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Abstract: Allylrhodium species generated from potassium
allyltrifluoroborates can undergo isomerization by 1,4-rho-
dium(I) migration to give more complex isomers, which then
react with cyclic imines to provide products with up to three
new stereochemical elements. High enantioselectivities are
obtained using chiral diene–rhodium complexes.

The catalytic enantioselective nucleophilic allylation of
aldehydes and imines is a useful route to homoallylic alcohols
and amine derivatives.[1] Recently, we described the enantio-
selective rhodium-catalyzed nucleophilic allylation[2] of cyclic
imines[3, 4] using the chiral dienes L1/ent-L1[5] which, to our
knowledge, are the first examples of rhodium-catalyzed
enantioselective additions of allylboron reagents to p-electro-
philes.[6] These reactions enable the formation of products
with up to two stereocenters with high diastereo- and
enantioselectivities.[2] Herein, we report the discovery of an
isomerization of allylrhodium intermediates, resulting in
more complex allylrhodium species that would otherwise be
difficult to access. This isomerization allows the formation of
products containing up to three new stereochemical elements
(two stereocenters and an alkene of defined geometry) with
high diastereo- and enantiocontrol.

Previously, we demonstrated that the cyclic aldimine 1a
reacted with the prenyltrifluoroborate 2a (Scheme 1 a)[2a] or
its isomer 2 b (Scheme 1b)[2b] to give the same reverse
prenylation product 3a, thus suggesting the involvement of
a common allylrhodium intermediate. In further experiments,
the racemic allylation of the saccharin-derived cyclic ketimine

4a with the prenyltrifluoroborate 2 a was attempted
(Scheme 2). Surprisingly, a 70% yield of a mixture of
products was obtained, in which the expected reverse
prenylation product 6 a was only the minor component (5a/
6a = 74:26 by 1H NMR analysis). The major product was the
homoallylic sulfonamide 5a, obtained in > 95:5 d.r.,[7] which
presumably results from an isomerization of the allylrhodium
intermediate. A second purification of this mixture led to the
isolation of 5a in 48 % yield. Very similar results were
obtained with the isomeric allyltrifluoroborate 2b.

A mechanism that is consistent with these observations
and also explains the stereochemical outcome is presented in
Scheme 3. First, the transmetalation of the trifluoroborates 2a
or 2b with rhodium is expected to result in the allylrhodium
species 7, as described previously.[2] With more reactive cyclic
imines such as 1a (Scheme 1), the reaction with the allylrho-
dium species 7 proceeds readily to provide the expected
reverse prenylation products such as 3 a. However, the

Scheme 1. The enantioselective Rh-catalyzed allylation of cyclic imines.

Scheme 2. The allylation of ketimine 4a with 2a or 2b.
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saccharin-derived imine 4 a is considerably less reactive than
the aldimine 1a, and the formation of the sterically congested
reverse prenylation product 6 a is less favored. Instead, we
hypothesize that a reversible 1,4-rhodium migration[8–10] of 7,
involving the participation of a hydrogen atom on the cis-
methyl group, occurs to give the Z-allylrhodium species 8.
Reaction of 8 with the imine 4 a then takes place through
a cyclic six-membered transition state 9 to produce the less
sterically hindered allylation product 5a. To our knowledge,
only a single example of this type of prenylrhodium isomer-
ization has been reported previously, by the group of
Yorimitsu and Oshima,[11] and the opportunities offered by
this chemistry have not been explored further.

This isomerization–allylation using allyltrifluoroborate 2a
also occurred with other saccharin-derived imines (Table 1).
In addition to 4a (Scheme 2), the reaction was tolerant of
imines containing ethyl (entry 1), n-butyl (entry 2), n-hexyl
(entry 3), and 3-phenylpropyl groups (entry 4). In these cases,

the allylation products 5 resulting from the isomerization
were formed as the major products in > 95:5 d.r. a,b-
Unsaturated imines were also tolerated, though the diaste-
reoselectivities of these reactions were slightly lower than
those of the previous examples (Table 1, entries 5 and 6).

