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Abstract. In the present paper we present linear and weakly nonlinear models for the analysis 
of stability of particle-laden slightly curved shallow mixing layers. The corresponding linear 
stability problem is solved using spatial stability analysis. Growth rates of the most unstable 
mode are calculated for different values of the parameters of the problem. The accuracy of 
Gaster’s transformation away from the marginal stability curve is analyzed. Two weakly 
nonlinear methods are suggested in order to analyze the development of instability 
analytically above the threshold. One method uses parallel flow assumption. If a bed-friction 
number is slightly smaller than the critical value then it is shown that the evolution of the 
most unstable mode is governed by the complex Ginzburg-Landau equation. The second 
method assumes that the base flow is slightly changing downstream. Applying the WKB 
method we derive the first-order amplitude evolution equation for the amplitude.  

 
 
1 INTRODUCTION 
   Shallow mixing layers are widespread in nature. Typical examples include flows in 
compound and composite channels and flows at river junctions. Three widely used methods 
of analysis of shallow flows include experimental investigation, numerical modelling and 
stability analysis [1].  Experimental analyses in [2]-[5] showed that (a) bottom friction 
suppresses the growth of perturbations and (b) shallow mixing layer grows at a smaller rate 
than a free shear layer. Several papers are devoted to linear stability analysis of shallow 
mixing layers [6]-[9]. It is shown in [8] that rigid-lid assumption can be used for stability 
analysis of shallow flows for small Froude numbers. The effect of Froude number of stability 
characteristics of shallow mixing layers is analysed in [9]. Theoretical calculations in [6]-[9] 
support experimental observations: bed friction stabilizes the flow and reduces the growth of a 
mixing layer width.  
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   The effect of small curvature on the stability characteristics of a free mixing layer is 
analysed in [10] where it is shown that curvature has a destabilizing effect on an unstably 
curved mixing layer and stabilizing effect on a stably curved mixing layer. Linear stability of 
two-phase flows where a fluid contains solid particles is investigated in [11] under some 
simplifying assumptions. It is shown in [11] that a particle loading parameter has a stabilizing 
influence on the flow 

   In the present paper linear stability analysis of slightly curved shallow mixing layers for the 
case where a fluid contains solid particles is performed. Two basic methods are usually used 
in practice for linear stability analysis: (a) spatial stability analysis and (b) temporal stability 
analysis. The second approach is more convenient from a computational point of view since 
the corresponding generalized eigenvalue problem is linear and can easily be solved by 
standard software packages. The first approach is more convenient for the purpose of 
comparison with experiments but requires more computational efforts since the problem is 
nonlinear with respect to unknown eigenvalues. Well-known Gaster’s transformation [12] is 
often used to simplify stability calculations. However, Gaster’s transformation is valid only in 
the vicinity of a marginal stability curve where the growth rates are small. In other regions of 
the parameter space the difference between spatial and temporal growth rates can be quite 
large as is illustrated in the paper.  

   Linear stability gives only conditions of instability but it cannot describe the evolution of 
the unstable mode above the threshold. Weakly nonlinear theories are used in such cases in 
order to analyse the development of instability analytically. Two such methods are briefly 
described in the paper.  The first approach is based on a parallel flow assumption and can be 
applied for the case where the bed-friction number is slightly smaller than the critical value 
(see, for example, [13]). Using the method of multiple scales an amplitude evolution equation 
for the most unstable mode is derived. It is shown that for particle-laden slightly curved 
shallow mixing layers the amplitude equation is the complex Ginzburg-Landau equation. The 
coefficients of the equation are calculated explicitly in terms of integrals containing linear 
stability characteristics of the flow.   

   The second approach takes into account slow longitudinal variation of the base flow.  The 
analysis is based on weakly non parallel WKBJ approximation [14]. A first-order amplitude 
evolution equation is derived. The solution of the amplitude equation is then used to obtain 
the first-order approximation to the perturbation field.  

