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DEFECT   CORRECTION   FROM    A   GALERKIN   VIEWPOINT 

         GERALD     MOORE 

       Department   of   Mathematics    and   Statistics, 
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   U.K. 
 
 
 

ABSTRACT 

         We  consider  the  numerical   solution  of  systems   of  nonlinear 

two   point  boundary  value   problems   by  Galerkin's  method. An   initial 

solution  is  computed with piecewise  linear approximating  functions  and 

this is   then  improved  by  using  higher—order  piecewise  polynomials  to 

compute  defect corrections.  This   technique,   including  numerical 

integration,   is   justified  by  typical  Galerkin  arguments and properties 

of  piecewise polynomials rather   than  the  traditional asymptotic  error  

expansions   of   finite  difference  methods. 
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1.   Introduction

Suppose that one uses a low accuracy (finite difference or finite 

element) approximation and a relatively coarse mesh to produce a numerical 

solution  for  a differential equation.  If a more accurate solution is 

then desired one has the choice between using a finer mesh or a more 

accurate approximation.  The former leads to larger sets of simultaneous 

equations to solve while the latter leads to more complexity and a larger 

band-width.  The idea behind deferred or defect correction is to keep 

this complexity on the right-hand side of one's simultaneous equations 

and only to solve systems with the original simple matrix. 

Deferred correction methods have become a very popular way of 

obtaining high accuracy approximations to smooth solutions of two point 

boundary value problems.  The fundamental idea, as introduced by Fox in 

[5]   and  developed  in  particular  by Pereyra (eg.[7,8,11]),  can be seen 

by considering the single linear second-order problem 

i)    Ly(x)≡  y" =(x) + q(x)y'(x) + r(x)y(x) - f(x)  x ∈  [a.b]                     (1.1) 
 ii) y(a) = y(b) = 0. 

A basic approximation may be obtained by placing a uniform mesh over 

[a,b],   i .e.   h  =   (b-a)/N and  xi  =  a  +  jh j = 0, . . .  ,N,  and  replacing 

the  derivatives  at  internal  mesh  points  by  simple  finite  difference 

formulae.  Thus the (N+l) - vector y is obtained  by  solving 

   h
j)yjr(x)/(2h)h

1jyh
1j)(yjq(x2)/hh

1jyh
j2yh

1j(yj)h
~
yh(L +−−++−+−+=

 
= f(Xj) j=1,...n-1                (1.2) 

 
0hyhy N ==0  

The error in this basic solution is proportional to h , assuming 

sufficient smoothness on y, but more accurate solutions may be obtained 

by noticing that 

                   (1.3) 

where is  the  (N+1)  -  vector  of  nodal  values  of  y  and  the  T
~
y k  are 

),2po(h)j(x
1p

1k
y)k(T2kh)j(Ly)(xj)

~
yh(L +∑

−

=
+=

higher-order differential operators.  (We are now assuming more smoothness 

on y.) Hence if    can be used to obtain an 0(hh
~
y 2 ) approximation to 
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T1 y , i.e. if we can construct a difference operator Dh
1 such that 

)2O(hj)h
~
yh

1(D)jy)(x1(T =−  j = 1,...,N-1, (1.4) 
 

where,h
~z

2hh
~
yh

~cthen +≡  

,h
~
yh

1Dh
~z

hL = (1.5) 

will satisfy 
(1.6) 

j)h
~
yh

1(D2h)jf(x)4(h0)jy)(x1(T2h)j(Ly)(x)j)(xh
~c~

y(hL −−++=−  

).40(h)j)h
~
yh

1(D)jy)(x1((T2h +−=  

The  stability  of  L   then  shows  that    is  an  0(hh
~c

4)  approximation to 

~
y .  The  process  may  be  repeated by using difference  operators   D  to h

k
approximate  the  differential operators T, and eventually an 0(h2p) 
approximation to  is possible.  This accuracy is attained while working 

~
y

on the same mesh and solving systems of linear equations with the same 
coefficient matrix, based on Lh , but with different right-hand sides. 
Of course the key theoretical problem is to show that can be used h

~
y

to approximate T1y to 0(h2), and similarly for the higher-order Tk , and 
this is usually achieved by showing that  -  satisfies an asymptotic 

~
y h

~
y

expansion: i.e. 

(1.7) 
)2p(h0k~e

1p

1k
2khh

~
y~' +∑

−

=
=−

where the e. are formed by nodal values of smooth functions ek (x). 
In  practice  the  asymptotic  error  expansions are not needed but it is 
still necessary to construct the difference operators D  . h

k
 

On the other hand defect correction [3,9,12,13] relies on establishing 
the theoretical result that the error  -  is smooth, i.e.., not only 

~
y h

~
y

are the point values 0(h2) but also the  higher-order  divided differences 
of point values.  If then is a more accurate difference approximation h

1M
to (1.1), e.g., 

         = (Ly) (xjy)h
1(M j) + 0(h4), (1.8) 
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we construct by solving h
~w

h
~
yh

~v +≡

.h
~
yh

1M~f
h

~w
hL −=

 

(1.9)  

We would then expect  to be an 0(hh
~v

4) approximation to  because 
~
y

(1.10)

and  will be 0(h)h
~
y

~
y)(h

1Mh(L −− 2) multiplied by  higher divided differences 

)4(h0)h
~
y

~
y)(h

1Mh(L)h
~v~

y(hL +−−=−

of . As with deferred correction this idea may be repeated several )h
~
y

~
y( −

times to obtain highly accurate results.  Thus, in practice, the difference 
between deferred and defect correction is that the former requires the 

difference operators D   while the latter requires the difference operators h
k

h
kM . 

       In this paper we present some results on using Galerkin's method 

(strictly a  Petrov—Galerkin method) to solve nonlinear systems of first- 

order two point boundary value problems.  Here the defect correction 

idea is very natural since more accurate difference operators M  correspond h
k

to using higher-degree piecewise polynomial spaces.  (Our conception of 

defect correction has been particularly developed by studying the 

framework in [12] although there only finite difference methods are 

considered).  The layout of the paper is as  follows.   In section  2  the 

basic Galerkin solution using piecewise linear  trial  functions  is  described 

and then in section 3 we compute defect corrections by using higher- 

degree piecewise polynomials.  These methods are made practical in section 

4  by  analysing  the  effect of numerical integration and then we end with 

some remarks in section 5 about non-uniform meshes and higher—order 

differential equations. 

