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Abstract. The simulation of multi-physics scenarios, in particular fluid-structure inter-
action has gained more and more importance in the last years due to increasing accuracy
requirements for a large range of applications from biomedical fields to technical design
problems. At the same time, this type of simulation has become feasible due to the in-
creased computing power of modern supercomputers. Note that only the combination of
a highly accurate and, thus, highly resolved, discretization with the multi-physics model
yields more detailed and more realistic results than a simple single-physics simulation.
However, modern computing architectures require a good scalability of simulation meth-
ods on massively parallel systems. For fluid-structure interactions, if done in a partitioned
way using separate fluid and structure codes, in particular the usually applied staggered
scheme executing fluid and structure solver one after the other hinders a good scalability.
This is due to the in general largely different computational costs of the two solvers. In
this paper, we propose two new coupling schemes for an implicit coupling of black-box
fluid and structure solvers that execute the two solvers in parallel and still yield good con-
vergence and stability even for incompressible fluids which is shown by means of numerical
results for the flow through a flexible tube.

1 INTRODUCTION

In the last years, modern computational development provided a computational power
that allowed to tackle complex multi-physics simulations furthering a new range of in-
dustrial and medical applications such as interactions between aircraft wings and the
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surrounding turbulent flow or between blood flow and arterial walls. However, the highly
parallel architecture of modern supercomputers, at the same time, poses new challenges
that require the development of new numerical algorithms in order to exploit their com-
putational power. The focus of this paper is the development of new numerical algorithms
for the example of fluid-structure interactions, where a fluid flow exerts forces on a struc-
ture and the structural movement changes the flow field such that we have a bidirectional
strong interaction between flow and structural mechanics.

1.1 The modular approach: partitioned black-box coupling

To achieve a high flexibility and modularity of the fluid-structure interaction simulation
environment, we focus on a special type of coupling, the so-called partitioned approach.
The coupling between different physics in this case takes place at the highest possible
level. In fluid-structure interaction (FSI), this is done via boundary conditions at the
fluid-structure interface (wet surface). The most common technique is the Dirichlet-
Neumann coupling prescribing displacements and velocities as boundary conditions for the
flow solver and forces for the structure solver. The counterpart of partitioned methods,
monolithic schemes, in contrast, couple at a very low level. They assemble one large
system of equations that is solved as a whole and use separate fluid and structure solvers
only on a preconditioner level (see e.g. [1]). The disadvantages of partitioned coupling
are possible stability issues (cf. e.g. [2]), but this effort is worth taking. By separating the
physical regimes, we can reuse existing solver codes and, thus, benefit from the experiences
which have been made in each field. Furthermore, non-linear and linear solvers can be
better tuned to the particular characteristics each physical system adheres. The clearest
advantage, however, of partitioned approaches is the separation of codes. With this
approach, solver codes can easily be exchanged permitting the integration of existing
codes in a plug-and-play manner. To maximize the flexibility in exchanging codes, we
particularly aim at using black-box solvers offering the same technical interface depth
as standard commercial solvers usually provide. Thus, the coupling must be formulated
independently of the spatial and time discretization of each solver as this is hidden in the
black-box. Also Jacobian information is in general not available. Our group developed
the coupling environment preCICE 1, which implements a partitioned black-box coupling,
data mapping functionality for non-matching grids, and communication routines. It allows
a very flexible and easy exchange of solver codes (cf. [3]).

1.2 Efficient parallelization

Besides numerical coupling methods sketched above, efficient parallelization is the key
to highly accurate simulations2. However, a load balanced parallelization is not trivial

1http://www5.in.tum.de/wiki/index.php/PreCICE Webpage
2Note that only a high accuracy in the discretization and solution of multi-physics models accounts

for their inherent accuracy.
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due to the physical regimes’ cost-asymmetry. Structure calculations typically require far
less computational power and, therefore, do not scale well on a high number of proces-
sors. Thus, if both physics are solved in a staggered fashion as shown in Fig. 1 (top), i.e.,
one solver always precedes the other solver, the structure part is a scalability bottleneck.
Monolithic schemes can overcome this problem. However, we focus on a black-box parti-
tioned approach, where we develop new numerical algorithms for a parallel, stable, and
efficient parallel fluid-structure coupling.

