
A coupled mode – hpFEM for hydroelastic analysis of shear-deformable floating bodies of general thickness in vari-
able bathymetry

V International Conference on Computational Methods for Coupled Problems in Science and Engineering 
COUPLED PROBLEMS 2013 

S. Idelsohn, M. Papadrakakis and B. Schrefler (Eds) 
 
 

1 
 









† School of Naval Architecture and Marine Engineering 

National Technical University of Athens 
Heroon Polytechniou 9, Zografos 15773, Athens, Greece 

email: kbel@fluid.mech.ntua.gr 


* School of Applied Mathematical and Physical Science 
National Technical University of Athens 

email: papathth@gmail.com 

 Hydroelastic analysis, Coupled Modes, FEM, Shear Deformable Plates, VLFS. 

 An efficient computational procedure is presented for the solution of coupled 
hydroelastic problems involving bodies of general thickness, floating over variable 
bathymetry regions. The problem is treated by the coupled mode system of horizontal 
equations derived by Athanassoulis and Belibassakis [1], for the analysis of floating, shear 
deformable plates or beams. The proposed beam (or plate) model is based on the addition of 
extra vertical elastic deformation modes, at each horizontal position along the floating body, 
permitting shear strain and stress to vanish on both the upper and lower boundaries and 
extending thirdorder plate theories [2]. The final coupled mode system is derived from a 
variational principle combining the one – field functional of the elastodynamics in the plate 
region with the pressure functional in the water region. The wave potential in the water 
column is represented by means of a local – mode series containing an extra mode, 
accounting for not mildly sloped bottom variations [3]. The addition of the additional modes 
results to increased convergence rate, enabling high accuracy with the use of a relatively small 
number of vertical modes. In the present work the hpversion of the Finite Element Method [4] 
is applied to the solution of a simplified version of the resulting system of coupled horizontal 
differential equations with respect to the modal amplitudes, providing good convergence rates 
and adaptivity capabilities, and increasing the overall efficiency of the solution strategy. 
Numerical results are presented demonstrating the applicability of present method. 

 
 
The effect of water waves on floating deformable bodies is related to both environmental and 
technical issues, finding important applications. A specific example concerns the interaction 
of waves with thin sheets of sea ice, which is particularly important in the Marginal Ice Zone 
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(MIZ) in the Antarctic, a region consisting of loose or packed ice floes situated between the 
ocean and the shore sea ice [5]. As the ice sheets support flexural–gravity waves, the energy 
carried by the ocean waves is capable of propagating far into the MIZ, contributing to break 
and melting of ice glaciers [6,7] thus accelerating global warming effects and rise in sea water 
level. In addition, the interaction of freesurface gravity waves with floating deformable 
bodies is a very interesting problem finding applications in hydrodynamic analysis and design 
of very large floating structures (VLFS) operating offshore (as power stations/mining and 
storage/transfer), but also in coastal areas (as floating airports, floating docks, 
residence/entertainment facilities), as well as floating bridges, floating marinas and 
breakwaters etc. For all the above problems hydroelastic effects are significant and should be 
properly taken into account. Extended surveys, including a literature review, have been 
presented by Kashiwagi [8], Watanabe et al [9].  A recent review on both topics and the 
synergies between VLFS hydroelasticity and sea ice research can be found in Squire [10]. 

