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Abstract Designing progressive lenses is a complex problem that has been
previously solved by formulating an optimization model based on Cartesian
coordinates. In this work a new progressive lens model using spherical co-
ordinates is presented, and interior point solvers are used to solve this new
optimization model. Although this results in a highly nonlinear, nonconvex,
continuous optimization problem, the new spherical coordinates model exhibits
better convexity properties compared to previous ones based on Cartesian co-
ordinates. The real-world instances considered gave rise to nonlinear optimiza-
tion problems of about 900 variables and 15000 constraints. Each constraint
corresponds to a point of the grid used to define the lens surface. The number
of variables depends on the precision of a B-spline basis used for the repre-
sentation of the surface, and the number of constraints depends on the shape
and quality of the design. We present results of progressive lenses obtained
using the AMPL modeling language and the nonlinear interior point solvers
IPOPT, LOQO and KNITRO. Computational results are reported, as well
as some examples of real-world progressive lenses calculated using this new
model. Progressive lenses obtained are competitive in terms of quality with
those resulting from previous models that are used in commercial glasses.
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Fig. 1 Parts of a progressive lens.

1 Introduction

Presbyopia is the gradual inability of the eyes to focus on near objects. It ap-
pears around forties and lenses are required in order to see correctly in near
vision. Progressive lenses correct presbyopia and have a complex design: have
an upper region for far vision (far region), the corridor for middle vision and
the low region for near vision (near region). The different parts of a progres-
sive lens surface are showed in Figure [1| (left). The two main properties of a
progressive lens are the power and the astigmatism (whose formulae will be
provided in the next Section), defined at each point of the lens. In geomet-
rical terms, the optical power is the mean of the principal curvatures of the
surface lens multiplied by a constant, and the astigmatism is the difference
of the principal curvatures multiplied by the same constant. When the power
changes vertically, unwanted lateral astigmatism (aberrations) appears due to
Minkwitz theorem [I0]. The near zone has to have a bigger power (Py) than
the far region (Pr), and the corridor has a gradual increase of power. Opti-
mization techniques are used to design this type of surfaces, minimizing lateral
aberrations.

In order to have stable far and near regions, their curvatures must be almost
constant. Consequently, far and near regions should be similar to the caps of
two spheres, the radius of the sphere of the near zone being smaller than the
one of the top part. This is illustrated by the right image of Figure [I]

When spherical coordinates are used in ophthalmic optics, the center of
coordinates is referenced at the center of the eye. Using this model, the angle
of rotation of the eye is the angle of rotation of the model, and the point with
radius 0 (with any angle) is the center of the eye. An example of this use
of spherical coordinates can be seen in Figure 1.21 of [7] and Figure [2| The
left part of Figure [2| shows the lateral view of a progressive surface with the
spherical coordinates centered at the center of the eye. In the right part of
Figure [2] we can see that the point corresponds to a point of the far region.
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Fig. 2 Example of spherical coordinates centered at the center of the eye.
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Fig. 3 Example of spherical coordinates centered at the center of the sphere corresponding
to the far region.

However, the model proposed in this article does not have any relation to this
model.

As stated above, the far zone of a progressive lens can be approximated
by a sphere, because in this region the power of the lens and consequently its
curvature is nearly a constant. The center of this sphere will be the center of
the new proposed model in spherical coordinates. One angle is in the normal
direction of the lens, while the other angle is in the perpendicular direction.
The main motivation for this new model is to have better convexity properties
than previous existing models. The representation of this new model is shown
in Figure [3] In this image, the radius is near a constant R for all the points
of the far region; the radius is smaller for the points of the near region. The
radius will vary gradually from far region to near region.

The literature about the calculation of progressive lenses is scarce, mainly
for reasons of confidentiality, since it is a problem solved in the private indus-
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try. However, there are a few available references. In [3] the use of B-splines and
a Cartesian model was suggested. The work [4] was a follow-up of [3] and intro-
duced a gradient model for this problem. In [6] the optimization problem was
shown to be nonconvex, and in [I2] multilevel nonlinear optimization methods
for this problem were developed, which were able to compute a progressive lens
in approximately 20 minutes. Although it was not stated, the model described
in [6] was in Cartesian coordinates. In fact, the term Cartesian is not used in
any of the previous references, because it is implicit. Another line of research
is described in [7], where the surface of the lens is modeled using Zernike’s
polynomials and interior point optimization techniques.

The quality of the solution obtained using spherical coordinates will in
general be the same than that of the Cartesian coordinates. The main ad-
vantage of the spherical coordinates is that theoretically the problem is “less
nonconvex” (as it will be shown), and consequently the optimization problem
is ideally expected to converge faster. The data provided in the model using
spherical coordinates has to be referenced in angles (radians), and the data
provided by the model using Cartesian coordinates has to be referenced in
distances (mm) in the projected z—y plane.

The structure of this paper is as follows. The definition and computation
of the power and astigmatism, and the optic model of the problem is given in
Section [2] for Cartesian coordinates, and in Section [3]for spherical coordinates.
In these sections we also provide some discussion about convexity issues. Sec-
tion [4 introduces the optimization model and Section [5] provides numerical
results using the interior point solvers LOQO, IPOPT and KNITRO hooked
to AMPL. Section [f] also shows examples of progressive lenses computed us-
ing the new model. The (tedious) computation of the power and astigmatism
using spherical coordinates is shown in Appendix [A]

2 Power and astigmatism in Cartesian coordinates
2.1 Definition and computation of power and astigmatism

The goal of this article is to build a progressive surface having (1) the minimum
astigmatism (aberrations); (2) the requested power in the far region; (3) the
requested power in the near region; (4) and such that the astigmatism in
the corridor, in the far, and in the near regions must be less than a certain
threshold value. As stated in the introduction, the astigmatism corresponds
to the aberrations, and it must be minimized. By power we mean the optical
power of the lens, which must be equal to some predefined value for the far
region and another bigger value for the near region. The main parameters for
the model are thus the powers of the far and near regions, the shape of these
regions, and the maximum levels of astigmatism allowed in the far region,
corridor and near region.
The power and the astigmatism of a lens are defined as follows:
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Definition 1 Let be k; and k5 the two principal curvatures at a given point
of a surface, then

Astigmatism = (u — 1)k — ko ,
k1 + ko (1)
2 3

Power = (u—1)

where p is the refraction index of the material.

