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Abstract

A Heston model calibration technique is presented for European options under the Heston model. The novel
Shannon Wavelets Inverse Fourier Technique (SWIFT) is extended for European option price calibration
(previously it was used only for pricing European, Asian, barrier, and Bermudan options). This method has
different expressions and speed-up techniques, adequate to different set-ups. These are discussed and new
expressions and properties are presented for the gradient computation and option calibration.

The Heston characteristic function expression recently proposed by [9] is used in the SWIFT implemen-
tation due to its analytic gradient and its continuity properties.

The time performance, robustness, and convergence under set-ups representative of real markets is
studied for different implementations of the SWIFT technique and compared with the option calibration
scheme presented by [9]

The SWIFT implementations are coded in C++ and uploaded to a public GitHub repository. The libray
implements several of the different SWIFT expressions for GBM and Heston European options.

Keywords

Options Trading, Heston, SWIFT, Calibration, Inverse Fourier Option Valuation

1



Contents

1 Motivation 4

2 Option valuation 5

2.1 No-arbitrage assumption and risk-neutral markets . . . . . . . . . . . . . . . . . . . . . . 6

2.2 European option valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Underlying asset models 10
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Heston Calibration using SWIFT

1. Motivation

Option pricing has an important role in contract trading, both as a form of derivative trading in itself, as
well as a way to hedge other stock or derivative portfolios.

Pricing these options can have a broad range of difficulty, mainly due to two factors:

1. Contract type: These options can take a variety of forms, from the relatively simple European
options to more complex American, Bermudan, or Asian options (see Chapter 2).

2. Underlying Model: The price of the derivative depends on the future price of its underlying. The
evolution of this price can be modeled using simple models like Black & Scholes (BS), which has
an analytic closed form for European option pricing but fails to capture some key properties of real
markets (see Section 3.2), or using more complex models like the Heston model (Section 3.4) or Lévy
models other than BS (Section 3.1).

Closed option price formulas only exist for European options under the BS model. Either using more
complex option contracts or models generally means one must fall back to numerical schemes to obtain
option prices, which typically means less robustness to numerical errors and more computational time.

Some of these pricing techniques rely on the fact that most of the well-known models have a character-
istic function with a closed form and use that characteristic function to price options through risk-neutral
option valuation techniques (see Section 2.1 for an introduction to risk-neutral markets and Section 2.2
for its applications toward European option valuation). Recently one of these characteristic-function-based
pricing methods, called Shannon Wavelets Inverse Fourier Technique (SWIFT) [33] has been shown to
successfully price European, Asian [1], barrier, and Bermudan options [29] with models with closed-form
characteristic function.

One does not have the choice of always pricing options as European contracts, as the type of contract
is decided by the Contract Exchanges that trade derivative contracts, and even if one were to trade only
European options, the study of more complex underlying asset models is relevant, as BS fails to capture
well-known properties of real markets, which is reflected in the implied volatility surface (see Section 3.3),
which option traders will to take into account if they use the BS model. This motivated the development
of other models, like the stochastic volatility Heston model, which will be the main model considered for
option price calibration in this master’s thesis.

Calibration refers to finding values for the underlying model intrisic parameters that minimize the
difference between real market option prices and the prices obtained through the model being calibrated
(see Chapter 5 for the specific optimization problem considered). As the real market option prices are
constantly changing it is of special relevance to find calibration methods that are highly time-efficient to
allow real-time model updates.

In particular, the Heston model calibration is a difficult optimization problem to solve efficiently, as
it is a multidimensional optimization problem with a fairly unknown structure (it is not known whether
it is a convex problem or not nor whether it generally has a single solution or not) which until recently
did not have simple analytic expressions for its characteristic function gradient [9] (the implications of not
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knowing the problem structure and of not having simple analytic expressions for the gradient are discussed
in Section 3.4.1.

The goal of this master’s thesis is to extend the SWIFT method to calibrate complex option underlying
models. In particular, the base European option pricing SWIFT method will be extended for European
options under the Heston model expressions provided by [9]. Then the performance of the resulting option
calibration scheme will be compared against the calibration technique presented also in [9]. This calibration
technique could then be extended to Barrier and Bermudan contracts following Maree et al. [29] but this
will not be implemented here.

In order to extend SWIFT for calibration, an expression of the SWIFT price gradient is provided (see
Section 4.3.5) which can benefit from several performance speed-up techniques. Some of these techniques
were already presented in [33] and [29] and some are new to this master’s thesis and are particularly useful
for the SWIFT calibration to be competitive with other highly efficient calibration techniques. To ensure
this performance competitivity several speed and robustness tests are presented (see Chapter 6).

The structure of this master’s thesis will be as follows: Chapter 2 will introduce the basic concepts of
option valuation, which will require an underlying asset model. Several of these models will be discussed in
Chapter 3, and Chapter 4 will show how these models can be used to price European options through the
SWIFT method. Then, Chapter 5 will discuss how to calibrate an underlying asset model given an option
pricing method. Finally, Chapter 6 will present several numerical tests to compare the proposed option
calibration method with other highly competitive methods and the test results will be discussed. Chapter
7 will summarize the most important results of this work and will propose some future research paths.

2. Option valuation

Definition 2.1. A European option is a derivative contract on an underlying asset that fixes a transaction
price (called strike price), an expiration time (also called maturity), and an underlying asset quantity and
gives the holder of the contract the right (but not the obligation) of buying (call option) or selling (put
option) the specified quantity of the underlying at the strike price on expiration.

In the next sections we will use the following nomenclature for option parameters: t will refer to the
time at which the option is being valuated and T will be the expiration time. Given a time-dependent
variable V , Vt will refer to the value of that variable at time t (respectively with T ). S , K will refer to the
underlying and the strike prices respectively.

Slight variations of these terms can give rise to other families of options by facilitating the exercising of
the contracts, like the Bermudan and American options (which allow to exercise your buying/selling right
at specified instants of time or at any point prior to expiry, respectively).

Other groups of option families are obtained by changing the definition of the option payoff, that is, the
amount of money (be it in cash or in the value of the underlying obtained) the option gives on expiration.
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Heston Calibration using SWIFT

Definition 2.2. Payoff of a European call option:

VEC (ST , 0) = (ST − K )1ST≥K =

{
ST − K if ST > K

0 if ST ≤ K
(1)

So, on maturity, a European call option is only profitable if it allows the holder of the contract to buy
the underlying asset at a cheaper price than the current asset spot price. In most models any option has
a certain positive value if it is not expired, as the underlying price can always theoretically move enough
so that a currently non-profitable option ends up with a positive payoff on expiry. Thus, one can always
divide the price of an option with positive time to expiry τ := T − t as V (S , τ) = V1(S) + V2(S , τ), where
V1(S) := V (S , 0) and is called the implicit value of the option, and V2(S , τ) is its time value. The implicit
value of an option is typically used to classify options as follows:

Definition 2.3. A European option at time t is called:

• Out of the money (OTM): If it has no implied value and exercising it would result in loss (that is
K > St for call options).

• At the money (ATM): If its implied value is 0 and exercising it would result in breaking even (that is
K = St).

• In the money (ITM): If it has positive implied value (that is, K < St for call options).

Some examples of other families of functions that have different payoffs are binary options (only have
two possible payoffs dependent on K and ST ) and Asian options (the payoff depends on the mean price of
the underlying since the start of the contract and until maturity).

In order to price an option that expires at some point in the future, one usually first models the temporal
evolution of the price of its underlying asset by using some stochastic process. This model will typically
be expressed in terms of parameters that will be calibrated to fit the underlying price evolution of each
product one wants to valuate.

When pricing options, a risk-neutrality assumption is usually taken [22]. In order to describe and justify
this assumption, let us first look at the no-arbitrage assumption.

2.1 No-arbitrage assumption and risk-neutral markets

Consider an option call contract C with strike K and current price Vt . Let the underlying associated with
it have an initial price St and maturity τ , and model the underlying price evolution as a 1-step discrete
process that follows a Bernouilli distribution, so that the final price of the underlying is:

Definition 2.4.

SBer
T :=

{
u · St with probability pu

d · St with probability pd := 1− pu
(2)

where u and d are parameters following u > 1 and 0 ≤ d < 1 and they define the relative movement of
the underlying asset when it moves up or down respectively and pu is the probability that the underlying
asset will move up.
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Once the underlying moves either up or down and reaches maturity, the price of the option will be
determined by the the payoff formula V (ST , 0) given in Definition 1. The reasoning that will be followed
in this section will apply to any type of option contract, so let us simply call these option values Vu and
Vd respectively.

Then, one can hold a portfolio with a long position in the underlying and a short position in the options
with ratio n : 1, so that the value of the portfolio at time T is nST − V (ST , 0), and choose n so that the
portfolio has the same value whether the underlying goes up or down by setting:

nStu − Vu = nStd − Vd → n =
Vu − Vd

St(u − d)
(3)

This portfolio is what is called a risk-free portfolio, as its final value is perfectly defined and, if one
assumes there are no arbitrage opportunities, its rate of returns must match the risk-free rate (which will
be denoted r). Here, r rate denotes a theoretic rate at which one can earn money with almost no risk (in
US markets is usually assumed to be the US-treasury bonds rate of return for the length of the considered
invesment), and an arbitrage opportunity is the possibility to invest without risk obtaining a rate of returns
higher than r (this can happen, for example, when a share is traded at two different markets, and the offers
are different enough between the markets that one can buy a share in one market and sell it immediately
in the other for a profit).

It is easy to see that if the rate of returns of the portfolio is different than r, arbitrage opportunities
will arise. Let the values of the portfolio at times t and T be Pt and PT respectively:

• If PT > Pte
rτ : Anyone can start holding the porfolio or increase the volume they hold until expiry.

• If PT < Pte
rτ : Anyone who holds shares of the portfolio can sell them and invest the obtained cash

without risk.

If no arbitrage opportunities exist, then it must hold PT = Pte
rτ .

