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Modelling daily water consumption through potential curves. 

Disaggregating apparent and real losses. 

This paper presents a model, based on potential curves, that describes the 

behaviour of the inverse of the daily cumulated frequency of the flows provided 

to a District Metered Area (DMA). The model has two terms, the first 

corresponds to the variable consumption due to the aggregation of demand 

patterns of consumers. The evolution of this term presents periodic behaviours 

with annual and weekly frequency. An extreme drought episode that affected 

Catalunya, reduced this parameter 19%. A second term presents exponential 

behaviour in its evolution and includes the real leakage. The leakage 

disaggregation together with the billing information allows the estimation of the 

apparent loses, 14.89% in the case study. The difficulty of estimating the 

parameters in a potential model, a complex problem of optimization, is simplified 

by applying mathematical moments. Hence, daily parameters become a linear 

relation of the daily moments that allows their algebraic operation. 

Keywords: water demand, potential curves, model calibration, real losses, 

apparent losses, mathematical moment. 

Motivation 

There are two main questions for a utility that provides drinking water through a Water 

Distribution Network (WDN), which is the current leakage of the system and which is 

the future demand. In order to study the demand, its balance has to be understood. 

Lambert (2003) classifies the components of the water balance. These components have 

different behaviour depending on their origin. Recognising these behaviours from the 

available data requires models with parameters that pick them up. 

(1) The components linked with the authorised customers’ demand and apparent 

leakage are voluntary behaviours. They are brief, with determined start and end, 

generally with constant flow produced by the action of a mechanical device as a 

tap. The superposition of all these consumptions may present a daily, weekly or 



annual periodicity. In the literature these components are extensively studied 

(Blokker 2010, Al-Humoud 2003). 

(2) The components linked with the real leakage are involuntary behaviours. They 

are not periodic and with a flow that lasts days or months. Between the origin 

and the repair, they often grow exponentially (Rogerson 2017). 

As the companies currently control strictly the consumptions, the unmetered 

authorized ones are reduced to zero. Thus, the study will be oriented to the metered 

authorised consumptions, apparent loses and actual leakage. The tools used for 

determining the actual leakage are of two types. First the analysis of the minimal night 

flow (MNF) as an indicator of leakage flow (Fox 2016), applied to Capinzal in South 

Brazil (Cheung 2010) or in Perak State in Malaysia (Alkasseh 2013). A second 

approach is based on the study of the variation of daily consumption or certain 

coefficients as indicators of the variation of leakage flow. In (Mazzolani 2016) a 

method based on the relation between flows at different time slots is presented. The 

comparison of Flow Pattern Distribution (CFPD) allows identifying consistent or 

inconsistent changes in the provided flow in order to detect a variation in leakage flow 

(Irons 2015, Van Thienen 2014). The novelty of the present work is to identify and 

evaluate all the components of the demand including real and apparent losses. Actual 

leakage flow determination, together with the registration of authorised consumptions, 

enables the apparent losses estimation, an economically crucial term for the water 

supply companies. 

Besides the actual leakage there are other priority question regarding the 

resources control, the pumping costs and the sanitary guarantees. It is the forecast of 

provided consumption in a District Metered Area (DMA) in short time, generally 24 or 

48 hours. The tools used for this short-term forecasting are based on the analysis of 



historical data (daily, hourly or higher frequencies) as indicator of future flows due to 

the cyclic repetition of the subscriber’s consumptions. Examples of short time demand 

forecast are those based on chaos theory (Nobuo Oshima 2015, Wei Xizhu 2006), 

temporal series (Puig 2017) or fully adaptive forecasting model (Bakker 2013, Shang 

2006). 

Data used, both for the actual leakage flow and the demand forecasting, are 

series of measurements of flowmeters. These temporal series are characterised by their 

sampling frequency, resolution and sensibility, understood this last as the relation 

between the resolution of the equipment and the data value. From these temporal series 

data, the MNF data is obtained with daily periodicity as the day minimum value. Thus, 

the provided daily flow can be expressed by the addition of a variable term and a 

constant term, the MNF. The variable term has defined origin, the subscriber’s 

consumption, nevertheless the constant flow hasn’t. This MNF or constant flow is the 

addition of two components: the actual leakage and some consumptions that are time 

sustained and overlapping with the low consumption time slots (watering gardens, 

filling pools, industrial activities). In larger DMA there is an effect of overlapping that 

may give a constant behaviour to consumptions that aren’t. Therefore, it is not possible 

to estimate straightforward the different components of the water balance. 

Data used in this work is provided by the company Aigües de Manresa that 

supplies water to the town of Manresa (76.000 inhabitants) in the centre of Catalunya 

and the surrounding villages. Water comes from river Llobregat through a channel of 

27km. Since 2001 there is a telecontrol system managed by a SCADA WIZCON. 20 

flowmeters have been selected, located at the outflow of a tank and the inflow of a 

DMA. These flowmeters have a minimal resolution of 0.1m3/h. The 20 DMA they 

supply have different characteristics, but none contains tanks (except pools) or pumping 



groups. No pressure variation has been taken into account due to the large dimensions 

of the pipes given the flows. The flow range is between 10m3/day till 750m3/day. 18 

temporal series of 28 months, one of 6 years and one of 17 years have been used. 

Sampling time is one minute. The acquisition algorithms are programmed in C++ and 

the validation and analysis algorithms are programmed in R. 

Objectives and scope 

Potential law is one of the most usual behaviours observed, both in nature (magnitude of 

earthquakes, diameter of moon craters, intensity of solar flares) and in social 

phenomena (word frequency, citations of scientific papers, web hits, copies of books 

sold, telephone calls, intensity of wars, wealth of the richest people, frequencies of 

family names and population of cities) (Newman 2005). However, these models have 

only a potential function that adjusts to their growth. In some series of real values, a 

second potential behaviour is observed for small values. Therefore, though a function of 

growing type can provide a very good adjustment for the largest values, a decreasing 

potential is required in the opposite end for a good fit in all the range of data. Most data 

of the flowmeters for water supply ordered from highest to lowest values present these 

two behaviours. 

The objectives of this paper are: 

(1) To create, identify and validate a model of potential curves that adjusts the 

inverse cumulated frequency (the values ordered in decreasing order against the 

normalised samples of the daily flows provided by a DMA). The potential 

curves should be estimated by a methodology with low computational and time 

costs. 