2 LINEAR STABILITY ANALYSIS 
The two-dimensional shallow water equations under the rigid-lid assumption have the form 
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where u and v  are the depth-averaged velocity components in the x and y directions, 
respectively, pu and pv are the components of the particle velocities, B is the particle loading 
parameter [11], R is the radius of curvature, p is the pressure, h is water depth and fc is the 
friction coefficient. The following simplifying assumptions are used in order to derive (1)-(3): 
(a) rigid-lid assumption is used (in other words, free surface acts as a rigid lid so that water 
depth is assumed to be constant); (b) Chezy formula [13] is used to model bottom friction; (c) 
curvature is assumed to be small )1/1( R ; (d) the distribution of particles in a carrier fluid 
is assumed to be uniform; (e) no dynamic interaction between carrier fluid and particles is 
assumed. Assumption (a) is verified in [8] where it is shown that from a linear stability point 
of view rigid-lid assumption works well for small Froude numbers. Assumptions (d) and (e) 
are discussed in [11] where it is shown that these assumptions are reasonable for the case of 
large Stokes number of the flow.  
   Introducing the stream function by the relations  
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and eliminating the pressure the following equation is obtained from (1)-(3): 
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   Consider a perturbed solution to (5) of the form 
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   Here )(0 y is the base flow solution and ),,(1 tyx is a small unsteady perturbation. Using 
the method of normal modes we represent ),,(1 tyx in the form 
                                                              )],(exp[)(),,(1 txiytyx                                            (7) 
where both  and  can be complex. However, two widely used approaches in the theory of 
linear stability are (a) temporal stability analysis and (b) spatial stability analysis. In case (a) 
the wave number  is assumed to be real while  , in general, is complex: ir i  . For 
spatial stability analysis the usual assumptions are as follows: r  is real while the 
parameter  is complex: ir i  .  
   Substituting (6) and (7) into (5) and linearizing the resulting equation in the neighborhood 
of the base flow we obtain the following ordinary differential equation for the amplitude )(y
of the normal perturbation: 
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with the boundary conditions  
                                                                   0)(                                                             (10) 
where hbcS f / is the bed-friction number [6] and b is a characteristic length scale (for 
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mixing layers b is usually the width of a mixing layer). Note that (9), (10) is an eigenvalue 
problem where for temporal stability problem   is an eigenvalue (it is seen from (9), (10) 
that the problem is linear in  ) and for spatial stability problem  is an eigenvalue (problem 
(9), (10) is nonlinear in  ).  

3 NUMERICAL RESULTS FOR SPATIAL AND TEMPORAL INSTABILITY 
Problem (9), (10) is solved numerically by means of a pseudospectral collocation method 

based on Chebyshev polynomials (the details of the method are given, for example, in [13]). 
The corresponding discretized linear generalized eigenvalue problem in    (temporal stability 
analysis) can be solved using one of subroutines in IMSL package. The base flow is said to be 
linearly stable if all eigenvalues   have negative imaginary parts and linearly unstable if at 
least of i  is positive.  

The following procedure is suggested to solve spatial stability problem. Assuming that 
both parameters  and   are complex of the form ir i  , ir i  , for each set of 
the parameters R , S , B , r and r we find i such that 0i  (using a bisection method). 
The condition of instability is .0i  

Calculated spatial growth rates for the case 1/R = 0.025 are shown in Fig. 1 for the case of 
a base velocity profile of the form 

                                                  ).tanh1(
2
1)(0 yyu                                                            (11) 

 The bed-friction number is S = 0.1. The three curves in Fig. 1 corrspond to the following 
values of the particle loading parameter B (from top to bottom) : 0,0.01 and 0.02.   As can be 
seen from the graph, the increase in B leads to a more stable flow (the growth rates are getting 
smaller as the parameter B increases).  

 
i  

 

r  
Figure 1: Spatial growth rates for the case 1/R = 0.025. 
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Spatial growth rates for the case 1/R = 0.05 are shown in Fig. 2. The other values of the 
parameters are the same as in Fig. 1. It is seen from the comparison of Figs. 1 and 2 that both 
parameters (B and 1/R) have a stabilizing influence on the base flow. The growth rates for the 
case 1/R = 0.05 are smaller than for the case 1/R = 0.025. 

 
                              i  
 
 

r  
Figure 2: Spatial growth rates for the case 1/R = 0.05. 

