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1. Introduction and Weak Problem

In this paper we derive Galerkin solutions with error bounds
for two dimensional elliptic problems involving boundary singularities
for the case in which the governing equation is Poisson's equation
and there are Dirichlet boundary conditions. In such problems the

function u(x,y) satisfies

-Alu(x,y)] = g(x,y) , (x,y) €Q, (1.1)
u(x,y) = f(x,y) , (x,y) €0Q, (1.2)

where for our case Qc E2 is a simply connected open domain with
polygonal boundary 0Q, f € Lo(0Q) and g € L,(Q). The Laplaoian
operator in (1.1) could be replaced by a general second order linear
self-adjoint elliptic operator.

Many finite element solutions with theoretical error bounds
have been derived for problems of the type (1.1) -(1.2). However,
these bounds demand that specific derivatives of u be bounded
throughout Q, the closure of Q. When the boundary 0Q contains
corners with certain interior angles, for example re-entrant corners,
the solution u contains a singularity and these conditions are not
satisfied. This shortcoming was first overcome by Fix (1969) for
self-adjoint linear second order elliptic problems with homogeneous
boundary conditions where € is a rectangular domain having a re-entrant
corner of interior angle 3n/2. Fix uses rectangular elements and
constructs approximations from spaces of piecewise polynomials
augmented with functions having the form of the singularity. He is
thus able for his problem to obtain a bound on the finite element error
using the tensor product results of Birkhoff, Schultz and Varga (1968).
Adopting a similar approach we here produce an 0(h) error bound using

piecewise linear approximation over triangular elements for the problem



2.

(1.1) - (1.2) which has a more general shaped boundary and
nonhomogeneous boundary conditions.

The weak problem corresponding to (1.1) - (1.2) is the following:
ol
find ue y +W, (Q) such that

ol
a(u,v)=(g,v) VVEWZ (Q), (1.3)
1 — 1 —
where y =f on 0Q and y € W(Q2). The space W,(Q) is the Sobolev

space of functions which together with their first generalised

1
(o}
derivatives exist and are in Lo(Q), WHEREAS W3 (Q) is the subspace

of these functions which assume homogeneous Dirichlet boundary

. 1
values. The notation ue y + W, (Q) means that u = y + v where

ol 1
ve W, (). Thusu e W, () and u = f on 0Q. The bilinear

functional a(u,v) is defined to be
a(u,v)= Ij @@ —@ dx dy \V/u,veW;(Q). (1.4)
0x 0x 0Oy Oy

The energy norm (semi norm) for (1.4) is

I
Ivlg = @w.v)2. (1.5)

The solution of (1.3) is the generalized solution u of
(1.1)-(1.2) and u is approximated by the Galerkin approximation U.

2. Galerkin Techniques

The region Q is discretized into triangular elements with
generic length h so that there are m internal and n boundary nodes.
We consider piecewise linear approximations. Following Barnhill

m n
and Gregory (1972) we let {Bi(x,y)}i_1 and {Cj (x,y)}j_1 be two

sets of functions that are biorthonormal (see Davis (1963))

with respect to the evaluations at the nodes. That is, the Bi(x,y)



have zero boundary values and Bi(xk,yk):Sik, 1<, k<m,
for the internal nodes{(xk,yk)}kmzl, where Cj(x,y) are zero

<n’

at all the interior nodes and Cj(xm+p,ym+p)=8j’p,1§j,p
for the boundary nodes {(Xm+p, Ym+p)} Zzl. The Bj and Cj are thus

pyramid functions.
We define Sh c fh + V(i/; (Q) to be the set of all functions s(x,y)

of the form

m n h
S(X,Y)=_Zl AiBi(XaY) + ) fj Cj(X9Y) )
1=

J:

where in (2.1) the Aj are constants to be found and the fh are

the discretized boundary data. We let Sg be the m-dimensional

°1
subspace of W, (Q2) generated by the Bj.

The Galerkin method is :
find Ue S" such that

a(U,V)= (g,V) VVvesh.

Lemma The Galerkin approximation U is the best approximation

to the generalized solution u of (1.3) from Sh in the energy

norm (1.5).

Proof Equation (2.2) holds for V= By, k = 1,2,..., m and so,
after substitution from (2.1) for U, the equations for the

calculation of the A; are

m n fh
2 Aia(Bi’Bk):(g’Bk)_ ) ] a(Cj,B

)
1=1 = k

k=1,2,..., m.

Substitution of a(u,Bk) = (g,Bk), k =1,2,..., m from (1.3)

into (2.3) produces the normal equations for the best approximation U.

That is

m n h
> A.a(B.,B, )=au-Y f.C.,B k=1,2,..., m,
. 1 1"k =

1=1 J k)

see Davis (1963). Hence

2.1)

(2.2)

(2.3)



a(u-U, u-U) < a(u-w, u-w) VWeSh // (2.4)

If u eSh interpolates u at the m+n nodal points,

then (2.4) implies that
[u-Ul, = lu-Tle (2.5)

and so an upper bound on the interpolation error yields an

upper bound on the Galerkin error.

Bounds on the right hand side of (2.5) can be obtained from
Theorem 5 of Ciarlet and Raviart (1972). In order to quote

this theorem we denote the interpolant 3 by nwu, where m is the
linear operator corresponding to piecewise linear interpolation

over the triangulation.
Theorem (Ciarlet and Raviart).