To  conclude  this  introduction  we  reproduce the following statement 

from p.25 of [11];- 

"I  wouldn't  be  surprised  if  it  finally  turns  out  that  a   successful 

implementation  of  high  order spline methods comes about via a  deferred 

correction type  of  approach, bypassing in some way  the very expensive 

steps  of  high  order  quadrature  formulae and complicated systems arising 

from  the  present  approaches." 

We  feel  that  the  present  paper  goes  a long way towards achieving this 

aim. 
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2.  Galerkin's method for first-order systems

We consider systems of nonlinear first-order two point boundary 

value problems of the form 

i)    v' (x)  =  f(x,v(x)) x∈[a,b] (2.1) 

ii)    g(v(a),v (b))  =  , ~0

where v: [a,b] → Rn , f:[a,b] x Rn → Rn and g:Rn x Rn → Rn.  We assume that 

for v  ∈ {H1[a,b]}n  the  function  f (x)  ≡ f (x,v(x))  is  in  {L2[a,b]}n  and 

hence  we  can  regard  (2.1)  as  a  problem  of  finding  zeroes  of the nonlinear 

mapping  F : {H1[a,b]}n  → {L2[a,b]}n  x  Rn  defined by 

                                           (2.2) 
⎩
⎨
⎧ −≡ (b)).v(a),(vg

(x))v(x,f(x)v'F(v)

We also assume that y{H1[a,b]}n  is a solution of F(v) =  0  which is 

isolated  in  the  same  that  F  is  (Frechet)  differentiable  at  y and its 

linearisation, 

⎩⎨
⎧ −

+≡
(x)v(x)1A(x)v'

v(b),bBv(a)aBv(y)F'             (2.3)

has a bounded inverse from {L2 [a,b]}n x Rn → {H1 [a,b]}n.  It is also 

required that the components of the nxn matrix A1(x) are in L∞[a,b] 

and that the nx2n augmented matrix Ba |Bb  has rank n. 

Now we wish to obtain an approximation to y by means of Galerkin's 

method.  For  any  positive integer N we define a uniform mesh over 

[a,b]  by  setting  h=(b-a)/N  and  xj =  a+jh   j=0,...,N.  Then we let Sh 

denote  the  ( N+1) -  dimensional  subspace  of  H1 [a,b]  consisting  of continuous 

piecewise-linear  functions  with  respect  to  the  given  mesh,  and  Th  the 

corresponding  N-dimensional  subspace  of  L2  [a,b]  consisting  of piecewise- 

constant   functions.   The  (Petrov-)  Galerkin  approximation  to  y  is  obtained 
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by seeking a V ∈{Sh}n  such that 

i) <V' - f(x,V), σ> = 0         ∀σ∈{Th }n

                                                                                                                                     (2.4) 

ii) g(V(a),V(b)) = 0, 

where  < .,. >  is  the  inner  product  over  {L2 [a,b]}n .   Thus  we  have 

nN+n  equations  to  determine  the  (N+1)n  free parameters in  V.   The 

rest  of  the  section  is  concerned  with   showing  that,   for   sufficiently 

small   h,  (2.4)  has  a  unique  solution  Y  near  YI ,  the  element  of 

{Sh}n   which  interpolates  y   at  the  mesh  points  xo....xN. 

Let  B(v,w)  be  the  bilinear  form  on {H1[a,b]}n x {L2[a,b]}n 

defined by 

B(v,w) ≡ <v' - Ax(x)v,w> ,                                                      (2.5) 

which  is  bounded 

|B(v,w)| ≤ C1 || v || kH  ||w||L2  (2.6) 

If {H1 [a,b]}   denotes  the  subspace  of  {H1[a,b]}n   satisfying  the  conditions 

BBav(a) + Bbv(b) - 0, (2.3) implies that B  satisfies the coercivity 

condition 

2Lw1Hv2Cw)B(v,n}
sup

b][a,2{Lwn
0}

inf
b][a,1{HV ≥∈∈      (2.7)

for C2> 0.  For sufficiently small h, this result also holds for B 

restricted to {Sh}    x {Tn n
0 h}n

, where {Sh}   denotes the subspace of {S0 h}n 

satisfying Ba V(a) + Bb V(b) = 0.  To deduce this let V be an arbitrary 

element of {Sh }   and w - V' — An
0 1(x)V.  Since the step-functions are dense 

in L∞ [a,b] we may choose T ∈{Th}n  such that ωw = V' - τ satisfies 

i) || w - ω ||L2 ≤ C(h) || v||H1 

 ii)     || ω ||L2 ≤ 2 || w ||L2   , 
(2..8) 
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where  C(h)  is  independent  of   V   and  tends  to  zero  with   h. 

Hence 

| B (V,ω)|   =  | B(V,w ) -B(V,W- ω)| (2 .9) 

                                       ≥ C2||V|| 1H  ||W||  - C1 || V || 2L 1H  ||w- ω || 2L  

≥ C2  || V|| ||w||  - C1H 2L 1C(h)||v|| 2
H 1 

≥ (C2-C1C(h) C2-1)  || V || ||w||  1H 2L

and  for  sufficiently small   h   we   will   have 

|B(V, ω) |  ≥  C3 ||v|| ||w||  1H 2L
(2.10) 

with  C3 > 0  and  independent  of  V  and  h.   Thus 

inf       sup  |B(V, σ ) | ≥ c3||v|| ||σ||         (2.11) 1H 2L
n}h{Tσn

0}h{SV ∈∈     

and we have the coercivity result. 

Now  we  wish  to  show that, for h  sufficiently  small,  the 
linear equations 

i)  B(V,σ) = <z,σ> 
ii)  BaV(a) + BbV(b) - d. 

∀σ∈{Th}n

(2.12) 

have  a  unique  solution  V∈{Sh}n  for  any  given  z∈{L2 [a,b]}   and  ~ ∈Rd n.    Let 

V1.....Vn be linear functions satisfying 

BaVk (a)+BbVk(b) =      
k~e

(2.13) k - 1,...,n.

where    are  the  unit  vectors  in  R
k~e

n ,  and  so  V1,...,Vn  are  bounded  in 

{H1 [a,b]}n   independently  of   h.   By  choosing  ∈R~α
n  such  that 

 satisfies   (2.12ii),   ( 2.12)   is   equivalent   to   solving kVkα
n

1k
∑
=

n}h{Tσ)σ,kVkα
n

1k
B(σz,)σ(U,B ∈∀∑

=
−><=  (2.14) 
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for       and  the  coercivity   result   (2.11)   allows   us   to   use n
0}h{SU∈

the  generalized  Lax-Milgram  lemma  [2,10]   to   show   that   this   equation 

has   a   unique   solution   U0    satisfying 

)1H
||kVkα

n

1k
||2Lz(c1H0U ∑

=
+≤                    (2.15)

Hence  (2.12)  has  a  unique solution    satisfying kVkα
n

1k0UV ∑
=

+=

En||
~
d||2Lz(C1HV +≤            (2.16)

where   || . || En   denotes   the  Euclidean   norm   and   C   is independent 

of    h. 

