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Being able to have particles isolated without the need to be physically touching them allows a
much more precise study of their behaviour. In order to achieve that electrodynamic traps such as
Paul’s trap confine particles inside them using only a varying electric field. In this paper a trap of
such characteristics will be simulated in order to observe the behaviour of the ions inside it.

I. INTRODUCTION

Paul Trap, is a type of ion trap that uses three plates
and a dynamic electric field to trap ions inside. It is
named after Wolfgang Paul, who won the Nobel Price
in Physics for the invention of this device in 1989. The
particular shape of the Paul Trap, and a varying electric
field with the right frequency, traps the particle inside
the device. In this project we generate a full simulation
of the Paul Trap and find the right frequency for different
types of charged particles.

In order to do so, the aim of the first part of the project
is to define the geometry of the trap, and triangularize it
in small parts so that we can define the charge variation,
the potential and the electric field in every single small
piece of the trap separately. With the mesh as the surface
the integral Poisson equation can be discretized as a lin-
ear system of equations that will lead to the calculation of
the potential and the electric field. Once the geometry of
is well defined, the second part of the project consists on
computing the time-varying potential and charge in the
plates of the Paul Trap, so that particles can be trapped
inside. Finally, the last part, simulates the movement
of the trapped particle inside the Paul Trap due to the
electric field generated in the plates, by defining the equa-
tions of the motion of any charged particle inside the trap
for any initial position inside the ion trap.

The goal of the project is then, to make a full simula-
tion of the time-varying electric field in the ion trap, and
thus be able to simulate the movement of any charged
particle inside a Paul Trap.

II. THE PAUL TRAP

The main idea of the ion traps is that ideally the best
object for precision measurements is a particle floating
in free space, and Paul Trap gives is the best approx-
imation to this situation. The Paul Trap has two hy-
perbolic metal plates, or electrodes with their foci facing
each other, and a third hyperbolic ring plate in between
the other two electrodes. In order to keep the particle
moving inside the trap, the electric field of the plates
must be constantly varying between the two hyperbolic
cap plates as well as the ring electrode. The charged par-

FIG. 1. Structure of a Paul Trap
a

a https://aquadrupauliontrap.wordpress.com/types-of-ion-traps/

ticle inside the trap will be first pulled towards the upper
and lower cap plates, while at the same time is pushed
away from the ring plate. Then, as the electric field con-
stantly changes between the plates, the particle will be
pushed away from the cap plates, and pulled towards the
ring electrode. If the frequency of the electric field change
is high enough, this modification of the movement avoids
collision with the plate, and thus traps the particle in-
side. The particle trapped has a complex movement due
to the varying electric field.

A. Equations of motion

The ions inside the trap experience forces that pull
them back towards the center of the trap. The forces
come from the electric fields generated by the three
metallic plates, and the movement of the particles can be
described by the following equations of the movement:

a[t] =
q

m
E[t]

v[t+ 1] = v[t] + a[t]∆t

r[t+ 1] = r[t] + v[t]∆t+
a[t]

2
t2

(1)

Where E[t] is the time-varying electric field, q is the
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charge, and m is the mass of the particle. In the simula-
tion, time is discretized into short intervals, so that the
acceleration can be assumed constant within them and
only varies from one interval to the next, therefore it is
correct to use the equations of a uniformly accelerated
motion for the position and the velocity, changing the
acceleration for every time step.

III. SIMULATION OF PAUL TRAP

A. Geometry

The first part of the simulation of the ion trap con-
sists on creating the desired geometry. In this case, the
geometries needed for the Paul Trap are two hyperbolic
cap plates facing each other on the top and bottom of
the structure, and a hyperbolic ring electrode halfway
between the two plates. For the creation of the top and
bottom plates, a mesh of points is created with a circular
shape and later, it is given the hyperbolic shape desired,
by modifying the height of the points with the following
equation:

z =

√
x2 + y2

2
+ z20 (2)

For the case of the hyperbolic ring electrode in be-
tween the plates, the procedure is exactly the same, as
the mesh of points is firstly created and then it is given
the hyperbolic surrounding shape desired.

Once the mesh of the whole structure is obtained, the
structure has to be triangularized so that later, a value
of charge can be assigned to each of the triangles. In
order to triangularize the structure, the function delaua-
nay that returns the exact position of the three vertices
of every triangle, and the center position as well.

Fig. 2 shows the structure of the Paul Trap used
for this simulation after the triangularizaton process, in
which all the triangles are approximately the same size,
with few variations.

B. Charge distribution

In order for the electric field to be time-varying, the
charge distribution of the trap has to keep changing in
time. This is mainly obtained with the use of the Green
function for a electrostatic interaction in three dimen-
sions. That convoluted with the function of the charge
at every point in space will give us the potential.

V = q(r) ∗G =

∫
S

q(r′)

4πε|r − r′|
dr′ (3)

To compute the charge of the plates the integral is only
calculated at the surface of them. In order to do that the
Method of Moments will be used. It will be assumed

FIG. 2. Triangularized simulated structure of the Paul Trap
electrodes

that for each triangle the charge is constant, so it can be
taken outside the integral. This leads to the calculation
of the linear coefficients that will relate the charge with
the potential at the surface.

