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ABSTRACT

In this contribution, a finite element methodology devised to simulate the structural deterioration of
corroded reinforced concrete members is presented. The proposed numerical strategy has the ability
to reproduce many of the well-known (undesirable) mechanical effects induced by corrosion processes
in the embedded steel bars, as for example: expansion of the reinforcements due to the corrosion pro-
duct accumulation, damage and cracking patterns distribution in the surrounding concrete, degradation
of steel-concrete bond stress transfer, net area reduction in the reinforcement fibers and, mainly, the
influence of all these mentioned mechanisms on the structural load carrying capacity predictions.

At numerical level, each component of the RC structure is represented by means of a suitable FE for-
mulation. For the concrete, a cohesive model based on the Continuum Strong Discontinuity Approach
(CSDA) is used. Steel bars are considered by means of an elasto-plastic model. The interface is simu-
lated using contact-friction elements, with the friction degradation as a function of the degree of corro-
sion attack. Two different (and coupled) mesoscopic analyzes are considered in order to describe the
main physical phenomena that govern the problem: (i) analysis at cross section level and (ii) analysis at
structural member level.

The resultant mechanical model can be used either to simulate generalized or localized reinforcement
corrosion. Experimental and previous numerical results, obtained from the available literature, are used
to validate the proposed strategy.
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1 Introduction

Reinforced Concrete structures (RC structures) are widely used across the world. Many reasons justify
the broad acceptation of such constructive technology, as it is discussed in standard textbooks and
several concrete building codes. Nevertheless, they have a Limited Service Life due to serious age-
related degradation mechanisms that affect its durability and the long-term structural reliability. This
fact forces the engineers to study, and to understand, the most important sources of damage. In this
context, the corrosion of the embedded reinforcement steel bars is identified as one of the most critical
aspects influencing the RC service life. The problem must be carefully analyzed because it could cause
premature deterioration and, sometimes, the necessity of expensive repairs, strengthening, or even the
demolition and replacement of existing RC structures [1].

The corrosion phenomenon observed in RC elements is formally described as an electro-chemical pro-
cess. In general, the use of high quality materials jointly with appropriate control/constructive tech-
niques, guarantee the formation of a highly alkaline layer at the steel-concrete interface [2]. These two
conditions can efficiently prevent, or minimize, the corrosion effects in the reinforcement bar because
they keep a chemically stable environment. However, they cannot be always preserved during the com-
plete service life, specially when RC structures are exposed to an aggressive medium or when external
solicitations degrade the cover concrete of the reinforcements. Typically, two chemical (undesirable)
scenarios can be expected in an RC structure: the carbonation process what induces a mechanism of
Generalized Corrosion, and the penetration of chloride ions causing, primarily, Localized Corrosion.

The economic importance and the technological consequences of this problem have motivated, in the
last years, numerous research programs. Thus, they can be mentioned many experimental works repor-
ting the unfavorable corrosion effects on RC elements, see for example [3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
and also analytical studies and numerical models ([13, 14, 15, 16, 17, 18, 19, 20]) addressed to under-
stand this complex degradation mechanism.

From the wide spectrum of phenomena involved in the reinforcement fiber corrosion process, in the
present work we are only interested in those aspects related with the mechanical problem. In this con-
text, we present a numerical model suitable to simulate the evolution of the mechanical degradation
mechanisms of RC structural members caused by the reinforcement fiber corrosion. Phenomena such
as: (i) expansion of the corroded bars, (ii) distribution of crack patterns, (iii) loss of steel-concrete
bond adherence, (iv) net area reduction of the steel fiber cross section and (v) the effects of the above
mentioned mechanisms on the structural load carrying capacity, can be analyzed as a function of the
reinforcement corrosion degree. Therefore, the model makes possible to determine the influence and
sensitivity of this key variable, the reinforcement corrosion level, in the structural deterioration pro-
blem.

The proposed numerical strategy can be applied to beams, columns, slabs, etc., through two succesive
and coupled mesoscopic mechanical analyzes, as follows:

(i) At the structural member cross section level, we simulate the reinforced fiber expansion due to
the volume increase of the steel bars as a consequence of corrosion product accumulation (see Sec-
tion 2). Damage distribution and cracking patterns in the concrete bulk and cover is evaluated, which
(indirectly) defines the concrete net section loss in the structural member.

(ii) A second mesoscopic model at the structural level, considering the results of the previous analy-
sis, evaluates the mechanical response of the structural member subjected to an external loading system
(see Section 3). This evaluation determines the global response and the macroscopic mechanisms of
failure.

Section 4 presents a consistent coupling between the two analyzes in points (i) and (ii). Finally, appli-
cations of such strategy to determine limit loads in RC beams, as a function of corrosion attack depth,
are shown. The obtained quantitative structural limit load predictions are compared with available ex-
perimental results, standard code procedures (based on simpler models) and numerical estimation pre-
viously proposed.
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2 Cross section analysis of the structural member (expansion mode)

Let us consider the cross section of an arbitrary RC structural member, as displayed in Figure 1-(b),
whose reinforcement fibers are experiencing a corrosion process. The products derived from the steel
bar corrosion, such as ferric oxide rust, reduce the net steel area and accumulate causing volumetric
expansion of the bars (see Figure 1-(a)), what induces a high hoop tensile stress state in the surrounding
concrete. As a consequence the cover concrete undergoes a damage and a degradation process displa-
ying two typical fracture patterns: (i) inclined cracks and (ii) delamination cracks, as observed in Figure
1-(c) (see also [21]). Obviously, these induced cracks can increase the rate of corrosion process in the
structural member.