Hence, the no-arbitrage assumption provides a way to valuate the current price of an option through
its expected payoff. One first needs to build a risk-less portfolio and compute its expected payoff under
a certain underlying price evolution model. Then one can discount the risk-free rate during the maturity
of the option contract to obtain the initial price of the portfolio and, from there, obtain the price of the
option. That is:

Lemma 2.5. The price of a 1-step option under a Bernouilli model is

V (St , τ) := e−rτ (puVu + pdVd) (4)

Proof. First, from the portfolio initial value one can obtain V (St , τ) := nSt−Pt , as the portfolio is risk-less,
it earns the risk-free rate, so

V (St , τ) = nSt − e−rτPT = nSt − e−rτ (nStu − Vu) = nSt(1− ue−rτ ) + Vue−rτ (5)
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Using the value of n for a risk-less portfolio, one obtains

V (St , τ) =
Vu − Vd

St(u − d)
St(1− ue−rτ ) + Vue−rτ (6)

=
Vu(1− ue−rτ )− Vd(1− ue−rτ )

(u − d)
+ Vue−rτ (7)

=
Vu(1− de−rτ ) + Vd(ue−rτ − 1)

(u − d)
(8)

=e−rτ (VuP + Vd(1− P)) (9)

where

P =
erτ − d

u − d
(10)

Note that the price of the option is independent of pu and pd . This probability is already taken into
account in the price of the underlying and is a key concept of the modelization of real markets as risk-
neutral ones. On the other hand, equation 9 can be interpreted as the discounted expected payoff of the
option, if its payoff were to follow a Bernouilli distribution with parameter P. This distribution is called the
risk-neutral distribution of the option, and is the basis of risk-neutral option valuation.

The assumption of no-arbitrage is usually generalized when pricing options by the concept of risk-
neutrality. A risk-neutral world has two main features that simplify the pricing of derivatives:

• The expected return on a stock (or any other investment) is the risk-free rate.

• The discount rate used for the expected payoff on an option is the risk-free rate.

In Chapter 12 of [22] there is an in-depth discussion of the no-arbitrage and risk-neutrality assumptions,
as well as several justifications as to why a risk-neutrality assumption is useful to provide prices for real
market options.

Remark 2.6. A well-known consequence of the risk-neutrality assumption is the put-call parity equation:

V C
t − V P

t = St − e−rτ · K (11)

where V C
t and V P

t are the prices of a European put and call contract (note that this equation is independent
of the model used for the time evolution of the underlying). This provides a way to convert any European
call pricing scheme presented in this master’s thesis to European put ones and vice-versa. Refer to [22] for
a proof of Equation 11.

2.2 European option valuation

The payoff of some option contracts, like Bermudan, Asian or American options, depends on the price of
the underlying asset at several points in time, or even through all its life. European options payoff, on the
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other hand, only depends on the final price of the underlying asset on the moment of expiration of the
contract (ST ).

A general pricing formula for this kind of options uses the risk-neutrality assumption to compute the
option price as the discounted expectation of the payoff at expiry. Then the pricing problem is equivalent
to defining an stochastic process describing ST conditioned to the initial value St . If one considers generic
variables x and y that fully describe the stochastic variables St and ST respectively, the general pricing
formula becomes:

v(x , τ) = e−rτEQ(v(y , 0)|x) = e−rτ
∫
R

v(y , 0)f (y |x)dy (12)

where v denotes the option value, r the risk-neutral interest rate, EQ the expectation under the risk-neutral
assumption, and f (y |x) is the probability density of y given x.

Any choice of x and y will allow computing the value of the option through a numerical integration
scheme, but most of the underlying asset models used for option pricing have simple expressions in the log
space, so a common choice when solving this expression is to define:

y = ln

(
ST

K

)
(13)

x = ln

(
St

K

)
(14)

Given this maturity state variable choice, one can express the payoff of a European put option as

vK (y , 0) := K · (1− ey )+ := K ·max(1− ey , 0) (15)

This expression has a lineal dependency with the strike of the option, so one can define the strike-free
payoff:

g(y) := (1− ey )+ =
vK (y , 0)

K
(16)

Remark 2.7. When solving Equation 12 using numerical methods, one should prefer calculating the price
of a call option via the price of a put one with the same strike and apply the put-call parity formula to
recover the original call price, as ey can have arbitrarily large values inside the integration domain which
can lead to errors due to floating point arithmetics [29].

There is a broad literature in methods to solve this integration problem for basic underlying asset
models. Some of them, as BS, even have closed solutions (as will be seen in Section 3.2) but it is common
that, for more complex models, f (y |x) does not have a known expression.

In some cases, this can be circumvented by using numerical integration methods based on Fourier
transforms, if there is a known expression for the characteristic function of f (y |x)

f̂y (u; x) =

∫
R

f (y |x)e−iuxdy (17)

This characteristic function is equivalent to the Fourier transform of the conditional density function f (y |x),
so one can apply the Fourier inversion formula:

f (x) =
1

2π

∫
R

f̂ (u)e iuxdu (18)
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to recover the original density function given its characteristic function.

This is the case of the Lévy model and the Heston model which will be presented in the next sections.

3. Underlying asset models

3.1 Lévy processes

A well-known model for driving the dynamics of the underlying asset is the geometric Brownian motion
(GBM) model (known as the Black-Scholes-Merton [5, 30] model). It can be considered inside a more
general concept called Lévy process [36].

Definition 3.1. A stochastic process X = {Xt : t ≥ 0} is considered a Lévy process if:

• X0 = 0 almost surely.

• For any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ ∞, Xt2 − Xt1 , Xt3 − Xt2 , · · ·Xtn − Xtn−1 are independent.

• ∀s < t, Xt − Xs is equal in distribution to Xt−s

A famous property of Lévy processes is the Lévy-Khintchine formula:

Lemma 3.2. Let X = (Xt)t≥0 be a Lévy process. Then its characteristic function f̂X (u) is:

f̂X (u)(t) := E
[
e−iuXt

]
= e

t

−aiu−σ2u2

2
+
∫
{0}c (e−iux I|x|<1)Π(dx)


= eψL(w)

where ψL(u) is called the characteristic Lévy exponent, and a ∈ R, σ ≥ 0, and Π is the Lévy measure of
X, a σ-finite measure satisfying

∫
{0}c (1 ∧ x2)Π(dx) <∞

Note that any Lévy process can be completely characterized by the triplet (a,σ, Π), which represent a
linear drift, a Brownian motion, and a Lévy jump process respectively.

Lévy models in option pricing typically consider x and y as in expressions 14 and 13 and let Xt := x ,
XT := y , and model the log returns evolution by a Lévy process. Then f̂ (y |x) = f̂ (XT |Xt) can be obtained
through formula 3.2:

f̂y (u; x) := E
[
e−iuXT

]
= E

[
e−iu(Xt+XT−t)

]
= e−iuxe−iuµLT+TψL(−u) := e−iux f̂ (u) := f̂y−x(u) (19)

where µL := r − ψL(−i) is a drift correction term and ψL(u)is the characteristic Lévy exponent of the
underlying log-returns process.
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3.2 Black-Scholes-Merton model

A particular case of Lévy processes is the widely used BS model, originally presented in [5] by using the
following stochastic differential equation:

Definition 3.3. BS model price equation:

dSt = µSt + σStdWt (20)

where dWt is a Brownian motion process, σ is called the BS volatility, and µ describes the drift of the
underlying log returns and is usually considered µ = r for dividend-free products.

This model assumes the underlying process St follows a log-normal distribution with standard deviation
σ and, for European options, Equation 12 can be solved analytically, obtaining the well-known BS valuation
formula:

Lemma 3.4. Black-Scholes-Merton valuation formula for European call options:

CK (σ; St , τ) = N(d1)St − N(d2)PV (K ) (21)

where

d1 =
1

σ
√
τ

[
ln

(
St

K

)
+

(
r +

σ2

2

)
τ

]
(22)

d2 = d1 − σ
√
τ (23)

PV (K ) = Ke−rτ (24)

The part of the characteristic function independent from the initial state f̂ (u) can be obtained by

setting ψL(u) = −σ
2

2
u2 in Equation 19 resulting in:

Definition 3.5. BS characteristic function:

f̂BS(u) = exp

(
−iu

(
r − q − 1

2
σ2

)
τ − σ2u2τ

2

)
(25)

3.3 Implied volatility smile and surface

If the GBM process modeled accurately real market prices, the BS model could be calibrated using several
strikes to obtain a single implied volatility value, and that value would be a good estimator of the standard
deviation of the historical standard deviation of the log-normal distribution of the underlying returns (which
is called the historical BS volatility). This volatility could then be used to price any option of a given strike
and maturity.

In real markets, if one chooses a fixed expiry and calibrates a set of M different models using M
different strikes {Ki}, the obtained implied volatilities {σi} will probably differ. Further, if one estimates
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(a) Foreign Currency market. (b) Equity market.

Figure 1: From [22]. Volatility smiles for typical markets.

the historical volatility σH from the historical log-returns, the obtained value may not coincide with any of
the obtained implied volatilities.

If one were to plot the implied σi over Ki , one would obtain a result similar to the ones in Figure 1,
but the exact shape would depend on the underlying (and it changes over time). This strike evolution is
traditionally called volatily smile (though it can have different names depending on the shape it takes, like
volatility skew for equity markets).

There are several justifications as to why such smiles exist. Some of them involve limitations in the
GBM description of the underlying stock returns, but some appeared after significant events, like the
volatility skew in equity option markets, which only appeared after the stock market crash of 1987 [22].
Their significance is better described with the concept of implied distribution.

If one assumes that the risk-neutrality and no-arbritage concepts hold true, then the real market option
prices should follow from specifying a distribution function f (y |x) and solving Equation 12. One can then
estimate the shape of the implied distribution fI (y |x) that would better match the option prices of a specific
product and expiry (there are several techniques to do it, some described in [23, 34]). As can be seen in
Figure 2, the upward trend in implied volatility for the deep ITM and OTM options in currency markets is
translated into the implied distribution having fatter tails, and the upward trend for small strikes in equity
markets translates into a distribution with higher stock market crash probabilities.

A similar effect happens when one fixes a strike price and computes its implied volatility over serveral
expiries. The shape that results from plotting the implied volatility smile over time is called term structure
and, when one plots the implied volatility over both strike price and time, one gets the so-called implied
volatility surface.

The shape of the implied volatility surface holds certain information about the historical performances
of the underlying. In particular, the distribution with fat tails implied by the currency market option
prices describes the historical returns of the options underlying better than the GBM [22]. This shows the
unsuitability of the GBM model and the need for better theoretic descriptions of the underlying returns.
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(a) Foreign currency market
(b) Equity market

Figure 2: From [22]. GBM (Lognormal) and Implied distributions for typical markets.

3.4 The Heston model

The BS model presented in Section 3.2 fails to capture essential well-known properties of the real world
market dynamics of the underlying return distributions, as its high kurtosis, its negative skew, the correlation
between the underlying price and its volatility, etc. As well as the risk premium investors give deep ITM or
OTM options, which result in the volatility discussed in Section 3.3.

To address that, several variations of this model have been proposed since it was introduced. Some
of them, called stochastic volatility (SV) models, considered all the real world dynamics mentioned above
and treated both the underlying price and its volatility as (potentially correlated) stochastic processes.