Taking into account that the horizontal dimensions of the large floating body are much greater 
than the vertical one, thinplate (Kirchhoff) theory is commonly used to model the above 
hydroelastic problems. Although nonlinear effects are of specific importance, still the 
solution of the linearised problem provides valuable information, serving also as the basis for 
the development of weakly nonlinear models. The linearised hydroelastic problem is 
effectively treated in the frequency domain, and many methods have been developed for its 
solution. These include hydroelastic eigenfunction expansion techniques [11,12,13], 
Boundary Element Methods [14,15], Bspline Galerkin method [16], integrodifferential 
equations [17], WienerHopf techniques [18], GreenNaghdi models [19], and others. 
Moreover, Meylan [20] derived a variational equation for the platewater system by 
expressing the water motion as an operator equation. In the case of hydroelastic behaviour of 
large floating bodies in general bathymetry, a new coupledmode system has been derived and 
examined by Belibassakis & Athanassoulis [3] based on local vertical expansion of the wave 
potential in terms of hydroelastic eigenmodes, and extending a previous similar approach for 
the propagation of water waves in variable bathymetry regions [21]. Similar approaches with 
application to wave scattering by ice sheets of varying thickness have been presented by 
Porter & Porter [5] based on mildslope approximation and by Bennets et al [22] based on 
multimode expansion. 

In the above models the floating body has been considered to be very thin and firstorder 
plate theory has been applied, neglecting shear effects. In Athanassoulis & Belibassakis [1] 
an extension of the previous coupledmode model is presented with application to the case of 
hydroelastic analysis of a thick, nonuniform, shear deformable floating elastic body, lying 
over variable bathymetry regions. The problem addressed therein is the scattering of linear, 
coupled, hydroelastic waves propagating through an inhomogeneous seaice environment, 
containing ice sheets of variable, finite thickness characterized by mildly sloped interface. 
The enhanced coupledmode system of horizontal equations is obtained on the basis of 
higherorder theory of shear deformable plates and beams, and is derived by the local vertical 
expansion of the wave potential in the water region, in conjunction with an enhanced 
representation of the elastic displacement field in the plate, containing additional elastic 
vertical modes. The latter permit the shear strain and stress to vanish on both the upper and 
lower boundaries of the finite floating plate, and extends thirdorder plate theories by Reddy 
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[23] and Bickford [24] (see also [2]) to plates and beams of general shape. The above 
representations are used in a variational principle composed by the onefield functional of 
elastodynamics in the plate region, and Luke [25] pressure functional in the water region, 
reducing to the coupledmode system (CMS). In the case of plates of general but slowly 
varying and relatively small thickness, the above shearenhanced CMS simplifies in a form 
suitable for longrange, largedomain calculations, and extends the firstorder model by 
Belibassakis & Athanassoulis [3] to shear deformable floating plates of variable finite 
thickness, lying over general bottom topography. In the present work, an efficient 
computational procedure is presented, to treat the extended coupledmode system, using the 
hpversion of the Finite Element Method [4] for the solution of the resulting system of 
horizontal differential equations, providing very good convergence rates and adaptivity 
capabilities, and increasing the overall efficiency of the solution strategy. Numerical results 
are presented demonstrating the applicability of the proposed method. 
 

 

The studied environment consists of a water layer  bounded above by a floating plate of 
general shape, as e.g., an ice sheet of variable thickness b(x), and below by a rigid bottom; see 
Fig. 1. For simplicity we restrict ourselves to a 2D problem, however the method can be 
straightforward extended to 3D. Also, the upper face of the floating elastic plate is flat
horizontal (e.g. by considering that the static plate deflection to be very small), however, our 
analysis can be easily extended to the case of a more general upper boundary. It is also 
assumed that the bottom and the plate surfaces exhibit general onedimensional variation in a 
subdomain of finite length. The bathymetry is characterised by straight and parallel bottom 
contours lying between two regions of constant but possibly different depth: 1h h= (region of 
incidence) and 3h h=  (region of transmission), where h(x) is the depth function.  A Cartesian 
coordinate system is introduced, with its origin at some point on the upper elasticplate 
surface (in the variable bathymetry region), the zaxis pointing upwards and the yaxis being 
parallel to the bottom contours. The functions ( )h x  and  b(x) are smooth functions  such that 

( ) ( )1 1h x h x h= =  and ( ) ( )1 1b x b x b= = , for  all  1x x≤ ,   and  ( ) ( )3 3h x h x h= =  and 

( ) ( )3 3b x b x b= = , for  all 3x x≥ .  Also, the slope of the elasticplate deflection ( ), ;w x y t   is 
assumed small, so that linear theory can be applied. We consider the scattering problem of 
harmonic incident plane waves of angular frequency ω, under the combined effects of 
variable bathymetry and the infinite, floating elastic plate of general and finite thickness (b ). 

