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Abstract. Spectral properties and the confinement phenomenon for the couplingH+V are
studied, where H = −iα ·∇+mβ is the free Dirac operator in R3 and V is a measure-valued
potential. The potentials V under consideration are given in terms of surface measures on
the boundary of bounded regular domains in R3.

A criterion for the existence of point spectrum is given, with applications to electrostatic
shell potentials. In the case of the sphere, an uncertainty principle is developed and its
relation with some eigenvectors of the coupling is shown.

Furthermore, a criterion for generating confinement is given. As an application, some
known results about confinement on the sphere for electrostatic plus Lorentz scalar shell
potentials are generalized to regular surfaces.

1. Introduction

In this article we study the coupling of the free Dirac operator with measure-valued po-
tentials developed in [2]. The aim of the present work is to give spectral properties of these
couplings and to investigate the phenomenon of confinement. Given m ≥ 0, the free Dirac
operator in R3 is defined by H = −iα · ∇+mβ, where α = (α1, α2, α3),

αj =

(
0 σj
σj 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
, I2 =

(
1 0
0 1

)
,

and σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)(1)

is the family of Pauli matrices. Although one can take m = 0 in the definition of H,
throughout this article we always assume m > 0.

The work [2] contains some results concerning H + V for quite general singular measures
σ in R3 and suitable L2(σ)4-valued potentials V . However, in that article, most of the
interest is focused on the case that σ is the surface measure on the boundary of a bounded
regular domain in R3, and this is our setting for the present paper. In order to make an
understandable exposition of the main results, let us first recall the basic ideas used in [2].

The ambient Hilbert space is L2(R3)4 with respect to the Lebesgue measure, and H
is defined in the sense of distributions. Given a bounded regular domain Ω+ ⊂ R3 with
boundary Σ and surface measure σ, in [2] we find domains D ⊂ L2(R3)4 in which H + V :
D → L2(R3)4 is an unbounded self-adjoint operator, where V is a suitable L2(σ)4-valued
potential. The construction of D relies on the following simple argument: by assumption, V
is L2(σ)4-valued. Thus, given ϕ ∈ D, we can write V (ϕ) = −g in the sense of distributions for
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some g ∈ L2(σ)4. Moreover, since (H+V )(ϕ) ∈ L2(R3)4, we can also write (H+V )(ϕ) = G
for some G ∈ L2(R3)4. Therefore, H(ϕ) = G + g in the sense of distributions, and so ϕ
should be the convolution φ∗ (G+g), where φ is a fundamental solution of H. In particular,

D ⊂ {ϕ = φ ∗ (G+ g) : G ∈ L2(R3)4, g ∈ L2(σ)4} and

V (ϕ) = −g for all ϕ = φ ∗ (G+ g) ∈ D.
(2)

To guarantee that H + V is self-adjoint on D, in [2] we impose some relations between G
and g with the aid of bounded self-adjoint operators Λ : L2(σ)4 → L2(σ)4. That is to say,
given suitable Λ’s, following (2) we find domains DΛ where H + V is self-adjoint.

We consider the potential V given by (2) as a “generic” potential since it seems to be
prescribed from the begining, i.e., V (ϕ) = −g for all ϕ = φ ∗ (G + g) ∈ DΛ, so V is
independent of Λ. For an a priori given potential Vσ, the key idea in [2] to construct a
domain where H + Vσ is self-adjoint is to find a precise bounded self-adjoint operator Λσ
so that Vσ(ϕ) = V (ϕ) for all ϕ ∈ DΛσ , and the self-adjointness of H + Vσ on DΛσ follows
directly from the one of H + V .

The generic potential V given by (2) reflects the following rough idea: if we know that
the gradient of a function ϕ has an absolutely continuous part G and a singular part g
supported on Σ (in our setting, V (ϕ) ∈ L2(σ)4 and (H + V )(ϕ) ∈ L2(R3)4), then ϕ must
have a jump across Σ, and this jump completely determines the singular part of the gradient
(in our setting, the jump determines the value V (ϕ)). For a given potential Vσ, one manages
to define a suitable domain D such that, for any ϕ ∈ D, the singular part which comes from
the gradient on the jump of ϕ across Σ agrees with −Vσ(ϕ).

As outlined above, in [2] we show that any ϕ = φ ∗ (G+ g) has non-tangential boundary
values ϕ± ∈ L2(σ)4 when we approach to Σ from Ω±, where Ω− = R3 \Ω+. This enables us
to consider, for example, the electrostatic shell potential

Vλ(ϕ) =
λ

2
(ϕ+ + ϕ−)

for λ ∈ R. Following the argument above, we construct a domain Dλ where H + Vλ is
self-adjoint for all λ 6= ±2. Other similar potentials are also treated in [2].

At this point a remark is in order. In [13] (see also [14, Section 2]) the author provides,
in a very general framework, all self-adjoint extensions of symmetric operators obtained by
restricting a self-adjoint operator A with domain D(A) to a dense (and closed with respect
to the graph norm) subspace N ⊂ D(A). Typically, A is a differential operator and N is the
kernel of some trace operator along a null set. These extensions are accomplished by using a
resolvent Krĕın-like formula, but the author also explores in detail the connection with von
Neumann’s Theory of self-adjoint extensions (see [13, Section 3]) and the Boundary Triples
Theory (see [13, Section 4]). In particular, [13] can be used to provide all the domains where
H+V is self-adjoint and, in this sense, some of the results in [2] follow from the ones in [13].
However, as regards applications, despite that our approach using fundamental solutions is
of the same nature as the approach in [13], we make use of some explicit layer potentials on
Σ related to H and derived from our approach in [2] which turn out to be very fruitful both
in the description of the domains and in the study of the properties of the couplings under
consideration.

Concerning the results in this article, in Section 3 we show a general criterion for the
existence of eigenvalues in (−m,m) for H + V , namely Proposition 3.1, which has strong
connections with [14, Theorem 2.5]. This criterion relates the existence of eigenvalues, which
is a problem in the whole R3, with a spectral property of certain bounded operators in
L2(σ)4, which is a problem settled exclusively on Σ. Afterwards, we show some applications
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to the case of electrostatic shell potentials Vλ. In particular, Theorem 3.3 shows that H+Vλ
and H +V−4/λ have the same eigenvalues in (−m,m) for all λ 6= 0, which is a special case of
the more general isospectral transformation, and that H+Vλ has no eigenvalues in (−m,m)
if |λ| is too big or too small. This is an interesting feature, since it shows that there are lower
and upper thresholds on the possible values of |λ| in order to have non-trivial eigenvalues in
(−m,m) for H + Vλ, unlike what happens to the coupling of H with similar potentials (see
Remark 3.4). Theorem 3.6 is another consequence of the general criterion, where we show
that, under a symmetry assumption on σ, H+Vλ has an eigenvalue a ∈ (−m,m) if and only
if H + V−λ has −a as an eigenvalue. For completeness, we also show in Theorem 3.7 that if
Ω− is connected then H + Vλ has no eigenvalues in R \ [−m,m].

Section 4 is devoted to the spectral study of H + Vλ when Σ is the sphere

S2 = {x ∈ R3 : |x| = 1}.

Our interest is to characterize the eigenvalues finding sharp constants of some appropriately
chosen inequalities. In principle, this is far from obvious for Dirac hamiltonians because they
are not semibounded operators. However, this procedure has been successfully used in [7]
with Hamiltonians with coulombic singularities. In that case, the sharp constants appear
as strictly positive lower bounds for the absolute value of the commutator of two operators,
being H one of them. Therefore, this approach can be seen as another use of the uncertainty
principle. In the current article we proceed in the same vein and we give an uncertainty
principle that concerns some L2(σ)2 bounded operators also related to H. In Theorem 4.4
we obtain a sharp inequality on S2 which turns out to be connected to the eigenvalues of
H + Vλ. For its proof, we strongly use the classical spherical harmonics, so a generalization
to other surfaces Σ seems an interesting and challenging question. As a consequence of the
above-mentioned inequality, we recover a well-known sharp lower bound for the 2-dimensional
Riesz transform on the sphere (see Corollary 4.5 and [10]). In Lemma 4.6 we provide a specific
criterion (based on Proposition 3.1) to generate eigenvectors of H +Vλ. Section 4.2 contains
some comments on the relation between the uncertainty principle and the eigenvectors of
H + Vλ, positive results on the existence of eigenvalues, and an open question (as far as we
know) and some consequences of an affirmative answer.

Finally, in Section 5 we deal with the confinement phenomenon on regular surfaces.
Roughly speaking, one says that an L2(σ)4-valued potential V generates confinement with
respect to H and Σ if the particles modelized by the evolution operator associated to H +V
never cross Σ over time. That is, if a function u(x, t) verifies the equation ∂tu+i(H+V )u = 0
and u(·, 0) is supported in Ω±, that V generates confinement means that u(·, t) is supported
in Ω± for all t ∈ R, so Σ becomes impenetrable for the particles. Similarly to Section 3,
in Section 5 we first show a general criterion on H + V to generate confinement, namely
Theorem 5.4. This criterion is stated in terms of an algebraic property of certain bounded
operators in L2(σ)4, so as before we convert a problem in the whole R3 to a problem exclu-
sively settled in Σ. An application to electrostatic and Lorentz scalar shell potentials is also
shown. In particular, in Theorem 5.5 we prove that, for λe, λs ∈ R, the potential

Ves(ϕ) =
1

2
(λe + λsβ)(ϕ+ + ϕ−)

generates confinement if and only if λ2
e − λ2

s = −4. This was already known for the case of
the sphere (see [6]), and we generalize it to sufficiently regular surfaces. For the reader only
interested on confinement, we mention that Section 5 can be read independently of Sections
3 and 4. Finally, we also want to recall [5], where the authors studied the confinement
phenomenon for singular perturbations of general self-adjoint Hamiltonian operators.
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In what respects to some potential applications of the results in this article, the approach
developed in Sections 3 and 4 is very convenient to describe the admissible range of param-
eters for which the couplings have non trivial energy states, as well as to show qualitative
properties of the energy states such as the monotonicity suggested by the Birman-Schwinger
principle with respect to the coupling parameters (see [18, Lemma 1] for a similar result).
As a consequence, it provides a framework to treat shape optimization problems related to
the minimization of the considered parameters under suitable constraints on the domain Ω.
Moreover, for the case of confinement, our approach using boundary operators could also
be useful to characterize the optimal ground states in terms of the geometry of the bound-
ary. This has strong connections with the M.I.T. bag model for quark confinement, one of
the most famous hadron bag models among physicists (see [11] and the references therein).
These and related issues will be treated in a forthcoming article.

