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Abstract: Avocado seeds are an agroindustrial residue widely produced in Mexico that are causing 

various environmental problems due to their accumulation. The evaluation of avocado residues to 

recover biopolymers by microwave-assisted extraction (MAE) and the characterization of avocado 

starch properties were studied in the present work. A central-composite design was used to 

optimize the MAE process. Moreover, a comparison was performed between MAE non-isothermal 

mode (NO–ISO) and conventional extraction. Starch optimization by MAE was obtained at 161.09 

°C for 56.23 min with an extraction yield of 49.52% ± 0.69%, while with NO–ISO at 161 °C was 

obtained 45.75% ± 2.18%. Conventional extraction was 39.04% ± 2.22%. Compared with conventional 

starch, MAE starch showed similar proprieties and molecular spectra. In contrast, MAE starch 

showed high solubility, low water absorption capacity, a non-granular structure with small particle 

size (<2 µm) and polydispersity of fragments at different sizes of polymers. Therefore, MAE is a 

viable technology to extract the starch, and avocado seed can be considered an excellent starch 

source for the development of novel functional foods, contributing to promoting sustainability 

across the food chain. 

Keywords: avocado seeds; microwave-assisted extraction; starch source 

 

1. Introduction 

Avocado (Persea americana Mill) is a native fruit of Mexico and Central America that is nowadays 

consumed worldwide due to its very complete nutritional content and many positive health benefits 

[1,2]. In 2018, avocado production in Mexico was more than two million tons, valued at more than 

five billion dollars, and representing more than 34% of worldwide production [3,4]. 
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The avocado seed represents approximately 13%–17% of the fruit. It is composed of many 

bioactive compounds, sugars, proteins and starches, which are the main compound of approximately 

60% by dry weight [5–7]. However, avocado waste—like many fruit wastes—is a growing concern 

worldwide, as it represents an environmental, social and economic problems [8]. For the modern 

sustainable food industry, waste generated is one of the main concerns. Therefore, the recovery of 

fruit waste offers the possibility of obtaining ingredients with new nutritional and functional 

properties. Its management is also a crucial issue for the modern avocado industry. 

Starch is a natural biopolymer and the main reserve of carbohydrates in plants as a form of 

glucose [9]. Starch is an important sustainable resource for various industries that can be obtained 

easily from fruits, seeds and tubers. The most common sources of commercial starch are cereals such 

as corn and wheat as well as the roots or tuberous of cassava and potato [9,10]. Tuberous plants have 

about 16–24% of starch in weight; the rest is water and traces of lipids and proteins. In contrast, the 

content of starch in cereals can be more than 60% and 10%–20% of fibers, proteins and lipids, which 

is an important factor to take into consideration for manufacturing processes and further 

transformations [10,11]. Starch is an abundant, available, renewable, versatile and biodegradable 

polymer composed mainly of amylose, amylopectin and some minor components as protein, lipids 

and minerals that can be extracted with high purity [12,13]. Amylose is a linear polymer of α-1,4-

linked glucans. Amylopectin is a larger molecule with highly α-1,6 branched chains [10,14–16]. 

Normaly, starches contain 75%–80% amylopectin and 20%–25% amylose, with some exceptions such 

as modified some starch that contains only amylopectin. The morphology, structure, size and 

relationship of amylose and amylopectin starch granules are variable depending on botanical source, 

stage of plant development and environmental conditions. These make starch granules a complex 

polysaccharide and variable [15]. Starch is a polymer with structural and physical properties that 

promote high demand, which is reflected in a growing market in recent years [17]. Thickening, 

gelling, stabilizing and binding properties make starch a widely used ingredient in food, cosmetic, 

pharmaceutical, textile, study, biodegradable materials and other industrial products. [15,16,18,19]. 

Currently, there is a great need to find new sources of starch that are natural and economically viable 

to use and reduce common sources and decrease the use of essential foods [20]. 

Some authors have reported works on the extraction and characterization of starch from avocado 

seeds, but using only by conventional extraction, such as crushing the seed with the addition of some 

salts such as sodium bisulfite, followed by several washes and filtrations to recover the starch, and a 

starch extraction yield about 20% dry weight [9,15,20]. Hydrothermal processing such as microwave-

assisted extraction (MAE) is considered a green and safe technology to extract value-added 

compounds such as polyphenols and polymers such as pectin or starch due to its ease of use and the 

possibility of using only water as extraction solvent [21,22]. The microwave extraction mechanism is 

based on heating induced by microwave radiation, which creates a dipole moment caused by the 

agitation of water molecules within the extraction material, which sometimes causes pores or 

breakage of plant material and consequently a greater release of compounds [23,24]. This type of 

extraction is considered a technology with several advantages, such as short extraction times, higher 

extraction performance and less solvent consumption. For this reason, MAE technology is used on 

an industrial scale to obtain bioactive compounds—mainly polymers, antioxidants and oils rich in 

carotenoids or extracts of polyphenols—from plants and residues. Sometimes it is combined with 

other techniques such as ultrasound and pulsed electric field—or with some modifications to the 

equipment such as continuous MAE [24,25]. 