Let Q and n be defined as above and p = sup{diameter of all

circles that can be inscribed in the triangles of the triangulations],

then u € W22(Q) implies that there exists a constant K such that

1 h2
fu-ml wy@ £ K2 jup, (2.6)
where
T iy i N L T
27" 2 L2 oxdy 'L2(Q) o2 2@

Proof In the notation of Ciarlet and Raviart we let m = 1 and
1=2, and note that our n is a bounded linear operator from

2
W2 (Q) to W; (Q) such that mp = p whenever p is a polynomial of
degree 1. The operator m is bounded since by the Sobolev imbedding

theorem wj(Q) is imbedded in C(Q). //

Since

-3 < -4
u-ufg < |lu u”Wé(Q) ’



it follows from (2.5) and (2.6) that

2
lu-Ulg < K2-July . (2.7)

We assume that hi/pj £ a for some fixed a, where, as the
mesh is refined, {hj}is a sequence of values of h and the {p;}
are the corresponding values of p; i.e. the triangulations form a

regular family (see Ciarlet and Raviart p.174). With this assumption
(2.7) yields an O(h) error bound.

3. Boundary Singularities

2
In order to use the bound (2.7) we need ueWz(Q). If 0Q is

sufficiently smooth, and f(x,y) is sufficiently well behaved,

this condition is satisfied. However, if the boundary contains a

corner at which the internal angle ¢=an/f=n/y is such that either
(1) 1/y < 1 and the number y is non-integer,

or

(i1) 1/y >1 in which case the corner is re-entrant,

then ueW%y]+1—W£y]+2, where [y] is the greatest integer < y.

1 2
Interesting cases occur when ¢>x, so that ueWz(Q)—Wz(Q), and

we consider only these. Suppose there is a re-entrant corner at
a point 0 on 0Q and that f(x,y) = 0 on the arms of the corner.
Then in terms of local polar co-ordinates (r,f) with origin at 0
and zero angle along one of the arms of the corner, the asymptotic

form of u may be written, see Lehman (1959), as

u(r,0) = > aigi(r,0) , (3.1)
i
where the aj are unspecified constants. The series expansion
contains powers of r which are non-integer; e.g. the leading

term is ajr’ sinyd. These cause a boundary singularity in u at 0




1 2
in that du/0r is unbounded at r = 0 although ueWz(Q)—W2 Q) .

Following Fix (1969) and Barnhill and Whiteman (1973) the dominant

part of the singularity in u is subtracted off in a neighbourhood

N(rl)cﬁ of 0. Here 0 <r, <rjy, and we define
N(rj) = {(1,0); Oérérj, 0<6< 44, j=0,1.

We form the functions

¢i(r90) s (r,6’) € N(rO)
wi(r,0) = 1gi(r) hj(@), (r,0) € N(11)—N(rp), (3.2)
0 , (r0)eQ- N(),

i=1,2,...,N, where N is discussed below and the ¢ are

as in (3.1). The gj(r) are cubic Hermite polynomials chosen
2 _

so that each function wj(r,0) is in W2 (Q—N(1,)). The hj(0) are

appropriate functions so that the wj all satisfy the homogeneous
boundary conditions on the arms of the corner. Using (3.2) we form

the function
N
qu—z aj wi (r,0), (3.3)
i=1

2
and choose N so that w would be in WZ(Q) if the a;, were known

exactly. It is the function w that is approximated throughout Q

by the Galerkin solution U, and clearly if the aj are known,

2
making weWZ(Q) the error bound (2.7) will then apply. However,

the aj cannot be calculated exactly. In practice approximations
are calculated by the method of augmenting with singular functions
the trial function space in the Galerkin procedure. This is denoted

h
by Aug S . In each element the trial functions now have the form
N
a+bx+cy+z ci wi(r,0).
i=1



By (3.2) these are the usual trial functions of S for elements

in ﬁ—N(rl). Extra equations are added to the linear system
. : : : h
which when solved give the Galerkin solution § i wi(r,0)+ U e Aug S
i=1
and so only approximations aj to the aj in (3.3) are obtained from
the same numerical calculation as that which gives the values of U at

the nodal points.
h
The Lemma of Section 2 holds for Galerkin solutions from Aug S ,

and so we have the following theorem.

Theorem 3.
Under the above conditions on u and N

N N
lu=(2, aj wi + U)llp < Kh Ju=)> aj Wil ,
i=1 i=1
N ~
where z aj wi + U is the Galerkin approximation to u from
i=1

Aug Sh and the a;, are the coefficients in the asymptotic expansion (3.1).

Proof The Best Approximation Lemma applied to Aug Sh implies that

N N
lu=(2 aj wi + U)IE < [lu=2_ ajwj =ullg ,
i=1 i=1
h N
where ueS" interpolates u—z ajwjat the m+n nodal points.
i=1

By the Ciarlet-Raviart theorem it follows that

N N
[(u=>ajwi) —ullg < Kh|u-Y ajwilz ,
so that we thus have an O(h) error bound. //

As was stated earlier Fix uses rectangular elements and bilinear
trial functions. An advantage of our use of triangular rather than
rectangular elements with the corresponding trial functions is that the
computation is much simpler whilst the accuracy of the numerical
solutions is comparable. This saving is even more valuable for higher

order problems. The use of triangular elements also enables the method



to be used for problems in more general polygonal regions.
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