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Abstract 

A direct method is described for effecting the explicit Wiener-Hopf 

factorisation of a class of (2 x 2}—matrices. The class is determined 

such that the factorisation problem can be reduced to a matrix Hilbert 

problem which involves an upper or lower triangular matrix.  Then the 

matrix Hilbert problem can be further reduced to three scalar Hilbert 

problems on a half-line, which are solvable in the standard manner.  The 

factorisation technique is applied to the matrices that arise from two 

problems in diffraction theory, thus permitting these diffraction 

problems to be solved in closed form (at least in principle), 
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1.  Introduction

In a recent paper by Rawlins and Williams [1] (see also Rawlins [2]), it 

was shown how a class of (2 x 2)-matrices could be explicitly factorised. 

In this paper a different class of matrices is constructively factorised. 

By using the idea of Rawlins [3] and evaluating the matrix to be factorised 

on both sides of an assumed branch cut that commonly arises in diffraction 

problems, the problem of factorisation reduces to a matrix Hilbert problem 

along the branch cut.  In the work of Rawlins and Williams [1], and 

Rawlins [2], the form of the original matrix was chosen so that the matrix 

Hilbert problem was reducible to two uncoupled scalar Hilbert problem. 

These could be solved without difficulty by the well-known methods given 

in Muskhelishvili's book on singular integral equations [4],  The 

reduction to these two scalar Hilbert problems required that the two diagonal 

elements of the matrix involved in the Hilbert problem were zero.  However, 

it is known, see Gohberg and Krein [5], that upper and lower triangular 

matrix Hilbert problems can also be solved explicitly.  Thus we need only 

require one off-diagonal element of the matrix Hilbert problem to vanish, 

in order to effect a Wiener-Hopf factorisation of the original matrix.  We 

shall apply the present theory to the factorisation of matrices which arise 

in the following physical applications: (a) the reflection  and radiation 

of a guided acoustic wave at the open end of a semi—infinite waveguide 

bounded by - soft/hard half-planes, (b) the diffraction of an acoustic 

wave by  staggered half—planes.  A factorisation of these matrices does not 

necessarily mean that a closed-form solution can be obtained for the 

stated diffraction problems-  It may be that there are insuperable problems, 

depending on the factor matrices)associated with completing the Wiener- 

Hopf solution of the stated diffraction problems.  However, a new technique 

of matrix Wiener-Hopf factorisation may go some way towards an eventual 

solution of some hitherto intractable diffraction problems.  The author 
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hopes to complete, in detail, the solution of the above diffraction 

problems in later separate publication. 

We mention that the type of matrix factorised in this paper does not 

fall into the class considered by Daniele [6], Rawlins [7].  Jones [8] has 

devised a method for the Wiener-Hopf factorisation of a special type of 

(2 x 2)-matrix, that ensures that the Wiener-Hopf factors commute.  In 

addition, the factors of various matrices whose Wiener-Hopf factors do not 

commute were also determined by Jones [8].  It is conceivable that by 

appropriately pre- and post— multiplying a matrix (which is susceptible to 

Jones' method) by appropriate analytic matrices the  Wiener-Hopf  factorisation 

can be carried out for the matrices considered here by his approach.  However 

the result obtained here seems to be different from that of Jones [8] , and 

it is not clear to me how one could prove the equivalence of the two results. 

The difference is apparent in the Scalar factorisation problem.  In Jones [8] 

the classical approach by Cauchy's theorem leads to a solution for the factors 

expressed in terms of  Cauchy intergrals along a line parallel to the real 

axis in the strip of analyticity.  On the other hand the approach used here 

through the Hilbert problem leads to a solution involving Cauchy integrals 

along a branch cut, i.e. along a half line.  The strip of analyticity is not 

strictly necessary in the present approach.  This would indicate that the 

present method would be suitable for problems without dissipation.  Other work 

which is related to Wiener-Hopf-Hilbert factorisation of matrices has been 

carried out by Hurd [9] and is coworkers.  Jones [l0] has extended the class 

of (2 x 2)-matrices whose factors commute to a class of (n x n)-matrices 

whose factors commute. 

