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Abstract. Multiscale simulations of molecular systems such as proteins, DNAs, and RNAs
are implemented using models with different resolutions ranging from a fully atomistic model
to coarse-grained molecules, up to a continuum level system descriptions. For such simula-
tions, pairwise force calculation is a serious bottleneck which can impose a prohibitive amount
of computational load on the simulation if not performed wisely. Herein, a novel method is
presented to approximate the resultant force and the associated moment for long-range particle-
body and body-body interactions applicable to multiresolution coarse-grained simulation of
biopolymers. The resultant moment is due to the fact that the net force does not necessarily
act through the center of mass of the body. This moment is neglected in bead-based coarse
models which use particle dynamics to form the equations of motion of each large spherical
pseudo-atom. The presented method significantly reduces the cost of the force field calcula-
tions specially in multiscale models which contain rigid subdomains.

1 INTRODUCTION

Function of most biopolymers such as DNA and RNA is highly related to their structure.
As such, modeling and simulation of such systems are performed to predict the associated
structure accurately in a timely manner. Such systems with large number of particles (n ≈
106 [1]) suffer from the cumbersome pairwise force field calculations with the computational
complexity of O(n2) at each time step. Therefore, different algorithms have been developed
to efficiently calculate far-field interactions. Ewald summation method applicable to periodic
systems [2, 3] is the approach which calculates the long-range field in Fourier space. For non-
periodic systems, particle-mesh (PM) and particle-particle particle-mesh (PPPM) techniques
perform satisfactorily when the required precision is low and the particles are distributed more
or less uniformly [4]-[6]. As the next generation of the fast algorithms, the first tree methods

1



326

Mohammad Poursina and Kurt S. Anderson

Figure 1: Multiscale modeling of an RNA

[4] presented in [7] and [8] provide the monopole approximation of the long-range field in the
system. Using higher order multipole expansion, Fast Multipole Method (FMM) is presented in
[9] to approximate the electrostatic field of a group of particles with a computational complexity
of O(n). This method is later extended and used to approximate different potential fields for
different systems [10]-[13].

Eliminating high frequency modes of motion by considering groups of atoms as rigid or
flexible bodies, coarse-grained simulations of biopolymers improve the integration time step.
Additionally, they reduce the computational cost associated with pairwise force calculations
by ignoring the interactions among particles embedded in rigid regions of the system. This
technique may be implemented by replacing different subdomains of the system with rigid or
flexible bodies. Using internal coordinates, these regions are connected together via kinematic
joints [14]-[16]. Alternatively, coarse-grained modeling may be implemented by considering a
group of atoms as a spherical bead, and applying particle dynamics to formulate the equations of
motion of each large pseudo-atom [17, 18]. Such systems may also be modeled in the multiscale
and/or adaptive [16] framework to capture the dynamics of the system more accurately. These
models may contain multiple resolutions ranging from fine scale atomistic domains, coarse-
grained macromolecules to continuum level system descriptions.

Herein, we extend the approach used to approximate long-range gravitational force and the
associated moment in spacecraft dynamics [19] to the pairwise forces in articulated multiscale
simulation of molecular systems. We provide an approximation of the resultant force and the as-
sociated moment applied from a particle to a body (pseudo-atom) consisting of many particles.
The resultant moment approximated here is due to the fact that the net force does not necessarily
act through the center of mass of the body (pseudo-atom). This moment should be considered
when the equations of motion are formed in an articulated multibody framework. However,
it is neglected in most coarse-grained bead models which use particle dynamics. These ap-
proximations can be used to find the long-range interactions between the atoms and rigidified
nucleotides of an RNA shown in Fig. 1. We also derive the approximation for the spatial force
due to the interactions between particles embedded in two pseudo-atoms (bodies). For the same
system shown in Fig. 1, this approximation is applied to find the far-field interactions among the
rigidified nucleotides. Herein, multipole and Taylor series expansion coefficients are elaborated
and as such, expressed using terms with physical meanings. For instance, we define pseudo-
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center and pseudo-inertia tensor for each body. Then, we express the approximations in terms
of the location of the pseudo-center and specific elements of the pseudo-inertia tensor of each
body. This tensor is calculated for each rigid subdomain of the system before starting the simu-
lation. We also show that if the pseudo-center is defined for the subdomain and is selected as the
origin of the body-fixed frame, the first (dipole) moment disappears in the force approximation.

