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Abstract. Different approaches for specifying the ratio of modelled-to-total dissipation ( fε) in the PANS

model, based on the k−ω SST model, are evaluated for different ratios of the modelled-to-total kinetic

energy, fk. Based on theoretical reasoning it is argued that applying fε = a · fk should have little effect,

and that fε = fk is not expected to improve the results. This is confirmed by applying the approaches to a

turbulent channel flow at Reτ = 395 and 180, and comparing the results to the often used ‘high Reynolds

number’ approach ( fε = 1.0). Reducing fε leads to a reduction in range of scales in the flow; dissipation

is allowed at larger scales and therefore smaller scales are suppressed.

1 INTRODUCTION

The application of high fidelity turbulence models for industrial problems, such as cavitation calcu-

lations, is mostly focused on the use of hybrid models such as Detached Eddy Simulation (DES) based

models. These models switch between Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Sim-

ulation (LES) based on the local grid size, wall distance and RANS length scale, with the aim of improv-

ing the accuracy compared to full RANS. However this approach may lead to commutation errors in the

transition between the two zones, and is highly grid dependent due to the zonal formulation. In addition

numerical error quantification is made difficult due to entanglement of the modelling and discretisation

errors. Bridging models, such as Partially Averaged Navier-Stokes (PANS), are an alternative approach

without these problems. The PANS model can operate at any degree of physical resolution, independent

of the grid, by setting the modelled-to-total ratios of turbulence kinetic energy ( fk) and dissipation ( fε)

[1]. In literature, the model is applied almost exclusively using fk ≪ 1 and fε = 1.0 (known as the ‘high

Reynolds number’ approach), an exception being the work of [2] and [3]. This approach assumes that

the PANS cut-off is located at lower wave numbers than the dissipation range and therefore that the dissi-

pation occurs entirely at the modelled scales. This is valid if there is a clear separation between the large

energy containing scales and the small dissipative scales (identifiable by the inertial subrange, which fol-
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lows Kolmogorov’s law) [1, 3]. Theoretically, for low Reynolds number flows, where the scales overlap,

or for high Reynolds number flows with a high physical resolution (low fk), part of the dissipation should

also be resolved. This implies that fε should be lower than 1.0. It is expected that the resolved structures,

obtained when fk < 1.0, should change due to increased dissipation.

Although most maritime applications are high Reynolds number flows, it is not unlikely that some

cases require high physical resolutions, i.e. low fk. For low Reynolds numbers, an often mentioned ap-

proach is to keep fk = fε, whereas for moderate Reynolds numbers, fk < fε < 1.0 has been recommended

[3, 4]. Pereira et al. [5] state that if fk = fε the only change with respect to the underlying RANS model is

an increase of the effective diffusion coefficient and cross-diffusion term; these terms go infinity when fk

goes to 0. Using this approach vortex shedding for a cylinder was underpredicted, especially with lower

fk. By contrast Lakshmipathy et al. [3] obtained satisfactory results for the same test case using a finer

grid, indicating a potential grid dependency. Frendi et al. [2] simulated a backward facing step, using a

fixed fk and varying fε. These authors state that for wall-bounded flows viscous effects and dissipation

should be taken into account by lowering fε. Better agreement with experiments was reported with this

approach, although only the parameter fε was varied, with fk kept fixed as 0.2. Their results indicated a

decrease in range of scales with decreasing fε, due to the increased dissipation.

The current work evaluates the three aforementioned approaches for specifying fε ( fε = 1.0, fε = a · fk

with a = 2 and fε = fk) by applying them to a turbulent channel flow at both ‘low’ (Reτ = 180) and

‘moderate’ (Reτ = 395) Reynolds numbers. The results are compared to Direct Numerical Simulation

(DNS) reference data by Moser et al. [6]. The results of the high Reynolds number approach were

previously presented, together with LES results, in Klapwijk et al. [7]. Those results exhibited two

clear regimes, based on the value of fk. If the filter length described by fk is smaller than the driving

mechanism of the turbulent flow, proper results are obtained; if fk is larger turbulent fluctuations are not

resolved and a laminar result is obtained. In the current work only the values of fk yielding a turbulent

flow are considered, which are fk = 0.15, 0.10 and 0.05. To maintain a distinction between modelling

and numerical error, a strong aspect of PANS, fk and fε are kept constant in time and space.