It is worth mentioning that, although all the applications in this article are concerned
to the potentials Vλ and Ves above-mentioned, the general criteria stated in Proposition 3.1
and Theorem 5.4 can be used as a first step to study the spectrum and confinement for
the coupling of H with other shell potentials. In a sense, once a potential Vσ is given, one
must find the suitable operator Λ (mentioned in the beginning of the introduction) so that
Vσ(ϕ) = V (ϕ) for all ϕ ∈ DΛ, and then one must check the criteria for that specific Λ.

2. Preliminaries

Since this article is a continuation of the study developed in [2], we assume that the reader
is familiar with the notation, methods and results in there. However, in this section we recall
some basic rudiments for the sake of completeness.

Given a positive Borel measure ν in R3, set

L2(ν)4 =

{
f : R3 → C4 ν-measurable :

∫
|f |2 dν <∞

}
,

and denote by 〈·, ·〉ν and ‖·‖ν the standard scalar product and norm in L2(ν)4, i.e., 〈f, g〉ν =∫
f · g dν and ‖f‖2ν =

∫
|f |2 dν for f, g ∈ L2(ν)4. We write I4 or 1 interchangeably to denote

the identity operator on L2(ν)4. We say that ν is d-dimensional if there exists C > 0 such
that ν(B(x, r)) ≤ Crd for all x ∈ R3, r > 0. We denote by µ the Lebesgue measure in R3.

Let Σ be the boundary of a bounded Lipschitz domain Ω+ ⊂ R3, let σ and N be the surface
measure and outward unit normal vector field on Σ respectively, and set Ω− = R3 \ Ω+, so
Σ = ∂Ω±. Note that σ is 2-dimensional. Since we are not interested in optimal regularity
assumptions, for the sequel we assume that Σ is of class C2 (see Remark 2.4 for the Lipschitz
case). Finally, we introduce the auxiliary space of measures

X =
{
Gµ+ gσ : G ∈ L2(µ)4, g ∈ L2(σ)4

}
.

Observe that H, which is symmetric and initially defined in C∞c (R3)4 (C4-valued functions
in R3 which are C∞ and with compact support), can be extended by duality to the space of
distributions with respect to the test space C∞c (R3)4 and, in particular, it can be defined on
X . The following lemma is concerned with the resolvent of H, which will be very useful for
the results below. As usual, we denote by (φa)t the complex conjugate of the transpose of
φa, that is, ((φa)t) j,k = φak,j and (φa)j,k = φaj,k for all 1 ≤ j, k ≤ 4.

Lemma 2.1. Given a ∈ (−m,m), a fundamental solution of H − a is given by

φa(x) =
e−
√
m2−a2|x|

4π|x|

(
a+mβ +

(
1 +

√
m2 − a2|x|

)
iα · x

|x|2

)
for x ∈ R3 \ {0},
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i.e., (H − a)φa = δ0I4 in the sense of distributions, where δ0 denotes the Dirac measure on
0. Furthermore, φa satisfies (i), (ii), and (iii) of [2, Section 2.2], that is,

(i) φaj,k ∈ C∞(R3 \ {0}) for all 1 ≤ j, k ≤ 4,

(ii) φa(x− y) = (φa)t(y − x) for all x, y ∈ R3 such that x 6= y,
(iii) there exist γ, δ > 0 such that

(a) sup1≤j,k≤4 |φaj,k(x)| ≤ C|x|−2 for all |x| < δ,

(b) sup1≤j,k≤4 |φaj,k(x)| ≤ Ce−γ|x| for all |x| > 1/δ,

(c) sup1≤j,k≤4 supξ∈R3(1 + |ξ|2)1/2|F(φaj,k)(ξ)| < ∞, where F denotes the Fourier

transform in R3.

Proof. It is well known that ψ(x) = e−
√
m2−a2|x|(4π|x|)−1 is a fundamental solution of the

Helmhotz operator −∆ +m2 − a2 in R3. Note that H2 = (−∆ +m2)I4, so

(H − a)(H + a) = H2 − a2 = (−∆ +m2 − a2)I4,

and if we set φa(x) = (H + a)(ψ(x)I4) then (H − a)φa = δ0I4 in the sense of distributions.
The explicit formula for φa follows by a straightforward computation. The rest of the proof
is analogous to [2, Lemma 3.1]. �

Given a positive Borel measure ν in R3, f ∈ L2(ν)4, and x ∈ R3, we set

(φa ∗ fν)(x) =

∫
φa(x− y)f(y) dν(y),

whenever the integral makes sense. Actually, by Lemma 2.1 and [2, Lemma 2.1], if ν is a
d-dimensional measure in R3 with 1 < d ≤ 3, then there exists some constant C > 0 such
that ‖φa ∗ gν‖µ ≤ C‖g‖ν for all g ∈ L2(ν)4.

In what follows we use a non standard notation, Φa, to define the convolution of measures
in X with the fundamental solution of H−a, φa. Capital letters, as F or G, in the argument
of Φa denote elements of L2(µ)4, and the lowercase letters, as f or g, denote elements in
L2(σ)4. Despite that this notation is non standard, it is very convenient in order to shorten
the forthcoming computations.

Given Gµ+ gσ ∈ X , we define

Φa(G+ g) = φa ∗Gµ+ φa ∗ gσ.

Then, the above inequality shows that ‖Φa(G + g)‖µ ≤ C(‖G‖µ + ‖g‖σ) for some constant
C > 0 and all Gµ+ gσ ∈ X , so Φa(G+ g) ∈ L2(µ)4. Moreover, following [2, Section 2.3] one
can show that (H − a)(Φa(G + g)) = Gµ + gσ in the sense of distributions. This allows us
to define a “generic” potential V acting on functions ϕ = Φa(G+ g) by

V (ϕ) = −gσ,

so that (H − a + V )(ϕ) = Gµ in the sense of distributions. For simplicity of notation, we
write (H − a+ V )(ϕ) = G ∈ L2(µ)4.

In order to construct a domain of definition where H + V is self-adjoint, in [2] we had to
consider the trace operator on Σ. For G ∈ C∞c (R3)4, one defines the trace operator on Σ by
tΣ(G) = GχΣ. Then, tΣ extends to a bounded linear operator

tσ : W 1,2(µ)4 → L2(σ)4

(see [2, Proposition 2.6], for example), where W 1,2(µ)4 denotes the Sobolev space of C4-
valued functions such that all its components have all their derivatives up to first order
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in L2(µ). From Lemma 2.1, we have ‖Φa(G)‖W 1,2(µ)4 ≤ C‖G‖µ for some C > 0 and all

G ∈ L2(µ)4 (see [2, Lemma 2.8]), thus we can define

Φa
σ(G) = tσ(Φa(G)) = tσ(φa ∗Gµ)

and it satisfies ‖Φa
σ(G)‖σ ≤ C‖G‖µ for all G ∈ L2(µ)4. Note that, for a = 0, the above

definitions recover the ones in [2, Section 2.3].
The next lemma, which is a generalization of [2, Lemma 3.3], will be used in the sequel.

Lemma 2.2. Given g ∈ L2(σ)4, x ∈ Σ and a ∈ R, set

Caσ(g)(x) = lim
ε↘0

∫
|x−z|>ε

φa(x− z)g(z) dσ(z) and Ca±(g)(x) = lim
Ω±3y

nt−→x
Φa(g)(y),

where Ω± 3 y
nt−→ x means that y ∈ Ω± tends to x ∈ Σ non-tangentially. Then Caσ and Ca±

are bounded linear operators in L2(σ)4. Moreover, the following holds:

(i) Ca± = ∓ i
2 (α ·N) + Caσ (Plemelj–Sokhotski jump formulae),

(ii) −4(Caσ(α ·N))2 = −4((α ·N)Caσ)2 = I4 for a ∈ [−m,m].

Proof. The proof of the lemma is completely analogous to the one of [2, Lemma 3.3], so
we omit it. Concerning the second term in (ii), once we know that −4(Caσ(α · N))2 = I4,
then, multiplying the equation by α · N from the left and from the right and using that
(α ·N)2 = I4, we obtain −4((α ·N)Caσ)2 = I4. �

In accordance with the notation introduced in [2], for the case a = 0, we write Φ, Φσ, C±
and Cσ instead of Φ0, Φ0

σ, C0
± and C0

σ, respectively.
Finally, we recall our main tool to construct domanis where H +V is self-adjoint, namely

[2, Theorem 2.11]. Actually, the following theorem is a direct application of [2, Theorem
2.11] to H + V , and we state it here in order to make the exposition more self-contained.
Given an operator between vector spaces S : X → Y , denote

kr(S) = {x ∈ X : S(x) = 0} and rn(S) = {S(x) ∈ Y : x ∈ X}.

Theorem 2.3. Let Λ : L2(σ)4 → L2(σ)4 be a bounded operator. Set

D(T ) = {Φ(G+ g) : Gµ+ gσ ∈ X , Φσ(G) = Λ(g)} ⊂ L2(µ)4 and T = H + V on D(T ),

where V (ϕ) = −gσ and (H + V )(ϕ) = G for all ϕ = Φ(G + g) ∈ D(T ). If Λ is self-adjoint
and rn(Λ) is closed, then T : D(T )→ L2(µ)4 is an essentially self-adjoint operator. In that
case, if {Φ(h) : h ∈ kr(Λ)} is closed in L2(µ)4, then T is self-adjoint.

In particular, if Λ is self-adjoint and semi-Fredholm (see for example [1, Definition 1.40]),
then the operator T in Theorem 2.3 is self-adjoint. Recall also that any bounded, semi-
Fredholm and self-ajoint operator on a Hilbert space is actually Fredholm.

Remark 2.4. All the results in this article which are proved without the use of Fredholm’s
theorem are valid when Σ is just Lipschitz (but not necessarily of class C2), or when it is
the graph of a Lipschitz function from R2 to R. Actually, the smoothness and bounded-
ness assumptions on Σ are exclusively required for compactness purposes, in order to use
Fredholm’s theory.
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3. On the point spectrum

In this section, we show a criterion for the existence of eigenvalues in (−m,m) for H +V ,
namely Proposition 3.1. This criterion relates the eigenvalues with a spectral property of
certain bounded operators in L2(σ)4. Afterwards, we show some applications to the case of
electrostatic shell potentials.