In section 2 of the paper a general matrix will be considered, and its general 

form is appropriately specified in order that the Wiener-Hopf factorisaion 

problem reduces to a triangular matrix Hilbert problem.  In section 3 this 

class of matrices will be constructively factorised by solving appropriate 

Hilbert problems.  In section 4, to elucidate the method, the factorisation 

procedure is applied to two matrices which arise from specific problems from 

diffraction theory as mentioned above. 
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2.  Determination of the class of matrices whose Wiener-Hopf factorisation 

reduces to a triangular matrix Hilbert problem on a half-line. 

Consider the general (2 x 2)-matrix 

,⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

) ( α12a) ( α11a

) ( α22a) ( α21a) ( α
~
A

 
where the elements aij(α), i,j - 1,2 are functions of the complex variable 

α .  These functions will, be assumed to have only branch point singularities, 

specifically we shall assume that the branch points arise through the 

function ,2k2αγ −=  where  k  has positive real and imaginary parts, and 

the branch cuts  C  and  C'  lie along the half—lines C : α = -k -δ , 

C': α = k +δ ,δ  ≥ 0.  The elements a..(a) are also assumed to be analytic 

functions in the cut α-plane; and det
) (α

~
A

0≠ within the strip 

—ki < Im(α) < ki , where ki denotes the imaginary part of  k  .  The 

occurrence of a complex  k  with Im(k) > 0 is traditional in Wiener-Hopf- 

type problems and is needed to have a common strip of analyticity; in the 

final solution the complex  k  is removed by taking the limit as Im k ↓ 0. 

 

The Wiener-Hopf factorisation problem requires the determination of 

(2 x 2)-matrices and  whose elements are analytic for )(α
~
U )(α

~
L

Im(α) >  -ki and Im(α) < ki respectively, such that 

)( α
1

~
L)( α

~
u)( α

~
A

−
=                                  (1)                                    

)(α
~
U and  are also required to be non-singular in their respective )(α

~
L

regions of analyticity.  Obviously any matrix )(α
1

~
A  which can be expressed 

in the form 

),(α
L~

B(αα
~
A)(α

U~
C)(α

1
~
A =      (2) 

where and are matrices whose elements are analytic functions )(α
L~
B )(α

U~
C

of a for Im(α) < ki and Im(α) > -ki, respectively, can also be factor- 

ised if  can be factorised. )(α
~
A

http://will.be/
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In order to effect the factorisation it will be assumed that )(α
~
U  is 

analytic except along the branch cut  C  through a = —k, whilst )(α
~
L  is 

analytic except along the branch cut C' through α = k.  Evaluation of 

equation (1) on both sides of the cut C(C: α = -k — δ, δ ≥  0) through 

α = -k gives , on using the suffices ± to denote values evaluated on the 

upper and lower sides of  C  ,

(4)),(α1
~
L(αα

~
U ) (α

~
A

(3)),(α1
~
L)(α

~
U)(α

~
A

−

−
+

=
+

=
− −

( is analytic except along the branch cut C' through α = k and 

therefore takes the same values on both sides of C) . Eliminating 

)(α
~
L

)(α
~
L  

between (3) and (4) gives the matrix Hilbert problem: 

          (5) cα),( α
~
U)( α

~
C)( α

~
U ∈

−
=

+

where                  

          . )(α
1

~
A)(α

~
A)(α

~
C

−
−+

=

 

