ

Note that the operations appearing on the right-hand
side above can be combined into a single operation
FC→AB1B2

∈ O, which is performed by first applying
fΛigi, storing the outcome i in a classical flag, and then
conditionally applying Ei. Thus,

ME
PEðρÞ < ESSRðFC→AB1B2

½ρC�Þ: ðH18Þ

The above is a direct contradiction of (H14), thus establish-
ing that MPE is a strong monotone for any entanglement
monotone ESSR.

We now continue by showing convexity:

ME
PE

�X
i

piρi

�
≤
X
i

piMPEðρiÞ: ðH19Þ

From the definition of MPE, we have

ME
PE

�X
i

piρi

�
≤ sup

EC→AB∈O

X
i

piESSRðEC→AB½ρi;C�Þ

≤
X
i

pif sup
EC→AB∈O

ESSRðEC→AB½ρi;C�Þg

¼
X
i

piME
PEðρiÞ; ðH20Þ

where we have made use of the fact that taking the
supremum over each term in the sum individually cannot
give less than a single supremum. ▪

APPENDIX I: LOWER BOUND ON PE MEASURE
FROM AN ENTANGLEMENT CRITERION

In order to witness the entanglement present in the
system, a criterion of separability from Ref. [87] is used,
which is satisfied for all separable states,

1 ≤
4VðgzŜAz þ ŜBz ÞVðgyŜAy þ ŜBy Þ

ðjgzgyjjhŜAx ij þ jhŜBx ijÞ2
; ðI1Þ

where Vð·Þ denotes the variance and gðy;zÞ are real
parameters that can be optimized over. The z component

of the spin in regions A, B is defined as ŜðA;BÞz ≔
ð1=2ηðA;BÞeff ÞðN̂ðA;BÞ

1 − N̂ðA;BÞ
2 Þ, where 1,2 correspond to the

internal degree of freedom of the atom and ηðA;BÞeff accounts
for finite spatial resolution in the detection of the BEC.

Other spin components, e.g., ŜðA;BÞx and ŜðA;BÞy , can be
measured by applying appropriate spin rotations before
detection. In the following we show that this condition of
separability (I1) can be rewritten as an entanglement
witness.
Taking the root of Eq. (I1) and collecting the terms,

0 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðgzŜAz þ ŜBz ÞVðgyŜAy þ ŜBy Þ

q

− ðjgzgyjjhŜAx ij þ jhŜBx ijÞ;
0 ≤ VðgzŜAz þ ŜBz Þ þ VðgyŜAy þ ŜBy Þ

− ðjgzgyjhŜAx i þ hŜBx iÞ;
0 ≤ VðgzŜAz þ ŜBz Þ þ VðgyŜAy þ ŜBy Þ

− hjgzgyjŜAx þ ŜBx i; ðI2Þ

where in the second line we have applied the inequality
between the geometric and arithmetic mean and removed
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some of the absolute signs in the third term. We can
simplify notation by defining component spin operators
Ŝþz ≔gzŜ

A
zþŜBz , Ŝ

þ
y ≔ gyŜ

A
y þ ŜBy and Ŝþx ≔ jgzgyjŜAx þ ŜBx ,

VðŜþz Þ þ VðŜþy Þ − hŜþx i ≥ 0: ðI3Þ

We now relate this to an entanglement witness observable.
For any state ρ, let

Wρ ≔ ðŜþz − hŜþz iρÞ2 þ ðŜþy − hŜþy iρÞ2 − Ŝþx : ðI4Þ

To check that this is a valid entanglement witness,
let σ be any separable state. Using hðX − x0Þ2i ¼ VðXÞþ
ðx0 − hXiÞ2, from Eq. (I3) we have

Tr½σWρ� ¼ hðŜþz − hŜþz iρÞ2iσ
þ hðŜþy − hŜþy iρÞ2iσ − hŜþx iσ ≥ 0: ðI5Þ

Note that when the ρ defining Wρ is chosen to be the same
as the state being measured, the expectation value Tr½ρWρ�
equals the left-hand side of Eq. (I3).
Now that we have defined an entanglement witness, we

can relate such a quantity to a commonly used measure of
entanglement defined as the trace distance to the set of
separable states,

