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The quantum mechanical equations that determine the electronic band structure of a perfectly
periodic material can be approximately solved by truncation of the Fourier series of the interaction
potential. For didactic purpose, a user friendly interface has been developed, designed to represent
the bands arising from an adjustable spatially periodic potential in one dimension. In this work, we
describe the use of the interface and apply the program to the particular case of an optical lattice.

I. INTRODUCTION

The crystalline structure of a solid can be thought of
as being a periodic arrangement of atoms in space, which
can be modeled in a first approximation as an infinite
periodic lattice. In terms of the interactions between
atoms in the solid structure, the lattice is described by a
periodic potential which is determined by the properties
of the material.

In this setting, the quantum mechanical theory pre-
dicts a discrete set of allowed energy states for the elec-
trons inside the solid. In particular, the Bloch Theorem
(see ch. 8 in [1]) shows that each state of the electron
is determined by two quantum numbers n and k (also
by the spin number, which is ignored). The allowed en-
ergy states for a fixed value of n define the energy bands,
which are found to be continuous on the number k and
describe a curve in the k-Energy plane. We think of k
as a continuous quantity, despite taking discrete values
which are close for a large number of atoms. For most
potentials, the curves tend to be separated by gaps in
the Energy coordinate, so many values of the energy are
forbidden.

Curiously enough, energy bands are not only a the-
oretical phenomenon arising from the consideration of
an infinite, perfectly periodic arrangement of atoms, but
appear also in the band structure of real materials. The
fact that solids admit energy bands has a profound im-
pact on our understanding of the transport properties of
materials, leading to the classification of conducting and
insulating materials, and the development of important
disciplines, such as physical electronics. Then, knowing
the allowed energies for a solid and the energy gaps be-
tween them becomes crucial in material science.

Thus, it is interesting to be able to compute the energy
bands for a particular potential. Although not physically
exact, the infinite periodic approximation is sufficiently
good so as to provide some insight into the shape of the
bands in real solids. Remarkably enough, the electronic
bands in a one dimensional system can be numerically
obtained by solving an approximate eigenvalue equation,
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which we discuss in detail in the next section below.
Modeling the one dimensional case is much easier than
doing it for higher dimensions, since it only allows one
type of periodicity, while higher dimensions allow plenty
of possible periodic lattices.

With the purpose of improving the intuition of Physics
students and helping them to understand what an elec-
tronic band is and how it appears in crystalline struc-
tures, a user friendly interface has been developed in Mat-
lab. The interface can be used as a complementary tool
to the solid state physics course, allowing the student to
try different potentials and motivating the study of the
general theory.

II. THEORETICAL FOUNDATIONS

Consider the one electron Hamiltonian in 1D

H = − ~2

2m

d2

dx2
+ U(x) (1)

corresponding to a periodic potential U such that U(x) =
U(x+a) for a fixed spatial parameter a defining a Bravais
lattice (see ch. 4 in [1]).

Bloch’s Theorem shows that the eigenstates of the
hamiltonian can be chosen to have the form of a modu-
lated plane wave

ψnk(x) = eikxunk(x), unk(x) = unk(x+ a) (2)

where the amplitude has the periodicity of the lattice.
Since the potential is periodic, we may expand it in a

Fourier series

U(x) =
∑
G

UG e
−iGx (3)

with G a set of points in the reciprocal lattice (G = n 2π
a

for integer n). The coefficients are easily found by nu-
merical integration. Writing an arbitrary eigenfunction
in the form

ψ(x) =
∑
k

Cke
ikx (4)

where the k satisfy the Born-von Karman boundary con-
dition (see ch. 8 in [1]), substituting in the Schrödinger
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equation and renaming terms, we obtain∑
G

~2

2m
Ck−G(k −G)2ei(k−G)x+ (5)

+
∑
G

∑
G′

UG−G′Ck−Ge
i(k−G)x = E

∑
G

Ck−Ge
i(k−G)x,

whence it follows that(
~2

2m
(k −G)2 − E

)
Ck−G +

∑
G′

UG′−GCk−G′ = 0. (6)

For each k, we define λk =
~2

2m
k2 and set our units of

energy and length to
~2

2ma2
and a, respectively.