One of the first and most well-known SV models is the Heston model [21], defined by the following
system of stochastic differential equations.

Definition 3.6. Heston model price-volatility equations:

dSt = µStdt +
√
νtStdW

(1)
t

dνt = κ(ν − νt)dt + σ
√
νtdW

(2)
t

dW
(1)
t dW

(2)
t = ρdt

where νt is the variance of the underlying asset price at time t. The parameters κ, ν,σ, ρ are respectively
called: mean-reversion rate, long-term variance, volatility of volatility, and correlation between the Brownian

processes W
(1)
t and W

(2)
t . Then, if one specifies the initial value of the variance ν0, the model is properly

defined. From now on, θ := (ν0, ν, ρ,κ,σ)T will refer to the vector of model parameters.

Several studies have shown the relations between the Heston model parameters and the shape of the
implied volatility surface [8, 16, 18, 24] necessary to obtain the same prices with a BS model. These
relations can be summarized as follows:

• ν0 controls the position of the volatility surface.
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• ρ controls its skewness.

• κ and σ control the convexity of the surface.

• κ(ν0 − ν) controls the term structure of implied volatility.

An expression of the price of a European option is presented in [21], and it is adapted here in terms of
the state variables x and y defined in Section 2.2:

v(x , τ) = e−rτEQ(v(y , 0)|x) (26)

= e−rτEQ(K (ey − 1)1y≥0) (27)

= Ke−rτ (EQ(ey1y≥0)− EQ(1y≥0)) (28)

= Kexe−qτP1(θ; x , τ)− Ke−rτP2(θ; x , τ) (29)

where P1 and P2 are defined as:

P1(θ; x , τ) =
1

2
+

1

π

∫ ∞
0

Re

(
e iux

iu

f̂ (−u + i)

f̂ (i)

)
du (30)

P2(θ; x , τ) =
1

2
+

1

π

∫ ∞
0

Re

(
e iux

iu
f̂ (−u)

)
du (31)

where f̂ (u) is the initial state independent characteristic function of the process followed by the logarithm
of price of the underlying asset (the existence of f̂ (θ; u, τ) means that the Heston model characteristic
function can easily be split in initial state dependent and independent terms, like the Lévy process). The
expression of this characteristic function is:

f̂ (u) := exp

{
iurτ +

κv̄

σ2

[
(ξ + d)τ − 2 log

1− g1edτ

1− g1

]
+
ν0

σ2
(ξ + d)

1− edτ

1− g1edτ

}
(32)

where

ξ := κ+ σρiu (33) d :=
√
ξ2 + σ2 (u2 − iu) (34) g1 :=

ξ + d

ξ − d
(35)

Remark 3.7. As in previous sections, the dependence of the characteristic function with time and the model
parameters is omitted for readability.

Substituting these values into Equation 29, one can obtain an analytic equation to obtain the price
of European call options. Here, the expression given in [9] is adapted to the state variables x and y and
provided in a more compact form:

Lemma 3.8. Heston’s pricing method.

V C (θ; K , τ) = K

[
1

2

(
ex − e−rτ

)
+

e−rτ

π

∫ ∞
0

Re

(
f̂ (−u + i ; x)− f̂ (u; x)

iu

)
du

]
(36)
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Proof. Directly adapting equation (9) from [9] to the state variables used in this article (the discount rate
q will be assumed to be 0 throughout this work) yields:

V C (θ; K , τ) =
1

2

(
St − Ke−rτ

)
+

e−rτ

π

[
St

∫ ∞
0

Re

(
e iux

iu
f̂ (−u + i)

)
du

−K

∫ ∞
0

Re

(
e iux

iu
f̂ (−u)

)
du

] (37)

. Dividing and multiplying everything by K, and using St/K = e log(St/K) = ex , one obtains

V C (θ; K , τ) = K
1

2

(
ex − e−rτ

)
+ K

e−rτ

π

[∫ ∞
0

Re

(
e i(u−i)x

iu
f̂ (−u + i)

)
du

−
∫ ∞

0
Re

(
e iux

iu
f̂ (u)

)
du

] (38)

Joining the two integrals, and using the Heston characteristic function property f̂ (u; x) = e−iux f̂ (u) one
obtains the expression given in Equation 36

From this expression, one can compute the analytic gradients of the option price in terms of the
derivatives of the characteristic function. Then they can be used to optimize an appropriate objective
function using gradient-descent based methods (See Chapter 5) but, as will be explained in the next
section, the analytic derivatives have not been widely used traditionally to calibrate Heston models prior
to [9] due to the complexity of the expressions obtained by derivating the available characteristic function
expressions as in Equation 32 [9].

Remark 3.9. Sometimes the characteristic function is defined as
∫
R f (y |x)e−iuxdy and this leads to a sign

difference in the expressions of the characteristic function. One can see that there is a sign difference in
all the u-dependent equations and expressions in [9].

3.4.1 Calibration difficulties

As opposed to simpler 1-dimensional models, Heston model calibrations is a multidimensional optimization
problem with 5 degrees of freedom given by θ := (ν0, ν, ρ,κ,σ)T . Furthermore, the structure of this
optimization problem is not known.

According to [9] no consensus exists among researchers regarding whether the objective function of this
optimization problem is convex or not. Some results point to a non-convex function, as the calibration
methods proposed in [4, 31] (which yielded different results for different initial points) and one must use
long or short term approximations and rules to provide a sufficient initial guess. Recent research claims to
provide methods that reach a unique solution independently of the initial point [17] which, according to
that study, indicates some structure that, even if not necessarily convex, tends to lead an initial guess to
a stationary result. There is also no consensus on whether the problem always has a single optimum. In
particular, it is known that there exist dependencies between the parameters that yield to similar results.

For example, limt→∞ Var(νt) =
σ2ν

κ
(where Var(·) refers to the variance operator), so large values of κ

and σ can provide a model that prices options similarly to one with proportionally smaller values of these
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two parameters. The work by [9] defends that this yields to the objective function of the optimization
problem being flat close to the optimum.

As said above, there’s no guarantee that a gradient-based method converges to the global optimum of
the model parameters, but even obtaining a local optimum has been traditionally difficult. A lot of literature
uses numerical gradients[17] for these methods when trying to solve the Heston calibration problem (which
are less accurate and more computationally consuming), because no simple analytic gradients were available
and the ones obtained with symbolic algebra packages from the expressions of the characteristic function
were intractable.

Prior to [9], the existing methods could be summarized as:

• Heuristic based models: Using the relationships stated in 3.4, some studies reduce the dimension
of the optimization problem by assuming some values or relationships between the parameters from
the observation of a specific volatility surface. For example [16] sets ν0 to the short-term ATM
implied variance obtained by using a BS model, a heuristic further justified by [4], where the linearity
between ν0 and the BS implied volatility was verified for short maturities (less than 2 months). Other

heuristics used in the industry are κ =
2.75

τ
and setting ν to the BS short term volatility [8].

These assumptions may restrict the optimization problem domain and exclude the optimum.

• Stochastic methods: They are usually used in combination with deterministic search methods,
as the Nelder and Mead simplex method [26] and would avoid the pitfalls of the gradient-based
methods if the optimization problem is not convex. Some examples are Wang-Landau (used in [4])
and differential evolution and particle swarm (used in [19]). These methods are too computationally
expensive for real-time use as of now: [13] uses GPU computations to calibrate options using a SV
model called SABR, and it took 421.72 seconds to calibrate 12 instruments with a tolerance of 10−2

using 2 NVIDIA Geforce GTX470 GPUs.

3.4.2 Alternative expressions

For long-term maturities (i.e. big values of τ), [25] shows that the characteristic function in Equation 32
has discontinuities as u increases, which can lead to numerical problems for many option valuation methods
based on the integral expression in Equation 12. They show that these discontinuities arise because of a

term in Equation 32 of the form Gα(u) := eα log G(u) with G (u) :=
1− g1edτ

1− g1
and α :=

κν

σ2
, for non-integer

values of α. This is due to the spiral shape of G (u) which produces a phase jump on log(G (u)) each time
G (u) crosses the negative side of the real line.

[2] showed that the dicontinuity arises from taking the principal value of the square root in d (see
Equation 34) and it can be avoided if the second value is used. In fact, it was proven that this alternative
expression was continuous in the full parameters space [37].

Lemma 3.10.

f̂ (u) = exp

{
−iurτ +

κv̄

σ2

[
(ξ − d)τ − 2 log

1− g2e−dτ

1− g2

]
+
ν0

σ2
(ξ − d)

1− e−dτ

1− g2e−dτ

}
(39)
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where g2 =
1

g1
.

A more compact version of the characteristic function was later derived in [11] from the moment
generating function of the process. This expression also had the benefit of replacing the u-dependent
power functions in Equations 32 and 39 by hyperbolic functions, which greatly simplified obtaining analytic
expressions of the gradient of the characteristic function.

Lemma 3.11.

f̂ (u) = exp

(
−iurτ +

κv̄ρτ iu

σ
− A

)
B2κν̄/σ2

(40)

where
A := A1

A2

A1 :=
(
u2 − iu

)
sinh dτ

2

A2 := d
ν0

cosh dτ
2 + ξ

ν0
sinh dτ

2

B := deκτ/2

ν0A2

(41)

This last expression also showed discontinuity problems, as the original characteristic function in Equa-
tion 32, but [9] provides an equivalent expression, continuous in the full parameters domain, and with an
analytic expression for its gradient.

Theorem 3.12. Expression from [9] of the Heston characteristic function.

f̂ (u) = exp

(
−iurτ +

κν̄ρτ iu

σ
− A +

2κν̄

σ2
D

)
(42)

is an algebraically equivalent representation of Equation 32, continuous through all the parameters space,
where

D := log
d

ν0
+

(κ− d)τ

2
− log

(
d + ξ

2ν0
+

d − ξ
2ν0

e−dτ
)

(43)

Further, its gradient with respect to the Heston model parameters θ = (ν0, ν,σ,κ, ρ)T is given by:

∇f̂ (u) = h(u)f̂ (u) (44)

where h(u) = [hν0(u), hν(u), hσ(u), hκ(u), hρ(u)]T and:

hν0(u) = − A

ν0
(45)

hν(u) =
2κ

σ2
D +

κρτ iu

σ
(46)

hσ(u) = −∂A

∂ρ
+

2κν̄

σ2d

(
∂d

∂ρ
− d

A2

∂A2

∂ρ

)
+
κν̄τ iu

σ
(47)

hκ(u) = − 1

σiu

∂A

∂ρ
+

2ν̄

σ2
D +

2κν̄

σ2B

∂B

∂κ
+
ν̄ρτ iu

σ
(48)

hρ(u) = −∂A

∂σ
− 4κν̄

σ3
D +

2κν̄

σ2d

(
∂d

∂σ
− d

A2

∂A2

∂σ

)
− κν̄ρτ iu

σ2
(49)

where the partial derivatives of A, A2, B, and d are given in [9] and can be seen in Appendix B.1
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4. European option valuation through SWIFT

4.1 Multi-resolution analysis

Multi-resolution analysis (MRA) is a method that ultimately allows to express any function in L2(R) using
a countable orthogonal family of functions. This family can then be truncated into a finite family and
the original function can be orthogonally projected into the resulting subspace, obtaining an approximation
with a certain level of resolution. Increasing the considered number of elements of the finite family will
increase the resolution of the approximation, converging to a perfect representation when all the functions
of the original family are used [28].

