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The ability to retrieve image data through hair-thin optical fibers promises to open up new applications in
a range of fields, from biomedical imaging to industrial inspection. Unfortunately, small changes in
mechanical deformation and temperature can completely scramble optical information, distorting any
resulting images. Correction of these dynamic changes requires measurement of the fiber transmission
matrix (TM) in situ immediately before imaging, which typically requires access to both the proximal and
distal facets of the fiber simultaneously. As a result, TM calibration is not feasible during most realistic usage
scenarios without compromising the thin form factor with bulky distal optics. Here, we introduce a new
approach to determine the TM of multimode or multicore optical fibers in a reflection-mode configuration,
without requiring access to the distal facet. We propose introducing a thin stack of structured metasurface
reflectors at the distal facet of the fiber, to introduce wavelength-dependent, spatially heterogeneous
reflectance profiles. We derive a first-order fiber model that compensates these wavelength-dependent
changes in the fiber TM and show that, consequently, the reflected data at three wavelengths can be used to
unambiguously reconstruct the full TM by an iterative optimization algorithm. Unlike previous approaches,
our method does not require the fiber matrix to be unitary, making it applicable to physically realistic fiber
systems that have non-negligible power loss. We demonstrate TM reconstruction and imaging first using
simulated nonunitary fibers and noisy reflection matrices, then using larger experimentally measured TMs of
a densely packed multicore fiber (MCF), and finally using experimentally measured multiwavelength TMs
recorded from a step-index multimode fiber (MMF). Parallelization of multiwavelength in situ measure-
ments could enable experimental characterization times comparable with state-of-the-art transmission-mode
fiber TM experiments. Our findings pave the way for online TM calibration in situ in hair-thin optical fibers.
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I. INTRODUCTION

Lensless imaging through hair-thin optical fibers is
a technique that promises to open up new areas in
biomedical imaging such as the following: in vivo

bright-field, dark-field, and fluorescence microscopy deep
in living brains [1,2]; quantitative phase and polarimetric
imaging with applications in early detection of cancer [3,4];
and endoscopic confocal microscopy for high-resolution
imaging [5]. For all these applications, accurate charac-
terization of the deterministic propagation of light through
the fiber, discretized as the transmission matrix (TM) [6], is
essential for imaging, whether used directly [4], or indi-
rectly via phase conjugation [7] or via optimization [8].
Unfortunately, the TM is highly sensitive to small

changes in mechanical deformation and temperature that
are unavoidable in living subjects, so the TM should be
calibrated immediately before imaging. The most direct
way of measuring a TM is to send predefined optical fields
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into the distal facet of the fiber (furthest from the operator)
and measure the resulting fields at the proximal facet
(nearest the operator). This widely-used approach has a
critical limitation: The distal facet of the fiber is deep within
the subject during imaging, so the predefined optical fields
cannot be reliably generated without additional bulky distal
optics that would compromise the ultrathin form factor.
Several methods have been proposed to overcome this

limitation. Placing a holographic plate on the distal facet of
the fiber, illuminated via a separate single-mode fiber,
creates a “virtual beacon” [9] that enables partial recovery
of the TM, sufficient for limited confocal imaging but not
wide-field imaging (e.g., quantitative phase). Highly accu-
rate modeling of TM perturbations is an effective approach
when the fiber refractive index and bending configuration
are known precisely, but it performs best for relatively short
lengths of fiber (less than 10 cm) [10]. Distal reflector
assemblies that introduce characteristic time delays have
been demonstrated but require a unique reflector for each
characterized propagation mode, which does not scale well
for high-resolution imaging applications [11].
Gu et al. proposed a method that does not require prior

knowledge of the refractive index and infers the forward TM
based on the reflectionmatrix (RM), i.e., light that hasmade a
round trip into the proximal facet, off a distal reflector, and
back out the proximal facet [12]. The transpose symmetry of
fiber TMs inherentlymeans that suchRMsexhibit a quadratic
relationship with their respective TMs, resulting in ambi-
guities during recovery [12,13]. These ambiguities reduce to
anN-dimensional vector in f−1; 1gN (for anN-pixel image)
when using a multimode fiber (MMF) that is near perfectly
lossless (unitary) [12] and can then be assumed as invariants
of the fiber and measured in advance [12]. There are two key
shortcomings of this approach: First, in practice, even
precision-manufactured MMF TMs are nonunitary [14,15]
because high-order modes, with more power concentrated in
the fiber cladding, tend to exhibit power leakage at bends
[16]. Second, light must be able to pass through the distal end
to enable imaging but should not couple back in during RM
measurement. Gu et al. addressed this by proposing to
include a shutter at the distal facet, but again, this added
bulk would compromise the ultrathin form factor [12].
Seeking an approach that is agnostic to the fiber refractive

index but maintains the hair-thin property of the fibers, we
demonstrate here a new method that enables measurement of
nonunitary fiber TMs of arbitrary size without access to the
distal facet and without adding distal bulk, making it suitable
for ultrathin flexible imaging devices. The key innovation is a
distal reflector, comprising a multilayer stack of spatially
heterogeneous, partially reflecting, wire-grid polarizers
(termed “metasurfaces”) and long-pass optical filters, that
is feasible to fabricate by combining previously validated
approaches [17–19]. The filter stack creates a spatially and
spectrally varying reflector, whose properties can be charac-
terized prior to use and will remain fixed throughout any

imaging experiment. We show that by combining multiple
RMs recorded at different wavelengths, it is possible to
estimate the instantaneous TM and then perform imaging at
another wavelength.
Using a first-order multiwavelength fiber model, we first

introduce a novel iterative optimization method that infers
the TM based on three RMs measured at different wave-
lengths and prior knowledge of the reflector properties. This
method does not require the TM to be unitary, only that it is
invertible, making it applicable to lossy fibers or general
scattering media. Following TM reconstruction, we then
show how imaging can be performed at a fourth wave-
length. Next, we computationally demonstrate the method
using simulated 32 × 32 nonunitary fiber matrices with
noise. We then demonstrate the recovery algorithm using an
experimentally measured multicore fiber (MCF) TM
(1648 × 1648) and a realistically simulated reflector stack,
showing that the method can be scaled up effectively.
Finally, we demonstrate TM recovery using an experimen-
tally measured multiwavelength TM of a step-index MMF
validating both that the method works for real MMF and
that the first-order physical model used to predict changes in
TM with wavelength is physically realistic. Our findings
underpin a compelling new approach for enabling ultrathin
flexible lensless imaging via optical fibers.

II. THEORY

A. Physical model for TM characterization
in reflection mode

The physical model used for reference in this paper is
shown in Fig. 1. We consider a well-established model
where an optical field containingM pixels, each a complex-
valued vector encoding amplitude and phase in two
orthogonal polarizations, is recorded. The sampled field

Optical
fibre

Reflector
structure

Proximal
facet plane

Distal
facet plane

FIG. 1. Physical model used for fiber TM characterization in
reflection mode. The proximal facet of the fiber is nearest to the
imaging system (i.e., outside of the subject), while the distal facet
is nearest the object being imaged (i.e., inside the subject).
Vectors at the distal facet are denoted using the prime symbol ( 0).
Here, Aλ represents the fiber TM at wavelength λ, Rλ the PM of
the reflector stack, and Cλ the round-trip RM, i.e., down the fiber,
off the reflector, back up the fiber.
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at some input plane (e.g., the proximal facet) is ordered into
a vector x ∈ C2M, and the sampled field at an output plane
(e.g., the distal facet) is similarly ordered into a vector
y0 ∈ C2M. In the forward propagation direction, these
vectors are related by the monochromatic fiber TM at
some wavelength, λ, Aλ ∈ C2M×2M [6,20]:

y0 ¼ Aλx: ð1Þ
Similarly, if we consider a field, x0 ∈ C2M, at the distal
facet propagating in the reverse direction to become a field,
y ∈ C2M, at the proximal facet, these are related by the
transpose of the fiber TM [12]:

y ¼ A⊤
λ x

0: ð2Þ
We then consider the impact of adding a reflector at the
distal facet of the fiber. In general, the reflector is
considered to be spatially heterogeneous in terms of its
localized Jones reflection matrices: There may be uncorre-
lated Jones matrices describing reflections at each spatial
point. Furthermore, if the reflector is offset from the fiber,
light may couple between spatial positions due to diffrac-
tion. This behavior is linear, so it is represented by a partial
reflector matrix (PM) at wavelength λ, Rλ ∈ C2M×2M, that
relates y0 and x0 (Fig. 1):

x0 ¼ Rλy0: ð3Þ
Next, combining Eqs. (1)–(3), we can determine the optical
field exiting the proximal facet in the reverse direction:

y ¼ A⊤
λ RλAλx ¼ Cλx; ð4Þ

where

Cλ ¼ A⊤
λ RλAλ ∈ C2M×2M ð5Þ

is a RM. Physically speaking, Cλ represents light taking
a complete round trip (or double pass): down the fiber,
off a given reflector, and back up the fiber (Fig. 1).
Experimentally, it is determined through multiple measure-
ments of vector pairs, ðx; yÞ, at the proximal facet of the
fiber. This process may lead to a nonsquare approximation
to Cλ, denoted as C̃λ. To enable computation of matrix
exponentials, C̃λ first needs to be downsampled into a

square matrix ˜̃Cλ, which is then used as a surrogate for Cλ

in what follows (Appendix A 1).
Given that we can characterize Rλ in advance

(Appendix A 2), and it will remain fixed throughout its
use, the goal is then to recover Aλ based on measurements
of Cλ and Rλ. At a single wavelength λ, this goal is not
possible, in general, unless the fiber TM is unitary [12,14].
We therefore propose to use several different reflectors with
PMs Rλ at wavelengths λ ¼ λ1;…; λQ, and measured RMs
Cλ; λ ¼ λ1;…; λQ, to enable unambiguous recovery of Aλ

for any λ ¼ λ1;…; λQ in the more general nonunitary case.
In order to recover Aλ for any λ ¼ λ1;…; λQ, given Rλq ,

Cλq with q ¼ 1;…; Q and Eq. (5), we must model the

relationship between TMs at different wavelengths. We
consider, in turn, two simple models: a “zeroth-order
model” and a “first-order model”.