Finally,   we   consider   the   nonlinear   equation   (2.4)   again  and 

define  the  nonlinear  mapping  K: { Sh} n → {Sh } n  by 

i)  B(K(V),σ)    =    <f (x,V) - A1(x)V,σ>     ∀σ∈{Th}n (2.17) 

ii)  Ba K(V)(a)  +  BbK(V)(b) = BaV(a) + BbV(b) - g(V(a) ,V(b)). 

For   sufficiently   small   h   K   has   been   shown   to   be   well   defined 
 and   we   proceed   to   prove   that ,   under   certain   assumptions,  it  is  a 
contraction   mapping   in   a   ball   about   Y .   The   assumptions  we  need  are 
that :- 

a) the  mapping  from  {H1 [a,b]}n  to {L2 [a,b]}n   defined  by 
the    function    f (x,v)   is   differentiate   in   a   ball   about 
y  with  each  of  the  n   components   of   the   derivative   in 
L∞  [a,b]   and   satisfying   a   Lipschitz   condition 

| |  a i j  (x,v)- a i  j (x,w) | | L∞  ≤ c  | | v-w | | H1                                      (2 .18) 

b) the  mapping  g : Rn  x Rn → Rn  is  differentiable  in  a 
ball   about   (  (a),  (b))   and   the   derivative   satisfies 

~
y y

~
a Lipschitz condition. 
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Now  if  we  write  (2.17)  in  the  form 

i)   B(K(V)-YI , σ)    = < f(x,v)-A1(x)(V-YI) - f (x,y) , σ>                                   (2.19) 
 ii)   Ba(K(V)-YI)  (a)+Bb(K(V)-YI) (b) = Ba (V-YI ) (a)+Bb (V-YI ) (b)-g(V(a) ,V(b)) 

the  result  (2.16)  may  be  used  to  obtain 

|| k(V)-YI || H1 ≤  C{ || f(x,V)-f(x,YI)-A1(x)(V-YI )||L2 +                                     (2.20) 

|| f (x,y) – f  (x,YI) || L2  +  ||g(a), YI (b)) - g (V(a),V(b)) 
     + Ba(V-YI) (a)  + Bb (V-Y1) (B) || En ).  

Then  if  we  choose   h   so   that   ||y-y1|| H1   is   sufficiently   small   and   the 
Lipschitz   conditions   hold,    K.   will  map  a  ball  of  radius  C || y-YI || L2  centred 
on   YI   w.r.t.   the   H1-norm   into  itself.  Also  if  U,V∈{Sh }h  we   have 

i)  B(K(U)-K(V),σ) - <f(x,U)-f(x,V)-A1(x)(U-V),σ>                                          (2.21) 

ii)  Ba(K(U)-K(V))(a) + Bb(K(U)-KCV))(b) = g(V(a) ,V(b))-g(U(a) ,U(b)) 

                                                                               + Ba (U-V)(a) + Bb(U-V)(b) 

and  applying  (2.16)  again  leads  to 

|| K(U)-K(V)||  ≤C(||U-Y1H I ||  + ||V-Y1H I||  + || y-Y1H I||   ||U-V ||  1H 1H

for   sufficiently  small  h,   and   hence   to   K   being   a   contraction  in 
the  above  ball.    Thus   K   will  have  a  unique  fixed  point  Y0   in  this  ball 
which  will  also  be  a  locally   unique   solution   of   (2,4). 

It  is  now  simple  to  produce  some  error  estimates  of  y-Y0  because 
we  immediately  have  the  "superconvergence"  result 

||YI-y0 ||   ≤  C|| y-Y1H I||   2L
(2.22) 

Thus 

|| y-Y0 ||    ≤    || y-Y1H I ||      +    || Y1H I - Y0 ||  1H
(2.23) 

which  is  0(h)  if  y∈{H2[a,b]}n,  and 

|| y-Y0 || 2L     ≤   || y-YI || 2L     +   ||Y1-Y0 ||  2L
(2.24) 
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which is  0(h)    if  y∈{H1[a,b] }n  and  0(h2)  if  y∈{H2 [a,b]}n. 

Similar  results  follow  in  L∞    by  making  us  of  relationship 

C|| z || L2    ≤   || z ||  L ∞   ≤   C || z ||H1 (2.25) 

for z∈{Η1[a,b]}n   i. e.

i)     ||YI -Y0||L∞  ≤  C || y-YI || L2 (2.26) 

ii)     || y-Y0  ||L∞  ≤  Ch2  || y ||W2,  ∞  etc. 

In  the  next  section  we  shall  require  some  results  about  the 

linearization   of   (2.2)   at   Y0.    For   sufficiently   small   h   this   will 

exist  and  we  write  it  as 
 
i)        v’  (x)    -   Ǻ (x) v (x) 

                       (2.27)  

ii)        
o
B a  v (a) + 

o
B b v (b)   ,

where   the   components   of   A(x)  are  in  L∞  [a,b],   cf.  (2.3).  If  we  define 

the  bounded  bilinear  form  B  on  {Hl  [a,b]}n  x  {L2  [a,b] }n  by 
o
B  (v,w)       ≡      <v’    -  Ǻ (x) v,   w>                  (2.28)

then  we  wish  to  show  that  the  linear  equations 

i)    
o
B a  (v σ )   =  <z, σ>                               ∀σ∈ {Th}n                 (2.29) 

ii)   
o
B a  v (a) + 

o
B b v (b)  =    ~d

have   a   unique   solution   V∈(Sh }n    for   any   given   z∈{L2[a,b]}n   and 

~d ∈Rn,  cf.  (2.12),   and   that   (2.16)   holds.    This   is   achieved   by   showing 

that   B   satisfies  a  coercivity  condition  on   {Sh }n 0  x  {Th}n  ,   which   follows 

from 

|
o
B   (v, σ ) |  ≥  | Ba  (v ) ,σ ) |   -   | B  (v, σ )  -  

o
B   (v, σ ) |                                  (2.30)

cf. (2.11). 

