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ABSTRACT. High-index dielectric nanoantennas have recently emerged as promising 

alternatives to plasmonic nanoantennas for concentrating and manipulating light at the 

nanoscale. For example, Gallium Phosphide (GaP) nanoantennas display extremely low losses 

in the visible range, high nonlinearities, support both electric and magnetic resonances, and are 

nicely compatible with CMOS fabrication technology. Especially, the low losses and large 

nonlinearities are promising for ultrafast optical switching and truly all-optical control of GaP 

nanodevices. Here first we use two- and three-photon excitation of GaP nanodisks to probe the 

size-dependent resonance enhancement of second harmonic and bandgap emission. Next, we 

show, by spectral phase control of broadband pulsed excitation, that GaP nanoantennas 

outperform their metal counterparts in supporting nonlinear optical coherences. 
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Plasmonic nanoantennas have been widely used for concentrating and localizing 

electromagnetic energy to enhance fluorescence and in Raman spectroscopies,1,2 controlling 

the directionality of radiative emission,3,4 among others. Most of the exciting features of such 

systems result from collective electronic oscillations i.e. localized surface plasmons (LSPs). 

However, due to the lossy nature and short dephasing times of LSPs, the coherent control of 

nanoscale nonlinear optical excitations in metal nanoantennas has been limited to ultrashort 

pulses below 30 fs.5 
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 In the past few years, all-dielectric nanoantennas with high refractive indices, like Si, 

Ge or combinations of III-V materials such as gallium arsenide (GaAs), aluminum gallium 

arsenide (AlGaAs) or gallium phosphide (GaP),6–10 have attracted great attention as alternative 

candidates for metal nanoantennas due to their ultra-low losses and compatibility with 

semiconductor processing technologies. These nanoantennas support optically-induced Mie 

resonances in the visible and near-infrared range, allowing wide wavelength tunability.6 In 

addition, unlike their metallic counterparts, they can support both strong electric and magnetic 

modes, bringing up unique optical properties.11,12 Furthermore, they allow for high optical field 

enhancement,10,13 and spectral and directional shaping of emission.8,9  

 Dielectric nanoantennas with high second- and third-order nonlinear susceptibilities are 

also useful in enhancing and manipulating various nonlinear optical processes, like two-photon 

absorption (TPA), second harmonic generation (SHG), third harmonic generation (THG), 

optical Kerr effect (OKE) and nonlinear mixing.7,10,14,15 Their strong intrinsic nonlinear 

response, aided by field enhancement when excited resonantly, make these materials ideal for 

nonlinear optical coherent control experiments. In this Letter, we explore the performance of 

single GaP nanodisk antennas when excited with ultrashort pulses of variable pulse duration 

and controlled spectral phase. We first analyze the emission spectrum of GaP nanodisks to find 

the presence of SHG and bandgap emission, dominated by 3-photon absorption at sufficiently 

large pump power, and observe that both signals peak at specific disk diameters due to Mie 

resonances. For an appropriately defined coherent contrast, we then demonstrate that the most 

efficient nonlinear nanodisk delivers a phase control contrast of up to 70-80% at the bandgap 

emission, much stronger than the SHG contrast, and which largely outlasts the coherent 

response produced by the 2-photon luminescence of a reference Au nanoantenna. 

 Arrays of GaP nanodisks of 210 nm height and diameters (D) varying from 80 nm to 

560 nm were fabricated by patterning a 350 m-thick crystalline GaP (100) wafer via e-beam 
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lithography, followed by an etching procedure as described elsewhere.10 A 4 m center-to-

center pitch was chosen to prevent optical coupling between adjacent resonators. The 

nanoantennas were excited with a broadband Titanium:Sapphire laser (Octavius 85M, Menlo 

Systems) tuned to a central wavelength of 790 nm with ~100 nm bandwidth, corresponding to 

14 fs Fourier limited pulse duration. The laser pulses were focused onto individual nanodisks 

by a 0.95 numerical aperture, 100x air-objective from the air side. The sample was placed on a 

XYZ piezo stage in a home-built microscope, and the nonlinear signal from single nanodisks 

was detected in reflection geometry using an avalanche photodiode (APD) or a spectrometer 

coupled to an emCCD camera (Andor). A 4f shaper in folded geometry equipped with a spatial 

light modulator (640 pixels, CRi, adapted from MIIPS box, Biophotonics Solutions Inc.) 

enabled phase-amplitude shaping of the excitation pulses as described in the literature.15  

 First, to study the nonlinear response of the nanodisks, we evaluated their emission 

spectrum in the visible range by pumping at different average excitation intensity up to 5 

GW/cm2, with linearly polarized light. Figure 1a shows the emission spectrum of a nanodisk. 