2 FORCE ON A SMALL BODY FROM A PARTICLE

Consider particle P̄ , and body B (not necessarily a rigid body) containing N particles shown
in Fig. 2. Any arbitrary particle Pi belonging to B experiences a pairwise force due to its
interaction with P̄ . Herein, we assume that this force is expressed by the following relation

FP̄Pi
=

κλ̄λi

(|r′i|)s
er′i = κλ̄λir

′
i(r

′2
i )

− s+1
2 , (1)

where, λi and λ̄ are the quantities corresponding to the force field, κ is the constant associated
with the force field of interest, and s is an integer. In this formula, er′i is the unit vector from
particle P̄ to Pi. This general formulation may be used to address the gravitational, Coulombic
or London forces. For instance, if one is interested in pairwise forces due to the Coulomb’s
law, κ is replaced by the Coulomb force constant, λi represents the charge of the particle, and
s becomes 2. For each body, we define the lumped quantity corresponding to the quantity of
interest λ as

Λ
�
=

N∑
i=1

λi. (2)

We also define the “pseudo-center” of the body denoted by Cλ. Position vector of this point
with respect to the center of mass (i.e., B∗) is determined by the following relation

Rλ =

∑N
i=1 Riλi

Λ
, (3)

provided that Λ �= 0. In the above relation, Ri is the position vector of the particle (atom) Pi

measured from the center of mass of the body. In the following derivations, it is assumed that
the origin of the body-fixed frame coincides with the pseudo-center of the body.

Using the following relation based on Fig.2,

r′i = R+ ri, (4)

Eq. (1) is rewritten as

FP̄Pi
= κλ̄λi(R+ ri)(R

2 + r2i + 2R · ri)−
s+1
2 . (5)

Introducing the intermediate vector qi as

qi =
ri
R
, (6)
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Figure 2: Particle P̄ applies the force FP̄Pi
to the particle Pi on body B.

and expressing vector R as

R = Ra1, (7)

one can rewrite Eq. (5) in the following format

FP̄Pi
=

κλ̄λi

Rs
(a1 + qi)(1 + q2

i + 2a1 · qi)
− s+1

2 . (8)

Recalling the binomial series expansion,

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 +

n(n− 1)(n− 2)

3!
x2 + ... (|x| < 1), (9)

the term (1 + q2
i + 2a1 · qi)

− s+1
2 in Eq. (8) is expanded as follows if |q2

i + 2a1 · qi| < 1

(1 + q2
i + 2a1 · qi)

− s+1
2

= 1− s+ 1

2
(q2

i + 2a1 · qi) +
(s+ 1)(s+ 3)

8
(q2

i + 2a1 · qi)
2

− (s+ 1)(s+ 3)(s+ 5)

48
(q2

i + 2a1 · qi)
3 + ... (10)

Using the expression provided in Eq. (10), the total force experienced by body B due to the
pairwise interactions between its own particles and P̄ is rewritten as

FP̄B =
κλ̄

Rs
[

N∑
i=1

λia1 −
N∑
i=1

(s+ 1)λi(a1 · qi)a1 +
N∑
i=1

λiqi

−
N∑
i=1

(s+ 1)

2
λiq

2
ia1 +

N∑
i=1

(s+ 1)(s+ 3)

2
λi(a1 · qi)

2a1

−
N∑
i=1

(s+ 1)λi(a1 · qi)qi + ...)]. (11)

We elaborate on different terms in the above expression based on their orders with respect to
|ri|
R

.
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• O( |ri|
R
)0:

κλ̄

Rs

N∑
i=1

λia1 =
κλ̄

Rs
a1

N∑
i=1

λi
(2)