For compressible flow, there are explicit coupling schemes known that allow for a high
parallel efficiency. This is, e.g., accomplished by a cross-staggered scheme ([4]) or by means
of an interface system ([5]) all requiring only one execution of fluid and structure solver
per time step resulting in a so-called explicit coupling. Incompressible flow, however, in
general needs implicit coupling, i.e., an iterative coupling loop over fluid and structure
solution steps during every timestep. This is due to the different nature of the added
mass effect in the incompressible case inducing well-known stability issues ([2, 6, 7]). A
straightforward generalization of the classical explicit parallel methods in [4] to implicit
coupling leads to redundant computations, whereas the methods in [5] require discretiza-
tion details in the vicinity of the wet surface and, thus, conflict with black-box solvers.
Classical implicit black-box approaches follow the staggered scheme. In the simplest form,
they use (Aitken-) underrelaxation (see e.g. [8]) to achieve stability. Degroote et al. [9]
describe a black-box algorithm that instead solves an interface equation by means of a
quasi-Newton approach (IQN), which behaves like an implicit time-integration scheme
in an ODE context. The theoretical background of this method was discussed in [10].
Similar methods have been proposed in [11], [12] and [13]. The drawback of all mentioned
implicit coupling algorithms is, however, that fluid and structure are still solved in a
staggered way causing a bad parallel efficiency.

In this paper we present and discuss two implicit coupling algorithms that simulate
structure and fluid simultaneously, leading to a high parallel efficiency. We test these
methods by means of a simple one-dimensional toy problem, the flow through a flexible
tube. The structure of this paper is as follows. In Sect. 2, the two new parallel, implicit
coupling algorithms will be introduced. In Sect. 3, we describe the one-dimemensional
application example that we use to test our new methods, covering the analytical descrip-
tion as well as the discretization technique. Numerical results for this example are shown
in Sect. 4. We close the paper with conclusions and an outlook in Sect. 5.

2 TWO PARALLEL IMPLICIT COUPLING ALGORITHMS

In the following, we introduce our new parallel implicit coupling algorithms in two
steps. First, we revisit the quasi-Newton least square (QNLS) method described in [10].
Then, we use this method to solve different abstract fixed point equations leading us
to the new coupling algorithms. To close the section, we discuss different convergence
criteria.
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2.1 Quasi-Newton least squares method

We start from a non-linear fixed point equation, find x ∈ D ⊂ Rn, such that

H(x) = x , (1)

where H : D → Rn is sufficiently smooth and has a unique fixed point x∗ ∈ D. The
Jacobian of the residual R(x) = H(x)− x at x∗, i.e. R′(x) = H ′(x∗)− I, is assumed to be
non-singular. We approximate the solution x∗ in an iterative quasi-Newton manner, i.e.,
we solve an approximation of the linearized equation

R′ (xk
) (

x− xk
)
= −R

(
xk
)

(2)

in every iteration. As we want to be able to use black-box solvers in our fluid-structure
simulations, we have no access to the Jacobian R′ (xk

)
. However, we can use in- and

output data of the functions H and R to approximate the solution of (2). We assume
that we already have a sequence x0, . . . , xk and the corresponding output values x̃0 =
H(x0), . . . , x̃k = H(xk). We further assume that the input vectors x0, . . . , xk are linearly
independent. With this, we can construct the two matrices

V k = [∆Rk
0 , . . . ,∆Rk

k−1] with ∆Rk
i = R(xk)−R(xi), i = 0 . . . k − 1 , and (3)

W k = [∆xk
0, . . . ,∆xk

k−1] with ∆xk
i = xk − xi, i = 0 . . . k − 1 . (4)

To set xk+1, we construct ∆xk := xk+1 − xk in the column space of Wk: ∆xk = Wkα such
that (2) is solved as accurately as possible. For this purpose, we solve a least squares
problem α = argminβ∈Rk

∥∥V kβ +R
(
xk
)∥∥

2
, where ‖·‖ denotes the Euklidian norm in Rn.

To solve this least squares problem, we compute the decomposition V k = QkUK of V k

into an orthogonal n × n matrix Qk and an upper triangular matrix Uk ∈ Rn×k and
compute α from the quadratic k × k system

Ũkα = −
(
Q̃k

)T

R
(
xk
)
, (5)

where Ũk denotes the first k rows of Uk and Q̃k contains the first k columns of Qk.
With α, we can approximate the solution of (2) as

xk+1 − xk := W kα (6)

since this gives

−R
(
xk
)
≈ V kα =

k−1∑
i=0

αi∆Rk
i
.
= R′ (xk

) k−1∑
i=0

αi∆xk
i = R′ (xk

)
W kα = R′ (xk

) (
xk+1 − xk

)
.