B. Zeroth-order model and TM recovery

The zeroth-order model assumes that the TMs under the
different reflectors are the same, i.e.,

A ¼ Aλ1 ¼ Aλ2 ¼ … ¼ AλQ: ð6Þ
Physically, this corresponds to wavelength modulations
significantly less than the spectral bandwidth of the fiber
(see Appendix B). This model has the significant advantage
that if at least three wavelengths are used (Q ≥ 3) produc-
ing at least three RMs, A can be recovered in a relatively
straightforward way, relying largely on analytical steps
(Appendix C). This analytical approach further requires
that the eigenvalues of each PM, Rλ; λ ¼ λ1;…; λQ, must
be distinct for unambiguous TM recovery, in agreement
with previous findings [12]. Light must therefore be
coupled between different fiber modes and polarizations,
so a conventional partial mirror reflector would not work
because it preserves polarization states leading to repeated
matrix eigenvalues. This insight informs reflector design. In
reality, the relatively small spectral bandwidths of typical
imaging fibers (about 5 nm) would require the use of
optical components (e.g., filters) with impractically sharp
spectral responses to achieve different reflectance behavior
over such a small wavelength range.

C. First-order model and TM recovery

Given the limitations of the zeroth-order approach, we
next consider a model that relates TMs at different wave-
lengths, λp and λq, as

Aλq ¼ eðλp=λqÞ logAλp ; ð7Þ
where logðAλpÞ is the matrix logarithm of Aλp . This result
is derived using a coupled-mode theory treatment of optical
fibers to model a linear change in effective optical path
length of the fiber as the wavelength is varied [21,22]. The
full relationship between fiber TMs at different wave-
lengths is complex [23], so our linear approximation is
limited to the “spectral bandwidth” of the fiber. The model
considers a length of MMF as a sequence of infinitesimal
segments that introduce field coupling between modes,
dm ∈ C2M×1, such that

dm ¼ dAm; ð8Þ
where dA ∈ C2M×2M represents an infinitesimal coupling
matrix, and m ∈ C2M×1 represents the field in each of M
spatial modes over two orthogonal polarizations. This matrix
equation represents a system of 2M linear differential equa-
tions. The solution to these equations for any arbitrary input
set of modes, x, after traveling a distance l along the central
axis of the fiber, is given by a matrix exponential [21,24]:
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y0 ¼ edAlx: ð9Þ
Since the TM Aλ1 ¼ edAlλ1 , where lλ1 is the optical path
length along the central fiber axis at wavelength λ1, we can
obtain dA from the matrix logarithm of Aλ1 by

dA ¼ logAλ1

lλ1

: ð10Þ

Matrix logarithms, in general, produce degenerate solutions
with eigenvalues of the form γ þ i2πn=lλ1 , n ∈ Z, but
because of the bandwidth-limitation imposed here, we need
only consider n ¼ 0 (see Appendix B).
Neglecting dispersion within the relatively small (less

than 10 nm) spectral bandwidth, a reasonable assumption
for typical glasses [25], we determine the equivalent optical
path length lλq at the other characterization wavelengths
(λq ¼ λ2;…; λQ):

lλq ¼
λ1
λq

lλ1 : ð11Þ

Substituting Eqs. (10) and (11) into Eq. (9) produces
Eq. (7) as desired.
In contrast to the zeroth-order model, when the TMs are

related by this first-order model, it is not straightforward to
solve for Aλq based on Eq. (5) applied at different wave-
lengths. Therefore, we present an optimization-based ap-
proach that can compute Aλq for λq ¼ λ1;…; λQ by
repeatedly solving Eq. (5) at different wavelengths, exploit-
ing the relationship given by Eq. (7). This approach,
summarized in Algorithm 1, takes as input Rλq with
λq¼λ1;…;λQ, which are measured in advance, and Cλq with
λq ¼ λ1;…; λQ, which are measured in situ (Appendix A 2).

Algorithm 1. Recovering TMs using first-order model.

Input: Rλq , Cλq , λq, q ¼ 1;…; Q
1: Solve zeroth-order model to obtain initial estimate

of TM at wavelength λ1, Âλ1 .
2: while convergence criteria not met do
3: for λq ¼ λ1;…; λQ−1 do
4: Starting from Âλq , estimate TM at wavelength λq:

Â0
λq ¼ argminAkA⊤RλqA − Cλqk.

5: Convert TM estimate to wavelength λqþ1:

Âλqþ1
¼ eðλq=λqþ1Þ logðÂ0

λq
Þ.

6: end for
7: Starting from ÂλQ−1

, estimate TM at wavelength λQ:
Â0

λQ ¼ argminAkA⊤RλQA − CλQk.
8: Convert TM estimate to wavelength λ1:

Âλ1¼eðλQ=λ1ÞlogðÂ
0
λQ

Þ.
9: Compute convergence criteria.
10: end while

output TM at wavelength λ: Âλ ¼ eðλ1=λÞ logðÂ
0
λ1
Þ.

A solution to each suboptimization problem within the
loop, Â0

λq , may be found using an iterative gradient descent
solver butwill not be unique because of the quadratic formof
Eq. (5). By converting between wavelengths in the iterative
process above, such localminimamay be avoided as they are
typically not minima at other wavelengths, allowing the
global minimum to be found (save for a global sign error).
The convergence criteria may be defined as the number of
iterations or an error metric such as the relative change in
gradient between iterations. Both metrics are used in this
work, and for numerous simulated and experimentally
measured TMs, we observe empirically that Âλq reliably
converges to the true value of Aλq for λq ¼ λ1;…; λ3.

D. Physical model for imaging

Following TM recovery, the final objective is to perform
imaging. To do this, we switch the operation to a
new wavelength, the imaging wavelength λQþ1, longer
than the wavelengths used for TM characterization, i.e.,
λQþ1 > λ1;…; λQ, in order that light may pass through the
reflector stack (Sec. III A). The TM at this wavelength,
AλQþ1

, is computed from the recovered Aλ1 using Eq. (7).
Considering the physical model in the context of TM
characterization (Fig. 1), we first project a known illumi-
nation vector xillum at wavelength λQþ1 onto the proximal
facet of the fiber, giving, at the distal facet,

y0illum ¼ AλQþ1
xillum: ð12Þ

Distal
facet plane

Reflector
facet plane

Imaging
plane

Reflector
structure

Optical
fibre

FIG. 2. Physical model used for fiber imaging. Vectors at the
distal facet are denoted using the prime symbol ( 0), vectors at the
exit facet of the reflector stack are denoted with double prime ( 00),
and vectors at the imaging plane are denoted with triple prime
( 000). Here, Arefl represents the TM of the reflector stack, G is a
free-space propagation operator (e.g., Fresnel diffraction para-
metrized by the distance d between the reflector structure and the
imaging plane), and rtarget is the reflectance profile of the sample.
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Next, we consider the physical model from the perspective
of imaging (Fig. 2), where light passes through the full
reflector structure, which at wavelength λQþ1 must be
partially transmissive. Denoting the TM of the reflector
stack at λQþ1 by Arefl ∈ C2N×2M, the illumination field
exiting the reflector stack is then

y00illum ¼ AreflAλQþ1
xillum; ð13Þ

with y00illum ∈ C2N . Setting N ≥ M allows oversampled
illumination fields. Note that y00illum can be propagated by
some linear operator,G ∈ C2N×2N , through free space (e.g.,
Fresnel or Fraunhofer propagation) before reaching the
target where the field will be

y000illum ¼ GAreflAλQþ1
xillum: ð14Þ

Here, G is parametrized by the distance d between the
subject and the distal surface of the reflector structure
(Fig. 2). In general, d is not known a priori but can be
estimated during operation.
Representing the target by a vector, rtarget ∈ C2N , we

next perform an elementwise (Hadamard) product with the
illumination to give

x000
target ¼ y000illum∘rtarget: ð15Þ

This light reflected from the target propagates backwards,
first through free spaceG⊤, then through the stack,A⊤

refl, to
produce a field at the distal facet:

x0
target ¼ A⊤

reflG
⊤x000

target: ð16Þ

Next, we must also consider the illumination light that is
reflected back from the reflector stack:

x0
refl ¼ RλQþ1

AλQþ1
xillum: ð17Þ

We sum the two fields and propagate back through the
fiber, giving

ytotal ¼ A⊤
λQþ1

ðx0
target þ x0

reflÞ ð18Þ

as the measured quantity at the camera plane.

E. Image recovery

The goal is to recover rtarget from the raw measured data
ytotal [Eq. (18)]. To meet this goal, we first recover x000

target

by rearrangement of Eq. (18) and substitution of Eqs. (16)
and (17):

ðA⊤
λQþ1

Þ−1ytotal ¼ ðx0
target þ x0

reflÞ;
x0
target ¼ ðA⊤

λQþ1
Þ−1ytotal −RλQþ1

AλQþ1
xillum;

x000
target ¼ ðA⊤

reflG
⊤Þþ(ðA⊤

λQþ1
Þ−1ytotal

−RλQþ1
AλQþ1

xillum); ð19Þ

where ð…Þþ represents a generalised inverse because Arefl
may be nonsquare. Note that Arefl and RλQþ1

are known
from prior calibration to their first use (Appendix A 2),
AλQþ1

is estimated using Eq. (7) and Aλ1 (recovered using
Algorithm 1), G can be estimated in postprocessing, xillum
is determined by the operator, and ytotal is the measured
returned field. Therefore, all quantities on the right-hand
side (rhs) of Eq. (19) are known, enabling recovery of
x000
target.
We next correct for the illumination profile incident

on the target, which may resemble speckle but is deter-
ministic. Using the model derived in Sec. III C, the noise at
pixel ðx; yÞ is considered circularly symmetric, complex
Gaussian distributed with standard deviation σ, so its
power, nðx; yÞ, is drawn from a χ2 distribution with
2 degrees of freedom (i.e., a Rayleigh distribution):

nðx; yÞ
σ2

∼ χ2ð2Þ:

Using an empirically measured value for σ, we use the χ2

with 2 degrees of cumulative distribution function,
χ2CDFð…Þ, to estimate for each pixel a probability that it
is generated by noise, pnðx; yÞ:

pnðx; yÞ ¼ χ2CDF

�kx000
targetðx; yÞk2

σ2

�
:

We can order pnðx; yÞ across all ðx; yÞ into a vector denoted
as pn. Next, we separate the known sample illumination
y000illum determined using Eq. (14), into amplitude and phase
parts as

aillum ¼ jy000illumj; θillum ¼ argðy000illumÞ:

Finally, we use elementwise (Hadamard) division by
a probabilistically weighted term to estimate r̃target as
follows:

r̃target ¼ x000
illum⊘f½ð1 − pnÞ∘aillum þ pn�∘eiθillumg: ð20Þ

This approach ensures that pixels with low illumination
amplitudes, and thus high noise, are not overamplified
and experience only a phase correction. Pixels with larger
illumination amplitudes, more likely to contain useful
information, experience both amplitude and phase cor-
rection. In this way, specklelike artifacts in r̃target are
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reduced. The full imaging process is summarized in
Algorithm 2.