This paper consists of a description of the PANS model, an investigation of the theoretical effects of

the approaches for specifying fε, after which the test case and the corresponding results are described.

2 PANS MODEL

2.1 Model formulation

The Partially-Averaged Navier-Stokes equations are obtained by filtering the continuity and momen-

tum equations, thereby decomposing all instantaneous quantities, Φ, into a resolved, �Φ�, and a mod-

elled (unresolved) component, φ, according to Φ = �Φ�+φ [8]. The PANS equations for incompressible,

single-phase flow are
∂�ui�

∂t
= 0, (1)

D�ui�

Dt
=

∂

∂x j

[

ν

(
∂�ui�

∂x j

+
∂�u j�

∂xi

)]

+
1

ρ

∂τ(ui,u j)

∂x j

−
1

ρ

∂�p�

∂xi

. (2)

In these equations ui indicates the velocity components, p the pressure, ν the kinematic viscosity, ρ the

density and τ(ui,u j) the sub-filter stress tensor which is modelled using Boussinesq’s hypothesis,

τ(ui,u j)

ρ
= 2νt�Si j�−

2

3
kδi j (3)

2
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with νt the turbulence viscosity, �Si j� the resolved strain-rate tensor, k the modelled turbulence kinetic

energy, and δi j indicates the Kronecker delta. To close the set of equations a Reynolds Averaged Navier-

Stokes (RANS) model is used. The PANS model in this work is based on the k−ω Shear-Stress Transport

(SST) model [1, 9]. The transport equations of the SST model are reformulated including the modelled-

to-total ratio of turbulence kinetic energy and dissipation rate

fk =
k

K
and fω =

ω

Ω
=

fε

fk

. (4)

This leads to the reformulated equations

Dk

Dt
= Pk −β∗ωk+

∂

∂x j

[(

ν+νtσk

fω

fk

)
∂k

∂x j

]

, (5)

Dω

Dt
=

α

νt

Pk −

(

P′ −
P′

fω
+

βω

fω

)

ω+
∂

∂x j

[(

ν+νtσω
fω

fk

)
∂ω

∂x j

]

+2
σω2

ω

fω

fk

(1−F1)
∂k

∂x j

∂ω

∂x j

, (6)

with

P′ =
αβ∗k

νt

and νt =
a1k

max(a1ω;�S�F2)
. (7)

For the model constants and auxiliary functions, F1 and F2, see Menter et al. [9], while for more details

on the implementation of the PANS model used here, the reader is referred to Pereira et al. [5].

Note that the separation into a resolved and a modelled component is very similar to the LES ap-

proach. Both approaches can be classified as variable-resolution turbulence simulations but based on a

different closure paradigm; the closure of PANS is viscosity-based (sub-filter viscosity is a function of

the modelled flow field (k,ω)), whereas in LES the closure is grid-based (sub-filter viscosity is a function

of the cut-off length scale (∆)) [10]. Consequently, in contrast to LES, the cut-off length scale of the

resolved flow is not predetermined in PANS. The physical resolution is only determined by the settings,

this leads to an overlap between the PANS resolved and modelled spectra [10], as shown in Figure 1.

Since the grid remains fixed, computations with an fk larger than what the grid allows are comparable to

an explicitly filtered LES although based on a different modelling framework. Computations with a very

low fk value are effectively an Implicit LES (under-resolved DNS).

logκ

logE(κ)
Overlap region

Cut-off

Resolved

spectrum

Modelled

spectrum

Figure 1: Schematic PANS wave-number energy spectrum, showing the overlap between resolved and

modelled velocity scales. Based on Reyes et al. [10].
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2.2 Specifying fε

Kinetic energy is mostly contained in the larger scales, whereas dissipation occurs in the smallest

scales; this dictates 0 ≤ fk ≤ fε ≤ 1 [4]. For specifying fε, three Reynolds number regimes can be

distinguished in literature, which lead to different corresponding values of fε: the ‘high’, ‘moderate’ and

‘low’ Reynolds number approaches. Generally speaking in the high Reynolds number case, there is a

clear separation between the large energy-containing scales and the small dissipative scales (identifiable

by the inertial subrange, which follows Kolmogorov’s law) [1, 3]. For a low Reynolds number flow these

scales overlap. A moderate Reynolds number lies between these limits. In terms of scale separation,

clearly this distinction is difficult to quantify. In generalised form, if fε is taken as fε = a · fk, the

transport equations (5 and 6) reduce to

Dk

Dt
︸︷︷︸

I

= Pk

︸︷︷︸

II

−β∗ωk

︸ ︷︷ ︸

III

+
∂

∂x j

[(

ν+νtσk

a

fk

)
∂k

∂x j

]

