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Abstract— Switching mode power converters are being 

extensively applied in different power conversion systems. 
Parameter identification comprises a set of techniques focused on 
extracting the relevant parameters of the converters in order to 
generate accurate discrete simulation models or to design 
enhanced condition diagnosis schemes. This paper applies a non-
invasive optimization approach based on the non-linear least 
squares algorithm to determine the model parameters of different 
commercially available DC-DC power converters (buck, boost and 
buck-boost) from experimental data, including the parameters 
related to passive, parasitic and control loop elements. The 
proposed approach is based on a non-invasive on-line acquisition 
of the input/output voltages and currents under both steady state 
and transient conditions. The proposed method can also be applied 
to many other applications requiring precise and efficient 
parameter identification, including rectifiers, filters, or power 
supplies among others. 
 

Index Terms— White-box models, switching mode power 
converters, modelling, parameter identification, optimization. 
 

I. INTRODUCTION 
WITCHING mode power converters (SMPCs) offer 
interesting features, including high conversion efficiency 

and compactness [1], [2], which are highly appreciated when 
designing power conversion systems. They are mostly applied 
in different applications, including domestic appliances [3], 
portable electronics, computers and motor drives [4], or in 
power conversion systems applied to renewable generation [5], 
among others. Currently, high-tech sectors such as aerospace, 
naval or automotive are based on complex power systems 
integrating multiple converters. Such complex power systems 
often consist of several SMPCs from various suppliers, which 
usually are reticent to provide detailed information of the 
internal components [6]. Therefore, habitually, the information 
available is not sufficient to generate detailed discrete models, 
although models which are too exhaustive may require 
unacceptable computational resources [7]. These shortcomings 
make it difficult to generate accurate dynamic models, 
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especially for the abovementioned high-tech sectors combining 
several models of SMPCs from different suppliers.  

Parameter identification techniques have been applied in 
different applications, including motor drives [8], power 
converters [9], load control [10],arc modelling [11], battery and 
super capacitor systems [12] or transmission lines relaying [13], 
among others. Parameter identification involves a set of 
experimental methods focused on obtaining the dynamic 
behavior of a complex system by applying suitable algorithms. 
This is a key point, since inaccurate models can have a deep 
impact on the analysis of power systems [14]. The development 
of precise parameter identification approaches, which permits 
accurate and representative replication of the converter 
behavior, is not a trivial problem, due to the complexity of 
SMPCs and the wide range of working conditions. Methods 
based on parameter identification can partly compensate several 
issues related to different sources of uncertainties to consider 
during the modelling stage of the SMPCs [15], including the 
effects of external disturbances, limited load information, 
component ageing and tolerances or variable ambient 
conditions among others, which could affect the performance 
over time of the converter.  

Parameter identification approaches are particularly suitable 
when developing white-box based models, since they require an 
exhaustive description of the physics laws defining the 
dynamics of the SMPCs. White-box models usually define the 
physics of the problem by means of algebraic or differential 
equations describing its dynamic behavior [16], so precautions 
must be taken to limit the computational burden [17]. However, 
other alternatives are possible, such as grey-box and black-box 
models. Whereas black-box models are based on mathematical 
models that reproduce or emulate the behavior of the system 
without describing its behavior from physical equations, grey-
box models are not entirely described by physical equations [1]. 

Parameter identification can also be applied for condition 
diagnosis purposes in electrical and electronic systems [18], 
[19], since by analyzing the change in some relevant 
parameters, the condition of such systems can be diagnosed. 

During the modelling and design stages of complex power 
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systems involving different SMPCs, design engineers often do 
not to know most of the parameters in advance [20]. A feasible 
possibility for parameter identification is to acquire the 
instantaneous values of the input and output currents and 
voltages [21] at the input/output terminals of the power 
converter. This approach is appealing since it is compatible with 
a non-invasive on-line monitoring of the input/output signals, so 
there is no need to disconnect or remove the converter from its 
location when already installed.  

This paper proposes to identify the model parameters of 
different commercial power converters (DC-DC buck, boost 
and buck-boost converters) by applying an optimization 
approach. To this end, the non-linear least squares (NLS) 
algorithm is applied to minimize the error, i.e. the objective 
function, by estimating step by step the value of the different 
parameters in the NLS sense, thus minimizing continuously the 
error function until achieving the optimal solution. 