Algorithm 2. Image recording and recovery.

Input xillum, ytotal, G (estimated using d), σ, RλQþ1
, AλQþ1

, and
Arefl
1: Estimate TM at imaging wavelength, AλQþ1

, in situ using the
process of Sec. II C.

2: Send known illumination profile xillum into fiber.
3: Record returned field ytotal.
4: Estimate G by estimating distance d between distal facet and

sample.
5: Recover illuminated sample estimate:

x000
target ¼ ðA⊤

reflG
⊤Þþ(ðA⊤

λQþ1
Þ−1ytotal −RλQþ1

AλQþ1
xillum):

6: Compute probability that each sample pixel is produced by
noise:

pnðx; yÞ ¼ χ2CDF

�
1;
kx000

targetðx; yÞk2
σ2

�
;

pn ¼ ½pnðx1; y1Þ; pnðx2; y2Þ;…�:

7: Apply probability illumination correction to x000
target,

r̃target ¼ x000
illum⊘f½ð1 − pnÞ∘jy000illumj þ pn�∘ei argðy000illumÞg:

8: if image appears out of focus then
9: adjust d, then go to step 4
10: end if
11:

Output Recovered image, r̃target.

III. METHODS

A. Implementation of reflector

To physically achieve different PMs at different wave-
lengths, we propose a multilayer reflector stack concept
[Fig. 3(a)]. The envisaged stack comprises layers of long-
pass optical filters so that light penetrates to different depths
at different wavelengths [Fig. 3(b)]. Here, we use three
filter layers to enable four distinct PMs—three at wave-
lengths used for in situ TM characterization (λ1, λ2, λ3) and
one at the wavelength used for imaging (λ4). This method
corresponds to setting Q ¼ 3 in Sec. II. We choose this
number to minimize experimental and fabrication complex-
ity, but knowing that Q ¼ 1 only admits a solution for
unitary TMs [12] and finding empirically that Q ¼ 2 does
not conclusively admit a unique solution. By contrast, the
Q ¼ 3 case is known in the zeroth-order model to admit a
unique solution (Appendix C), a property that is empiri-
cally found to hold in the first-order model.
A reflector suitable for both the zeroth-order and first-

order models must couple light pseudorandomly between

different modes of the fiber, including polarization modes,
to create distinct RM eigenvalues with high probability
(Sec. II B). To achieve this goal, we propose placing atop
each filter a thin (20–50-nm) layer comprising spatially
heterogeneous wire-grid polarizers [Fig. 3(c)] fabricated,
for example, using electron beam lithography [17]. To act
as optical polarizers, the fabricated wires must have width
and pitch less than the wavelength of light (< λ=2), so these
layers are classified as “metasurfaces.” Spatial hetero-
geneity is achieved using arrays of partial polarizer cells
that have varying linear diattenuation (or dichroism) and
diattenuation axis orientations [Fig. 3(c)]. These structures
can be characterized before use, for example, using the
process in Appendix A 2, and are expected to remain stable
throughout operation.
The optical filters ensure a different PM at each wave-

length, Rλ; λ ¼ λ1;…; λ4, because of the different sums of
wavefronts occurring due to reflection and absorption from
different layers [Fig. 3(a)]. Tuning a laser can then switch
between reflectors without any actuation at the distal facet.
The optimal wavelengths to use, ensuring maximally distinct
PMs while remaining safely within the fiber’s spectral
bandwidth, are determined through a simple optimization
process (Appendix D). Once these wavelengths are selected,
the propagation of light through the multiple layers of the
stack is simulated to give a physically realistic PM at each
selected laser wavelength (see Appendix E).

B. Fiber matrices

For a first proof of principle, we simulated fiber TMs of
size 32 × 32, corresponding to 16 pixels of spatial reso-
lution in two orthogonal polarizations (Appendix F). Next,
we tested experimentally measured TMs from two fibers.
The first is a MCF with TM of size 1648 × 1648

measured at a single wavelength of 850 nm [4]. This
TM is used as Aλ1 , and TMs at other wavelengths (Aλ2 ,
Aλ3 , Aλ4) are generated using Eq. (7). This fiber validates
that the recovery method is feasible with large TMs;
however, since the TMs at other wavelengths are artificially
generated, it is not a physical validation of the multi-
wavelength first-order model.
We therefore also tested multiwavelength experimentally

measured TMs from a second fiber: a 2-m piece of step-
index MMF with 420 × 420 TMs measured across a
wavelength range 1525–1567 nm in steps of 0.08 nm
[26]. This fiber validates the multiwavelength first-order
model, which is central to the scheme presented here.
Because of the step-index nature of the fiber, the higher-
order modes have relatively narrow spectral bandwidth (see
Appendix B 2). Therefore, to improve bandwidth perfor-
mance, only the 110 lowest-order modes are used, giving
submatrices of size 110 × 110. Here, we use a wave-
length spacing of Δλ ¼ 0.9 nm, giving TMs measured at
characterization wavelengths λ1 ¼ 1525.6 nm, λ2 ¼
1526.5 nm, and λ3 ¼ 1527.4 nm, and imaging wavelength

GEORGE S. D. GORDON et al. PHYS. REV. X 9, 041050 (2019)

041050-6



λ4 ¼ 1528.3 nm. This wavelength separation is sufficient
to practically enable the use of multiple off-the-shelf optical
filters in an experimentally realized reflector stack.
The next step is to convert these TMs into RMs so that

the RMs can be used to test reconstruction of the TMs, thus
validating the recovery algorithm. We first simulate reflec-
tors to produce PMs by detailed simulation of multilayer
reflector stack structures, introduced in Sec. III A, assum-
ing off-the-shelf materials (glass, standard optical filters)
and randomly generated wire-grid polarizer surfaces (see
Appendix E). The resulting PMs are combined with the
TMs to produce RMs as per Eq. (5).

For TMs and RMs generated using the zeroth-order
model, the equations of Appendix C are solved using code
written in MATLAB. In the first-order case, the recovery
algorithm (Algorithm 1) is implemented in the TensorFlow
package using the GPU-optimized Adam stochastic gra-
dient descent optimizer for improved speed [27]. The
zeroth-order recovery algorithm typically finishes in less
than 1 s. However, the first-order iterative algorithm is
significantly slower and can take several hours for 1500
iterations on the 1648 × 1648 fiber matrix on a single Tesla
K40 GPU. For smaller 32 × 32 matrices, requiring about
500 iterations, the running time is typically less than 5 s.

FIG. 3. Design of a wavelength-dependent reflector stack: (a) Proposed stack structure, attached to the distal facet of an optical fiber,
comprising layers of glass and long-pass optical filters with wire-grid polarizer metasurfaces sandwiched between. Light paths are
shown for the four different wavelengths used: the characterization wavelengths λ1, λ2, and λ3, each producing three PMs,
Rλ; λ ¼ λ1;…; λ3; and the imaging wavelength λ4 that passes through the stack. Optical fields exiting the fiber propagate through
each layer via diffraction and are partially reflected at the metasurfaces generating backward propagating wavefronts. The sum of all
backward propagating components represents the field coupled back into the fiber. (b) Spectral transmission profiles of the three long-
pass optical filters with example imaging and characterization wavelengths labeled. (c) Example design of wire-grid polarizer
metasurface comprising an array of diattenuating cells of size 1–2 μm containing nanowire gratings with varying pitch (50–200 nm),
duty cycle (25%–75%), and orientation (0 − 2π). The pitch and duty cycle determine the linear diattenuation of each cell, D, and the
orientation determines the diattenuation axis θD. These are used to form a Jones matrix for each cell that determines its optical
transmission and reflection.
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C. Noise model

The relatively strong optical confinement (i.e., wave
guiding) during RM characterization will result in large
detected optical power and, therefore, approximately
Gaussian shot noise. Laser power fluctuation (relative
intensity noise) is not inherently Gaussian, but after time
averaging and repeated matrix operations, it creates a
Gaussian contribution to overall noise [28]. There will
also be a Gaussian contribution from electronic thermal
noise introduced by the image sensor. As there are many
matrix operations to transform these raw images into the
RMs, the repeated addition of variables (or combinations
thereof) produces circularly symmetric, complex, zero-
mean Gaussian noise by the central limit theorem, under
the assumption of independent noise between pixels [4,29].
Therefore, we model the noise in the system by adding

random matrices with independent, circularly symmetric,
complex Gaussian elements to each PM (Rλ1 ,Rλ2 ,Rλ3) and
each RM (Cλ1 , Cλ2 , Cλ3). For example, a noisy version of
Rλ3 is given by

R̂λ3 ¼ Rλ3 þN ð21Þ
where each element of N is a complex random variable,
n ¼ aþ ib, drawn from the distributions

a ∼N ð0; σnÞ; b ∼N ð0; σnÞ: ð22Þ
The same distributions, parametrized by σn, are used to

generate noisy matrices R̂λ1 , R̂λ2 , Ĉλ1 , Ĉλ2 , and Ĉλ3 for TM

recovery, and noisy matrices Ârefl, R̂λ4 , and ŷtotal for
imaging. We vary σn over a wide range, including values
reflecting empirically observed experimental noise (see
Fig. 5) [4].

D. Performance metrics

We define several normalized error metrics to validate
performance. The first quantifies the performance of the
TM recovery algorithm by measuring the error between the
recovered TM at the imaging wavelength, Âλ4 , and the ideal
TM Aλ4 , given as

ϵmat ¼
kÂλ4 −Aλ4k

kAλ4k
¼ kðÂλ4A

−1
λ4

− IÞAλ4k
kAλ4k

; ð23Þ

where jj…jj represents a matrix norm. A second error
metric quantifies the performance of image recovery using
a recovered TM:

ϵmat;target ¼
kÂλ4rtarget −Aλ4rtargetk2

jjAλ4rtargetjj2

¼ kðÂλ4A
−1
λ4

− IÞAλ4rtargetk2
kAλ4rtargetk2

; ð24Þ

where jj…jj2 is the l2 norm and rtarget is the ideal image. A
further metric extends the quantification of image recovery
to include errors introduced in the illumination of the target:

ϵtarget ¼
jjR̂target − rtargetjj2

jjrtargetjj2
; ð25Þ

where R̂target is the recovered illumination-corrected image
as defined in Eq. (19).
Finally, to quantify the unitarity of a TM, Aλ, we use the

matrix condition number κðAλÞ, defined as the ratio

κðAλÞ ¼
ρmaxðAλÞ
ρminðAλÞ

; ð26Þ

where ρmaxðAλÞ is the largest singular value of Aλ and
ρminðAλÞ is the smallest. Therefore, the condition number
of a unitary matrix is equal to 1.