︸ ︷︷ ︸

IV

, (8)

Dω

Dt
︸︷︷︸

V

=
α

νt

Pk

︸︷︷︸

VI

−

((

1−
1

a

)

P′+
βω

a

)

ω

︸ ︷︷ ︸

VII

+
∂

∂x j

[(

ν+νtσω
a

fk

)
∂ω

∂x j

]

︸ ︷︷ ︸

VIII

+2
σω2

ω

a

fk

(1−F1)
∂k

∂x j

∂ω

∂x j
︸ ︷︷ ︸

IX

. (9)

In the k equation (8), term (I) indicates rate of change plus convection, (II) rate of production, (III) rate

of destruction and (IV) transport by molecular and turbulent diffusion. In the ω equation (9) the terms

are rate of change (V), rate of production (VI), rate of destruction (VII), transport by molecular and

turbulent diffusion (VIII) and cross-diffusion (IX). This last term is a result of the ε = kω transformation

in the construction of the SST model [11]. The terms in red differ from the standard SST model. For

these equations the effect of the three approaches for specifying fε will be discussed from a numerical

perspective. It is clear that terms (I), (II), (III), (V) and (VI) are independent of fk and a.

High Reynolds number approach In this case fε = 1.0 (a = 1/ fk); here the transport by diffusion

(IV and VIII) and cross-diffusion term (IX) increase proportionally to 1/ f 2
k with decreasing fk. The rate

of destruction (VII) decreases proportionally to fk. So for fk < 1.0 the diffusion term in the k equation

increases, spreading the modelled turbulent kinetic energy in space. At the same time, in the ω equation,

the diffusion terms dominate over the destruction term. This implies that for low fk values the dissipation

is more spread out in space but the rate of destruction of ω is reduced.

Moderate Reynolds number approach In this case fε = a · fk with 1.0 < a < 1/ fk. Consequently

terms (IV), (VIII) and (IX) increase proportionally to a/ fk. Term (VII) is independent of fk and is propor-

tional to a. Again the diffusion terms increase, and the destruction term in the ω equation decreases. The

difference between these terms is smaller than for the high Reynolds number approach, so it is expected

that dissipation occurs more locally.

Low Reynolds number approach In the limit of fε = fk (a= 1.0) terms (IV), (VIII) and (IX) increase

proportionally to 1/ fk. Term (VII) is now constant and reduces to βω2, which is identical to the original

SST model. The term containing P′ disappears completely. With decreasing fk the model remains

identical to the SST model but with increased diffusion and cross-diffusion terms (IV, VIII and IX) [5].

4
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Reyes et al. [10] derived the relationship between PANS and RANS turbulence viscosity as

νt,PANS

νt,RANS

=
f 2
k

fε
(10)

and related the PANS Kolmogorov scales to the physical integral scales for length (η/L), time (tη/T )

and velocity (uη/U) as

η

L
∼C

3/4
µ

f
3/2

k

fε
,

tη

T
∼C

1/2
µ

fk

fε
,

uη

U
∼C

1/2
µ f

1/2

k . (11)

The effect of the different approaches on these ratios across the fk range is shown graphically in Figure 2,

with a = 2 used throughout as example. Note that these ratios are independent of Reynolds number. The

figure is corrected for the fact that fε cannot be not higher than fk. The point after which the viscosity and

length scales for fε = 1.0 and fε = a · fk deviate, and where a discontinuity for the time scale is located,

lies at fk =
1
a
. For the turbulence viscosity and the length scales, the high Reynolds number approach

yields the lowest ratios across the entire fk range, meaning that the turbulence viscosity is lowered, more

unsteadiness and smaller length scales can be expected in the solution. The moderate Reynolds number

approach yields the same if fk >
1
a
; for fk <

1
a

the turbulent viscosity and length scales are larger, i.e. it

is expected that the smallest structures are absent. The low Reynolds number approach yields the highest

ratio for all fk except at the limits of fk = 0 or 1. The time scales however show the opposite trend, across

the fk range the lowest ratio is for the moderate Reynolds approach. The low Reynolds number approach

is independent of fk, while the high approach lies in between these limits. The velocity scales decrease

with f
1/2

k independently of fε.