Different strategies are found in the technical bibliography to 
solve this problem, including off-line and online methods, or 
methods based on the time- or frequency-domain. In [1] the 
parameters of a DC-DC converter are identified by solving the 
differential equations governing the dynamics of the converter, 
although this approach requires measuring the current in the 
inductor. In [22] the parameters of a VSC converter are 
estimated using artificial neural networks, thus requiring a large 
dataset of training and test signals under different load 
conditions. In [3] the parameters of a synchronous buck 
converter are identified by means of a Kalman filter jointly with  
an adaptive tuning technique, which is applied to improve the 
tracking performance of the proposed method. In [23] an online 
identification of the voltage transfer function parameters of a 
DC-DC converter is carried out by applying a dichotomous 
coordinate descent method jointly with an infinite impulse 
response adaptive filter to model the plant. In [24] the frequency 
response and the transfer function of a buck converter were 
determined by means of auto-regressive models with exogenous 
inputs. In [19] the passive components of a boost converter were 
identified by applying an approach based on wavelet denoising 
and recursive least squares (RLS). A continuous time model 
based method is presented in [25], where a polynomial 
interpolation is applied to calculate the time derivatives 
involved, together with the least squares algorithm to estimate 
the passive and parasitic parameters of the converter. The closed 
loop parameters are estimated in [26] by means of state space 
models, taking into account the parasitic elements of the DC-
DC converter. In [27] the behavior of the converter is 
approximated by means of a transfer function that is identified 
using a discrete-time model of the DC-DC converter. Reference 
[9] reviews different techniques for system and parameter 
identification of DC-DC power converters. However, all 
reported methods are invasive, i.e., they require external 
excitation signals for an effective parameter estimation.  

From the literature review it is deduced that most of the papers 
either identify the converter by means of a transfer function, 
from which it is not feasible to obtain the real parameters 
(passive elements and control parameters) of the converter, or 
only determine some of the parameters. Therefore, there is a 

need to identify all real parameters of the converter from simple 
acquisitions of the voltages at the input/output terminals of the 
converter, since in most cases they are the only accessible 
sources of information.  

This paper proposes a white-box approach for identifying the 
full set of parameters of buck, boost and buck-boost converters, 
including the passive, parasitic and control loop elements. 
Parasitic elements must be considered to model the 
performances of the DC-DC converter [28]. It is based on 
acquiring the input/output voltage and current signals at the 
terminals of the converter, in both steady state (open loop), and 
transient state (closed loop). It is shown that once the parameters 
have been identified, the behavior of the converters can be 
simulated accurately when operating under different conditions 
by means of a suitable discrete circuit. This paper contributes in 
several ways. First, it proposes a parameter identification 
approach which is able to identify the full set of parameters of 
the converter (between 15 and 18, depending on the converter 
topology) from experimental data, including the parameters of 
the passive and parasitic components and those of the PWM 
control loop. Second, the proposed strategy does not require 
solving any differential equation governing the behavior of the 
converter, thus being quite immune to signal noise. Third, the 
suggested solution allows determining simultaneously all 
converter parameters from only two measurements performed 
under steady state and transient conditions. Finally, these 
measurements are based on acquiring the terminal input/output 
voltages and currents of the converter, the acquisition procedure 
being non-invasive and independent of the converter topology.     

II. PARAMETER IDENTIFICATION BASED ON NONLINEAR 
LEAST SQUARES 

This section describes the optimization approach based on the 
nonlinear least squares method (NLS) proposed in this paper to 
identify the parameters of the DC-DC converters from 
experimental data. NLS is a technique well suited for 
identifying parameters of nonlinear systems, i.e. those not 
satisfying the superposition principle [29], by applying an 
optimization approach. The NLS algorithm adopted in this 
paper is based on the trust-region reflective least squares 
(TRRLS) method, which is a powerful tool to solve constrained 
bound nonlinear minimization problems [30]. This paper 
applies the NLS-TRRLS algorithm already incorporated in the 
Matlab R2019a® package.  