In this Section, we present a numerical model based on a finite element technique that is specially
addressed to study this phenomenon. The two-dimensional plane strain mesoscopic model, as idealized
in Figure 1-(b), considers three different domains of analysis: (i) the concrete matrix, (ii) the steel
reinforcement bars and (iii) the steel-concrete interface. Each of them are characterized by a different
constitutive response and FE technology that take into account the main mechanisms involved in the
corrosion process.

Concrete

Reinforcement

Interface

Interface

Reinforcement

Delamination

Inclined cracking

(b) (c)(a)

Ri
R =R + Rf i D

X
X+ RD

Ri : initial (uncorroded) bar radius
Rf : final (expanded) bar radius
X: corrosion attack depth

+

DR: bar radius increment

x

y

Figure 1: RC structural member cross section. Plane strain mesoscopic 2D model: (a) Corrosion-
expansion mechanism. (b) Numerical model idealization. (b) Typical pattern of cracks.

2.1 The concrete model

The model adopted for analyzing the concrete matrix constitutive response is an isotropic continuum
damage model regularized by means of the Continuum Strong Discontinuity Approach (CSDA), as des-
cribed in [22]. It has been shown that this technique is robust enough and flexible to simulate different
patterns of distributed cracks in solids, similar to that observed in RC structures undergoing advanced
deterioration stages. Here we only summarize the main features of this model. Additional theoretical
details can be obtained elsewhere [23, 24].

• (i) The macroscopic discontinuities arising in a solid, such as cracks or fractures, are mathemati-
cally described by a strong discontinuity kinematics.

Let be given a body Ω experiencing a strong discontinuity (displacement jumps) across the sur-
face S (see Figure 2). The surface S divides the body in two disjunct domains Ω+ and Ω−. The
displacement u(x) and the compatible strain field ε(x), in Ω, can be written as:

u(x) =

continuous
︷ ︸︸ ︷

u(x) +

discontinuous
︷ ︸︸ ︷

HS(x) [[u]](x) ; HS(x) =

{

1 ∀x ∈ Ω+

0 ∀x ∈ Ω−
(1)

ε(x) = ∇symu(x) = ε(x)
︸︷︷︸

regular

+ δS(x)
(
[[u]]⊗ n

)sym

︸ ︷︷ ︸

singular

(2)
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Figure 2: Strong discontinuity kinematics.

where u(x) is a continuous function in Ω, [[u]](x) represents the displacement jump across the
discontinuity S and HS(x) is the Heaviside’s step function. The strain field shows a singular
term, the second one in equation (2), given by the Dirac’s delta distribution δS(x).

• (ii) Concrete can be quite appropriately modeled by means of an isotropic continuum damage
model equipped with a regularized strain softening in order to make possible the onset of material
instabilities, strain localization and crack propagation. Table 1 defines this material model, where
damage in tension and compression is possible, but different ultimate limit stresses are used [25].
There, σ and ε represent the stress and strain tensors, q and r are internal variables defining the
standard damage variable d = 1− q

r
, the elastic material parameters E, λ and µ are the Young’s

modulus and the Lamé’s coefficients. Also we define σC
u and σu as the compressive and tensile

limit strength, respectively.

The compatibility between the strong discontinuity kinematics, eqs. (1)-(2), and the continuum
damage material model is performed by introducing an intrinsic softening modulus H̄ = δS H ,
whose value is computed from the classical parameters used in the Fracture Mechanics context:
H̄ = f(σu, Gf , E), where Gf is the concrete fracture energy. This intrinsic modulus allows
defining a bounded stress state in S through the standard continuum damage model of Table 1,
even when the strains ε are defined by a singular term, see equation (2).

• (iii) The vector traction continuity across the discontinuity interface S, equilibrium condition,
requires that:

tS = σS · n = σΩ+ · n (17)

When the strong discontinuity kinematics (1)-(2) is consistently introduced in this continuum
setting, a cohesive model tS = f([[u]]) is automatically projected onto the interface S [26]. This
traction-separation cohesive law governs the crack opening evolution in the strong discontinuity
regime.

• (iv) The previously discussed model is numerically implemented by using a finite element tech-
nique based on embedded strong discontinuities. Basically, this methodology consists of enri-
ching the standard continuous displacement modes adding enhanced discontinuous ones and,
consequently, additional degrees of freedom. It makes possible to capture the crack trajectory in-
side the finite elements irrespective of the size and orientation of them. In particular, the E-FEM
technology [27] has been adopted in the present work, see Figure 3. This strategy permits the
condensation of the extra discontinuous modes at elemental level and, therefore, the additional
d.o.f. does not enlarge the size of the final equation system.