IV. RESULTS

A. Simulated TMs

Using the first-order method (Algorithm 1), we recover a
32 × 32 nonunitary (condition number κ ¼ 33.3) simulated
TM [Fig. 4(a)]. The elementwise error is less than 0.05
[Fig. 4(b)], indicating a faithful recovery of the true TM.
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FIG. 4. Recovery of a simulated TM using the first-order
recovery algorithm: (a) The original simulated TM is compared
with the recovered TM (noise level σn ¼ 10−3) demonstrating
successful recovery. (b) Proportional elementwise error in TM
reconstruction (maximum less than 0.05) after 300 iterations of
first-order model.
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Next, we examine the impact of noise by repeating this
recovery process for 64 different noise realizations with
increasing noise power (see Sec. III C). Matrices are
generated using either the zeroth- or first-order model and
then reconstructed using the respective recovery algorithm.
The normalized reconstruction error ϵmat;target [Eq. (24)] for
the zeroth-order model deteriorates rapidly beyond a noise
threshold [visualised as a “hump” in Fig. 5(a)]. In the first-
order model, which relies on an optimization process for
recovery, such an instability is not observed, suggesting the

cause may be numerical error accumulation in the analyti-
cally based zeroth-order model. The first-order model
exhibits improved stability at higher noise levels (such as
those encountered experimentally [4]) because the optimi-
zation process explicitly seeks to minimize the effect of
noise. At lower noise levels, first-order performance reaches
an error plateau determined by the number of iterations.
Furthermore, testing 200 different random TM realiza-

tions, simulating possible perturbations of the fiber or
manufacturing variations, shows that after 500 iterations
of Algorithm 1, the error converges towards zero with
greater than 50% of matrices having error less than 0.1 and
90% having error less than 0.4 [Fig. 5(b)]. Negligibly small
noise power (θn ≈ 0) is used so as to observe only the effect
of perturbations.

B. Experimentally measured MCF TM

We next test Algorithm 1 using an experimentally mea-
sured MCF TM [4]. The raw nonsquare TM is reversibly

FIG. 5. Impact of measurement noise and different perturbation
conditions on recovery. (a) Error in reconstructed images for
different levels of noise in measured quantities (ϵmat;target and σn
are defined in Sec. III D). At low noise levels, the error of the
first-order model is seen to be limited by the number of iterations,
but at higher noise levels, it converges to a trend consistent with
the zeroth-order model. The first-order approach is more robust at
higher noise levels due to the use of iterative optimization. A
typical upper bound for noise encountered experimentally [4] is
indicated to show that recovery from real experimental data is
feasible. (b) Histogram showing the effect of 200 different
random TM realizations, i.e., different fiber perturbations, under
the first-order model. The error after the initial estimate (gen-
erated by applying zeroth-order recovery to the first-order data)
can be large (> 1), but after 500 iterations of Algorithm 1, 50% of
TMs have errors less than 0.1 and 95% have errors less than 0.4.
The rtarget vector used to determine ϵmat;target is a random complex
unit vector.
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FIG. 6. First-order recovery of an experimentally measured
MCF TM. (a) Original TM using data from Ref. [4] and the first-
order recovered TM, showing high visual similarity, which
indicates successful recovery. (b) Proportional elementwise error
in TM reconstruction (maximum less than 10−3).
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“downsampled” to a square of size 1648 × 1648 [Fig. 6(a)]
using the process described in Appendix A 1 to form Aλ1 ,
which has a condition number of κ ¼ 3.2. Equation (7) is
then used to simulate TMs at the other wavelengths. The
optimal parameters for the simulated stack (seeAppendixD)
are determined as follows: filters centered at 840.0 nm,
842.7 nm, and 849.3 nm; characterization wavelengths of
λ1 ¼ 843.4 nm, λ2 ¼ 844.9 nm, and λ3 ¼ 846.5 nm; and
imaging wavelength λ4 ¼ 850.4 nm. Using detailed simu-
lations of the reflector stack (Appendix E), we successfully
recover the TM at the imaging wavelength Aλ4 [Fig. 6(a)].
After 1500 iterations (taking 2.1 hours), the maximum
elementwise error of the recovered matrix is less than
10−3 [Fig. 6(b)]. Errors on the diagonal appear slightly
exaggerated because diagonal entries of the ideal matrix (the
largest magnitude entries) are used for elementwise nor-
malization across the whole matrix.
Having recovered the TM, we next test the imaging

procedure (Algorithm 2). A 28 × 28 image is simulated and
then successfully recovered (Fig. 7). The image, rtarget with
reference to Fig. 2, comprises 28 x positions ×28 y
positions ×2 polarizations ¼ 1568 degrees of freedom
(i.e., 2N ¼ 1568 as defined in Sec. II E), which ensures

that full reconstruction through a TM of dimension 1648 ×
1648 (i.e., 2M ¼ 1648 as defined in Sec. II E) is possible.
The total target reconstruction error ϵtarget [Eq. (25)] is less
than 0.1 and arises primarily from illumination correction.
Lower illumination levels result in higher noise (see
Sec. II E) and could thus be improved by averaging over
multiple random illumination conditions, i.e., speckle
averaging [30]. Under conditions of perfectly uniform
illumination, we calculate that ϵtarget becomes less than
0.002, giving a lower bound on errors dominated by other
factors, e.g., computational limitations. Retrieving this
image using the recovered TM takes less than 0.1 s.

C. Experimentally measured multiwavelength
MMF TM

Finally, we successfully demonstrate Algorithm 1 on
an experimentally measured multiwavelength fiber TM
data set from a 2-m piece of step-index MMF [26].
In this case, the characterization wavelengths are chosen
from amongst those recorded in the data set: λ1 ¼
1525.6 nm, λ2 ¼ 1526.5 nm, and λ3 ¼ 1527.4 nm, and
imaging wavelength λ4 ¼ 1528.3 nm. A 110 × 110 subset
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FIG. 7. Successful reconstruction of an amplitude, phase, and
polarization image of a target at the distal facet using a TM
recovered using the first-order model. The recovered image error
is largely driven by illumination correction (see Sec. II E).
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FIG. 8. First-order recovery of an experimentally measured,
step-index MMF TM, using TMs recorded at multiple wave-
lengths (1525.6 nm, 1526.5 nm, 1527.4 nm, and 1528.3 nm) [26].
(a) Original TM using data from Ref. [26] and the first-order
recovered TM, showing high visual similarity, which indicates
successful recovery. (b) Proportional elementwise error in TM
reconstruction values typically less than 0.05 except for the very
lowest-order modes that exhibit an error of about 0.2 due to phase
error.
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of the full TM data set is used in order to limit the spectral
bandwidth appropriately (see Appendix B 2), and it has a
condition number κ ¼ 1.54. After 475 iterations taking
14.5 minutes, the algorithm converges with significant
visual similarity [Fig. 8(a)]. The matrix error ϵmat
[Eq. (23)] reaches a value of 0.26. Looking at the
elementwise error [Fig. 8(b)], we see that the error is
typically less than 0.05, except in the three lowest-order
modes, in which the value reaches 0.2. This error is
observed to manifest as phase errors, with the amplitude
values being largely accurate.

V. DISCUSSION

The ability to form images through hair-thin optical fibers
is currently limited due to the need for in situTMcalibration.
To overcome this limitation, we propose a method for
recovering the instantaneous TM of a fiber, based on
instantaneous reflection-modemeasurements combinedwith
a priori reflection- and transmission-mode characterization
of a reflector stack. Using three reflectors placed at the distal
tip of the fiber, each of which produces a different reflection
matrix based on a small modulation in wavelength, the
imaging TM can be determined. As the fiber TM will differ
slightly at each of these wavelengths, we developed a first-
order method of modeling and compensating this change
using matrix exponentials, which is valid within the spectral
bandwidth of the fiber. Under these assumptions, we dem-
onstrate that it is possible to recover TMs and perform
imaging using realistic optical components with acceptable
noise tolerance for both simulated and measured TMs.
In particular, we demonstrate TM recovery using an

experimentally measured multiwavelength TM of a step-
index MMF, validating both that the method works for real
MMF and that the first-order physical model used to predict
changes in TM with wavelength is physically realistic. Our
findings provide the basis for in situ TM calibration and
imaging through hair-thin optical fibers in living subjects.
Furthermore, because the method does not place any
requirements on the singular-value distribution of the
TM other than that the TM is invertible, it may also be
applicable to more general scattering media with very
uneven distributions of singular values [31].
Nonetheless, several challenges must be overcome for

experimental deployment of the proposed method. Given
the demonstrated validity of the current model within the
spectral bandwidth of the fiber, at 850 nm the wavelength
modulation would need to be within about 5 nm for a
typical 1-m length of MCF [32] or at 1550 nm within about
10 nm for a typical 2-m length of MMF [33]. In biomedical
endoscopy, fiber lengths are typically 1–2 m; however, for
applications in industrial inspection, greater lengths may be
needed. To extend the model to work for smaller bandwidth
fibers, e.g., longer fibers or MMFs with very large numbers
of modes, the characterization bandwidth could be reduced.
The characterization bandwidth is typically limited by the