Two distinct regions can be noticed: SHG emission centered at 395 nm, and a 30 nm-wide 

luminescence band centered at 550 nm, which we attribute to excitonic emission as it 

corresponds to GaP bandgap wavelength. Figure 1b shows the evolution of the nonlinear 

spectrum with power. The experimental data was fitted with a power law ∝ I 

m
, where I the 

incident power and m the exponent in the power dependence. Figure 1a shows the fitted power 

exponent m at the different emission wavelengths, revealing that SHG obeys a quadratic power 

law (m = 2), as expected, while the 550 nm band demonstrates a cubic power dependence (m 

= 3), indicating that the excitonic emission is dominated by 3-photon absorption.  
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To confirm the nonlinear nature of the excitonic component of the spectrum, we 

performed interferometric frequency-resolved optical gating (iFROG) scans at different 

excitation power levels. In an interferometric intensity autocorrelation measurement, 

the ratio r, of the intensity at zero delay to the baseline intensity at infinite delay, is 

related to the order m of the multiphoton process as16    𝑟 = 22𝑚−1 . 

Figure 1. Multiphoton response  

(a) Nonlinear emission spectrum of a 440 nm 

diameter GaP nanodisk, and exponent of 

power law fits at different wavelengths.  

(b) Evolution of GaP nanodisk SHG and 

bandgap emission spectrum with the excitation 

power. SHG data was acquired for excitation 

powers up to 1 GW/cm2 and normalized to 

bandgap emission power levels to enable 

comparison.  

(c) iFROG scans for the different nonlinear 

signals. SHG (black curve) demonstrates a 

second order process. Bandgap emission 

reveals a 2+3 photon absorption effect at low 

powers (red curve), that becomes a pure 3-

photon absorption process at high powers 

(blue curve). 
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The obtained iFROG spectrograms, integrated over the excitonic emission range, as shown in 

Figure 1c, indicate that both 2 and 3 photon processes coexist at low excitation powers (3 

GW/cm2, red curve), while a 3-photon process governs (r = 32:1) when the power is increased 

(5 GW/cm2, blue curve), i.e. multiphoton photoluminescence (MPPL). Black data in the graph 

corresponds to SHG, displaying the expected second order response (r = 8:1).  

Next, we analyzed the influence of the GaP nanodisk size and corresponding Mie resonances 

on the SHG and MPPL emissions. To that end, nonlinear raster scan images of 5x5 arrays of 

GaP nanodisks of increasing diameter (80 to 560 nm) were attained, exciting the sample at 

average excitation intensity of 1 GW/cm2 for SHG and 5 GW/cm2 for MPPL. These power 

levels enabled the study of 2 (SHG) and 3 (high-power MPPL) photon processes, with 

sufficient signal-to-noise ratio, while larger excitation powers for either nonlinear process 

would have saturated the APD. Dichroic filters were used to isolate either the SHG signal or 

the MPPL contribution. Figure 2a shows, from left to right, a scanning electron microscope 

(SEM) image of a 5x5 disk array with corresponding registered SHG and MPPL images. The 

dependence of the emission intensities on the disk diameter, as extracted from the maximum 

count values in the nonlinear scans, is depicted in Figure 2b. Both SHG and MPPL response 

present relative maxima at specific diameter values. To establish the origin of this effect, we 

performed numerical simulations of the scattering cross section and near-field distribution of 

the nanoantennas, using the commercial software Lumerical. The complex refractive index of 

GaP was determined from measured ellipsometry data and used as an input for the numerical 

calculations. The inset of Figure 2c exhibits the calculated electric field intensity distribution 

for D = 450 nm at the scattering maximum, which occurs around the pump wavelength used in 

the experiments, as shown in the main graph. The electric field is confined to the top region of 

the nanodisk, with a field enhancement factor with respect to the incident field of ~6.  
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Figure 2. . Geometrical resonances.   (a) SEM image of a 5 x 5 array of GaP nanodisk antennas 

(left panel) and corresponding SHG (middle) and MPPL (right) images. The disk diameters 

increase from 80 nm to 560 nm in steps of 20 nm. The resonant nanodisks for the experiment are 

encircled.   (b) Measured SHG and MPPL intensities as a function of disk diameter.   (c) Simulated 

wavelength dependence of the scattering cross section of GaP nanodisks of different diameters. 