Z(rm, Tn) =

∫
STn

1

|rm − r′|
dr′ (4)

Where the limit of integration STn represents the sur-
face of the triangle. Once computed for every triangle
and every point in space this function yields a matrix.
Considering the vector of values of the initial potential
V0, which is determined to be half −V0 and the other
half V0, the charge can be obtained simply by using the
Matlab backslash to solve for the equation:

[Z] ∗ [q] = [b] (5)

Where b is the vector of the initial potential values of
each triangle and q the charge. Once the charge is com-
puted, it can be plotted with the fill3 function, so that
the time-variation of the charge distribution on the whole
surface can be seen. The following image represents the
initial charge distribution where the red colour represents
the maximum value while the blue one corresponds to the
minimum:

During the simulation, the charge distribution changes
from this initial condition to the distribution where the
hyperbolic ring has a positive charge distribution (red),
while the top and bottom plates have negative charge dis-
tributions (blue), and then back to the initial condition
again.
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FIG. 3. Initial charge distribution of the simulation

C. Potential

With the time-varying charge obtained, the next step
of the simulation is to calculate the time-varying poten-
tial. The equation needed relates to the tmp function, as
it is the usual equation of the Coulomb Potential (3).

The potential is computed at all the points of space,
not only on the plates. First of all, a new mesh of points
is defined containing all the points in space between -2
and 2 in all directions, and the potential is calculated
using equation (5) in all points of space, with the help of
the function intSdivR, for the calculation of the integral.

The potential is plotted using the Matlab function surf,
of only a vertical section of the plates, taking advantage
of the symmetry of the system, so that it is easier to
see the time-variation of the potential. In this case, the
red colour represents the positive potential, while blue
corresponds to the negative one. The initial potential
in the section is shown in Fig. 4. Initially, the two
red peaks represent the top and bottom electrodes, while
the blue peaks correspond to the hyperbolic ring plate,
which has a negative charge distribution. With the evo-
lution of time in the simulation, the charge distribution
of the plates changes and so does the potential, so that
when the hyperbolic ring plate has a positive charge dis-
tribution and the top and bottom plates have negative
charge distributions, the potential corresponding to the
top and bottom plates is represented in blue while the
one corresponding to the hyperbolic ring is represented
in red.

D. Ions and movement

Once a harmonic time varying potential is achieved the
ions have to be modeled. A simulation of its trajectories
is created using the aforementioned equations for the dy-
namics of the ions. This trajectories are started from

FIG. 4. Initial potential at a vertical section of the simulation

different points and velocities, always starting near the
equilibrium point found in the center of the trap. Since
the stability of the system cannot be taken for granted,
the frequency of the harmonic variation of the potential
in the plates must be tuned for different types of ions.

Since the only parameter from the modeled ions that
can change its trajectory is the ratio between the charge
q and the mass m, as can be seen in the movement
equations, only the mass has been modified, keeping the
charge at 1.6 ∗ 10−19.

IV. RESULTS

With a fixed time step, set at 3 ∗ 10−6, and after sim-
ulating different frequencies of variation of the potential
of the plates it can be seen that for lower frequencies
the rate of change of the potential is not enough to keep
the particle inside the trap. Nevertheless when the fre-
quencies are increased we achieve stability, allowing the
particle to stay inside.

Until this point only particles of the mass of a proton
has been taken into account. If the mass is increased it
is much harder for the electric field to move the particle,
since the force exerted by the plates gets reduced by the
relative value of m.

Running the simulation for different masses and fre-
quencies, relative to the mass of the proton and the orig-
inal frequency respectively, we can observe that as the
mass increases, the range of stable frequencies decreases.

In the simulations of the trajectories it can also be seen
that, for the chosen starting conditions, if the frequency
is too small, the particle tends to go to the top or bottom
plate, the collision is signaled in the Fig. 5 as a red dot.
On the other hand if the frequency of the plates is too
big the particle travels horizontally until it collides with
the ring plate.
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FIG. 5. Stability of the trajectories for different masses and frequencies

V. CONCLUSIONS

With the realization of this project we have managed to
successfully simulate a Paul Trap using Matlab. We have
built the geometry and defined the time-varying charge
distribution and the potential in order for the trap to
trap ions inside.

Finally we have also defined the equations of motion
of the particles assuming the time to be discretized into
short intervals, so that we could simulate the movement
of the charged particles inside the trap.

We have found that the frequency used determines
whether the charged particles are trapped inside or not.
We changed the frequency and other variables such as
the mass in order to find a relation between such vari-
ables for us to be able to choose a frequency for which
particles are always trapped and it can be observed, at
least for the range of frequencies studied that the stable
frequencies are inversely proportional to the mass of the
particle, which means that if we put a particle with two
times the mass of the original one we must reduce the
frequency by half.


