Exploration of Boltzmann Machines via Bars and Stripes

Joan Arino Bernad and Adam Teixidé Bonfill

Abstract: In this article the use of Restricted Boltzmann Machines, a machine learning tech-
nique, will be discussed. It will be applied to a toy example, Bars and Stripes. The algorithm will
be presented theoretically and practically implemented. Special attention will be paid to execu-
tion time under different conditions, hyper-parameter tuning for improving the algorithm and its

capabilities on detecting patterns.

I. THEORETICAL INTRODUCTION

A. DMachine Learning and Restricted Boltzmann
Machines

Tasks which are mundane to us, such as understanding
words we hear or read, recognizing faces, driving a car,
translating, or even distinguishing between a cat and a
chair, are not easily done by a computer. Machine learn-
ing (ML) has solved these problems in recent years [IJ.

The existing big interest in ML has made that us, as
students, had the desire of having a first contact with it.
For doing so we have chosen, under the tutelage of our
supervisors, a type of ML, Boltzmann Machines, and a
toy example, Bars & stripes, which we will explore.

Boltzman machines (BM) is a type of ML connected
to statistical physics. A BM is based on units which
can be on (1) or off (0). Those units are classified on
whether they are observed or hidden, forming two layers.
Their state can be represented by two vectors of ones and
zeros, called « and h respectively. The whole BM assigns
a probability to each state of the units. To do so first the
BM assigns an energy to the system, Energy(x, h). Then
the energy determines the probability that such « and h
occur as in a a Boltzmann distribution [3]:

p(337 h) x e~ Energy(x,h)
In short, a high energy state is more improbable.

The units are interconnected with weights and when a
pair of units are activated they change the energy of the
system by the weight of their connection. BMs function-
ing require heavy computations and we will instead use
a Restricted Boltzman Machine (RBM), in which there
are only connections between observed and hidden units,
forming a bipartite graph. This makes each observed
unit independent of other observed units, allowing effi-
cient computation of the learning algorithm. In a RBM
the energy function is:

Energy(x,h) = —b"x —c"Th —xTWh
B. Use of a RBM

RBMs will be used to create an energy function such
that assigns a high probability to a set of vectors of

observed states which will be called valid states. The
probability of a observed state will be defined as p(x) =
> np(x, h). To define the energy function the weights
{b, e, W}, will be obtained.

The RBM will be trained with the set of valid states
and an iterative algorithm will be applied to progressively
modify the weights to decrease the energy of the valid
states while increasing the energy of other states. To do
so we will maximize the log-likelihood of the valid states.
It will be done with an approximate form of gradient
ascent.

C. Contrastive divergence and Gibbs Sampling

We like to perform gradient ascent, however the gradi-
ent takes the following form [2] :

dlog P(x) _ O Energy(x, h)
T —_— ;P(h|w)T...

., OEnergy(&,h
+3 P@ h)#

The exact computation directly stumps into the biggest
problem faced in RBM, which is that the number of
possible states is 2#Ui% that easily becomes immense.
The gradient ascent requires to sum over all the possible
states (3_z p), which is unfeasible. With the restriction
to RBMs, the log-likelihood gradient can be rewritten in
a form that only requires to sum over all possible ob-
served states (D_;). Such simplification is the purpose
of RBM, however that sum remains unfeasible for most
purposes.

The Contrastive Divergence (CD) algorithm substi-
tutes the sum by a sampling:

Zp(a:)f(w) Substitute by, sample x; return f(x);
x

The RBM probability distribution is too large to be ex-
actly sampled, and CD-k uses instead the faster Gibbs
sampling with k iterations, which provides a sampling
similar to the given by the distribution [5]. CD works
and allows to train the network for much bigger number
of units, improvement that we will explore in section [[TI}

D. Bars & Stripes

The problem we seek to solve is to recognize the Bars
& Stripes data-set, which means to distinguish if a n x m
matrix of X and 0 contains either exclusively bars, or
exclusively stripes, where X represents a unit on and 0 a
unit off. See FIG.[T]for some examples. In this particular
problem the total number of cases grows as 2™, while
the number of valid cases grows only as 2" + 2™ — 2,
so the provability of randomly guessing a valid example
decreases very quickly.