We shall concentrate here in the case of normally incident linear waves (as shown in Fig.1), 
leaving the treatment of obliquelyincident waves propagating with directions 1θ  and 3θ  with 
respect to the xaxis in the regions of incidence ( 1x x≤ ) and transmission ( 3x x≥ ), 
respectively, and more complex 3D systems to be examined in future works.  For the above 
problem an extended coupledmode model (eCMS) has been derived by Athanassoulis & 
Belibassakis [1], for the hydroelastic analysis of floating, shear deformable plate or ice sheet 
in general bathymetry, characterised by sloped boundaries and interfaces, taking into account 
finite, general thickness effects. 
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Figure 1.  Floating elastic plate or ice sheet of general thickness in variable bathymetry. 
 

The extended model is based on enhanced representations of both the elastic displacement 
field in the plate region and the wave potential field in the water region, permitting to model 
effects of shear stresses and to consistently treat the endconditions on the nonhorizontal 
boundaries (wetted plate surface, bottom surface).   
 
 
In a series of works presented by the authors, starting with the linearised water wave problem 
in general bathymetry (Athanassoulis & Belibassakis [22]), a vertical local mode series 
expansion is used to consistently represent the wave field in the water region: 

( ) ( ) ( ) ( ) ( )1 1
0

, ; ;n n
n

x z x Z z x x Z z xϕ ϕ ϕ
∞

− −
=

= + ∑ ,   ( ) ( ) ,h x z b x− < < −                                 (1)   

The major part of the set of vertical modes ( ){ }; , 0,1, 2,...nZ z x n =  is obtained through the 
solution of a vertical eigenvalue problem, formulated at each horizontal position and  

( ) ( )1 1 ;x Z z xϕ− −  is an appropriate term, called the slopingbottom mode, accounting for the 
satisfaction of the bottom boundary condition on the nonhorizontal parts of the bottom. The 
idea of the sloping bottom mode, in conjunction with the above type of modal expansion, has 
been first introduced by the authors (Athanassoulis & Belibassakis [22]) in the case of water 
waves propagating in variable bathymetry. Since then, it has been used for many problems 
exhibiting similar features, such as nonlinear water waves (Belibassakis & Athanassoulis 
[26]), hydroacoustics (Athanassoulis et al [27]), and hydroelastic applications in variable 
bathymetry regions, formulated in the context of classical thin plate theory (Belibassakis & 
Athanassoulis [3]) and highorder shear deformable plate theory (Athanassoulis & 
Belibassakis [1]). In accordance with the latter work, the infinite set ( ); , 0,1,2,3,nZ z x n = … ,  

incident wave ( )1λ  

x= 1x

x= 3x  

transmitted wave ( )3λ  

x 
z 

h(x) 

floating  elastic plate / ice sheet 

h3 

h1 

b(x) 

 H =hb 

 *z z=  

water region 
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of functions describing the vertical structure of each mode, at each horizontal position x, are 
generated by  

( ) ( )2 2 0z n n nZ z Z zκ∂ − = ,                 in the vertical interval    h z b− < < − ,                           (2a)  

( ) 0nZ z h= − =ɺ ,                             at the bottom       ( )z h x= − ,                                         (2b)  

( ) ( ) 0n nZ z b Z z bα = − − = − =ɺ ,    at the waterelastic body interface     ( )z b x= − ,         (2c)  
 
where α is a function depended on κ. The solution the above problem is given by 

( ) ( ) ( )1cosh cosh , 0,1, 2,3,n n nZ z H z h nκ κ = + =  … ,                                                   (3)  

where the eigenvalues { }, 0,1,2...n nκ =  are obtained as the roots of  (local) dispersion relation: 