Other potassium allyltrifluoroborates were also effective
in this process. For example, allyltrifluoroborate 2 c reacted
with 4a to give the isomerization product 10a in 73% yield
and the “standard” product 11a in 10 % yield, both in > 95:5
d.r. (Table 2, entry 1). In contrast, the allyltrifluoroborate 2d,

which was prepared as a 71:29 mixture of E/Z isomers, reacted
with 4a to give only the isomerization product 10 b, albeit as
an inseparable 76:24 diastereomeric mixture (entry 2). Since
it was not possible to prepare 2d in the geometrically pure
form, it is difficult to assess the relative contributions of the E-
and Z-isomers in the formation of 10 b. The absence of the
“standard” product 11b in this reaction is most likely due to
the steric hindrance that would be encountered in forming
such a crowded bond. The a,a-disubstituted allyltrifluorobo-
rate 2e also reacted with 4a to give an 82% yield of
a combined 69:31 mixture of the isomerized and non-
isomerized products 10e and 11 e, respectively (entry 3).
These products were difficult to separate by column chroma-

Scheme 3. The isomerization of the prenylrhodium species 7.

Table 2: The allylation of 4a with various potassium allyltrifluorobor-
ates.[a]

Entry Allyltrifluoroborate Product(s)

1

2

3

[a] Reactions were conducted with 0.30 mmol of 4a. Yields are of
isolated products. Ratios of isomerized to non-isomerized products, and
diastereomeric ratios were determined by 1H NMR analysis. [b] Yield of
10c after a second purification.

Table 1: The allylation of imines 4a–g with potassium allyltrifluoroborate
2a.[a]

Substrate Yield of
5 + 6
[%][b]

5/6[c] Yield
of 5
[%][d]

d.r. of 5[c]

1 4b R = Et 84 76:24 62 >95:5
2 4c R = nBu 66 75:25 50 >95:5
3 4d R = nHex 91 79:21 61 >95:5
4 4e R = CH2CH2CH2Ph 69 76:24 47 >95:5
5 4 f R = (E)-CH=CHPh 68 72:28 56 85:15
6 4g R = (E)-CH=CH(4-EtC6H4) 75 82:18 46 76:24

[a] Reactions were conducted with 0.30 mmol of 4a–g. [b] Yield of an
isolated, combined mixture of 5 and 6. [c] Determined by 1H NMR
analysis. [d] Yield of an isolated, pure sample of 5 after a second
purification.
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tography, but a further purification led to the isolation of 10c
in 48% yield.

To further investigate the scope of this process, the
aldimines 1a–e were examined (Scheme 4).[12] These sub-

strates are considerably more reactive than the ketimines 4a–
g examined thus far, and imine 1a has already been shown to
provide only the reverse prenylation products with the
prenyltrifluoroborate 2a or its isomer 2b (Scheme 1). The
reactions of 1a with allyltrifluoroborates 2 c–e also gave
products resulting from an allylation without isomerization.
We speculated that the use of even more sterically hindered
allyltrifluoroborates would be required to disfavor the
“standard” pathway, giving a better chance for the isomer-
ization of the corresponding allylrhodium species to occur.
Indeed, the reaction of 1a with allyltrifluoroborate 2 f led to
the product 12a, resulting from allylrhodium isomerization, in
59% yield, with none of the “standard” allylation product
observed (Scheme 4).[13] Notably, 12 a was formed as a single
diastereomer with control over three stereochemical ele-
ments: two stereogenic centers in the anti-configuration, and
a Z-alkene. Other cyclic aldimines 1 b–d also reacted
smoothly with 2 f to give the products 12 b–d in 55–74 % yield.

The formation of products 12 can be rationalized by the
pathway shown in Scheme 5. After formation of the allylrho-
dium species 13, the imine allylation is disfavored due to the
high steric congestion at the g-carbon. Therefore, 1,4-RhI

migration of 13 occurs to form the benzylrhodium species
14. Although the imine can react with 14 at this stage, the

observed product is consistent with an allylation by the
allylrhodium species 15, formed from 14 by 1,3-allylic trans-
position of rhodium (through s–p–s interconversion). Inter-
estingly, if a cyclic six-membered transition state is operative,
the Z-geometry of the alkene in 12 must arise from the methyl
group occupying a pseudoaxial position (as in 16), which
avoids an unfavorable steric interaction with the cycloocta-
diene ligand.

Enantioselective variants of these reactions were also
investigated using chiral diene ligands[14] (Scheme 6). The

reaction of imine 4 a with prenyltrifluoroborate 2 a proceeded
best[15] using the a-phellandrene-derived chiral diene L2,[16]

which gave 5a as the major product (5a/6a = 87:13) in 62%
yield, > 95:5 d.r., and 97% ee [Eq. (1)].[17] High diastereo-
and enantioselectivities were also observed in the reaction of
4a with the a,a-disubstituted allyltrifluoroborate 2c using L2
[Eq. (2)]. In contrast to the corresponding reaction using
[{Rh(cod)Cl}2] as the precatalyst (Table 2, entry 3), this
reaction led to none of the “standard” allylation product
11c. This observation may be a result of the more sterically
hindered nature of L2 compared with cyclooctadiene. Finally,
the reaction of 1a with allyltrifluoroborate 2 f was unsuccess-
ful when L2 was employed, but the use of diene L3[18] gave
ent-12 a in 62 % yield, > 95:5 d.r., and 96% ee [Eq. (3)].