Summarizing, the non-linear analysis of the concrete response is performed with a continuum format
by using standard stress-strain constitutive descriptions such as the presented in Table 1.
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Elastic stress-strain relationship

σ =
q(r)

r
C
e : ε = [1− d(r)]

σ

︷ ︸︸ ︷

C
e : ε (3)

C
e = λ ( I1⊗ I1) + 2µ II (Isotropic elastic tensor) (4)

I1 = δij (ei ⊗ ej) (5)

II =
1

2
(δikδjl + δilδjk) (ei ⊗ ej ⊗ ek ⊗ el) (6)

Damage criterion

φ(σ, q) = τσ − q ≤ 0 (7)

τσ = χ
√

σ : (Ce)−1 : σ = χ [1− d(r)]
√

σ : (Ce)−1 : σ (8)

χ =

∑i=3

i=1
〈σi〉

∑i=3

i=1
|σi|

[

1− 1

nσ

]

+
1

nσ
(9)

nσ =
σCu
σu

(10)

〈•〉 =
1

2
{ •+ ‖ • ‖} (11)

σi ≡ principal values of σ (12)

Softening evolution law

ṙ = γ ; r0 = r|t=0 =
σu√
E

(13)

q̇ = H(r) ṙ ; q0 = q|t=0 = r0 (14)

(γ ≡ consistency parameter) (15)

Loading-unloading complementarity conditions

φ(σ, q) ≤ 0 ; γ ≥ 0 ; γ φ(σ, q) = 0 (16)

Table 1: Continuum damage model for the concrete response simulation.
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enriching d.o.f.
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1

Figure 3: Embedded finite elements whit internal enhanced d.o.f. (E-FEM technology).
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2.2 The steel bar model

A standard linear elastic (isotropic) constitutive behavior is assumed for the steel bars. The expansion
effect, due to the corrosion phenomenon, is considered through a (pseudo) volumetric initial deforma-
tion mode ε0.

Let us assume that the cross section of a typical RC member is contained in the the x-y plane, see
Figure 1. Making use of the standard Voigt’s notation for tensors and assuming a plane strain state, the
total strains can be expressed as the superposition of two terms:

ε = ∇symu(x) =







εxx
εyy
γxy
εzz






=







εxx
εyy
γxy
0






=

ε
e

︷ ︸︸ ︷






1
E
(σxx − νσyy − νσzz)

1
E
(σyy − νσzz − νσxx)

2(1+ν
E

)σxy
1
E
(σzz − νσxx − νσyy)






+

ε
0

︷ ︸︸ ︷






D
D
0
0







(18)

whereD is the value of the dilatational component due to the corrosion products and εe the elastic part.
Note that the dilatational coefficient is not included in the zz component of ε0 because does not exist
any expansion effect in the axial direction of the bars.

Taking into account the classical elastic relation σ = Ce : εe, the stress response can be computed as
follows:

σ =







σxx
σyy
τxy
σzz






=







α β 0 β
β α 0 β
0 0 γ 0
β β 0 α













εxx −D
εyy −D

γxy
0







(19)

where we have defined the elastic parameters: α = E(1−ν)
(1+ν)(1−2ν) , β = Eν

(1+ν)(1−2ν) and γ = E
2(1+ν) .

The increment of the bar radius, from the initial value Ri to the (corroded) final one Rf (∆R =
(Rf − Ri)), see Figure 1-(a), depends on the corrosion attack depth X , which is an experimentally
determined value. Therefore, Rf = R̂f (X) and the dilatation parameter D can be estimated as a
function of X:

D ≈
R̂2
f (X)−R2

i

2R2
i

(20)

Note that, in view of equation (20), the depth of corrosion attack (X) is a fundamental input data of the
present model.

During the numerical simulation process, the total magnitude of dilatation D is applied incrementally,
i.e. if nt times steps are required to perform the complete non-linear analysis, a (pseudo) volumetric
expansion state ∆ε0 = D

nt
[1 1 0 0]T is applied per time step, on each steel element.

2.3 The steel-concrete interface model (contact element)

A phenomenological observation of the mechanisms taking place in the steel-concrete interface,
suggests that there exists a limit value for the shear stress transference (maximum adherence stress
τmax) that depends on several factors: bar diameter, bar surface texture, confining effects, corrosion
level, etc. Eventually, when high expansion values in the steel are reached, the separation between both
materials (steel and concrete) must be expected.

These effects have important consequences in the concrete fracture pattern prediction, what motivates
the introduction of contact finite elements in order to simulate appropriately the steel-concrete interface,
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as shown in Figure 4-(a). The contact linear triangular element adopted in the present model, to simulate
the interface steel-concrete interaction, has been taken from [28], where additional details about its
formulation can be obtained.

In every contact finite element, it is defined a local cartesian system {η, t}, where η is the unit vector
normal to the contact surface. The strains are evaluated from the nodal displacement, as it is done in
standard finite elements. The mechanical response of the contact-friction model is expressed by means
of the following constitutive law:

σ = Ψ(g)

[ linear-elastic
︷ ︸︸ ︷

σηη(εηη) (η ⊗ η)+

elasto-plastic
︷ ︸︸ ︷

τηt(εηt) [(η ⊗ t) + (t⊗ η)]

]

(21)

where the scalar step function Ψ(g) is:

Ψ(g) =

{

1 ; if g < 0

0 ; if g ≥ 0
(22)

and the gap function, g(εηη), is computed as:

g(εηη) = he εηη (23)

he being the length of the finite element in the η direction.

The normal contact stress, σηη, is obtained as a function of the constant strain component εηη (εηη =
η · ε · η), following a 1D linear elastic law (see Figure 4-(c)). The friction stress component, τηt,
is determined as a function of the constant shear strain component εηt (εηt = η · ε · t) by means
of a classical 1D elasto-plastic constitutive model, as detailed in Table 2 (see also Figure 4-(d)). The
elasto-plastic model of Table 2 only applies when Ψ(g) = 1, otherwise no evolution of plastic flow is
considered.