More explicitly 

.12a11a11a12a21a12a22a11a

12a21a11a22a21a22a22a21a)( α
~
Adet
1)( α12)g( α11g

)( α22)g(
21

g ⎟
⎠
⎞

⎜
⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛ − + − + − + −− −+

−+−−+−+−−+=α
 

The problem (5) reduces to an upper or lower triangular matrix Hilbert 

problem along  C  , if the condition g12(α) = 0 or g21(α) = 0 is 

satisfied.  That is 

c;α1,j2,2orij1,i),(αij)a(αiia)(αii)a(αija ∈====−+=−+
 

or ignoring the trivial case of and assuming a
0,)(αija ≡±

ij (α) ≠    0 

on  C , 

                c.α0,
)( αija

)( αiia

)( αija

)( αiia
∈=

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
           (6) 

 We shall assume that aij(α) can have isolated zeros in the cut α—plane, 

(but not on  C ), and consequently aii(α)/aij(α) can have isolated 

  poles in the cut α-plane.  Then provided aij(α)/aij(α) = 0(|k+α|-µ  ; 

  0 ≤ µ  <   1 as α →  -k, a solution of (6) follows immediately (see 
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Muskhelishvili [4], section 15) as 

aij(α) = aij(α)Fi(α). (7) 

Here the function F.(α) is analytic except along the branch cut C' 

through α = k,  [Footnote:  If )α(
~
A)(α

~
A −=  for  a  in the cut plane, 

then it is not difficult to show (see Rawlins [3]) that Fi(α) must also 

be analytic along the branch cut C'], and except for poles at the zeros 

of a..(a);  the multiplicity of these poles is not greater than the multi- plicity of the corresponding 

zeros.  Thus  will be of lower or upper )(α
~
C

triangular from if : 

    
( ) )8(,

)(α12a)(α1)F(α12a
)(α22a)(α21a)(α

~
A(i) =

 
or 

   
( ) (9)           ;

)( α12a)( α11a
)(α2)F( α21a)(α21a)( α

~
A(ii) =

 
and det  ≠  0 in the cut α—plane. )(α

~
A

We shall now carry out the explicit Wiener-Hopf factorisation of the 

matrix given in case (ii) above.  The procedure for factorising the 

matrix given in case (i) will be completely analogous. 

3.  Wiener-Hopf factorisation of the matrix defined by (9). 

We assume the matrix has the form (9) and the same general )(α
~
A

properties as outlined in the first paragraph of section 2.  If we 

carry out the same evaluation on the branch cut C, as described in 

section 2, the equation (5) reduces to the upper triangular matrix 

Hilbert problem 

),(α
~
U)(α

~
C)(α

~
U

−
=

+  α є C    (10)



where 

,
)) (α12a)(α2)F(α11)(a(α21a

)(α12)a(α11a)(α11)a(α12a
)(α22g,

))(α12a)(α2)F(α11(a

))(α12a)(α2)F(α11(a
)(α11g −−−

−+−−+
=−−

+−
=  

 

 

g21(α) = 0 (11) 
,

)( α21a

)( α21a
)( α22g, −

+
=  (12) 

.
)(α12u)(α11u
)(α22u)(α21u)(α~U ⎟
⎠
⎞⎜

⎝
⎛=

Evaluating the matrix expression (10) and equating corresponding 

elements of the matrices on both sides of the equality sign gives the 

following equations: 

 (13)              .1,2jc,α
)(α2j)u(α22g)(α2ju

)(α2j)u(α12g)(α1j)u(α11g)(αiju
=∈

−=+

−+−=+

⎪⎭

⎪
⎬
⎫

 

 

The four equations (13) can clearly be solved if the coupled system 

(14)
(15)

 C,α
)(α2(αα)22g)(α2v

)(α2)v(α12g)(α1)v(α11g)(α1v
∈

−=+

−+−=+

⎪⎭

⎪
⎬
⎫

 

can be solved.  The equation (15) is a standard Hilbert problem whose 

fundamental solution is given directly by the methods of Muskhelishvili 

[4], chapter 10.  Similarly we can determine the fundamental solution of 

the standard auxiliary Hilbert problem 

  v+(α)=g11(α)v-(α), a є C ,        (16)

for v(a).  Then the equation (14) can be written as 

c,α),(α)/v(α2)v(α12g)(αu)(αu ∈+−=−−+        (17)

where 

u(α) = v1(α)/v(α).        