The objective of the present study was to evaluate and optimize the MAE conditions of avocado 

seed starch and characterize and promote an unconventional and viable source of starch for 

introduction in different industrial applications. 
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2. Materials and Methods 

2.1. Raw Material 

Avocado seeds were obtained from Hass variety in a ready-to-eat ripening stage from a local 

restaurant in Saltillo, Coahuila, Mexico. The seeds were washed to remove pulp residues and cut into 

small pieces with a kitchen knife for further freeze-drying (Labconco Freezone 4.5, Kansas City, MO, 

USA) [26]. Lyophilization was used to be able to create a homogeneous batch of avocado seed to find 

the optimal conditions of extraction, which was not achieved using fresh seed since great variability 

was obtained in the same treatments, derived from variations of starch content between seeds. on the 

other hand, the convection drying method decreased the starch extraction yield perhaps because the 

heating caused Maillard reactions on the surface of the seed pieces which created a caramel-like layer. 

Once lyophilized, the seeds were ground using a blender (Osterizer®, 10 velocities) for 5–10 s and 

sieved with mesh numbers 18 and 35 to obtain a particle size between 0.3–1 mm. The flours were 

stored at room temperature protected from light and air. The determination of the proximal 

composition of the avocado peel was determined by the standards of official methods of analysis 

(AOAC 1990) [27] to lipids, protein and ashes, 932.06, 925.09, 923.03 methods, respectively and 991.43 

for insoluble and soluble fiber. 

2.2. Avocado Starch Extraction by MAE 

The starch was extracted by MAE (CEM Mars 6, USA) with temperature control in Teflon vessels 

of 70 mL (Xpress). The extraction was performed with a relationship of 1:20 (w/v), 20 mL of water 

with 1 g of the dry avocado seed, 2.45 GHz and 1200 W [28]. Each treatment was performed by 

triplicate. After extraction, the liquid phase was recovered by filtration and then the starch was 

precipitated with ethanol with a relationship 1:2 (v/v), after 12 h of precipitation, the starch was 

recovery by decantation and centrifugation at 4000× g by 10 min (Hermle Z326 K, Wehingen, 

Germany) and finally freeze-dried [29]. The starch yield was calculated by the following Equation 

(1): 

����� (%) =
���� �� ��� ������ ���������

���� �� ��� ������� ����
× 100% (1) 

Optimization of Starch Extraction 

A central composite design (CCD) with a 99% confidence level was used to obtain optimal 

conditions for the highest starch extraction yield. For the optimization of starch extraction yield from 

avocado seeds, a response surface methodology was applied. Table 1 shows the independent 

variables of temperature (X1, °C) and time (X2, min) for three variation levels on starch extraction 

yield (%), obtained of a CCD with two factors and 3 replicates of the center point leading. Low and 

high factors were coded as −1 and +1; the center point was coded as 0. The data were analyzed by 

statistical software STATISTICA 7® to obtain the optimal condition (OC) and later validated by 

extraction with the conditions estimated by the software. The validation was performed by triplicate. 

The results were analyzed by analysis of variance (ANOVA), and the responses and variables (in 

coded unit) were correlated by response surface analysis to obtain the coefficients of Equation (2): 
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In Equation (2), Y represents the response or dependent variable (starch yield extraction); β0 is the 

interception coefficient; βi, βii and βij are the coefficients estimated by the model and Xi and Xj are the 

coded levels of the independent variables (temperature and time). 