=
κλ̄Λ

Rs
a1 (12)

• O( |ri|
R
):

− κλ̄(s+ 1)

R(s+1)
a1a1 ·

N∑
i=1

λiri +
κλ̄

R(s+1)

N∑
i=1

λiri (13)

Although it is mentioned in [4] that the dipole moment measured from the center of charge
(pseudo-center in this paper) vanishes if “the charges are all positive” [4] (λi > 0), in the
following we show that the dipole (first) moment measured from the pseudo-center (if
defined) becomes zero independent of the sign of λi

N∑
i=1

λiri =
N∑
i=1

λi(Ri −Rλ) =
N∑
i=1

λiRi −Rλ

N∑
i=1

λi
(2)

= ΛRλ − ΛRλ = 0. (14)

Consequently, the first order terms disappear if the pseudo-center is defined as the origin
of the body-fixed frame.

• O( |ri|
R
)2:

κλ̄

R(s+2)
[−(s+ 1)

2
a1

N∑
i=1

λir
2
i +

(s+ 1)(s+ 3)

2
a1a1 ·

N∑
i=1

λiriri · a1

− (s+ 1)a1 ·
N∑
i=1

λiriri]. (15)

To simplify the above expression, we define the “pseudo-inertia” tensor for body B asso-
ciated with the quantity λ with respect to its own pseudo-center as

IB/Cλ

λ

�
=

N∑
i=1

(Ur2i − riri)λi, (16)

where U denotes the identity tensor. This tensor represents the tensor of the moment of
inertia (second moment) of the body if one studies the gravitational force [19]. For the
Coulombic force, this tensor turns out to be the quadrupole moment tensor [20]. Defining
the trace of the pseudo-inertia tensor as

tr(IB/Cλ

λ ) = 2
N∑
i=1

λir
2
i =⇒

N∑
i=1

λir
2
i =

1

2
tr(IB/Cλ

λ ), (17)
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and using the following property

N∑
i=1

λiriri =
tr(IB/Cλ

λ )

2
U − IB/Cλ

λ , (18)

the second order terms are simplified as

κλ̄

R(s+2)
[−(s+ 1)

4
tr(IB/Cλ

λ )a1 +
(s+ 1)(s+ 3)

2
a1a1 · (

tr(IB/Cλ

λ )

2
U − IB/Cλ

λ ) · a1

−(s+ 1)a1 · (
tr(IB/Cλ

λ )

2
U − IB/Cλ

λ )]. (19)

Substituting Eqns. (12), (13), and (19) into Eq. (11), the net force applied to the body is
expressed as

FP̄B =
κλ̄

Rs
{Λa1 + [

s(s+ 1)

4R2
tr(IB/Cλ

λ )− (s+ 1)(s+ 3)

2R2
a1 · IB/Cλ

λ · a1]a1

+
s+ 1

R2
a1 · IB/Cλ

λ +O(
r

R
)3}, (20)

where r is the position vector of a generic point on B with respect to the pseudo-center of the
body. If the particle P̄ is far enough from the pseudo-center of the body such that the largest
distance from the pseudo-center to the particles embedded in body B is smaller than the distance
between P̄ and Cλ, i.e., maxi∈B |ri| << R, one can ignore the third and higher order terms in
Eq. (20). Additionally, introducing a dextral, orthogonal set of unit vectors, a1, a2, and a3, and
defining the elements of the pseudo-inertia matrix in a-basis as

Iij = ai · IB/Cλ

λ · aj (i, j = 1, 2, 3), (21)

one arrives at the following approximation for the resultant force

F̃P̄B =
κλ̄

Rs
{Λa1 + [

s(s+ 1)

4R2
tr(IB/Cλ

λ )− (s+ 1)(s+ 3)

2R2
I11]a1

+
s+ 1

R2
(I11a1 + I21a2 + I31a3)}. (22)