In the equation (17) the right-hand side is a known quantity and therefore 

we have a standard Hilbert problem whose fundamental solution is given by 

using the techniques described in Muskhelishvili [4], chapter 10. 
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   Suppose therefore we have found fundamental solutions )( α(0)v),( α(0)
2v  

and u(o)(α)of the equations (15),(16) and (17), respectively.  To 

determine the general solution we set ).(α*
2)v(α(0)

2v)(α2v =  

v(α) = v(o) (α) v(α), and u(α) = u(o)(α)+ (α),then we are led  

to the Hilbert problems 

     ,)]( α*[v)]( α*[v,)]( α*
2[v)]( α*

2[v −=+−=+

and 

1},)](α*/[v]][α*
2{[v)](α(0)/[v)](α(0)

2)[v(α12g)](α*[u)](α*[u −+−+−=−−+  

 

which have a solution, (Muskhelishvili [4], section 15) 

(18))(α1p)(α*u),(α2p)(α*v),(α2p)(α*
2v ===

where  P1(α),P2(α) are entire functions of α . 

Thus a suitably general solution of (14) and (15) is given by 

).(α(0))v(α2))p(α1p)(α(0)(u))v(αu(α)(α1)andv(α(0)
2)v(α2p)(α2v +===  

A suitably general solution of the equation (13) and consequently of 

(10) is therefore given by 

(19),
)(α(0))v(α22))p(α12p)(α(0)(u)(α(0))v(α21))p(α11p)(α(0)(u

)(α(0)
2)v(α22p)(α(0)

2)v(α21p
)(α

~
U ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++
=

 

where  det  1,2ji,),(αijandp)),(α12p)(α11)(p(α(0)
2)v(α(0))v(α22)p(α21p)(α

~
U =−=

are entire functions.  The choice of the entire functions P..(a) is 

further restricted by the condition that  is non-singular; and the )(α
~
U

requirement that the corresponding matrix )( α
~
U)1( αA)( α

~
L −=  is non-singular, 

and its elements should be analytic except along the branch cut C' 

through α = k.In particular, the elements of )(α
~
L  should not have 

poles at α = -k.For the applications we have in mind it is sufficient 

to let P21 = P22 = P11 = -P12 = 1, giving 

)20(⎟
⎠
⎞

⎜
⎝
⎛ −+

=
)(α(0)1)v)(α(0)(u)(α(0)1)v)(α(0)(u

)(α0
2v)(α0

2v
)(α

(0)
~
U

),(α(0)
2)v(α(0)2v)(α

(0)
~
Udet =
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In a completely analogous way it can be shown that a Wiener-Hopf 

factorisation of the matrix defined by (8) is given by 

)(α
1

~
L)(α

~
U)(α

~
A

−
=  

 where 

    )21(,⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
)(α(0)

1)v(α12p)(α(0)
1)v(α11p

))(α22p)(α(0))(u(α(0))v(α12p))(α21p)(α(0))(u(α(0))v(α11p
)(α

~
U

and Pij(α). i,i = 1,2 are entire functions,

det  )(α(0)v),(α(0)
1andv));(α22p)(α22)(p(α(0))v(α(0)

1)v(α12)p(α11p)(α
~
U −=

and u(o)(α) are fundamental solutions of the standard Hilbert problems 

c.α

).(α(αα)/1)v(α21g)(αu)(αu

),(α)v(α22g)(αv

),(α1)v(α11g)(α1v

∈

+−=−−+

−=+

−=+

⎪
⎪
⎭

⎪⎪
⎬

⎫

 

gij(α) are the elements of the lower triangular matrix ).(α
1

~
A)(α

~
A)(α

~
G

−
−+

=  

Imposition of the further restriction that )(α
~
U and )(α

~
L are non-singular, 

and analytic everywhere except along the branch cuts  C  and C' 

respectively, dictates the choice P1l = P12 = P22 = -P21 = 1, giving 

   )22(.⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
)(α(0)