( ) ( )tanhH H H α κ κ κ= ,   where   ( ) ( ) ( )
2 2

4 1 1 1 1
12

bDeν
κα κ κ δ ε δ

 
= − + − + − 

 
.       (4)  

 

In Eq. (4), 2 / g ω=  is the frequency parameter, Η=hb   is the thickness of the water layer, 

( )( )3 2/ 12 1D Eb gρ ν= −   denotes the plate flexural rigidity (with E Young’s modulus and ν 

Poisson’s ratio). Moreover, ρ is the water density and g acceleration of gravity, 2 /m gε ω ρ=   
the plate mass coefficient (with m the plate mass distribution per horizontal area). Parameter 

( )( )121 1 2eν ν ν −= + −  is a material constant, involved in the expression of 2 1(1 )xx v xxEe vσ ε−= − . 

Additionally, 2Xb−  and δ are newly introduced nondimensional parameters given as follows: 

( )( ) 120.0135 0.0135 /X bδ
−

= + ,  
( ) ( )

( )( )( )( )
12 2

2 2

2 0.132 1

1 1/12 /

b eX
b d H

νκ ν

ε κ

−

−

−
=

−
 and 4d De Hν

−= . More details 

can be found in Athanassoulis & Belibassakis[1]. We note here that the above system 
(Eqs.3,4) with ( ) ( )4 1Dα κ κ ε→ + − , which is asymptotically obtained  for small plate 
thickness ( 0bκ → , 0δ → ), reduces exactly to the standard hydroelastic relations based on 
thinplate theory (Athanassoulis & Belibassakis [3]).  On the basis of the above complete 
expansions of the wave potentials in the two semiinfinite strips  ( 1x x≤ ) and  ( 3x x≥ ) are 
obtained (see also Belibassakis & Athanassoulis [1]), describing plane hydroelastic waves in 
these regions. Demonstrative results concerning the phase speed of propagating hydroelastic 
waves in homogeneous floating shear deformable plate of constant thickness, non
dimensionalised with respect to the phase speed of linearised water waves in shallow 
conditions  (C / gH ),  are shown in Fig.2.  We have used a density ratio 

923 1025/ /ρ ρΕ =  corresponding to ice/water. In this case the plate has uniform finite 
thickness b/h=0.5, and Poisson ratio ν=0.3. Results are presented for three representative 
values of  flexural rigidity d=1, 10, 100  and  three values of  ε=0, 0.5, 1,  for  shoaling ratio 

Hκ  ranging from very shallow to very deep water conditions  ( 0 16Hκ< < ). 
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Figure 2. Phase speed of harmonic flexural waves for shear deformable plate of uniform finite 
thickness b/h=0.5, and Poisson ratio ν=0.3, for various values of ε, d and shoaling ratio (kH). 
 
We clearly observe that the effect of flexural rigidity that leads to significant increase of phase 
speed. Also, in the limit of very shallow conditions 1Hκ << , we observe in this figure that 
the effect of mass parameter ε becomes important. 

 
The eCMS of horizontal differential equations has been obtained by means of a variational 
principle composed by the onefield functional of elastodynamics in the plate region (see, e.g. 
[28]), and the Luke's [25] pressure functional in the water region. The wave potential in the 
water column is represented by means of the local mode series expansion Eq. (1), and an 
enhanced fourthorder vertical expansion of the elastic displacement field in the floating plate 
is usedcontaining additional elastic vertical modes, permitting the shear strain and stress to 
vanish on both the upper and lower boundaries of the thick floating plate. More details can be 
found in Athanassoulis & Belibassakis [1]. In the case of plates of general, finite thickness, 
but slowly varying characteristics, elimination relations are approximately derived between 
the vertical plate deflection (w) and the rest of the elastic displacement modes.  In this case 
the eCMS takes the following form

