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Abstract. In this paper, a novel nonlinear variational formulation is presented for the
numerical modelling of piezo-hyperelastic materials. Following energy principles, a new
family of anisotropic extended internal energy density functionals is introduced, depen-
dent upon the deformation gradient tensor and the Lagrangian electric displacement field
vector. The requirement to obtain solutions to well defined boundary value problems leads
to the definition of energy density functionals borrowing concepts from polyconvex elas-
ticity. Material characterisation of the constitutive models is then carried out by means of
experimental matching in the linearised regime (i.e. small strains and small electric field).
The resulting variational formulation is discretised in space with the help of the Finite
Element Method, where the resulting system of nonlinear algebraic equations is solved via
the Newton-Raphson method after consistent linearisation. Finally, a series of numerical
examples are presented in order to assess the capabilities of the new formulation.

1 INTRODUCTION

The earliest piezoelectric materials to be discovered, i.e. crystals, have shown limited
applicability due to their high stiffness and brittleness. The recent advent of piezoelec-
tric polymers has meant a turning point in the development of piezoelectricity. The
circumvention of the drawbacks associated with their crystal predecessors has broadened
considerably their applications as actuators, power generators and energy harvesters.

Piezoelectric polymers have traditionally been used as smart actuators in microelec-
tromechanical systems. However, their ability to emulate the functioning of biological
muscles as well as their large strain capabilities, have recently triggered the emergence
of new exciting applications, such as artificial muscles. A more recent application within
the field of smart actuators can be found in space microwave antennas. These devices ex-
perience shape deviations due to pre-stress and thermal expansion. These deviations are
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corrected by controlling an applied electric potential on a piezoelectric patch to maintain
the desired shape of the antenna reflector. Figure 1 illustrates two application examples.

Figure 1: (a) Electroactive actuated robotic arm. (b) Shape control of space antenna.

The large strain and piezoelectric capabilities associated to piezoelectric polymers con-
fer them with attractive properties in the field of power generation and energy harvesting.
There is currently a growing need for this kind of applications. For instance, piezoelectric
eels (see Figure 2(a)), which are used as part of submarine devices in long endurance mili-
tary missions. The energy-harvesting eel is designed to extract energy from the wake of a
bluff body in an ocean current. The basic configuration is a leading bluff body trailed by
a thin flexible piezoelectric eel. The bluff body generates vortices which excite a flapping
motion of the eel. The eel deformation results in strain of the piezoelectric membrane,
which in turn generates a voltage across the material. Other current applications include
small piezoelectric devices that when attached to the insole of a shoe are able to transform
mechanical motion into electrical power (see Figure 2(b)).

Figure 2: (a) Piezoelectric eel. (b) Walking energy harvesting device.
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Electromechanical interactions in materials are not only due to piezoelectricity. An-
other important phenomenon which has found a vast number of applications within the
field of electromechanical actuators is electrostriction. This phenomenon results from a
quadratic relation between stresses and electric field. The application of electric fields
on purely electrostrictive materials would lead to a deformation on the material. How-
ever, unlike piezoelectricity, this effect cannot be reversed. It is worth emphasising that
piezoelectricity and electrostriction are not mutually exclusive.

The existing framework for the numerical simulation of piezoelectric materials requires
an enhancement as a result of the development of these new polymers, capable of under-
going large deformations. Unlike crystals, the classical linearised theory can no longer be
applied for a reliable computer simulation. In this paper, a nonlinear variational formu-
lation for piezo-hyperelastic materials is introduced with the help of the internal energy
density U constructed on the basis of the right Cauchy-Green deformation tensor C' and
the Lagrangian electric displacement field vector Dy.

2 ANISOTROPIC STRUCTURE OF PIEZOELECTRIC MATERIALS.

The proposed internal energy density U must lead to the definition of a constitutive
model which needs to capture the material response in an accurate manner. Accordingly,
U must be compliant with the physical and mathematical constraints inherent to these
materials (e.g. anisotropy). This will be taken into consideration by means of a hybrid
approach which combines the isotropic extension surface concept introduced in reference
2] and a more recent methodology proposed in reference [3].

The first approach, i.e. the isotropic extension concept, introduces the so-called isotropic
extension surface ¢, which includes the set of vectors and tensor valued functions which
are preserved under the action of the material symmetry group which characterises the
corresponding anisotropy of the material, that is,

As a result, the creation of anisotropic invariants can alternatively be achieved by for-
mulating isotropic invariants which take into consideration the isotropic extension surface
¢. Thus, the extended internal energy density functional U is created in terms of isotropic
invariants of the following arguments,

U=U(C,Dy,¢(C,Dy)). (2)

An alternative approach for the creation of anisotropic invariants was recently proposed
in [3]. In this reference, a new metric tensor G = HH" is introduced, where H represents
a linear tangent map established between the Cartesian base triad {e;, e, e3} and the
crystallographic base system {ai,as, a3}, the latter related to the associated Bravais
lattice (see Figure 3).
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Figure 3: Crystallographic {a1, a2, a3} and Cartesian {e1, es, es} base vectors.