If we express the curvatures in m ™! (inverse of meters), then the astigmatism
and the power are expressed in diopters (1D = 1m™1!).

The principal curvatures ky and ks at a given point of the surface of the
lens will be computed considering the following general parameterization of

the lens:
R? —R3
(u,v) »—>?(u, v) = (x(u,v), y(u,v), z(u,v)).

(2)

From differential geometry [2L[8l0], k1 and ko are the eigenvalues of the Wein-
garten application defined by the matrix

-1
(e f\(EF
=) (Fe) ®
where E, F, G and e, f, g are the coefficients of the first and second fundamental
form. They are expressed as

€= T " Pyu f:n'pu'u g= "1 DPyv;
where - is the dot product, ﬁ), defined as
%
— _ Pu X Dov (5)
|pu X pv| ’

is the normal vector to the surface (x being the cross or vector product of two
vectors in R3), and the subscripts u, v denote the partial derivative respect to
u or v, that is,

or Oy 0z Oxr Oy 0z
- _ (9 %Y OF 7> [(OF %Y OF
Pu= (81/ 8u’3u> P (31}’81}’811). ©)
The second-order partial derivatives are thus
(B 0y B\ (0 Py 0 (3 oy o
Puu ou?’ ou?’ ou? )’ dudv’ dudv’ dudv ) P o2’ Ov?’ Qv?

(7)

From , A is a 2 x 2 matrix, which can be rewritten as

A= ai,1 41,2
b
a21 a2,2
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and then its eigenvalues can be computed by

a1,1 — A 1.2

P(N) = det(d = A1) = |02~ 7 12

= A2 —tr(A)\ +det(A4),  (8)

where
tI'(A) :CL171 —+ 0272
det(A) =a11a2,2 — a1,2a21

9)

are respectively the trace and the determinant of the matrix A. The solutions
to P(A) =0 are

) \/tr(;l)Q —ddet(4) _ tr(2A) N \/ (tr(QA)> —det(4).  (10)

Denoting K = det(A) and H = 1tr(A), k; and ks are defined as
ki,ko = H++/(H? - K) (11)

where H and K are named the mean and Gaussian curvature, respectively.
From we get

B _eg—f?
K =det(A) = TG 12
H—ltr(A) _eG=2fF + gk

2  2(EG - F?)

So we have a method to calculate the power and astigmatism at each point of
the lens.

2.2 Computing power and astigmatism using Cartesian coordinates
From 7 considering z(u,v) = u, y(u,v) = v and using Cartesian coordinates,
the surface of a lens can be defined as a function
z:R* —R
(2,y) = 2(z,y).

The main advantage of using Cartesian coordinates is that the expressions
= = —> —> — IR : ot

Dty Pos Pure, Puv and Dy, are simplified. The first-order partial derivatives at a
given point in Cartesian coordinates are

9z(z,y) Oz(z,y)
—> ) — )
u = 17 07 ) v = O’ 17 ) 14
p ( 5 p oy (14)
while the second-order partial derivatives are given by

_, P\ Py 02(x,y)

— D S A — D S A — I Set A

puu - (0) O? aIQ ) b) pu'U (O’ 07 axay ) b p'U'U (07 0’ ay2 > .
(15)

(13)
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The normal vector to the surface is then

== o =7
ﬁ)* Pu X Dy

1
B =T ~
B ) )

From , , , , and the mean curvature and Gaussian

curvature are respectively

(16)

8%z 0z\2 8%z 9z 8z 9%z 0z\2
o2 (L+50)" — 250550000 T op L+ 52)° 1
Hia.y) = Z [LEIART = Lt k). (1)

(e () 4 (8))

and
55— (&)
ox oy
Consequently,
Pow(z,y) = (n—1)H(z,y) (19)
Ast(z,y) = =2(p — )/ H(z,y)? — K(z,y). (20)

So we have calculated the power and astigmatism in Cartesian coordinates.

2.3 Example: a sphere

We consider a thin lens (without center thickness) whose surface is a part of
a sphere of radius R. We will calculate the power and the astigmatism of the
sphere using previous formulas. The parameterization in Cartesian coordinates
is

z:R2—R
(@,y) = 2(x,y) = =V R? —2® — 2.

The previous formulation corresponds to a sphere of radius R centered at
(0,0,0). As we consider the negative root, we take into account the inferior
part of the sphere.

Using , (118), and and calculating the first and second partial
(21)

derivatives of we finally obtain

(21)

—1
Pow(z,y) = MT V(z,y) : 22 +y? < R?, (22)
Ast(z,y) =0 V(z,y) : 22 +y? < R2.
This means that a sphere of radius R has zero astigmatism and constant
power ”—Igl for all the surface. For example, if we want to get a sphere of

power 5D using a refraction index of the material of 1.6, we need a radius
(n—1)/5=(1.6—1)/5=0.12m = 120mm.
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2.4 Nonconvexity in Cartesian coordinates

The expressions of power and astigmatism expressed in Cartesian coordinates
are (in general) clearly nonlinear and, when used in the formulation of the
constraints of an optimization problem, give rise to a nonconvex set of solutions
and a nonconvex feasible region (this was also noted in [6]). To illustrate this
fact, let us first consider the following Example [I} which corresponds to a lens
with Pr = Py (i.e., with the same power in far and near regions).

Ezample 1 Given the function (defined on a grid of points in R?)

z:GCR?—R
(w5, y5) — 2(xiy) i=1,...,n,

we find the surface z(z,y) solution to the following problem:

min 1
2(wi,yi)
subject to Ast(zi,y;) =0 V(zi,yi) € G
P —e< Pow(z;,y;) < P+e V(zi,y:) € G
2(0,0) = -1z (23)
0z(z,y) =0
Oz x=0,y=0
0z(z,y) =0
9 |z=0,y=0 ’

where Pow(x;,y;) and Ast(x;,y;) are defined in 7, P=5D,e=0.12D,
u = 1.6, and the points (z;,y;) satisfy —45mm < x;,y; < 45mm.