         ≥(C3-c||y-Y0 || H1 ) ||V||H1 || σ || L2
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3.    Higher  accuracy   through   defect   correction. 

The   essence  of  defect  correction  for  Galerkin  methods  is  to 
introduce  a  mapping  P  from  (Sh}n  to  another  sub  space  of  {H1[a,b]}n 

with  superior  approximating  power,  e.g.  a  cubic   spline   subspace.    Then 

P(Y0)1 - f(x,PY0 ) (3.1) 

is  regarded  as  an  estimate  of  the  error  in  Y0  and  we  can  calculate 
a  sequence  {Yk } ⊂ {Sh }n  of  (hopefully)  better  approximations to  YI 

through  the  iteration 

i)       (Y
o
B k – Yk-1 ,σ)   =   -  <(PYk-1)’    -  f (x ,PYk-1) , σ>  ∀σ∈{Th}n                          (3.2) 

ii)      
o
B a (Yk – Yk-1 ,σ)  (a)   +   

o
B b(Yk – Yk-1) (b)    =    -     g ((PYk-1)  (a) ,  (PYk-1)   (b)), 

which is well-defined for sufficiently small h.  In this section we 
shall deduce that {Yk } approaches Y. in the ∞ - norm by making smoothness 
assumptions on f . We shall use A. to denote the divided forward 
difference 

∆v(x)  ≡  (v(x+h) - v(x)/h (3.3) 

with 

∆ j v(x)  =  ∆(∆j-1v(x)), (3.4) 

and for v∈ L∞[a,b] we define the semi-norms 

| V | DJ  = || ∆ j v || L∞ 
(3.5) 

where  the  ∞- norm is taken over the interval [a,x N - j ].  These definitions 

extend naturally to vectors and we note that   | · | D0  = ||  . || L∞   .

In the previous section we showed that 

|| Y1-Y0 || D0  ≤  Ch2 || y || H2  . 
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Nov we wish to show that extra smoothness conditions on f and y imply 

that higher-order differences of Y1 -Y0 are also 0(h2).  For some 

integer p ≥ 2, assume that f(x,v(x)) has the following expansion in a 

ball about y ∈{H1[a,b]}n. 

F(x,v(x))   =   f(x,y(x))   +     A∑
=

P

1l
ℓ (x)  (v-y) ℓ (x)  +  R(x,v(x)),          (3.7)

where each of the nℓ+1   components  of  the  multi-linear  operators  Aℓ (x) 

is in Wp-2 , ∞ [a,b] and the remainder term satisfies 

|| R(x,v) ||L∞    ≤   C || (v-y)P|| L∞ .             (3.8)

Then  if   we  write  the a th  difference, l ≤ s ≤ p  of  the  ith   component  of   
 
Y1 - Y0  as  
 

∆s  (YI-Y0)i  (xj)  =   h-1∆s-1 (<f(x,y)   -   f(x,Y0),σ ),j
i >←               (3.9)

where a. is the element of {Th }n whose every component is zero apart 

from the ith and this  is unity from  xj to xj+1   and  zero elsewhere,  we 

may use the expansion to obtain 

|∆s (YI-Y0)i (xj)| ≤ )
P
L0Yys1hDα0Yy),hm(

1s

0α

1p

1
C( ∞−−+−∑

−

=
∑
−

=

l
l

l
α     (3.10)

where 

m (α, ℓ ) =                                               (3.11)
⎪⎩

⎪
⎨
⎧

−>−−

≤

ll

l

pααp

 - p    α0

Hence,  if  we  assume  that y ∈  {Wp+1,∞  [a,b]}  so  that  the  interpolation 
error |y-YI|Dα    is 0(h2)  0≤α≤p-l,  we  may  replace  y-Y0  by  (y-YI)  +  (Y1 - Y0 ) 
in (3.10)  and  show  by  induction  that 

| Y1 - Y0 | Ds  ≤ C h2    s=0, . . . ,P. (3.12) 
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The  rest  of  this  section  is  devoted  to  shoving  that  the  iteration 

(3.2)  leads  to 

|YI-Yk|Ds      =   0(h    (k+1))              (3.13)

for   s=0, ...... ,p-k:  and  k=0, .....,P-1.   In  fact  we  shall  generalise (3.2) 
by allowing  P  to  change  at  each  iteration  so  that 

i)       (Y
o
B k – Yk-1 ,σ)   =   -  <(PkYk-1)’    -  f (x ,PkYk-1) , σ>       ∀σ∈{Th}n                                

                                                                                                                         (3.14) 
ii)        

o
B a (Yk – Yk-1 ,σ)  (a)   +   

o
B b(Yk – Yk-1) (b)   =  - g ((PkYk-1)  (a) ,  (PkYk-1)  (b)).

Conditions  on  the  Pk  will  be  developed  as  we  proceed  hut  it  will  always 

be  assumed  that  each  is  a  nodal  interpolatory   mapping,   thus 

(Pk  V) (x.)   =  V(xj)    j = 0 ,..., N,  whose  range  is  a  space  of  continuous 

piecewise  polynomials  over  [a,b].   (However  note  that  Pk  is  not   necessarily 

a   linear   mapping) . 

Also we assume that, if y∈{W2(k+1),∞ [a,b]}n and V∈{Sh}n is sufficiently 
close  to  YI,  the  following  stability  and  approximation  properties  hold:- 

a)      || Pk YI-PkV||L∞   ≤  C ||YI-V||L∞    , 

,}Dα|VIY|{max  
0,1,2αC}

)jx,1j(xL
V)"kP-IY k(P{max   

N,1,jb) −=≤
−∞= K

      (3.15) 

c)       || y-PkYI||L∞  Ch2(k+1)  || y ||W2
(k+1), , 

where C  is independent of h and V or y.   Some natural choices 

for the {Pk} are listed below. 

1) Globally C° piecewise (2k+l)th. -degree  polynomials,  where 

the  polynomial  on  the  subinterval  xj.,xj+1    is  obtained  by 

interpolation  at   the   points   xj-k ,.... ,xj+k+1   . 

2) Globally  C2  piecewise  (2k+1)th. -degree  polynomial splines. 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://spa.ce/
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3) Globally  C1  piecewise  (2k+1)th.- degree  polynomials, 

where   the  polynomial  on  the   subinterval  [xj,xj.+1]  is 

obtained  by  interpolation  at  the  points  xj-m,   xj-m ,...,xj+m+1

and has derivative values f(x-V) at the points xj-m, ..., xj+m+1

if  k  is  odd  and  at  the  points  xj-m+1,...,xj+m.  if    k    is 
even.   (here m - (k-l)/2  if k  is  odd  and  m = k/2  if 

k  is even). 