The dashed blue curve shows the simulated absorption cross section of D = 450 nm disk. The 

inset shows the simulated field intensity distribution for D = 450 nm, in the plane of the excitation 

polarization, excited from airside at 800 nm wavelength resonance. The grey shaded area 

represents the wavelength region of the excitation laser, which resonates with disk sizes around 

440 nm diameter, as highlighted in (b).  
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Given that SHG and 3-photon absorption photoluminescence scale with the fourth and sixth 

power of the incident electric field amplitude, respectively, a strong increase in the signals is 

expected when the fundamental wavelength is at resonance, explaining the observed peaks at 

D ~ 440 nm in Figure 2b. The additional measured maxima at around D = 100 nm for SHG 

and D = 200 nm for MPPL would arise from resonances at the emission wavelengths, as 

indicated by numerical calculations for disks of smaller sizes. We attribute differences between 

experimental and simulated resonant wavelengths and diameter values to imperfections in the 

fabrication7,10,18,19 process especially for disks of the smallest diameters. Figure 2b also reveals 

that small resonant diameters outperform large resonant sizes for SHG, while the opposite 

occurs for MPPL. This can be explained by the broad scattering resonance for D=440 nm in 

Figure 2c which also covers the 550 nm band (but not the SHG wavelength), giving rise to a 

doubly resonant effect that further boosts the MPPL emission, as has been observed in 

nonlinear nanoantennas with resonances at both the excitation and emission wavelengths.20–26 

In addition, since the resonance at the fundamental wavelength has a stronger influence on the 

MPPL process, being of higher order than SHG, a particularly large reduction in the MPPL 

emission intensity is expected at the smallest diameters, where the resonance at the 

fundamental wavelength is absent. We also note that the absorption cross section (shown as 

dashed blue curve in Figure 2c) does not change much with the disk sizes due to substrate 

effect.  Thus, further simulation studies considering the emission patterns of the nonlinear 

signals, as well as the surface and volume contributions to the nonlinear responses, would be 

needed to quantitatively describe the experimental findings. 

We turn now our attention toward the phase control experiments, which were performed 

on the nanodisk of 420-460 nm diameter, as they deliver both efficient SHG and MPPL. Firstly, 

we measured the temporal response of the nonlinear signals when chirping the excitation beam. 

The spectral phase 𝜑 of a laser pulse is generally described as a Taylor expansion with respect 
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to its central frequency 𝜔0 (790 nm wavelength in our measurements), in which the second 

order phase term 𝜑2 =
1

2
𝜑(2)(𝜔 − 𝜔0)2 determines the chirp. Modifying the group delay 

dispersion (GDD), 𝜑(2), changes the pulse duration from its Fourier limit (𝜏) to a desired value 

(𝜏𝑜𝑢𝑡). For a Gaussian laser pulse, 𝜑(2) and the pulse duration are related by: 

 𝜏𝑜𝑢𝑡
2 =  𝜏2 + (4ln2

𝜑(2)

𝜏
)

2

        (1) 

In this experiment, we varied 𝜑(2) from -1000 fs2 to 1000 fs2. In time domain, this corresponds 

to stretching the pulse from 14 fs to 190 fs. It is important to note that positive and negative 

𝜑(2) values imply the same result in time domain. The obtained multiphoton phase 

spectrogram, averaged over 400 scans, is shown in the top and bottom left panels of Figure 3a, 

demonstrating that the SHG spectral intensity falls off slower than the MPPL signal. Next, in 

addition to 𝜑(2), we added a static 𝜋 phase step at a frequency 𝜔𝑠𝑡𝑒𝑝 in the laser spectrum, 

defined as 𝜑𝜋 =
𝜋

2
𝑠𝑖𝑔𝑛(𝜔 − 𝜔𝑠𝑡𝑒𝑝), where 𝑠𝑖𝑔𝑛(𝜔 − 𝜔𝑠𝑡𝑒𝑝) jumps from -1 to +1 at 𝜔𝑠𝑡𝑒𝑝. A 

static 𝜋 phase step has earlier been reported as an effective phase control method to manipulate 

the interfering pathways in a multiphoton process.27,28 The top and bottom right panels of 