X0XXe 00000 XOXXX XX000
XOXXe XXXXX X0000 XXXXX
X0XX0 XXXXX XX000 XXXXX
X0XXe 00000 X0000 XX000

(a) Valid (b) Valid (c) Not valid (d) Not valid

FIG. 1: Examples of matrices validity or non validity

II. CODE AND PRACTICAL ANALYSIS

Code for this project was generated by the authors
using Python 3. All the relevant functions were coded in
an online Jupyter notebook environment, Google Colab,
and are available lhere. Published code also includes a
simple demo to see how in the 3 x 3 case the system
learns to repeat the instructed cases.

In the following sections we perform a practical anal-
ysis of our RBM implementation. To conduct it three
points have been taken into account:

As the algorithms are non-deterministic both in its ini-
tialization and its execution, there is some variation in
the results. To take this into account each data was col-
lected in triplicate. Raw data used to plot the figures in
the article can be obtained here.

The analysis of the algorithm has been performed with
the following nominal set of parameters:

3 x 3 matriz, 12 hidden units, learning rate 0.5, CD-1
The nominal set of parameters has been chosen to lead
to reasonable results in a relatively short amount of time.

As we want to evaluate performance in solving the Bars
& Stripes task, our figure of merit is the failure rate in
producing Bars & Stripes elements when the RBM is
sampled by Gibbs sampling.

Aside from these points, we will use epochs as a stan-
dard measure of the number of iterations of our algo-
rithms. An epoch passes each time the entire valid set is
provided to the iterative algorithm.

III. EXECUTION TIME

Computation time is a limiting resource. If we only
dispose of 20 minutes of computation, what size of Bars

& Stripes can our RBM learn? We will measure time
in Google Colab environment, which is approximately as
powerful as a personal computer.

We compared gradient ascent and CD-1 performance
at different n x m cases, in FIG. We executed both
algorithms for 2000 epochs or 20 minutes at most. Exe-
cution parameters were the nominal, except for the num-
ber of hidden units which were 1.5 times the number of
observed units.

Comparison of execution time
W Gradient Ascend 2x2 % CD-12x2

[R

*
= LR 'R LI R LR *
. *

Execution Time (s)

FIG. 2: Execution time needed to learn

Note that in FIG. 2] cases with a larger n x m start
with higher failure rate. This happens because the valid
set has a smaller relative size.

CD-1 clearly outperforms gradient ascent (GA) in low-
ering the failure rate: when CD-1 has solved the 3 x 3
case, the GA for 2 x 2 has not yet started. GA does not
allow to use more than 9 observable (3 x 3) units, while
CD-1 allows to train an RBM of up to 5 X 5 = 25 in un-
der 20 minutes of Google Colab computation. Knowing
that GA running time doubles with each new observed
unit, we can predict that it would last around 2.5 years
(= 216.20min) to solve 5 x 5. Therefore using CD-1 for
practical application is usually necessary.

Now we continue the comparison taking into account
the quality of the solution. Theoretically the algorithm
tends to maximize the sum of log-likelihoods over the
valid set. If the sum of log-likelihoods was a maximum
the distribution would select, uniformly, only elements
from the valid set.

Comparison of the quality of the learned probability distribution

W Gradient Ascend2x2 % CD-12x2 Gradient Ascend 3x3 s CD-13x3

* muEw
sxrxxmmant s bEBE"

Sum of log-likelihoods of the valid set

et

Execution time (s)

FIG. 3: Evolution of the sum of log-likelihoods

In FIG. Bl it is shown the evolution of the sum of
log-likelihoods, for 3000 epochs, comparing the different
methods.

https://colab.research.google.com/drive/1W0aQrWBgm7RamqBHDP2k4ITzlcbbDdS-
https://docs.google.com/spreadsheets/d/1x6c5B_kYdu7-yPDmZZX1PR-4YzdOg_TzAEwDlakSRrk/edit?usp=sharing

It is clear that CD1 does not robustly increase the sum
of log-likelihoods. Although it generally increases, signif-
icant fluctuations are very common. Conversely, GA re-
liably increases the sum of log-likelihoods, and converges
to values higher than those reached by CD1.