Scheme 4. The allylation of aldimines 1a–d with allyltrifluoroborate 2 f.
Reactions were conducted with 0.30 mmol of 1a–d. Yields are of
isolated products.

Scheme 5. The isomerization of the allylrhodium species 13.

Scheme 6. Enantioselective allylations. Reactions were conducted with
0.30 mmol of imine. Yields are of isolated products. Enantiomeric
excesses were determined by HPLC analysis on a chiral stationary
phase.
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To gain further insight into this process, the reaction of
imine 4 a with the hexadeuterated prenyltrifluoroborate [D]6-
2a was conducted [Eq. (4)]. Purification of the reaction
mixture gave two fractions. The first fraction was an
inseparable mixture (45% yield) of the isomerized products
[D]6-5aa, [D]6-5ab (a 50:50 E/Z-mixture), and [D]6-5ac, in an
approximate ratio of 69:28:3, respectively. The second
fraction was an inseparable mixture (26% yield) of the
reverse prenylation products [D]6-6aa and [D]6-6 ab (a 50:50
E/Z mixture) in an approximate ratio of 74:26, respectively. It
was difficult to detect the presence of [D]6-6ac.

This experiment provides the following information: First,
the presence of several products differing in their levels of
deuteration at the alkene and one of the methyl groups
demonstrates that the isomerization of the intermediate
allylrhodium species is reversible, which leads to deute-
rium–hydrogen exchange (Scheme 7). Second, no deuterium

depletion was detected in the CD3 group attached to the
alkene in the isomerized products [D]6-5aa, [D]6-5 ab, and
[D]6-5ac, which suggests that the 1,4-RhI migration occurs
only between the cis-substituents of the allylrhodium species,

and that E/Z isomerization does not take place to any
considerable extent. We therefore assume that the 1,4-RhI

migration occurs by a C�H oxidative addition–reductive
elimination sequence through intermediate 13 (Scheme 8),
which is consistent with mechanisms suggested for other types
of 1,4-RhI migration reported previously.[8a, 10q]

An alternative mechanism for the isomerization of
a prenylrhodium species has been proposed by others.[11]

This mechanism (Scheme 9), which involves enyl (s + p)

organorhodium species,[19] starts with the 1,3-allylic trans-
position of rhodium from 7 to form 14, followed by b-hydride
elimination to form a rhodium hydride 15 and isoprene (16).
Hydrorhodation of 16 with 15 gives 17, which then isomerizes
to 8. According to this mechanism, the hexadeuterated
prenyltrifluoroborate [D]6-2a would lead to the intermediate
[D]6-14. b-Hydride elimination from [D]6-14 would likely

Scheme 7. Deuterium–hydrogen exchange through the reversible 1,4-
RhI migration of allylrhodium species [D]6-7 and [D]6-8.

Scheme 8. The proposed mechanism of the 1,4-RhI migration.

Scheme 9. An alternative mechanism for the isomerization of the
prenylrhodium species 7 (Ref. [11]).
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result in deuterium–hydrogen exchange from both methyl
groups, which is not observed in the experiment shown in
Equation (4). Therefore, at present, we tentatively favor the
isomerization mechanism shown in Scheme 8.

In summary, allylrhodium intermediates generated from
g,g- or a,a-disubstituted potassium allyltrifluoroborates can
undergo isomerization into more complex allylrhodium
species, which then react with cyclic imines in highly
diastereoselective allylations to give products containing up
to three new stereochemical elements. The isomerization is
proposed to occur by a 1,4-RhI migration, and products
resulting from this process are favored when the combination
of the steric hindrance of the initially formed allylrhodium
species and the reactivity of the imine is such that allylation is
disfavored. Finally, the use of chiral diene–rhodium com-
plexes confers high enantioselectivities onto the reactions.
This work demonstrates the power of rhodium catalysis to
generate stereochemically complex products from simple
starting materials through isomerization processes. Further
applications of 1,4-RhI migrations involving allylrhodium
species are underway in our group.
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