( ) ( ) ( ) ( ) ( ) ( )
2

2
1

,n n
mn mn mn n

n
a x x +b x +c x x i w x

x x
ϕ ϕ ϕ ω

∞

=−

∂ ∂
=

∂ ∂∑  1,0,1,....m = − . ,                    (6)  

in conjunction with the following equation providing the coupling between the waterwave 
modes ( nϕ ) and the elastic plate deflection (w): 

( ) ( ) ( )
2 2 2 2

4
2 2 2

0
1 1

12 n
n

w b wdH w x
x x x

iδ ε ε ϕ
ω

∞

=

 ∂ ∂ ∂
⋅ − − + − = ∂ ∂ ∂ 

∑ .                                               (7) 

d=100 
d=10 

d=1 

ε=1 

0 
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In the above equations, the xdependent coefficients ( )mna x , ( )mnb x and ( )mnc x  are given 
by the following expressions 

( ) , b
mn n m h
a x Z Z −

−
= ,                                                          (8a) 

( ) ( ) ( ) ( ) ( )2 , ; ; ; ;
b

n
mn m n m n m

h

Z dh dbb x Z Z z h x Z z h x Z z b x Z z b x
x dx dx

−

−

∂
= + = − = − − = − = −

∂
,  (8b)  

( ) ( ) ( ) ( )
2 2

2
2 2

; ;
, ;

b
n nn n

mn n m m
h

Z z b x Z z b xZ Z dbc x q Z Z Z z b x
x z z dx x

−

−

∂ = − ∂ = − ∂ ∂
= + − − + = − ∂ ∂ ∂ ∂ 

  

           ( ) ( ) ( ); ;
;n n

m

Z z h x Z z h xdh Z z h x
z dx x

∂ = − ∂ = − 
+ + = − ∂ ∂ 

  ,                                          (8c) 

 

where ( ) ( )
( )

( )

,
z b x

b

h
z h x

f g f z g z dz
=−

−

−
=−

= ∫ . After solving the system of Eqs. (6), (7) the wave 

characteristics can be obtained all over the domain by means of the calculated wave modes 
( ) , 1,0,1, 2,3,.....n x nϕ = − , using the expansion (1). Also, the elastic strain and stress 

distributions in the thick plate cross section are obtained from the solution, using expressions 
connecting the vertical deflection (w) and the rest of the shear deformable plate modes (see 
Athanassoulis & Belibassakis [1]).  
 

The eCMS is supplemented by specific boundary conditions ensuring complete matching 
between the wave and the elastic fields at the two vertical interfaces (at 1x x=  and  3x x= ) 
separating the variable bathymetry inhomogeneous subdomain from the regions of incidence 
( 1x x≤ )  and transmission ( 3x x≥ ), respectively. More specifically at the left interface 

( ) ( ) ( ) ( ) ( )( )1 1 1
0 1 0 0 1 0 0 12 expx i x i i xϕ κ ϕ κ κ′ + = ,   ( ) ( ) ( )1

1 1 0n n nx i xϕ κ ϕ′ + = ,    n=1,2,3.. ,                (9a)

( ) ( )( ) ( )
21

1 1 0n n nx xϕ κ ϕ′′ + = ,     at 1x x= ,                  and                                                        (9b) 

( ) ( ) ( )( ) ( )1 1
1 1 1

0
tanhn n n

n
x H xiw κ κ ϕ

ω
∞

=

= ∑ ,                                                                               (9c)

where a prime denotes xdifferentiation. Moreover on the right vertical interface 

( ) ( ) ( )3
3 3 0n n nx i xϕ κ ϕ′ − = ,  n=0,1,2,3.. ,  and  ( ) ( )( ) ( )

23
3 3 0n n nx xϕ κ ϕ′′ + = ,     at 3x x= ,   (10a,b)

( ) ( ) ( )( ) ( )3 3
3 3 3

0
tanhn n n

n
x H xiw κ κ ϕ

ω
∞

=

= ∑ .                                                                             (10c)

In the above equations  ( ) , 1,3m
n mκ =   denote eigenvalues obtained from the extended 

hydroelastic dispersion relation (4) formulated at the constant depth and plate thickness 
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subregions, respectively. The forcing of the eCMS appears only Eq.(9a) and is associated 
with the mode  representing the incident wave exciting the hydroelastic waveguide. 
 