Proposition 3.1. Let T be as in Theorem 2.3. Given a ∈ (−m,m), there exists ϕ =
Φ(G+ g) ∈ D(T ) such that T (ϕ) = aϕ if and only if Λ(g) = (Caσ −Cσ)(g) and G = aΦa(g).
Therefore, kr(T − a) 6= 0 if and only if kr(Λ + Cσ − Caσ) 6= 0.

Proof. Let a ∈ (−m,m) and assume that T (ϕ) = aϕ for some ϕ = Φ(G+ g) ∈ D(T ). Then,

(3) G = (H + V )(ϕ) = aϕ = aΦ(G+ g),

and therefore H(G) = aGµ+agσ in the sense of distributions. This yields (H−a)(G) = agσ,
and applying Φa we conclude that G = aΦa(g). In particular, we have seen that aΦ(G+g) =
aΦa(g), and thus Lemma 2.2(i) yields

a

(
Λ∓ i

2
(α ·N) + Cσ

)
(g) = a(Φσ(G) + C±(g)) = aCa±(g) = a

(
∓ i

2
(α ·N) + Caσ

)
(g).

Summing these equations, we obtain a(Λ + Cσ)(g) = aCaσ(g), which is equivalent to Λ(g) =
(Caσ − Cσ)(g) when a 6= 0. For the case a = 0, from (3) we have that G = 0 and, since
ϕ ∈ D(T ), Λ(g) = Φσ(G) = 0 = (Cσ − C0

σ)(g).
On the contrary, assume that there exists g ∈ L2(σ)4 such that Λ(g) = (Caσ −Cσ)(g). Set

G = aΦa(g) and ϕ = Φ(G+ g). As we did in (3), G = aΦa(g) implies (H − a)(G) = agσ, so
G = aΦ(G+ g) and

T (ϕ) = (H + V )(ϕ) = G = aΦ(G+ g) = aϕ.

In particular, aΦa(g) = aΦ(G+ g), thus Lemma 2.2(i) once again gives

a

(
∓ i

2
(α ·N) + Caσ

)
(g) = aΦσ(G) + a

(
∓ i

2
(α ·N) + Cσ

)
(g).

For a 6= 0, this and the assumption on g imply Φσ(G) = (Caσ−Cσ)(g) = Λ(g), thus ϕ ∈ D(T ).
As before, the case a = 0 can be easily treated separately. The proposition is proved. �

3.1. Electrostatic shell potentials. In [2, Theorem 3.8] we proved that, if λ ∈ R\{0,±2}
and T is the operator defined by

D(T ) =
{

Φ(G+ g) : Gµ+ gσ ∈ X , Φσ(G) = Λ(g)
}

and T = H + Vλ on D(T ),
(4)

where

Λ = −(1/λ+ Cσ), Vλ(ϕ) =
λ

2
(ϕ+ + ϕ−)σ

and ϕ± = Φσ(G)+C±(g) for ϕ = Φ(G+g) ∈ D(T ), then T : D(T ) ⊂ L2(µ)4 → L2(µ)4 is self-
adjoint. Moreover, we also showed that Vλ = V on D(T ) for all λ 6= 0, so the self-adjointness
was a consequence of Theorem 2.3.

Lemma 3.2. Set ‖Caσ‖ = inf
{
C > 0 : ‖Caσ(g)‖σ ≤ C‖g‖σ for all g ∈ L2(σ)4

}
. Then, we

have supa∈(−m,m) ‖Caσ‖ <∞.
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Proof. We write

φa(x) =
e−
√
m2−a2|x|

4π|x|

(
a+mβ + i

√
m2 − a2 α · x

|x|

)
+
e−
√
m2−a2|x| − 1

4π
i

(
α · x

|x|3

)
+

i

4π

(
α · x

|x|3

)
= ω1(x) + ω2(x) + ω3(x).

Note that

(5) sup
a∈(−m,m)

sup
1≤k,l≤4

|(ω1)k,l(x)| = O(|x|−1) for |x| → 0,

and by the mean value theorem we have the same estimate for ω2. Using (5), that σ
is 2-dimensional and rather standard arguments (essentially, that Σ is bounded and the
generalized Young’s inequality), it is easy to show that the convolution operator with kernel
ω1 + ω2 is bounded in L2(σ)4 uniformly on a ∈ (−m,m). Finally, the L2(σ)4 boundedness
of the singular intergal operator with convolution kernel ω3 follows, for example, by [12,
Theorem 20.15], working component by component. Note that this last operator does not
depend on a, so the lemma is proved. �

Theorem 3.3. Let λ ∈ R \ {0}, let T = H + Vλ be as in (4), and a ∈ (−m,m). Then
kr(T − a) 6= 0 if and only if kr(1/λ + Caσ) 6= 0. In particular, H + Vλ and H + V−4/λ have
the same eigenvalues in (−m,m).

Moreover, if |λ| 6∈ [1/‖Caσ‖, 4‖Caσ‖] then a is not an eigenvalue of H + Vλ, and if |λ| 6∈
[1/C, 4C] then H + Vλ has no eigenvalues in (−m,m), where C = supa∈(−m,m) ‖Caσ‖ <∞.

Proof. That kr(T − a) 6= 0 if and only if kr(1/λ + Caσ) 6= 0 is a direct consequence of the
definition of Λ and Proposition 3.1.

Assume that kr(1/λ + Caσ) 6= 0. Then there exists a non-trivial g ∈ L2(σ)4 such that
Caσ(g) = −g/λ. Using Lemma 2.2(ii) we deduce that −1

4g = − 1
λ((α ·N)Caσ(α ·N))(g). This

easily implies that Caσ(f) = λ
4f for f = (α · N)g 6= 0, so kr(−λ/4 + Caσ) 6= 0. The same

arguments actually show that kr(1/λ + Caσ) 6= 0 if and only if kr(−λ/4 + Caσ) 6= 0, and by
the first part of the theorem, H + Vλ and H + V−4/λ have the same eigenvalues in (−m,m).

For the last part of the theorem, since (α ·N)2 = I4, we easily have ‖(α ·N)g‖σ ≤ ‖g‖σ
for all g ∈ L2(σ)4. Combining this estimate with Lemma 2.2(ii), we obtain

1

4
‖g‖σ = ‖((α ·N)Caσ)2(g)‖σ ≤ ‖Caσ‖‖Caσ(g)‖σ.

Hence,

(6)
1

4C
≤ 1

4‖Caσ‖
≤ ‖C

a
σ(g)‖σ
‖g‖σ

≤ ‖Caσ‖ ≤ C

if g 6= 0. By the first part of the theorem, if there exists ϕ ∈ D(T ) such that (H+Vλ)(ϕ) = aϕ
for some a ∈ (−m,m), then there exists a non-trivial g ∈ L2(σ)4 such that Caσ(g) = −g/λ.
Thus, (6) easily implies |λ| ∈ [1/‖Caσ‖, 4‖Caσ‖] ⊂ [1/C, 4C], and the theorem follows. �

Remark 3.4. Theorem 3.3 shows that the coupling of the free Dirac operator H with elec-
trostatic shell potentials Vλ relative to Σ does not generate eigenvalues either for big or
small values of |λ|. Recall that the coupling of H with the Coulomb potential λ/|x| gen-
erates eigenvalues for any small |λ| (see [7, Theorem 1], for example) and is not essentially
self-adjoint if |λ| is big enough. On the other hand, it is not hard to see that there exists
a sequence {λj}j∈N ⊂ R with |λj | → ∞ for j → ∞ such that the coupling of H with the
potentials λjχB(0,1) generates eigenvalues.
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Remark 3.5. If we define Λa± = 1/λ± Caσ , by Lemma 2.2(ii) we have

(7) Λa+Λa− =
1

λ2
− (Caσ)2 =

1

λ2
− 1

4
− Caσ(α ·N){α ·N,Caσ} = b−K,

where b = 1/λ2− 1/4 and K = Caσ(α ·N){α ·N,Caσ}. Following the arguments of [2, Lemma
3.5], one can show that {α · N,Caσ} is a compact operator, as well as K. Moreover, K is
easily seen to be self-adjoint, and hence it has a non-trivial eigenfunction. Therefore, for any
a ∈ (−m,m) there exists some λ such that kr(1/λ + Caσ) 6= 0 by (7), so the second part of
Theorem 3.3 is meaningful.

Note that (6) yields ‖Caσ‖ ≥ 1/2 for all a ∈ (−m,m). In particular, this lower bound of
‖Caσ‖ does not depend on Σ. For an upper bound, this type of result may not be expected
because, roughly speaking, the abruptness of Σ may play a role in questions concerning upper
bounds for the norm of singular integral operators on Lipschitz surfaces (see for example [12,
Chapter 20] for related topics).

The following theorem generalizes some results of [2, Theorem 3.8(ii)].

Theorem 3.6. Assume that σ = s#σ, where s(x) = −x for x ∈ R3 and s#σ is the image
measure of σ with respect to s. Let λ ∈ R \ {0} and H +Vλ be as in (4). If H +Vλ has some
eigenvalue a ∈ (−m,m), then H + V−λ has −a as an eigenvalue.

Proof. From Theorem 3.3 we see that, if H + Vλ has a as an eigenvalue, there exists a
nontrivial g ∈ L2(σ)4 such that (1/λ+ Caσ)(g) = 0. Set f = −τ(g ◦ s), where

τ =

(
0 I2

I2 0

)
and I2 denotes the identity operator in L2(σ)2. Obviously, f 6= 0 and, since σ = s#σ, we
have f ∈ L2(σ)4. It is straightforward to check that −φ−a(z)τ = τφa(−z) for all z ∈ R3\{0}.
Therefore, using the assumptions on σ and on g,

C−aσ (f)(x) = lim
ε↘0

∫
|x−y|>ε

−φ−a(x− y)τg(−y) dσ(y)

= τ lim
ε↘0

∫
|x−y|>ε

φa(−x+ y)g(−y) ds#σ(y)

= τ lim
ε↘0

∫
|x+y|>ε

φa(−x− y)g(y) dσ(y)

= τCaσ(g)(−x) = − 1

λ
τg(−x) =

1

λ
f(x).

That is, (−1/λ+C−aσ )(f) = 0 for some f 6= 0. By Theorem 3.3 once again, H +V−λ has −a
as an eigenvalue. �

Theorem 3.7. Let λ ∈ R \ {0} and let T = H + Vλ be as in (4). If Ω− is connected, then
T has no eigenvalues in R \ [−m,m].