The above equation represents the second order multipole approximation of the force applied
from particle P̄ to body B. The first term shows the interaction between the particle and the
body in which the whole body is treated as a particle located at its pseudo-center with the
lumped quantity Λ. Since the origin of the body-fixed frame is located at its pseudo-center, the
first moment does not appear in the approximate force. Further, the trace of the pseudo-inertia
tensor which appears in this expression is an invariant quantity for rigid superatoms. In other
words, it does not change when the orientation and location of the rigid body changes within the
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course of the simulation. As such, once this term is calculated, there is no need to update it. The
pseudo-inertia tensor is also a constant matrix for the rigid body if expressed in its body-basis.
Therefore, if this tensor is calculated for a rigid subdomain of the system at some time either
before or during the simulation, there is no additional cost associated with forming or using
this dyadic during the course of the simulation. It is only necessary to monitor the superatom
location and orientation to update this tensor at each time step.

Since the pseudo-center is not defined (see Eq. (3)) for a body with zero lumped quantity Λ,
the center of mass of the body (subdomain) is considered as the origin of the body-fixed frame
to derive the above equations. As such, the pseudo-inertia tensor used in Eq. (22) is defined
about B∗. Since the origin of the body-fixed frame is located at the center of mass of the body
rather than the pseudo-center, unlike the previous derivations, the first moment is not zero. For
such a system, using the relation

∑N
i=1
i �=j

λi = −λj from Eq. (2), one can rewrite the first moment

measured from the center of mass of the body as

N∑
i=1

λiRi =
N∑
i=1
i �=j

(λiRi) + λjRj =
N∑
i=1
i �=j

λiRi −Rj

N∑
i=1
i �=j

λi =
N∑
i=1
i �=j

λi(Ri −Rj), (23)

which is effectively the first moment measured from the reference point j. Since j is an ar-
bitrary point of the body, this relation demonstrates that if the pseudo-center is not defined
for the subdomain, the first moment is constant regardless of the choice of the origin. Conse-
quently, when the lumped quantity of the pseudo-atom is zero, it is necessary to consider its
origin-independent first moment in Eq. (22). Further, this term becomes time-invariant for rigid
subdomains of the system.

3 FORCE ON A SMALL BODY FROM A SMALL BODY

Consider bodies B and B̄ shown in Fig. 3 containing N and N̄ particles, respectively. Each
body experiences a resultant force due to the pairwise interactions between particles {Pi}Ni=1

belonging to B, and {P̄j}N̄j=1 embedded in B̄. Summing over the low order approximation
of the resultant forces applied to B by particles P̄j on B̄ from Eq. (22), one arrives at the
approximate net force applied to body B from B̄ as

F̃B̄B =
N̄∑
j=1

κΛλj

R̄s
j

āj
1 +

κλj

R̄s
j

N̄∑
j=1

{[s(s+ 1)

4R̄2
j

tr(IB/Cλ

λ )

− (s+ 1)(s+ 3)

2R̄2
j

āj
1 · I

B/Cλ

λ · āj
1]ā

j
1 +

s+ 1

R̄2
j

āj
1 · I

B/Cλ

λ }, (24)

where R̄j denotes the distance from P̄j to the pseudo-center of body B, and āj
1 is the corre-

sponding unit vector.
We initially elaborate on the first summation in the above equation. Based on the geometry
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B̄
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R
i
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R̄j = R̄j ā
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1

Figure 3: Body B̄ applies a resultant force to body B due to the pairwise interaction between the particles
belonging to different bodies.

shown in Fig. 3, the term āj
1

R̄s
j

can be replaced by the following relation

āj
1

R̄s
j

= R̄j(R̄
2
j)

− s+1
2 = −(R+ r̄j)(R

2 + r̄2j + 2R · r̄j)−
s+1
2 , (25)

where R is the position vector of the pseudo-center of body B̄ relative to the pseudo-center of
body B which is written as

R = −Ra1. (26)

Introducing the intermediate vector q̄j = − r̄j
R

, Eq. (25) becomes

āj
1

R̄s
j

=
1

Rs
(a1 + q̄j)(1 + q̄2

j + 2a1 · q̄j)
− s+1

2 . (27)