The log-likelihood is not a figure of merit that evolves
consistently with CD-1. Taking this into account, in fol-
lowing analysis, the failure rate will be used instead. It
allows us to monitor the evolution of the performance
with less noise.

The behaviours found in this section suggests using the
CD-1 algorithm to find weights approximately correct,
and then performing the slower exact gradient ascent to
refine them. It remains as a future possibility.

IV. PARAMETER ANALYSIS

The described learning process for training a Boltz-
mann Machine requires to set many parameters such as
the learning rate used in gradient ascent, the number of
hidden neurons or the k of CD-k used. Those parameters
have a very important effect on both the performance of
the algorithm and its time consumption. Here we per-
form an analysis of those parameters.

For each parameter being studied all others will remain
constant, taking the nominal value defined in section [[I}

A. Learning rate

When using gradient ascent, once the gradient is (ex-
actly or approximately) obtained, the algorithm will ad-
vance in that direction, so:

Tpi1 =x, +e-Vi(x,)

Clearly the size of ¢, the learning rate, has a great im-
portance. A big learning rate could cause the algorithm
to do not converge but at the same time an unnecessary
small learning rate would cause the algorithm to be too
slow.

Learning rate comparison

@ Leamingrate 10 @ Learing rate
100 o

s
®
ee o

Failure rate (%)
L]

Epochs

FIG. 4: Comparison of the learning rate

In the results of FIG. [it can be seen how for a learn-
ing rate of 10 the algorithm clearly does not converge
and simply oscillates. On the other hand for learning
rates of 1 and 0.1 the RBM converges. When comparing
the learning rates of 1 and 0.1 the learning rate of 0.1 has
more constant results, and it seems likely that with a very
high number of epochs could perform better. However,
selecting a learning rate of 1 instead of 0.1 makes the
algorithm 10 times faster, specially at the start. This is
computationally very relevant, as when the code was exe-
cuted on the cloud, with the services provided by Google
Colab, 30,000 epochs required of 15 minutes, a significant
amount of time.

B. CD-k

As discussed in the introduction, CD uses Gibbs
sampling to approximately sample a variable from a
probability distribution that would be too expensive
to compute. Gibbs sampling would provide a sample
exactly according to the probability distribution if given
an infinite number of iterations. Again, this is impossible
in a practical implementation and a limited number of
iterations are performed. When k iterations of Gibbs
sampling are used, the resulting method is called CD-k.

CD-k comparison

e ee

Failure rate (%)

L on e

Epochs

FIG. 5: Comparison on CD-1, CD-3 and CD-10

In the results of FIG.[j]it is appreciated how increasing
the number of iterations above 1 results in a faster conver-
gence. However no clear differences exists between CD-3
and CD-10. In addition, when the number of epochs in-
creases the difference between the methods blurs.

The cost of running the algorithm is linear with the k of
CD-k. Taking this into account, it is reasonable to limit
the usage to CD-1, the form in which CD is commonly
used [2].

C. Hidden variables

The number of hidden units also has an important im-
pact on the algorithm. Very few hidden units will not

provide enough flexibility to the algorithm. On the other
hand, the algorithm time execution has a cost roughly
linear with the number of hidden units and too many
will make the algorithm too slow.