Given the space L2(R) =
{

f :
∫∞
−∞ |f (x)|2dx <∞

}
, a MRA is defined as a family of nested successive

approximation closed spaces:

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

Where the subpsaces Vi are complete (they are not redundant and cover L2(R):⋃
i∈Z

Vi = L2(R), and
⋂
i∈Z

= 0

they have self-similarity in scale (all spaces are geometric scalings of V0 by powers of 2):

f (x) ∈ Vi ⇔ f (2x) ∈ Vi+1

they have self-similarity in time:

f (x) ∈ V0 ⇒ f (x − k) ∈ V0,∀k ∈ Z

Note that self-similarity in scale implies that the self-similarity in time translates to all spaces Vi as
f (x) ∈ Vi → f (x − 2ik) ∈ Vi , and the integer shifts of a (or a finite group of) generator function φ form
an orthogonal basis of V0.

In summary, we can define:

Definition 4.1. MRA: Consider φ ∈ L2(R) a function that spans the family {φm,k}m, k ∈ Z de-
fined as the normalized scaled integer shifts of φ. That is, φm,k = 2m/2φ(2mx − k), and let Vm :=
closureL2(R) 〈{φm,k}k∈Z〉

Then, if φ and Vm fulfill the conditions above, we say that φ is the scaling function or father wavelet of
the MRA {Vm} (note that the previous definition properly defines {Vm} as a sequence of nested subspaces
and that φ provides an orthonormal basis for each of them).
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One of the important implications of obtaining a father wavelet and its MRA is that another wavelet
family can be obtained from it, which will be a basis of L2(R). In order to do that, let us consider the
set of subspaces Wm such that Vm+1 = Vm ⊕Wm. Then L2(R) =

∑
m⊕Wm and there exists a function

ψ ∈W0 (called mother wavelet) that generates an orthonormal basis of L2(R) [10] by defining the wavelet
functions:

ψm,k = 2m/2ψ(2mx − k)

. Note that each {Wm,k}k∈Z gives an orthonormal basis of Wm, and {Wm,k}m∈[−∞,m−1],k∈Z is an or-
thonormal basis of Vm. So for any m ∈ Z we can define

Definition 4.2. Wavelet Projection: Pm : L2(R) → Vm is the projection from any function f ∈ L2(R)
into Vm:

Pmf (x) =
m−1∑
j=−∞

∑
k∈Z

dj ,kψj ,k(x) =
∑
k∈Z

Dm,kφm,k(x) (50)

where dj ,k = 〈f ,ψj ,k〉, Dm,k = 〈f ,φm,k〉, 〈f , g〉 =
∫
R f (x)g(x)dx , and · is the complex conjugate operator.

Further, this projection converges in the L2 norm as m tends to infinity [28].

4.2 Shannon wavelets

Claude Shannon introduced the usage of the cardinal sine function for information modeling [38]:

sinc(x) :=

 sin(πx)

πx
for x 6= 0

1 for x = 0
(51)

This function serves as the father wavelet from which we obtain the Shannon Wavelet families φm,k

and ψmk
:

φm,k(x) = 2m/2sinc(π(2mx − k)), k ∈ Z (52)

ψm,k(x) = 2m/2

(
sinc(π(2mx − k − 1/2))− sin(2π(2mx − k − 1/2))

π(2mx − k − 1/2)

)
, k ∈ Z (53)

One of the interesting properties of Shannon wavelets it that they have both a slow decay in time
domain and a simple expression and sharp compact support in the frequency domain.

φ̂m,k(w) =
e−ik/2mw

2m/2
rect

( w

2m+1π

)
, k ∈ Z (54)

ψ̂m,k(w) = −e
−i

k + 1/2

2m
w

2m/2

(
rect

(
w

2mπ
− 3

2

)
+ rect

(
− w

2mπ
− 3

2

))
, k ∈ Z

(55)

When using Shannon Wavelets to approximate a function with a truncated wavelet expansion [29]
shows a bound for the projection error into Vm, by using concepts of band-limited functions:
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Definition 4.3. A function f is called band-limited if ∃B ∈ R+, with B <∞ such that

f (x) =
1

2π

∫ Bπ

−Bπ
f̂ (u)e iuxdu (56)

that is, the support of f̂ is contained in the interval [−B, B]. The parameter B is referred to as the
bandwidth of f.

The nested subspaces of a Shannon MRA can be expressed in terms of band-limited functions because
of the sinc Fourier transform rectangular shape, as stated in the following Lema from [39]

Lemma 4.4. Consider an MRA generated from the Shannon scaling function as defined in Definition 4.1,
then each subspace Vm corresponds to the space of functions f ∈ L2(R) with bandwidth B ≤ 2m

Combining this lemma with the L2 convergence of the projections Pm of f into Vm yields the following
corollary [29]:

Corollary 4.5. The orthogonal projection Pm of a Shannon MRA is equivalent to:

Pmf (x) =
1

2π

∫ 2mπ

−2mπ
f̂ (u)e iuxdu (57)

Which, in turn, can be used to derive the following bound to the error of the orthogonal projection.

Definition 4.6. Given f ∈ L2(R), let H(ξ) be:

H(ξ) :=
1

2π

∫
|u|>ξ

∣∣∣f̂ (u)
∣∣∣ du (58)

, the normalized mass of the two-side tails of f̂ defined by ξ.

Lemma 4.7. Let εm(x) := f (x) − Pmf (x) (the pointwise approximation error due to the projection of f
into Vm). Then |εm(x)| ≤ H(2mπ) [29]

4.3 SWIFT

The Shannon Wavelets Inverse Fourier Technique (SWIFT) is an option pricing method presented in [33].
It combines the Shannon Wavelets and MRA concepts with Equation 12 to provide a fast approximation
to the value of a specific option v(x , t).

The overall approximation can be summarized, as in [29], by a set of consecutive approximation steps
to that equation, which are described below.

• Wavelet Projection: f is replaced by its Shannon wavelet projection at scale m ∈ Z. Using Definition
4.2 this can be stated as:

f (y |x) ≈ f1(y |x) := Pmf (y |x) =
∑
k∈Z

Dm,k(x)φm,k(y) (59)
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v(x , t) ≈ v1(x , t) = e−rτ
∫
R

f1(y |x)v(y , T )dy (60)

with Dm,k(x) := 〈f (·|x),φm,k〉.

• Series Truncation: The set of values of k involved in the sum of Equation 59 is reduced to a finite
interval [k1, k2]

f1(y |x) ≈ f2(y |x) =

k2∑
k=k1

Dm,k(x)φm,k(y) (61)

v1(x , t) ≈ v2(x , t) = e−rτ
∫
R

f2(y |x)v(y , T )dy (62)

It is important to notice that the first approximation lets us express:

f (2−mk|x) ≈ f1(2−mk |x) = 2m/2Dm,k(x) (63)

which quickly justifies that, for any given x, the density coefficients vanish as |k | increases, because f
vanishes at the queues. It is also worth noting that increasing m will result in this mapping being less
favorable. That is, for each k, Dm,k will be bounded by a point closer to the center of the density
function, potentially requiring to increase the interval [k1, k2].

Remark 4.8. From this point onward a symmetric interval [1 − η, η] will be considered both for
convenience and for consistency with the code implementation.

• Density Coefficients Approximation: The integral required to compute Dm,k is replaced by an
approximation D∗m,k as discussed in Section 4.3.1.

f2(y |x) ≈ f3(y |x) =

η∑
k=1−η

D∗m,k(x)φm,k(y) (64)

v2(x , t) ≈ v3(x , t) = e−rτ
∫
R

f3(y |x)v(y , T )dy

= e−rτ
η∑

k=1−η
D∗m,k(x)Vm,kdy

(65)

where

Vm,k :=

∫
R
φm,k(y)v(y , T )dy (66)

• Payoff Coefficients Approximation: The integral required to compute Vm,k is approximated in
an analogous way as the integral to compute the density coefficients.

v3(x , t) ≈ v4(x , t) = e−rτ
η∑

k=1−η
D∗m,k(x)V ∗m,k (67)

For European put options the payoff is given by Equation 15, and the last equation can be rearranged
using the strike-free payoff as

v4(x , t) = Ke−rτ
η∑

k=1−η
D∗m,k(x)U∗m,k (68)
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where U∗m,k is the approximation of

Um,k :=

∫
R
φm,k(y)g(y)dy =

∫ 0

−∞
φm,k(y)(1− ey )dy (69)

These coefficients can be precomputed when initializing the SWIFT procedure and shared across
different strikes and maturities, saving computation time.

Remark 4.9. The approximation D∗m,k depends on a parameter J that represents the number of inter-
vals in the sinc approximation quadrature. The parameter used for payoff computation is independent
from the one used for the density coefficients, and will be labeled Jp and Jd respectively.

4.3.1 Sinc integral and density coefficients approximation

Shannon MRA and SWIFT require solving integrals of the form
∫
R f (x)g(sinc(x))dx . In particular, when

one wants to compute the density coefficients Dm,k of Definition 4.2, or as will be seen in Section
4.3.2, for the payoff coefficients computation, one needs to solve integrals of the form

∫
R f (x)φ(x)dx

and
∫
R f (x)φ(x)dx respectively.

The simplest situation is to compute the sinc integral Si(t) =
∫ t

0 sinc(x)dx , but even for this case there
is no closed form for the integral.