We replace the first summation of Eq. (24) with the above expression and expand the term
(1 + q̄2

j + 2a1 · q̄j)
− s+1

2 using the binomial expansion described in section 2. The zeroth order
terms in r̄j

R
are treated the same as those provided in Eq. (12). Similar to the results provided for

Eq. (13), the first order terms in r̄j
R

disappear since the pseudo-center coincides with the origin
of the body-fixed frame. The second order terms are even functions of q̄j = − r̄j

R
. As such,

the negative sign used in the definition of q̄j disappears. Therefore, this vector in the second
order terms is treated exactly the same as qi in Eq. (15). Finally, the first term of Eq. (24) is
approximated by

N̄∑
j=1

κΛλj

R̄s
j

āj
1 ≈ κΛΛ̄

Rs
a1 +

κΛ

Rs
{[s(s+ 1)

4R2
tr(ĪB̄/C̄λ

λ )

− (s+ 1)(s+ 3)

2R2
a1 · ĪB̄/C̄λ

λ · a1]a1 +
s+ 1

R2
a1 · ĪB̄/C̄λ

λ }, (28)
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where ĪB̄/C̄λ

λ is the pseudo-inertia tensor of body B̄ about its pseudo-center, and the lumped
quantity of body B̄ is defined as Λ̄ �

=
∑N̄

j=1 λ̄j .
In the second summation of Eq. (24), R̄ and āj

1 may be replaced by R and a1, respectively,
since this summation involves the terms of second or higher degree in |ri|, so that no terms of
interest for the purpose at hand are lost through this replacement. Defining the elements of the
pseudo-inertia tensors of the bodies in a-basis, this relation is expressed in terms of the elements
of the pseudo-inertia tensor as

F̃B̄B =
κΛΛ̄

Rs
a1 +

κΛ

Rs
{[s(s+ 1)

4R2
tr(ĪB̄/C̄λ

λ )− (s+ 1)(s+ 3)

2R2
Ī11]a1

+
s+ 1

R2
(Ī11a1 + Ī21a2 + Ī31a3)}+

κΛ̄

Rs
{[s(s+ 1)

4R2
tr(IB/Cλ

λ )

− (s+ 1)(s+ 3)

2R2
I11]a1 +

s+ 1

R2
(I11a1 + I21a2 + I31a3)}. (29)

The approximation provided in Eq. (29) is valid if the distance between the pseudo-centers of
bodies B and B̄ is greater than the distance between the pseudo-center of each body and the
corresponding farthest particle, i.e., maxi∈B |ri| << R and maxj∈B̄ |̄rj| << R. The symmetry
observed in the net force properly implies that the provided approximation does not violate
Newton’s third law of motion.

4 MOMENT ON A SMALL BODY FROM A PARTICLE

Since the resultant force calculated in section 2 does not generally act through the center
of mass of the body, it creates a moment about B∗. Based on the geometry shown in Fig. 2,
the resultant moment about B∗ due to the interaction between P̄ and Pi is expressed by the
following cross product

MB∗

P̄Pi
= Ri × FP̄Pi

. (30)

According to Fig. 2, and knowing that both r′i and FP̄Pi
are collinear vectors, this moment

becomes

MB∗

P̄Pi
= (Rλ −R)× FP̄Pi

+ r′i × FP̄Pi︸ ︷︷ ︸
0

. (31)

As such, body B experiences the following moment about its center of mass due to the interac-
tions between its own particles and P̄

MB∗

P̄B =
N∑
i=1

(Rλ −R)× FP̄Pi
= (Rλ −R)×

N∑
i=1

FP̄Pi
= (Rλ −R)× FP̄B. (32)

Substituting R from Eq. (7) into the above equation, using the approximate force from Eq. (20),
and defining the elements of the pseudo-inertia tensor in a-basis, the approximate moment about
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the center of mass of the body is expressed as