The solution to is a set of spheres of radius R centered at point (0, 0, 0),
such that R,,;n < R < R,,4: Where

Rpnin = (u—1)/(R+¢€) = (1.6 — 1) /(5 + 0.12) = 0.11719m = 117.19mm
Raz = (u—1)/(R—€) = (1.6 — 1) /(5 — 0.12) = 0.12295m = 122.95mm.

Considering two different solutions of

Solution 1 : z*(zi, ;) = —\/R2,,,, — 22 — y?

min

Solution 2 : zz(aci, yi) = —\/m7

we observe that

az (s, y;) + b2 (z,y;) # —/ R} — a2 —y? VYR, € R,where a+b=1.
(25)

Therefore the solution set (an thus also the feasible region) of (in Cartesian
coordinates) is not a convex set. However, with another parameterization (in
particular, using spherical coordinates) the feasible region of that problem
becomes convex. This new parameterization is shown in the next section.
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3 Power and astigmatism in spherical coordinates
3.1 Model with spherical coordinates

The model using spherical coordinates is

R? —R3 (26)
0,0) — T (0,)
where
z(0, p) R(0, @) cos(0)
=y, | = | RO, ) sin®) cos(p) and 0,0 €[0,7], (27)
2(6, ) R(0, ) sin(0) sin(e)

Considering a grid (0;,¢;),i =1,...,n, j =1,...,n where each 0, € [0, 7]
and each ¢; € [0, 7], we get

xij = Rijcos(0;)
yij = Rijsin(6;) cos(y;) (28)
zij = Rijsin(6;) sin(e;),

R;; being the variables, and 6; and ¢; the parameters of the model.
It is worth remarking that we also considered the alternative model (a

rotation of ):

£(0.) = (0. ¢) sin(6) cos(i) 0oz
y(0, ) = R(0, @) sin(f) sin(p) and c [_’; ] (29)
2(0,¢) = R(0, ) cos(0) e

which was discarded because it had some singularities in the center of the lens
when calculating the power and the astigmatism of a progressive lens.
The expressions for power and astigmatism using model are given in

Appendix [A]

3.2 Convexity in spherical coordinates

As shown by next Proposition [I} the spherical coordinates model exhibits
better convexity properties than the Cartesian model of Section

Proposition 1 Using the spherical coordinates model of Subsection the
feasible region of the optimization problem formulated in Ezample [1—which
was not convex—becomes a conver set.
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Proof Given the function

R:GCR?> —R
(0i,0i) — R(0;, i) 1=1,...,n,

and the spherical coordinates defined by (27)), we find the radii R(6;,¢;) solu-
tion to the following optimization problem:

min 1
R(0:,1)
subject to Ast(6;, i) =0
P — e < Pow(0;, ;) <P+e
R(3.3) = - (30)
OR(04,04)
90,
OR(0i,pi)
Opi

0,=%,0i=%

where Ast(0;,¢;) and Pow(0;, ¢;) are defined in and in Appendix[A]
Using the same data as in (from Example , that is, P = 5D, ¢ =

0.12D, p = 1.6, and (0;, ;) is a grid of angles, where 0 < 6;,¢; < 7, the

solution of is a set of spheres of radius R centered at point (z = 0,y =

0,z = 0), such that R, < R < Ryya0, Where

Runin = (u—1)/(R+¢€) = (1.6 — 1) /(5 + 0.12) = 0.11719m = 117.19mm

Raw = (u—1)/(R—¢) = (1.6 — 1)/(5 — 0.12) = 0.12295m = 122.95mm.
Considering two different solutions of :
Solution 1: R (6;,0;) = Rypin  Y0; € [0, .., 7] (31)
Solution 2 : R?(6;, ;) = Rmae Vi € [0,..,7],

we have
aR' (0;, ;) + bR*(0;, ¢:) = R(0;, ;) for some R € [Rpin, Rimaz)

(32)
where a +b=1 and a,b > 0,

thus proving that the solution set is convex.

The spherical coordinates model will be used in the following sections to
compute progressive lenses. In the next sections progressive lenses will be
calculated from scratch, as done in an industrial environment.

4 The optimization model

The goal of the optimization problem is to obtain a square surface with cer-
tain optical properties. The optical properties are the astigmatism and the
power, as defined in previous sections. Predefined values of power and maxi-
mum values of astigmatism will be imposed in certain regions of the surface. In
addition, the surface has to be as smooth as possible, with the minimum levels
of astigmatism. These two last conditions will be controlled by the objective
function.
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Parameters of the model

The main parameters for the definition of the model are:

— (0i,5) € [0,7]x[0,7], (4,5) € G ={1,...,n}x{1,...,n},is a grid of angles
(in radians) used for the definition of the lens in spherical coordinates,
where n denotes the number of angles for each dimension of the grid. The
grid is defined such that (9#,90#) = (%, %) The grid G is partitioned
in three subsets: G = F UN UB. F and N are the set of angles in the far
and near regions of the lens, respectively, where some values of power will
be imposed; B is the set of remaining angles, corresponding to regions of
the lens whose power will not be constrained.

— (0}, ¢%) € [0,7] x [0,7], (¢,5") € " = {1,...,0} x {1,...,0}, is another
grid of angles (radians), with G’ much coarser than G (i.e., 0 < n), where
o0 is the number of angles used in the definition of a B-Spline whose coefli-
cients are the variables of the optimization model (see next Section).

— Pr and Py are the requested powers (in diopters) in the far and near
regions of the lens, respectively (Py > Pr).

— T is a tolerance expressed in meters that appears when bounding the vari-
able radius.

— p € [1.5,1.9] is refraction index of the material of the lens.

— The subset F of far region angles of the grid is partitioned in k£ additional
far subregions F = F1U- - -UF}. For each of these k subregions we consider a
tolerance €5, h =1, ..., k, of the soft constraints for the power (in diopters).
The total number of far region constraints is then 22:1 | Fr.

— Similarly to the far region, the set of angles A of the near region is parti-
tioned in [ near subregions N' = Ny U- - -UN;. For each of these [ subregions
we consider a tolerance d,, h = 1,...,[, of the soft constraints for the power
(in diopters). The total number of near region constraints is 22:1 N3]

— The grid G of angles is also partitioned in different m subregions of astig-
matism, that is, G = A, U---UA,,. An upper bound 8, h =1,...,m will
be imposed to the astigmatism (diopters) of angles in each subregion. The
total number of astigmatism constraints is Y, | [Ap|.