In general, the least squares problem consists in finding a 
vector x that minimizes a sum of squares function e(x) [31], 

( ) ( ) ( )2 2 2 2 2
1 21

( ) ( ) ( ) ( ) ... ( )min min min
n

i nix x x
e x e x e x e x e x∑

=
= = + + +  (1)  

subjected to linear inequalities A·x ≤ b and linear equalities Aeq·x 
= beq, A and Aeq being matrixes, b and beq vectors, e(x) the 
objective function to be minimized and x a vector, which can 
have upper and lower bound constraints, ub and lb, respectively, 
with lb ≤ x ≤ ub. The optimization approach consists of 
minimizing e(x), which returns scalar values, the inputs of the 
function being vector arguments x. The objective function is 
minimized by the identification of a surrounding point that 
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minimizes the value of this function [32]. 
Under the trust-region optimization approach, supposing the 

algorithm centered at a point 
nx ∈ℜ , to improve the solution it 

is required to move to a point providing a lower value of e(x). 
The algorithm is based on approximating e(x) by a quadratic 
function q(s), which reproduces the behavior of e(x) in a region 
N around x, called the trust-region. The objective of the TRRLS 
method is to calculate q(s) using its Taylor series, and to find 
the trust-region. To this end, the TRRLS computes trial steps s 
to minimize q(s) over N, defining the trust-region sub-problem, 

( )( ),  min
s

q s s N∈         (2) 

The method calculates s step-by-step by minimizing the area 
of N. A successful step accomplishes e(x+s) < e(x), so that the 
current point x is updated by x + s and the trust-region N remains 
for the next step. In case of an unsuccessful step, i.e., e(x+s) ≥ 
e(x), the vector x remains unchanged, and in the next step the 
trust-region N will be reduced. To this end, the interior reflective 
method generates iterations xk within the interior of N by 
applying a reflective line search algorithm that ensures 
convergence at each iteration. The interior of N is expressed as 
int(N) and is defined by ub and lb, Once the scaling 
transformation is applied to the quadratic function q(s), the 
standard trust-region sub-problem is defined as [33], 

( ) 1( ) ( )min min 2
k T

k
s s

q s e x s sB s = ∇ + 
 

 with  1
k kD s− ≤ ∆     (3) 

∇ being the partial derivative operator, ( )k Te x∇ the gradient of 
function e(x) at the current point x, 

( )1 1diag ( ) ( )k k
k k k x kB H D f x J x D− −= + ∇  a symmetric 

approximation of the Hessian matrix 2 ( )k
kH e x= ∇ , where 2∇ is 

the Laplacian operator, ( )1 2( )  ... 
TTT Tk

x nJ x v v v= ∇ ∇ ∇   is the n x 

n Jacobian matrix and ( )=diag ( )k
kD v x  is a diagonal scaling 

matrix. The vector ( )1 2( ) ( ) ( ) ... ( ) T
nv x v x v x v x=  is calculated as, 

vi = xi - ubi  if  ( ) i( ) 0 and <ie x ub∇ < ∞  

vi = xi - lbi  if  ( ) i( ) 0 and <ie x lb∇ ≥ ∞  

vi = -1  if  ( ) i( ) 0 and =ie x ub∇ < ∞  

vi = +1  if  ( ) i( ) 0 and =-ie x lb∇ ≥ ∞  

Next, by applying a certain xk, equation (3) is solved to define 
sk, so that xk+1 = xk + αksk is obtained, αk being a step length, 
which depends on the distance between the boundary of int(N) 
and xk+sk. Since the region int(N) is limited by lb and ub, the 
iterations are reflected into int(N) when they lie on the 
boundary, which is known as the reflective line search. Usually, 
int(N) is restricted to a two-dimensional subspace V, which is 
spanned by the vectors v. This is done to accelerate the local 
convergence and enhance the efficiency of the global 
convergence. After obtaining the subspace V, the calculation of 
eigenvectors and eigenvalues becomes faster and less complex 
[32]. 

This paper proposes an objective function as follows, 

( ) ( )model model model experim. experim. experim.
input input output input input output( ) ( ) ( ) ( ) ( ) ( ) ( )i i i

e t I t V t V t I t V t V t= + + − + +  (4) 
V and I being, respectively, the terminal voltage and current, 

n the number of sample points where i = 1,2,3,..,n, t = i·T the 
time instant considered, and T the sampling period of the 
input/output signals of the DC-DC converter.  

To ensure that all signals have the same importance, the 
input/output currents and voltages are standardized as follows, 

*( ) ( ( ) ) /mean vv t v t v σ= −          (5) 
where v(t) is an input/output voltage or current, vmean the mean 

value, and σv the standard deviation. Since the input/output 
voltages and currents depend on the converter parameters 
(passive and parasitic elements and control loop parameters), to 
obtain the optimal solution it is necessary to restrict the values 
of the parameters, so that lb ≤ p ≤ ub, p being the model 
parameters shown in Tables III and IV. Therefore, the NLS-
TRRLS algorithm tries to find iteratively the values of the 
model parameters minimizing the objective function in (1), 
although the algorithm ends when reaching a predefined 
tolerance value of the objective function. The lower and upper 
bounds are chosen based on a priori knowledge of the converter, 
so that logic upper and lower initial values of the passive 
elements can be selected. 