M̃B∗

P̄B =
κλ̄

Rs
Rλ × {Λa1 + [

s(s+ 1)

4R2
tr(IB/Cλ

λ )− (s+ 1)(s+ 3)

2R2
I11]a1

+
s+ 1

R2
(I11a1 + I21a2 + I31a3)} −

κλ̄(s+ 1)

R(s+1)
(I21a3 − I31a2). (33)

In the above equation, if the pseudo-center and the center of mass of the body coincide, i.e.,
Rλ = 0, the last term only contributes to the moment applied to body B. In this case, if a1 is
aligned with one of the principal axes of the pseudo-inertia tensor of body B, the approximate
moment formulation provides a zero value. As such, the analyst may use the exact calculations
or higher order approximation to find the moment.

5 MOMENT ON A SMALL BODY FROM A SMALL BODY

Since the resultant force applied to body B from body B̄ does not necessarily pass through
the center of mass of body B, it creates a moment about B∗. As such, the resultant moment can
be approximated as a summation over the approximate moments applied by each particle P̄j on
B̄ to body B as

M̃B∗

B̄B =
N̄∑
j=1

κλjΛ

R̄s
j

Rλ × āj
1 +

N̄∑
j=1

κλj

R̄s
j

Rλ × {[s(s+ 1)

4R̄2
j

tr(IB/Cλ

λ )

− (s+ 1)(s+ 3)

2R̄2
j

āj
1 · I

B/Cλ

λ · āj
1]ā

j
1 +

s+ 1

R̄2
j

āj
1 · I

B/Cλ

λ }

−
N̄∑
j=1

κλj(s+ 1)

R̄
(s+1)
j

āj
1 × (āj

1 · I
B/Cλ

λ ). (34)

The first summation can be expanded exactly the same as the manipulation conducted in section
3. Similarly, since the terms in the second and third summations are second or higher orders in
|̄rj|, we may replace R̄ and āj

1 by R and a1, respectively. Defining the elements of the pseudo-
inertia tensors of the bodies in a-basis, the approximate moment about the center of mass of
body B from B̄ due to the pairwise interactions between the particles embedded in B and B̄ is
expressed as

M̃B∗

B̄B =
κΛΛ̄

Rs
Rλ × a1

+
κΛ

Rs
Rλ × {[s(s+ 1)

4R2
tr(ĪB̄/C̄λ

λ )− (s+ 1)(s+ 3)

2R2
Ī11]a1 +

s+ 1

R2
(Ī11a1 + Ī21a2 + Ī31a3)}

+
κΛ̄

Rs
Rλ × {[s(s+ 1)

4R2
tr(IB/Cλ

λ )− (s+ 1)(s+ 3)

2R2
I11]a1 +

s+ 1

R2
(I11a1 + I21a2 + I31a3)}

−κΛ̄(s+ 1)

R(s+1)
(I21a3 − I31a2). (35)
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In the above equation, if the pseudo-center and center of mass of body B coincide, only the
last term survives and contributes to the moment. In this case, if a1 is aligned with one of the
principal axes of the pseudo-inertia tensor of body B, the moment becomes zero. Consequently,
either the exact moment calculation may be used to find the resultant moment or the moment is
approximated considering higher order terms.

6 CONCLUSIONS

A novel method to approximate the resultant force and moment due to the long-range particle-
body and body-body interactions in Cartesian coordinates has been presented. The effective
moment is due to the fact the resultant force does not necessarily act through the center of mass
of the body. In this low order multipole approximation, for each body of the system, a pseudo-
center and pseudo-inertia tensor have been defined. Using the pseudo-center of the body (if
defined) as the origin of the body-fixed frame, the first (dipole) moment disappears in the force
approximation. In this derivation, the quadrupole terms have been elaborated and expressed in
terms of the elements of the pseudo-inertia tensor (qurdaupole moment tensor). This matrix
is constant for each rigid body (subdomain) if expressed in its own body basis. As such, it is
formed in the preprocessing step, and there is no additional cost associated with forming this
tensor during the course of the simulation.
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