The discrete version of the present CMS is obtained by truncating the localmode series (1) to 
n=N keeping the first N+2 modes  { }( ), 1,0,1,...,n x n Nϕ = − . Subsequently, by setting 

1( ) ( )N x w xϕ + =  and 4
2 ( ) (1 ) ( )N x dH w xϕ δ+ ′′= − , Eq.(7) is equivalently written as follows 

 

4
1 2(1 ) ( ) ( ) 0N NdH x xδ ϕ ϕ+ +′′− − = ,                                                                                             (11a) 
2

2 2 14
1

( ) ( ) (1 ) ( ) ( ) 0
12

N

N N N n
n

b ix x x x
dH
ε ϕ ϕ ε ϕ ϕ

ω+ + +
=−

′′ + + − − =∑ .                                                    (11b) 
 

Thus, the present eCMS is put in the following, secondorder form  

( )2

1
( ) ( ) ( ) 0,    1,0,1, ,.., , 1, 2

N

mn n mn n mn n
n

a x b x c x m N N Nϕ ϕ ϕ
+

=−

′′ ′+ + = = − + +∑
⌢⌢ ⌢ .                               (12)

where the definition of general , ,mn mn mna b c
⌢⌢ ⌢ coefficients  is obtained from Eqs. (8) and (11). 

 


Assuming that the matrix mna

⌢
 is invertible, the coupled mode system is written in the form: 

 

0′′ ′− + + =   ,   ( )1 3x x ,x∈     where −    
⌢⌢   and  −    ⌢ ⌢ ,                           (13) 

 

where ( )x  is the vector of unknown modal amplitudes of dimension 4M N= + . The 
system is accompanied by the boundary conditions 

′ =      ,     at 1x x= ,    and      3 3 0′ = =     ,     at 3x x= ,                                  (14) 

where the coefficients 1 3n ,n ,= , and the forcing   are obtained from Eqs.(9) and (10). The 
weak formulation of boundary value problem (13),(14)  consists  of  finding  V∈ , where V 

is the Cartesian product of Sobolev  spaces  ( )1
1 3

M
V H x ,x =     defined over ℂ  ,   such that 

3 3 1( ) ( ) ( ) ( )* *r , x x F ,= − =               V∀ ∈ ,                                                             (15a)  
where  *  denotes the complex conjugate of V∈ and ( ):r , V V⋅ ⋅ × → ℂ  is  the following  
continuous sesquilinear form   
 

 
3 3 3

1 1 1
3 3 3 1 1( )= ( ) ( ) ( ) ( ) 

x x x
* * * * *

x x x
r , dx dx dx x x x x′ ′ ′+ + + −∫ ∫ ∫               .     (15b) 

 

Assuming that ( )r ,⋅ ⋅  is V   elliptic (i.e.  +∃ ∈ℝ  such that 2( )
V

r , ≥   ,  with ellipticity 
constant  )  direct application of the Lax – Milgram lemma guarantees the existence of a 
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unique V∈ , solution to variational problem (15), F V ′∀ ∈  (the dual of V) . Further, we 
have the a priori estimate  
 

1
V V

u F
 ′≤    .                                                                                                                    (16) 

 

Finite element approximation of solutions of the variational problem are constructed by 
considering the subspaces  hV V⊂  and finding  h hV∈  such that ( )h hr , =   
= 3 1( ) ( )h hx x−       for all h hV∈ . For the implementation of the Finite Element Method, 
we assume a partition of the interval [ ]1 3x ,x  of the form 1 1 2 1 3..... Nx s s s x+= < < < =  N ∈ℕ . 
Let ( )pP s  be a polynomial of degree p . We now define the subspaces  hV V⊂  as 