4) Globally  C2k-1  piecewise (2k+1)th.-degree  polynomial 

splines  interpolating  function  values  and taking derivative 

values  f (x,V)  at  the  nodes. 

With  each  choice  there  is  the  question  of  what  to  do  near  the ends of 

the  mesh  and  this  problem  is  considered  at  the  end  of  the  section. 

First  we  obtain  a  bound  on  the  L∞-norm  of  YI-YK,  in  terms  of  higher 

differences  of   YI -Yk-1    by   rewriting  (3.14)   as 

i)       (Y
o
B k – Yk ,σ)   =   -  <Ǻ(x) (YI-Yk-1   -(PkYI  - PkYk-1)), σ>                                

                                                   
      +   <f(x,y) – f(x, PkYk-1) - Ǻ(x) (PkYI  - PkYk-1)), σ> 

                           (3.16) 

ii)     
o
B a (YI – Yk)  (a)   +   

o
B b(YI – Yk) (b)   =  g (Yk-1 (a) ,  Yk-1  (b))   -   g ( YI   (a) , YI  (b)) 

       + 
o
B a (YI – Yk-1)  (a)   +   

o
B b(YI – Yk-1) (b)  

and   then   applying   (2.29).   We   need   a   stronger   Lipschitz  condition  on 
the  derivative  of   f  with   the   H1 -norm   replaced   by   the   L∞-norm   in   (2.18). 
This  together  with   the   conditions   (3.15)   means   that   for 
y ∈ {W2 (k+1),∞   [a,b]}n

}1),(k2W
||y||1)2(kh

2
0D

 | 1-kY-IY |,)Dα|1kYIY|(max  
0,1,2α

2C{h1H
||kYIY||

∞+
++

+−−=≤−
            (3.17)

 
and  so  if   |YI-Y k-1 | D0     is    0(h2)    then 

       .}1),(k2W
||y||1)2(kh}Dα|1kYIY|{

max  
0,1,2α

2C(h0D
|kYIY| ∞+

++−−

=

≤−    (3.18)
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Finally  we  bound  higher  differences  of  YI-Yk  in terms  of  lower 
differences    plus   differences   of   the   previous   iterate   YI-Yk-1 .   This 
is   achieved   by   considering,   for   1≤s≤p-k. 

(3.19).}j
iσ),1kYkPIYk(P(x)1A)1kYkP(x,fy)(x,f

j
iσ),1kYI(Y(x))A1(Aj

iσ)),1kYkPIYk(P1kYI(Y(x)1A

j
iσ),kYI(Y(x))1AA(j

iσ),kYI(Y(x)IA{1sΔ1h)j(xi)kYI(YsΔ

>+
−−−−−<+

>+
−−−<+>+

−−−−−<−

>+−−<+>+−<−−=−
o

o

   

We   also   need   Pk   to   satisfy   conditions   like   (3.15)   but   now   involving   higher 
differences;    i.e.    if   y∈{W2 (k+l) + t,∞  [a,b] }n    and      V     is   close   to   YI ,  then   for 
0≤ t ≤p-k-1  and  1≤k≤p-1 

,}t,1)(k2W
||y||1)2(kChtD|IYkPy|c)

(3.20)},Dα|VIY|{max
2tα0C}xi)1,(xjL||V)"kPIYk(PtΔ||{max

tN,1,jd)
},Dα|VIY|{max

tα0CDt|VkPIYkP|a)

∞++
+≤−

−+≤≤≤−∞−=−=

−≤≤≤−=

K

 

where   C   is   independent   of   V   or  y  .    (Examples  of  {Pk }   satisfying 
these   conditions   will   be   given   at   the   end   of  the  section.)  We  shall  also 
shortly  wish  to  expand  A(x)  about  A1(x)  in  powers  of   y-Y0  and  in  order  to 
linearise  through  the  expansion  (3.7)  we  assume  that  the  (Frechet) 
derivative  of  the  remainder  term   satisfies 

1p
L||yv||CL||v)(x,R'|| −

∞−≤∞                   (3.21) 

Now  applying   (3.20)  and  (3.21)  to  (3.19),  and  using  the  fact  that   y-Y0 

is  0(h2)  in  the  various   difference   norms,   gives 

       

}.1p
L||1kYkPy||s1h

αD|)1kYkP(y|),m(h
1s

0α

1p

2
αD|IYkPy|

1s

0α

Dα|kYIY|
1s

0α
2hDα|kYIY|

1s

0α
C{)j(x)kYI(YsΔ

−
∞−−−+

−−∑
−

=
∑
−

=
+−∑

−

=
+

−∑
−

=
+−∑

−

=
≤−

ll

l

α
 

 

(3.22) 
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Hence   by   splitting   y-Pkyk-1   into   (y-PkyI) + (Pk YI-PkYk-1)  and   using 
(3.12) and (3.18) we can show by  induction  that  (3.13)  holds. 
Thus  after p-1 iterations we  will  have, fory∈{W2 p,∞ [a,b]}n, 

)2p0(h1,W
||1pYIY|| =∞−−        (3.23) 

and  high  accuracy  is  attained  at  the  mesh  points. 

To  conclude  this  section  we  consider  the problem of defining the 

mappings  {Pk}  on  the   subintervals   near  a  and   b  so   that  conditions 

(3.20)  will  hold.  There  are  a  number  of  possibilities. 

1) If  globally  C°  piecewise  (2k+1)th. -degree  polynomials 

are  used  then   values  at  x_k ,...,x-1   and  xn+1 ,...,  xn+k  can 

be  obtained  by  extrapolation.   Thus  we  set 

∆P+k+1V(xj)  = 0     j = -k,...,-1 

∇ P+k+1V(xj)    = 0     j = N+1,…,N+k 

where ∇ denotes the backward (divided) difference. 

2) If   globally  C2k  piecewise  (2k+l)th. -degree  polynomial 

splines  are  used  then  our  end  conditions  are 

∆p+k-1s"V(xj) = 0    j = 0,...,k-l 

�p+k-1s,"(xj)    = 0    j = N-k+l,...,N 

where s (x) is  the  spline. 