At each iteration i, the values of ( )model model model
input input output i

I V V+ + , which 

are obtained from the simulation model built in Simulink using 
the SimPowerSystemsTM Toolbox as shown in Fig. 1, change 
because the NLS-TRRLS algorithm tries new values of the 
parameters. Therefore, at each iteration the Simulink simulation 
model is run for several times, since the NLS-TRRLS optimizer 
calculates a new solution based on the new set of parameters. 
The ode23tb variable-step continuous solver was used because 
it is suitable for solving nonlinear stiff problems [34] and in this 
problem it has faster convergence and higher accuracy than 
other solvers such as the ode45 and ode15s solvers. 

Experimental data
Input/output voltages and currents  

Data preprocessing
Synchronization (experim. vs simulated data) 

Low-pass filtering

NLS-TRRLS optimization process 
Set upper and lower bounds (ub and lb)

Set seed point of all parameters
Define error/cost function 

error < δ  ?

YES

NO Define new 
seed points

Identified parameters

-

+

Discrete simulation model

Identified parameters

, . , .

.

out experim out experim

out,experim

V V
error

V
−

=

 
Fig. 1. Flowchart of the proposed parameter identification approach. 
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Experimental signals exhibit small deviations in the periods, 
so a preprocessing is required. To this end, one period of the 
signal is taken and replicated a predefined number of times and 
next, the signals are filtered by applying a 70 points moving 
average. 

The NLS-TRRLS algorithm estimates the model parameters 
so that the input/output signals provided by the simulation 
model are very similar to the experimental ones. The procedure 
summarized in Fig. 1 is done in two stages. The first one is based 
on steady state data, whereas the second one is based on 
transient data, which is obtained by applying a sudden 
connection of a new load to the output terminals of the 
converter. From the steady state signals, the passive and 
parasitic components of the equivalent circuit of the converters 
are identified, whereas the closed-loop parameters are identified 
from the transient (load change) signals. 

III. THE ANALYZED DC-DC CONVERTERS 
This paper identifies the parameters of three non-isolated 

unidirectional DC-DC converters, namely buck, boost and 
buck-boost converters, whose topologies are shown in Fig. 2. 
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Fig.  2. Analyzed DC-DC converters. a) Buck converter. b) Boost converter. c) 

Inverting buck-boost converter. d) Photographs of the experimental setup. 

Due to the high switching frequency of the power converters 
analyzed in this paper, some parasitic elements must be 
considered in the input stage of the discrete simulation models, 
which are not provided by the manufacturer, although they may 
affect the performance of the circuit. The parasitic components 
are the MOSFET on resistance Rs, the ESR of the inductor RL, 
the ESR of the output capacitor RC, and the input capacitor, 
which is modelled as a capacitance Cin in series with the ESR 
RCin [35]. The impedance at the output of the voltage source is 
modelled as a series resistance Rin and a series inductance Lin, 
which has an important effect on the shape of the input current. 
A parallel resistance Rcc models the power consumption of the 
control circuit. According to the manufacturer, the capacitor Cp 

in the buck-boost converter is used to reduce the output voltage 
ripple by means of a continuous AC path from the input voltage 
to the output voltage during the switching states [36]. Table I 
defines the models and main characteristics of the Texas 
Instruments DC-DC power converters studied in this work. 

The commercial converters described in Table I have been 
selected because the manufacturer provides most of the values 
of the parameters, which are summarized in Table II. It is noted 
that the full set of parameters in Table II are of three types, 
namely passive, parasitic and control loop elements. Whereas 
the first two types are identified from steady state data, the last 
ones are identified from transient data, which is generated under 
a sudden load change. Parameters with grey shade shown in 
Table II are recalculated in closed loop since a sensitivity 
analysis carried out under transient conditions reveled that they 
influence on the transient response of the converters. 