Proof. Let a ∈ R \ [−m,m] and ϕ ∈ D(T ) such that T (ϕ) = aϕ. We will see that ϕ = 0.
Note that (H − a)(ϕ) = 0 in Ω− and hence (−∆ + m2 − a2)(ϕ) = (H + a)(H − a)(ϕ) = 0.

Therefore, (∆ + k2)(ϕ) = 0 in Ω− for k =
√
a2 −m2 > 0.

Since ϕ ∈ D(T ), then ϕ = Φ(G + g) for some Gµ + gσ ∈ X such that Φσ(G) = Λ(g).
Using that m > 0, it is not hard to show that∫

S2
R

|ϕ|2 dσR = o(1) as R→∞,
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where S2
R = {x ∈ R3 : |x| = R} and σR denotes the surface measure on S2

R. Therefore,
Rellich’s lemma yields ϕ = 0 in a neighbourhood of infinity (see [16], for example), and thus
ϕ = 0 in Ω− by unique continuation and the connectivity assumption. In particular ϕ− = 0
in Σ, and so Lemma 2.2(i) and the definition of Λ give

λ

2
ϕ+ =

λ

2
(ϕ+ + ϕ−) = λ(Φσ(G) + Cσ(g))

= λ(Λ + Cσ)(g) = −g = i(α ·N)(ϕ− − ϕ+) = −i(α ·N)ϕ+.
(8)

This means that
(
λ
2 + i(α ·N)

)
ϕ+ = 0, so(

λ2

4
+ 1

)
ϕ+ =

(
λ

2
− i(α ·N)

)(
λ

2
+ i(α ·N)

)
ϕ+ = 0

and then ϕ+ = 0 in Σ. It only remains to check that ϕ = 0 in Ω+, but this goes along well
known lines. Since T (ϕ) = aϕ, then (H − a)(ϕ) = 0 in Ω+. If one integrates by parts on the
identities

0 =

∫
Ω+\B(x,ε)

(H − a)(ϕ)(z) · φa(z − x)ej dµ(z) for j = 1, 2, 3, 4,

where e1 = (1, 0, 0, 0), . . . , e4 = (0, 0, 0, 1) and B(x, ε) is the ball centered at x ∈ Ω+ and
with radius ε > 0, and then one takes ε↘ 0, one can show that

(9) ϕ(x) =

∫
Σ
φ̃a(x− z)(iα ·N(z))ϕ+(z) dσ(z) for x ∈ Ω+,

where

φ̃a(y) =
ei
√
a2−m2|y|

4π|y|

(
a+mβ +

(
1− i

√
a2 −m2|y|

)
iα · y

|y|2

)
for y ∈ R3 \ {0}.

Since ϕ+ = 0 in Σ, we conclude from (9) that ϕ vanishes in Ω+, and thus ϕ = 0. �

Although the definition of Λ does not make sense for λ = 0, one can replace Φσ(G) = Λ(g)
by λΦσ(G) = −(1+λCσ)(g) in the definition of D(T ) in (4), in order to recover the free Dirac
operator H when λ = 0. It is well known that H does not have eigenvalues in R \ [−m,m],
so Theorem 3.7 also holds for λ = 0.

With the same arguments, one can check that Theorem 3.7 also holds for other L2(σ)4-
valued potentials different from Vλ, as far as they yield a suitable Λ for which a relation like
(8) implies that ϕ+ = 0 in Σ.

4. The sphere: point spectrum and related inequalities

This section is focused on the coupling H + Vλ given in Section 3.1 (see (4)), and mostly
in the case that Σ is the sphere. However, the following two lemmata hold for any Σ and σ
as in Section 2. First, we need some definitions.

For a ∈ [−m,m] and σ̃ = (σ1, σ2, σ3), where the σj ’s are the family of Pauli matrices (see
(1)), define

ka(x) =
e−
√
m2−a2|x|

4π|x|
I2 and wa(x) =

e−
√
m2−a2|x|

4π|x|3
(

1 +
√
m2 − a2|x|

)
i σ̃ · x

for x ∈ R3 \ {0}. Given f ∈ L2(σ)2 and x ∈ Σ, set

Ka(f)(x) =

∫
ka(x− z)f(z) dσ(z) and W a(f)(x) = lim

ε↘0

∫
|x−z|>ε

wa(x− z)f(z) dσ(z).
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That Ka and W a are bounded operators in L2(σ)2 can be verified similarly to the case of
Caσ in L2(σ)4, we omit the details. Moreover, note that

(10) Caσ =

(
(a+m)Ka W a

W a (a−m)Ka

)
.

Lemma 4.1. For a ∈ [−m,m], the following hold:

(i) the anticommutator {(σ̃ ·N)Ka, (σ̃ ·N)W a} vanishes identically,
(ii) ((σ̃ ·N)W a)2 + (a2 −m2)((σ̃ ·N)Ka)2 = −1/4.

Proof. From Lemma 2.2(ii) and (10) we have(
−1/4 0

0 −1/4

)
=

((
0 σ̃ ·N

σ̃ ·N 0

)(
(a+m)Ka W a

W a (a−m)Ka

))2

=

(
((σ̃ ·N)W a)2 + (a2 −m2)((σ̃ ·N)Ka)2 (a−m){(σ̃ ·N)Ka, (σ̃ ·N)W a}

(a+m){(σ̃ ·N)Ka, (σ̃ ·N)W a} ((σ̃ ·N)W a)2 + (a2 −m2)((σ̃ ·N)Ka)2

)
,

and the lemma follows. �

Lemma 4.2. Ka is a positive operator in L2(σ)2 for all a ∈ (−m,m).

Proof. We want to verify that
∫
Ka(f) · f dσ ≥ 0 for all f ∈ L2(σ)2. If we set u(x) =∫

ka(x− z)f(z) dσ(z) for x ∈ R3, it is not hard to check that u ∈ L2(µ)2 and that it satisfies

(11)

{
(−∆ +m2 − a2)u = 0 in R3 \ Σ,

tσ(u) = Ka(f) ∈ L2(σ)2.

Moreover, since ∇ka(x) = −ka(x)(1 +
√
m2 − a2|x|)x/|x|2 for all x ∈ R3 \ {0}, a proof

analogous to the one of [2, Lemma 3.3(i)] shows that

(12) (∇u)+ ·N − (∇u)− ·N = f,

where (∇u)± denote the boundary values of ∇u when one approaches to Σ non-tangentially
from Ω±. Therefore, using (11), (12), and the divergence theorem, we conclude∫

Ka(f) · f dσ =

∫
Σ

tσ(u) · ((∇u)+ ·N − (∇u)− ·N) dσ

=

∫
Ω+

(|∇u|2 + u∆u) dµ+

∫
Ω−

(|∇u|2 + u∆u) dµ

=

∫
Ω+

|∇u|2 dµ+

∫
Ω−

|∇u|2 dµ+ (m2 − a2)

∫
R3

|u|2 dµ ≥ 0.

�

4.1. An uncertainty principle on the sphere. Throughout this section we set Ω+ =
{x ∈ R3 : |x| < 1}, Σ = S2, σ denotes the surface measure on S2, and N(x) = x for x ∈ S2.
We also use the notation of [20, Section 4.6.4].

Let Y l
n be the usual spherical harmonics. They are defined for n = 0, 1, 2, . . ., and l =

−n,−n + 1, . . . , n, and they satisfy ∆S2Y l
n = n(n + 1)Y l

n, where ∆S2 denotes the usual
spherical laplacian. Moreover, Y l

n form a complete orthonormal set in L2(σ).
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For j = 1/2, 3/2, 5/2, . . . , and mj = −j,−j + 1, . . . , j, set

ψ
mj
j−1/2 =

1√
2j

( √
j +mj Y

mj−1/2

j−1/2√
j −mj Y

mj+1/2

j−1/2

)
and

ψ
mj
j+1/2 =

1√
2j + 2

( √
j + 1−mj Y

mj−1/2

j+1/2

−
√
j + 1 +mj Y

mj+1/2

j+1/2

)
.

Then ψ
mj
j±1/2 form a complete orthonormal set in L2(σ)2, and

(13) (σ̃ ·N)ψ
mj
j±1/2 = ψ

mj
j∓1/2 and (1 + σ̃ · L)ψ

mj
j±1/2 = ±(j + 1/2)ψ

mj
j±1/2,

where L = −ix×∇ (see [20, equation (4.121) and the remark in page 127]).

Lemma 4.3. Given a ∈ (−m,m), there exist positive numbers dj±1/2 and purely imaginary
numbers pj±1/2 for all j = 1/2, 3/2, 5/2, . . . , and mj = −j,−j + 1, . . . , j, such that:

(i) Ka
(
ψ
mj
j±1/2

)
= dj±1/2 ψ

mj
j±1/2 and limj→∞ dj±1/2 = 0. Moreover,

0 ≤ dj±1/2 ≤ d0 =
1− e−2

√
m2−a2

2
√
m2 − a2

.

(ii) W a
(
ψ
mj
j±1/2

)
= pj±1/2 ψ

mj
j∓1/2 and pj+1/2 = −pj−1/2. Moreover,

|pj±1/2|2 =
1

4
− (m2 − a2)dj+1/2 dj−1/2 ≥

1

4
e−2
√
m2−a2

(
2− e−2

√
m2−a2

)
.

Proof. For any n and l, we identify the spherical harmonic Y l
n with its homogeneous extension

of degree 0 to R3\{0}. That is, Y l
n(x) = Y l

n(x/|x|) for all x ∈ R3\{0}. In particular, |x|nY l
n(x)

is a homogeneous polynomial of degree n which is harmonic. We use the same identification
for ψ

mj
j±1/2.

Proof of (i). In order to prove the first identity in (i), fix j and mj and set

(14) u(x) =

∫
ka(x− z)ψmjj±1/2(z) dσ(z) for x ∈ R3.

Given ε > 0, we define hε(x) = ε−1χ(1−ε/2,1+ε/2)(|x|). It is easy to verify that hεµ converges
to σ in the weak∗ topology when ε→ 0. In particular, since σ and hεµ have compact support
and ka is continuous in R3 \ {0} and has exponential decay at infinity, it is not hard to show
that actually u = limε→0 uε in L2(µ)2, where

(15) uε(x) =

∫
ka(x− z)ψmjj±1/2(z)hε(z) dµ(z) = ka ∗

(
ψ
mj
j±1/2hε

)
.