3) If  globally  c1  piecewise  (2k+1)th. -degree  polynomials  are 
used   then  function  values  are  required  at x-m , ....,x-1  and 
xN+1 ,........    N+m  while derivative values are needed at 
x
-m,

.........
.N+m  While  derivates  values   are   required   at    

x-m , ... x-1
    and   xN+1,…,xN+m   if   k   is   odd   and   at 

xl-m, .... ,x-l     and   xN+I,....,xn+m-1  if     k    is    even.   (Again 
m = (k-1)/2  if  k  is  odd  and  m = k/2  if k is even). 
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Thus  we  set 

∆P+k+1 V(xj ) = 0    j= -m,...,-1 

∇p+k+1V(x.)  = 0    j= N+1,...,N+m 

together  with 

∆p+k f(xj,V(Xj)) = 0   j = -m,…,-1 

∇P+kf(x.,V(x.)) = 0    j = N+1,...,N+m 

if k is odd or 

∆p+k f(xj,V(xj)) = 0   j= 1-m,...,-1 

∇p+kf(x.,V(x.)) = 0   j= N+1,...,N+m-1 

if   k  is  even. 

4)  If   globally   C     piecewise  (2k+1) th.  degree  polynomial 

splines  are  used  then  our  end  conditions are 

∆ p+k 1s"(xj)  = 0   j=0,...,k-2 

∆ p+k-1s"(x)  = 0    j=N+2-k,...,N 

An alternative idea, which can be used instead of 1) and 3) above, is 
to adapt a method which has been used successfully is deferred correction 
with  finite  differences  [5,6,7,8] .  Thus  we  assume  that our differential 
equation is valid and smooth over a slightly larger interval [a-ε,b+ε] . 
An approximation over this larger interval may then be obtained from (2.4), 
with Y0 outside [a,b] computed  as for initial value  problems,  and 
hence we shall already have the extra values required to compute an 
appropriate P1Y0.  This technique can be used repeatedly with (3.14) 
to ensure that we always have sufficient values of Y. exterior to 
[a,b] in order to compute Pk+1  Yk .  On account of its simplicity and 
avoidance of high-order extrapolation it is  this  technique that we 
would  recommend in practice. 
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4.  Including numerical quadrature

In practice the discrete equations developed in the last 
two sections cannot be used, because the exact calculation of various 
integrals is either impossible or too time-consuming.  Thus in 
this section we approximate these integrals by chosen quadrature 
formulae and show the accuracy required therein for the defect 
correction results to be retained. 

When quadrature is used our basic Galerkin approximation to y, 

labelled YQ
O , is obtained by solving the equations 

i) <V',σ >  - Q0 [<f(x,V),σ>] = 0     ∀σ∈{Th}n 

           (4.1) 
ii)   g(V(a),V(b)= 0 , 

cf. (2.4).  Here Q0[<f(x,V),σ>] is an approximation to <f(x,V),σ> 
derived from a linear quadrature rule for approximating real-valued 
functions  of  the  form 

.dxw(x)
b
a∫          (4.2) 

In  order  to apply  the  quadrature  successfully  we  shall henceforth 
assume  that  f  (x,V)  is  a  vector of functions in C[a,b] for V∈{Sh }n 

near y.   If  E0[<v,σ>]  denotes  the  quadrature  error  <v,σ> - Q0[<v,σ>] 
we only assume for the moment the following boundedness and approximation 
results:- 

a)  if  v  is  vector  of  continuous  functions 

2L
||σ||2

1
)2

]jx,1j[xL||v||h
N

1j
C(|]σv,[0Q|

−
∞∑

=
≤><  

  
b)  if v∈{H2[a,b]}n

(4.3) 

|| E0 [<v,σ >] | ≤ Ch2 || v||H2||σ||L2
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c)   if  A (x)  is  an  nxn  matrix  with  components  in 

W2,∞[a,b]  and V∈{Sh}n

|EQ[<A(x)V,σ>]|  ≤ Ch2||v||Hl ||σ||L2

with   C  independent  of  v,V  or  h.   It  is  easily   checked   that   the  two 
most  natural  choices  of  quadrature  method,  based  on  the  trapezoidal 
or  midpoint  rules,  both  satisfy  the  above  conditions. 

We now introduce conditions  in  order  to  show that, for  h 
sufficiently  small,  (4.1)  will  have  a  locally  unique  solution  in {Sh }n 

near  Y0  and  Y1.   This  is  achieved,  cf.  (2.17), by considering the fixed 
points  of  the nonlinear  mapping KQ:{Sh }n → {Sh }n  defined by 

i) B(KQ(V),σ) = Q0[<f(x,V),σ>] - <A1(x)V,σ>  ∀σ∈{Th}n

     (4..4) 
ii) BaKQ(V)(a) + BbkQ(v) (b) = BaV(a) + BbV(b) - g(V(a) ,V(b)). 

As  with  (2.17)  we  proceed  to show that KQ is a contraction mapping in 

a  suitable  ball  about   YI  in the H1 -norm. By rewriting (4.4) in  the  form 

i) B(kQ(v)-YI,σ) = Q0 [<f(x,V)  - f (x,YI)  - A1(x)(V-YI),σ>] 

- E0[<A1(x)(V-YI),σ>] - E0[<f(x,y),σ>] 

- Q0[<f(x,y) - f(x,YI)>] (4.5) 

ii) Ba(KQ(V)-YI)(a) + Bb(KQ(V)-YI)(b) = Ba(V-YI)(a) + Bb(V-YI)(b) 

- g(V(a),V(b)) 

we  see  that,  provided  y∈{H3  [a,b]}n  and  the  components of A (x) are  in 
W2,∞  [a,b],  we  may  use  (2.16),(4.3)  and  the  Lipschitz  continuity  of  the 
derivatives  of   f    and   g   at   (2.18)   to   obtain 

3H
||y||2h

1H
||IYV||2h1H

||IYV||1H
||IYy||2

1H
||IYV||C(1H

||IY(V)QK||

+

−+−−+−≤−
                        (4.6)

for  h  sufficiently   small.   Consequently  KQ   will   map  a  ball  of  radius 

0(h2)  centred  on  Y1  in  the  H1-norm  into  itself.   Also if U,V∈{Sh}n we have 
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i) B(KQ(U) - KQ(V),σ) = Q0[<f(x,U) - f(x,V) - A1(x)(U-V),σ >] 

-  E0[<A1(x)(U-V),σ>]    ∀σ∈{Th}n (4 .7) 

ii) Ba (KQ(U)-KQ(V))(a) + Bb(KQ(U)-KQ(V))(b) - g(V(a),V(b)) 