— Finally, wy, wy, ws € [0,1] C R are weights of the different parts of the
objective function (defined below in (35)).

Variables of the model

The variables of the optimization problem are the coefficients of a three-degree
B-spline surface, as defined in [11, page 100]. These coefficients are denoted as

RS c(®),0)) >0, (7,5) €. (33)
Using the B-spline we define the radius of the surface for the grid G as

R(0;, ¢5) = ZZ 00, 05) B3 (00) B (), (i,5) € G, (34)

i'=17'=1
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where Bj,(6;) and B, (), (i,5) € G, (7', j') € G, are the 1-dimensional three-
degree B-splines basis defined in [I1} page 100].

From the spherical coordinates equations , we can compute the power
and the astigmatism for all the surface of the lens (i.e. for points (i,5) € G)
using the formulae and f. In particular, and provide the
definition of power and astigmatism respectively. We remark that the definition
of R(6, ) as a B-spline allows us to calculate its derivatives using f.

The optimization problem has only o? variables, but the surface can be
evaluated in n? points (where o < n). Indeed, this is the main reason for the
use of a B-spline in the model.

Another property of the three-degree B-spline is that it is a two times
continuously differentiable surface and three times differentiable (the third
derivative is not continuous, and the fourth derivative is zero). This means
that the radius defined in allows us to compute its first, second and
third derivatives. The first and second derivatives are needed to calculate the
power and the astigmatism, for all the n? points of the grid G. The power and
astigmatism are thus continuous, although they are only evaluated in a grid
of n? points. The third degree of differentiability allows us to compute the
gradients of the astigmatism and power, which will be needed in the below
objective function .

Four—, five—, and six—degree B-splines have been tested in order to increase
the quality of the gradient of the astigmatism and power, and consequently the
quality of the solution. The even degrees four and six did not work correctly.
The five-degree B-splines worked as well as the three-degree B-splines, but
required between 2.6 and 4.8 more computational time. Therefore three-degree
B-splines have been used.

Objective function
The objective function consists of the minimization of the sum of the
squared astigmatism and squared norm of the gradients of power and astigma-

tism, for all the points of the grid G. These factors are weighted by w1, ws, w3 €
[0,1]. The objective function is:

min Z <w1 <Ast(9i, <pj)> 2+

(4,5) 69
wQ((@AstéZi,Sﬁj])2+ (3Ast8((‘;,goj)) )+ (35)

(e gty

where n is the number of angles in each dimension of the grid.
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Constraints

The objective function is minimized subject to the following three groups of
constraints:

PF7€h§POw(0i,gﬁj)§PF+6h (z’,j)e}'h, h=1,...,k,
Py — 6y, < Pow(0;, ;) < Pn + 63, (1,7) ENp, h=1,...,1,
Ast(@i,goj)Q < ﬂ% (Z,j) cA,, h=1,...,m. (

—~
w W w
o g O
 — T

These constraints define the philosophy of the design of the progressive lens.
Constraints and control the power in the different far and near sub-
regions of the lens, while constraints (38) fix a maximum of astigmatism in
certain regions of the lens. Constraints (38) are squared to avoid the square
root in the definition of the astigmatism (52)), making the model simpler. The
quality and characteristics of the progressive lens is governed by the values of
the parameters ¢y, 0, and 3y, and the sets Fj, N, and Ap; setting the proper
values is the most difficult part in terms of optics.

A second set of three constraints impose conditions in the midpoint of the
grid (5, %) (and on the lens surface):

202
R(E z) — 1=
27 2 Pr
aR(giu@i) -0
I (39)
OR(0i,p:) =0
9 0:=%,0i=%

The purpose of these three constraints is to center the lens in the three di-
mensional space: the first one imposes a certain radius, while the other two
guarantee it to be perpendicular to the normal of the surface. These are the
only equality constraints of the model.

The last set of constraints are the bounds of variables R(6;, ;) and a bound
of the power, for all the surface of the lens:

R(bi,pi) < —FL+T(i,j)€G
R(0;, ) >—EE—T (i,j)€G (40)

The first two groups of constraints of bound the feasible region and were
helpful for the convergence of the optimization solver (but they are not com-
pulsory and inactive in the optimal solution). The last group of constraints of
impose a minimum value of power in all the points of the lens.

Finally, the optimization problem to be solved is the minimization of ,

subject to constraints , , , , and .
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5 Numerical results
5.1 Problem instances

We generated a set of 15 problem instances, denoted as P1, P2,...,P15, obtained
with different sets of parameters. However, some parameters are common for
all the 15 problems, such as:

— Pp = 5D (power in the far region).

— Py =T7D (power in the near region).

— T = 0.045m (tolerance of bound (40))).

— p = 1.6 (index of refraction of the lens material).

— n = 61 (n? being the number of angles of the grid G).

— 0 = 30 (0? being the number of angles of G, the grid used for the definition
of the B-splines). We remind that the B-splines can be evaluated at any
angle, not only at the list of 0? angles. In particular, for each problem we
have n? = 612 = 3721 points where the B-splines can be evaluated.

— (0i,95), (i,7) € G (the particular angles used in the grid G).

— (0}, ¢%),(i',j") € G" (the particular angles used in the grid G’).

We remark that:

— the subset F of far region angles and its partition in k far subregions
F=FU---UFg,

— the subset A of near region angles and its partition in [ near subregions
N=MU--UN,

— and the partition of m subregions of astigmatism G = A; U---U A,,,

are different for each problem.

The grid of angles G is computed by the formula 6; = ¢; = 0.9817477042 +
0.01963495(i — 1) rad, for i = 1,...,n (where n = 61). Expressing the angles in
degrees we have 0; = ¢; = 33.75+1.125(i—1) °, for i = 1,...,n. For example,
01 = o1 = 0.9817477042 rad (or 33.75°); 631 = @31 = 1.5707963268 = 7 rad
(or 90°); and g1 = @e1 = 2.1598449493 rad (or 123.75°).