Note that for the high Reynolds number approach there is little difference in terms of turbulence

viscosity and length scales if fk is small (in the range fk < 0.2). This corresponds to the findings in

Klapwijk et al. [7], where only a fully developed turbulent solution was found for small fk, but then little

difference was seen between the different fk values. In contrast, in this range the time scales are strongly

affected.
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Figure 2: Relationship between PANS and RANS turbulence viscosity, νt , length, ηu/L, time, tηu
/T , and

velocity scales, uηu
/U , versus fk for different fε approaches. Here a = 2.

Based on these theoretical observations some questions arise concerning the use of the low Reynolds

number approach. There appears to be no clear advantage; additional diffusion is added in the equations,

and theoretically the the turbulent viscosity and length scales are larger than for the high Reynolds num-

ber approach, indicating that the smallest scales will be suppressed. For the moderate Reynolds number

approach, small differences compared to fε = 1.0 are expected, and only for low fk. In order to check

these findings in a practical case, in the remainder of the paper the three approaches are applied to a

turbulent channel flow at two different Reynolds numbers (Reτ = 395 and 180).
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3 NUMERICAL SETUP AND SOLVER

The numerical setup has already been reported in Klapwijk et al. [7]. Computations are made using a

rectangular domain, with two no-slip walls oriented normal to the y-axis (see Figure 3). The remaining

boundaries are connected using periodic boundary conditions in order to approximate an infinite channel.

Comparisons between different model settings are performed on a Cartesian grid, with a density of Nx =
127, Ny = 95 and Nz = 95 with clustering towards the walls. For Reτ = 395 this results in x+ ≈ 12, y+ ≈

0.1 and z+ ≈ 10. The non-dimensional time step ∆t∗ = uτ∆t
2δ ≈ 1×10−3 leads to ∆t+ = u2

τ∆t

ν ≈ 0.08 (2000

time steps per flow-through time). The grid density and time step are below LES guidelines and approach

DNS resolution [12]. To maintain the proper bulk and friction Reynolds numbers, Reb =
Ub2δ

ν and Reτ =
uτδ
ν respectively, a body force is applied which is proportional to the pressure gradient

dp
dx

=− τw

δ , with

τw = ρu2
τ [13]. The Péclet number has a magnitude of O(10). As shown in the literature, the use of scale-

resolving turbulence models for a turbulent channel yields a so-called supercritical laminar solution for

which many flow-through times are needed to trigger transition to the turbulent regime [14]. In order

to speed up the transition, the method suggested by Schoppa and Hussain [15] is used here. For more

details, see Klapwijk et al. [7].

The numerical solver used for all simulations in this work is ReFRESCO, a multiphase unsteady

incompressible viscous flow solver using RANS and Scale-Resolving Simulation models such as SAS,

DDES/IDDES, XLES, PANS and LES approaches, complemented with cavitation models and volume-

fraction transport equations for different phases (www.refresco.org). Time integration is performed im-

plicitly using a second-order accurate scheme, all terms in the governing equations are discretised in

space using second-order accurate central differencing, except for the convection terms of the turbulence

equations, which use a first-order upwind scheme.

x, U

y, V

z, W

Lx = 2πδ Lz
= πδ

Botto
m

wall

Top wall 2δFlow

Symbol Case 1 Case 2

Reτ 395 180

Reb 13800 6300

δ [m] 0.1 0.1
Ub [m/s] 6.928×10−2 3.157×10−2

uτ [m/s] 3.966×10−3 1.807×10−3

τw [N/m2] 1.570×10−2 3.259×10−3

ν [m2/s] 1.004×10−6 1.004×10−6

ρ [kg/m3] 998 998

Figure 3: Schematic overview of the domain and physical parameters. The dashed lines indicate the

computational domain. The figure is based on the drawing of de Villiers [14].

4 NUMERICAL ERROR ESTIMATION

In order to verify the results the numerical errors were investigated. A distinction can be made be-

tween input, iterative, discretisation, and, in the case of unsteady computations, statistical errors. The

input error is assumed to be negligible; the effect of the other error sources is investigated here.