As the quasi-Newton method requires at least one column in V k and W k, we have to use
simple underrelaxation for the first iteration: x1 = x0 + 0.1 · R(x0). However, with this
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approach, we get a new iterate xk+1 that is a linear combination of x0, . . . , xk and, as a
consequence, we get quasi-Newton iterates in the two-dimensional space span {x0, x1}3.
For this reason, we modify the method a little: We replace W k in (4) by

W k = [∆x̃k
0, . . . ,∆x̃k

k−1] with ∆x̃k
i = x̃k − x̃i, i = 0 . . . k − 1 . (7)

This corresponds to approximating the solution of

(
R ◦H−1

)′ (
x̃k
) (

xk+1 − x̃k
)
= −R ◦H−1

(
x̃k
)
= −R

(
xk
)

(8)

instead of (2). This results in a methods that performs first a fixed point iteration step
xk → x̃k = H

(
xk
)
and afterwards a quasi-Newton step x̃k → xk+1 approximately solving

(8) with (5) and (6) with x̃k instead of xk and R ◦H−1 instead of R. See Algorithm 1 for
the complete algorithm.

Algorithm 1 Quasi-Newton least squares method in pseudocode

initial value x0

x̃0 = H(x0) and R0 = x̃0 − x0

x1 = x0 + 0.1 ·R0

for k = 1 . . . do
x̃k = H(xk) and Rk = x̃k − xk

V k = [∆Rk
0 , . . . ,∆Rk

k−1] with ∆Rk
i = Ri −Rk

Wk = [∆x̃k0, . . . ,∆x̃kk−1] with ∆x̃ki = x̃i − x̃k

decompose V k = QkUk

solve the first k lines of Ukα = −QkTRk

∆x̃ = Wα
xk+1 = x̃k +∆x̃k

end for

In a transient fluid-structure context, i.e., if we perform quasi-Newton iterations in
every timestep, the initial value x0 for the current timestep can be extrapolated. Fur-
thermore, the reuse of iteration values x̃i and R(xi) from previous timesteps in order to
construct V and W accelerates the convergences (compare [9] and Sect. 4).

2.2 Coupling variants induced by fixed point equations

With the general formulation of the QNLS method in Sect. 2.1, different coupling
algorithms can be constructed by formulating the corresponding fixed point equations.
For this sake, we use an abstract notation for the fluid and structure solver action on the
wet surface between fluid and structure. This notation is typically used for the description
of partitioned approaches (see e.g. [14]) and can be stated independently of the solver

3At the same time, also the columns of V k are ’almost parallel’, i.e., the QU -decomposition becomes
ill-conditioned.

5

245



Benjamin Uekermann, Hans-Joachim Bungartz, Bernhard Gatzhammer and Miriam Mehl

details. Let F : d �→ f be the mapping of interface displacements to interface forces
induced by the fluid solver and S : f �→ d the mapping of forces to displacements induced
by the structure solver, i.e., force and displacements at the wet surface are denoted by f
and d, respectively.

Figure 1 shows schematic views of different coupling algorithms together with the
corresponding fixed point equations.

f
IQNF S

d f
IQNF S

d dd d (S ◦ F )(d) = d (9)

S

F f

fd

dd

d S

F f

f

PIQN

d

d

S

F f

f

PIQN
−1−1 −1

(S−1 − F )(d) + d = d (10)

F

S

F

S

d

f

ff d

VIQN

d f

F f d

S

VIQN

d f d

(
0 S
F 0

)(
d
f

)
=

(
d
f

)
(11)

Figure 1: Coupling variants and their corresponding fixed point equations. (9) yields the well-known
staggered interface quasi-Newton (IQN) approach (cf. [9]). (10) and (11) define our new algorithms,
which we call parallel interface quasi-Newton (PIQN) and vectorial interface quasi-Newton (VIQN).

The fixed point equation (9) yields the classical interface quasi-Newton (IQN) algorithm
described in [9]. This algorithm evaluates F and S in serial causing a bad parallel efficiency
as described in Sect. 1. A good parallel performance can only be achieved if F and S can
be evaluated in parallel as in (10) and (11).