 
   Following Gaster [12] we denote by (T) and (Sp) the solutions to (9), (10) correspondign to 
temporal and spatial problems, respectively. It is shown in [12] that near the marginal stability 
curve  
                         ),(/)()(),()(),()( TcTSpSpTSpT iirrrr                           (12)  
where ).(/)()( TTTc rr   It follows from the Gaster’s transformation that on the stability 
boundary either spatial or temporal stability analyses can be used since in this case 

.0)()(  TSp ii    If the objective of the analysis is to construct a marginal stability curve 
then it is recommended to use temporal stability analysis (which is a simpler method from a 
computational point of view than spatial stability analysis). However, the use of the Gaster’s 
transformation away from the marginal stability curve can result in relatively large errors. We 
have computed temporal and spatial growth rates for the case S = 0.05, B = 0 and 1/R = 0. The 
relative percentage errors  in using Gaster’s transformation are shown in the Table 1.    

 

 

 

 

1253



Irina Eglite, and Andrei A. Kolyshkin. 

 6 

Table 1: Relative errors in using Gaster’s transformation 

 
r  (%)

 
0.1 11.6 
0.2 15.4 
0.3 16.3 
0.4 15.0 
0.5      12.7 

 
It is seen from Table 1 that errors in using Gaster’s transformation for the calculation of 
growth rates away from the marginal stability curve can be quite large.  

4 WEAKLY NONLINEAR ANALYSIS  
In this section we briefly describe applications of weakly nonlinear theory to the analysis 

of development of instability above the threshold when the base flow loses stability.  
The first approach is based on a parallel flow assumption. Using the method of multiple 

scales with the “slow” variables )( tcx g and t2  , where gc is the group velocity, 
we assume that the evolution of the most unstable mode (in a small neighborhood of the 
critical value of the parameter S) can be described by the formula 

                                  )],(exp[)(),(),,(1 txiyAtyx                                                          (13) 
where ),( A is a slowly varying amplitude. Applying the method of multiple scales to (5), 
(6) and (13) and using solvability conditions at order two we obtain the group velocity gc . 
Using the solvability condition at order three we obtain an amplitude evolution equation of 
the form 
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where , and  are complex coefficients which are calculated in terms on integrals 
containing the characteristics of linear stability problems. Equation (14) is known as the 
Ginzburg-Landau equation in the hydrodynamic stability literature. It is shown (see, for 
example, [15]) that it has a rich variety of solutions from deterministic to chaotic depending 
on the values of the coefficients. In fact, (14) is used in two ways in the literature: first, as a 
phenomenological equation (that is, it is assumed that a certain phenomenon can be modeled 
by (14) where the coefficients are usually determined from experimental data), and second, it 
can be derived (in some cases) from the equations of motion. We have shown that (14) is 
derived from (5).  
     The second approach uses a slow longitudinal variation of the base flow under the 
assumption that the wave length of the most unstable mode  is much smaller than the typical 
length scale Lof the longitudinal variation of the base flow. In this case a small parameter 

L/  is used to measure non-parallelism of the base flow. Using the WKB method we 
assume that a perturbation stream function can be represented in the form 
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                                                           )/)((),(),,( tXieXytyx                                       (15) 
where ),( Xy is the amplitude which is represented in the form 
                                                        ...),(),(),( 21  XyXyXy                                (16) 
and ),,()(),(1  XyXAXy  , where )(XA is an amplitude function and ),,( Xy is the 
eigenfunction of the linear stability problem. It is shown that the amplitude evolution equation 
for this case has the form 

                                                           ,0)()(  AXN
dX
dAXM                                             (17) 

where the functions )(XM and )(XN are calculated in terms of integrals containing the 
characteristics of linear stability problem.  

5 CONCLUSIONS  
    Linear and weakly nonlinear analyses of particle-laden slightly curved shallow mixing 
layers are presented in the paper. Spatial stability problem under the rigid-lid assumption is 
solved numerically by pseudospectral collocation method based on Chebyshev polynomials. 
Spatial growth rates are calculated for different values of the parameters of the problem. Two 
weakly nonlinear approaches leading to amplitude evolution equations for the most unstable 
mode are described. Experimental and/or numerical data are needed in order to assess the 
applicability of weakly nonlinear models to the analysis of instability of particle-laden 
shallow mixing layers.  
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