(2) To use the parameters of potential curves to estimate the components of the 

water balance: registered and authorised consumptions, apparent losses and 

actual leakage. These parameters describe de behaviour of the subscribers and 

the leakages. 

(3) Demand forecast is not the objective of this model. Nevertheless, demand 

forecasting based on estimated parameters using the state-of-the-art algorithms 

is used to validate the model. 

This paper is organised as follows. Next section presents the model, its 

identification and validation on real data. Section 4 presents a simplified identification 

process that allows an online parameter estimation, it is validated too. Disaggregation of 

the demand components using the model’s parameters is described in section 5. In 

section 6 the physical interpretation of the parameters is discussed while section 7 

focusses on the linear manipulation of the models. Section 8 compares the results of 

demand forecast using the linear approximation proposed with those obtained on real 

flow data in order to validate the model. Finally, discussion and conclusions are 

presented. 

Model for daily water consumption 

Daily data of a flowmeter are organized in time series of work data (Y), with constant 

sampling. Each Y includes a constant number of samples (nd) of consumption {𝑌𝑌1 …𝑌𝑌nd} 

provided by a flowmeter. These values are ordered from highest to lowest. The 

frequency (fi) for each of the work data (𝑌𝑌i), defined by eq.1 (Mijares 1989), expresses 

the probability of having a value of flow rate greater than or equal to 𝑌𝑌i. 

 𝑓𝑓𝑖𝑖 = 𝑖𝑖
𝑛𝑛𝑑𝑑+1

 where 0 < 𝑓𝑓𝑖𝑖 < 1 and 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑑𝑑} (1) 



We define 𝒀𝒀𝑠𝑠𝑠𝑠𝑠𝑠 as the time series of nd data {𝑌𝑌nd …𝑌𝑌1} where 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 1 − 𝑓𝑓𝑖𝑖 . We 

call 𝑁𝑁 ≥ 0 the minimal daily flow measured by the flowmeter. 

 𝑁𝑁 ≈ 𝑌𝑌𝑛𝑛𝑛𝑛 (2) 

𝑌𝑌i flows adjust potential law where 𝑎𝑎 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 ≥ 0 are the parameters that 

expresses the growth. 

 𝑌𝑌i ≈ 𝑘𝑘 𝑓𝑓𝑖𝑖
−𝑎𝑎 when 𝑓𝑓𝑖𝑖 → 0 (3) 

The lowest flows present a potential behaviour with two possible options, 

concave or convex. These behaviours can be modelled using an inverse potential where 

𝑎𝑎′ ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 ≥ 0 are the parameters that express the decrease degree. For a’ > 1 the 

values present a concave behaviour for 𝑎𝑎’ <  1 presents a convex behaviour. 

 𝑌𝑌i ≈ 𝑘𝑘 (1 − 𝑓𝑓𝑖𝑖)𝑎𝑎
′when 𝑓𝑓𝑖𝑖 → 1 (4) 

Merging equations 3 and 4 the variable component can be modelled by: 

 𝑌𝑌i ≈ 𝑘𝑘 𝑓𝑓𝑖𝑖
−𝑎𝑎 (1 − 𝑓𝑓𝑖𝑖)𝑎𝑎

′ (5) 

The provided flow for a certain frequency (fi) of the new model are calculated 

using equations 2 and 5: 

 𝑌𝑌�𝑖𝑖 = 𝑘𝑘 𝑓𝑓𝑖𝑖
−𝑎𝑎 (1 − 𝑓𝑓𝑖𝑖)𝑎𝑎

′ + 𝑁𝑁   (6) 

Or for the symmetric curve: 

 𝑌𝑌�i
sym = 𝑘𝑘 𝑓𝑓𝑖𝑖

𝑎𝑎′  (1 − 𝑓𝑓𝑖𝑖)−𝑎𝑎 + 𝑁𝑁 (7) 



In Figure 1 (𝒀𝒀�), the daily series of the flowmeter QX00111 has been adjusted to 

equation 6. 

One of the key information that the daily time series contain is the daily 

measured volume: 

  𝑉𝑉 =
∑ 𝑌𝑌𝑖𝑖
𝑛𝑛𝑑𝑑
𝑖𝑖=1
𝑛𝑛𝑑𝑑

∗ 24 = 𝑌𝑌� ∗ 24 (8) 

Where: 

 𝑌𝑌�  =
∑ 𝑌𝑌𝑖𝑖
𝑛𝑛𝑑𝑑
𝑖𝑖=1
𝑛𝑛𝑑𝑑

 (9) 

Applying Taylor series, we get an expression of the model that enhances its 

analytical usage. 

(1 − 𝑓𝑓)𝑎𝑎′ = �𝑓𝑓𝑛𝑛
∞

𝑛𝑛=0

 (−1)𝑛𝑛  �𝑎𝑎
′

𝑛𝑛 � 

Replacing in 𝑌𝑌�𝑖𝑖: 

𝑌𝑌�𝑖𝑖 = 𝑘𝑘 𝑓𝑓−𝑎𝑎 (1 − 𝑓𝑓)𝑎𝑎′ + 𝑁𝑁 = 𝑘𝑘 ��𝑓𝑓𝑛𝑛−𝑎𝑎
∞

𝑛𝑛=0

 (−1)𝑛𝑛  �𝑎𝑎
′

𝑛𝑛 �� + 𝑁𝑁 

Hence: 

 𝑌𝑌�� = 𝑘𝑘 �∑ 1
(𝑗𝑗−𝑎𝑎+1)

∞
𝑗𝑗=0  (−1)𝑛𝑛  �𝑎𝑎

′

𝑗𝑗 �� + 𝑁𝑁 (10) 

Integrating, we find the expression of the estimated daily volume: 

 𝑉𝑉� = 𝑘𝑘 �∑ 1
(𝑗𝑗−𝑎𝑎+1)

∞
𝑗𝑗=0  (−1)𝑗𝑗  �𝑎𝑎

′

𝑗𝑗 �� ∗ 24 + 𝑁𝑁 ∗ 24 = 𝑌𝑌�� ∗ 24 (11) 



The parameters 𝑘𝑘,𝑁𝑁,𝑎𝑎,𝑎𝑎′ of 𝑌𝑌�𝑖𝑖 are estimated by means of minimizing a 

combined error (Errcom) that includes the point error (Errp) evaluation and the global 

shape error (Errs) evaluation: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠 (12) 

Point error (Errp) evaluates the difference between the pairs of values 𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖. It 

is usual in the literature to use the mean square error (MSE, equation 13) so that the 

highest errors are most weighted. Otherwise the absolute mean error (MAE, equation 

14) can be used as well. 

 𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖)2
𝑛𝑛𝑑𝑑
𝑖𝑖=1

𝑛𝑛𝑑𝑑
 (13) 

 𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ |𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖|
𝑛𝑛𝑑𝑑
𝑖𝑖=1

𝑛𝑛𝑑𝑑
 (14) 

In our case the weight in the cost function has another aim. There are three 

parameters (a, a’ and N) that are relevant from a qualitatively point of view and for an 

ulterior behaviour analysis but can be easily masked due to the few numbers of 

observations that are affected by them. Thus, it is essential to weight the extremes of the 

curves through the expression: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 = ∑ �1 + �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖��
𝑛𝑛𝑒𝑒𝑛𝑛𝑑𝑑

𝑖𝑖=1  (15) 

Where 𝑛𝑛𝑒𝑒 = 2 − 𝑃𝑃(𝑌𝑌𝑖𝑖)
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

, the normalized probability density function P() assures 

that ne takes values between 1 and 2; for frequencies with high density of values, ne 

tends to 1 (equivalent to MAE) and for frequencies with low density values, mainly the 

extremes, ne tends to 2 (equivalent to MSE). We combine both effects of equation 15 for 

avoiding the distortion produced for the several orders of magnitude in the probability 



density. Within the potential, a 1 is added to avoid the distorting effect that occurs 

when �𝑌𝑌i − 𝑌𝑌�i� < 1. 

Shape error (Errs) is introduced for avoiding local minima induced by 

discontinuities in data or extreme values. This error measures the difference in the shape 

of measured time series   (𝒀𝒀 and 𝒀𝒀𝐬𝐬𝐬𝐬𝐬𝐬) and their model counterparts (𝒀𝒀� and 𝒀𝒀�𝐬𝐬𝐬𝐬𝐬𝐬) 

using mathematical moments with respect f=0 and f=1. These moments, that will 

appear to be very handy in the management of the models, are measurements of the 

shape of a mathematical function and are intensively used in mechanics and statistics. 

Moment of degree n respect to f=0: 

 𝜇𝜇𝑛𝑛 = ∑ 𝑓𝑓𝑖𝑖𝑛𝑛𝑌𝑌𝑖𝑖
𝑛𝑛𝑑𝑑
𝑖𝑖=1  (16) 

Moment of degree n respect to f=1: 

 𝜇𝜇𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ (1 − 𝑓𝑓𝑖𝑖)𝑛𝑛𝑌𝑌𝑖𝑖

𝑛𝑛𝑑𝑑
𝑖𝑖=1  (17) 

Once again, Taylor series produce analytical expressions for the moments: 

 𝜇̂𝜇𝑛𝑛 = 𝑘𝑘 �∑ 1
(𝑗𝑗−𝑎𝑎+𝑛𝑛+1)

∞
𝑗𝑗=0  (−1)𝑗𝑗  �𝑎𝑎

′

𝑗𝑗 �� + 𝑁𝑁
𝑛𝑛+1

 (18) 

 𝜇̂𝜇𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘 �∑ 1

(𝑗𝑗+𝑎𝑎′+𝑛𝑛+1)
∞
𝑗𝑗=0  (−1)𝑗𝑗  �

−𝑎𝑎
𝑗𝑗 �� + 𝑁𝑁

𝑛𝑛+1
 (19) 

The shape error (Errs) includes the moments till fourth degree. 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠 = ∑ (𝜇𝜇𝑛𝑛  − 𝜇̂𝜇𝑛𝑛 )2 + �𝜇𝜇𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠  − 𝜇̂𝜇𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠�2𝑛𝑛=4
𝑛𝑛=0  (20) 

Once the parameters are estimated. The model is validated with real data. In 

(Benett 2013) a set of indicators are used, we choose three of them used for the demand 

models (Bakker 2013, Alvisi 2007 and Adamowski 2012): The Mean Absolute 



Percentage Error (MAPE); the Relative Root Mean Square Error (RRMSE); The Nash-

Sutcliffe Model Efficiency (NSE). Table 1 values of these indicators when the model is 

used to estimate the daily volume and sampled flow for the 20 flowmeters, temporal 

series of 28 months from January 2016 to April 2018. 

For the daily volume, the errors (MAPE, RRMSE) as a result of applying 

adjustment of the model are below 0.03% and 0.2% respectively while the efficiency 

(NSE) is over 0.999. For the ten-minute data the errors vary between 1.55%-8.49% and 

3.84-35.17% respectively and the efficiency between 0.874-0.988. The worst 

performance obtained has not to do with the size of the DMA, but with the volume of 

extreme values. The frequency of extreme values is independent of the size of the 

DMA, in some cases it may depend on a large consumer or an industrial activity. 

Extreme values have an important weight in the error, and when their number is high, it 

can significantly increase the error. 

Model for daily consumptions expressed in terms of its moments. 

The time series of the n-moments for each flowmeter appear to be highly correlated 

(Figure 2). The Pearson’s correlation coefficient for these time series are close to 1. The 

moments present scale invariance. 