Summarizing, the proposed contact-friction model is characterized by four parameters: the normal stiff-
ness (Kηη) working as a penalty parameter, the shear stiffness (Kηt), the maximum adherence stress
(τmax) and the hardening/softening shear modulus (K).

Contact elements

Steel (elastic) elements

Contact surface

(a) (c) (d)

Q1

Q2

P

e

e

+

(b)

Figure 4: Contact finite element at the interface: (a) Representative scheme. (b) Typical contact element.
(c) Scheme of the constitutive law for the contact normal stress σηη. (d) Scheme of the constitutive law
for the friction shear stress τηt.
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Incremental elastic stress-strain relationship

τ̇ηt = Kηt (ε̇ηt − ε̇pηt) (24)

Yield condition

φ(τηt, α) = |τηt| − (τmax +Kα) ≤ 0 (25)

Flow rule and hardening/softening evolution law

ε̇pηt = γ sign(τηt) (26)

α̇ = γ (27)

(γ ≡ plastic multiplier)

(α ≡ accumulated equivalent plastic strain)

Loading-unloading complementarity conditions

φ(τηt, α) ≤ 0 ; γ ≥ 0 ; γ φ(τηt, α) = 0 (28)

Table 2: Basic equations for 1D elasto-plastic friction model (τηt shear stress).

3 Mesoscopic model to simulate the structural load carrying capacity
(flexure mode)

The model of Section 2 provides qualitative information related to the concrete degradation mechanisms
due to the steel expansion. Nevertheless, it does not give additional information about the mechanical
behavior of a deteriorated RC structure subjected to external loads.

In this Section we introduce a 2D mesoscopic model for the quantitative prediction of residual load
carrying capacity of corroded RC members, where each component of the structure (concrete, steel
and steel-concrete interface) is independently represented. An idealized scheme of the adopted discrete
model, applied to an RC beam, can be observed in Figure 5.

Concrete Bottom bar

Top barTop bar

Interface
Stirrups

+

+

Concrete

Interface
Reinforcement
Interface

Concrete

Figure 5: Plane stress beam mesoscopic 2D model.

The present (plane stress) mesoscopic strategy has many similar features with the (plane strain) meso-
scopic model of the previous Section (2). In fact, the concrete model we adopt here is the CSDA, that
discussed in sub-Section 2.1, with identical enhanced finite elements technology, isotropic (tension-
compression) continuum constitutive damage model and crack propagation scheme. Furthermore, a
similar procedure to that described in sub-Section 2.3 is here adopted for the steel-concrete interface
model. Note that, in the present case, the contact elements provide the necessary coupling between
the concrete matrix and the reinforcements acting as top/bottom longitudinal bars and stirrups. Conse-
quently, a consistent definition of the unit normal vector, η, is required in each contact finite element.

The mechanical behavior of the steel bars is simulated with an elasto-plastic model, which is briefly
discussed in the following sub-Section.
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3.1 Elasto-plastic model for the longitudinal steel reinforcement bars

The steel bar response is characterized by a 2D finite element model. Each finite element has associated
a local normalized cartesian basis {η, t}. The vector η is computed such that it is orthogonal to the lon-
gitudinal bar axis, see Figure 6-(a). The reinforcement mechanical behavior reproduces a 1D standard
elasto-plastic model in the σtt normal stress component, while the remaining stress tensor components
behave elastically, assuming a Poisson relation ν = 0.

Steel (elasto-plastic) elements

Bar axis

e

+

(c)(b)(a) (d)

(       )

(2      )( )G

( )G

Figure 6: Elasto-plastic reinforcement element: (a) Representative scheme. (b) Typical steel element.
(c) Scheme of the constitutive law for σηη and τηt stresses. (d) Scheme of the constitutive law for σtt

stress.

Thus, the stress tensor is given by:

σ = σηη (η ⊗ η) + τηt
[
(η ⊗ t) + (t⊗ η)

]

︸ ︷︷ ︸

linear-elastic

+σtt (t⊗ t)
︸ ︷︷ ︸

elasto-plastic

(29)

where σηη = E εηη, τηt = τtη = G 2 εηt (G = E
2 being the shear modulus), see Figure 6-(c), and σtt is

given by the standard 1D plasticity model shown in Table 3, see also Figure 6-(d).

Incremental elastic stress-strain relationship

σ̇tt = E (ε̇tt − ε̇p
tt

) (30)

Yield condition

φ(σtt, α) = |σtt| − (σY +Kα) ≤ 0 (31)

Flow rule and hardening/softening evolution law

ε̇p
tt

= γ sign(σtt) (32)

α̇ = γ (33)

(γ ≡ plastic multiplier)

(α ≡ accumulated equivalent plastic strain)

Loading-unloading complementarity conditions

φ(σtt, α) ≤ 0 ; γ ≥ 0 ; γ φ(σtt, α) = 0 (34)

Table 3: Basic equations for 1D elasto-plastic steel model (σtt normal stress).