There are two commonly used approaches to numerically approximate these integrals:

• Coefficients via Parseval’s Theorem: This approach, shown in [33] uses the fact that the
φm,k has a very small support in the frequency domain (as shown in Equation 54) together with

Parseval’s theorem, 〈f , g〉 =
1

2π
〈f̂ , ĝ〉. As the coefficients will be real numbers, we can take 〈f , g〉 =

Re (〈f , g〉) = Re

(
1

2π
〈f̂ , ĝ〉

)
. Entering the real part operator inside the integral sign and applying

the change of variable t =
u

2m+1π
results in expression:

Dm,k = 2m/2

∫ 1/2

−1/2
Re
(

f̂ (2m+1πt)e i2πkt
)

dt (70)

Any quadrature can be applied to numerically compute the integral, but there are known techniques
to rearrange the trapezoidal and midpoint quadratures to compute all the coefficients with a single
FFT [29, 14].

• Coefficients via Sinc approximations: An equivalent expression of the sinc function was used in
[33] as a cosine expansion using Vieta’s formula:

sinc(x) =
∞∏
j=1

cos
(πx

2j

)
(71)
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This cosine expansion was then truncated and converted to a summation via the cosine product-to-
sum-identity

ι∏
j=1

cos
(πx

2j

)
=

1

2ι−1

2ι−1∑
j=1

cos

(
2j − 1

2ι
πx

)
(72)

obtaining the first expression for the Vieta coefficients Dv
m,k , where

Dm,k ≈ Dv
m,k =

2m/2

2ι−1

2ι−1∑
j=1

∫
R

f (x) cos

(
2j − 1

2ι
π (2mx − k)

)
dx (73)

Finally, f (x) would be replaced in the integral by defining Dv
m,k = Re

(
Dvc
m,k

)
.

Dvc
m,k =

2m/2

2ι−1

2ι−1∑
j=1

∫
R

f (x)e
−i

2j − 1

2ι
π(2mx−k)

dx (74)

Notice that when applying the Re(·) operator to Dcv
m,k , it can be moved freely across multiplications

by real numbers and summations and integrals, and expression 72 is ultimately recovered by using
Re
(
e−uix

)
= cos(x). Finally, splitting the complex exponential into x-dependent and x-independent

terms and replacing
∫
R f (x)e−xAi by f̂ (A) yields:

Definition 4.10. Vieta coefficients approximation

D∗m,k =
2m/2

2ι−1

2ι−1∑
j=1

Re
(

f̂ (uj2
m) e ikuj

)
(75)

where uj =
π

2ι
(2j − 1)

It is worth noting that, while the original construction of Definition 4.10 required a summation of a
power of 2 number of terms, it was revisited in [29] and generalized by expressing the sinc in terms of its
Fourier transform

sinc(t) = Re (sinc(t)) =
1

2π

∫ π

−π
Re
(
e−iuxdu

)
=

1

π

∫ π

0
cos(ux)du (76)

Then, if one uses a mid-point quadrature with J buckets and proceeds as in the initial derivation, the
expression in Definition 4.10 is recovered, with the new term J being equivalent to the previous 2ι−1 one.

The following approximation error bound was given in [29] for the mid-point quadrature:

Lemma 4.11. Error of the Sinc Function Approximation

sinc∗(x ; J) =
1

J

J∑
j=1

Re
(
e−iujx

)
(77)

where uj =
π(2j − 1)

2J
. Then the approximation error of applying the midpoint quadrature on a finite

domain |x | ≤ a ≤ π

2
J is bounded by:

max|x |≤a |sinc(x)− sinc∗(x ; J)| ≤ (πa)2

(4J)2 − (πa)2
(78)
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Note that this approximation only holds for a bounded interval of the sinc function domain. This implies

that, when used to compute a sinc integral, the integral must also be truncated so that |x | ≤ πJ

2
.

In particular, if one approximates the Shannon wavelet φm,k(x) in the domain (a, b) by using the
sinc∗(x ; Jk), the sinc function will be evaluated in the domain (2ma − k, 2mb − k) and one can obtain
a bound on Jk for each wavelet. As will be seen in Section 4.3.3, using a single value J that fulfills the

inequality max(|2ma − k|, |2mb − k |) ≤ πJ

2
for all k will allow to speed up computations by using a Fast

Fourier Transform algorithm. So, assuming a single value J is used and symmetric domains (-c, c) and
[1− η, η] are considered for x and k respectively, one obtains the following corollary, presented in a slightly
different form in [29]:

Corollary 4.12. Error of the Wavelet Approximation

φ∗m,k(x) := 2m/2sinc∗(2mx − k ; J) (79)

Then the error of applying the midpoint quadrature on a finite domain |x | ≤ c for all k ∈ [k1, k2] is

(assuming a fixed J ≥ π

2
(2mc + η))

max
|y |≤c,1−η≤k≤η

∣∣φm,k(y)− φ∗m,k(y)
∣∣ ≤ 2

m
2

(π (2mc + η))2

(4J)2 − (π (2mc + η))2
(80)

4.3.2 Payoff coefficients approximation

One should note that the same procedure as the approximation Dm,k ≈ D∗m,k (discussed in Section 4.3.1)
can be used for the payoff coefficients approximation. Starting from Equation 69, and applying the same
sinc approximation as in the density coefficients, for European puts we obtain the expression:

Um,k ≈
2m/2

Jp

Jp∑
j=1

Re

(
exp

{
i
2j − 1

Np
πk

}∫
R

(1− ey )+exp

{
−i

2j − 1

Np
πy

}
dy

)
(81)

The last step of the density coefficients approximation requires the convergence of the Fourier transform
of the payoff coefficients which, in general, is not guaranteed. In particular the Fourier transform of the
strike-free payoff of a European put option does not converge.

The sinc∗ approximation is only defined in a finite domain anyway, so the SWIFT algorithm implemen-
tation deal with this situation by initially bounding the integral in Equation 12 to a finite interval. Here,
for simplicity a symmetric interval (-c, c) will be considered, reaching expression:

Definition 4.13. Strike-free payoff coefficients approximation

Um,k ≈ U∗m,k(−c , c) :=
2m/2

Jp

Jp∑
j=1

Re

e
i
2j − 1

Np
πk

Ij(c)

 (82)
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where

Ij(c) :=

∫
|y |≤c

g(y)e
−i

2j − 1

Np
πy

dy :=

∫
|y |≤c

g(y)e−iujydy (83)

And its analytic expression is given by

H(y) : = −ie iujy
(

1

uj
− ey

−i + uj

)
(84)

Ij(c) = H(c)− H(−c) (85)

Remark 4.14. As with the density coefficients, it must hold Jp ≥
π

2
(2mc + η).

One can easily see that the value of Ij(c) will be periodic on c. In general, all the sinc approximations
used in the SWIFT method are periodic, which can give rise to boundary issues and undervaluation of
option prices when the option strikes approach the boundary of (−c , c). This issue also appears in the
COS option pricing method [12], another Fourier-transform-based option pricing method closely rleated
to the SWIFT method, and is discussed by Maree et al. [29]. In their study, they use the independence
between the parameters regulating the payoff integral domain (c) and the one regulating the wavelet series
truncation (η) to carefully choose a value for c to avoid this problem.

4.3.3 Fast computation of the density and payoff coefficients

Starting with a general expression of the summation term that appears in both the density and payoff
coefficients approximation:

fk =
J∑

j=1

gje
i
2j − 1

2J
πk

(86)

One can extend it by defining gj = 0 for j = 0 and J < j < 2J and take the j-independent terms outside
of the summation, obtaining:

fk = e

−iπk

2J
2J−1∑
j=0

gje
i
2jπk

2J (87)

This last summation expression coincides with the Discrete Fourier Transform (DFT) of length 2J of
{gj}, and the computation of all the values fk can then be speeded up by using a Fast Fourier Transform
(FFT) implementation.

Remark 4.15. Note that computing the density or payoff coefficients imposes a restriction on the wavelet
series truncation parameter 2η < J.

In all numerical examples in this article the C library FFTW will be used to compute any FFT [15].
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4.3.4 Alternative method for multiple strikes

A key property of the SWIFT method is that, given a level of projection m, the payoff and density coefficient
associated to each wavelet φm,k can be computed through two FFTs (one for all the density coefficients,
and one for all payoff coefficients). Without this property, the SWIFT computation speed would not be
competitive with other numerical option pricing methods [14].

In the option calibration problem, one usually needs to consider the option prices of several options
at different strikes. In this specific case, if one were to compute the option prike of M options at strikes
K := (K1, ... , KM)T , then the formulation proposed in Equation 68 would need to recompute the density
and payoffs coefficients for every strike Ki . This involves evaluating the characteristic function η · Jp ·M
times, an operation which, for the Heston model is more costly than evaluating the strike-free payoff
function, or its integral. As stated in [33] one can improve the computation time of option pricing for
multiple strikes when f̂ (u; x) = f̂ (u)e−iux , a property present in both Lévy and Heston models.

As stated in [29], let us start from Equation 68, and considering the previously mentioned vector of
strikes K, with its associate vector of initial states x := (log(S0/K1), ... , log(S0/KM))T . One can then
substitute the density coefficient approximation into the option price expression and substitute the two
resulting summations, obtaining:

v4(x, t) : = e−rτK

η∑
k=1−η

Re


Jd∑
j=1

f̂ (uj2
m; x)e iujkU∗m,k(−c, c)

 (88)

= e−rτK

Jd∑
j=1

Re

f̂ (uj2
m; x)

 η∑
k=1−η

U∗m,k(−c , c)e iujk

 (89)

= e−rτK

Jd∑
j=1

Re

f̂ (uj2
m)e−iujx

 η∑
k=1−η

U∗m,k(−c , c)e iujk

 (90)

=: e−rτK

Jd∑
j=1

Re
{

f̂ (uj2
m)e−iuj2

mxŨj(−c , c)
}

(91)

The original formulation from Equation 68 requires the following computations:

• For each of the M strikes:

– 1 FFT of length 2Jd to compute 2η density coefficients.

– Jd evaluations of the characteristic function f̂ (uj2
m; x)

• 1 FFT of length 2Jp to compute 2η payoff coefficients.

• Jp evaluations of the strike-free payoff integral Ij(c) defined in Equation 83.

where the payoff dependent computations are independent of the strike price and can be precomputed and
reused for all strikes. On the other hand, the alternative formulation provided in Equation 91 requires:
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• For each of the M strikes:

– Jd evaluations of the x-dependent term of the characteristic function e−iujx.

• Jd evaluations of the x-independent characteristic function f̂ (uj2
m)

• 2 FFT of lengths 2η and 2Jp to compute the Jd values of Ũj(−c , c).

• Jp evaluations of the strike-free payoff integral Ij(c) defined in Equation 83.

where all the required values of f̂ (uj2
m) and Ũj(−c , c) (and the values of Ij(c) required to compute the

latter) can be precomputed and reused for all strikes.