Number of hidden variables compariso

@ 3hidden @ S5hidden 2hidden @ 24hidden @ 50 hidden
[]
H s]]
’ []
L] [}
]
v .
F § *
=
H
3 []
m
z §]
* []
L]
L 3

Epochs

FIG. 6: Comparison on the number hidden units

From the results in FIG. [fl it can be concluded that 3
or less hidden units make it impossible for the algorithm
to learn. Surprisingly, 5 hidden units are enough to train
the RBM although with a reduced speed. 12 hidden units
are enough for the algorithm to learn at good speed, and
the capabilities of the training do not increase beyond
24 hidden units. Those results are consistent with the
bibliography, which establishes that the number of hid-
den units should be set to be between 1 and 3 times the
number of observed units [4].

V. BEYOND REPETITION

When using a ML, method we expect the algorithm to
really be able to learn. The precise meaning of learning
highly depends on the context but in general we expect
the algorithm to be able to deal with situations to which
it has not been exposed before. Up to this point we
have analyzed the capability of our algorithm to repeat
a set of values that we have exposed to it. However it
is also highly interesting to monitor what the algorithm
is able to learn beyond its capability of repeating val-
ues. In particular it is interesting which kind of patterns
the algorithm creates when it does not produce bars or
stripes.

For the following experiment (with nominal parame-
ters) we have focused on the almost valid matrices, ma-
trices that differ at most from one X or 0 from a valid
matrix, and simple superposition matrices, that have ex-
actly one bar and one stripe. For examples see FIG. [7}

It is worth mentioning that the space of almost valid
matrices and the space of simple superposition matrices
represent respectively the 25% and the 1.8% of the to-
tal space. Any variation of these numbers would not be
naively expected.

Of the results in FIG. [§] the most relevant conclusion
is that by performing iterations, the RBM does not only

XoxX XXX 0X0 00X
X00 XoexX XXX 00X
X00 000 0X0 XXX

(a) Almost (b) Almost (c) Simple (d) Simple
valid valid superposition superposition

FIG. 7: Examples of almost valid matrices and simple
superposition matrices

Probability in case of non-validity

@ Amostvalid @ Simple superposition
L
L]
L]

Prabability given that the algorithm fails

Epochs

FIG. 8: Analysis of non valid results

start to repeat cases to which it has been exposed, but
also gains some insight about those cases. For almost
valid matrices the probability of them being selected
quickly raises and after only 1,000 iterations the RBM
starts to predict them most often. This might be not sur-
prising as almost valid matrices only differ on one unit
from a valid matrix, so they are expected to have a sim-
ilar, low energy.

More strikingly, matrices of the form simple superposi-
tion differ from a valid matrix from 2 units, as most of the
3 x 3 matrices, but yet their resemblance with the train
set cause this matrices to progressively gain importance
much beyond their initial 1.8%.

VI. CONCLUSIONS

RBM was successfully applied to resolve Bars & Stripes
for 3x3 and even 5x5 matrices. CD-1 approximation was
necessary to solve the problem in a reasonable amount
om time, but did not offer a robust increase of the log-
likely-hood. Trained RBM learned to reproduce the train
set beyond repetition.

[1] Sonka, Milan, Vaclav Hlavac, and Roger Boyle. Image pro- [4] Heaton, Jeff. Introduction to neural networks with Java.
cessing, and machine vision Cengage Learning, (2014) Heaton Research, Inc., (2008).

[2] Bengio, Yoshua. Learning deep architectures for AI Foun- [6] Geman, S.; Geman, D. Stochastic Relazation, Gibbs Dis-
dations and trends in Machine Learning 2.1 (2009) tributions, and the Bayesian Restoration of Images. .

[3] Rowlinson, J. S. The Mazwell-Boltzmann distribution. IEEE Transactions on Pattern Analysis and Machine In-

Molecular Physics 103.21-23 (2005) telligence. (1984)

	Exploration of Boltzmann Machines via Bars and Stripes
	Abstract
	Theoretical introduction
	Machine Learning and Restricted Boltzmann Machines
	Use of a RBM
	Contrastive divergence and Gibbs Sampling
	Bars & Stripes

	Code and practical analysis
	 Execution time
	Parameter analysis
	Learning rate
	CD-k
	Hidden variables

	Beyond repetition
	Conclusions
	References