1v)(α(0)
1v

1))(α(0))(u(α(0)v1)(αα(0))(u(α(0)v
)(α

(0)
~
U

The elements of  have been constructed by assuming that the matrix )(α
~
U

)(α
~
L  in equation (2) is continuous across  C  and therefore )(α

~
L  defined 

by 

),(α
~
U)(α

1
~
A)(α

~
L

−
=  

with the elements defined by one of the equations (19) to (22), should 

from the method of construction, be continuous across C. Equation (5) 

and the equation above gives 

)(α
~
L)(α

~
U)(α

1
~
A)(α

~
A)(α

1
~
A)(α

~
U)(α

1
~
A)(α

~
L

−
=

−
−
−+

−
+

=
+

−
+

=
+  

thus verifying explicitly that  indeed continuous across  C. )(α
~
L
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4-  Factorisation of matrices that arise in practical applications. 

(a)  Reflection and radiation at the open end of a waveguide. 

Consider the matrix 

(23) 

where the branch of the multivalued function  γ  is chosen such that 

γ = -ik when α = 0, and the branch cuts are taken along the half-lines 

α = k + δ, a = -k - δ, δ ≥ 0.  The quantity k  is here assumed to be 

real and positive.  A Wiener-Hopf factorisation of this matrix is 

required for the solution, in closed form, of the problem of a symmetric 

acoustic wave mode propagating down a two-dimensional semi-infinite 

waveguide, whose guide walls, a distance two units apart, are internally 

soft and externally rigid, see Fig.1.     The "wavenumber"  k  is related 

to the wave propagating down the guide by  k = 2Π/wavelength . 

 

Hard 

Soft 

Soft 

 

 

 

 

Symmetric 

Wave mode 

hard 

2 

,2k2αγ),
1/ γ1
1γtanhγ()( α

1
~
A −=−=

 

Fig.1.  Geometry of the diffraction problem (a). 

Although det 0)tanh1()('A
~

≠γ+−=α  in the cut α-plane, the matrix (23) 

does not fall into the class of matrices considered in section 3 since 

the element  has poles at the roots of coshγ = 0.  To overcome )(a '
21 α

this defect we can rewrite (23) in the form 

where  
( )

( ) (25).
1/ γ1
cosh γγsinhγ)(α~A

(24)),(α~A
0cosh γ

10cosh γ

1
)(α1

~A

−=

=
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The expression (24) can now be written in the form (2) where 

( ) ( ),
)(αg

1)(αB,
)( αg

1)(αC 01
10

L
L~

0cosh γ
10

U
U~

==  

,)π
2

1
(nnα},2

n/α2α)2
nα1n

/2k{(1)(αL)g(αUgcoshγ −=+∏
∞

=
−==  

].n}exp[i αexniαα/1/2)2
nα1n

/2k{(1)α(Lg)(αUg −∏
∞

=
−=−=  

The matrix (23) can therefore be factorised if we can factorise the 

matrix (25).  Clearly the matrix (25) falls within the class considered 

in section 3; since in (9) we can let a11(α) = 1, a12(α) = 1/γ, 

a21(α) = γsinhγ, F2(α)= -cothγ/γ.  The simple poles of F2(α) = — cothγ/γ 

correspond to the first-order zeros of a21(α) = γsinhγ. We also note 

that det ≠ 0 in the cut α-plane. γe)(α
~
A −=

Thus the factorisation of  proceeds as follows: )(α
~
A

) )( ( c,α,
)1/γ/γ)coshγos

1))sinhγsiγ(α)]exp[γxp)(α
1

~
A,

)1/γ/γ1
)coshγos))sinhγsiγ(α)(α

~
A ∈

−
−=

−  −=
+ −

where we have used the fact that γ = ±|γ|, and where γ(α) = |α2-k2|½ 

Thus 

)( (26) c.α,
))/γ/γ2exp[ γex)]exp[2 γxp

10)(α
1

~
A)(α

~
A)(α

~
G ∈

−
=

−
−+

=
   

Thus the equations (13) are in this particular problem: 