Remark 4.16. In general, whenever the x dependency in f̂ (u; x) can be easily isolated and is cheap to
compute, one can benefit from the alternative formulation proposed in this section.

The computation of the characteristic function tends to be more expensive than the computation of
the payoff integral, so a SWIFT implementation through Equation 91 tends to outperform the one through
Equation 68 when several strike prices are involved. A discussion on the benefits of using a formulation
equivalent to the one provided by Equation 91 for multiple strikes appears in [33] and, there, it is shown
that is possible to define Fj := f̂ (uj2

m) and precompute its Jd required values once and reuse them for all
strikes.

In this master’s thesis, several other important speed properties of this formulation are presented. Two
are presented below, and the rest will be presented in Section 4.3.5:

• Ũj(−c , c) is independent of the strike, so it can also be precomputed and reused with all strikes Kl .

• Let us define

Gj :=

{
Fj Ũ(−c , c) for j ≤ Jd

0 for Jd < j ≤ 2Jd
(92)

then Equation 91 can be rearranged as:

v4(x , t) = e−rτKRe

e

πi2mx

Jd
2Jd∑
j=1

Gje
−

2πij2mx

2Jd

 (93)

Then, if one chooses carefully the values of Kl so that 2mxl is an integer number, this computation

can be speeded up by the use of a FFT. If one chooses xk :=
2k − Jd

2m+1
, Equation 93 becomes:

v4(x , t) = e−rτKRe

e

πi2mx

Jd
2Jd∑
j=1

Gje
−

2πijk

2Jd eπij


= e−rτKRe

e

πi2mx

Jd
2Jd∑
j=1

G̃je
−

2πijk

2Jd


(94)

where
G̃j := Gje

πij = Gj(−1)j (95)
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Remark 4.17. Note that, as with other FFT-based computations presented in this document, this
approach imposes a bound M ≤ Jd to the number of different strikes that can be computed with
the FFT.

If one considers the domain D of x = log(St/K ), this approach allows pricing options in a symmetrical

boundary (− Jd
2m+1

,
Jd

2m+1
) ∈ D at Jd uniformly distributed points at distance 2m.

One cannot usually choose the strike prices at which to price the options, particularly not when
calibrating a model through real market data, as only a limited set of strike values are listed on any
exchange market, but this method could be used to quickly compute the option prices of an already
calibrated model at a grid of points that could be tuned by the choice of m and Jd . Then the option
prices at any intermediate strike could be interpolated with the help of a derivative-free spline (or, if
the derivative with respect to K of Equation 94 preserves the same speed properties, with the help
of any spline method that uses derivatives).

4.3.5 Option price gradient

The SWIFT option pricing method will be used to calibrate different models by means of an optimization
problem, as will be described in Chapter 5. For gradient-based optimization methods, the gradient of the
pricing formula used will be required. Thus, one needs to compute the gradient of v4(θ; x , τ)

Lemma 4.18. Option Price Gradient

For each strike Kl with correspondent initial state xl , the gradient of the option price is given by

∇θv4(θ; xl , τ) = e−rτKl

Jd∑
j=1

Re
{

h(uj2
m)f̂ (uj2

m)e−iuj2
mxl Ũj(−c , c)

}
(96)

where h(u) is defined as in Theorem 3.12.

Proof. Starting from Equation 91, as the gradient operator is linear, it can be exchanged with the scalar
multiplications, summation, and real part operator present in the expression. Then, e−iuj2

mxl and Ũj(−c , c)
are both independent from θ and one obtains:

∇θv4(θ; xl , τ) = ∇θ

e−rτKl

Jd∑
j=1

Re
{

f̂ (uj2
m)e−iuj2

mxl Ũj(−c , c)
}

= e−rτKl

Jd∑
j=1

Re
{
∇θ

(
f̂ (uj2

m)e−iuj2
mxl Ũj(−c, c)

})

= e−rτKl

Jd∑
j=1

Re
{
∇θ

(
f̂ (uj2

m)
)

e−iuj2
mxl Ũj(−c , c)

}

e−rτKl

Jd∑
j=1

Re
{

h(uj2
m)f̂ (uj2

m)e−iuj2
mxl Ũj(−c , c)

}
(97)

where the last equallity follows directly from Theorem 3.12.
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Remark 4.19. A similar expression can be reached when computing the gradient of any of the equivalent
expressions of v4(θ; x , τ) presented in previous sections.

It is worth noting that this expression holds the same speed properties than Equation 91, in particular,
f̂ (uj2

m) can also be precomputed for all j and l and reused for all strikes to compute both the price and
the gradient of the option. One can also obtain three more speed properties:

• The value of e−iuj2
mxl can be reused between the price and the gradient computations.

• If the SWIFT parameters are not changed during the gradient descent used in the calibration problem
that will be presented in Chapter 5, then the values of both Uj(−c , c) and e−iuj2

mxl can be reused
through all the calibration steps.

• One can reuse the values of f̂ (uj2
m) from the price computation to compute the gradient.

So combining all the speed properties above, when solving a gradient-based calibration problem, one
only needs to first precompute Uj(−c , c) and e−iuj2

mxl and then in each gradient-descent step, one can
simultaneously compute both the price and the gradient of all strikes by computing once for each j ∈ [1, Jd ]
the values of f̂ (uj2

m) and h(uj2
m).

4.3.6 SWIFT parameter choice

A bound for εm := f (y |x) − Pmf (y |x) is provided in Lema 4.7. An approximation to this bound, which
converges exponentially with respect to 2m is presented in [29] for several Lévy functions which, for the
GBM process is given by:

εm ≈
(2mπ)−1

4πτ

(∣∣∣f̂ (−2m; x)
∣∣∣+
∣∣∣f̂ (2m; x)

∣∣∣) (98)

This provides an iterative method to try increasing values of m until the error εm falls under a desired
threshold.

An equivalent result could be derived for the Heston model by following Heston’s decay analysis [21],
but is not presented in this work. Instead, the Area Under the Curve (AUC) approach presented in [33] is
used, where the value of m is iteratively increased and for each value of m, η is decided by the cumulant test
presented below. Then the integral of the density function approximation f (y |x) :=

∑η
k=1−η Dm,kφm,k(x)

can be approximated as:

A :=
1

2m/2

Dm,1−η
2

+

η−1∑
k=2−η

Dm,k +
Dm,η

2

 (99)

If it is far from the desired value, m is increased and the coefficients and AUC are recomputed until a
desired value is obtained (in the tests run in this work, m = 3 was sufficient for long-term Heston options,
while between m = 5 and m = 7 was needed for mid-term options).
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The values of η, Jd , and Jp are intimately related to the truncation of the European option valuation
integral to a finite interval (−c , c) through the restrictions of the sinc function approximation discussed in
Section 4.3.1. There are no results on how to find a value of c to guarantee a certain pricing error, but
[33] and [9] propose an initial guess based on the distribution cumulants:

c := |c1|+ L
√

c2 +
√

c4 (100)

Where ci is the i-th cumulant of the distribution (the values for the Heston distribution are obtained
from [6]) and L is a heuristic value. [33] recommends L = 10, while [29] recommends L = 6. During the
numerical tests L = 10 provided a better approximation for Heston options.

When using the multiple strike formulation presented in Section 4.3.4, [29] shows that under-pricing
for strikes close to the boundary of (−c , c) (due to the periodic nature of the sinc approximation) can
be avoided by transforming the obtained interval (-c, c) to (xmin − c , xmax + c), where x is the initial
state variable associated to an strike K and, if M different strikes are considered, xmin := mini∈[1,M]xi and
xmax := maxi∈[1,M]xi .

Then one sets η := d2mce, computes the vector of density coefficients and runs the AUC test presented
above. If close to the desired value, η can be increased and the new density coefficients can be computed,
while keeping the previously computed ones. As said above, if it is far from the desired value m needs to
be increased and all the coefficients need to be recomputed.

Finally, values of Jd and Jp are chosen that enforce J ≥ π

2
(2mmax(|xmin − c|, |xmax + c |) + η)

5. Option calibration

The goal of calibrating a model using market data is to obtain model parameters that, when used for option
valuation with an appropriate option valuation method, yield prices similar to the real market ones.

Completely matching the market for all strikes and maturities is an over-determined problem so, gen-
erally, the calibration consists on an error minimization problem, using a set of option market prices at
different strikes and maturities.

This section follows closely [9] and it adapts the optimization problem presented there to the the option
valuation method presented in Section 4.3.

5.1 Objective function

Let V ∗(xi , τi ) be the market price of a European call option and V (θ; xi , τi ) be the price at the same
strikes and maturities obtained by using the Heston analytic formula 36. Let us also assume that we use n
different options to calibrate the model, so i ∈ [1, n] ⊂ Z . Then:
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Definition 5.1. The calibration of the model is defined as the minimization problem

minθ∈R5(f (θ))

f (θ) :=
1

2
||r(θ)||2 =

1

2
rT (θ)r(θ) (101)

where r(θ) is the n-dimensional vector of the residuals obtained when pricing the options considered
for calibration using the model parameters. That is:

r(θ) := [r1(θ), ... , rn(θ)]T , ri (θ) := V (θ; xi , τi )− V ∗(xi , τi ), i = 1, ... , n (102)

It is worth noting that the choice of a specific objective function (and appropriate strikes and maturities
to use as calibration points) will impact the obtained model. This can be used when trading to fit to
the specific needs of a trader, ultimately leading to different objective functions. One example is using
log-likelihood based methods for hedging and market making [7].

One must be cautious, as this choice can lead to consistently giving more weight in the calibration to
some set of options over the others. This is the case, according to [9], of a commonly used calibration
scheme in industry which consists on a least-squares problem similar to Equation 101. If one computes the
vector of implied BS volatilities σBS corresponding to each option price, and runs a squared differences
optimization problem based on implied volatility differences, then the resulting calibration scheme can give
more weight to OTM options than ITM ones.

The choice of calibration strikes and maturities can also have a similar impact in the pricing model. For
example, as an option gets closer to the expiration date, the variance of the price change until expiration
of the underlying asset gets smaller. So, if one were to always use the same strikes across different expiries,
then for long-term maturities the model would end up with a lot of calibration points ATM but would lack
control points in regions where the density function of the underlying asset is still relevant, which could
lead to serious pricing errors for mildly OTM and ITM options. For the short-term maturities, the relevant
regions of the density function would have small number of sparse strikes and there would be a lot of strikes
in very OTM and ITM regions, where prices are mostly close to 0 and to the discounted payoff respectively,
so they are less sensitive to the change in the model parameters and do not help much in calibration (the
price derivatives with respect to the model parameters will be almost flat at those expiry-maturity points,
so they will not affect much the optimization problem), effectively wasting computational power.