MTr
PEðρÞ ≔ min

σ∈sep
max
0≤P≤1

Tr½Pðσ − ρÞ�; ðI6Þ

where P is Hermitian. This is by no means the only
entanglement measure that can be related to our witness
[101] but provides a convenient form. As both P and σ vary
within compact convex sets, and the trace distance is
concave for fixed σ and convex for fixed P, we can make
use of the minimax theorem [102] to obtain

MTr
PEðρÞ ¼ max

0≤P≤1
min
σ∈sep

Tr½Pðσ − ρÞ�: ðI7Þ

Now in order to write this measure in terms of the
entanglement witness Wρ, we choose a particular P:

P ¼ W0
ρ þ c1; ðI8Þ

where c is a constant and W0
ρ ¼ Wρ=N is a normalized

witness with the factor N to be determined later. The
constants must be chosen appropriately such that
0 ≤ P ≤ 1. This condition is equivalent to

−c1 ≤ W0
ρ ≤ ð1 − cÞ1; ðI9Þ

which implies that 0 < c < 1, since the witness can take
values of both signs. Then we have

MTr
PEðρÞ ≥ min

σ∈sep
½Tr½W0

ρðσ − ρÞ� þ cTr½1ðσ − ρÞ��

≥ −Tr½W0
ρρ� þ min

σ∈sep
Tr½W0

ρσ�

≥ −Tr½W0
ρρ�; ðI10Þ

where we have used the fact that minσ∈sep Tr½W0
ρσ� ≥ 0.

We optimize c andN to obtain the maximal lower bound
onMTr

PEðρÞ subject to normalization constraints. We start by
writing down the range of values taken by the witness,

W−
ρ ≤ hWρi ≤ Wþ

ρ ; ðI11Þ

where W−
ρ and Wþ

ρ are the minimum and maximum
eigenvalues of Wρ. The objective is to make W−

ρ =N as
negative as possible. Using Eq. (I9), for given cwewant the
minimum value of N such that N ≥ −W−=c and N ≥
Wþ=ð1 − cÞ are both true. We therefore want to choose the
normalization N ðcÞ such that

N ðcÞ ¼ max

�
−W−

c
;
Wþ

1 − c

�
: ðI12Þ

We can see that the minimum value of N ðcÞ occurs (for a
certain constant c�) when these two terms are equal. We
have

c� ¼ W−
ρ

W−
ρ −Wþ

ρ
; ðI13Þ

and substituting this back into Eq. (I12) gives us the
normalization constant,

N ðc�Þ ¼ Wþ
ρ −W−

ρ : ðI14Þ

So the bound on the entanglement measure can therefore be
written as

MTr
PEðρÞ ≥

−1
Wþ

ρ −W−
ρ
Tr½Wρρ�: ðI15Þ

We continue by calculating upper and lower bounds forWþ
ρ

andW−
ρ , respectively. Starting withW−

ρ we lower bound the
product of the variances in the first line of Eq. (I2) using the
Robertson uncertainty relation,

VðgzŜAz þ ŜBz ÞVðgyŜAy þ ŜBy Þ

≥
1

4
jhgzgy½ŜAz ; ŜAy � þ ½ŜBz ; ŜBy �ij2

¼ 1

4
jh−igzgyŜAx − iŜBx ij2

¼ 1

4
hgzgyŜAx þ SBx i2; ðI16Þ
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where we have used the standard spin commutator rela-
tions. This can now be substituted back into the first line of
Eq. (I2) to lower bound W−

ρ , where again we write the
second term as a single expectation value:

W−
ρ ≥ min

σ
½jhgzgyŜAx þ ŜBx iσj − hjgzgyjŜAx þ ŜBx iσ�

≥ 0 −max
σ

hjgzgyjŜAx þ ŜBx iσ: ðI17Þ

The spin operators take their maximal value when
all the particles are in internal mode 1, max ŜðA;BÞ ¼
ð1=2ηðA;BÞeff ÞNðA;BÞ.