Among the parameters that differ for each problem we find e, h =1,...,k,
oph=1,...,l,and B, h=1,...,m.

Optimization problem for a particular instance (P5)

Let us consider a particular instance, e.g., P5. For this problem we have k = 4
far regions, | = 3 near regions, and m = 11 astigmatism regions. Tolerances
en,h =1,...,4, of far region constraints (36)) are, respectively, 0.03, 0.06, 0.12
and 0.25. For near region constraints olerances op,h =1,2,3 are 0.03,
0.12, 0.25. Finally, the 11 tolerances [ for astigmatism constraints were
0.03, 0.12, 0.25, 0.03, 0.06, 0.12, 0.10, 0.15, 0.20, 0.25, 0.06. These tolerances
are expressed in diopters (D).

The four, three and 11 respectively far, near and astigmatism regions (de-
fined by sets F,, M, and Ap,) are shown in Figures and [6] using different



Using IP solvers for progressive lens models with spherical coordinates 15

Fig. 4 The four far regions of problem P5, each in a different color and pattern.

Fig. 5 The three near regions of problem P5, each in a different color and pattern.

Fig. 6 The 11 astigmatism regions of problem P5, each in a different color and pattern.

colors and patterns for each subregion. From Figure [5] we see that the near
regions are concentric; this fact, together with the values of §; and the objec-
tive function, guarantee that the change in power will be gradual, obtaining
a smoother lens. This same behaviour also applies to far and astigmatism re-
gions of Figures [f] and [0} In Figure [6] we also observe that some astigmatism
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Fig. 7 Conversion of (z,y) near point from Cartesian to spherical coordinates.

regions correspond to the part of the lens named corridor, which connects the
far and near regions.

Ezxpressing the far, near and astigmatism regions in angles

Far, near and astigmatism regions are defined using the grids F,, N}, and Ay,
of angles. Unfortunately, optical progressive lenses designers have the informa-
tion about those grids in Cartesian coordinates (in mm). In a Cartesian model
this is not a problem, since constraints can be expressed in points (z,y). But
in our spherical model this information about the regions has to be converted
to angles (6, ¢). The conversion from (z,y) to (6, ¢) depends on R(6, ) as can
be seen in . As R(0, ) is the solution of our problem, we have an issue to
solve.

For instance, consider the near region in Cartesian coordinates (mm) of
the right image of Figure [7] which corresponds to the set

{(z,y) eR*: (x —3)* + (y + 15)> < 5°},

that is, a circle of radius 5mm centered at point (3mm, —15mm). Converting
this region into spherical coordinates is not an easy task. We will focus on the
conversion of the particular point (z,y) in the near region of the right image
of Figure[7] The left image of the figure shows two progressive lenses with the
same Pr (power in far region) and different Py (power in near region). It can
be seen in this left image that the conversion of point (x,y) from Cartesian
to spherical coordinates depends on the shape of the lens, and also on Pg
and Py. In this figure, point (z,y) has two different projections in the R3
space in spherical coordinates. In the image we can appreciate that 6, # 6,
because P o # 7'b. This means that the grids of angles (for far, near and
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astigmatism regions), which are parameters of the optimization model, depend
on the solution of the problem (the R(6;, ¢;)). In order to solve this issue, what
is done is to pre-calculate a progressive lens of the same Pp and Py (and p),
to obtain approximate values of radius for the far and near regions; the (z,y)
points are thus converted from Cartesian to spherical coordinates using this
approximate radius, and the inverse of equation . Using this technique,
we can convert all the (far, near and astigmatism) regions from Cartesian to
spherical coordinates.

In the case of this work, as Pr, Py and pu were the same for all the 15
instances, we remark that once the radius in far and near regions were ap-
proximated, these approximations could be used for all the 15 problems. The
radius considered for the corridor region was approximated by the mean of the
radius of the far and near regions. The complete procedure for the generation
and solution of the 15 instances was thus as follows:

— Firstly, compute a single progressive lens fixing Pr, Py and p using Carte-
sian coordinates.

— Compute an approximated radius for the far and near regions.

— Using these radius, compute all the far, near and astigmatism regions for
instances P1, P2, P3,. .., P15 in spherical coordinates, considering different
tolerances for power in far and near regions, and astigmatism.

— Solve the 15 instances using the spherical coordinates model.

Improving the instance generator would be one the aspects to deal with in a
future work.

Objective function

The objective function was used for all the 15 instances, using different
weights wq, wo, and ws:

— w; = 0,wy = 0,w3 = 0, for problems P1 and P2 (that is, the objective
function is a constant).

— wy = 1,wy = 0,ws = 0, for problems P3, P4 and P5.

— wy = 0,wy = 1,ws = 0, for problems P6, P7 and P8.

— wy = 0,wy = 0,ws = 1, for problems P9, P10 and P11.

— wy = 1,wy = 1,ws = 0, for problems P12, P13.

— wy; = 1,wy = 0,ws = 1, for problems P14 and P15.

In order to simplify our problem we did not use weights others than 0 or 1.
Using other weights in the objective function makes difficult the comprehension
of the results in the optimal solution. The units of the objective function are
D? for problems P3, P4 P5; rg—z for problems P6, P7, P8, P9, P10, P11; and

the sum of D? and aDd for problems P12, P13, P14 and P15.

Finally, Table [I| reports the number of constraints for the 15 instances
generated. The number of variables is always the same, 0> = 302 = 900,
which is the number of points in the grid G’. In general we have around 16000
(nonlinear) constraints, and most of them are inequalities.
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Problem n. of constraints

P1 18057
P2 15870
P3 15870
P4 15936
P5 15870
P6 15836
Pp7 15836
P8 15836
P9 15870
P10 15836
P11 15836
P12 15870
P13 15936
P14 15870
P15 15836

Table 1 Number of constraints for each problem. The number of variables was always 900.