The method in (11) (which we call vectorial interface quasi-Newton or VIQN) is closely
related to the parallel explicit method in [4]. Both solvers have the usual input (displace-
ments and velocities for the fluid solver and forces for the structure solver). After one
iteration of both solvers, the output boundary values are exchanged and the next iteration
is started. Doing this without the quasi-Newton least squares step after each iteration
would lead to two disconnected instances of the usual staggered iterations. However, the
quasi-Newton steps introdce a connection. Section 4 shows that this connection is indeed
strong enough to make one iteration of VIQN comparable to one iteration of IQN.

The second parallel coupling scheme (10) (called parallel interface quasi-Newton or
PIQN) uses the inverse interface structure operator S−1 : d �→ f . For the structure solver,
this inversion yields no higher costs, standard commercial solvers allow for this inverse
formulation. Thus, both solvers compute forces at the interface as an output. If the
iterations are converged, these two forces have to be the same. Thus, we actually solve
the equation (S−1 − F )(d) = 0 to determine the new interface displacements used as an
input for the next iteration.

2.3 Convergence criterion

The choice of a particular convergence criterion to compare the different algorithms
presented in the last subsection is a delicate issue. The QNLS algorithm as itself induces
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the relative criterion

‖x̃k − xk‖ < tol · ‖xk‖ . (12)

For the IQN algorithm, this criterion checks only for the convergence of the displacement
values where for VIQN displacement as well as force values are checked. Furthermore,
for VIQN, an equal weight of both physical values is not guaranteed. Therefore, we
prefer a physically motivated approach to compare the different coupling algorithms with
a uniform convergence criterion:

‖d̃k − dk‖ < tol · ‖dk‖ and ‖f̃k − fk‖ < tol · ‖fk‖ . (13)

3 PROBLEM DESCRIPTION

In this section, we shortly describe the flow through a flexible tube which we use for
testing our new coupling algorithms. The model and the description follow [14].

3.1 Analytical description

The fluid flow in our example is incompressible and inviscid, and no gravity is assumed.
Averaging over the tube in radial directions yields a one-dimensional model as displayed
in Fig. 2. The conservation of momentum and mass read

∂t(au) + ∂x(au
2) + a∂xp = 0 , (14)

∂ta+ ∂x(au) = 0 , (15)

where u is the flow velocity in axial direction, p the kinematic pressure, and a the cross
section area of the tube. We impose a time-varying inlet velocity and a non-reflecting
outlet boundary condition:

uin = u0 −
u0

100
sin2(π

t

T
) and ∂tu =

1

c
∂tp , (16)

where c2 := a
dpa

= c2mk− p
2
is the wave speed, cmk =

√
Eh/2ρr0 the Moens-Korteweg wave

speed and E Young’s modulus.
The elastic wall is described by a Hookean constitutive law. Since the inertia of the

tube wall is neglected, the wall contains no mass. This fact in combination with the
incompressibility of the fluid constitutes a severe test for coupling algorithms, because
it tightens the instabilities induced by the added mass effect, which depends on the
density relation between fluid and structure. The inviscid fluid exerts only stress in
circumferential direction on the structure leading to a purely radial motion of the tube
wall. As a consequence, the cross section area becomes an explicit function of the pressure:

a = a(p) = a0

(
p0 − 2c2mk

p− 2c2mk

)2

(17)

7
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x

L

h

r

r
σϕϕ

σϕϕ

p
p

Figure 2: Schematic drawing of the deformed tube with flow in x-direction, inner radius r = r(x),
length L, and wall thickness h. The fluid pressure p(x) acting on the inner tube walls is causing scalar
circumferential stresses σϕϕ(x) in the tube walls which lead to a deformation in radial direction. The
test scenario is based on [14].

with a0 and p0 being reference values. For details of the model, refer to [14]. Thus, for
this scenario, the general coupling variables force f and displacement d are substituted by
the pressure p and the cross section area a. We simulate the scenario over a time interval
[0;T ], a full period of the inlet velocity.