W−
ρ ≥ −

1

2

�jgzgyjNA

ηAeff
þ NB

ηBeff

�
; ðI18Þ

providing us with a lower bound on W−
ρ . We now move

onto upper bounding Wþ
ρ . We can start by upper bounding

the variance terms in the last line of Eq. (I2). This can be
achieved by utilizing Popoviciu’s inequality [103],

VðgzŜAz þ ŜBz Þ ≤
1

4
fλmaxðgzŜAz þ ŜBz Þ − λmin½gzŜAz þ ŜBz �g2

¼ λmax½gzŜAz þ ŜBz �2
¼ ðjgzjλmax½ŜAz � þ λmax½ŜBz �Þ2

¼ 1

4

�jgzjNA

ηAeff
þ NB

ηBeff

�
2

; ðI19Þ

where λmax½A�; λmin½A� are the maximum and
minimum eigenvalues of the operator A, respectively,
and in last line we have again used the fact that the value
is maximized when all the particles are in the same internal
mode. Substituting the above into the last line of
Eq. (I2) and maximizing over each term individually
results in

Wþ
ρ ≤

1

4

�jgzjNA

ηAeff
þ NB

ηBeff

�
2

þ 1

4

�jgyjNA

ηAeff
þ NB

ηBeff

�
2

−min
σ
hjgzgyjŜAx þ ŜBx iσ

≤
1

4

�jgzjNA

ηAeff
þ NB

ηBeff

�
2

þ 1

4

�jgyjNA

ηAeff
þ NB

ηBeff

�
2

þ 1

2

�jgzgyjNA

ηAeff
þ NB

ηBeff

�
: ðI20Þ

Now we have bounded both the maximum and
minimum values the witness can take, we can bound
the normalization N from Eq. (I14) and therefore
bound the entanglement measure with a normalized
witness,

MTr
PEðρÞ ≥ −

�
1

4

�jgzjNA

ηAeff
þ NB

ηBeff

�
2

þ 1

4

�jgyjNA

ηAeff
þ NB

ηBeff

�
2

þ
�jgzgyjNA

ηAeff
þ NB

ηBeff

��
−1
Tr½Wρρ�: ðI21Þ

APPENDIX J: NONCLASSICALITY

Theorem 13.—Every number-diagonal (ND) classical
state is particle separable.
Proof.—If ρ is classical and ND, then

ρ ¼
Z

d2nαPðαÞΦðjαihαjÞ; ðJ1Þ

withPðαÞ ≥ 0. Hence it is sufficient to prove the claim for all
ΦðjαihαjÞ. For anymultimode coherent state jαi, there exists
a passive linear unitary U that brings all the particles into a
singlemode:Ujαi ¼ jᾱij0i⊗ðn−1Þ, where jᾱj2 ¼ P

n
i¼1 jαij2.

Since this unitary is number conserving, it commutes
with Φ, so

UΦðjαihαjÞU† ¼ ΦðUjαihαjU†Þ ðJ2Þ

¼ Φðjᾱihᾱj ⊗ j0ih0j⊗ðn−1ÞÞ ðJ3Þ

¼ ΦðjᾱihᾱjÞ ⊗ j0ih0j⊗ðn−1Þ ðJ4Þ

¼
X∞
k¼0

e−jᾱj2 jᾱj2k
k!

jkihkj⊗ j0ih0j⊗ðn−1Þ; ðJ5Þ

which is particle separable. ▪
Theorem 5 (main text).—Two copies ρ⊗2 of a number-

bounded state ρ are particle separable if and only if ρ is the
vacuum.
Proof.—Let both ρ and ρ⊗2 be free with bounded particle

number, and we decompose ρ ¼ PN0

N¼0 pNρ
ðNÞ. Then

ρ⊗2 ¼
XN0

N;N0¼0

pNpN0ρðNÞ ⊗ ρðN0Þ: ðJ6Þ

The maximal number component of this state is
p2
N0
ρðN0Þ ⊗ ρðN0Þ, where pN0

≠ 0 by assumption.
This component must be particle separable, thus
must be obtainable by mixtures of the formP