5.2 Computational environment

The optimization model was implemented using the AMPL modeling language
[5] linked with three different interior points solvers: LOQO [13], KNITRO [I]
and IPOPT|14]. Due to our availability of licenses (for AMPL, LOQO and
KNITRO, which are commercial products), two different servers were used.
The first one has eight 2.7GHz AMD Opteron 8384 Shanghay CPUs, with
32 cores and 128GB RAM. This computer has the AMPL modeling language
installed as well as the LOQO 6.0.6 and TPOPT 3.8.1 solvers. The second
machine was a Fujitsu Primergy RX300, with two 3.33 GHz Intel Xeon X5680
CPUs, with 24 cores and 144GB RAM. The AMPL modeling language, and
the solvers KNITRO 10.1.0, IPOPT 3.9.3 and TPOPT 3.12.8 are installed in
this second server. Both servers will be referred to as “server 1” and “server 2”
in the following sections.

5.3 Stopping criteria

Firstly, we used one of the solvers (LOQO was the choice) with different stop-
ping criteria in order to decide which tolerances at the optimum are sufficient
to get a good quality progressive lens. The quality of the lens must be eval-
uated in terms of optics, analyzing the isolines of the optimal lens as well as
the value of the objective function.

We ran the 15 problems using five different stopping criteria with LOQO,
obtained by adjusting the tolerances sigfig (the number of equal digits in the
primal and dual objective functions) and inftol (infeasibility tolerance for the
primal and dual problems). Table [2| reports the values of the primal and dual
objective functions at the last iteration for problem P12. We chose problem
P12 because the objective function is affected by the square of the astigmatism
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Stopping criteria primal o.f. dual o.f. relative error
sigfig = 2, inftol = 10~3 10.14186825  -1257.362782 124.9774321
sigfig = 4, inftol = 10~ 1.634879469 1.395858085 0.146201227
sigfig = 6, inftol = 10~3 1.62718076 1.580678331 0.028578527
sigfig = 8, inftol = 10~3 1.626118778 1.625710862 0.000250853
sigfig = 8, inftol = 10~12  1.626114492 1.626114214 1.7096E-07

Table 2 Primal objective value, dual objective value and relative error at the optimum,
using LOQO 6.0.6 and five different stopping criteria for problem P12.

Astigmatism [D.] Astigmatism [D.]

Yimm.]
o
Yimm.]
°

Fig. 8 Astigmatism of the lens of P12 using LOQO 6.0.6 and two different stopping criteria:
sigfig=2, inftol=10"3 (left) and sigfig=4, inftol=1076 (right).

Problem sigfig 4 sigfig 6 sigfig 8 sigfig 8
inftol 105 inftol 103  inftol 103  inftol 1012
P1 313 34 124 411
P2 385 29 30 461
P3 54 50 69 87
P4 60 53 86 94
P5 54 50 69 87
P6 36 55 109 131
P7 95 62 126 160
P8 36 55 109 131
P9 41 84 105 115
P10 33 49 63 68
P11 41 44 55 60
P12 42 48 63 74
P13 41 44 57 69
P14 36 44 58 65
P15 36 48 64 68

Table 3 Number of iterations for each problem with LOQO 6.0.6 and different stopping
criteria.

as well as its partial derivatives. The relative error (last column of Table [2)) is
defined as: |primal o.f. — dual o.f.| /|primal o.f.].

Numerically, from first line of Table [2| we conclude that the first stopping
condition sigfig= 2, inftol= 10~ has not enough quality. In order to evaluate
the solutions in terms of the optical properties of the lens produced, Figure
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Fig. 9 Astigmatism of the lens of problem P12 using LOQO 6.0.6 and four different stop-
ping criteria: sigfig=4, inftol=10"% (top left); sigfig=6, inftol=10"3 (top right); sigfig=8,
inftol=10"3 (bottom left); and sigfig=8, inftol=10"12 (bottom right).

[ shows the astigmatism map for the lens obtained using LOQO and two
different stopping criteria; the units of these maps are diopters (D) for the
isolines and the axes z and y are displayed in mm. We see that left image
(sigfig=2, inftol=1073) is blurrier than the right one (sigfig—=4, inftol=107°).
From an optics perspective, the use of sigfig=4, inftol=107% is preferred in
order to get a good quality lens.

Figure [9] shows the lenses obtained with the four last stopping criteria of
Table |2] (i.e., the tighter ones). We observe that the four lenses obtained are
of similar quality, and then consequently the stopping criteria that solves the
problem faster (in terms of number of iterations, and thus also in terms of
seconds) will be preferred. Table [3| shows the number of iterations required
for all the 15 instances and the four stopping criteria. Considering only P12
we would choose the stopping condition sigfig=4, inftol=10~6, but for P1 and
P2, where the objective function is constant, we see that the fastest executions
were obtained with sigfig=6, inftol=1072. We remark that problems P1 and P2
using sigfig=4, inftol=107% required a large number of iterations to converge.

We concluded that for LOQO 6.06, the most suitable stopping criteria were
sigfig= 6 and inftol=1073. Since each solver might have different parameters
or tolerances, for the rest of solvers we chose those which are closer to sigfig=
6 and inftol=1073, as shown below.
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5.4 Solvers comparison

From now on we will consider six different combinations of solvers and servers:

LOQO 6.0.6, server 1.

— IPOPT 3.8.1, server 1.

— IPOPT 3.9.3, server 2.

IPOPT 3.12.8, server 2.

— KNITRO 10.1.0 with interior point/direct algorithm (algorithm 1), server
2.

KNITRO 10.1.0 with interior point/conjugate gradient algorithm (algo-
rithm 2), server 2.

The two variants of KNITRO differ in how the Newton’s equation is solved
at each iteration of the interior point algorithm, either by a direct method
(factorization), or through an iterative conjugate gradient [I]. IPOPT and
LOQO use a direct method for this step [131[14].

The stopping conditions used for each solver within AMPL were:

— LOQO 6.0.6: sigfig= 4, inftol= 107,
— IPOPT (all versions): tol= 1072
— KNITRO 10.1.0 (both algorithms 1 and 2): opttol= 1075.

All the solvers reported the solutions obtained as either “optimal” (LOQO and
IPOPT) or “locally optimal” or “satisfactory solution” (KNITRO). It is worth
noting that, although the problem is nonlinear and nonconvex, and then each
solver could provide a different local minima, when visualizing the obtained
lenses we observed that the six solutions found for each problem were the same
(except for negligible numerical differences).