Summarizing, the proposed elasto-plastic model is characterized by three parameters: the Young’s mo-
dulus (E), the uniaxial yield stress (σY ) and the hardening/softening modulus (K).
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4 Coupling strategy between the cross section and the structural mem-
ber model

Figure 7 shows an idealized scheme of the strategy adopted in this work to couple the two models
presented in the previous Sections, i.e. the cross section analysis and the structural member analysis.

As it can be observed in the figure we transfer, from one domain of analysis to the other, the average
value of the damage variable “d” across horizontal slices of the cross section model. This projection
is consistent because both analysis use the same continuum isotropic damage model for simulating
the concrete domain. Thus, the final degradation state of concrete induced by the steel bar volumetric
deformation process, is considered to be the initial damage condition for the subsequent structural
analysis. This means that we are assuming that the two mesoscopic models are coupled in only one
direction, neglecting the structural load effects on the concrete damage evaluation determined in the
cross section analysis. A complete coupling between these mechanisms could be obtained by using a
3D model with identical ingredients to that presented in the preceding Section.

Top reinforcement
bar

Stirrups

- Steel bar expansion due to corrosion
- S damage

- Steel/concrete interface with loss of adherence
urrounding concrete

(1) Mesoscopic anayisis of a generic cross  section for a given corrosion attack level

Iso-displacements Damage mapDeformed section

C
detached
(assumed
d=1)

oncrete part

1.00

0.20
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0.60

0.80

Interface

Average
damage
evaluation
along
horizontal
slices

-
-

-

Distributed initial damage map (concrete analysis)
Steel bar reduced area, due to corrosion

Steel/concrete interface with loss of adherence

(2) Mesoscopic analysis of a structural member

P/2

Concrete
Bottom
reinforcement  bar

Damage distribution transfer

Considered

effects

Considered

effects

0.00

1.00

0.00

Figure 7: Coupling strategy between the cross section analysis and the structural member analysis.

Note that in the present strategy, and in contrast to other simpler models previously proposed for co-
rroded RC members, neither ad-hoc assumptions about reductions in the net cross section area of the
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concrete nor empirical modifications in the definition of its constitutive behavior are introduced in order
to simulate the degradation by corrosion in the concrete matrix. This complex phenomenon is taken into
account in a unique constitutive scenario (continuum damage model) performing a consistent mapping
of the damage variable between the two level of analysis.

5 Numerical results

In this Section, a set of numerical simulations is addressed in order to test the performance of the
described finite element formulations. Two types of RC beams have been analyzed, we call them: Beam
type 11 and 31 (additional indices will be added to indicate different corrosion levels). The geometry
and boundary conditions of the examples are shown in Figure 8. Table 4 presents additional information
on the geometry and material data. The differences between both beam types are the reinforcement
arrangements (steel ratios of top/bottom bars and stirrups separations).

Figure 8: RC beams: (a) Dimensions and boundary conditions (length in [m], except the specified ones).
(b) Cross section scheme for beam type 11 (≈ 0.5% steel-concrete ratio). (c) Cross section scheme for
beam type 31 (≈ 1.5% steel-concrete ratio).

(1) (2) (3) (4) (5) (6) (7)
Beam Dimensions Top bars Bottom bars Stirrups Concrete Steel yield
type l × b ×h number/diameter number/diameter diameter/spacing strength: σCu stress: σY

[m] [mm] [mm] [mm] [MPa] [MPa]
11 2.00× 0.15× 0.20 2φ 8 2φ 10 φ 6/170 50− 34 575
31 2.00× 0.15× 0.20 4φ 8 4φ 12 φ 6/85 49− 37 575

Table 4: RC beams. Material description (taken from [19]).

For these specimens, experimental results are available, see Rodriguez et al. [4, 5]. In these works
a process of accelerated corrosion was induced by applying a constant anodic current density of
100 [µA/cm2] in the embedded steel bars and also by using a contaminated concrete mixture with cal-
cium chloride, which produces a generalized corrosion phenomenon. Table 5 shows some experimental
measurements of the attack depth X , for different levels of corrosion and types of reinforcement.

Coronelli et al. [19] have presented a numerical mesoscopic 2D model for corroded RC elements, which
has been validated with the above mentioned experimental results of Rodriguez et al. [4]. In the present
work, we follow very close the guidelines and material characterization reported in [19].
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(1) (2) (3) (4) (5)
Beam Bottom bars Top bars Stirrup τmax

denomination attack: XB attack: XT attack: XS

[mm] [mm] [mm] [MPa]
11− 1 — — — 6.86
11− 4 0.45 0.52 0.39 4.10
11− 5 0.36 0.26 0.37 4.13
11− 6 0.70 0.48 0.66 4.04

31− 1 — — — 7.82
31− 3 0.30 0.20 0.35 5.12
31− 4 0.48 0.26 0.50 5.06

Table 5: Experimental corrosion attack measures [4, 5] and residual adherence stress τmax[3]. Beam
type 11 and 31 (taken from [19]).

5.1 General aspects of the numerical simulations

Triangular finite elements with linear interpolation have been adopted for all the tests. In particular,
enhanced strong discontinuity triangular elements are used for the concrete material.

Each numerical problem is solved by imposing an arc-length displacement-based control strategy. In
the plane strain expansion tests, the control is applied over the dilatation variable D. For the bending
examples, we control the vertical displacement of the beam central point.

A special mention deserves the numerical algorithm used to integrate the non-linear constitutive models.
In this context, a very robust scheme is adopted, namely the Impl-Ex method [28]. It allows to obtain
efficient solutions, even in really complex situations.