Empirically a relation between two consecutive moments has been found: 

 𝜇𝜇𝒏𝒏−𝟏𝟏
𝜇𝜇𝑛𝑛

≅ 1.68 𝑛𝑛−1.145 + 1 (21) 

In the potential adjustment of previous section, the values of a and a’ present a 

random behaviour with median  𝑎𝑎� = 0.086 and  𝑎𝑎′� = 1.079. Selecting a=0.09 and 

a’=1, the expression of momenta (equation 18) simplifies: 

 𝜇̂𝜇𝑛𝑛 = 𝑘𝑘 � 1
𝑛𝑛+0.91

− 1
𝑛𝑛+1.91

� + 𝑁𝑁
(𝑛𝑛+1)

 (22) 



In equation 21 we state that increasing the order n the new moment (n+1) tends 

to the previous one, furthermore figure 2 allowed a visual confirmation of this fact. For 

the purposes of calculation, only moments up to fourth order are considered to introduce 

new significant information. Expressing the simplified (eq. 22) form of the first 4 

momenta in matrix form: 

 �

𝜇̂𝜇1
𝜇̂𝜇2
𝜇̂𝜇3
𝜇̂𝜇4

� = �

0.1799 0.5000
0.0879 0.3333
0.0521 0.2500
0.0345 0.2000

��
𝑘𝑘𝜇𝜇
𝑁𝑁𝜇𝜇
� (23) 

The estimation of kµ and Nµ minimising  (𝜇𝜇𝑛𝑛  − 𝜇̂𝜇𝑛𝑛 )2 becomes a linear 

regression problem (Ljung 1987). The result of solving this problem are equation 24 

and 25. 

 𝑘𝑘𝜇𝜇 = 13.44 𝜇𝜇1 − 5.49 𝜇𝜇2 − 10.35 𝜇𝜇3 − 11.53 𝜇𝜇4 (24) 

 𝑁𝑁𝜇𝜇 = −2.96 𝜇𝜇1 + 2.37 𝜇𝜇2 + 3.65 𝜇𝜇3 + 3.89 𝜇𝜇4 (25) 

The total daily volume is calculated using them momentum 𝜇̂𝜇0 (eq.22): 

 𝑉𝑉𝜇𝜇 = 24 �0.575 𝑘𝑘𝜇𝜇 + 𝑁𝑁𝜇𝜇� (26) 

We take the potential model of equation 6 and simplify it with the results 

obtained in this section: 

 𝑌𝑌�𝜇𝜇𝑖𝑖 = 𝑘𝑘𝜇𝜇  �𝑓𝑓𝑖𝑖
−0.09 − 𝑓𝑓𝑖𝑖

0.91� + 𝑁𝑁𝜇𝜇 (27) 

Demand disaggregation and apparent leakage estimation. 

The relation of the flows for different time slots is used for determining the real leakage 

variation (Mazzolani 2016). Applying this concept to 𝑁𝑁𝜇𝜇/𝑘𝑘𝜇𝜇, using the weekly mean for 



both parameters, the time series obtained includes exponential curves with a sharp 

interruption coinciding with a leak repair (Figure 3). These kind of curves, exponential 

growth with sharp end, can be related to real leaks (Rogerson 2017). The signal presents 

little noise and high stability. The calculation through the momenta filters it. 

A proportionality is observed between 𝑘𝑘𝜇𝜇, associated with the variable fraction 

of consumption, and 𝑁𝑁𝜇𝜇  , associated with the constant fraction of daily consumption 

(Figure 3). In addition, the time series of 𝑁𝑁𝜇𝜇/𝑘𝑘𝜇𝜇 does not present oscillation with annual 

period like those observed in Ynd or Nµ, in other words, the normalisation of 𝑁𝑁𝜇𝜇   by 

𝑘𝑘𝜇𝜇eliminates the fraction related with the consumers’ demand. Thus, elevated values in 

𝑁𝑁𝜇𝜇/𝑘𝑘𝜇𝜇 correspond with elevated volumes of real leakage. 

𝑁𝑁𝜇𝜇 is the addition of two signals, 𝑁𝑁𝜇𝜇 𝑠𝑠 and 𝑁𝑁𝜇𝜇 𝑙𝑙. The first one follows the 

periodicity of 𝑘𝑘𝜇𝜇 and thus it can be associated with the consumers’ demand while the 

second one follows a pattern of consecutive exponentials associated with the real leaks: 

 𝑁𝑁𝜇𝜇 = 𝑁𝑁𝜇𝜇 𝑠𝑠 + 𝑁𝑁𝜇𝜇 𝑙𝑙 (28) 

From 𝑁𝑁𝜇𝜇/𝑘𝑘𝜇𝜇 we can obtain the value of 𝑁𝑁𝜇𝜇 𝑙𝑙 multiplying by a factor related with 

the provided volume, this factor is defined by 𝑘𝑘𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, the annual mean of the daily 

variable fraction of 𝑉𝑉𝜇𝜇 (eq.26), and a coefficient Sµ characteristic of the sector. 

 𝑁𝑁𝜇𝜇 𝑙𝑙 = (𝑁𝑁𝜇𝜇/𝑘𝑘𝜇𝜇) 𝑘𝑘𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆𝜇𝜇 (29) 

𝑆𝑆𝜇𝜇 is obtained constraining that, throughout its time series, 𝑁𝑁𝜇𝜇 − 𝑁𝑁𝜇𝜇 𝑙𝑙 > 0. For 

the flowmeters used in this work, 𝑆𝑆𝜇𝜇 has values between 0.5 and 0.8. 

We obtain 𝑁𝑁𝜇𝜇 𝑠𝑠 using eq.28: 

 𝑁𝑁𝜇𝜇 𝑠𝑠 = 𝑁𝑁𝜇𝜇 − 𝑁𝑁𝜇𝜇 𝑙𝑙 (30) 



The total daily volume 𝑉𝑉𝜇𝜇 is expressed (eq.26 and eq.28): 

 𝑉𝑉𝜇𝜇 = 24 �0.575 𝑘𝑘𝜇𝜇 + 𝑁𝑁𝜇𝜇 𝑠𝑠 + 𝑁𝑁𝜇𝜇 𝑙𝑙� (31) 

Where the daily volume associated with the consumer’s demand is: 

 𝑉𝑉𝜇𝜇𝑠𝑠 = 24 �0.575 𝑘𝑘𝜇𝜇 + 𝑁𝑁𝜇𝜇 𝑠𝑠� (32) 

And the daily volume associated with real leakage is: 

 𝑉𝑉𝜇𝜇𝑙𝑙 = 24 �𝑁𝑁𝜇𝜇 𝑙𝑙� (33) 

Figure 4 presents the example of flowmeter QX00111 located at the input of a 

residential area. The first graphic shows the daily volume 𝑉𝑉 for 17 years. It can be 

separated clearly in two components. On the one hand there is  𝑉𝑉𝜇𝜇𝑠𝑠, volume with 

periodic behaviour with annual oscillation, maximum in summer and minimum in 

winter, coherent with the consumers’ demand in residential areas. On the other there is  

𝑉𝑉𝜇𝜇𝑙𝑙, volume where different exponentials can be observed, they are coherent with the 

real leaks. The annual minima of 𝑉𝑉 follow the behaviour of 𝑉𝑉𝜇𝜇𝑙𝑙 while the annual minima 

of 𝑉𝑉𝜇𝜇𝑠𝑠 are constants, this reinforces the relationship of 𝑉𝑉𝜇𝜇𝑙𝑙 with the real leakage, and 𝑉𝑉𝜇𝜇𝑠𝑠 

with consumptions not affected by repairs. 