Table [d] shows the number of iterations for the 15 problems and six solvers.
The number of iterations for LOQO and IPOPT were between 29 and 84,
while KNITRO exhibited a larger variability: it performed between 21 and
376 iterations with the direct algorithm 1, and between 18 and 158 with the
conjugate gradient algorithm 2. That is, in some cases KNITRO was the best
solver (for example for instances P2 and P15) but it was the worst in others
(for example for P12). The CPU time, reported in Table [5, was proportional
to the number of iterations. We remind that the first two solvers (LOQO and
IPOPT 3.8.1) were executed in server 1 and the other four in server 2; this
explains the different times between the first IPOPT version and the other two,
while all of them had similar number of iterations (server 2 was on average 2.8
times faster than server 1).

In order to evaluate the solutions, not only in terms of the optical prop-
erties of the lens produced, but also in terms of optimization, we checked the
objective functions and constraints at optimal points. The objective functions
are showed in Table @ We see that in general KNITRO with algorithm 2 (con-
jugate gradient) provides the largest objectives (which is not surprising since
conjugate gradient is meant to approximately solve the Newton’s equations);
the lowest objectives are provided by LOQO and KNITRO with algorithm 1
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Problem LOQO IPOPT IPOPT IPOPT KNITRO KNITRO
6.0.6 3.8.1 3.12.8 3.9.3 10.1.0 alg 1  10.1.0 alg 2

P1 34 80 80 79 150 24
P2 29 39 39 39 21 18
P3 50 44 44 44 36 22
P4 53 56 56 56 62 22
P5 50 44 44 44 36 22
P6 55 51 51 51 198 53
P7 62 46 46 46 376 48
P8 55 51 51 51 198 53
P9 84 49 49 49 53 25
P10 49 54 54 54 49 39
P11 44 51 51 51 53 34
P12 48 52 52 52 261 158
P13 44 66 66 66 262 43
P14 44 50 50 50 47 26
P15 48 51 51 51 48 26

Table 4 Number of iterations for each problem using the six different solvers.

Problem LOQO IPOPT IPOPT IPOPT KNITRO KNITRO

6.0.6 3.8.1 3.12.8 3.9.3 10.1.0 alg1  10.1.0 alg 2
(server 1)  (server 1)  (server 2)  (server 2) (server 2) (server 2)
P1 112 211 90 93 128 51
P2 115 122 63 73 51 65
P3 165 134 66 75 60 65
P4 163 158 75 78 78 66
P5 165 135 74 68 62 64
P6 688 562 200 169 598 327
P7 769 512 184 158 1094 314
P8 616 562 201 174 601 325
P9 925 522 191 154 184 163
P10 565 539 219 172 179 295
P11 462 512 182 164 192 250
P12 616 578 204 180 852 861
P13 572 718 244 207 774 278
P14 472 510 179 161 170 187
P15 561 549 182 164 174 179

Table 5 Number of seconds for each problem using the six different solvers.

(direct solver); and IPOPT objectives were in between. Last column of Ta-
ble [] reports for each problem the difference between the minimum and the
maximum objective functions obtained divided by the objective function of
LOQO (taken as a baseline). The largest of these ratios was 0.73 for P5 (and
P3). Figureshows the maps of power and astigmatism for P5 using LOQO,
KNITRO with direct algorithm 1, and KNITRO with conjugate gradient al-
gorithm 2; we observe that these three lenses are quite the same in terms of
optics. However, the lens obtained using KNITRO with conjugate gradient
algorithm 2 is a little bit different around the point (z = 22.5mm, y = 5mm),
and it is also the lens with a larger objective function. We remark that the
differences of the values of the objective functions are not significant in terms
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Max. diff.
Pro- LOQO IPOPT IPOPT IPOPT KNITRO KNITRO (relative
blem 6.0.6 3.8.1 3.12.8 3.9.3 10.1.0 alg 1 ~ 10.1.0 alg 2 LOQO)
P1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00
P2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00
P3 0.2575 0.2824 0.2824 0.2824 0.2566 0.4455 0.73
P4 0.8872 0.9113 0.9113 0.9113 0.8859 1.0057 0.14
P5 0.2575 0.2824 0.2824 0.2824 0.2566 0.4455 0.73
P6 0.9106 0.9234 0.9234 0.9234 0.9100 1.1671 0.28
P7 0.4348 0.4494 0.4494 0.4494 0.4354 0.6841 0.57
P8 0.9106 0.9234 0.9234 0.9234 0.9100 1.1671 0.28
P9 15.5478  15.5529  15.5529  15.5529 15.5434 16.1208 0.04
P10 11.8692 11.8786 11.8786 11.8786 11.8733 11.8832 0.00
P11 12,1851  12.1957  12.1957  12.1957 12.1815 12.1842 0.00
P12 1.6272 1.6470 1.6470 1.6470 1.6261 1.6304 0.01
P13 2.9763 2.9892 2.9892 2.9892 2.9739 3.3132 0.11
P14 16.9738 16.9763 16.9763 16.9763 16.9709 16.9802 0.00
P15  13.9853 13.9923 13.9923 13.9923 13.9826 14.2659 0.02

Table 6 Objective function for each problem using the six different solvers.

of optical properties of the lens. The difference of the isolines around the point
(z = 22.5mm, y = 5mm) do not affect the quality of the lens. We can conclude
that the solutions using any of the six different solvers are the same in terms
of optics.

To check the (primal feasibility of the) constraints we will focus again on
the maps of astigmatism and power of instance P5 in Figure[I0] We note that,
in the far, corridor, and near regions, the power and the astigmatism have the
required values. In addition, the maximum and the minimum for all the lens for
the astigmatism and for the power are also in accordance with the constraints
—. The astigmatism for all the points is smaller than 1.2 - 2.0 = 2.4D
and the power is between 5D and 7D. A similar behaviour was observed for
the rest of problems (whose maps of astigmatism and power are not reported
here to save space).

We finally remark that, using exactly the same stopping conditions (opt-
tol=1073), KNITRO with direct algorithm 1 and conjugate gradient algorithm
2 did not produce the same results: it was faster and worse with algorithm 2
than with algorithm 1. Again this can be explained because conjugate gradi-
ent solves approximately the Newton direction at each interior point iteration.
Using KNITRO with the active set algorithm (algorithm 3) and the SQP al-
gorithm (algorithm 4) the problems did not converge.