In order to optimize the computational resources and computing effort, we have taken advantage of as
many symmetry conditions as possible.

The material parameter characterization considers the following aspects:

• The concrete compressive limit strength, σC
u , is given in Table 4, column 6 (the first figure cor-

responds to the concrete used in the not corroded beams and the second one to the contaminated
concrete mixture). The ultimate concrete tensile stress, σu, is assumed as: σu = 0.10σC

u . Other
material properties for the concrete, as for example Young’s modulus, Poisson’s ratio, fracture
energy and softening modulus, are adopted by setting standard values (and previously used by
the authors in the solution of similar fracture mechanics problems, see for example [27]).

• The contact model depends on the ultimate adherence stress τmax(X). Column 5 of Table 5 (see
also Rodriguez et al. 1994 [3]) provides a reasonable estimation for the bond-slip model, as a
function of the corrosion level.

• The dilatation component D, utilized in the mesoscopic plane strain model, is computed from
equation (20). Following [29] and [19] we adopt the relation: Rf = Ri + X , which is based on
the incompressibility assumption of the corrosion products. For each solved case, the X value is
adopted from Table 5, columns 2-4.

• Finally, the steel yield stress (σY ) is reported in Table 4, column 7. The reinforcement cross
section reduction, due to corrosion, is computed assuming an effective bar radius Reff = Ri−X .
Note that both characterizations apply only to the structural member analysis.

5.2 Numerical results: the mesoscopic cross section model

In this Section, we describe the obtained numerical results related to the expansion mechanism of steel
bars for a predefined corrosion attack depth, and the degradation induced in concrete at the cross section
level.
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The sequence of Figures 9-11 shows, for the beam type 11 at the final stage of analysis, the iso-
displacement contour lines, the FE mesh in the (scaled) deformed configuration and the damage dis-
tribution in the cross section. A complete degradation of the surrounding concrete is observed for the
applied expansion levels. It can be noted that the main local failure mechanism is an inclined crack
pattern.

1.00

0.00

0.20

0.40

0.60

0.80

(a) (b) (c)

Figure 9: Plane strain expansion analysis. Beam type 11-4: (a) Iso-displacement contour lines (pattern
of cracks). (b) Scaled deformed configuration. (c) Damage contour fill.
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Figure 10: Plane strain expansion analysis. Beam type 11-5: (a) Iso-displacement contour lines (pattern
of cracks). (b) Scaled deformed configuration. (c) Damage contour fill.

Figures 12-13 show, for the beam type 31 and at the final stage of analysis, the iso-displacement con-
tour lines, the deformed (scaled) configuration and the damage map. A complete concrete degradation
around the bars is observed. In this case, the local failure mechanism consists of delamination, between
adjacent bars, and inclined cracking for the extreme steel fibers.

In general, at the cross section level and from a qualitative point of view, it can be observed that the
proposed mesoscopic plane strain numerical model captures physically admissible failure mechanisms.
The introduction of friction-contact (interface) finite elements in the simulations has been a key point
in order to obtain consistent patterns of cracks.

Also, it can be mentioned that the obtained pattern of fractures matches very well with the semi-
analytical predictions taken from Capozucca [21] (which were deduced from the physical mathematical
model developed by Bazant [13, 14]):
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Figure 11: Plane strain expansion analysis. Beam type 11-6: (a) Iso-displacement contour lines (pattern
of cracks). (b) Scaled deformed configuration. (c) Damage contour fill.
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Figure 12: Plane strain expansion analysis. Beam type 31-3: (a) Iso-displacement contour lines (pattern
of cracks). (b) Scaled deformed configuration. (c) Damage contour fill.
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Figure 13: Plane strain expansion analysis. Beam type 31-4: (a) Iso-displacement contour lines (pattern
of cracks). (b) Scaled deformed configuration. (c) Damage contour fill.
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if S > (6D) → inclined cracking prevails

if L >
(S −D)

2
→ delamination mechanism prevails

where S is the horizontal spacing of bars, D the diameter of the reinforcement bars and L the cover
depth.

5.3 Numerical results: the mesoscopic bending model

The main quantitative result of the previous analysis is the value of the damage variable at the whole
cross section. Taking into account the coupling philosophy described in Section 4, this information is
post-processed in order to impose an initial degradation condition for the RC members and a subsequent
structural analysis is performed using the model discussed in Section 3. Here, we show the main results
of this approach.

Figures 14-15 depict the obtained damage distribution, the trajectory of active macro cracks at the end
of the simulation as iso-displacement contour lines (in the z-direction) and the contour fill of the axial
σzz stress, for two of the beams type 11 (the not corroded case 11-1 and the corroded one 11-4, from
Table 5).

(a)

(b)

(c)

1.00

0.00

575.0

Mpa

-575.0

z

x-y
plane

Figure 14: Qualitative results for the plane stress mesoscopic model. Beam type 11-1 (not corroded
case): (a) Final contour fill of damage. (b) Iso-displacement contour lines in z-direction. (c) Contour
fill of σzz .

The same analysis, of the obtained numerical results, can be applied to beam type 31, see Figures 16-17.