i piUij2N0; 0; 0;…ih2N0; 0; 0;…jU†
i , where the Ui are

passive linear. Now this state has exactly N0 particles on
each of the two parties, and so the same must be true for
every term in the sum. In other words, for each i,
Uij2N0; 0i ¼ ðVijN0iÞðWijN0iÞ with pair of additional
passive linear unitaries Vi, Wi acting on each subsystem.
It is easily seen that this is impossible unless N0 ¼ 0. ▪
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Theorem 6 (main text).—Two copies Φðjψihψ jÞ⊗2 of a
pseudopure state are particle separable if and only if jψi is
classical.
Proof.—We first show that the activation of an arbitrary

pure state jψi into SSR entanglement is exactly the same as
for the pseudopure state Φðjψihψ jÞ. Let ΦAB be the joint
dephasing operator with respect to the total number
over two parties A, B. This operation is already imple-
mented by dephasing with respect to local number, so that
ðΦA ⊗ ΦBÞ ¼ ðΦA ⊗ ΦBÞ∘ΦAB. We use this to connect
the SSR entanglement activated by a unitary U ∈ O from
jψihψ j to that activated from Φðjψihψ jÞ:

ðΦA ⊗ ΦBÞ∘Uðjψihψ jA ⊗ j0ih0jBÞ
¼ ðΦA ⊗ ΦBÞ∘ΦAB∘Uðjψihψ jA ⊗ j0ihj0BÞ ðJ7Þ

¼ ðΦA ⊗ ΦBÞ∘U∘ΦABðjψihψ jA ⊗ j0ih0jBÞ ðJ8Þ

¼ ðΦA ⊗ ΦBÞ∘UðΦA½jψihψ jA� ⊗ j0ih0jBÞ; ðJ9Þ

where we have used the fact that U is number conserving,
so ½U;ΦAB� ¼ 0, and the last line holds because B contains
no particles.
Now let jψi be activated by U consisting of a set of

nontrivial beam splitters into jϕiAB. Then we can write
jϕiAB ¼ P

k;l jϕk;liAB ≔
P

k;l Pk;APl;BjϕiAB. If two copies
of jψi are activated in the same way in parallel, then
the output state is jϕi⊗2 ¼ jϕiA1B1

jϕiA2B2
. Given that

Φðjψihψ jÞ⊗2 is particle separable, Theorem 2 says that
the projection of the activated state onto local particle
number must be unentangled—so there exist (unnormal-
ized) jan;miA1A2

; jbn;miB1B2
such that, for each n, m,

Pn;APm;BjϕiA1B1
jϕiA2B2

¼ jan;miA1A2
jbn;miB1B2

: ðJ10Þ

Applying the projector Pk;A1
Pl;B1

onto local numbers in the
first copy, we find

jϕk;liA1B1
jϕn−k;m−liA2B2

¼ ðPk;A1
jan;miA1A2

ÞðPl;B1
jbn;miB1B2

Þ: ðJ11Þ

Both sides of the above equation must be separable
with respect to both the A1A2=B1B2 and A1B1=A2B2

partitions. Therefore there must exist (unnormalized) states
jan;mk iA1

; jbn;ml iB1
, such that

jϕk;liA1B1
¼ jan;mk iA1

jbn;ml iB1
: ðJ12Þ

The left-hand side of the above is independent of n andm, so
the same must be true of the states on the right—removing
these labels, we obtain

jϕk;liA1B1
¼ jakiA1

jbliB1
: ðJ13Þ

Summing over k and l, we see that jϕk;liA1B1
¼

ðPk jakiA1
ÞðPl jbliB1

Þ is separable. From the result in
quantum optics saying that all nonclassical states are
activated into entangled states, it follows that jψi must be
classical. ▪
In the following, the vacuum state of any number of

modes will be denoted j0i. The primitive system S under
consideration has d modes, and we denote k copies of S
by Sk.
The proof of Theorem 7 relies on the following result,

which is of the “de Finetti” type [104].
Theorem 14.—Let ρ½m� be an exchangeable (i.e., permu-

tation-symmetric) state of N particles on m modes that is
also particle separable. Denote by ρ½l� the reduced state of
any subset of l ≤ m modes. Then there exists a classical l-
mode state σ½l� such that

DTrðρ½l�; σ½l�Þ ≤
l
m
: ðJ14Þ

Proof.—Since ρ½m� is particle separable, there is a
probability distribution qλ and a set of single-particle
creation operators c†λ such that

ρ½m� ¼
X
λ

qλ
N!