TABLE I 
DC-DC CONVERTERS ANALYZED IN THIS PAPER 

Converter  Model Type Characteristics 

Buck TPS40200EVM‐002* Nonsynchronous 
Vin = 18-36 V 
Vout = 3.3 V 

fswitching = 200 kHz 

Boost TPS61089EVM‐742* Synchronous 
Vin = 3.1-5.0 V 

Vout = 9 V 
fswitching = 500 kHz 

Buck-boost TPS5430EVM‐342* Nonsynchronous  
Inverter mode 

Vin = 10-15 V 
Vout = -5 V 

fswitching = 500 kHz 
*Manufacturer: Texas Instruments, Dallas, TX, USA 

IV. EXPERIMENTAL RESULTS 
This section describes the experimental results achieved with 

the three DC-DC converters summarized in Table I. To this end, 
the input/output voltages and currents were acquired under 
stationary and transient conditions. Measurements were 
performed by means of a DC power supply (BK Precision 9205; 
BK Precision Corporation, Yorba Linda, CA, USA). 
Input/output voltages and currents were acquired by using a four 
channel oscilloscope (Tektronix MDO3024 200 MHz 2.5 GS/s; 
Tektronix, Beaverton, OR, USA), two high-frequency current 
probes (Tektronix TCP0030A 0.001-20 A 120 MHz; Tektronix, 
Beaverton, OR, USA) and two high-frequency voltage probes 
(Tektronix TPP0250 250 MHz; Tektronix, Beaverton, OR, 
USA). It is important to state that from Fig. 3 to Fig 8, the data 
of the experimental curves shown were preprocessed by means 
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of a low-pass filter. 
To evaluate the accuracy of the proposed method, the results 

are compared to the ones obtained using the method detailed in 
[1], which discretizes the differential equations governing the 
dynamics of the converters, so that the open loop parameters 
(passive elements) are found. The closed loop (control loop 
parameters) parameters are estimated by using the duty cycle 
and the system identification tool of Matlab®.    

A. Buck converter 
This section presents the identification results from 

experimental data acquired from the TPS40200EVM‐002 buck 
converter. A step-by-step demo of the procedure is presented, 
detailing the evolution of the algorithm described in Fig. 1. 
First, the upper and lower boundaries and the seed point of the 
parameters are set. These values are defined based in a priori 
knowledge of the converters, which are shown in Table II. 

TABLE II 
 UPPER AND LOWER BOUNDS FOR THE OPTIMIZATION ALGORITHM 

 Minimum Maximum Seed point 
Inductors 1 nH 1 mH 

Random value between 
the ub and lb 

Capacitors 1 nF 10 mF 
Resistors 0.1 mΩ 10 Ω 

TF coefficients 10−12 10−3 

The objective function is set as the difference between the 
measured and estimated signals. Then, the process of 
identifying the open loop parameters is executed. Fig. 3 
compares the measured signals and the system simulated using 
the seed point as the converter parameters 
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a)                                       b)                                      c) 

Fig. 3. Initial point of the first stage of the optimization process. a) Input current. 
b) Input voltage. c) Output voltage. 

The values of the parameters of the first optimization process 
were: 𝐿𝐿 = 39.88𝜇𝜇𝜇𝜇, 𝐶𝐶1 = 17.1𝜇𝜇𝜇𝜇, 𝐶𝐶2 = 560.4𝜇𝜇𝜇𝜇,𝑅𝑅𝐿𝐿 =
73.1𝑚𝑚Ω, 𝑅𝑅𝐶𝐶1 = 59.5𝑚𝑚𝑚𝑚, 𝑅𝑅𝐶𝐶2 = 0.36Ω, 𝑅𝑅𝑠𝑠 = 53𝑚𝑚Ω 𝐿𝐿𝑖𝑖𝑖𝑖 =
0.213𝜇𝜇𝜇𝜇, 𝐶𝐶𝑖𝑖𝑖𝑖 = 4.87𝜇𝜇𝜇𝜇, 𝑅𝑅𝐶𝐶𝑖𝑖𝑖𝑖 = 75𝑚𝑚𝑚𝑚, 𝑅𝑅𝑖𝑖𝑖𝑖 = 0.16Ω and 
𝑅𝑅𝐶𝐶𝐶𝐶 = 2.57𝑘𝑘Ω. To estimate the closed loop parameters, the 
previous values were used as the seed point, and the parameters 
of the controller (transfer function coefficients) were included 
in the optimization process. The transient state dataset was used 
in this stage. Fig. 4 shows the comparison between the measured 
signal and the starting point of the second stage and the 
optimization. 
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a)                                       b)                                      c) 
Fig. 4. Initial point of the second stage of the optimization process. a) Input 
current. b) Input voltage. c) Output voltage. 