“sharpness” of available optical filters to enable significant
modulations in reflectance or absorbance over very small
wavelength ranges. Custom-fabricated filters for charac-
terization may offer improved performance over off-the-
shelf products. Alternatively, more complex models of the
fiber could be used. Complete propagation models of
graded-index MMF have been used to accurately compen-
sate bending [10], but they require precise a priori knowl-
edge of the refractive index profile. A major advantage of
the approach presented here is that no such prior knowledge
of the fiber is required, enabling the use of more complex
refractive index profiles such as MCF. Expanding on this, it
may be possible to develop a more complex model that uses
the differential changes in the TM with respect to wave-
length to model the fiber over a larger bandwidth, for
example, using machine learning techniques [34,35].
Another challenge is speed of operation, which is

determined by three components: experimental TM char-
acterization, computational TM recovery, and image
retrieval. First, for experimental TM characterization, our
method uses a standard approach of sequentially projecting
input fields onto the fiber facet and recording the resultant
fields exiting the fiber on an image sensor. Previous works
have achieved 100 input fields per second with digital
micromirror devices [36] and 500 input fields per second
with galvanometric scanning mirrors [30], though they are
ultimately limited by camera frame rates. Our method must
perform this TM characterization at three wavelengths, but
it is well suited to parallelization, for example, by using
multiple fixed wavelength lasers in place of a single tunable
laser and multiple image sensors with dichroic filters. We
therefore anticipate that future implementations of our
method could achieve TM characterization speeds compa-
rable to the state of the art in transmission-mode systems.
However, further speed improvement is required for im-
aging live specimens that may have tissue decorrelation
times as short as 50 ms [37]. Techniques that exploit spatial
prior knowledge and sparsity to parallelize TM characteri-
zation [29] and novel high-speed cameras represent ena-
bling steps towards real-time operation. Second, for
computational TM recovery, our first-order iterative algo-
rithm takes several minutes to recover a 110 × 110 TM.
Therefore, this algorithm requires offline reconstruction of
TMs and images, although it may still prove useful in
combination with a real-time imaging method used for
positioning (e.g., white-light imaging through a multicore
fiber). Conventional transmission-mode fiber imaging sys-
tems can avoid explicit TM recovery using the “optical
phase conjugation” approach that exploits orthogonal input
fields [38]. The reflection mode system here would benefit
from the development of equivalent algorithms that avoid
explicit TM recovery, or by replacing the iterative algo-
rithm with an analytical solution—for example, the largely
analytical, zeroth-order TM recovery algorithm presented
here runs in seconds. Additional speed gains may also be
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obtained through the use of customised hardware, e.g.,
FPGAs. Third, because the TM is explicitly recovered, the
image retrieval time is minimal (< 0.1 s).
A final challenge is fabricating and installing an appro-

priate reflector stack at the distal tip of the fiber. While
optical filters can be purchased off the shelf, pixellated
wire-grid polarizer metasurfaces require custom fabrication
using nanofabrication techniques such as electron-beam
lithography. Single-layer devices of this nature have
already been demonstrated academically [17,18,39] and
commercially [40]. Furthermore, in this application, meta-
surfaces can be characterized in situ, significantly relaxing
fabrication tolerances. Extending fabrication to make
multilayer reflector stacks will involve a number of addi-
tional deposition, lithography, and processing steps.
However, the concept of using cascaded optical filters
for reflection-mode Mueller matrix recovery has been
experimentally validated [19]. Combined with our rigorous
simulation of reflector stacks, this concept provides sig-
nificant support for the feasibility of future fabrication of
stacks with the required optical properties.

VI. CONCLUSION

In summary, we have developed a new approach to
determine the transmission matrix of a multimode optical
fiber without requiring access to the distal facet. We have
demonstrated successful transmission matrix recovery and
imaging using realistic optical components with acceptable

noise tolerance for simulated transmission matrices, and
those experimentally measured from a multicore fiber and a
multiwavelength multimode fiber. The proposed method
paves the way for experimental realization of lensless
imaging through hair-thin optical fibers.
Data associated with research published in this paper can

be accessed at [49].
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APPENDIX A: CONCEPTUAL EXPERIMENTAL
IMPLEMENTATION

1. Downsampling reflection matrices

Algorithm 1 uses matrix exponentials to account for the
effect of small wavelength modulations on fiber TMs.
Matrix exponentials are defined only for square matrices,
but in practical implementations, we may measure RMs
that are nonsquare, denoted C̃λ with λ ¼ λ1;…; λ4, due to
different sampling schemes for x and y of Fig. 1. For
example, the number of camera pixels often greatly exceeds
the number of input calibration fields [4]. In this scenario,
consider 2M calibration samples ðx̃s; ỹsÞs¼1;…;2M, where
x̃s ∈ CP×1 and ỹs ∈ CQ×1. Denoting C̃λ ∈ CQ×P as a
mapping of the fiber ỹ ¼ C̃λx̃ (with reference to Fig. 1),

we wish to determine a downsampling process to obtain a

square RM, ˜̃Cλ ∈ C2M×2M, which may be used in our
recovery algorithms.
One way of determining this process is to estimate

the largest singular values and corresponding left singular
vectors of C̃λ ∈ CQ×P, which should match those of
˜̃Cλ ∈ C2M×2M. We let

X̃cal ≔ ½x̃1;…; x̃2M� ∈ CP×2M;

Ỹcal ≔ ½ỹ1;…; ỹ2M� ∈ CQ×2M ðA1Þ

so that Ỹcal ¼ C̃λX̃cal. If the coefficients of an input signal
x̃ ∈ CP×1 with respect to the 2M-dimensional calibration
basis are denoted by x̃cal ∈ C2M×1, i.e., x̃ ≔ X̃calx̃cal, then

Deploy endoscope in realistic use scenario with
bending and temperature conditions unknown
a priori

Start endoscope operation

Characterise reflector stack before
first use (cf. Fig. 11)

Project calibration patterns onto fibre proximal
facet at 3 different wavelengths to activate
different reflectors and measure amplitude, 
phase and polarization of reflected light (cf. Fig. 12)

Illuminate sample at imaging wavelength (cf. Algori-
thm 2)

Record image of sample under different illumination
states (e.g. spatial variation, polarization diversity)

Use recovered TM to reconstruct amplitude, phase
and polarization image of sample

Output recovered image of amplitude, phase and
polarization

Reconstruct reflectance matrices from 
calibration measurements and known input fields

Downsample reflectance matrix if non-square
(see, for example, [29]) and Appendix A1

Find zeroth-order approximation of TM 
(cf. Appendix C and Fig. 14)

Run iterative optimisation to find first-order approx-
imation of TM (cf. Algorithm 1)

Upsample recovered TM to obtain full size matrix

Recovering instantaneous
transmission matrix

Imaging

FIG. 10. Flowchart detailing the full process of TM recovery and imaging using the reflection mode endoscope setup. Details of
specific subtasks are given in figures and sections as indicated.
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its output signal is given as ỹ ¼ C̃λx̃ ¼ C̃λX̃calx̃cal ¼
Ỹcalx̃cal. In other words, Ỹcal is a mapping of the fiber
from the 2M-dimensional calibration basis to CQ×1, and
our hope is that the largest 2M singular values and

corresponding left singular vectors of Ỹcal approximate

those of C̃λ and
˜̃Cλ. We therefore first truncate the singular

values and right vectors of C̃λ to produce C̃0
λ ∈ CQ×2M.

Next, we further compress the matrix C̃0
λ into a square

matrix ˜̃Cλ ∈ C2M×2M, which preserves the same singular
values and left singular vectors. This can be done via a
process such as that described in Ref. [29]. Following this

process, ˜̃Cλ is square, so it can be used for TM recovery as
described in Secs. II B and II C.
This method enables a factorization of C̃λ into the

product of ˜̃Cλ ∈ C2M×2M and the downsampling matrix

T ∈ CP×2M such that C̃λ ¼ T ˜̃Cλ. Once the TM has been
determined, T can be used to reconstruct C̃λ if desired.

2. Proposed experimental design

A conceptual experimental setup for reflection-mode
TM recovery is shown in Fig. 9. There are two key sections:
the illumination arm and the detection arm. These perform
similar functions to previous work [4] but are both located
at the proximal fiber facet. There is also an additional input
that allows characterization in the transmission mode prior

Connect distal end of fibre to transmission mode
input and insert beam stop to block light from
proximal facet (cf. Fig. 9)

Measure fibre TM at each designed characteriza-
tion wavelength (    ,    ,     ) and the imaging 
wavelength (    ) by tuning the laser source.  This 
gives TMs        ,        ,        and 

Insert reflector stack and butt-couple against distal
end of fibre (gently so as not to perturb fibre).  Fix
or glue in place. Block transmission mode path with
beam stop and open reflection mode path.

Measure reflectance matrices (       ,        ,       ,       )
at the characterization and imaging wavelengths 
This will give the product of the TMs and the reflector
PMs (        ,        ,       ,       ). Using the known TMs
(       ,        ,       ,        ) determine the PMs

One-off characterization before first use complete

Block reflection mode path and measure combined
TM of fibre and reflector stack at imaging 
wavelength (     )

Determine TM of reflector stack,              , at imaging
wavelength 

Start one-off characterization before first use

FIG. 11. Flowchart detailing the measurement process required
to accurately characterize the reflector matrices of the reflector
stack at different wavelengths prior to the first use of the system.
This process is achieved using the experimental setup of Fig. 9.

FIG. 12. Flowchart detailing the series of measurements re-
quired to recover instantaneous RMs using the setup of Fig. 9.
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to use. The tunable laser is required to provide a high-
coherence source at the different characterization and
imaging wavelengths. These can typically be tuned in
steps of 0.1–0.2 nm, sufficient to cover a range of fiber TMs
with different spectral bandwidths. A parallelized design
would have the same basic structure but with several
multiplexed fixed wavelength lasers and several image
sensors multiplexed by dichroic filters.
Figure 10 shows a flow chart for the full operating

process, using the setup of Fig. 9, for recovering TMs and
performing imaging.
Before using the system for the first time, we must

take accurate measurements of the reflector stack RMs
at all wavelengths and its TM at the imaging wavelength.
A flowchart detailing this process is given in Fig. 11.
Nonsquare measured TMs Ãλ and RMs C̃λ with λ ¼
λ1;…; λ4 may, if needed, be downsampled to form square
approximations as described in Appendix A 1.
The sequence of experimental measurements required to

record instantaneous RMs at each respective wavelength
[Cλ; λ ¼ λ1;…; λ4 of Eq. (5)] is illustrated in Fig. 12.