Iterative error The residuals, normalised by the element on the diagonal of the matrix in the system

of equations, were used to check the iterative convergence. Following the approach advocated by Eça

et al. [16], a computation ( fk = 0.10, fε = 1.0) was performed using different iterative convergence

criteria (L2 = 10−3, 10−4, 10−5, 10−6, 10−7 and 10−8). Five flow-through times are computed, starting

6
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from a fully developed solution. Due to the limited number of flow-through times these results have a

larger statistical error. The effect on the mean velocity (u/Ub), Reynolds stresses (Rei j = u′iu
′
j/u2

τ) and

turbulence kinetic energy spectra (Eu( f ) at y+ ≈ 20) is shown in Figure 4. The mean velocity appears

almost unaffected; for the Reynolds stresses and spectra, L2 = 10−3 and 10−4 show a large mismatch

with the reference data. The magnitude of the peak value Reuu and the turbulence kinetic energy spectra

converge for stricter convergence criteria towards the DNS data. As a compromise between cost and

accuracy, the criterium L2 = 10−6 is used in the remainder of this work. This yields a negligible iterative

error compared to the statistical error. Applying this criterium leads to a residual of L∞ = 10−5 in each

time step for momentum. The residuals for pressure and turbulence equations are at least one order of

magnitude smaller.

Discretisation error To assess the effect of the discretisation error, four different grids (with refine-

ment ratios ri = hi/h1 = ∆ti/∆t1 = 1.00, 1.25, 1.57 and 1.97) were employed. The effect is again shown

in Figure 4. Both the mean velocity and Reynolds stresses appear reasonably insensitive to grid resolu-

tion, only Reuu deviates slightly on the finest grid. The main differences are observed for the turbulence

kinetic energy spectra. Grid refinement leads to a slightly increased cut-off frequency, since the smaller

cells allow for higher frequencies to be resolved. This indicates that the employed fk (0.10) is below

the grid cut-off, i.e. the grid is not at DNS resolution. Based on the similarity between the results it is

concluded that the coarsest grid has a sufficient resolution.

Statistical error To remove the start-up effects and estimate the statistical uncertainty of the results,

the Transient Scanning Technique is employed [17]. In Klapwijk et al. [7] it was concluded that the

first 11 flow-through times must be removed to eliminate the start-up effects. The mean values are then

computed based on approximately 45 flow-through times, resulting in a statistical uncertainty for the

mean axial velocity between 0.5 and 2.5%, and for the Reynolds stress components between 5 and 10%.

For more details the reader is referred to Klapwijk et al. [7].
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Figure 4: Mean velocity (u) profiles, Reynolds stress (Reuu) profiles and turbulence kinetic energy spectra

(Eu,y+≈20( f )) using different iterative convergence criteria (top row), and on different grids (bottom row).
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5 RESULTS FOR DIFFERENT fε

For all figures in this section the three approaches (‘high’, ‘moderate’ and ‘low’ Reynolds number) are

shown from left to right, indicated as H, M and L respectively. For M, fε is taken as 2 · fk, i.e. a = 2. For

Reτ = 180, the initialisation method (Section 3) yields a laminar flow for M and L. This is an indication

of added dissipation (the initial perturbations are dampened). For comparison purposes, a second set of

computations is performed where the computations are restarted from a fully turbulent H computation.

Figure 5 shows the mean velocity versus the channel height. For both Reτ values H matches the

DNS well independently of fk. M shows slight discrepancies in the profile; especially for Reτ = 180, the

velocity is underpredicted near the centre. L at Reτ = 395 and with fk = 0.15 shows a more parabolic

profile, which is an indication of a laminar flow. Both of the lower fk values do show a turbulent flow

profile, however the boundary layer appears to be thinner than half of the channel height. The velocity is

almost constant in the region 0.5 ≤ y/δ ≤ 1.0. At the lower Reτ, both fk = 0.15 and 0.10 show a laminar

profile. The profile for fk = 0.05 matches the DNS data reasonably well.
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Figure 5: Velocity profiles (u/Ub), from left to right H, M and L for Reτ = 395 (top) and 180 (bottom).

Figure 6 shows two components of the Reynolds stress profiles. The results for H and M are very

similar. For both Reτ, Reuu and Reuv both show the correct profile, the magnitude converges towards the

DNS data with decreasing fk. Reuv is slightly underpredicted. Reuu at Reτ = 180 is overpredicted near

the wall for H and M. L clearly deviates from the reference data. At Reτ = 395, the Reuu profiles show the

correct shape, but fk = 0.15 and 0.05 underpredict the magnitude. Reuv is not captured by all fk values.