Fig. 5 shows the convergence process for the two 
optimization stages. Compared to the second stage, the first 
stage, due to the lower number of parameters involved, requires 
less iterations to achieve the minimum and also the value of the 
cost function is lower. Finally, once the algorithm reaches the 
minimum, it finishes and stores the estimated values. The final 
estimated parameters are shown in the Table III. 
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Fig. 5. Boost converter. Convergence process of the two stages of the NLS-
TRRLS. 

Fig. 6 compares experimental data under steady state 
conditions (left) and under a sudden load change (right) against 
the results obtained from the discrete simulation model using 
the identified parameters (NLS-TRRLS) and the results derived 
from the analytical equations of the converter [1].  
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c) 
Fig. 6. Buck converter operating under steady state (left) and transient (right) 
conditions. Experimental versus simulated data using the identified parameters 
a) Input voltage. b) Input current. c) Output voltage. 

The results show a good match between experimental data and 
simulated results with the identified parameters of the 
TPS40200EVM‐002 buck converter, thus validating the 
parameter identification approach proposed in this paper. It can 
be seen that method based on the analytical equations is less 
accurate in reproducing the transient behavior of the converter. 
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B. Boost converter 
This section presents the identification results from 

experimental data acquired from the TPS61089EVM‐742 
synchronous boost converter, following the same procedure as 
in the case of the buck converter. Two sets of measurements 
were performed under steady state and transient state (load 
change). Fig. 7 compares experimental input/output data under 
steady state conditions (left) and under a sudden load change 
(right) against the results obtained from the discrete simulation 
model using the identified parameters (NLS-TRRLS) and the 
results derived from the analytical equations of the converter 
[1].  

Time (ms)
9.103 9.104 9.105 9.106 9.107 9.108 9.109

In
pu

t v
ol

ta
ge

 (V
)

3.56

3.58

3.60

3.62

3.64
Experimental
NLS-TTRLS
Analytical Eq.

Time (ms)
8.6 8.8 9.0 9.2 9.4

In
pu

t v
ol

ta
ge

 (V
)

3.52

3.54

3.56

3.58

3.60

3.62

3.64

Experimental
NLS-TRRLS
Analytical Eq.

a) 

Time (ms)
9.103 9.104 9.105 9.106 9.107 9.108 9.109

In
pu

t v
ol

ta
ge

 (V
)

1.26

1.28

1.30

1.32
Experimental
NLS-TRRLS
Analytical Eq.

Time (ms)
8.6 8.8 9.0 9.2 9.4

In
pu

t c
ur

re
nt

 (A
)

1.0

1.5

2.0

2.5

3.0

3.5

Experimental
NLS-TRRLS
Analytical Eq.

b) 

Time (ms)
9.103 9.104 9.105 9.106 9.107 9.108 9.109

O
ut

pu
t v

ol
ta

ge
 (V

)

8.990

8.995

9.000

9.005

Experimental
NLS-TRRLS
Analytical Eq.

Time (ms)
8.6 8.8 9.0 9.2 9.4

O
ut

pu
t v

ol
ta

ge
 (V

)

8.5

8.6

8.7

8.8

8.9

9.0

9.1

Experimental
NLS-TRRLS
Analytical Eq.

c) 
Fig. 7. Boost converter operating under steady state (left) and transient (right) 
conditions. Experimental versus simulated data using the identified parameters 
a) Input voltage. b) Input current. c) Output voltage. 

Once again, from the results presented in Fig. 7, it can be 
deduced a close agreement between experimental data and 
simulated results with the identified parameters of the proposed 
method (see Table III). The parameter estimation using the 
analytical equations methods fits well with the measured data in 
steady state but differs to estimate the transient response. 

C. Buck-boost converter 
This section summarizes the identification results from 

experimental data acquired from the TPS5430EVM‐342 buck-
boost converter.  

Fig. 8 compares experimental input/output data under steady 
state conditions (left) and under a sudden load change (right) 
against the results obtained from the discrete simulation model 
with the identified parameters (NLS-TTRLS) and the results 
derived from the analytical equations of the converter [1]. Figs. 
8 show a close similitude between experimental data and 
simulated results with the identified parameters using the 

method proposed in this paper. The estimation from the 
analytical equations is less accurate under a load change.  
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Fig. 8. Buck boost converter operating under steady state conditions (left) and 
transient (right). Experimental versus simulated data using the identified 
parameters a) Input voltage. b) Input current. c) Output voltage. 