The term on the right hand side of last equality in (15) denotes the usual convolution of
(matrix and vectors of) functions in L2(µ). Applying the Fourier transform to (15) and using
that ka is a fundamental solution of (−∆ +m2 − a2)I2, we obtain

F(uε)(ξ) = (4π2|ξ|2 +m2 − a2)−1F
(
ψ
mj
j±1/2hε

)
(ξ).

Note that, for any 0 < ε < 1, |x|−(j±1/2)hε(x) is a bounded radial function with compact
support, thus [19, Corollary in page 72] shows that

F
(
ψ
mj
j±1/2hε

)
(ξ) = F

(
|x|j±1/2ψ

mj
j±1/2(x) |x|−(j±1/2)hε(x)

)
(ξ) = |ξ|j±1/2ψ

mj
j±1/2(ξ) gε(ξ)
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for some radial function gε depending on j ± 1/2 but not on mj . Hence,

(16) F(uε)(ξ) = (4π2|ξ|2 +m2 − a2)−1gε(ξ) |ξ|j±1/2ψ
mj
j±1/2(ξ).

Since (4π2|ξ|2 +m2 − a2)−1gε(ξ) is also a radial function, we can use that F4 is the identity
operator and [19, Corollary of page 72] in (16) to deduce that

(17) uε = fεψ
mj
j±1/2

for some radial function fε depending on j ± 1/2 but not on mj . Finally, using that u =
limε→0 uε and (17), we conclude that

(18) u = fj±1/2ψ
mj
j±1/2

for some radial function fj±1/2. We already know that Ka is a bounded operator in L2(σ)2,
and since ka(x) = O(1/|x|)I2 for |x| → 0, one can check that

(19) Ka
(
ψ
mj
j±1/2

)
= tσ(u) = tσ

(
fj±1/2ψ

mj
j±1/2

)
,

which implies that fj±1/2(r) is continuous at r = 1. Then, by setting dj±1/2 = fj±1/2(1),
(19) shows that

Ka
(
ψ
mj
j±1/2

)
= dj±1/2 ψ

mj
j±1/2.

Concerning the second statement in (i), since ka(x) = O(1/|x|)I2 for |x| → 0, it is easy
to check that Ka is a compact operator in L2(σ)2, so the eigenvalues of Ka form a bounded
sequence which has {0} as the only possible accumulation point (see [8, Fredholm’s Theorem
(0.38)(a)], for example). Therefore, limj→∞ dj±1/2 = 0.

Let us now prove the last statement in (i). From Lemma 4.2, Ka is a positive operator,
which implies that dj±1/2 ≥ 0 for all j. Moreover, dj±1/2 ≤ ‖Ka‖L2(σ)2→L2(σ)2 . Following [8,

Generalized Young’s Inequality (0.10)] and since S2 is invariant under rotations, it is easy
to see that

‖Ka‖L2(σ)2→L2(σ)2 ≤ ‖ka(· − e3)‖L1(S2),

where e3 = (0, 0, 1) (we have identified the matrix ka with its scalar version). Consider the
change of variables to polar coordinates in S2

(20)

{
x = (sinϕ cos θ, sinϕ sin θ, cosϕ) for 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π,
dσ(x) = sinϕdϕdθ.

Then, we have

‖ka(· − e3)‖L1(S2) =

∫ 2π

0

∫ π

0

e−
√

2(m2−a2)(1−cosϕ)

4π
√

2(1− cosϕ)
sinϕdϕdθ =

1− e−2
√
m2−a2

2
√
m2 − a2

,

where we used the change of variables ϕ→
√

2(1− cosϕ) in the last equality above.
To finish the proof of (i), it only remains to check that d0 = ‖ka(· − e3)‖L1(S2). Note that

(21) ψ
1/2
0 =

(
Y 0

0

0

)
= c

(
1
0

)
(we take j = 1/2, mj = 1/2),

where c > 0 is some constant. Therefore,

d0c

(
1
0

)
= d0ψ

1/2
0 (e3) = Ka

(
ψ

1/2
0

)
(e3) = c

(
‖ka(· − e3)‖L1(S2)

0

)
,

and we are done.
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Proof of (ii). Fix j and mj . Recall from (14) and (18) that, for x ∈ R3, we have

(22) u(x) =

∫
ka(x− z)ψmjj±1/2(z) dσ(z) = fj±1/2(r)ψ

mj
j±1/2(θ)

for some function fj±1/2 ∈ C(0,∞), where r = |x| and θ = x/|x|. Furthermore, fj±1/2 ∈
C∞((0, 1) ∪ (1,∞)) and, by similar arguments to the ones that prove that fj±1/2(r) is con-
tinuous at r = 1, one can show that limr→1+ f

′
j±1/2(r) and limr→1− f

′
j±1/2(r) exist; we omit

the details.
Since wa = −i(σ̃ · ∇)ka, similarly to (12) one can check that

(23) 2W a
(
ψ
mj
j±1/2

)
= (−i(σ̃ · ∇)u)+ + (−i(σ̃ · ∇)u)−,

where (−i(σ̃ · ∇)u)± denote the boundary values of −i(σ̃ · ∇)u when one approaches to Σ
non-tangentially from Ω±. It is well known and quite easy to see that σ̃ · ∇ = (σ̃ · N)∂r −
1
r (σ̃ · N)(σ̃ · L), where ∂r = N · ∇ and L = −ix × ∇. Combining this with (23), (22) and
(13), we obtain

2W a
(
ψ
mj
j±1/2

)
= −i

(
f ′j±1/2(1+) + f ′j±1/2(1−) + 2 (1∓ (j + 1/2)) fj±1/2(1)

)
ψ
mj
j∓1/2,

i.e., W a
(
ψ
mj
j±1/2

)
= pj±1/2 ψ

mj
j∓1/2 for some pj±1/2 ∈ C. By (13), Lemmata 4.1(ii) and 4.3(i),(

pj±1/2

)2
ψ
mj
j±1/2 = ((σ̃ ·N)W a)2

(
ψ
mj
j±1/2

)
=
(
−1/4 + (m2 − a2)((σ̃ ·N)Ka)2

) (
ψ
mj
j±1/2

)
=
(
−1/4 + (m2 − a2)dj+1/2 dj−1/2

)
ψ
mj
j±1/2,

which yields

(24)
(
pj±1/2

)2
= −1

4
+ (m2 − a2)dj+1/2 dj−1/2.

From the last statement in (i), we have

(25) −1

4
+ (m2 − a2)dj+1/2 dj−1/2 ≤

1

4

((
1− e−2

√
m2−a2

)2
− 1

)
< 0,

thus
(
pj±1/2

)2
< 0 by (24), and that means that pj±1/2 are purely imaginary numbers. The

last statement in (ii) follows by (24) and (25), so it only remains to prove that pj+1/2 =
−pj−1/2. For that purpose, we use the first identity in (ii) and that σ̃ · N and W a are
symmetric operators to see that

2<(ipj±1/2)‖ψmjj∓1/2‖
2
L2(S2)2 = 2<

(∫
S2

iW a
(
ψ
mj
j±1/2

)
· (σ̃ ·N)ψ

mj
j±1/2 dσ

)
=

∫
S2

i ((σ̃ ·N)W a −W a(σ̃ ·N))
(
ψ
mj
j±1/2

)
· ψmjj±1/2 dσ

= i(pj±1/2 − pj∓1/2)‖ψmjj±1/2‖
2
L2(S2)2 .

(26)

Since ‖ψmjj±1/2‖L2(S2)2 = 1 and we already know that pj±1/2 are purely imaginary, we obtain

from (26) that 2ipj±1/2 = 2<(ipj±1/2) = i(pj±1/2 − pj∓1/2), which implies that pj+1/2 =
−pj−1/2. The lemma is finally proved.

Note that, if we know that dj±1/2 6= 0 for all j, the relation pj+1/2 = −pj−1/2 also follows
from Lemma 4.1(i). �
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The following theorem is based on an uncertainty principle on the sphere and goes on the
lines of [7, Theorem 1].

Theorem 4.4. Given λ > 0 and a ∈ (−m,m), the operator 1/λ + (m + a)Ka is invertible
in L2(σ)2. Furthermore, for any f ∈ L2(σ)2 and any δ > 0, we have∫

S2

|f |2 dσ ≤ 1

2Mδ

∫
S2

(1/λ+ (m+ a)Ka)−1 (W a(f)) ·W a(f) dσ

+
δ

2M

∫
S2

(1/λ+ (m+ a)Ka) ((σ̃ ·N)f) · (σ̃ ·N)f dσ,

(27)

where M = minj |pj±1/2| ≥ 1
2 e
−
√
m2−a2

√
2− e−2

√
m2−a2 . If j0 is such that M = |pj0±1/2|,

then equality in (27) holds by taking f = ψ
mj0
j0±1/2 for any mj0 = −j0,−j0 + 1, . . . , j0 and

(28) δ = (1/λ+ (m+ a)dj0∓1/2)−1M.

Proof. Recall that Ka is a positive operator by Lemma 4.2, thus 1/λ+(m+a)Ka is positive
and invertible in L2(σ)2 for all λ > 0 by [17, Theorem 12.12(c)], and the inverse is also a
positive operator.

Since dj±1/2 ≥ 0 for all j and limj→∞ dj±1/2 = 0 by Lemma 4.3(i), Lemma 4.3(ii) shows
that |pj±1/2| ≤ 1/2 for all j and limj→∞ |pj±1/2| = 1/2. Therefore, there exists some j0 such
that |pj0±1/2| = infj |pj±1/2|, and thus M is well defined. The estimate of M from below is
stated in Lemma 4.3(ii).

Given j and mj , we define

(29) A =

∣∣∣∣2<(∫
S2

iW a
(
ψ
mj
j±1/2

)
· (σ̃ ·N)ψ

mj
j±1/2 dσ

)∣∣∣∣ .
We will prove (27) by estimating A from above and from below.