Following the classification of the first section, the flow components are three. 

The authorised metered consumptions (mc), apparent losses (al) and real losses (𝑉𝑉𝑛𝑛𝑛𝑛). 

The MNF is an indicator for real losses (Fox 2016), in our case it is represented by 𝑌𝑌𝑛𝑛𝑛𝑛. 

Therefore, the water balance can be adjusted to the expression: 

 𝑉𝑉 = 𝑚𝑚𝑚𝑚 + 𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑛𝑛𝑛𝑛 (34) 



𝑉𝑉𝑛𝑛𝑛𝑛 = � (𝑌𝑌nd
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∗ 24) 

Where: 

 𝑎𝑎𝑎𝑎 = 𝑉𝑉 − 𝑉𝑉𝑛𝑛𝑛𝑛 −  𝑚𝑚𝑚𝑚 (35) 

Using 𝑉𝑉𝜇𝜇𝑙𝑙, we obtain an alternative expression for the apparent lossesµ (𝑎𝑎𝑎𝑎𝜇𝜇): 

 𝑎𝑎𝑎𝑎𝜇𝜇 =  𝑉𝑉 −  𝑉𝑉𝜇𝜇𝑙𝑙 −  𝑚𝑚𝑚𝑚 (36) 

From equation 35 and equation 36 we calculate the al and 𝑎𝑎𝑎𝑎𝜇𝜇 for the sector 

provided by flowmeter QX09698 throughout 22 trimesters with 𝑆𝑆𝜇𝜇 = 0,69, where VT is 

the trimestral volume measured at the input of the sector. We estimate the real trimestral 

leakage from 𝑉𝑉𝑛𝑛𝑛𝑛  and 𝑉𝑉𝜇𝜇𝑙𝑙 as the sum of the daily values (Table 2).  

Contrary to 𝑉𝑉𝑛𝑛𝑛𝑛   the calculation of 𝑉𝑉𝜇𝜇𝑙𝑙  does not overestimate leakage. 𝑎𝑎𝑎𝑎𝜇𝜇 

present a more clearly periodical behaviour winter/summer, typical in residential areas, 

than al do. It should be highlighted that, in this particular case, the mean, for the 22 

trimesters, of al was of 1.3%, too low, while the mean of 𝑎𝑎𝑎𝑎𝜇𝜇 becomes 14,9%, a more 

realistic estimation and with no negatives values.  

The behaviour of 𝑉𝑉𝜇𝜇𝑙𝑙 and 𝑉𝑉𝑛𝑛𝑛𝑛 are similar, nevertheless the values are lower in 

𝑉𝑉𝜇𝜇𝑙𝑙 which avoids some of the peaks observed in 𝑉𝑉𝑛𝑛𝑛𝑛 that coincide with periods of higher 

consumption. These peaks are transmitted to 𝑎𝑎𝑎𝑎𝜇𝜇. 

Physical interpretation of the parameter kµ 

kµ is the principal parameter of the variable part of the daily volume. It is a good 

indicator of the consumers’ demands. As it does not include the real leakage flow it 



shows clearly the induced behaviours. As an example, we take the flowmeter QX18909, 

located in a touristic town of the Pyrenees (Figure 5).  

kµ, in red, shows clearly the users’ pattern of consumption. There are peaks in 

the weekends, higher peaks for bank holidays, Eastern and holiday period in August. 

There are annual patterns that are repeated clearly (Eastern, New Year Eve, and 

August), there is a weekly oscillation where the value in the working days depend on 

the snow and the year period.  

Another example is flowmeter QX00111, it provides water to a residential area 

where 𝑘𝑘𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (yearly mean for kµ) presents a sharp change between summer of 2007 

and summer of 2009 coinciding with an extreme drought episode that affected 

Catalunya. The Catalan government published a decree that lasted from April 2007 till 

January 2009 that promoted a water saving campaign and increased the taxes. This 

action changed the habits of the highest and luxury consumers (Figure 6). New habits 

persisted after the drought. However, it didn’t affect the basic consumes which kept 

inelastic.  

Till 2007 𝑘𝑘𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 value was allways over 7, with peaks that got 9 and a mean of 

8.0; after 2009 it has been always bellow 7 with a mean of 6.5. The minimum value, 

below 6, is found in summer 2008 in full drought. 

Addition of frequency distributions. 

The model for daily consumptions can be expressed linearly in terms of its moments. 

The linear properties of this model can be used for studying global systems composed 

by some sectors, which allows modelling the joint flow of various flowmeters by means 

of the arithmetic sum of the parameters of the model. 



Given the linear relation of parameters 𝑘𝑘𝜇𝜇, 𝑁𝑁𝜇𝜇 (equation 27) the sum of m daily 

series may be expressed in terms of  𝑘𝑘𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑁𝑁𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 calculated by summing their m 

parameters  𝑘𝑘𝜇𝜇, 𝑁𝑁𝜇𝜇. 

 𝑘𝑘𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑘𝑘µ𝑖𝑖1<𝑖𝑖<𝑚𝑚  (37) 

 𝑁𝑁𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑁𝑁µ𝑖𝑖1<𝑖𝑖<𝑚𝑚  (38) 

The parameters 𝑘𝑘𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑁𝑁𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 can be calculated using the sum of the m 

momenta due to their linear form (equations 22, 24 and 25). 