APPENDIX B: SPECTRAL BANDWIDTH

1. Phase change within spectral bandwidth

Let us call the center wavelength of the fiber λ0 and the
spectral bandwidth of the fiber Δλfib. The bandwidth in
frequency units is

Δf ¼ f1 − f2 ¼
c

neffðλ0 − Δλfib=2Þ
−

c
neffðλ0 þ Δλfib=2Þ

¼ c
neff

�
1

λ0 − Δλfib=2
−

1

λ0 þ Δλfib=2

�
;

where neff is the effective refractive index of the fiber (e.g.,
around 1.5 for glass) and c is the speed of light in a vacuum.
The time-of-flight difference for the longest path lengths is
given by

Δt ¼ 1

Δf
¼ neff

c
1

ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þ : ðB1Þ

A fiber with physical length l1 will produce a shortest time
of flight across all modes of approximately

t1 ¼
l1
c
neff

ðB2Þ

and therefore a longest time of flight of

t2 ¼ t1 þ Δt: ðB3Þ

This case results in an effective optical path length for the
longest path of

l2 ¼
c
neff

t2 ¼
c
neff

ðt1 þ ΔtÞ ¼ c
neff

�
l
c
neff

þ Δt
�

¼ lþ c
neff

Δt;

l2 ¼ l1 þ
1

ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þ : ðB4Þ

At the shortest test wavelength, λ0 − Δλ=2, the phase shift
introduced by the shortest path is

ϕ1;short ¼
2πl

λ0 − Δλ=2
; ðB5Þ

and that introduced by the longest path is

ϕ1;long ¼
2πl2

λ0 − Δλ=2
¼

2π
�
lþ 1

ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þ
�

λ0 − Δλ=2
; ðB6Þ

giving a difference of

Δϕ1 ¼ ϕ1;long − ϕ1;short ¼ 2π

1
ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þ
λ0 − Δλ=2

¼ 2π
1

ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þðλ0 − Δλ=2Þ : ðB7Þ

At the longest test wavelength, λ0 þ Δλ=2, the phase shift
introduced by the shortest path is

ϕ2;short ¼
2πl

λ0 þ Δλ=2
; ðB8Þ

and that introduced by the longest path is

ϕ2;long ¼
2πl2

λ0 þ Δλ=2
¼

2π
�
lþ 1

ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þ
�

λ0 þ Δλ=2
; ðB9Þ

giving a difference of

Δϕ2 ¼ ϕ2;long − ϕ2;short ¼ 2π

1
ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þ
λ0 þ Δλ=2

¼ 2π
1

ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þðλ0 þ Δλ=2Þ : ðB10Þ

The difference in phase shift between the longest and
shortest paths at the two test wavelengths is then

Δϕ1 − Δϕ2 ¼
2π

ð 1
λ0−Δλfib=2

− 1
λ0þΔλfib=2

Þ

×

�
1

λ0 − Δλ=2
−

1

λ0 þ Δλ=2

�
; ðB11Þ
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which after rearrangement becomes

2π
Δλ
Δλfib

λ20 − ðΔλfib=2Þ2
λ20 − ðΔλ=2Þ2 : ðB12Þ

We observe that for small test bandwidths Δλ, this phase
shift tends to zero. Thereafter, the phase shift monotoni-
cally increases with Δλ. When the test bandwidth reaches
the fiber bandwidth (Δλ ¼ Δλfib), the phase shift reaches
2π, thus demonstrating that if the wavelength is kept within
the spectral bandwidth, the phase shift introduced between
any two paths will be less than or equal to 2π. This result
can be inferred intuitively: If path lengths vary in phase by
significantly less than 2π when the wavelength is varied,
the diffracted far-field pattern will remain similar, so the
“speckle correlation” will be high [41].

2. Bandwidth of step-index MMF

To validate the first-order recovery algorithm, we use a
data set of TMs taken at multiple wavelengths (1525–
1567 nm in steps of 0.08 nm) from a step refractive index
profile MMF with 420 modes (including polari-
zation modes) [26]. To examine the bandwidth over which
the first-order model is valid, we first consider a single-
wavelength TM at some reference wavelength λref , denoted
AMMFðλrefÞ. Using Eq. (7), we then estimate the single-
wavelength TM at another test wavelength, λtest > λref , as

Aestðλtest; λrefÞ ¼ e½ðλref=λtestÞ logAMMFðλrefÞ�: ðB13Þ

Next, we define an error metric to test the predictive
accuracy of the first-order model:

ϵestðλtest;λrefÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAestðλtest;λrefÞ−AMMFðλtestÞk

kAMMFðλtestÞk

s
; ðB14Þ

where AMMFðλtestÞ is the measured MMF TM at wave-
length λtest and k…k is a matrix norm. Defining
Δλ ¼ λtest − λref , we can rewrite Eq. (B14) as

ϵestðΔλÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAestðΔλ;λrefÞ−AMMFðλrefþΔλÞk

kAMMFðλrefþΔλÞk

s
: ðB15Þ

Taking λref as 1526 nm, we can then plot ϵest as a function
of Δλ (Fig. 13). We find empirically that changing λref does
not significantly change this curve.
The full 420 × 420matrix provides ϵest ¼ 0.5 for a Δλ of

about 0.5 nm. An appropriate reflector stack design for this
fiber would require three filters with center wavelengths
less than 0.1 nm apart, which is challenging using only off-
the-shelf components. To increase the available bandwidth,
we restrict our analysis to the lowest-order modes of the
fiber and form an N × N submatrix comprising the first N
columns of the first N rows of each AMMF. The resulting

ϵest curves for N ¼ 30, 72, 110, 132, 156, 210, 420 are
plotted in Fig. 13. We find that using the 110 lowest-order
modes gives a Δλ of 5 nm for ϵest ¼ 0.5, ample to design a
filter stack using off-the-shelf components.
In reality, dispersion will further change the effective

optical path lengths at the different wavelengths. From the
data set here, we compute that, over a 5-nm range, the error
introduced is less than 3% and is therefore neglected in
this work.

APPENDIX C: ZEROTH-ORDER MODEL

1. Derivation of solution

Using the zeroth-order assumption implied by Eq. (6),
we consider the application of Eq. (5) at three wavelengths
(i.e., Q ¼ 3) to obtain

Cλ1 ¼ A⊤Rλ1A; ðC1Þ

Cλ2 ¼ A⊤Rλ2A; ðC2Þ

Cλ3 ¼ A⊤Rλ3A: ðC3Þ

Starting from Eqs. (C1) and (C2), we derive

C−1
λ2
Cλ1 ¼ A−1R−1

λ2
Rλ1A;

which we compactly write as

Cα ¼ A−1RαA; ðC4Þ

where Cα¼C−1
λ2
Cλ1∈C2M×2M, Rα ¼ R−1

λ2
Rλ1 ∈ C2M×2M.

We observe that Cα and Rα are similar matrices, and they
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FIG. 13. Validation of the first-order model of Appendix A 2
using measured multiwavelength TMs from a step-index MMF
[26]. The normalized error of the TM predicted by the first-order
model compared with the actual measured TM (ϵest) is plotted as
the difference in reference and test wavelengths (Δλ) is increased.
Different submatrices of only the lowest-order modes are
considered: that is, submatrices of size N × N, with N ¼ 30,
72, 110, 132, 156, 210, 420. For lower-order submatrices, the
first-order model is seen to be valid over a larger wavelength
range.
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have the same eigenvalues. Equation (C4) is then trans-
formed into

RαA −ACα ¼ 0: ðC5Þ

Here,Rλ1 andRλ2 can be designed so as to avoid the trivial
solution A −A ¼ 0 arising if Rα and Cα are both identity
matrices. Similarly, we derive, from Eqs. (C2) and (C3),

RβA −ACβ ¼ 0; ðC6Þ

where Cβ ¼ C−1
λ3
Cλ2 and Rβ ¼ R−1

λ3
Rλ2 , and from

Eqs. (C1) and (C3),

RγA −ACγ ¼ 0; ðC7Þ

where Cγ ¼ C−1
λ3
Cλ1 and Rγ ¼ R−1

λ3
Rλ1 . Equations (C5)–

(C7) are examples of Sylvester equations, and since we
know A ≠ 0, as this would represent a system with 100%
power loss, we can use established methods to determine
the space of nontrivial solutions. Specifically, we imple-
ment the Bartels-Stewart algorithm for solving Sylvester
equations of the form DX −XE ¼ F for X in the special
case where F ¼ 0 [42].
The first step of the Bartels-Stewart algorithm uses the

Schur matrix decomposition, which states that any square
matrix H can be decomposed as

H ¼ QUQ−1; ðC8Þ

whereQ is unitary andU is an upper triangular matrix [43].
Importantly, the diagonal ofU comprises the eigenvalues of
H sorted in descending order of magnitude. With reference
to Eq. (C5), we can then write

Rα ¼ QRα
URα

Q−1
Rα
; ðC9Þ

Cα ¼ QCα
UCα

Q−1
Cα
: ðC10Þ

Substituting Eqs. (C9) and (C10) back into Eq. (C5)
gives

QRα
URα

Q−1
Rα
A −AQCα

UCα
Q−1

Cα
¼ 0;

URα
Q−1

Rα
AQCα

−Q−1
Rα
AQCα

UCα
¼ 0;

URα
A0 −A0UCα

¼ 0; ðC11Þ

where

A0 ¼ Q−1
Rα
AQCα

ðC12Þ

and A0 ∈ C2M×2M. Equation (C11) is another Sylvester
equation; however, crucially, URα

and UCα
are upper

triangular matrices, so we can solve for A0 element by
element as is typically done in the Bartels-Stewart

algorithm. By suitable design of the reflectors Rλ1 and
Rλ2 (randomly generated matrices will suffice [44,45]), the
eigenvalues of Rα (and hence Cα, URα

, and UCα
since they

are similar matrices) can be made distinct. Consequently, it
follows that only the diagonal elements of A0 are inde-
terminate and that the elements ofA0 are related to elements
of UCα

and URα
as

½urP;QaQ;Q −
XQ−1

s¼P

ucs;QaP;s� þ ðurP;P − ucQ;QÞaP;Q

þ
XQ−1

q¼Pþ1

urP;qaq;Q ¼ 0; ðC13Þ

where ucP;Q represents an element of UCα
at row P and

column Q, urP;Q represents an element of URα
at row P

column Q, and aP;Q represents an element of A0 at row P
and column Q (see Appendix C 2 for a full derivation).
Varying P from 1 to Q − 1 in Eq. (C13) produces Q − 1

equations. If we arbitrarily set the diagonal elements, am;m,
of A0, we are left with Q − 1 unknowns and can solve this
system of linear equations for all elements of the Qth
column ofA0. By varyingQ from 2 to 2M and solving each
resultant system of equations, we can fully determine all
nondiagonal elements of A0 given a set of arbitrary
diagonal elements, am;m (m ¼ 1;…; 2M). This case can
be expressed as a single matrix equation, but it requires an
Mð2M − 1Þ ×Mð2M − 1Þ (≈4M4 element) matrix, which
becomes computationally intractable as M grows.
When an arbitrary set of 2M complex numbers (i.e., a

vector ∈ C2M) is selected for the diagonal elements ofA0 in
Eq. (C11), the remaining elements of A0 can be solved.
This case implies that the “true” solution for A0 can be
expressed as a linear combination of, at most, 2M matrices,
A0

m, where m ¼ 1;…; 2M, each of which is a solution of
Eq. (C11). Together, these 2M matrices comprise a basis
for A0 [equivalently, they comprise a null space of
Eq. (C11)]. Using Eq. (C12), this basis can be converted
to a basis for A [equivalently, a null space for Eq. (C5)],
denoted Ãm where m ¼ 1;…; 2M. To improve robustness
to noise and numerical error, an iterative Gram-Schmidt
orthogonalization procedure can be applied to create an
orthogonal set of Ãm, wherem ¼ 1;…; 2M. The process of
determining a basis for A is summarized in Fig. 14.
Having determined a suitable basis, we express the

matrix we wish to recover, A, as

A ¼ w1Ã1 þ…þ w2MÃ2M; ðC14Þ

where wm represents the complex-valued weight of themth
basis element, the matrix Ãm. The solution space now has
only 2M degrees of freedom (represented by wm), so
computational complexity can be further reduced by con-
sidering a subset of elements ofA. We can select B (≥ 2M)
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matrix elements of A, either arbitrarily or according to
some prior information, e.g., the elements with the largest
mean based on a statistical model. The corresponding B
elements of Ãm are then ordered into a column vector bm ∈
CB for every m ¼ 1;…; 2M. These column vectors form a
matrix Bα ∈ CB×2M:

Bα ¼
�
b1 b2 � � � b2M

�
; ðC15Þ

so we can write

Bαw⊤ ¼ best; ðC16Þ

where best is an estimate of the B selected elements of the
true TM, A, and w ¼ ½w1 � � �wN � is a vector containing the
complex weights of Eq. (C14). Since Bα is either a square

or tall matrix, we premultiply by its Moore-Penrose
pseudo-inverse, B†

α:

B†
αBαw⊤ ¼ B†

αbest; w⊤ ¼ B†
αbest:

We then multiply both sides by Bα to get

Bαw⊤ ¼ BαB
†
αbest

and substitute this in Eq. (C16) to obtain a recursive
expression:

best ¼ BαB
†
αbest: ðC17Þ

Following the same steps to derive Eq. (C17) from Eq. (C5)
but starting from Eq. (C6) gives

Start basis determination

Yes

No
Is P > Q-1?

Set m = 1

Arbitrarily select 2M complex numbers to form the
diagonal elements of        , denoted: 

Set column index, Q, to 2

Set lower triangular elements of        to zero

Set row index, P, to 1

Substitute known diagonal elements and previously
calculated elements of         , denoted        with 
                    , known elements of         , labelled          ,
and known elements of       , labelled             , to
form a new equation containing unknown elements
of column Q of         , labelled        , with
            :

Increment P

Solve these Q-1 equations simultaneously for the
Q-1 unknown elements of column Q of        denoted
          with row index  

Yes

No
Is Q > 2M?

Increment Q

Convert matrix         back to original coordinate
system and save:

Yes

No
Is m > 2M?

Increment m

Basis determination complete

Determine upper triangular elements of 

FIG. 14. Flowchart detailing the process of finding a basis for the matrix A using the zeroth-order solution method.
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best ¼ BβB
†
βbest: ðC18Þ

Similarly, starting from Eq. (C7) gives

best ¼ BγB
†
γbest: ðC19Þ

Clearly, best is an eigenvector of BαB
†
α, BβB

†
β, and BγB

†
γ

with an eigenvalue of 1. Physical considerations of power
conservation suggest the existence of at least one nontrivial
solution for best. Our empirical investigations with both
simulated and real TMs (see Sec. IV) suggest that when
using at least two of Eqs. (C17)–(C19), we can identify a
single nontrivial solution, the “true” solution: We arbitrarily
choose Eqs. (C17) and (C18). Next, we apply a variant of
the “power method” for finding dominant eigenvalues of a
matrix [46] and recursively substitute Eq. (C17) into
Eq. (C18), and substitute the result into Eq. (C17), etc.,
to give

bt
est ¼ BαB

†
αBβB

†
β…BαB

†
α|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

product of tþ1 matrices

b0
est; ðC20Þ

where t denotes the number of matrix multiplications. For
large t, the output bt

est is expected to converge to the desired
solution best for any input b0

est. Alternatively, for large t, the
dominant eigenvector of BαB

†
αBβB

†
β…BαB

†
α will approxi-

mate the solution well. In this work, we find empirically
that using 2–3 iterations, i.e., t ∈ f3; 5g, is sufficient for
reliable TM recovery.
To obtain the desired full TM A, we determine the

weights w from approximation bt
est by solving Eq. (C16)

and then computing the appropriate weighted sum of Am,
with m ¼ 1;…; 2M using Eq. (C14).

2. Sylvester equations element by element
using Bartels-Stewart algorithm

Starting from Eq. (C11), we wish to solve for matrix A0
element by element. Recalling that all matrices here are
∈ CN×N , we first consider the element in row N, column 1,
i.e., ðN; 1Þ, of the zero matrix on the rhs of Eq. (C11). We
see that

urN;NaN;1 − aN;1uc1;1 ¼ 0; ðC21Þ

where urm;n is the element in row m, column n of URα
;

ucm;n is the element in rowm, column n of UCα
; and am;n is

the element in row m, column n of A0.
Next, we require that the eigenvalues of Rα are distinct,

which is ensured by a suitable design of reflectors. We also
know that the eigenvalues of Rα are equal to those of Cα

because the two are similar matrices [see Eq. (C4)].
Therefore, the values on the diagonal of URα

are distinct

from one another, and they are equal to the values on the
diagonal of UCα

, i.e., urm;m ¼ ucm;m for every m. The only
way that Eq. (C21) can hold is if aN;1 ¼ 0, providing the
solution for that element.
We then consider element (N − 1, 1), giving

urN−1;N−1aN−1;1 þ urN−1;NaN;1 − aN−1;1uc1;1 ¼ 0:

Since we know that aN;1 ¼ 0, we again apply the above
reasoning and conclude that aN−1;1 ¼ 0. Continuing up this
column, we find that all elements must be zero until we
reach the first row, where

ur1;1a1;1 − a1;1uc1;1 ¼ 0:

We know that urm;m ¼ ucm;m for everym, so every possible
a1;1 ∈ C satisfies this equation, meaning the element is
indeterminate. We now consider the second column of the
zero matrix on the rhs of Eq. (C11), starting with element
ðN; 2Þ:

urN;NaN;2 − ðaN;1uc1;2 þ aN;2uc2;2Þ ¼ 0:

We know aN;1 ¼ 0, so we can write

urN;NaN;2 − aN;2uc2;2 ¼ 0

and therefore aN;2 ¼ 0. Next, we consider element
(N − 1, 2):

urN−1;N−1aN−1;2 þ urN−1;NaN;2

− ðaN−1;1uc1;2 þ aN−1;2uc2;2Þ ¼ 0:

Using previously known elements, we find that

urN−1;N−1aN−1;2 − aN−1;2uc2;2 ¼ 0:

Therefore, aN−1;2 ¼ 0. This continues up column 2 of the
zero matrix until we get

ur2;2a2;2 − a2;2uc2;2 ¼ 0:

Note that a2;2 can be anything since ur2;2 ¼ uc2;2. Now, we
consider element (1,2):

ur1;1a1;2 þ ur1;2a2;2 − ða1;1uc1;2 þ a1;2uc2;2Þ ¼ 0;

ður1;1 − uc2;2Þa1;2 þ ur1;2a2;2 − a1;1uc1;2 ¼ 0:

By repeatedly applying this logic to each column of the
zero matrix on the rhs of Eq. (C11), we conclude that the
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matrix A0 must have an upper triangular form. It then
follows that element (3,3) gives

ur3;3a3;3 − a3;3uc3;3 ¼ 0;

and element (2,3) gives

ur2;1a1;3 þ ur2;2a2;3 þ ur2;3a3;3

− ða2;1uc1;3 þ a2;2uc2;3 þ a2;3uc3;3Þ ¼ 0;

ur2;1a1;3 þ ður2;2 − uc3;3Þa2;3 þ ur2;3a3;3 − a2;2uc2;3 ¼ 0:

Considering element (1,3) gives

ur1;1a1;3 þ ur1;2a2;3 þ ur1;3a3;3

− ða1;1uc1;3 þ a1;2uc2;3 þ a1;3uc3;3Þ ¼ 0;

ður1;1 − uc3;3Þa1;3 þ ur1;2a2;3 þ ur1;3a3;3 − a1;1uc1;3

− a1;2uc2;3 ¼ 0:

Therefore, these elements are all functions of elements that
have already been computed when previously solving
columns of the zero matrix on the righthand side of
Eq. (C11) and the indeterminate diagonal elements of
A0. By repeated application of this process, we can generate
an equation for each upper triangular element, ðP;QÞ with
P < Q, of the zero matrix on the righthand side of
Eq. (C11) as

ðurP;P−ucQ;QÞaP;Qþ
XQ

q¼Pþ1

urP;qaq;Q−
XQ−1

s¼P

ucs;QaP;s¼0:

Rearranging, we can write

�
−
XQ−1

s¼P

ucs;QaP;s

�
þ ðurP;P − ucQ;QÞaP;Q

þ
XQ

q¼Pþ1

urP;qaq;Q ¼ 0;

�
urP;QaQ;Q −

XQ−1

s¼P

ucs;QaP;s

�
þ ðurP;P − ucQ;QÞaP;Q

þ
XQ−1

q¼Pþ1

urP;qaq;Q ¼ 0: ðC22Þ

In summary, we find that the diagonal elements, am;m with
m ¼ 1;…; N, are indeterminate but that all other elements
in the matrix A0 can be computed from these diagonals by
solving a series of linear equations.