From Lemma 4.3 we know that pj+1/2 = −pj−1/2 6= 0 are purely imaginary. Therefore,
arguing as in (26), we have

A = 2|pj±1/2|‖ψ
mj
j±1/2‖

2
L2(S2)2 ≥ 2M‖ψmjj±1/2‖

2
L2(S2)2 .(30)

To estimate A from above, we use Lemma 4.3, (13), Cauchy-Schwarz inequality, and that
2xy ≤ x2 + y2 for all x, y ≥ 0, to deduce that

A =

∣∣∣∣2<(∫
S2

ipj±1/2 ψ
mj
j∓1/2 · ψ

mj
j∓1/2 dσ

)∣∣∣∣
≤
∫
S2

(
δ(1/λ+ (m+ a)dj∓1/2)

)−1
∣∣∣pj±1/2 ψ

mj
j∓1/2

∣∣∣2 dσ
+

∫
S2

δ(1/λ+ (m+ a)dj∓1/2)
∣∣∣ψmjj∓1/2

∣∣∣2 dσ
=

1

δ

∫
S2

(
(1/λ+ (m+ a)Ka)−1W a

)(
ψ
mj
j±1/2

)
·W a

(
ψ
mj
j±1/2

)
dσ

+ δ

∫
S2

(
(1/λ+ (m+ a)Ka)(σ̃ ·N)

)(
ψ
mj
j±1/2

)
· (σ̃ ·N)ψ

mj
j±1/2 dσ.

(31)

From (30) and (31), we see that (27) holds for f = ψ
mj
j±1/2. The functions ψ

mj
j±1/2 with

j = 1/2, 3/2, 5/2, . . . , and mj = −j,−j + 1, . . . , j form a complete orthonormal system in
L2(σ)2. Hence, to prove (27) in full generality, we first write any f ∈ L2(σ)2 as a linear
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combination of the ψ
mj
j±1/2’s and we expand the left and right hand side of (27) in terms of

this basis. Then, using the orthogonality and, for the right hand side of (27), that

Ka
(
ψ
mj
j±1/2

)
= dj±1/2 ψ

mj
j±1/2 and W a

(
ψ
mj
j±1/2

)
= pj±1/2 ψ

mj
j∓1/2

from Lemma 4.3, we conclude that (27) holds for all f ∈ L2(σ)2 if and only if it holds for all
ψ
mj
j±1/2. Therefore, (27) is finally proved.

It only remains to check the last statement of the theorem. Let j0 be such that M =
|pj0±1/2| (we already know that such j0 exists). Then, for the functions

ψ
mj0
j0±1/2 for any mj0 = −j0,−j0 + 1, . . . , j0,

the inequality in (30) becomes an equality. Furthermore, for δ satisfying (28), we have

|pj0±1/2|√
δ(1/λ+ (m+ a)dj0∓1/2)

ψ
mj0
j0∓1/2 =

√
δ(1/λ+ (m+ a)dj0∓1/2)ψ

mj0
j0∓1/2,

which implies that the inequality in (31) is an equality for ψ
mj0
j0±1/2. �

Recall from Lemma 4.3(ii) that |pj+1/2| = |pj−1/2| for all j. Hence, for any j0 such that
M = |pj0±1/2|, we have two possible elections of the subindex, say j0 + 1/2 and j0 − 1/2,
and therefore two possible values of δ for which equality in (27) holds. Hence, we get two (a
priori different) sharp inequalities. The same observation applies if such j0 is not unique.

Theorem 4.4 has an interesting consequence concerning a lower bound for the 2-dimensional
Riesz transform on the sphere. Given a finite Borel measure ν in R3, h ∈ L2(ν) and x ∈ R3,
one defines the 2-dimensional Riesz transform of h as

Rν(h)(x) = lim
ε↘0

∫
|x−y|>ε

x− y
|x− y|3

h(y) dν(y),

whenever the limit makes sense. It is well known that Rν : L2(ν) → L2(ν)3 is a bounded
operator for 2-dimensional uniformly rectifiable AD regular measures ν in R3 (see [4] for a
deep study on this subject). In particular, Rν : L2(ν)→ L2(ν)3 is a bounded operator when
ν is the surface measure of a bounded Lipschitz domain. This means that

‖Rν(h)‖L2(ν)3 ≤ C‖h‖L2(ν)

for some constant C > 0 and all h ∈ L2(ν). Much less is said about lower L2-bounds for
the Riesz transform. However, in the case of the sphere, from the results in [10] (see also
[9, equation (4.6.9)]) one can easily show that the Riesz transform (multiplied by a suitable
constant) is an isometry, providing sharp constants to the above-mentioned inequalities. The
following corollary of Theorem 4.4 yields the sharp constant of the inequality from below on
S2.

Set w(x) = (4π|x|3)−1i σ̃ · x for x ∈ R3 \ {0}, and

W (f)(x) = lim
ε↘0

∫
|x−z|>ε

w(x− z)f(z) dσ(z) for x ∈ S2 and f ∈ L2(σ)2.

Corollary 4.5. The following inequalities hold and they are sharp:

(i) ‖f‖L2(σ)2 ≤ 2‖W (f)‖L2(σ)2 for all f ∈ L2(σ)2.

(ii) 2π‖h‖L2(σ) ≤ ‖Rσ(h)‖L2(σ)3 for all real-valued h ∈ L2(σ).
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Proof. Set a = 0 and λ = 1 in Theorem 4.4. Given f ∈ L2(σ)2, (27) yields∫
S2

|f |2 dσ ≤ 1

2Mδ

∫
S2

(
1 +mK0

)−1
(W 0(f)) ·W 0(f) dσ

+
δ

2M

∫
S2

(
1 +mK0

)
((σ̃ ·N)f) · (σ̃ ·N)f dσ,

(32)

where M = minj |pj±1/2|. Notice that, by Lemma 4.3, dj±1/2 are uniformly bounded and
|pj±1/2| → 1/2 uniformly in j when m → 0. In particular, M → 1/2 when m → 0. Recall

that K0 and W 0 are defiend by means of the convolution kernels

k0(x) =
e−m|x|

4π|x|
I2 and w0(x) =

e−m|x|

4π|x|3
(1 +m|x|) i σ̃ · x.

We define k(x) = (4π|x|)−1I2 for x ∈ R3 \ {0}, and

K(f)(x) =

∫
k(x− z)f(z) dσ(z) for x ∈ S2.

That K and W are bounded operators in L2(σ)2 follows essentially as in the case of K0 and
W 0. Moreover, it is not hard to show that

‖K −K0‖L2(σ)2→L2(σ)2 = O(m) for m→ 0,

‖W −W 0‖L2(σ)2→L2(σ)2 = O(m) for m→ 0.
(33)

(see the proof of Lemma 3.2 for a related argument). Roughly speaking, in S2, K0 and W 0

are compact perturbations of K and W which depend on m continuously. Therefore, if we
take m→ 0 in (32) and we use that (σ̃ ·N)2 = I2, we obtain∫

S2

|f |2 dσ ≤ 1

δ

∫
S2

|W (f)|2 dσ + δ

∫
S2

|f |2 dσ

for all δ > 0. Minimazing in δ, i.e., taking δ = ‖W (f)‖L2(σ)2/‖f‖L2(σ)2 , we get

(34) ‖f‖L2(σ)2 ≤ 2‖W (f)‖L2(σ)2 ,

which is the inequality in Corollary 4.5(i). Corollary 4.5(ii) follows from (34) by taking

f =
(
h
0

)
for any real-valued h ∈ L2(σ). That the inequalities are sharp is a consequence of

the fact that (32) is sharp for δ as in (28). Since M → 1/2 and δ → 1/2 for m → 0 (recall
that we have set a = 0 and λ = 1), using (32) and (33) one can check that (34) is sharp, and
the corollary follows. �

The following lemma gives a specific criterion based on Proposition 3.1 to generate eigen-
vectors of H + Vλ.

Lemma 4.6. Let H + Vλ be as in (4) with Σ = S2. If λ > 0 and a ∈ (−m,m) satisfy

(35) λ2/4−
(
(m+ a)dj∓1/2 − (m− a)dj±1/2

)
λ = 1 for some j,

then, for any mj, ψ
mj
j±1/2 gives rise to an eigenfunction of H + Vλ with eigenvalue a.

Proof. Let λ, a and j be as in the lemma. Since λ > 0, 1/λ + (a + m)Ka is invertible by
Theorem 4.4. Hence we can define

g =

(
f
h

)
∈ L2(σ)4, where h = ψ

mj
j±1/2 and f = −

(
(1/λ+ (a+m)Ka)−1W a

)
(h).
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In particular, we have the relation

(36) (a+m)Ka(f) +W a(h) = − 1

λ
f.

Using Lemma 4.3, we have

−W a(f) + (m− a)Ka(h) =
(
W a(1/λ+ (a+m)Ka)−1W a

)
(h) + (m− a)Ka(h)

=
(
|pj±1/2|2(1/λ+ (a+m)dj∓1/2)−1 + (m− a)dj±1/2

)
h

=

(
1/4− (m2 − a2)dj+1/2 dj−1/2

1/λ+ (a+m)dj∓1/2
+ (m− a)dj±1/2

)
h.

(37)

If λ > 0 and a ∈ (−m,m) satisfy (35), then

1/4− (m2 − a2)dj+1/2 dj−1/2

1/λ+ (a+m)dj∓1/2
+ (m− a)dj±1/2 =

1

λ
,

which by (37) implies that

(38) W a(f) + (a−m)Ka(h) = − 1

λ
h.

Finally, combining (10), (36) and (38), we obtain

Caσ(g) =

(
(a+m)Ka(f) +W a(h)
W a(f) + (a−m)Ka(h)

)
= − 1

λ
g,

which means that g ∈ kr(1/λ+Caσ). Following Proposition 3.1 (see also Theorem 3.3), if we
set G = aΦa(g) and ϕ = Φ(G+ g), then (H + Vλ)(ϕ) = aϕ. The lemma is proved. �

For the case λ < 0, one can develop results analogous to Theorem 4.4 and Lemma 4.6 by
repeating the arguments involved in the proofs but by using the invertibility of 1/λ− (m−
a)Ka instead of 1/λ+ (a+m)Ka. We leave the details for the reader.

4.2. Further comments.

4.2.1. Existence of eigenfunctions. From Lemma 3.2 we have that C = supa∈(−m,m) ‖Caσ‖ <
∞, and in Theorem 3.3 we proved that if

(39) |λ| 6∈
[
C−1, 4C

]
then H + Vλ has no eigenvalues in (−m,m) (recall that C ≥ 1/2 by (6)). Furthermore, in
Remark 3.5 we showed that, for any a ∈ (−m,m), there exists some λ such that H + Vλ has
a as an eigenvalue. From these results, it is not clear what can be said positively about the
set of λ’s for which there exist an eigenvalue of H+Vλ. Thanks to Lemma 4.6, we can give a
bit more of information in the case of the sphere, but first we need to do some computations.