3.2 Discretization

The tube of length L is subdivided into NS equidistant cells of length ∆x = L/NS with
values ui, pi and ai assigned to the cell centers4. Equation (14) and (15) are discretized
with finite volumes using central discretization schemes in combination with a first-order
upwind scheme for the convective term in the momentum equation. The central dis-
cretization scheme of the pressure is stabilized by a pressure stabilization with coefficient
α = a0

u0+∆x/∆t
. For time discretization of the fluid equations, we use a backward Euler

scheme and subdivide [0, T ] into NT equidistant slots of length ∆t. The discretized system
yields for all spatial segments i = 1, . . . , N − 1

∆x

∆t

(
u
(n+1)
i a

(n+1)
i − u

(n)
i a

(n)
i

)
+
[
uiui+ 1

2
ai+ 1

2
− ui−1ui− 1

2
ai− 1

2

](n+1)

+
1

2

[
ai+ 1

2
(pi+1 − pi) + ai− 1

2
(pi − pi−1)

](n+1)

= 0 , (18)

∆x

∆t

(
a
(n+1)
i − a

(n)
i

)
+
[
ui+ 1

2
ai+ 1

2
− ui− 1

2
ai− 1

2

](n+1)

− α
[
pi−1 − 2pi + pi+1

](n+1)

= 0 . (19)

The subscript i± 1/2 indicates the values calculated at the cell interfaces, e.g., ui−1/2 =
0.5 · (ui−1 + ui). The superscripts (n) and (n+ 1) refer to time t(n) = n ·∆t and t(n+1) =
(n + 1) · ∆t, respectively. The pressure value at the inlet and the velocity value at the
outlet are linearly extrapolated (pin = 2p1 − p2 and uout = 2uN − uN−1), whereas the
pressure-outlet condition is discretized as

pout = 2


c2mk −

(√
c2mk −

pnout
2

− uout − un
out

4

)2

 . (20)

4This means, we use the same grid for the fluid and the structure solver.
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The velocity values ui, the pressure values pi, and the cross section area values ai are
initially set to their reference values u0, p0, and a0.

To achieve comparable results, we follow the idea of [14] and define the dimensionless
structural stiffness κ = (

√
Eh/2ρr0 − p0/2)/u0 and the dimensionless timestep size τ =

u0∆t/L as physical parameters of our scenario. We fix NS = 100 and NT = 100. The
stability analyses in [14], as well as in [2] and [7] show that achieving stability for the
FSI coupling gets more challenging with decreasing structural stiffness κ or decreasing
timestep size τ .

4 NUMERICAL RESULTS

In this section, we discuss the numerical results obtained for our new parallel coupling
algorithms introduced in Sect. 2 if applied to the problem from Sect. 3. Figure 3 shows
results for the cross section area for different timesteps. All results presented in this paper
yield the same values for u, p, and a as a quasi-monolithic approach (for details see [14])
up to an l2-error of 10

−7.

1
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ss
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a 0
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Figure 3: Cross section area values a/a0 for differ-
ent timesteps during one simulation. The dimen-
sionless timestep size for this run is τ = 0.01 and
the dimensionless structural stiffness is κ = 10.
All coupling algorithms yield the same values a
up to an error of 10−7.
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Figure 4: Coupling iteration numbers for the first
15 timesteps. IQN shows less iteration numbers
than VIQN in the beginning, but is surpassed
by VIQN after 3 timesteps. The dimensionless
timestep size for this run is τ = 0.01 and the di-
mensionless structural stiffness is κ = 100.

For the performance discussion of the different algorithms, we assume that all interface
calculations are negligible in terms of computational costs compared to the fluid and
the structure solver calculations. This assumption holds for real applications, where, in
contrast to the toy problem used in this paper, the fluid and the structure domain have
a higher dimensionality than the wet surface. Results in [9] confirmed this assumption.
As a consequence, the number of solver calls, hence the number of coupling iterations,
is a sufficient estimator of the computational costs. We use the convergence criterion
discussed in Sect. 2.3 in an l2-sense with tol = 10−7.

We test the two new algorithms PIQN and VIQN introduced in Sect. 2 against the
IQN algorithm of [9] for different values of the dimensionless timestep size τ and the
dimensionless structural stiffness κ. By IQN(5), e.g., we denote the IQN algorithm with

9
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the reuse of the values from the last 5 timesteps. Table 4 shows the average numbers of
resulting coupling iterations. The optimal number of reused timesteps depends on the

Table 1: Average coupling iteration numbers for the different fixed point equations and different solver
parameters τ and κ. For each method, the average iteration numbers with no reuse of vectors are shown
in the top half of the table. The lower half shows the results using reuse of previous vectors. Here, only
the best configuration are presented, which are the reuse of 5 previous steps for IQN, respectively 8 and
5 for VIQN and PIQN.