As this master’s thesis does not strive for any specific trading strategy, but will compare the performance
of the calibration method with respect to [9], their calibration objective function (defined by Equations 101
and 102) will be used as it is, computing the option prices with the scheme provided in Section 4.3.

5.2 Gradient descent step

Given the optimization problem presented in the previous section, one can define the Jacobian and Hessian
matrices of r.
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Definition 5.2. Jacobian matrix of the residual vector r:

J := ∇θrT = ∇θV (θ; x, τ) (103)

where

Jji =

(
∂ri
∂θj

)
=

(
∂V (θ; xi , τ)

∂θj

)
(104)

Definition 5.3. Hessian matrix of the residual element ri :

H(ri ) := ∇θ∇T
θ ri = ∇θ∇T

θ V (θ; xi , τ) (105)

where

Hjk(ri ) =

(
∂2ri
∂θj∂θk

)
=

(
∂2V (θ; xi , τ)

∂θj∂θk

)
(106)

Then, the gradient and Hessian of the objective function defined by Equations 101 and 102 are:

∇θf (θ) = Jr (107)

∇θ∇T
θ f (θ) = JJT +

M∑
i=1

riH(ri ) (108)

The gradient descent will be solved by a Levenberg-Marquard (LM) method [32]. This method uses
a modification of the Newton method that lets it dynamically use either a steepest-descent or a Gauss-
Newton descent step, depending on whether the current guess is close or far from the optimum. The exact
expression of the step is:

∆θ = (JJT + µI)−1∇θf (θ) (109)

where I is the identity matrix and JJT + µI substitutes the Hessian matrix used in the Newton method.

When the current guess is far from the optimum, a large value is given to µ so that

∆θ ≈ ∆θ(SD) = (µI)−1∇θf (θ) (110)

and a small step of a steepest-descent method is taken.

When the current guess is close to the optimum, a small value is given to µ so that

∆θ ≈ ∆θ(GN) = (JJT )−1∇θf (θ) (111)

and the Hessian usually used in the Newton method is replaced by its Gauss-Newton approximation. This
approximation is reliable when either ri or H(ri ), and [9] justifies its usage by conjecturing that f is nearly
linear, a condition that guarantees that the second requirement holds. One should note that even if f were
not linear LM should only use small values of µ when |r| is small at the current step of the optimization
problem.

The LM optimization problem will be solved through the LEVMAR c package [27], which can be built
to use the LAPACK linear algebra package [35]. For this work LAPACK will be used.
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This implementation of LM has 3 different stopping criteria and stops when any of them is fulfilled:

|rk | ≤ ε1 (112)

|Jke| ≤ ε2 (113)

|∇θk |
|θk |

≤ ε3 (114)

The first stopping criteria is fulfilled when the objective function defined by Equations 101 and 102 has
reached a value closer to zero than the indicated tolerance. It is only when the method stops due to this
criteria that this master’s thesis will consider that the model has been properly calibrated.

The second criteria corresponds to a flat gradient, and the third corresponds to a stagnating update
(this last one has never happened while testing the Heston convergence).

6. Numerical results

In this master’s thesis, the SWIFT method will be used to callibrate a Heston model through European call
options price data at different strikes and maturities and it will be compared to the pricing and calibration
method based on Equation 36 proposed by [9], which for the sake of readability will be denoted Cui
Pricer(CP). CP will be implemented using a Gauss-Legendre quadrature with 64 nodes for its numerical
integration step. The upper limit of the integral will be truncated, whenever possible, at u = 200, but will
be adjusted if necessary. The calibration process will consist on applying an LM method to the objective
function defined in Equation 101.

The SWIFT method will be implemented using the characteristic function expression and its derivatives
provided also in [9].

The tests that will be performed can be summarized as:

• Stress tests: Both the CP and SWIFT will be tested with several combinations of extreme strikes
(ATM and deep ITM and OTM), and both really long-term and short-term maturities to detect any
possible limitations or numerical issues of both techniques in a wide usage range.

• Speed tests: The option calibration speeds for the regular SWIFT method (defined by Equation
68) and the one devised to quickly compute several option prices with different strike and same
maturity (defined by Equation 91 and which will be denoted KSWIFT), will be compared against CP
for three different strike and expiry sets to check whether the multiple-strike alternative formulation
is necessary to obtain a competitive option calibration method. These scenarios will represent:

– An extreme situation with a single expiry and multiple strikes.

– A situation with a fixed number of maturities and a fixed number of strikes per maturity.

– An extreme situation with different expiries for each strike.
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When computing options with more than one different strike, a combination of OTM and ITM options
will be used to provide an heterogeneus sample of contracts. Similarly, when more than one maturity
is considered, a sample of long and short term expiries will be used.

• Realistic convergence tests: As in [9], convergence of the method will be tested for realistic
model parametrisations representative of long-dated Foreign Exchange (FX), interest rate, and equity
options, as they are relevant and, according to Glasserman and Kim [20], challenging for simulations
of the Heson model.

Several sets of Heston parameters will be used for the different numerical tests and are presented in
Table 1. The last three sets of parameters are representative of long-term FX, interest rate, and equity
options respectively [3].

Name κ ν σ ρ ν0

θ(1) 3 0.1 0.25 -0.8 0.08

θ(2) 1.5768 0.0398 0.0175 -0.5711 0.0175

θ(FX ) 0.5 0.04 1 -0.9 0.04

θ(IR) 0.3 0.04 0.9 -0.5 0.04

θ(EQ) 1 0.09 1 0.04 0.09

Table 1: Set of Heston parameters used in the numerical tests.

The initial guesses for parameters θ(1) and θ(2), used in Sections 6.1 and 6.2 respectively will be

θ
(1)
0 = (1.2, 0.2, 0.3,−0.6, 0.2)T and θ

(2)
0 = (1.5768, 0.0398, 0.5751,−0.5711, 0.0175)T

The computations were performed on a 64-bit Ubuntu 18.04.4 LTS with a 3.70GHz Intel Core i7-8700K
processor and 62.8 gigabytes of ram.

6.1 Stress Tests

Deep ITM and OTM call options are priced together with ATM call options for long and short term
maturities using two SWIFT methods (one with m = 3 and one with m = 7) and a CP method. The time
until maturity τ is given in years. Thus, the expiries of 0.04 attempt to simulate a situation of around 2
weeks until expiration of the option contract.

Table 2 presents the pricing results V m=3
SWIFT and V m=7

SWIFT refer to the prices obtained with the SWIFT
methods with m = 3 and m = 7 respectively and V u=200

CP refers to the price obtained with the CP method.

Both methods run into numerical issues with either really big or really small expiries if no changes are
made:

• CP and SWIFT implementated with m = 7 produced Not a Number (nan) when evaluating big
expiries. Looking at the option price execution with the integrated debugger of the GDB compiler
[40] showed that Equations 40 and 42 run into numerical overflow when the exponent dτ

2 of its
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Parameters S K τ V m=3
SWIFT V m=7

SWIFT V u=200
CP

θ(1) 100 50 45 65.565 nan nan

θ(1) 100 100 45 46.911 nan nan

θ(1) 100 200 45 27.198 nan nan

θ(1) 100 50 0.04 44.221 50.000 50.000

θ(1) 100 100 0.04 0.380 1.045 1.046

θ(1) 100 200 0.04 0 0 1.079e-3

Table 2: Set of Heston parameters used in the numerical tests.

hyperbolic functions is big enough. In most of the tests above, the overflow could be avoided when
carefully setting an appropriate value for the upper bound u of integral 36, and by using a smaller
value of m. The error can also be avoided by using Schouten’s expression 39 of Heston’s characteristic
function (the obtained prices are denoted VSchouten in Table 3). It should be noted that using this
other expression just for the characteristic function will not avoid the overflow issue for calibration, as
the same hyperbolic functions appear evaluated at the same point in the expression of h(u) provided
in [9].

• SWIFT with m = 3 tends to underprice short expiry options. After checking the swift parameters
obtained through the parameter choice method defined in Section 4.3 it was observed that the
base guess for η obtained by simply using the cumulant expression proposed resulted in a truncated
Shannon wavelet expansion that did not cover a sufficient domain of the density function f (y |x)
which could be inferred from the values of the obtained AUC. A dynamical choice of the parameter
η, as described in [33] could avoid this issue.

Increasing the value of m also fixes the problem and, as the values of m used for the other sections
of this chapter give good AUC values, the dynamical method was not implemented.

• None of the methods can handle the deep OTM option with a short expiry. The expected value
should be close to but bigger than 0, as there are only 10 trading days to expiry and the price of the
underlying should increase 50% so that the option contract would not expire worthless. CP value
seems too high and, in fact, when increasing the value of u in the interval [100, 400] the price never
clearly converges to a certain value, and it can give higher estimates for u > 200 than 1.079e − 3, or
even negative values. Changing the characteristic function expression does not fix this issue. SWIFT
consistently gives it a price of 0. The contribution that makes the price different than 0 probably lies
on the tails of the distribution function, and one would require a really big c so that a point with a
positive payoff is even considered in Equation 91.

A method to set an optimal u value is not provided in [9], so it has to be manually determined when
changing the time to expiry of the options one wants to price. This issue is also present in SWIFT but
in the cases studied here, using the iterative SWIFT parameter choice scheme provided in Section 4.3.6
seems to suffice to avoid this issue for reasonable tolerance levels.

Further, the errors arise for big values of dτ
2 , which also depend on Heston parameters κ, σ, and ρ.

It would be interesting to study the dependence between changes in these parameters and changes in
the optimal values of u. If significant changes can happen during the calibration scheme itself, one may
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Parameters S K τ u V u
CP V u=200

Schouten

θ(1) 100 50 45 6 65.565 65.565

θ(1) 100 100 45 6 46.911 46.911

θ(1) 100 200 45 6 27.198 27.198

θ(1) 100 50 0.04 200 50.000 50.000

θ(1) 100 100 0.04 200 1.046 1.046

θ(1) 100 200 0.04 300 -1.174e-5 1.079e-3

Table 3: Results when choosing an appropriate u, or when keeping u at 200 and Schouten’s characteristic
function. The column u indicates the value at which CP integral is truncated, and the option price
obtained is shown in column V u

CP . Column V u=200
Schouten shows the price obtained when keeping u = 200 but

implementing CP using the characteristic function provided in Equation 39. The last row is an example of
the negative values obtained in the deep OTM short-term call.

need to automatically change the value of u something which is currently not possible in CP. One can
automatically change SWIFT parametes at every calibration step, but assuming these parameters constant
simplified the expression of the price gradient in Section 4.3.5. If one decides to change them dynamically
while running the gradient descent, one would need to integrate the effect of changing them into the option
gradient. That is, one would need to take into account how a change in Heston parameters changes the
SWIFT parameters, and how the change in these affects the option price. Some of the parameters change
discretely, so it is unclear if this is a feasible approach.