Lemma 4.3(i) gives a precise value for d0 in terms of m > 0 and a ∈ (−m,m), that is,

(40) d0 =
1− e−2

√
m2−a2

2
√
m2 − a2

.

Following a similar argument, we are going to prove that

(41) d1 =
1

2
√
m2 − a2

(
1− 1

m2 − a2
+

(
1 +

1√
m2 − a2

)2

e−2
√
m2−a2

)
,
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where d1 corresponds to dj+1/2 with j = 1/2. From (13) and (21), we have

ψ
1/2
1 (x) = (σ̃ · x)ψ

1/2
0 = c (σ̃ · x)

(
1
0

)
= c

(
x3

x1 + ix2

)
.

Therefore, if we identify the matrix ka with its scalar version and we set e3 = (0, 0, 1), Lemma
4.3(i) yields

(42) d1c

(
1
0

)
= d1ψ

1/2
1 (e3) = Ka

(
ψ

1/2
1

)
(e3) = c

( ∫
ka(x− e3)x3 dσ(x)∫

ka(x− e3)(x1 + ix2) dσ(x)

)
.

That
∫
ka(x − e3)(x1 + ix2) dσ(x) = 0 follows from (42), but it can be also verified using

the change of variables (20) and noting that the resulting integrals contain a cos θ or a sin θ,
which integrated on [0, 2π] vanish. On the other hand, using (20),∫

ka(x− e3)x3 dσ(x) =
1

2

∫ π

0

e−
√

2(m2−a2)(1−cosϕ)√
2(1− cosϕ)

cosϕ sinϕdϕ

=
1

2
√
m2 − a2

(
1− 1

m2 − a2
+

(
1 +

1√
m2 − a2

)2

e−2
√
m2−a2

)
,

(43)

where we used the change of variables ϕ →
√

2(1− cosϕ) and integration by parts in the
last equality above. Combining (42) and (43), we get (41), as desired. Recall that Lemma
4.3(i) states that dj±1/2 ≥ 0 for al j. It is an exercise to check directly from (41) that d1 ≥ 0
for all a ∈ (−m,m).

We now turn to Lemma 4.6, which can be used to provide eigenfunctions of H +Vλ under
some assumptions on λ > 0 and a ∈ (−m,m). For j = 1/2, (35) reads as

λ2/4− ((m+ a)d0 − (m− a)d1)λ = 1,(44)

λ2/4− ((m+ a)d1 − (m− a)d0)λ = 1.(45)

Using (40) and (41), it is not difficult to see that if λ is very big or very small, then (44) and
(45) do not hold for any a ∈ (−m,m), so Lemma 4.6 can not be used. This agrees with the
above-mentioned result on non-existence of eigenvalues given by (39).

Let us take m = 1 for simplicity. Figure 1 shows the set of points (a, λ) ∈ (−1, 1)× [0,∞)
such that (44) and (45) hold. We see that for any a ∈ (−1, 1) we can take a λ for which (44)
holds, hence there exists an eigenfunction with eigenvalue a, by Lemma 4.6. This agrees
with Remark 3.5.

However, from Figure 1 we also see that for any λ in some interval there exists an a ∈
(−1, 1) such that (44) or (45) hold. More precisely, using the computer one can show that if
λ ∈ (−4/3 +

√
2
√

26/3, 4 +
√

10
√

2) then there exists a ∈ (−1, 1) such that (44) holds, and
if λ ∈ (−4 +

√
10
√

2, 4/3 +
√

2
√

26/3) then there exists a ∈ (−1, 1) such that (45) holds. In
particular, if λ ∈ (−4 +

√
10
√

2, 4 +
√

10
√

2) then there exists a ∈ (−1, 1) such that either
(44) or (45) hold. By Lemma 4.6, this means that the set of λ’s for which there exists an
eigenfunction of H+Vλ contains the interval (−4 +

√
10
√

2, 4 +
√

10
√

2) (recall that we have
set m = 1 for these calculations).

4.2.2. Minimizers and eigenfunctions. The combination of Theorem 4.4 and Lemma 4.6
yields an interesting relation between the minimizing functions of (27) and some eigenfunc-
tions of H + Vλ. More precisely, let j0 be such that M = minj |pj±1/2| = |pj0±1/2| (recall
that |pj+1/2| = |pj−1/2| for all j). Assume that the given λ > 0 and a ∈ (−m,m) satisfy

(46) λ2/4−
(
(m+ a)dj0−1/2 − (m− a)dj0+1/2

)
λ = 1,
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Figure 1. The curve on the left shows the set of points

(a, λ) ∈ (−1, 1)× [0,∞)

such that (44) holds, and the curve on the right corresponds to (45). The
range of admissible λ’s for the curve on the left is

(−4/3 +
√

2
√

26/3, 4 +
√

10
√

2) ≈ (1.0703, 8.4721),

and the range of λ’s for the curve on the right is

(−4 +
√

10
√

2, 4/3 +
√

2
√

26/3) ≈ (0.4721, 3.7370).

i.e., the election of the first sign in (35) holds for this particular j0. Then Lemma 4.6 shows

that ψ
mj0
j0+1/2 gives rise to an eigenfunction of H + Vλ with eigenvalue a, for any mj0 .

Fix δ as in (28), but we chose the first sign on the possible definitions of δ, i.e.,

δ = (1/λ+ (m+ a)dj0−1/2)−1M.

Then the functions ψ
mj0
j0+1/2 are minimizers of (27), that is, they attain the equality in (27).

Once λ, a and δ are fixed depending on j0, let J be set of j’s such that M = |pj±1/2| and
that one sign election in (28) is satisfied for j. In particular, j0 ∈ J . Given j ∈ J , since
0 < M = |pj0±1/2| = |pj±1/2| and both j0 and j satisfy (28), we easily deduce that either

(47) dj0±1/2 = dj±1/2 or dj0±1/2 = dj∓1/2.

An inspection of the proof of Theorem 4.4 shows that,

• if dj0±1/2 = dj±1/2 then ψ
mj
j+1/2 are minimizers of (27), and

• if dj0±1/2 = dj∓1/2, then ψ
mj
j−1/2 are minimizers of (27).
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Actually, because of the orthogonality, it can be seen that any minimizer of (27) must be
a linear combination of these functions indexed by j ∈ J and by a choose of the sign in
j ± 1/2 depending on (47). Similarly, for any j ∈ J , (47) and (46) show that (35) holds for
a suitable election of the sign in j± 1/2, and the corresponding functions ψ

mj
j±1/2 give rise to

eigenfunctions of H + Vλ with eigenvalue a.
Combining the above-mentioned arguments we can conclude that, once λ, a, and δ are

properly chosen, then any function which attains the equality in (27) give rise to an eigen-
function of H + Vλ with eigenvalue a. Roughly speaking, the minimizers of (27) provide
eigenfunctions of H + Vλ.

4.2.3. An open question and consequences of a positive answer. From Lemma 4.3(i), we
know that 0 ≤ dj±1/2 ≤ d0 for all j = 1/2, 3/2, 5/2, . . . and limj→∞ dj±1/2 = 0, so it is to be
expected that the following question has a positive answer.

Question 4.7. Is it true that dj+1/2dj−1/2 < d1d0 for all j = 3/2, 5/2, 7/2 . . .?

If so, from Lemma 4.3(ii) we see that the minimum in the definition of M in (27) would
be attained only at one particular j, namely j = 1/2. Actually, M could be calculated
explicitely using (40) and (41), that is,

(48) M =
1

2
√
m2 − a2

− 1

2

(
1 +

1√
m2 − a2

)
e−2
√
m2−a2 .

The same could be said about the two possible values of δ in (28), say

δ0 = (1/λ+ (m+ a)d0)−1M and δ1 = (1/λ+ (m+ a)d1)−1M.

If Question 4.7 has a positive answer, the argument of Section 4.2.2 becomes much more
transparent, since in this case J = {1/2}. Furthermore, it would yield the following result:
let a ∈ (−m,m) and λ > 0. Then, for any f ∈ L2(σ)2,∫

S2

|f |2 dσ ≤ 1/λ+ (m+ a)d0

2M2

∫
S2

(1/λ+ (m+ a)Ka)−1 (W a(f)) ·W a(f) dσ

+
1

2(1/λ+ (m+ a)d0)

∫
S2

(1/λ+ (m+ a)Ka) ((σ̃ ·N)f) · (σ̃ ·N)f dσ,

(49)

where M is given by (48). The equality in (49) is only attained at linear combinations of ψl1
for l ∈ {−1/2, 1/2}. Moreover, if

(50)
λ2

4
− ((m+ a)d0 − (m− a)d1)λ = 1 (see (40) and (41)),

then the minimizers of (49) give rise to eigenfunctions of H + Vλ.
These conclusions also hold if we exchange the roles of d0 and d1 in (49) and (50) and we

replace ψl1 by ψl0 (that is, we exchange the roles of j + 1/2 and j − 1/2 for j = 1/2).

5. On the confinement

In this section, we show a criterion on H + V to generate confinement, namely Theorem
5.4. This criterion is stated in terms of an algebraic property of certain bounded operators
in L2(σ)4. An application to electrostatic and Lorentz scalar shell potentials is also shown.
But before, we need some auxiliary lemmata.

Lemma 5.1. Let T be as in Theorem 2.3. Then, χΩ±ϕ ∈ D(T ) for all ϕ ∈ D(T ) if

(51) {Cσ(α ·N),Λ(α ·N)} = −
(
Λ(α ·N)

)2
.
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Proof. If ψ is a function which is regular in Σc and ψ± denote the boundary values of ψ on
Σ when we approach from Ω±, then

(52) H(ψ) = χΣcH(ψ)µ− i(α ·N)(ψ− − ψ+)σ

in the sense of distributions. The proof of this formula, which follows essentially by Stoke’s
theorem, is an easy exercise left for the reader.

For any G ∈ L2(µ)4, since H(Φ(G)) = G in the sense of distributions, by (52) we have

H(χΩ±Φ(G)) = χΩ±Gµ± i(α ·N)Φσ(G)σ,

which implies that χΩ±Φ(G) = Φ(χΩ±G) ± iΦ((α · N)Φσ(G)). Recall that χΩ±Φ(G) = 0
in Ω∓, so the boundary values (χΩ±Φ(G))∓ vanish on Σ. Combining this fact with Lemma
2.2(i), we obtain

0 = (χΩ±Φ(G))∓ = Φσ(χΩ±G)± iC∓((α ·N)Φσ(G))

= Φσ(χΩ±G) +

(
−1

2
± iCσ(α ·N)

)
Φσ(G).