ðc†λÞN j0ih0jcNλ : ðJ15Þ

We decompose c†λ ¼ αλa
†
λ þα0λa

0
λ
†, where jαλj2 þ jα0λj2 ¼ 1,

aλ acts on modes 1;…; l, and a0λ acts on modes lþ 1;…; m.
Using the binomial expansion for ðc†λÞN and tracing out
modes lþ 1;…; m, we have

ρ½l� ¼ Trlþ1;…;mρ½m�

¼
XN
n¼0

1

N!

�
N
n

�
2

jαλj2njα0λj2ðN−nÞða†λÞnj0ih0janλ

¼
XN
n¼0

�
N
n

�
jαλj2nð1 − jαλj2ÞN−njnðλÞihnðλÞj

¼
XN
n¼0

bλðnÞjnðλÞihnðλÞj; ðJ16Þ

where bλ is the binomial distribution with N trials and
p ¼ jαλj2, and jnðλÞi ≔ ð1= ffiffiffiffiffi

n!
p Þða†λÞnj0i.

Now we use a result on the Poisson distribution as a limit
case of the binomial distribution. For a binomial bðnÞ and
Poisson πðnÞ with the same mean μ, it is well known that
b → π in the limit of large N. In fact, a stronger result [105]
[Eq. (4)] says that
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DTrðb; πÞ ≤ p ¼ μ

N
; ðJ17Þ

whereDTr here is the classical version of the trace distance.
Let πλ be the Poisson distribution with mean

μk ¼ Njαλj2, and define

σ½l� ≔
X
λ

qλ
X∞
n¼0

πλðnÞjnðλÞihnðλÞj: ðJ18Þ

Note that σ½l� is classical since it can be written in the form

σ½l� ¼
X
λ

qλΦðjψλihψλjÞ; ðJ19Þ

jψλi ≔
X∞
n¼0

ffiffiffiffiffiffiffiffiffiffiffi
πλðnÞ

p
jnðλÞi; ðJ20Þ

where jψλi is a coherent state with mean particle number μλ.
It follows that

DTrðρ½l�; σ½l�Þ ¼
1

2
k
X

λ;n
qλ½bλðnÞ − πλðnÞ�jnðλÞihnðλÞjk

1

≤
1

2

X
λ;n

qλk½bλðnÞ − πλðnÞ�jnðλÞihnðλÞjk1

¼
X
λ

qλ
X
n

1

2
jbλðnÞ − πλðnÞj

¼
X
λ

qλDTrðbλ; πλÞ

≤
X
λ

qλ
μλ
N
; ðJ21Þ

having used the triangle inequality and finally (J17). NowP
λ qλμλ is the mean particle number in ρ½l�, which by

exchangeability is Nl=m. Therefore,

DTrðρ½l�; σ½l�Þ ≤
l
m
: ðJ22Þ

▪
Theorem 7 (main text).—Let ρ have finite mean particle

number, Tr½ρN̂� < ∞, and suppose that ρ⊗k is particle
separable for some k. Then the trace-distance nonclassi-
cality of ρ is bounded by

MTr
NCðρÞ ≤

1

k
: ðJ23Þ

Consequently, ρ⊗k is particle separable for all k if and only
if ρ is classical.
Proof.—Let ρ contain d modes, so that ρ⊗k contains

m ¼ kd modes. Projecting onto the subspace of total
particle number N results in the (normalized) state

PN;Skρ
⊗kPN;Sk=pN , which fulfils the assumptions of

Theorem 14. Therefore there exists a classical state σN
of d modes such that

DTr

�
TrS2;…;SkPN;Skρ

⊗kPN;Sk

pN
; σN

�
≤

d
kd

¼ 1

k
: ðJ24Þ

Defining the classical state σ ≔
P

N pNσN , we have

DTrðρ; σÞ ¼ DTr

�X
N

TrS2;…;SkPN;Skρ
⊗kPN;Sk ;