Another possibility would be to bound the error between the SWIFT price gradient approximation
∇θVSWIFT (θ; x , τ) and the real Heston option price gradient ∇θV (θ; x , τ). If the piece-wise error between
the two gradient components is maintained below a tolerance ε, then every step of the gradient descent
will advance in the direction to the optimum while ∇θV (θ; x , τ) is not too flat. In particular, if none of
its components has an absolut value smaller than ε.

6.2 Speed Tests

The calibration speed has been tested for 3 different sets of strike prices and maturities, which are available
in Appendix B.2. Set 3 is specially designed for KSWIFT. It consists on the same strikes and expiries as
Set 2, but they are fed as input variables to the code implementation in a way that prevents the algorithm
from applying the speed up techniques discussed in Section 4.3.4, so in Table 4 Set 3 contains values only
for KSWIFT (as Set 3 is equivalent to Set 2 for the other two calibration methods).

The values for KSWIFT and CP have been averaged over 100 executions of the calibration to provide
a good estimate of the required calibration time. It can be seen that regular SWIFT is orders of magnitude
slower without averaging the required time over several executions. Hence, the multiple-strike alternative
formulation presented in Section 4.3.4 and all the speed-up techniques discussed through Section 4.3 are
necessary to provide a competitive method that can be used for real-time model updating.

KSWIFT performance is comparable to CP for Set 2, an order of magnitude faster for Set 1, and an
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Strike and maturities Set Heston Parameters Method Time(sec) I ε1

Set 1 θ(2) SWIFT 6.923 10 3.932e-11

Set 1 θ(2) KSWIFT 4.501e-3 10 3.932e-11

Set 1 θ(2) CP 4.559e-2 10 3.932e-11

Set 2 θ(2) SWIFT 35.91 13 1.002e-12

Set 2 θ(2) KSWIFT 5.011e-2 13 1.002e-12

Set 2 θ(2) CP 6.314e-2 13 1.002e-12

Set 3 θ(2) KSWIFT 1.727e-1 13 1.002e-12

Table 4: Iterations and time needed to calibrate each speed scenario and objective function value reached.
I refers to the number of iterations LM requieres until it stops, and ε1 corresponds to LM first stopping
criteria (see Section 5.2), which refers to the objective function final value.

order of magnitude slower for Set 3. It can be argued that both Set 1 and 3 are extreme cases that are not
really relevant for real option trading situations: One would rarely use a single strike per expiry to calibrate
an option pricing model, and using data from a single expiry only seems reasonable when trading a single
option expiry (in this case, one could benefit from the speed properties of KSWIFT on scenarios like Set
1). According to [9], a reasonable calibration scenario consists in using option prices from strikes at with
0%, ±25%, and ±50% BS delta (derivative of the option price with respect to the underlying price value.
It has a closed analytic expression for European BS options).

The calibration speed of KSWIFT and CP is of the order of 5e − 2 seconds, which seems sufficient
for real-time model updating to provide market information to a human trader. In more computationally
demanding trading environments, like high-frequency trading neither KSWIFT nor CP would be competitive
enough.

Remark 6.1. All the single expiry tests (the first three tests on Table 4) converged to an approximated
value different than θ(2) but approximated all the option prices properly. Using different initial guesses
lead to different approximated values which minimized the objective function. It would be interesting to
see whether this is a property of the Heston distribution (that is, it has at leas a degree of freedom when
defined from option prices in a single expiry) or it is due to the specific scenario being tested.

6.3 Realistic Convergence Tests

Each of the realistic parameter sets proposed is calibrated for 100 different initial states. Each of the
components of the components of the initial parameters guess is drawn uniformly at random within ±10%
of the optimal value.

According to [9] this is representative of real option calibration as, usually, the initial guess used for
a certain calibration problem is the last available parameter estimation. If the calibration is updated fast
enough, it is expected that the initial guess will be this close to the optimum.

The maturities used in [9] are not available, so for these tests the strike-expiry Set 2 will be used.
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θ1 θ2 θ3

|κa − κ∗| 6.640e-4 2.657e-4 1.160e-3

|νa − ν∗| 1.547e-4 1.321e-5 1.746e-5

|σa − σ∗| 1.978e-3 2.248e-4 3.725e-4

|ρa − ρ∗| 2.649e-4 1.365e-5 8.661e-6

|νa0 − ν∗0 | 3.629e-5 4.790e-6 8.339e-6

Iterations 13.85 6.32 6.78

Time 3.341e-1 1.938e-1 2.006e-1

ε1 2.867e-11 2.030e-11 3.643e-11

Table 5: Convergence statistics averaged over 100 calibrations. xa refers to the calibration problem’s
estimation of variable a so, for example |κa − κ∗| refers to how close LM approximation of κ was to the
real value.

As can be seen in Table 5, even under challenging parameter setups representative of real option
trading, KSWIFT is able to provide accurate estimations of the Heston parameters, taking on average
a computation time of hundreds of milliseconds. These results, both in terms of speed as in terms of
accuracy, are comparable to the tests in [9], so it is concluded that KSWIFT is as efficient as CP for real
market scenarios.

7. Conclusions

An extension of the SWIFT method for European options calibration has been provided in Section 4.3
together with novel speed-up techniques, which can radically improve the performance when several of the
priced/calibrated options have the same time to maturity.

Some numerical issues with Equation 42 are discussed for long-term expiries when evaluated at big
values of u. Following the dynamic SWIFT parameters choice method described in Section 4.3.6 seems
to be enough to avoid these problems for a reasonable tolerance level requirement, but CP needs to be
adjusted manually.

The proposed speed-up techniques are deemed necessary in order for the new SWIFT calibration method
to be competitive, as seen in the numerical speed tests. In particular, it has been shown that the only
situation where the proposed calibration is significantly slower than CP is when one calibrates the model
with many different maturities with no more than one or two strikes per maturity. As the number of strikes
per expiry increases, the relative speed of the SWIFT method increases, and it is 10 times faster than CP
when calibrating 40 options with a single maturity. Both extreme situations are not representative of real
option trading needs, and for a reasonably real situation of 5 strikes per expiry, the SWIFT technique is
slightly faster than CP. A SWIFT implementation without the previously discussed speed-up techniques has
also been tested and deemed non-competitive, with calibration times that reached the dozens of seconds.

Further, the proposed calibration strategy passes the realistic calibration test for challenging Heston
model parameter set-ups presented in [9].
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In summary, the proposed method is deemed suitable for real-time updating of option models used in
human-supervised trading schemes. Neither SWIFT nor CP method are suitable for the most demanding
algorithmic trading situations, like high-frequency trading.

7.1 Further Research

Through this document several lines of research have appeared that escaped the scope of the currently
presented research and will be expanded upon in future studies. Some of these lines of research are:

• Extending the calibration method to barrier, Bermudan and Asian options.

• Most of the calibration tests with a single expiry have run into an optimal value different than the
original one. It is to be seen if this is a provable property of the Heston model or if this was due
instead to the specific parameter or strike/maturity values being used.

• Some of the speed-up techniques used for same-expiry European Heston option calibration with the
SWIFT method could be extended to the option pricer used by [9]. In particular, Equation 36 can
use f̂ (u; x) = f̂ (u)e−iux to precompute f̂ (u) only once per calibration step and per required value
of u (that is, 2 evaluations per node used in the Gauss-Legendre quadrature) and precompute e−iux

once per strike Kl (with associated xl initial state value) and required value of u, and could then be
reused for all the calibration steps.

• It would be interesting to study the properties of the SWIFT implementation proposed for a chosen
set of strikes and condensed in Equation 94. In particular, the derivative of the price expression
with respect to K could be computed and, if the quick properties of the SWIFT are not lost on
the obtained expression, one could interpolate the values at all strikes K1 ≤ K ≤ KM with splines
methods that require derivatives, and not only derivative-free ones.
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A. Code

The implementation of the SWIFT coded for this work can be consulted in the following Github public
repository: https://https://github.com/eudaldrg/SWIFTOptionCalibration

B. Complimentary Formulas

B.1 Cui Gradient Complimentary Formulas
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B.2 Strike and Maturity Test Sets

Sets 1 and 2 are provided in Tables 6 and 7. The goal of the Set 3 is just to check the behavior of KSWIFT
in the worst configuration possible for its speeding up techniques. This scenario is only be applied to
KSWIFT, and consists on the same strikes and maturities as Set 2. The code implementation of KSWIFT
generated for this master’s thesis receives as inputs a vector of expiry-defined-data (EDD). Each element
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Expiry Strike Strike Strike Strike Strike

0.119047619047619 0.9371 0.9956 1.0427 1.2287 1.3939

0.8603 0.9868 1.0463 1.2399 1.4102

0.8112 0.9728 1.0499 1.2485 1.4291

0.7760 0.9588 1.0530 1.2659 1.4456

0.7470 0.9464 1.0562 1.2646 1.4603

0.7216 0.9358 1.0593 1.2715 1.4736

0.6699 0.9175 1.0663 1.2859 1.5005

0.6137 0.9025 1.0766 1.3046 1.5328

Table 6: Strike and Expiries Set 1. All the strikes have the same expiry

Expiry Strike Strike Strike Strike Strike

0.119047619047619 0.9371 0.9956 1.0427 1.2287 1.3939

0.238095238095238 0.8603 0.9868 1.0463 1.2399 1.4102

0.357142857142857 0.8112 0.9728 1.0499 1.2485 1.4291

0.476190476190476 0.7760 0.9588 1.0530 1.2659 1.4456

0.595238095238095 0.7470 0.9464 1.0562 1.2646 1.4603

0.714285714285714 0.7216 0.9358 1.0593 1.2715 1.4736

1.07142857142857 0.6699 0.9175 1.0663 1.2859 1.5005

1.42857142857143 0.6137 0.9025 1.0766 1.3046 1.5328

Table 7: Strike and Expiries Set 2

of the vector of EDD contains a single expiry and a vector of strikes. So, Set 2 will have all the strikes
with the same expiry grouped in a single EDD, and Set 3 will have EDD consisting on a single strike. This
will enforce full recomputation of the density and payoff coefficients for each strike.
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