(53)

Given ϕ = Φ(G + g) ∈ D(T ), let ϕ± = Φσ(G) + C±(g) denote the boundary values of ϕ
on Σ. Since H(ϕ) = G in Σc and Φσ(G) = Λ(g), using (52) and Lemma 2.2(i) we obtain

H(χΩ±ϕ) = χΩ±Gµ± i(α ·N)
(
Φσ(G) + C±(g)

)
σ

= χΩ±Gµ+

(
1

2
± i(α ·N)(Λ + Cσ)

)
(g)σ = χΩ±Gµ+ f±σ,

(54)

where f± =
(

1
2 ± i(α · N)(Λ + Cσ)

)
(g). This implies that χΩ±ϕ = Φ(χΩ±G + f±). Hence,

χΩ±ϕ ∈ D(T ) if and only if Φσ(χΩ±G) = Λ(f±) which, by (53), the definition of f± and
that Φσ(G) = Λ(g), is equivalent to Cσ(α · N)Λ(g) = −Λ(α · N)(Λ + Cσ)(g). Therefore,
χΩ±ϕ ∈ D(T ) for all ϕ ∈ D(T ) if

Cσ(α ·N)Λ + Λ(α ·N)Cσ = −Λ(α ·N)Λ,

which is equivalent to (51); the lemma is proved. Note that, since D(T ) is a vector space, in
the statement of the lemma one only needs to require that χΩ+ϕ ∈ D(T ) for all ϕ ∈ D(T ). �

Remark 5.2. From the last part of the proof of Lemma 5.1, we actually see that χΩ±ϕ ∈ D(T )

for all ϕ ∈ D(T ) if and only if (51) holds on the set of functions g ∈ L2(σ)4 such that there
exists G ∈ L2(µ)4 with Φ(G+ g) ∈ D(T ).

The following lemma is quite standard (see [6, Section V], for example), but we give a
proof of it for the sake of completeness.

Lemma 5.3. Let T be as in Theorem 2.3 and assume that T is self-adjoint. Define the
projections E± : L2(µ)4 → L2(µ)4 by E±(ϕ) = χΩ±ϕ. Then the following are equivalent:

(i) E±(D(T )) ⊂ D(T ),
(ii) E±T ⊂ TE±,

(iii) L2
±(µ)4 = {ϕ ∈ L2(µ)4 : supp(ϕ) ⊂ Ω±} is invariant under e−iT t for all t ∈ R.

Proof. Let us prove (i) =⇒ (ii). Since E± are bounded operators, D(E±T ) = D(T ). By (i),

D(TE±) = {ϕ ∈ L2(µ)2 : E±(ϕ) ∈ D(T )} ⊃ D(T ),

thus D(E±T ) ⊂ D(TE±). If ϕ = Φ(G+ g) ∈ D(T ) then E±T (ϕ) = E±G = χΩ±G, but from

(54) we have seen that χΩ±ϕ = Φ(χΩ±G+ f±) for some f± ∈ L2(σ)4, so

TE±(ϕ) = T (χΩ±ϕ) = (H + V )Φ(χΩ±G+ f±) = χΩ±G.
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Therefore, E±T = TE± on D(T ) = D(E±T ), and (ii) is proved. The implication (ii) =⇒ (i)
is straightforward.

In order to prove (ii) ⇐⇒ (iii), recall the well known fact that, if T is self-adjoint, then
1 + itT : D(T ) → L2(µ)4 is invertible for all t ∈ R. This assertion can be easily verified
using the arguments in the proof of [15, Theorem VIII.3], for example. By definition, (ii) is
equivalent to

E±(1 + itT )(ϕ) = (1 + itT )E±(ϕ) for all ϕ ∈ D(E±T ) = D(T )

which, by writting ϕ = (1 + itT )−1(ψ), is further equivalent to

E±(ψ) = (1 + itT )E±(1 + itT )−1(ψ) for all ψ ∈ L2(µ)4.

In conclusion,

(55) (ii) ⇐⇒ (1 + itT )−1E± = E±(1 + itT )−1 for all t ∈ R.

It is well know that, if u(t) ∈ C(R;L2(µ)4) is a solution of{
∂tu(t) + iTu(t) = 0,

u(0) = ψ0 ∈ L2(µ)4,

then one can write

u(t) = e−iT t(ψ0) = lim
n→∞

((
1 + it

nT
)−1
)n

(ψ0)

(see [3, Theorem 7.9] for a similar result). Assume that ψ0 ∈ L2
+(µ)4 ∪L2

−(µ)4, so E±(ψ0) =
ψ0. By (55), we have

E±(u(t)) = lim
n→∞

E±

((
1 + it

nT
)−1
)n

(ψ0) = lim
n→∞

((
1 + it

nT
)−1
)n
E±(ψ0) = u(t).

Therefore, we have proved that if (ii) holds then E±(u(t)) = u(t) for all t ∈ R, which is a
restatement of (iii). The implication (iii) =⇒ (ii) is left for the reader. �

Theorem 5.4. Let T = H + V be as in Theorem 2.3 and assume that T is self-adjoint.
Then, H + V makes Σ impenetrable for the particles if (51) holds.

Proof. That H + V makes Σ impenetrable means that the particles under consideration
which are initially confined either in Ω+ or Ω− at time t = 0, remain confined in Ω+ or in
Ω− for all t ∈ R under the evolution given by ∂t = −i(H + V ), i.e., that Lemma 5.3(iii)
holds. Thus, the theorem is a straightforward application of Lemmata 5.1 and 5.3. �

5.1. Electrostatic and Lorentz scalar shell potentials. The following theorem is an
application of the confinement criterion stated in Theorem 5.4 to electrostatic and Lorentz
scalar shell potentials.

Theorem 5.5. Assume that Σ is C2. Given λe, λs ∈ R such that |λe| 6= |λs|, let T be the
operator defined by D(T ) =

{
Φ(G+ g) : Gµ+ gσ ∈ X , Φσ(G) = Λ(g)

}
and T = H + Ves on

D(T ), where

Λ =
λsβ − λe
λ2
e − λ2

s

− Cσ, Ves(ϕ) =
1

2
(λe + λsβ)(ϕ+ + ϕ−)σ,

and ϕ± = Φσ(G) + C±(g) for ϕ = Φ(G + g) ∈ D(T ). If λ2
e − λ2

s 6= 4 then T is self-adjoint.
In that case, T makes Σ impenetrable if and only if λ2

e − λ2
s = −4.
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Proof. If ϕ = Φ(G+ g) ∈ D(T ), using Lemma 2.2(i) and that Φσ(G) = Λ(g) we have

Ves(ϕ) = (λe + λsβ)(Φσ(G) + Cσ(g))σ

=
1

λ2
e − λ2

s

(λe + λsβ)(λsβ − λe)(g)σ = −gσ.
(56)

Thus Ves = V on D(T ), and so T is as in Theorem 2.3.
For proving the self-adjointness of T when λ2

e − λ2
s 6= 4, we follow the arguments of the

proof of [2, Theorem 3.8]. Set

Λ± =
λe ∓ λsβ
λ2
e − λ2

s

± Cσ,

so Λ = −Λ+, and observe that Λ± are self-adjoint on L2(σ)4 because β and Cσ also are.
Using that (α ·N)2 = β2 = I4 and Lemma 2.2(ii) we have

Λ+Λ− =
λ2
e

(λ2
e − λ2

s)
2
−
(

λs
λ2
e − λ2

s

β − Cσ
)2

=
1

λ2
e − λ2

s

+
λs

λ2
e − λ2

s

{β,Cσ} − C2
σ

=
1

λ2
e − λ2

s

− 1

4
+

λs
λ2
e − λ2

s

{β,Cσ} − Cσ(α ·N){α ·N,Cσ} = b−K,
(57)

where b = 1/(λ2
e − λ2

s) − 1/4 and K = (λ2
s − λ2

e)
−1λs{β,Cσ} + Cσ(α · N){α · N,Cσ}. In

[2, Lemma 3.5] we proved that {α · N,Cσ} is a compact operator in L2(σ)4, and since β
anticommutes with the αj ’s, we easily have

{β,Cσ}g(x) =
m

2π

∫
Σ

e−m|x−z|

|x− z|
g(z) dσ(z).

Thus {β,Cσ} is a compact operator by [8, Proposition 3.11] and hence K is also compact.
If λ2

e − λ2
s 6= 4 then b 6= 0 and Fredholm’s theorem applies to b − K (see, [8, Theorem

0.38(c)]). If for example λe 6= 0, using (57) we can follow the proof of [2, Lemma 3.7] to show
that Λ has closed range. Moreover, as we did in the first part of the proof of [2, Theorem
3.8], Fredholm’s theorem also shows that {Φ(h) : h ∈ kr(Λ)} is closed, we omit the details.

In any case, that rn(Λ) and {Φ(h) : h ∈ kr(Λ)} are closed for all λ2
e − λ2

s 6= 4 follows by
(57), Fredholm’s theorem and [1, Theorem 1.46(ii)], so the restriction λe 6= 0 is not necessary.
These properties of Λ together with (56) allow us to apply Theorem 2.3, which proves that
T is self-adjoint for λ2

e − λ2
s 6= 4.

Let us finally check the impenetrability condition relative to T and Σ. By Theorem 5.4, T
makes Σ impenetrable for the particles if Λ satisfies (51). By a straightforward computation
using Lemma 2.2(ii), that (α ·N)2 = β2 = I4, and that (α ·N) and β anticommute, we have

{Cσ(α ·N),Λ(α ·N)}+
(
Λ(α ·N)

)2
=

1

4
+

1

λ2
e − λ2

s

.(58)

Therefore, Λ satisfies (51) if and only if λ2
e − λ2

s = −4, and in such case Σ becomes im-
penetrable. Furthermore, since the right hand side of (58) is a constant times I4, from
Remark 5.2 and Lemma 5.3 we actually deduce that T makes Σ impenetrable if and only if
λ2
e − λ2

s = −4. �

We have seen that H + Ves makes Σ impenetrable if and only if λ2
e − λ2

s + 4 = 0, which
is precisely equation (5.1) of [6, Section V]. Hence, for the potentials Ves, our results on
confinement generalize the ones stated in [6] to regular surfaces.
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