To sum up, we were able to solve 15 different instances with six different
solvers with the spherical coordinates model; and in all cases we obtained
high quality progressive lenses. As said before, all the lenses obtained were
equivalent for the six solvers.
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Fig. 10 Astigmatism (left) and power (right) of the lens of problem P5 using LOQO 6.0.6
(top), KNITRO with direct algorithm 1 (middle) and KNITRO with conjugate gradient
algorithm 2 (bottom).

6 Conclusions

We described a new model using spherical coordinates and its implementation
allowed us to compute real-world progressive lenses in a successful way. The
progressive lenses obtained have a good quality in terms of optics and are
similar to the progressive lenses obtained using previously existing Cartesian
coordinates models. In addition, they are the same quality as other progressive
lenses that are for sale. However, we remark that these lenses are not the
same design: the lenses obtained using spherical coordinates usually have the
corridor a little bit longer, and may have the far region or the near region bigger
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or smaller than the lenses obtained using Cartesian coordinates. In the market
of progressive lenses, all of these lenses are accepted. We did not succeed to
get an equivalence between the data required to calculate the lenses using
Cartesian coordinates and the data required when using spherical coordinates.
Such an equivalence is only possible if the lens are solved in both systems
of coordinates. The main advantage of using spherical coordinates is that in
theory the problem exhibits better convexity properties.

When comparing the different solvers we observed that LOQO and IPOPT
have a small variability in terms of number of iterations (and consequently in
CPU time). This was not observed for KNITRO using the direct and conjugate
gradient algorithms: in some instances it converged faster than the others
solvers, while in others it took much more time and iterations. For instance,
in four out the 15 cases KNITRO with direct algorithm converged faster—in
number of iterations—than LOQQO; in two cases performed the same number
of iterations; and in nine cases it was outperformed by LOQO. Although the
value of the objective functions obtained in the optimum, as well as the value
of the variables are not exactly the same for all the solvers, the differences
between the solutions are not significant in terms of optics, and they can be
considered equivalent.

A further task to be done would be to enhance the relation between the
data used in the model with Cartesian coordinates and the data used in the
model with spherical coordinates. Enhancing this relation would improve the
quality of the instance generator.
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A Calculus of power and astigmatism of a surface using spherical
coordinates
This section provides the expressions of the power and astigmatism of the surface defined
using the spherical coordinates (27]).

Firstly, the first and second derivatives of ?(0, ) need to be calculated:

% cos(0) — R(8, ¢) sin(6)

D6 = 5R((9‘Z»<P> sin(0) cos(p) + R(0, ) cos(0) cos(p) , (41)
% sin(0) sin(p) + R(, ) cos(0) sin()
%&W cos(0) T
p_eg = %&“’) sin(0) cos(¢) — R(0, ¢) sin(0) sin(p) , (42)

%ﬁ;tp) sin(0) sin(¢) + R(0, ) sin(0) cos(p)
% cos(0) + 2% sin(p) — R(ip, 0) cos(y)
Pod = % sin(0) cos(p) + 2% cos(8) cos(p) — R(0, ) sin(f) cos(p) | » (43)
O2R(G.2) 5in(9) sin() + 2288:2) cos(0) sin(yp) — R(6, ) sin(0) sin()

2
7R (b,p) 61?9%0;0) cos() — 761{8(3;@ sin(0)

Doy = wsin 0) cos(p +Mcos 0) cos(p — 9R9:9) 4in(6) sin @) — R(0,¢) cos(8) sin(p
¥ 2896<p ) o6
%89(’:}) sin(0) sin(y) + %&W cos(0) sin(p) + % sin(0) cos(¢) + R(0, ¢) cos(0) cos(¢p)

(44)
T
7621;;02’“0) cos(6)
2
Pog = % sin(f) sin(¢) — 2%&’@ sin(0) cos(¢) — R(0, @) sin(0) cos(p) | . (45)
% sin(@) sin(p) + 2%&“’) sin(@ cos(¢) — R(0, ) sin(0) sin(¢)

The coefficients of the first and second fundamental forms E, F, G and e, f, g are

E:p_g~17§ F:p_ngﬁ} G:m.ﬁ
s 46
e=1-pod f=7 pog 9= Dop, (46)
where
— P_0>><i@>
W= = (47)
Po X Py

After some rather large calculations we finally get:
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E= <6Réeé %) cos(8) — R(0, ) sin(@))2 +
<8Réeé 2) 5in(6) cos() + R(6, ) cos(6) Cos(gp)) ’ 4 (48)
(8R((9% ?) sin(6) sin(p) + R(6, ) cos(9) sin(@) :

F= OR(0, ) cos(0) — R(6, ) sin(a)) aR(a ©) cos(6)+

sin(0) cos(¢) + R(6, ¢) cos(H) cos

sin(0) cos(¢) — R(0, ¢) sin(0) si
B¢

OR(0, ¢)
20
(

n
1’1

sin(@) sin(yp) + R(0, ) cos(0) si

)
)+ (49)
7)

~

e N N N R
Q
=
2
&

L sin(0) sin(p) + R(0, ¢) sin(6) cos(cp)) ,

2

2
G = (M cos )) + (%‘Z@) sin(0) cos(p) — R(8, ¢) sin(6) sin(go)) +

dp
(83(97 )
Op

Formulas for e, f, g are omitted because they are very large (several pages). Finally we
can compute the power and astigmatism as

—~
S

) (50)
sin(0) sin(yp) + R(6, ¢) sin(6) cos(cp)) .

Pow(0,¢) = (u—1)H(0, ) (51)
Ast(0,¢) = —2(p— 1)1/ H(, ‘p)Q — K(0,), (52)
where
K(0,p) =det(A) = I~ r
= T EG_F? (53)
eG —2fF + gE

1
HO,9) =5t(4) =



	Introduction
	Power and astigmatism in Cartesian coordinates
	Power and astigmatism in spherical coordinates
	The optimization model
	Numerical results
	Conclusions
	Calculus of power and astigmatism of a surface using spherical coordinates