(27)1,2.jC,α
),(α2ju)(α2ju

),(α2j).u)]/ γ]/2exp[ γex)(α1j)]uexp[2 γxp)(α1ju
=∈−=+

− −−=+

⎪⎭

⎪
⎬
⎫

   
and a solution of these equations is given by a fundamental solution of 

the equations 
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Cα
).(α2v)(α2v

)(α2)v(α)]/γ(α2exp[ γ)(α1)]v(αexp[2 γ)(α1v
∈

−=+

−−−=+

⎪⎭

⎪
⎬
⎫

    
)29(

)28(

 A solution of (29) is obviously 

(30)1.)( α(0)
2v =

A solution of the auxiliary problem 

v+(α)= exp[2γ(α)]v -(α) , 

   is given by (Muskhelishvili [4], chapter 10) 

   ,)/k]γln[α
π

iγ
exp

k

(t))γα(t

dt

2ππ

122γexp)(α(0)v ⎥⎦
⎤

⎢⎣
⎡

⎭
⎬
⎫

⎩
⎨
⎧

+=∫
−

∞− −
=                       (31) 

where the branch of the logarithm is specified by ℓn[ (α+γ)/k] = -iπ/2 when a = 0. 

Thus, since v(o)(α)≠ 0 on  C  , the equation (28) can be put into the 

form of the standard Hilbert problem: 

),(α/γ
k

)(αγα
ln

π

)(αiγ
2exp)(αu)(αu ⎥

⎦

⎤
⎢
⎣

⎡ +−
−=−−+

 
where u(α) = V1(α)/v(α).This problem has the fundamental solution 

(Muskhelishvili [4],chapter 10) 

∫
−

−
+

−

−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

.
)α(t)(tγ

dt
k

t)(γt
ln

π

iγγ(t
exp

πi

1
)(α(0)u           (32) 

Thus having found particular solutions  ),(α(0)
0v )a(α(0)u),(α(0)v

Wiener-Hopf factorisation is given by substituting these expressions 

(30), (31) and (32) into the expression (20) giving 

     1)](α
(0)
~
L)[(α

(0)
~
U)(α

~
A −=  

where 

( ),)))X(αI(α(1)))X(αI(α(1
11)(α

(0)
~
U

+−−
=                  (33)



13 

where 

)/k]],γln[(α
π

iγ
exp[)X(α +=

 

∫
−

∞− −

+
−

=
⎥
⎦

⎤
⎢
⎣

⎡
k

.
)α(t)(tγ

dt
k

(t)γt
ln

π

(t)iγ
exp

πi

1
)I(α

 

We note that x(α) and I(α) are analytic functions everywhere in the 

α-plane except along the branch cut C, and therefore all the elements 

of  are analytic in the α—plane cut along  C  .   Also )(α
(0)
~
U

det ≠ 0 in the α-plane.  We also have )2X( α)(α
(0)
~
U =

)(α
(0)
~
U)(α

1
~
A)(α

(0)
~!
L

−
=

 

( ) (34).
1/γ)))X(αI(α(1coshγ1/γ)))X(αI(α(1coshγ
1)))X(αI(α(1sinhγγ1)))X(αI(α(1sinhγγ]γexp[)(α

(0)
~
L

++−+−
−+−−−−=

It can be shown that the elements of )(α
(0)
~
L  have no poles at α = —k , 

by analysing the behaviour of L (o)(α) as α → -k.  To analyse the behaviour 

of at α = —k we need the results: )(α
(0)
~
L

x(α) = 1 + 0(γ),1(α) = γ -1   + 0(1), as α → -k , 

which readily follow by means of Muskhelishvili [4, section 29]. 