 𝜇̂𝜇𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝜇̂𝜇𝑛𝑛𝑖𝑖1<𝑖𝑖<𝑚𝑚  (39) 

From equations 26 and 27 we can estimate the total volume of the global system 

𝑉𝑉𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 and its distribution model Y�μ𝑠𝑠𝑠𝑠𝑠𝑠. Both calculus can be done directly adding the 

flows of the m sensors (𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐘𝐘𝑠𝑠𝑠𝑠𝑠𝑠) while 𝑁𝑁𝜇𝜇 can be estimated taking the lowest 

flow value in the time series Ynd𝑠𝑠𝑠𝑠𝑠𝑠. The comparison of both results appears in table 3. 

It presents mean values for 1 year and the errors associated. The System is the 

aggregation of the 10 sensors of table 1, the subset of sensors in table 1 that are 

complete enough in data. 

Demand forecast 

The linear approximation induces inaccuracy in the information contained by the model. 

In order to validate this approximation, its parameters (both the original model and its 

linear approximation) have been used to forecast the consumed volumes and compared 

with forecast based on real flow data.  



We apply the fully adaptive forecasting model for short-term (Bakker 2013) to 

the 10 selected flowmeters of previous section. We apply this methodology to predict in 

a horizon of 24 and 48 hours the parameter kμ each 15 minutes and with the last Nμ (its 

dynamic is much slower so in these horizons it can be assumed constant) the daily 

volume Vμ forecast is predicted(both to the measured volumes and to the volumes obtained 

by means of the simplification (𝑌𝑌μ)). Table 4 shows the results obtained by this method 

compared with the actual daily volume V measured by means of the error indicators 

MAPE, RRMSE and NSE used in (Bakker 2013). 

Comparing the errors in our 10 systems with those obtained from literature it is 

obvious that this error decreases with the size of the sector (evaluated for the mean 

flow). In order to have a sector of a comparable size with those used in the previous 

work the 10 flowmeters are aggregated. The methodology proposed in previous section 

eases this process. Table 5 shows the result of applying the forecast using the time 

series replicating the results of Bakker with a similar forecast error. The last row 

presents the error obtained using the potential model generated by the moments. 

The result obtained with the sum of the 10 flowmeters is in the range of the 

results obtained by Bakker & others (2013); Values are similar to those of Valkenburg 

in terms of daily flow as well as fifteen-minute flow rate. In addition, we note that the 

error of the sum of the 10 flowmeters MAPE, RRMSE, and NSE is lower than the 10 

flowmeters calculated individually (Table 4 and 5). 

The values of MAPE show a logarithmic behaviour depending on the average 

flow (Figure 7). The sectors larger of the 10 work flowmeters, and the result of the sum 

of all, have similar values to the smaller sectors simulated by Bakker & others (2013) 

(Valkenburg and Hulsberg) 



Conclusions 

The inverse of the cumulative frequency of the daily flows sampled each 10 minutes of 

a DMA can be modelled using a two-term potential law and a constant value. The 

modelling error after the adjusting process is small both for the daily flow and the 10 

minutes samples. The adjusting methodology requires a sophisticated error that includes 

form factors. Thus, the form indicators (moments) are explored in order to enlighten this 

behaviour. 

A relation between the consecutive order momenta is observed. Moreover, two 

of the parameters of the model present stochastic distribution and can be taken constants 

as their variation is very low. Thus, the potential model can be obtained directly from a 

linear combination of the moments avoiding the optimisation process involved in the 

parameter estimation. 

The interest of this potential model resides in the physical interpretation of its 

parameters. The first parameter (kμ) is associated with the daily variable fraction of 

consumption. It is a good indicator of patterns and behaviours of the customers where 

the induced flows are highlighted. The second (Nμ) associated with the constant daily 

fraction can be subdivided in a potential behaviour (Nμl) associated with real leaks and a 

second one (Nμs) with a periodic behaviour with higher period associated with flows 

induced by the customers. This last term is valuable for the apparent losses estimation 

improving the state of the art based on MNF. 

The linear properties of momenta and the model itself ease the aggregation of 

flowmeters for the analysis of bigger systems. The forecast methods can be applied to 

the parameters of the model in order to estimate the short term volume required by the 

network. The evolution of these parameters enhances the capacity of studying the 

evolution of customers’ behaviours in the long term. 



The results of this work encourage the effort in obtaining, storing and processing 

great amount of data further than 10 or 15-year horizon in order to better manage the 

assets and the control of such a complex system as the WDS are. 

In order to improve the adjustment of the potential model, the frequency and 

resolution of the time series data of the flow meters should be increased. Another 

improvement would come with the installation of telemetering counters, even if it was 

partially in a DMA, since the analysis of the data would improve the adjustment 

between real losses and apparent losses.  
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Notation 

The following symbols are used in this paper: 

DMA District Metered Area 

𝑀𝑀𝑀𝑀𝑀𝑀 Mean squared error 

𝑀𝑀𝑀𝑀𝑀𝑀 Mean absolute error 

MAPE Mean Absolute Percentage Error 

RRMSE Relative Root Mean Square Error 

NSE Nash-Sutcliffe Model Efficiency 

𝒀𝒀  Series of work data, a single series per day and flowmeter, with nd values 

{𝑌𝑌1  … …𝑌𝑌i  … . .𝑌𝑌nd  } 



𝒀𝒀𝑠𝑠𝑠𝑠𝑠𝑠 Series of work daily data adding the flows of m flowmeters, with nd values 

�𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠1  … …𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠i  … . .𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠nd  � 

𝑓𝑓𝑖𝑖 Frequency associated with the order number of 𝑌𝑌i in 𝒀𝒀 

𝑌𝑌nd Minimal daily flow measured 

𝑌𝑌nd𝑠𝑠𝑠𝑠𝑠𝑠 Minimal daily flow measured adding the flows of m flowmeters 

𝑌𝑌�   Arithmetic mean of work daily data 𝑌𝑌i 

𝑌𝑌� Arithmetic mean of the daily arithmetic mean 

𝑌𝑌� Potential adjust data of Y series 

𝑌𝑌�𝜇𝜇 Potential adjust data of Y series calculated through moments 

𝑌𝑌�𝜇𝜇 𝑠𝑠𝑠𝑠𝑠𝑠 Potential adjust data of 𝒀𝒀𝑠𝑠𝑠𝑠𝑠𝑠 series calculated through moments 

𝑌𝑌��   Arithmetic mean of the daily potential adjust data 

𝑌𝑌�� Arithmetic mean of the daily arithmetic mean 

𝒀𝒀𝐬𝐬𝐬𝐬𝐬𝐬  Series with the order of the inverted data, a single series per day and 

flowmeter, with nd values {𝑌𝑌nd  … …𝑌𝑌i  … . .𝑌𝑌1  } 

𝑌𝑌�𝑠𝑠𝑠𝑠𝑠𝑠 Potential adjust data of 𝒀𝒀𝐬𝐬𝐬𝐬𝐬𝐬 series 

𝑉𝑉 Daily flow volume calculated by Y series 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 Sum m daily flow volume 𝑉𝑉 