Considering only a finite number of Fourier coefficients
in the expansion of ψ, we obtain for each k a linear sys-
tem which can be diagonalized. In this approximation,
the eigenvalues of this system, labeled by the number
n, correspond to the allowed energies for a fixed k. By
varying k in the first Brillouin zone ( −πa ≤ k ≤ π

a ), we
can plot the electronic bands in this representation. As
an example of the linear system to solve, we show the
equations assuming Ck+mG = 0 for |m| > 1:

λk+G − E U−G U−2G
UG λk − E U−G
U2G UG λk−G − E

Ck+GCk
Ck−G

 = 0 (7)

In the final implementation of the program, a 51× 51
linear system is solved for a total number of 2000 values
of k in the first Brillouin zone. The number N = 51
corresponds to the number of coefficients considered in
the truncation of the Fourier series of the potential. For
larger values of N , the computed bands are found to
converge to the same curve, as seen in figures 1 and 2,
so the truncation is a good approximation to the real
solution. Likewise, considering more values of k increases
the resolution of the curves in the plot. For 2000 points
the continuity of the bands is clearly seen, so no more
resolution is needed.

III. DESCRIPTION OF THE INTERFACE

The program is divided into two files with exten-
sion .fig and .m, respectively. The former contains the
graphical design of the interface, which consists of sev-
eral blocks with associated callback functions. These
functions determine the purpose of each block, and
are programmed in the latter file, which contains the
Matlab code where the main program and algorithms
are implemented, namely: energy band computation,
external/user-introduced variable acquiring, and data vi-
sualization.

Figure 1. Lower bands for N = 51 and N = 101 in a saw-
tooth potential of depth V0 = 200. The shape of the bands is
independent of the approximation, while a small difference in
height can be observed. Observe that this difference is neg-
ligible when compared with the band separation, so that the
same bands are obtained in practice.

Figure 2. Intermediate and high bands for N = 51 and N =
101 in a sawtooth potential of depth V0 = 200. The curves
between the least and the most energetic bands converge to
the same graph, while notable differences begin to appear for
the band with n close to N .

When executing the program, a window as the one in
figure 3 is opened. In this window, several blocks and
buttons can be seen, which we now describe.

First of all, the two big boxes on the left and right
are for the plots of the periodic potential and the corre-
sponding energy bands, respectively.

On the upper half of the window, near the center, a
pop-up menu can be found. This menu allows the user
to choose a particular potential among the following:
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Figure 3. Interface menu.

a. Cosine potential. The most simple potential, it
has only one Fourier coefficient. The frequency of the
potential coincides with that of the spatial lattice, so it
repeats after a distance a( = 1 as our unit of length).
b. Cosine squared potential. This potential is found

in optical lattices, and we study it extensively later. In
order for the potential to have a periodicity a, the cosine
must be taken with half the frequency as before. Thus,
it is similar to the former case, since

V0 cos2
( x

2a

)
=
V0
2

+
V0
2

cos
(x
a

)
. (8)

c. Potential well. One of the most famous potentials
in theoretical mechanics, the potential is defined as

V (x) =

{
V0 |x| ≤ a/2h
0 |x| > a/2h

(9)

for −a/2 ≤ x ≤ a/2, and periodically extended. The well
parameter box allows the user to change the width h of
the potential.

d. Sawtooth potential. An asymmetric potential in
the shape of a sawtooth signal, defined in each lattice
unit by the formula:

V (x) =
V0
2

+
V0
a
x. (10)

The potential is 0 at x = −a/2 and V0 at x = a/2.
e. Coulomb potential. The periodic Coulomb poten-

tial accounts for the presence of atomic nuclei in the lat-
tice. Due to its long-range character, the effect of ev-
ery atom must be taken into account, which is computa-
tionally unrealizable. As a consequence, only the effect
of a finite number of adjacent atoms has been consid-
ered. Moreover, being a singular potential, its Fourier
coefficients cannot be effectively computed and approxi-
mate integrals must be used. The resulting bands depend
strongly on the number of atoms considered and the inte-
gral approximation, so no realistic results can be found.
Despite this, the approximate bands have been included,
so that the user gains some qualitative insight into how
the bands look like. A rigorous treatment of the subject
can be found in the study of Wigner crystals (see [6]).