3 CONSTITUTIVE EQUATIONS IN ELECTRO-MECHANICS.

The derivation of the constitutive equations for Electro-Mechanics requires a revision of
the First and Second laws of Thermodynamics. Following an integral material description,
the First law of Thermodynamics gives the variation of internal energy as [1],

d : .
- U (F, Do, 770) dQO = P FdQ() + Eo : DO dQQ
dt Jo, Q0 Q0
- VO gy on + / Ro on, (3)
8Q0 QO

where F' is the deformation gradient tensor, Dy is the Lagrangian electric displacement
field, ny is the Lagrangian entropy, P is the first Piola-Kirchoff stress tensor, E, is the
Lagrangian electric field, 0 is the temperature, g, is the Lagrangian Fourier-Stokes heat
flux vector field and Ry is the Lagrangian heat supply field per unit volume.

The Clausius-Duhem form of the Second law of Thermo-Electro-Mechanics can be
written as [1],

d Ry 4o
— dQy > — dQy — - == dS)p. 4
dt % o 0= /QO 0 0 o V() 0 0 ( )

Combination of both First and Second laws leads to,

oU : oU .
P—— ) : FdQ E,— - Dy dS2
/Qo( 3F) d0+/no< ’ 6D0> 0

ou 1
Qo Ino 0, 0
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Constitutive equations based on the internal energy U can be derived from the combi-
nation of the First and Second law of Thermo-Electro-Dynamics [1],

aU(FaDO’TIO) EO:aU(F7D077]0> ezaU(FuDOﬂ?O)

P =
OF 8D0 67]0

1
- gvoe gy >0, (6)

where g, can be related to the material gradient of the temperature 6 as,

qy = _kV097 (7)

where k is the thermal conductivity tensor. Positive definiteness of k ensures that
—%VOG - qy > 0. For reversible Electro-Mechanics, the constitutive equations can be
simplified as,

OU(F.Dy) . _ U (F,Dy)

P=—F LY N (8)

Different constitutive laws could be proposed by introducing alternative internal energy
densities U. In addition, the electric enthalpy H (F', Ey) can be introduced by means of
the Legendre transform,

H(F,Ey) =U(F,Do) — Eq - D,. (9)

For the electric enthalpy, analogous constitutive laws to equations (8) can be written
as,

_ OH (F, Ey) _ OH (F,Ey)

P oF 0= OE,

(10)
In the abscence of external electric or mechanical loads, equilibrium configurations
are reached when the internal energy U (F', Dy) attains a minimum. It is possible to
show that for the same equilibrium configuration, the complementary electric enthalpy
H (F, E,) attains a saddle point. In other words, in a neighbourhood of the equilibrium
configuration, the internal energy U (F', Dy) would be a convex function of F and D,
whereas the electric enthalpy H (F', E;) would be a saddle function, i.e convex in F
and concave in Dy. Figure 3 shows the nature of both U (F', D) and H (F, Ey) in a
neighbourhood of the equilibrium configuration for a one-dimensional case.
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Figure 4: Behaviour of different types of energy densities in the vicinity of an equilibrium configuration.

4 Mathematical requirements: Polyconvexity.

The properties of the constitutive models used for the numerical simulation of piezo-
electric polymers must also guarantee existence of solutions to boundary value problems
in large deformation regimes. Convexity of the internal energy functional ensures exis-
tence. However, this condition is too stringent as it precludes the appearance of different
equilibrium configurations with equal potential energy, i.e. buckling. Moreover, it can
also violate material frame indifference. A necessary and almost sufficient condition for
the existence of minimisers to a variational formulation is quasiconvexity. However, this is
an integral condition whose verification is a cumbersome task. As a result, the conditions
preferred in this work which guarantee the existence of solutions to well defined boundary
value problems, are polyconvexity and coercivity [4]. Borrowing concepts from nonlin-
ear elasticity, an energy density functional is said to be polyconvex in the deformation
gradient tensor F' if it can be written as a convex function of the following arguments,

U=U(F,Cof F,det F). (11)

An intuitive and physical understanding of polyconvexity can be gained from its ge-
ometric interpretation. The arguments appearing in equation (11) govern the transfor-
mations by means of which line, area and volume material elements are mapped to their
spatial counterparts (see Figure 5).

There is an extensive work done in the creation of polyconvex energy functionals in the
field of nonlinear elasticity. However, the coupled nature of the electromechanical problem
requires a generalisation of this concept. As a result, this paper presents a methodology
for the development/implementation of polyconvex energy functionals on the basis of
the deformation gradient tensor F' and the material electric displacement field Dq [5].
According to this methodology, polyconvexity is enforced by means of a convex function
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Figure 5: Deformation mapping and relevant kinematic operators (F', Cof F', J = det F').

of the following arguments,

U = U (F,CofF,detF, D). (12)

5 Constitutive models for piezo-hyperelastic materials.

From the physical point of view, a possible decomposition of the internal energy density
is carried out in terms of the three constitutive parts involved in the formulation, i.e.
mechanical, piezoelectric and electrostrictive,