X
N

pNσN

�

≤
X
N

pNDTr

�
TrS2;…;SkPN;Skρ

⊗kPN;Sk

pN
; σN

�

≤
X
N

pN
1

k

¼ 1

k
; ðJ25Þ

having used convexity of DTr.
The final statement is an immediate application of this

bound in the limit k → ∞, using the fact that the set of
classical states is closed in the trace-norm topology [106].
Conversely, it is enough to note that the set of classical
states is closed under tensor products. ▪

APPENDIX K: UNITARY ACTIVATION
OF FOCK STATES

Herewe generalize themain result of Ref. [41] to multiple
modes and to general beam splitters. We also present the
results without much additional effort for arbitrary numbers
of parties, although the rest of ourwork uses only thebipartite
case. Let us first find the first-quantized form of anm-mode
Fock state jni, partitioned into sets of NA;NB;…; NZ
particles, where

P
K¼A;B;…;Z NK ¼ N ≔

P
i ni. We have

jni• ¼
�
N
n

�
−1=2X

Π
Π ⊗

m−1

i¼0
jii⊗ni ; ðK1Þ

where ðNnÞ is a multinomial coefficient and the sum runs over
distinct permutations Π of ⊗m−1

i¼0 jii⊗ni . Dividing initially
into NA versus NĀ ¼ N − NA particles, it may be verified
that

jni• ¼
�
N
n

�−1=2 X
fnAigiP
i
nAi¼NA

�
NA

nA

�
1=2

�
NĀ

nĀ

�
1=2

jnAi•NA
jnĀi•NĀ

;

ðK2Þ

where nĀi ¼ ni − nAi. Recursively continuing the subdivi-
sion of Ā in this way, we obtain
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jni• ¼
�
N
n

�
−1=2 X

fnKgKP
i
nKi¼NK ∀KP
K
nKi¼ni ∀ i

⨂
K

�
NK

nK

�
1=2

jnKi•NK
: ðK3Þ

Next, we show how a Fock state on A is activated into a
multipartite SSR-entangled state by mixing with vacuum
modes on B;…; Z at a generalized beam splitter.
Specifically, we take the beam splitter U to have the action
a†Ai →

P
K αKia

†
Ki—a generalization of Ref. [41], in which

αKi was independent of i. Then

jϕiA…Z ≔ UjniAj00…iB…Z

¼
Y
i

1ffiffiffiffiffiffi
ni!

p
�X

K

αKia
†
Ki

�
ni j00…iA…Z

¼
Y
i

1ffiffiffiffiffiffi
ni!

p
X
fnKigP
K
nKi¼ni ∀ i

�
ni

nAi;…; nZi

�

×
Y
K

ðαKia†KiÞnKi j00…iA…Z

¼
X
fnKgKP
K
nKi¼ni ∀ i

�Y
i

�
ni

nAi;…; nZi

�
1=2

�

⨂
K

�Y
i

αnKi
Ki

�
jnKiK: ðK4Þ

Conditioning on local particle number,

ðPNA
⊗ � � � ⊗ PNZ

ÞjϕiA…Z

¼
X
fnKgKP
i
nKi¼NK ∀KP
K
nKi¼ni ∀ i

�Y
i

�
ni

nAi;…; nZi

�
1=2

�
⨂
K

�Y
i

αnKiKi

�
jnKiK

¼
� Q

ini!Q
KNK!

�
1=2 X

fnKgKP
i
nKi¼NK ∀KP
K
nKi¼ni ∀ i

⨂
K

�
NK

nK

�
1=2

�Y
i

αnKiKi

�
jnKiK

¼
�

N
NA;…; NZ

�
1=2

�
N
n

�
−1=2 X

fnKgKP
i
nKi¼NK ∀KP
K
nKi¼ni ∀ i

⨂
K

�
NK

nK

�
1=2

×

�Y
i

αnKiKi

�
jnKiK; ðK5Þ

which is of the same form as Eq. (K3), up to the
coefficients ð N

NA;…;NZ
Þ1=2QK;i α

nKi
Ki .
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