Figure 4. Energy bands in a spline potential. The points in
the graph are chosen to approximate any function.

f. Adjustable potential (Spline potential). The most
interesting potential, due to its generality. The program
offers the possibility to create an arbitrary periodic po-
tential by choosing different y coordinates for its graph.
These coordinates define evenly spaced points that are
interpolated with a third degree spline, which is periodi-
cally extended to obtain the wanted potential. To insert
the desired coordinates, the user may simply write the
associated V (x) of the predefined x points in the form
of an array inside the box with the label Interpolating
points. See figure 4 for an example of a spline function.

Once the potential is chosen, several parameters can
be adjusted. In order to modify these, the smaller white
blocks are used. The user may change the values inside
the blocks by clicking the corresponding box and writing
the desired parameters with the keyboard. After pressing
enter, the plot of the new potential is updated.

Finally, when every parameter has been fixed, the user
may press the button on the lower-right side to compute
the energy bands. After a few seconds, the graphs of
the bands are shown on the right canvas. The user can
also decide which bands to plot by changing the numbers
in the boxes from and to. As the names suggest, the
bands with quantum numbers n between the values in
from and to are represented. This allows the user to
observe the differences in curvature between the different
allowed energy bands arising from the potential.

Furthermore, the energy gaps are also computed, in
two ways. In the center of the interface, the minimum
separation between each consecutive gap is shown in as-
cending order, while on the bottom-left side a particular
value of k can be chosen, so that the energy gaps for that
value are calculated. The first number gives the user
an idea of the order of magnitude of the gaps between
consecutive bands, while the second value accounts for a
specific gap difference.
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Figure 5. Representation of the electronic bands for the cosine
squared potential, for different potential depths.

IV. EXAMPLE: 1D OPTICAL LATTICE

We show an example of application of the program
to optical lattices, which are nowadays of clear practical

interest in modern quantum physics (see [2] or [4]).

In this system, two counter-propagating laser waves of
the same frequency interfere, leading to a standing wave
and a spatially periodic potential for atoms of the form

V (x) = V0 cos2
(

2π

λ
x

)
, (11)

where λ is the wavelenght of the lasers. This potential
is used by experimental physicists to confine atoms in-
side the potential minima, forming a periodic array of
particles and thus creating an artificial solid.

As stated earlier, our program considers a cosine
squared potential of the form as in eq. (8), so taking
a = λ/2 as our unit of length, we can model a 1D opti-
cal lattice and we may compute the energy bands of the
particular system.

In figure 5, we show the electronic bands corresponding
to the quantum numbers n = 1, 2, 3 for different potential
depths, as obtained with the program. Observe that the
energy gaps between bands become larger for a larger
potential depth. In solid state physics, a high energy gap
between a filled band and an empty band corresponds to
an insulator. Thus, we see that controlling the potential
depth of an optical lattice allows the physicist to control
the transport properties of the new material. We see also
that for a sufficiently high potential depth the variation
of the lower bands is small compared with the energy
gaps. This means that the low energy bands tend to be
flatter when compared with the band separation.

For a general potential, the behaviour of the electronic
bands is similar. The bands with the lowest energy tend
to be flat with respect to the energy gaps, while the high
energy bands are close to the parabolas corresponding to
free electrons. For energies of the order of the potential
depth, interesting curvatures can be found, as the ones
that we find in a solid.
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