U(Dy,C) = Uy, (C) + U. (Dy,C) + U, (D, C), (13)

where U,,, U, and U, account for the mechanical, piezoelectric and electrostrictive com-
ponents of the stored internal energy functional U, respectively. Naturally, the mechanical
component of the energy functional can also be split into its isotropic and anisotropic con-
tributions,

Um = Uz’so,m (C> + Uaniso,m (C) . (14>

The isotropic contribution of the mechanical component Ui, ., (C) can be chosen from
any of the existing polyconvex strain energy functionals, i.e. Mooney-Rivlin. The defi-
nition of the three remaining components (see equations (13)-(14)) completes the char-
acterisation of the material model. Anisotropic mechanical energy functionals built on
the basis of polyconvex invariants can be found in [3]. This author proposes the follow-
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ing expression for Uypiso,m in terms of an additive decomposition of a series of families j
characterising the anisotropy of the material,

Jy et it (emY T
Uaniso,m :Z Hj Y + 5 + ( / ) C 5 (15)
- aj+1  Gi+1 Vi
with,
Jy, = tr (CG;”) ;o Js, =tr (C CofG;-”) i Il = detC, (16)

where G’ is a possible metric tensor characterising the anisotropy of the material,
a;, B and ~y; are dimensionless parameters and p; is a mechanical material parameter.
For the material model to be complete, it is necessary to account for the remaining
constitutive counterparts, i.e. piezoelectric and electrostrictive.

In this paper, a novel definition for the respective components of the energy functional

on the basis of polyconvex invariants is introduced. A possible electrostrictive component
U, would be,

Ue - Zw] |:pe,j . Cpeﬂ' + Ié -+ (pe’j . pe,j)2:| + fe (C) + Je (Do) R (17)

J

with,

D,
\/,urefgo7

where G is a possible metric tensor characterising the anisotropy of the material, m;
is a dimensionless parameter, w; is an electrotrictive material parameter, € is the electric
permittivity in vacuum and fi,.¢ is a reference mechanical material parameter. A possible
contribution for the piezoelectric component U, would be,

ped- = ij?DO DO = (18)

2
Up - Z Ajk [pp,jk ’ Cpp,jk + ]27 + (pp,jk 'pp,jk) ] + fp (C) + 9 (DO) ) (19)
3k

with,

Py ik = st'?’DO + Ny, (20)
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where G? is a possible metric tensor characterising the anisotropy of the material,
s; is a dimensionless parameter, N} accounts for the structural vectors included in the
isotropic extension surface of the material considered and Aj; is a piezoelectric material
parameter. It is important to emphasise that the definitions of the mechanical U,, and
electrostrictive U, components are based upon the methodology proposed in [3]. How-
ever, the piezoelectric component has been formulated by means of a combination of this
method and the isotropic extension concept in [2].

The functions f., f,, ge and g, are chosen so that no stress or electric field is obtained
in the origin,

oU. oU,
S P 2—= =0
|D0:O,C:I oC DO:07011+ oC Dy=0,C=I
oU oU,
. _ay, . _o. 21
e Do |p,—o,c=1 9Do|p,—0,c=1 )

The complete characterisation of the material model defined through the internal en-
ergy density requires the definition of the material properties o, 5;, v, tj, wj, mj, Aji,
sj and the metric tensors G7', G and G%. This is achieved by performing a match in the
origin, i.e. C = I, Eyq = 0, between the constitutive tensors derived from the proposed
energy functionals and the experimental tensors available in the linearised regime (i.e.
small strains and small electric field),

c’C:I,EO:O =G ’P‘C:I,EO:O =D; A|C:I,E0:0 =€, (22)

where C, P and A are the elastic, piezoelectric, and dielectric material tensors, respec-
tively, derived from the energy functional as follows,

82U (C, D)1 "
Aij (C,EO) - |: (?D()@DO :|ij
82U (C, Dy)
y E) =24, ——~—"""2
Pz]k (C, 0) Am'L aCjkaDom
92U (C,D,) 82U (C, Dy)
y E,)) =4 9 . 2
Cijrt (C Eo) 900w 2 aC,oD,, M (23)

From the previous match, the necessary material parameters can be obtained either by
identification or minimisation.

6 Numerical results.

The resulting variational formulation is discretised in space with the help of the Finite
Element Method, where the resulting system of nonlinear algebraic equations is solved
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via the Newton-Raphson method after consistent linearisation. In this section, a series of
numerical examples are presented in order to demonstrate the robustness and applicability
of the formulation.

Figure 6 shows an example in which the application of an external electric field pro-
duces a deformation in a composite shell. Figure 7 depicts another example of actuator
application. The application of an external electric field on a composite material produces
deformations and changes in shape. In this case, the different anisotropic orientation of
both layers of materials leads to an out of plane deformation. This effect enables these
materials to be designed to carry out a specific mechanically demanded task.
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(a) Electric potential (V)

(b) Electric field in OZ direction (V/m)

(c) Stress o (N/m?)

Figure 6: Composite circular shell subject to electric potential gradient across the thickness.
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(a) Electric potential (V')

(b) Electric displacement in OX direction (N/mV)

(c) Displacement in OZ direction (m)

Figure 7: Composite rectangular shell subject to electric potential gradient across the thickness.
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