On inserting these results into (34), it is found that the elements of 

L(o)(a) are bounded near α = —k, hence there are no poles at α = —k. 

Thus the choice of Pij  giving (20) is satisfactory. 

Finally we remark that the reflection/radiation problem with an anti- 

symmetric mode leads to a matrix which can also be factorised by the 

present method.  Also the reflection/radiation problem for symmetric 

or anti-symmetric mode propagation down the same wave guide, but with 

the hard and soft boundary conditions interchanged, leads to a matrix 

which can be factorised by the present method.  It is hoped to present 

these problems fully solved in later publications. 
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(b)  Diffraction by two staggered half-planes. 

As a second application we consider the Wiener-Hopf matrix factorisation 

that arises in the physical problem of the acoustic diffraction by two 

staggered rigid half-planes, see Fig 2. 

   y     

θ0 incident wave 
           (-a,d)   rigid half plane 
          x  

  rigid half plane 
       (a,-d) 
 

 

Fig. 2.   Geometry of the diffraction problem (b) . 

This problem has been considered, by Kashyap [11] and Rawlins [12] by 

different approximate methods.  The matrix which must be factorised for 

an exact closed form solution is given by 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ +−

−−
−−

=

aziα2γγe

dsinh2γd2γe2γ

1/γ
a2iαd2γe

)(α
~
A

This matrix is of the form (9), and can be factorised in the same way as 

the previous problem. Omitting the detail it can be shown that 

   ,dcosh2γ)a/γ2iα2(e
d4γe

d4γe
0

)(α
~
G

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

=

)/k]},γd/π/π)ln2iγexp{()(α(0)
2v

)/k]},γd/π/π)lnexp{(2iγ)(α(0)v

+−=

+=

 
 

.
k

)α(t)(tγ

dt
k

(t)γt
ln

π

(t)4id γ
exp

πi

1
dcosh2 γ

a2i α
e)(α(0)u ∫

−

∞− −

+−

=
⎥
⎦

⎤
⎢
⎣

⎡

 

Substituting the last three expressions v(o)(α), into)(α(0)u)(α(0)
2v  

 the matrix (20) yields a factorisation of 
)(α

~
A
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Conclusions. 

We have presented a method for factorising matrices which arise in 

diffraction  problems. This could offer scope for deriving  closed-form 

solutions to hitherto unsolved diffraction problems. The applicability 

of the present method to a given matrix )(α'
~
A whose elements, besides 

having the branch point singularities at α = ±k‚ also have poles; and 

whose determinant vanishes or becomes infinite in the cut α-plane) can 

be easily determined. If 1)](α
'
~
A)[(α

'
~
A)[(α

'
~
A −

−++
is triangular then the present 

method can be used to factorise the matrix 
)(α'

~
A

.  One merely has to 

determine the  of the expression (2) which ensures that )(α
L~

Band)(α
U~

C

the elements of  have no poles and that det .  This can be )(α
~
A 0)(α

~
A ≠

effected without too much difficulty by inspection.  On the strength of 

the above remarks there are a number of other diffraction problems 

(besides those mentioned in this paper), whose matrices can be factorised 

see Noble [13], Rawlins [14], also the coaxial duct problem discussed in 

Heins [15]. 

Finally we mention that the (n x n) triangular matrix Hilbert problem 

can also be solved explicitly. Thus provided we can find the class of 

(n x n)— matrices that reduce to the (n x n) triangular matrix Hilbert 

problem on analytic evaluation about the branch cut C, we will have 

effected the Wiener—Hopf factorisation of this class of (n x n)-matrices. 
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