𝑉𝑉𝑇𝑇 Trimestral volume measured 

𝑉𝑉�   Arithmetic mean of 𝑉𝑉 

𝑉𝑉�  Daily flow volume, calculated with 𝑌𝑌� 

𝑉𝑉��   Arithmetic mean of 𝑉𝑉�  

𝑉𝑉𝜇𝜇 Daily flow volume, calculated with the adjust potential daily data through 

moments 

𝑉𝑉𝜇𝜇 𝑠𝑠 Daily flow volume 𝑉𝑉𝜇𝜇 associated with the consumer’s demand 



𝑉𝑉𝜇𝜇 𝑙𝑙 Daily flow volume 𝑉𝑉𝜇𝜇 associated with real leakage 

𝑉𝑉𝜇𝜇 𝑠𝑠𝑠𝑠𝑠𝑠 Sum m daily flow volume 𝑉𝑉𝜇𝜇 

𝑎𝑎 Exponent of the potential function, daily calculated 

𝑎𝑎′ Exponent of the potential function, daily calculated 

𝑘𝑘 Parameter of the potential function, daily calculated 

𝑘𝑘𝜇𝜇 Parameter of the potential function, daily calculated through moments 

𝑘𝑘𝜇𝜇 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 Annual daily mean 𝑘𝑘𝜇𝜇 

𝑘𝑘𝜇𝜇 𝑠𝑠𝑠𝑠𝑠𝑠 Sum m daily parameters 𝑘𝑘𝜇𝜇 

𝑁𝑁 Offset of the potential function, daily calculated 

𝑁𝑁𝜇𝜇 Offset of the potential function, daily calculated through moments 

𝑁𝑁𝜇𝜇 𝑠𝑠 Fraction of 𝑁𝑁𝜇𝜇, associated to consumers 

𝑁𝑁𝜇𝜇 𝑙𝑙 Fraction of 𝑁𝑁𝜇𝜇, associated to real leaks 

𝑆𝑆𝜇𝜇 Coefficient characteristic of the sector, to calculate N𝜇𝜇 𝑙𝑙 

𝑁𝑁𝜇𝜇 𝑠𝑠𝑠𝑠𝑠𝑠 Sum m daily parameters 𝑁𝑁𝜇𝜇 

𝜇𝜇𝑛𝑛 Moment of degree n respect to f=0, calculated with the work daily data 

𝜇𝜇𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠 Moment of degree n respect to f=1, calculated with the work daily data 

𝜇̂𝜇𝑛𝑛 Moment of degree n respect to f=0, calculated with the adjust potential daily 

data 

𝜇̂𝜇𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 Sum m daily moments 𝜇̂𝜇𝑛𝑛 

𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 Combined error 

𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 Point error 

𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠 Shape error 

mc Metered Consumption 

al Apparent Losses 



alµ Apparent Losses calculated by adjust potential data through moments 

𝑃𝑃() Normalized probability density function 
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Table 1. Error indicators arithmetic mean of the daily volume between 𝑉𝑉�  𝑎𝑎𝑎𝑎𝑎𝑎  𝑉𝑉�� , and 

arithmetic mean of the daily arithmetic mean  Y� 𝑎𝑎𝑎𝑎𝑎𝑎 Y�� . 
  

     𝑉𝑉�  
[m3/day] 

     𝑉𝑉��  
[m3/day] 

MAPE 
[%] 

RRMSE 
[%] 

NSE          
[-] 

    Y� 
[m3/h] 

      Y�� 
[m3/h] 

MAPE 
[%] 

RRMSE 
[%] 

NSE          
[-] 

QX00111 148.09 148.07 0.0162 0.0376 0.999999 6.16 6.16 3.33 6.82 0.988 

QX00546 56.76 56.74 0.0377 0.0738 0.999997 2.38 2.35 6.38 13.24 0.955 

QX00798 45.63 45.63 0.0071 0.0276 1.000000 1.90 1.89 5.39 12.10 0.977 

QX01451 27.49 27.49 0.0052 0.0144 1.000000 1.15 1.15 7.80 10.92 0.975 

QX01674 69.74 69.72 0.0204 0.0422 0.999998 2.90 2.89 3.73 6.83 0.986 

QX01722 19.07 19.07 0.0074 0.0296 1.000000 0.79 0.79 4.07 8.03 0.988 

QX02811 117.02 117.01 0.0081 0.0471 1.000000 4.92 4.94 8.48 20.14 0.983 

QX04654 520.70 520.63 0.0171 0.0293 0.999994 21.72 21.66 3.21 4.75 0.977 

QX05456 142.10 142.08 0.0128 0.0246 0.999999 5.91 5.90 4.09 7.42 0.986 

QX09698 50.58 50.57 0.0266 0.1242 0.999988 2.11 2.09 5.60 18.71 0.926 

QX10922 8.41 8.41 0.0107 0.0430 0.999999 0.35 0.35 7.70 18.06 0.972 

QX11016 98.26 98.24 0.0143 0.0368 0.999999 4.11 4.11 3.80 7.50 0.983 

QX11164 224.01 223.97 0.0204 0.0438 0.999999 9.41 9.38 8.49 14.35 0.970 

QX13281 379.74 379.69 0.0155 0.0398 0.999999 15.96 15.83 8.04 11.28 0.970 

QX15509 54.64 54.64 0.0063 0.0164 0.999999 2.27 2.27 1.55 3.84 0.972 

QX15088 58.71 58.70 0.0209 0.0549 0.999997 2.45 2.44 8.19 12.93 0.946 

QX15737 733.93 733.80 0.0220 0.0439 0.999991 30.73 30.54 6.26 8.12 0.963 

QX16687 63.42 63.41 0.0087 0.0439 0.999998 2.41 2.40 5.59 11.92 0.965 

QX16790 50.44 50.43 0.0071 0.0341 1.000000 2.11 2.09 6.22 35.17 0.874 

QX18909 566.32 566.21 0.0208 0.0379 0.999999 23.65 23.53 5.30 7.32 0.979 

 

Table 2. Trimestral balance, in m3, for the flowmeter QX09698. 