IQN VIQN PIQN

τ\κ 1000 100 10
0.1 3.96 4.07 5.59
0.01 3.97 5.01 9.19
0.001 5.00 9.09 28.4

τ\κ 1000 100 10
0.1 4.09 4.22 6.68
0.01 4.08 6.05 13.5
0.001 6.00 12.4 40.9

τ\κ 1000 100 10
0.1 3.97 4.35 6.75
0.01 4.06 5.39 13.7
0.001 5.28 10.2 26.5

IQN(5) VIQN(8) PIQN(5)

τ\κ 1000 100 10
0.1 2.99 3.04 3.25
0.01 3.02 3.09 3.58
0.001 3.07 3.28 6.83

τ\κ 1000 100 10
0.1 2.08 2.07 2.36
0.01 2.08 2.12 3.15
0.001 2.11 2.66 8.53

τ\κ 1000 100 10
0.1 3.01 3.09 3.55
0.01 3.05 3.20 4.58
0.001 3.08 3.75 8.63

parameters, but is in general higher for VIQN than for IQN and PIQN. For our test
scenario, the reuse of iterations from 8 previous timesteps results, for most parameter
settings, in the smallest number of iterations for VIQN, whereas for IQN and PIQN, the
reuse of 5 timesteps was optimal. The number of iterations increases, in general, with
decreasing dimensionless timestep size τ , and decreasing dimensionless structural stiffness
κ. PIQN shows competitive results, but slightly worse than IQN and VIQN. VIQN needs,
in most cases, even less coupling iterations than IQN. The time evolution of the iteration
numbers clarifies this fact. Figure 4 shows the iteration numbers for the first 15 timesteps
of each method for one exemplary parameter setting. In the first timesteps, IQN needs less
iterations than VIQN, but this changes quickly after 3 timesteps. In principle, the fixed-
point equation behind IQN is more suited for the coupling, since the force variables f and
the displacement variables d are more interconnected compared to the VIQN fixed-point
equation. VIQN, however, benefits more from the reuse of previous timesteps because
force values can also be reused instead of just displacements.

A better understanding of the difference between VIQN and IQN can be obtained by
looking at the absolute errors (compare Fig. 5). VIQN shows a worse convergence than
IQN while VIQN(5) outperforms IQN(5). Moreover, VIQN shows smaller absolute errors
already in the first iterations due to the extrapolation of the pressure values - for IQN only
the displacements are extrapolated. Furthermore, a small oscillation of the VIQN residuals
without the reuse of previous timesteps can be observed, due to the underrelaxation step
in the first iteration yielding a shifted influence on the pressure p and cross section area

10
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values a. As the reuse of previous timesteps supersedes the starting underrelaxation step,
this feature disappears for VIQN(n) with n > 0.
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Figure 5: Absolute errors ‖ak−a20‖∞, ‖pk−p20‖∞ of different coupling algorithms. On the left side, the
simple coupling algorithms are shown, while on the right side, the values from the previous 5 timesteps are
reused. The dimensionless timestep size for this run is τ = 0.001 and the dimensionless structural stiffness
is κ = 10. We used a stricter convergence criterion for this simulations to show a longer development of
the errors. All residuals are plotted exemplary for timestep 30.

5 CONCLUSIONS AND OUTLOOK

We have presented two new algorithms exploiting the potential of interface quasi-
Newton methods for a parallel instead of a staggered coupling in fluid-structure interac-
tion simulations. These methods are important steps towards scalable massively parallel
fluid-structure simulations. The numerical results for an incompressible flow through an
massless flexible tube showed the large potential of our methods. In particular, the VIQN
method that has the additional advantage of not changing the boundary conditions used
for fluid and structure in common staggered Dirichlet-Neumann methods, proved to be
very efficient. The performance of the PIQN method is slightly worse. It turned out
that for parallel coupling the reuse of information from previous timesteps is of crucial
importance. The choice of an optimal number of steps to reuse is, however, still an open
issue and subject of future work as well as the implementation of the method for more
general two- and three-dimensional examples and supercomputing architectures.
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