-  g(U(a),U(b)) + Ba(U-V)(a) + Bb(U-V)(b) 

and   so,   for  sufficiently  small   h, 

||KQ(U)-KQ(V)|| 1H  ≤ C(||u-Y1|| 1H  + ||V-Y1|| 1H  + h ) ||U-V||2
1H  (4.8) 

and  KQ  will  be  a  contraction  in  the  above  ball.  Hence (4.1) will  have  a 
locally  unique  solution  near  YI  and  this  is  our  which satisfies Q

0Y

.      (4.9) 3H
||y||2Ch1H

||Q
0Y-IY|| =

We  now  define  our  defect  correction  iterates  by }Q
k{Y

(b)),)Q
1kYk(P(a),)Q

1kYk(P(g(b))Q
1kYQ

k(Y
Q
aB(a))Q

1kYQ
k(Y

Q
aBii)

(4.10)

n}h{Tσσ,)'Q
1kYk(P]σ),Q

1kYkPf(x,[kQσ),Q
1kYQ

k(Y
Q
kBi)

−−−=−−+−−

∈∀>−<−>−<=−−

oo

o

where  {Q1}  are  a  sequence  of  quadrature  rules  upon which we shall shortly 

place conditions.  The  bounded  bilinear  form  over {Sσ)(V,
Q

B
o

h}n   x {Th}n

and  the  linear  mappings  are  derived  from  the  linearisation  of 
Q
bB,

Q
aB

oo

(4.1) at    i.e ., Q
0Y

]σ(x)V,
Q

A[0Q-σ,V'σ)(V,
Q

B ><<≡
oo

                (4.11)

where    is the linearisation of f(x.v) at   of course if (x)
Q

A
o Q

0Y

z∈{L2 [a,b]}n  and deR  are given we require that the linear equations 

><= σz,σ)(V,
Q

Bi)
o

                                        ∀σ∈{Th}n 

                    (4.12) 

~
d)V(b)

Q
bB)V(a)

Q
aBii) =+

oo

are uniquely solvable with 

||V || 1H  ≤  C(||Z||L2 + || ||~d En), (4.13) 

for sufficiently small  h.  However since 
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|]σV,(x))
Q

A1A[0Q]σV,(x)1A[0E||σ)(V,
Q

Bσ)B(V,|i) >−<−><=−
oo

≤ ch  || V || 1H  || σ || 2L        (4.14) 

1H
||V||2Ch|)V(b)

Q
bBb(B)V(a)

Q
aBa(B|ii) ≤−+−

oo

we may use simple pertubation  arguments to obtain (4.13), cf. (2.29). 

To  prove  error  results  for  we  must  first  show  that  the }Q
k

YI{Y −

higher differences of  are 0(hQ
0YIY − 2).  (That     already )20(his

L
||Q

0YIY|| ∞−

follows  from (4.9).)  Thus  the basic quadrature rule Q0 must be chosen 

so  that  it  varies  smoothly from one subinterval  to the next and so does 

its error; i-e.  for  0≤s≤p-1 

a) if v is a vector of continuous functions 

,}Dα|V|{max  
sα0Ch|}])j

iσv,[0(QsΔ{|max   
s-N,1,j

max   
n,1,i ≤≤≤>−<== KK

 
 
b) if v∈{WS+2, ∞[a,b]}n        (4.15) 

.2,sW
||v||3Ch|}])j

iσv,[0(EsΔ{|max   
s-N,1,j

max   
n,1,i ∞+≤>−<== KK

Note  that  in  the  usual case of Q0 being based on a composite rule, e.g. 
composite trapezoidal or composite midpoint, (4.15) will follow from 
(4.3) because  we  can  take  the differences  inside Q0[.] and E0[.].  Now 
our  equation  for  the  higher-order  differences  is 

])j
iσy),(x,f[0E

]j
iσ,)Q

0Yf(x,y)(x,f[0(Q1sΔ1h)j(xi)Q
0

YI(YsΔ

>+<+

>+−<−−−
   (4.16)

and, with (4.15), we may follow through the argument after (3.9) to 
obtain 

.nb]}[a,1,p{Wyif

(4.17)p0,...,s2ChsD
|Q

0YIY  
∞+∈

=≤−

               Our next task is to bound the L∞-norm of     in terms ofQ
k

YIY −

higher differences of   and  so  we  rewrite  (4.10)  in  the  form Q
1-k

YIY −
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,(b))Q
1-kYI(Y

Q
bB(a))Q

1-kYI(Y
Q
aB

(b))IY(a),I(Yg(b))Q
1kY,(a)Q

1k(Yg(b))Q
kYI(Y

Q
bB(a))Q

kYI(Y
Q
aBii)

]σ,y)f(x,[kE]σ,)Q
1kYkPIYk(P(x)1A[kE

]σ,)Q
1kYkPIYk(P(x)1A)Q

1kYkPf(x,y)f(x,[kQ

(4.18)σ)),Q
1kYkPIYk(PQ

1kYI(Y(x)1A

]σ),Q
1kYI(Y(x)1A[0E]σ),Q

1kYI(Y(x))
Q

A1A[0Qσ),Q
kYI(Y

Q
Bi)

−+−+

−−−=−+−

><+>−−<−

>−−−−−<+

>−−−−−<−

>−−<+>−−−<=−

oo

oo

oo

        

cf. (3.16). We shall need the stronger Lipschitz condition on the 

derivative of  f mentioned after (3.16) and the following stability 

and error results for Qk k=0,...,p-l :- 

a)  for v a vector of continuous functions 

Qk[<v,σ>] ≤ C ||v||L∞ ||σ||L2   , 

b)  if v∈{W2(k+l), ∞[a,b]}n 

                  2L
||σ||1),2(kW

||v||1)2(kCh]σv,[kE ∞+
+≤><

(4.19) 

  
c)  if A(x) is an nxn matrix with components in 

W2,∞[a,b] and V∈{Sh}n sufficiently close to YI

         }.Dα|YIY{|
21,0,σ

max2Ch]σV),kPIYkA(x)(P[kE −
=

≤>−<

  

Thus   provided   is  0(h∞−
L

||Q
0YIY|| 2)  and .nb]}[a,,{Wy ∞+∈ 3k2  we may 

repeat the argument in (3-17) and (3.18) to obtain 
 

      ).,32kW
||y||1)2(kh}Dα|1-kYIY{|

21,0,σ
max2C(h0D||Q

kYIY|| ∞+
++−

=
≤−     (4.20)