For Reτ = 180, the profile is correct for fk = 0.05, although the magnitude is not well captured. For this

Reτ, fk = 0.05 is again the only setting which captures Reuv reasonably. For the other fk settings, Reuv is

almost zero, indicating laminar flow, which is in agreement with the mean velocity profiles.

The turbulence kinetic energy spectra are shown in Figure 7. As expected the spectra at the lower Reτ

show less scale separation, while for the higher Reτ, a −5/3 slope is observed in part of the frequency

range. For H the value of fk has little influence on the spectra, for M the effect of reducing fk is more
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Figure 6: Normalised Reynolds stress profiles (Rei j), from left to right H, M and L for Reτ = 395 (rows

one and two) and Reτ = 180 (rows three and four).

visible. A lower fk leads to more resolved turbulence, i.e. more energy in the spectrum and a higher

cut-off frequency. This effect is the largest at Reτ = 180. The same influence of fk is clear for L; only

fk = 0.05 at Reτ = 180 matches the reference set, but still the energy at higher frequencies is lower than

for M and H. In all other computations the energy is too low, the spectrum shows again that the flow is

mostly laminar. It is clear that reducing fε reduces the energy in the spectrum; M contains less energy

than H, again especially at higher frequencies.

Finally the effect of fε on the flow is visualised using structures based on the Q-criterion in Figures 8

and 9 for Reτ = 395 and 180 respectively. For both Reynolds numbers the same observations are made;
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Figure 7: Turbulence kinetic energy spectra (Eu,y+≈20( f )), from left to right H, M and L. Reτ = 395 (top

row) and Reτ = 180 (bottom row).

for H the structures appear independent of fk. M shows a large dependency on fk; lowering fk leads

to more and smaller scales, for higher fk only larger structures are observed away from the walls. This

decrease in range of scales is in line with results by Frendi et al. [2]. The behaviour can be related to the

definition of fε: for fε = 1.0, all dissipation occurs at the smallest scales, while if fε < 1.0, dissipation

can also occur at larger scales. As a consequence the smaller scales are suppressed, since the turbulence

is dissipated ‘earlier’. By reducing fk and thereby also fε the range of scales increases again. For L

the absence of structures for fk = 0.15 for both Reτ, and for fk = 0.10 for Reτ = 180 again indicates a

laminar flow. fk = 0.10 at Reτ = 395 shows some large structures, but these do not resemble the turbulent

structures as seen for the other approaches or for LES simulations [7]. For fk = 0.05 it is observed that

the smallest structures are absent, which is in line with the turbulence kinetic spectrum.

6 CONCLUSIONS

Different approaches for specifying fε in the PANS model were compared based on theory and tur-

bulent channel flow simulations. Little difference between the moderate and high Reynolds number

approaches was found. The moderate Reynolds number approach does have a larger dependency on

fk, since due to the smaller value of fε, the turbulence dissipation is no longer confined to the smallest

scales. For the low Reynolds number approach, it was demonstrated that excess diffusion is added to the

equations. A laminar-like solution is obtained independent of the flow initialization or Reynolds number.

It is concluded that even at a low Reynolds number, fk = fε is an approach which should not be used

due to the suppression of the smaller scales. Only when using a very low fk (in the DNS limit) reason-

able results for the mean velocity and Reynolds stress profiles can be obtained, although in that case the

results obtained using fε = 1.0 also match the reference data well for the present test case, and contain

more energy at the smaller scales.
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Figure 8: Instantaneous turbulent flow fields (Q = 0.7), coloured by u∗ = u/Ub. From left to right

fk = 0.15, 0.10 and 0.05, for fε = 1.0 (first row), fε = 2 · fk (second row) and fε = fk (third row).

Reτ = 395.

Figure 9: Instantaneous turbulent flow fields (Q = 0.7), coloured by u∗ = u/Ub. From left to right

fk = 0.15, 0.10 and 0.05, for fε = 1.0 (first row), fε = 2 · fk (second row) and fε = fk (third row).

Reτ = 180.
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For industrial flow cases at high Reynolds number, it is recommended to use fε = 1.0. That being

said, if the reasoning is followed which leads to allowing fk to vary in time and space, one can wonder

whether the same should be applied to fε, i.e. fε depending on local flow quantities. There is currently

no relationship to dynamically estimate fε found in the literature, while pursuing this method has the risk

of re-introducing the problem of numerical and modelling error entanglement.
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