Data reading 
VT 

mc  
Vnd Vµl 

al alµ  

09/01/2012             

10/04/2012 3,602.4 2,115.0 1,648.6 1,253.9 -161.3 233.5 

09/07/2012 3,614.0 2,403.0 1,046.4 629.9 164.6 581.1 

09/10/2012 5,216.3 3,277.0 2,085.1 948.1 -145.7 991.2 

04/01/2013 3,726.9 1,846.0 2,130.8 1,858.5 -249.9 22.4 

08/04/2013 3,575.2 1,768.0 1,866.1 1,562.0 -58.9 245.2 

05/07/2013 3,687.8 2,177.0 1,303.2 712.7 207.6 798.1 

07/10/2013 5,876.7 2,913.0 2,637.6 1,186.1 326.1 1,777.6 

07/01/2014 3,535.5 2,223.0 1,377.6 989.1 -65.1 323.4 

08/04/2014 3,404.6 2,122.0 1,504.3 1,126.6 -221.6 156.0 

04/07/2014 4,155.4 2,585.0 1,399.2 655.3 171.2 915.1 

07/10/2014 5,070.0 3,139.0 1,924.8 1,034.1 6.2 896.9 

08/01/2015 3,312.0 2,091.0 1,198.5 902.0 22.5 319.0 

08/04/2015 3,340.8 2,039.0 1,264.8 1,105.8 37.0 196.0 



07/07/2015 4,094.2 2,845.0 609.6 210.9 639.6 1,038.4 

07/10/2015 4,450.5 3,448.0 816.0 328.3 186.5 674.3 

07/01/2016 3,539.6 2,255.0 1,123.4 704.1 161.2 580.5 

07/04/2016 3,905.9 2,602.0 1,557.6 1,110.6 -253.7 193.3 

08/07/2016 3,958.0 2,631.0 880.8 426.5 446.2 900.5 

07/10/2016 5,513.7 3,631.0 1,977.6 861.7 -94.9 1,021.0 

10/01/2017 4,721.7 2,193.0 2,557.0 1,942.4 -28.3 586.3 

09/04/2017 3,427.1 2,155.0 1,454.4 1,258.3 -182.3 13.7 

10/07/2017 4,330.8 2,964.0 1,070.4 417.9 296.4 948.9 

TOTAL % 90,059.2 61.54% 37.12% 23.57% 1.34% 14.89% 

 

Table 3. MAPE,  RRMSE and NSE between 𝒀𝒀𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝒀𝒀�𝜇𝜇𝑠𝑠;  𝑉𝑉𝑠𝑠  𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉�𝜇𝜇𝑠𝑠;  𝑌𝑌𝑛𝑛𝑛𝑛𝑠𝑠  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁�𝜇𝜇𝑠𝑠. 

  
Mean MAPE  

[%] 
RRMSE 

[%] 
NSE          
[-] 

  
98.83 

10.26 14.80 0.834 

  
100.81 

  2,353.23 

2.99 3.28 0.969 

  
2,421.86 

  
40.79 

5.23 6.76 0.917 

  
41.51 

 

Table 4. Errors between 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎  𝑉𝑉𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇. 

  

   [m3/day]    [m3/day] 
MAPE 

[%] 
RRMSE 

[%] 
NSE          
[-] 

QX00111 148.09 151.45 9.83 13.61 0.900 

QX00798 45.63 47.43 18.23 28.94 0.661 

QX01451 27.49 28.08 12.09 17.21 0.627 

QX01674 69.74 70.80 8.43 11.92 0.863 

QX01722 19.07 19.63 15.90 23.79 0.819 

QX04654 520.70 520.83 4.03 5.71 0.776 

QX05456 142.10 145.91 9.65 14.16 0.818 

QX011016 98.26 102.33 12.40 17.98 0.803 

QX015737 733.92 747.78 5.17 7.75 0.702 

QX018909 566.31 576.33 8.75 14.35 0.721 

SUM 2,353.23 2,327.06 3.83 5.08 0.911 



 

Table 5. Forecast errors for daily Volume for 6 sectors in Netherlands and Manresa. 

Area 
        

[m3/h] 
MAPE 

[%] 
RRMSE 

[%] 
NSE          
[-] 

1. Amsterdam 7,540 1.44 2.01 0.785 

2. Rhine area 2,295 1.86 2.78 0.710 

3. Almere 1,160 2.12 3.12 0.740 

4. Helden 291 3.40 5.17 0.803 

5. Valkenburg 73 3.49 4.83 0.802 

6. Hulsberg 18 5.12 8.21 0.658 

Manresa 98 3.83 5.08 0.911 

Manresa Vµ forecasting 98 5.13 6.80 0.869 

 

Figure 1. Inverse cumulated frequency of data for flowmeter QX00111 on 26/09/2011 

adjusted by two potential curves. The data are ordered in decreasing order and the 

number of samples is normalised in X-axis. 

 

 

Figure 2. Time series of 𝜇𝜇0  𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4 for the flowmeter QX00111 



 

 

Figure 3. Time series of  𝑘𝑘𝜇𝜇 ,𝑁𝑁𝜇𝜇  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝜇𝜇/𝑘𝑘𝜇𝜇 for flowmeter QX00111. 

 



 

 

Figure 4. Temporal series of 𝑉𝑉,𝑉𝑉𝜇𝜇𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎  𝑉𝑉𝜇𝜇𝑙𝑙for flowmeter QX00111 with Sµ=0.57. 

 

 

Figure 5. Parameter kµ for flowmeter QX18909 (19/10/2016-5/10/2018) 



 

 

Figure 6. Parameter 𝑘𝑘𝜇𝜇𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 for the flowmeter QX00111 between 2001and 2018 

 

 

Figure 7. MAPE depending on the logarithm of mean daily flow. 
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