In all the studied cases a vertical macro crack, located at the center of the beam, has been identified as the
fundamental macroscopic ultimate mechanism determining the limit load. It is characterized by a mode
I of fracture, which is the typical ones for those cases of slightly RC beams. No macroscopic bond-
slip failure mechanism has been detected in any of the analyzed tests. These facts suggest that, for this
particular beams, a simpler concept could be applied in order to estimate the ultimate resistance, as for
example any of the classical methodologies adopted in the concrete design codes for RC cross sections.
In this context of analysis, whenever a standard code procedure is utilized, the problem consists of
taking into account (correctly) the influence of the degradation process induced by the corrosion rebar.
In Appendix A, we propose a simple strategy to reach this objective, using the information derived
from the plane strain cross section mesoscopic model and the guidelines of a particular RC design code
(DIN-1045 [30, 31]).
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Figure 15: Qualitative results for the plane stress mesoscopic model. Beam type 11-4: (a) Initial damage
condition. (b) Final contour fill of damage. (c) Iso-displacement contour lines in z-direction. (d) Contour
fill of σzz .
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Figure 16: Qualitative results for the plane stress mesoscopic model. Beam type 31-1 (not corroded
case): (a) Final contour fill of damage. (b) Iso-displacement contour lines in z-direction. (c) Contour
fill of σzz .



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a)

(b)

(c)

1.00

0.00

575.0

Mpa

-575.0

1.00

0.00

(d)

z

x-y
plane

Figure 17: Qualitative results for the plane stress mesoscopic model. Beam type 31-3: (a) Initial damage
condition. (a) Final contour fill of damage. (b) Iso-displacement contour lines in z-direction. (c) Contour
fill of σzz .

In the Figures 18-24 we show the evolution of the total vertical load vs. the mid span vertical displace-
ment curves, obtained using the proposed mesoscopic model, for the beam type 11 and 31. Those curves
are contrasted with experimental (Rodriguez et al. [4]) and numerical results (Coronelli et al. [19]). A
good agreement with them has been obtained. In general, we note a better adjustment of our numerical
results, if compared with the experimental ones, than that presented by Coronelli et al. [19].

It can be seen that the typical behavior of the RC beams is appropriately captured, i.e. the the existence
of three well defined slopes in the mechanical responses (see Figures 18-24): an initial stiffness associ-
ated with the undamage state (without cracks) in the concrete, an intermediate stiffness characterizing
the evolution and propagation of multiple tensile macro-fractures in the concrete and a (horizontal) fi-
nal slope which defines the limit mechanism of failure due to reaching either the ultimate compressive
strength of concrete or yielding in the steel reinforcements.

These figures also depict the limit loads computed following the DIN-1045 code hypothesis (see ap-
pendix A), for two situations: (i) considering an initial damage distribution in the concrete matrix due
to corrosion and (ii) vanishing completely the concrete contribution in the limit equilibrium.

As we expected, the proposed mesoscopic numerical strategy matches very well the obtained limit load
predictions using the DIN code solution. Similar conclusions should be obtained if a different design
code would have been used. This concordance can be justified as follows: (i) in all the tests, the obtained
failure mechanism using the mesoscopic model corresponds to an identical failure mode assumed in the
code at equilibrium limit state (mode I of fracture), (ii) the main hypothesis introduced by the RC
design codes is the Bernoulli-Navier’s kinematic restriction (plane cross section remains as plane cross
sections) which, for these particular beams, seems to be valid because no macroscopic bond-slip failure
has been detected in the numerical model, and finally (iii) similar constitutive laws (in both approaches)
are used, indeed equal ultimate strengths have been adopted for the concrete and steel reinforcements.

It must be noted that this comparison in terms of limit loads, between the mesoscopic strategy and the
code procedure guidelines, has been included in order to show the mathematical consistency of the
present FE approach. In general cases, more complex (or even coupled) mechanisms of failure could be



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

50

mid−span vertical displacement [mm]

Lo
ad

 P
 [K

N
]

 

 

Experimental results: Rodriguez et al. 1995
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Figure 18: Load vs. displacement structural response. Beam type 11-1.
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Figure 19: Load vs. displacement structural response. Beam type 11-4.
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Figure 20: Load vs. displacement structural response. Beam type 11-5.
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Figure 21: Load vs. displacement structural response. Beam type 11-6.
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Figure 22: Load vs. displacement structural response. Beam type 31-1.
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Figure 23: Load vs. displacement structural response. Beam type 31-3.
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Figure 24: Load vs. displacement structural response. Beam type 31-4.

developed in the RC structure where only numerical predictions can be obtained.

In Figures 25-26, we superpose the sequence of responses for each beam type (11 and 31) when the pro-
posed mesoscopic model is used. The loss of carrying load capacity and structural stiffness degradation,
in terms of the degree of corrosion attack, can be clearly observed.
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Figure 25: Load vs. displacement structural response. Beams type 11.

6 Conclusions

Throughout the paper, we have presented an application of the CSDA to solve RC structural problems
undergoing a rebar corrosion phenomenon. As a novel contribution, two different mesoscopic size-scale
model have been developed: at cross section level and at global or structural level. A coupling strategy
between them has also been proposed.

Contact finite elements were introduced in these formulations in order to improve the simulation of
the steel-concrete interface effects. Following the proposed methodology, the most relevant corrosion
mechanisms can be simulated, as for example: expansion of steel bars, damage/cracking in the concrete,
yielding in the reinforcements, bond stress degradation at the interface and steel cross section reduction.