D. Results summary 
Tables III and IV compare the parameters provided by the 

manufacturer of the three analyzed converters, with those 
identified by means of the approaches presented in this paper.  
Results summarized in Tables III and IV show a good match 
between the values of the parameter provided by the 
manufacturer and those identified by means of the NLS-TRRLS 
approach. The parameters estimated in open loop show a higher 
accuracy than those ones estimated in closed loop. This also can 
be seen in Figs. 6, 7 and 8, where there are slight differences 
between experimental and estimated data when a load change 
occurs. One of the main causes is that in closed loop the 
optimizer considers more parameters. Furthermore, even if the 
manufacturer provides the transfer function of the control loop, 
there are different elements of the board that may affect the 
transient response. Also, the NLS-TRRLS optimization is 
affected by the noise present in the measurements, even when 
applying a low-pass filter. Finally, there are elements such as 
the output impedance of the voltage source and different 
parasitic components of the DC/DC converters, which were 
considered in the parameter estimation but not provided by the 
manufacturer which could affect the identification.  

It is noted that the parameters identified using the proposed 
method show a greater accuracy than the ones identified by 
solving the analytical equations of the converters. As shown in 
Figs. 6, 7 and 8, the NLS-TRRLS method has a greater accuracy 
than the method described in [1], especially under transient 
conditions. This is because the second method is unable to make 
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an accurate estimation of the controller parameters, as it is 
shown in Tables III and IV, where the identified values 
significantly differ from the ones given by the manufacturer.  In 
addition, the analytical equations approach does not consider 
the input filter of the converter since it uses the current flowing 
across the inductor. 

TABLE III 
 ACTUAL AND IDENTIFIED PARAMETERS OF THE BUCK AND BOOST 

CONVERTERS 
Buck Boost 

 Value 
Identified 

NLS-
TRRLS 

Identified  
Analy. Eq.  Value 

Identified 
NLS-

TRRLS 

Identified 
Analy. Eq. 

L 33 µΗ 35.4 µH 35.2 µH L 1.8 µH 1.7 µH 1.9 µH 
C1 20 µF 16.5 µF 16.8 µF C 67 µF 65.6 µF 47.9 µF 
C2 440 µF 494.3 µF 490 µF RL 12.6 mΩ 10.6 mΩ 7.5 mΩ 
RL 60 mΩ 73.13 mΩ 55.8 mΩ RC 0.65 mΩ 0.60 mΩ 1.06 mΩ 
RC1 65 mΩ 59.5 mΩ 60.9 mΩ Rs1 <31 mΩ 38.3 mΩ 10.92 mΩ 
RC2 300 mΩ 207 mΩ 280 mΩ Rs2 - 412.6 mΩ 16.38 mΩ 
Rs <40 mΩ 31 mΩ 39.1 mΩ Cin - 40 µF - 
Cin 100 µF 96.4 µF - Lin - 0.35 µΗ - 
Lin - 0.40 µH - Rcc - 2.90 kΩ - 
Rcc - 2.57 kΩ - RCin - 5.42 mΩ - 
RCin - 75 mΩ - Rin - 0.1 mΩ - 
Rin - 0.160 Ω - a0 0 0 0.1 
a0 0 0 -0.01 a1 4.7·10-9 9·10-10 5·10-4 
a1 4.7·10-4 5.3·10-4 1.38·10-3 a2 - 7·10-17 0 
a2 1.6·10-9 2.8·10-9 4.18·10-9 b0 1 1 1 
b0 1 1 1 b1 8.18·10-5 1.42·10-4 6.36·10-5 
b1 4.7·10-4 8.7·10-4 7.1·10-4 b2 - 1.05·10-9 0 
b2 0 0 1.42·10-12 - - - - 

TABLE IV 
 ACTUAL AND IDENTIFIED PARAMETERS OF THE BUCK-BOOST CONVERTER 

Buck-Boost 
 Value Identified NLS-TRRLS Identified Analy. Eq. 