APPENDIX D: SELECTING OPTIMAL
WAVELENGTHS

For a given reflector stack of the architecture presented in
Sec. III A, we must determine the optical center-wave-
lengths of the three filters, the three optimal laser wave-
lengths for RM characterization, and the optimal laser
wavelength for imaging. First, we approximate each long-
pass filter transmission function with a sigmoid function, f:

fðλ; λfiltÞ ¼
τmax

1þ e−
α

τmax
ðλ−λfiltÞ ; ðD1Þ

where τmax is the maximum power transmission (fixed here
as 0.8 based on real component data), α determines the
steepness of the filter (measured to be about 0.73 based on
numerous commercially available filters, e.g., ThorLabs
FELH0850, which represents an approximately 5-nm
wavelength change for 10%–90% normalized transmis-
sion), and λfilt is the center wavelength of the filter.
Consider three laser wavelengths for RM characterization
(λ1 < λ2 < λ3). We define a matrix F containing different
values of the filter transmission function f:

F ¼

0
B@ fðλ1; λaÞ fðλ1; λbÞ fðλ1; λcÞ

fðλ2; λaÞ fðλ2; λbÞ fðλ2; λcÞ
fðλ3; λaÞ fðλ3; λbÞ fðλ3; λcÞ

1
CA; ðD2Þ

where λa < λb < λc are the center wavelengths of the three
filters with transmission curves described by Eq. (D1). We
can maximize the difference between the filters’ behavior at
the interrogation wavelengths by minimizing the condition
number of F, κðFÞ, which gives our objective function g:

gðλ1; λ2; λ3; λa; λb; λcÞ ¼ κðFÞ ¼ kF−1kkFk; ðD3Þ

where k…k is a matrix norm. We also want to ensure that,
at the imaging wavelength λ4 (> λ3), the reflector stack
transmits significantly more light than at the longest
characterization wavelength λ3. This is essential for effi-
cient illumination and imaging. To quantify this case, we
define a ratio β of the transmittances of the final filter in the
stack at wavelengths λ3 and λ4 as

β ¼ fðλ4; λcÞ
fðλ3; λcÞ

: ðD4Þ

To account for the limitations of a tunable laser source, we
must also constrain the maximum and minimum laser
characterization wavelengths as well as the spacing
between wavelengths. Finally, we must limit the difference
between the maximum and minimum laser characterization
wavelengths to be less than the fiber spectral bandwidth so
that the first-order model remains valid. The full optimi-
zation problem is then
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min
λ1;λ2;λ3;λa;λb;λc

gðλ1; λ2; λ3; λa; λb; λcÞ

s:t: λmin < λ1 < λ2 < λ3 < λ4 < λmax;

λ2 − λ1; λ3 − λ2; λ4 − λ3 > Δλlas;

λ4 − λ1 < Δλfib;

λmin < λa < λb < λc < λmax;

β > βmin; ðD5Þ

where λmin and λmax are the minimum and maximum
range of the tunable laser, Δλlas is the minimum tuning
step of the laser, and Δλfib is the spectral bandwidth of
the fiber.
Here, we set λmin and λmax to near-infrared wavelengths

of 840 nm and 860 nm, respectively [4]. We set Δλlas to
0.2 nm to reflect a typical tuning step of commercial
tunable lasers. Note that Δλfib is set to 7 nm, representing a
reasonable spectral bandwidth for a fiber of length about
2 m [32,33]. Finally, we choose βmin ¼ 10 to provide
acceptable isolation between characterization and imaging.
With the objective and constraints defined, optimization is
performed using a genetic algorithm.

APPENDIX E: SIMULATING REFLECTORS

We use two approaches for simulating reflectors. The
first, used for simulated TMs, is to directly generate random
reflector PMs. To do this, we first create a diagonal matrix
with integers 1;…; 2M along the main diagonal in some
permutation. Distinct permutations are used for the main
diagonals of the three separate reflectors. Random permu-
tations of the integers 1;…; 2M − 1 are then used to create
the subdiagonals and super-diagonals of these reflector
matrices, mimicking the mode coupling that would be
expected in real reflectors. For the resultant matrix R0, the
singular-value decomposition is computed as

R0 ¼ URSRVH
R ; ðE1Þ

where UR and VR are unitary, SR is a diagonal matrix
containing singular values of R, and ð…ÞH represents a
Hermitian transpose. The matrix is then reconstructed from
the left- and right-singular vector matrices (UR and VR,
respectively) but with the singular values (diagonals of SR)
replaced by a new set, sm ¼ m=2M with m ¼ 1;…; 2M.
This ensures that the requirement for distinct eigenvalues
(see Sec. II B) is satisfied.
The second approach, used for experimentally measured

TMs, is a physically realistic simulation of reflector stacks
like that shown in Fig. 3(a). This approach is achieved by
extending the propagation matrix method used for simu-
lating multilayer optical materials (Bragg reflectors or
stacks) [47]. The reflector is modeled as a series of layers,
as shown in Fig. 3(a), and the propagation operator used is

2D Fresnel propagation, applied separately to each polari-
zation. This method is in contrast to the conventional
propagation matrix method in which the propagation
operator is the complex exponential propagation operator
e−ikz, where z is the distance and k is the wave number. The
Fresnel propagation operator enables computation of out-
put fields p0

H and p0
V (where subscripts H and V denote

horizontal and vertical polarizations, respectively), result-
ing from input fields pH and pV propagating a distance l
through a layer as

p0
H ¼ F−1(F ðpHÞe−i½ð2π2Þ=k�ðξ2xþξ2yÞl);

whereF is the discrete Fourier transform, n is the refractive
index of the layer, λ is the wavelength, k ¼ ½ð2πnÞ=λ�, ξx
and ξy are coordinates in the Fourier plane, and constant
factors are neglected [48]. This method is repeated for pV,
giving a 2D complex vector at each point.
Using this modified method, the reflector stack is

simulated using three types of layers: pure glass, glass
with a wire-grid polarizer metasurface on the top, and
optical filters. Here, we simulate absorptive optical filters,
but reflective filters would work equally well. The filters
have transmission curves typical of commercially available
components, and the center wavelengths are determined
using the process in Appendix D.
The stack simulated here comprises a 1-mm-thick layer

of glass, followed by the three filters in succession, each
3 mm thick. The metasurfaces, negligibly thin for propa-
gation purposes, are placed between the glass and the first
filter, between the first and second filters, and between the
second and third filters. The glass and filters have matched
refractive indices of 1.52, and for simplicity, we neglect
the imaginary part of the refractive index, i.e., distance-
dependent loss. Therefore, the only internal reflections
occur at the metasurfaces, reflective filters (if used), and the
final glass-air interface. Each metasurface is simulated by
randomly generating diattenuating partial-polarizer Jones
matrices for each sampled point of the field. Each point
is assigned a diattenuation angle drawn from a uniform
distribution, θD ∼ Uð−π; πÞ, and a diattenuation drawn
from a uniform distribution, D ∼Uð0; 1Þ. The transmitted
light at each pixel is computed by multiplying the sampled
field vector by the relevant Jones matrix:

�
ptH

ptV

�
¼ ffiffiffi

α
p �

cos θD − sin θD
sin θD cos θD

�� 1 0

0
ffiffiffiffiffiffiffi
1−D
1þD

q �

×

�
cos θD sin θD
− sin θD cos θD

��
p0
H

p0
V

�
: ðE2Þ

The light reflected is then given by
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�
prH

prV

�
¼ ffiffiffi

α
p �

cos θD − sin θD
sin θD cos θD

�� 0 0

0 1 −
ffiffiffiffiffiffiffi
1−D
1þD

q �

×

�
cos θD sin θD
− sin θD cos θD

��
p0
H

p0
V

�
; ðE3Þ

where α is a parameter representing overall power loss in
the metasurface due to plasmonic losses, set to a typical
value of 0.8 here [17].
The next step is to determine the overall PMsat the imaging

and characterization wavelengths,Rλq ; q ¼ 1;…; 4, and the
TMof the reflector at the imagingwavelength,Arefl. This step
is achieved by iteratively propagating different input fields
forwards and backwards through the stack until a steady-state
solution is reached. This process is repeated at each of the
desired wavelengths.
The input fields chosen may be derived from the

columns of the fiber TM (the modes of the fiber) because
any field exiting the fiber must be a linear combination
thereof. However, the modes of the fiber may be expressed
in some particular basis, e.g., Laguerre-Gauss modes for
MMF, and must first be converted to the Cartesian basis so
that Fresnel propagation can be applied. The light coupled
back into the fiber can only be coupled into a linear
combination of the reverse-propagating (i.e., complex
conjugated) fiber modes. Therefore, the steady-state
reflected field is reexpressed in the fiber mode basis.
This means the reflector matrices have the same size as
the fiber TM (∈ C2M×2M), but Arefl will, in general, be
∈ C2N×2M. Because the 2N-dimensional vector output of
Arefl is in a Cartesian pixel basis, it is straightforward to
compute sample illumination as per Sec. II E.

APPENDIX F: SIMULATING FIBER TMS

The simulated fiber TMs described in Sec. III B are
generated using a model comprising a MCF with large
core-to-core coupling. The 16 spatial pixels are considered
to represent light-guiding cores organized in a rectangular
4 × 4 grid. The power coupling between a given core at the
input and a given core at the output is modeled as
decreasing exponentially with the squared lateral distance
(arbitrary units) between them, i.e.,

pα;β ¼ ef−½ðxα−xβÞ2þðyα−yβÞ2�=ðσ2fibÞg; ðF1Þ
where pα;β is the power coupled between core α at the input
[with coordinates ðxα; yαÞ] and core β at the output [with
coordinates ðxβ; yβÞ]. Here, σ2fib is a coupling parameter,
which we set to be 3. This model is therefore a Gaussian
power-coupling model, which reflects empirical observa-
tions of real MCFs [29]. The power-coupling profile is
duplicated for the second polarization. The complex phase
of each element is drawn randomly from a uniform
distribution, θα;β;sin;sout ∼Uð−π; πÞ, where sin ¼ 1, 2 and
sout ¼ 1, 2 indicate the input and output polarizations,

respectively. This method gives a combined expression for
each matrix element:

aα;β;sin;sout ¼ ef½ðxα−xβÞ2þðyα−yβÞ2�=ðσ2fibÞgeiθα;β;sin ;sout : ðF2Þ
The simulated TM,A, is formed of all elements aα;β;sin;sout

in some ordering such that each pair (β, sin) defines a unique
row index and each pair (α, sout) defines a unique column
index. Then, A is decomposed using singular-value decom-
position, and to ensureA is nonunitary but still invertible, new
singular values, sn, n ¼ 1;…; 32, are generated such that
sn ¼ n=32; n ¼ 1;…; 32. If using the zeroth-order model,
the simulatedmatrixA is used as theTMat allwavelengths. If
using the first-ordermodel, the simulatedmatrix is used as the
TMatwavelength λ1,Aλ1 , and the simulated TMs at the other
wavelengths are generated from the matrix logarithm of Aλ1
[dA from Eq. (10)]; we then apply Eq. (7) to obtain Aλ2 ,
Aλ3 , Aλ4 .
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