Because the model offers information in all the stages of the degradation process (continuous evaluation
of the structural strength deterioration) it could be used not only to compute limit states, but also to
predict possible mechanisms that affect the structural serviceability for a hypothetical level of corrosion.
In summary, it represents a viable technique to analyze deteriorated RC members.
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Figure 26: Load vs. displacement structural response. Beams type 31.

Additional conclusion that can be obtained from the numerical simulations are:

• The mesoscopic plane strain model of the cross section captures adequately the experimental
crack patterns. Inclined cracking or delamination modes have been obtained, depending on the
location and separation of reinforcement bars. The proposed model can be applied to more so-
phisticated RC cross section geometrical designs to obtain a qualitative idea of the deterioration
mechanisms induced by the expansion-corrosion process.

• At the structural level, the mesoscopic plane stress model captures physically admissible concrete
degradation patterns. In all the analyzed cases, a typical mode I of fracture, characterizing the final
macroscopic failure mechanism, has been observed. The sensitivity of the limit load evaluations
with the reinforcement corrosion level has been acceptably computed.
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A Appendix: Ultimate load estimation for corroded RC members using
design code guidelines and a pre-defined level of damage at the cross
section

To determine the limit relation between the ultimate internal bending moment (M int
u ) and the ultimate

internal axial strength (N int
u ), for a given RC cross section, the modern codes of design are based in

the following four key assumptions:

• The applicability of Navier-Bernoulli’s hypothesis until reaching the failure.

• A set of pre-defined limit deformation kinematics states (planes in this case).

• The adoption of adequate non-linear inelastic constitutive models for the concrete and steel.

• Limit equilibrium conditions between the resultant external loadsM ext
u -N ext

u (see Figure 27-(b))
and the internal generalized forces M int

u -N int
u induced in the composite material.
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Depending on the particular definition adopted for every one of this items, different code procedures
can be recovered. For the purposes of the present work, the DIN-1045 code guidelines are adopted [30,
31]. The main considerations introduced by this particular approach, in terms of the pre-defined limit
kinematics states and material constitutive behavior, can be seen in Figures 27-(c), 28-(a) and 28-(c). We
also propose a generalization of such normalized procedure in order to take into account the degradation
induced by the rebar corrosion. It is assumed that the corrosion attack depth “X” is a know input data
parameter. The proposed methodology is based on the following aspects: (a) the contribution of each
steel bar reinforcement Bi is modelled by means of its net cross section Ωi = πR2

eff , i.e. the effective
bar radius is used (see sub-Section 5.1); (b) the cross section of the concrete domain is considered as the
sum of several disjunct rectangular layers C j (Ωj = bj hj being its area contribution) as Figure 28-(b)
shows; (c) each one of that concrete layers (C j) is characterized by a degraded constitutive response
(see Figure 28-(a)) which depends on the average damage distribution obtained using the mesoscopic
plane strain model of Section 2; (d) loss of adherence cannot be introduced in this approach, this fact
reveals a limitation of this methodology for more general situations. Note that the supra-indices i and j
have been used in order to denote each steel fiber and concrete layer, respectively.
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Figure 27: DIN-1045 code guidelines: (a) Cross section of a typical RC member. (b) Scheme of the
ultimate axial-bending external loads. (c) Pre-defined set of kinematics limit states.

In view of the above mentioned ingredients, a simple iterative procedure (in terms of the admissible limit
kinematics of Figure 27-(c)) can be formulated to solve the following ultimate equilibrium conditions:

M int
u +M ext

u = 0 →

T1: steel contribution
︷ ︸︸ ︷
nB∑

i=1

[
Ωi σi

zz y
i
]
+

T2: concrete contribution
︷ ︸︸ ︷
nC∑

j=1

[
Ωj σj

zz y
j
]

+M ext
u = 0

N int
u +N ext

u = 0 →

nB∑

i=1

[
Ωi σi

zz

]

︸ ︷︷ ︸

T1: steel contribution

+

nC∑

j=1

[
Ωj σj

zz

]

︸ ︷︷ ︸

T2: concrete contribution

+N ext
u = 0

(35)

where σzz denotes the stress component normal to the cross section of the RC member, nB and nC are
the number of total steel bars and concrete layers, respectively. Also we have defined y i and yj as the
adequate distances (for each bar and concrete layer) to compute the internal bending moments. In this
particular case, the ultimate internal bending moment (M int

u ) is computed with respect to the gravity
center of the cross section (G), see Figure 28-(b).

It should be noted that, in the studied tests and from the external load state showed in Figure 8-(a), the
uniqueness of solution for the system (35) is recovered by imposing the following additional restriction:
N ext

u = 0. Finally, an estimation for the ultimate limit load can be easily computed as:

PDIN
u =

2M int
u

a
(36)

where a is the distance showed in Figure 8-(a).
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Figures 18-24, in Section 5.3, depict the values obtained when equation (36) is applied, for each beam
case. The lower values, also displayed in those Figures, correspond to the (hypothetical) solution with-
out the concrete contribution, i.e. T2 ≡ 0 in equations (35).
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Figure 28: DIN-1045 code guidelines: (a) Modified (proposed) constitutive model for each layer of
concrete Cj as a function of the damage value “d”. (b) Idealized layer discretization of the cross section.
(c) Constitutive model (isotropic) for each fiber of reinforcement B i.
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