{ }
1

1
1 3 [ , ]

( , ) : ( )  , 1,2,..., ,  1,2,...., ,  
i i

Mh h h
j ps s

V H x x u P s i N j M p
+

 ∈ ≡ = = ∈  ≐ ℕ . From standard 

theory (e.g., Babuška & Ihlenburg [29]) we expect the following estimate of the error 
associated with the present approximate solution 

2
1 3( )

M
h p

H x ,xV
ch  

  
− ≤        ,                                                                                              (17) 

holding for some positive constant c  that does not depend on h  or p.  
 


 

In order to illustrate the applicability of our method, a specific example is presented in Figs. 
35 concerning the propagation of harmonic hydroelastic waves of period T=10sec 
(ω=0.628rad/sec) on floating ice sheet, characterised by modulus of elasticity E=5GPa, 
Poisson’s ratio ν=0.3 and values of ice/water densities 923/1025 kg/m3 (see also Squire et al 

[6]).  In this case, except of uniform ice sheet of finite thickness b=1m, in semiinfinite strips 
of constant depths h=13m and h=7m, respectively, we also consider the effect of 
inhomogeneous ice thickness in 100m<x<400m, with specific form as shown in Fig.3.   

In this case the beam thickness varies from 1m at the ends of the domain to 3m in the middle 
part.  We also consider the effect of an underwater shoal, extending from x = 0m to 500m, 
connecting two regions of constant but different depths:  the left region of waveincidence, 
where h1 =13m, and the region of transmission (right half strip), where h3=7m. In the latter 
case, the average and maximum values of the slope of the bottom profile are   1.2% and   6 %, 
respectively. Present method results have been obtained by retaining 5 modes in the local 
series Eq. (1), which was found to be enough for numerical convergence. Furthermore 
numerical results are based on a discretization using N=251 elements for subdivision of the 
segment from 1 0x =  to 3 500x m= , and p=1, which is shown to provide reasonable accuracy. 
Future work will focus on the detailed investigation of the rates of convergence and 
evaluation of the efficiency of present FEM scheme for higher p, demonstrating the overall 
robustness of the solution procedure. 
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Figure 3.  Real part (solid line) and imaginary part (dashed line) of the wave field φ at the top 
of the water layer. The middle subregion containing floating body and bottom inhomogeneity 
extends from  1 0x =   to  3 500x m= . 

 
Figure 4.  Plot of the wave field φ  (real part) in the water layer, as calculated by the present 
method, using equipotential lines. The ice layer is indicated by using cyan lines. Extension of 
equipotential lines below the bottom profile is maintained in order to visualize the fulfilment 
of corresponding boundary condition both on the flat and sloping parts. 
 

 
Figure 5.  Real part (solid line) and imaginary part (dashed line) of the elastic deflection w, as 
calculated by the present method, in the middle subregion containing floating body and 
bottom inhomogeneity extending from  1 0x =   to  3 500x m= . 
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
A novel coupledmode system of horizontal differential equations has been applied to the 
hydroelastic analysis of large floating bodies or ice sheets of general, finite thickness, lying 
over variable bathymetry regions. The present method is based on the theory of shear 
deformable plates (or beams), and is derived by an enhanced representation of the elastic 
displacement field, containing additional elastic vertical modes and permitting the shear strain 
and stress to vanish on both the upper and lower boundaries of the thick floating plate derived 
by Athanassoulis and Belibassakis[1], for the analysis of floating, shear deformable floating 
plates or beams of general shape. The proposed plate (or beam) model is based on the addition 
of extra vertical elastic deformation modes, at each horizontal position along the floating 
body, permitting shear strain and stress to vanish on both the upper and lower boundaries and 
extending thirdorder plate theories. First numerical results are obtained by applying the hp
version of the Finite Element Method to the solution of the resulting system, indicating good 
convergence rates and adaptivity capabilities. 
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