Finally a bound is obtained for the higher differences of YI-YQ
k 

and the equation analogous to (3.19) is 

]j
iσy),f(x,[kE]j

iσ),Q
1-kYkP-IYk(x)(P1A[kE
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Our quadrature rules {Qk } must vary smoothly enough from one subinterval 
to the next so that divided differences do not introduce powers of h 
(cf.(4.15)) and so we need the conditions for O≤s≤p-k-1, l≤k≤p-1:— 

 
a) if v  is a vector of continuous functions 

,}D α|v{|
s0,....,α

maxCh|}]j
iσv,[k(QsΔ{|

sN1,....,j
max

n1,....,i
max

=
≤>−<

−==
  

b) if v�{W2(k+l)+s[a,b]}n 

s1)2(kW
||v||32Ch|}]j

iσv,[k(EsΔ{|
sN1,....,j

max
n1,....,i

max
++

+≤>−<
−==

k   (4.22

   
c) if A(x) is an nxn matrix with components in Ws+2,∞ [a,b] and 

V∈{Sh }n  sufficiently close to YI

,}D α|V-IY{|
2s0,....,α

max3Ch|}I)j
iσV),kPIYkA(x)(P[k(EsΔ{|

sN1,....,j
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n1,....,i
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+=
≤>−−<

−==

 
Then provided that y��W2k+3+s ,∞[a,a]}n, at the components of A1 (x) 

are in WP,∞[a,b],  are  the    we will have),20(hisL||Q
1kYIY|| ∞−−

 

  )s,32kW
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Q
kYIY|
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Q
kYIY|

1s

0α
C(|)j(xi)

Q
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+
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+−∑

−

=
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(cf.(3.22)) and can deduce by induction that 

1)2(khsD|
Q
kYIY| +≤− C          (4.24 

for 0≤S≤p-k and 0≤k≤p-1. Consequently if y∈{w2p+1,∞[a,b]}n we will have 

)2PO(h1,W
||Q

1-PYIY|| =∞−       (4.25)

after p-1 iterations and the analogue with the exact integration case 
is maintained. 

To include this section we make some remarks about the choice of 
quadrature rules Q,  to satisfy (4.19) and (4.22). The most obvious 
idea is to base Q, on a composite Gauss-Legendre rule with (k+1) points 
in each subinterval.  This may not, however, be the most efficient choice 
with regard to the number of function evaluations. Another possibility 
is to let s(x) be a (2k+l)  degree spline interpolating the integrand 
at the knots and then integrating the spline exactly over each subinterval 
by the formula 
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,!(2m)/))j(x1)(2ms

1)(xj1)(2m(s2mh2mB
k

1m
))/21jS(x)jh(s(xs(x)dx1jx

jx
−−

+−∑
−

−++≡+∫                   (4.26)

where the B's are the Bernouilli numbers.  However special end 

conditions, as introduced in previous section, must be used,  A third 

idea is to let p(x) be the (2k+l)   degree polynomial which interpolates 

the integrand at the nodes xj-k , ,,..,xj+k+l . and to integrate this 

polynomial exactly over [xj,xj+l ].  This integral may be computed easily 

from  interpolation  formulae,  eg. thendx(x)p1jx

jx
pk ∫ +

Pk = pk_1 + hßk δ2k((p(xj)+p(xj+1)/2) (4.27) 

wher δ  is the usual central difference, p0  = h (p(xj) + p (xj+1 ))/2 

and 

4β
002497/36288

3β
191/6040

2β
11/720

1β
1/12 −−  

etc.  In  fact this technique, combined with the extension idea at the 

end of the previous section for obtaining nodal values outside [a,b] , 

would seem to be the most useful practical procedure since then (4.10) 

reduces to simple finite difference equations.  Finally we make the 

point that if the quadrature rules {Qk } use only mesh point values then 

the  resulting  equations are independent of the choice of {Pk} since the 

latter are nodal  interpolatory  mappings. 
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5.  Generalizations

In this final section we make some remarks about how the previous 

defect correction results may be extended to a  non-uniform mesh  and  to 

higher-order differential equations. 

If  the  mesh  is non-uniform with h denoting the length of the 

largest  subinterval,  it  is easily  checked  that  the  existence  and 

approximation results of  section  2 still  hold.  The  main  difference 

with defect  correction  results  of  section 3  is that  the  non-uniformity 

of the mesh interferes with the  smoothness  of the  divided  differences 

of YI-Yk and in general we can only expect an improvement of 0(h) per 

iteration.  This can easily be proved  without  any  of  the  expansions  or 

extra conditions developed in section 3 since we may work in the H1 -norm. 

Thus  using  the  defect  iteration (3.14),  and  re-writing  it  as  in  (3.16), 

we only need the conditions 

2kH
||y||2kCh||IYkPy||b)

1H
||V||C1H

||VkP||a)

+
+≤−

≤
               (5.1)

in  order  to  deduce  that 

).2kH
||y||2kh2

1H
||1kYIY||1H

||1kYIY||C(h1H
||kYIY|| +

++−−+−−≤−         (5.2)

Consequently if y∈{Hp+1 [a,b]}   then  after  (p-1)  iterations  we  shall  have 

).1p0(h1H1pYIY +≤−−              (5.3) 

Furthermore  it  is  not  difficult  to  develop conditions for the quadrature 

rules  so  that  these  results  are  retained when numerical integration is 

used.  (Of course in practice one would only use a non-uniform mesh if 

y lacked smoothness or had large derivative  values in  certain  sub-domains 

of [a,b].  The interplay of this phenomenon  and defect  correction  is  a 

difficult  topic  and  not  considered  in  this paper,) 

With regard to higher-order differential  equations, work  is  currently 

being carried out and we only make some observations here.  Results for 

a single linear second-order problem were given in [1], using  continuous 
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piecewise  linear  trial  and  test  functions,  and  these can be generalized. 

One possibility for higher-order equations is to use (2k—1)th   degree 

splines as trial and test functions for  even  order  (2k)  problems  and 

(2k-1)th   degree  splines  as  trial  functions with (2k-2)th   degree splines 

as  test  functions  for  odd order (2k-l) problems.  It may be considered 

however, this leads to matrices with a larger than necessary band—width. 

Alternatively  one  may  try to generalize the ideas behind the H1- and 

H-1 - Galerkin  methods  [4]. 
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