L 15 µΗ 15.41 µΗ 15.09 µΗ 
C 220 µF 292 µF 193.2 µF 
RL 41 mΩ 42.26 mΩ 51.1 mΩ 
RC 40 mΩ 50.2 mΩ 56.2 mΩ 
Rs 40 mΩ 46.8 mΩ 28.8 mΩ 
Cin - 0.354 µF - 
Lin - 0.232 µΗ - 
Rcc - 0.27 kΩ - 
RCin - 2.8 mΩ - 
Rin - 48.3 mΩ - 
Cp 10 µF 9.31 µF 15.25 µF 
a0 0 0 0 
a1 7.35·10-5 2.78·10-5 6.55·10-4 
a2 7.0·10-10 3.75·10-10 5.94·10-9 
a3 1.4·10-15 1.56·10-15 1.00·10-15 
b0 1 1 1 
b1 1.4·10-4 1.2·10-4 3.64·10-3 
b2 4.5·10-9 4.3·10-9 6.16·10-8 
b3 0 0 0 

To measure the accuracy of the estimations, Table V shows 
the coefficients of determination R2 between measured and 
estimated data, which were calculated for the three signals of 
the three converters. It can be observed that in all cases the 
values of R2 are close to 1, thus indicating that the estimation fits 
the experimental data [37]. The mean value of R2 for all the 
cases shown in Table V is 0.9863, while when using the 
analytical equations of the converter, this value is 0.9449. This 
indicates that the NLS-TRRLS proposed in this paper is able to 

reproduce the performance of the DC-DC converters with a 
higher accuracy than the method proposed in [1].  

TABLE V 
COEFFICIENT OF DETERMINATION BETWEEN MEASURED AND ESTIMATED 

DATA 

Converter Operating mode 
Coefficient of determination R2 

Input 
voltage 

Input 
current  Output voltage 

Buck Steady State 0.9964 0.9998 0.9981 
Transient 0.9890 0.9951 0.9861 

Boost Steady State 0.9864 0.9902 0.9847 
Transient 0.9785 0.9993 0.9811 

Buck-boost Steady State 0.9810 0.9918 0.9792 
Transient 0.9749 0.9721 0.9705 

Table VI summarizes some relevant information about the 
signals analyzed and the optimization process. The sampling 
frequency depends on the switching frequency of the converter 
and whether it works under transient or steady state conditions. 
It also depends on the instrumentation used.  

TABLE VI 
SAMPLING FREQUENCY OF THE INPUT/OUTPUT SIGNALS, TIME RANGE, TIME 

REQUIRED AND NUMBER OF ITERATIONS DURING THE OPTIMIZATION  

Converter Operating 
mode 

Sampling 
frequency 

Identification 
time* Iterations Load 

Buck Steady State 5 GHz 44 minutes 29 5 Ω 
Transient 1 GHz 132 minutes 45 5 + 2.6 Ω 

Boost Steady State 5 GHz 107 minutes 21 18.7 Ω 
Transient 250 MHz 111 minutes 16 18.7 + 18.7 Ω 

Buck-boost Steady State 5 GHz 112 minutes 34 8 Ω 
Transient 250 MHz 368 minutes 54 25 + 4 Ω 

The oscilloscope used (Tektronix MDO3024 200 MHz 2.5 
GS/s; Tektronix, Beaverton, OR, USA) allows a maximum 
sampling frequency of 5 GHz and 105 points per sample, which 
is enough to deal with switching frequencies in the range 100-
500 kHz. Transient and steady state data must have the same 
number of data points to be compatible with the algorithms 
applied. Since transient data requires more periods than steady 
state data, we had to adapt the sampling frequency to deal with 
these constraints. Finally, the buck-boost converter requires 
more identification time, since it has more parameters than the 
others, thus making the identification process more complex. 

V. CONCLUSION 
This paper has proposed a parameter identification method 

for DC-DC power converters based on non-invasive on-line 
measurements of the voltages and currents at the input/output 
terminals of the converters. To this end, three types of 
commercially available DC-DC converters have been analyzed, 
namely buck, boost and buck-boost converters. The proposed 
identification method is based on solving an optimization 
problem by applying the non-linear least squares algorithm, an 
in particular, the trust-region reflective least squares solver. The 
results presented in this paper are based on experimental data 
acquired from the input/output terminals of the converters, 
considering both steady state and transient operating conditions. 
Such results prove that it is feasible to identify all model 
parameters with accuracy, including those related to the passive, 
parasitic and control loop elements, thus allowing to generate 
accurate discrete simulation models of the converters. It is worth 
noting that this method can be applied to identify the parameters 
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of many other devices such as power supplies, rectifiers or 
filters among others.  
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