Figure 3a show the result of applying 𝜑(2) + 𝜑𝜋 to the laser pulses at 𝜔𝑠𝑡𝑒𝑝 = 𝜔0. A wider 

response in phase is now observed in the SHG and MPPL scans. To better analyze these results, 

it is convenient to define a coherent contrast (𝛽) as:5 

 𝛽 =
𝐼

𝜑(2)−𝐼
𝜑(2)+ 𝜑𝜋

𝐼
𝜑(2)

          (2) 

where 𝐼𝜑(2) and 𝐼𝜑(2)+ 𝜑𝜋
 correspond to integrated intensities over the emission spectrum that 

can be directly computed from the GDD scans in Figure 3a. Figure 3b shows the obtained plots 

of 𝛽 against 𝜑(2). When 𝜑(2) = 0 fs2, the contrast for MPPL (𝛽𝑀𝑃𝑃𝐿) is ~ 80%, which is a 

factor of 1.4 higher than that for SHG (𝛽𝑆𝐻𝐺 ~ 56%). The theoretical SHG response is shown 

in black solid line, as calculated from the laser spectrum using standard nonlinear theory from 
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the literature.5 As 𝜑(2) is increased, 𝛽𝑀𝑃𝑃𝐿 drops and crosses the zero level at 330 fs2, while 

𝛽𝑆𝐻𝐺 is found to fall faster, crossing the zero level at 250 fs2, flipping sign to remain constant 

at approximately -20%. Remarkably, for MPPL, when 𝜑(2) is further increased, its 

corresponding 𝛽 value grows further in the negative direction reaching -70% at ~500 fs2, highly 

surpassing the performance of SHG. 

Figure 3. Phase control (a) GDD scans for SHG and MPPL without (left panels) and with (right panels) 

an additional 𝜋 step. (b) Coherent contrast  of SHG and MPPL on increasing chirp and pulse length 

of the excitation pulse. For comparison, also shown are TPPL results from a resonant Au nanorod (140 

nm length, 50 nm width and height). The inset shows the spectral phase of a quadratic term  (2)  with 

and without a spectral 𝜋 phase step (𝜑𝜋) on top. (c) Dependence of the nonlinear intensities on the 

phase step height (astep) applied to the laser pulse a frequency 𝜔0. For both SHG and the MPPL, the 

intensity minimum is achieved when the step height is 𝜋. 

 

Clearly, the 3-photon absorption is much more sensitive to spectral change than the 2 photon 

counterpart. For reference, Figure 3b also includes TPPL (two-photon absorption 

photoluminescence) results obtained from a resonant Au nanoantenna, which exhibits the 

poorest of contrasts and shortest of coherence times, as limited by the reduced dephasing times 

of LSPs. 

 Finally, to evaluate the strength of our phase step in controlling the multiphoton 

processes, we varied the amplitude of the phase step (𝑎𝑠𝑡𝑒𝑝) between 0 and 2 𝜋 at GDD= 0 fs2 
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and studied its effect on the nonlinear signals. In all cases, the results showed a single minimum 

on a full sweep. Figure 3c shows the case of 𝜔𝑠𝑡𝑒𝑝 =  𝜔0, which reveals that both SHG and 

MPPL responses drop to a minimum for a step of phase amplitude 𝜋, proving the strength of 

the 𝜋 step in influencing the nonlinear processes. Again, the MPPL shows the strongest effect, 

yet for a 3-photon interaction, it is surprising to find the optimum at a phase difference of . 

 In summary, we have studied the spectral phase control of nonlinear optical responses 

in GaP nanodisks at Mie resonances supporting efficient SHG and MPPL. By combining a 

dynamic GDD scan and a static 𝜋 phase step on a 14-fs excitation laser pulse, we determined 

the differences in the coherent responses between the MPPL and SHG processes. We showed 

that the coherent contrast for the MPPL effect is a factor of 1.4 (3.5) higher than that achieved 

for SHG at GDD = 0 fs2 (GDD > 500 fs2). Notably, the coherency of the MPPL signal in the 

GaP nanodisk antenna outlasts that of the TPPL emission from its metal counterpart, 

demonstrating the potential of dielectric nanocavities for realizing coherent nonlinear 

nanodevices.  
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