The OC was extracted and validated in non-isothermal (NO–ISO) mode to decrease the energy 

expenditure of isothermal extraction and compare if significant differences are found. 
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2.3. Avocado Starch Extraction by a Conventional Method (CONV) 

At present, the conventional process of starch extraction includes crushing of the vegetal 

material using water in a solution of salts as sodium metabisulfite or sodium bisulfite at 0.1%–0.2% 

(w/v) [15,18,30–32], sodium hydroxide solutions 0.05%–0.1% (w/v) [33,34] or extractions with 

enzymatic catalysts (xylanase protease) [35]. To extract starch from the avocado seed was followed 

the methodology described by Chel-Guerrero et al. [15], with some modifications. Seed powder was 

mixed with a sodium bisulfite solution (1500 ppm) at 1:5 (w/v) and was powdered in a blender (Oster) 

for 30 s twice. The mash was filtered through a sieve of fine muslin cloth of 150 mm mesh size to 

obtain the starch in a liquid fraction and separate the fibers. The recovered starch was washed three 

times with distilled water and then centrifuged at 2200× g for 10 min (Hermle Z326K, Wehingen, 

Germany). The starch was dried at 40 °C for 12 h in a convection oven. The starch yield was calculated 

by Equation (1). The resulting starch was powder and stored at room temperature in a sealed flask. 

2.4. Starch Characterization 

Starch characterization was performed to identify MAE modifications in avocado starch with 

OC and OC NO–ISO and compare with the starch obtained by conventional extraction. 

2.4.1. Water Absorption and Solubility of Starch 

Solubility, swelling power and water absorption patterns were measured at 60, 70, 80 and 90 °C 

following Chel-Guerrero et al. [15] with some modifications. Briefly, 20 mL of a 1% starch suspension 

(w/v) was prepared in a previously tared 50 mL centrifuge tube. The tubes were kept at a constant 

temperature (60, 70, 80 and 90 °C) in a water bath for 30 min with manual agitation at each 5 min. 

The suspension was then centrifuged at 2120× g for 15 min, the supernatant decanted and the swollen 

granules weighed. Water absorption capacity was measured using the same samples but was 

expressed as the weight of the gel formed per sample, divided by sample weight. Solubility and 

swelling power were calculated using the following Equations (3) and (4): 

���������� (%) =
��� ����ℎ� �� 120 °�

�����ℎ �� ������ (�)
 x 400% (3) 

�������� ����� =
����ℎ� �� ������� �������� (�) 

������ ����ℎ� (�) ×  (100 − % ����������)
 (4) 

2.4.2. Scanning Electron Microscopy (SEM) 

SEM analysis was performed in a scanning electron microscope Philips XL30, ESEM 

(environmental scanning electron microscope) with a GSED (gaseous secondary electrons detector) 

[36]. The samples were mounted in a metallic bracket and a gold/palladium coating was applied to 

provide conductivity. The micrographs were obtained with an accelerating potential of 30 kV under 

a low vacuum. Magnification of 750 and 7500 were selected for the study. 

2.4.3. Fourier-Transform Infrared Spectroscopy (FTIR) 

The FTIR spectra of the samples were recorded on the spectrophotometer PerkinElmer Frontier 

with attenuated total reflectance (ATR). The analysis was conducted from 4000 to 600 cm−1 with a 

resolution of 4 cm−1 and 16 scans [37]. 

2.4.4. Thermogravimetric Analysis (TGA) 

The TGA spectra of the samples were recorded PerkinElmer TGA 4000 thermogravimetric 

analyzer. The samples (4–5 mg) were heated from 30 to 600 °C at 20 °C/min with a nitrogen gas flow 

of 20 mL/min [38]. 
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2.4.5. Differential Scanning Calorimetry (DSC) 

The thermal characteristics of avocado starch were determined as follows: Gelatinization onset 

(To), peak (Tp), conclusion (Tc) temperatures and melting enthalpies per gram of dry starch (∆H) were 

measured in excess water (1:3 starch dry matter (dm): water) using differential scanning calorimeter 

(DSC) (Q2000, TA Instruments, New Castle, DE, USA) and results were analyzed with TA Universal 

analysis software©. Samples were heated from 25 to 250 °C at 5 °C/min. An empty pan was used as a 

reference. Calibration was performed with indium. 

2.4.6. Wide-Angle X-Ray Scattering 

The diffractogram was performed with powder starch containing 10% of moisture, an interval 

of 2θ angles ranged from 7° to 50° in the X-ray diffractometer (Panalytical Empyrean, Netherlands), 

at a rate of 4.3°/min operating at a power of 40 kv/30 mA [39]. The crystallinity degree was calculated 

by the following Equation (5): 

�� =
��

�� + ��
× 100% (5) 

where Cd means the relative grade of crystallinity; AC means the crystallinity area of X-ray 

diffractogram and Aa means to an amorphous area of X-ray diffractogram. 

2.4.7. Molecular Exclusion Chromatography 

Starch molecular weight distribution profiles were determined by using a double gel permeation 

chromatography (GPC) column, PL Aquagel–OH MIXED-H 8 µm, 300 × 7.5 mm (Agilent 

Technologies, Stockport, UK) in HPLC Agilent Technologies 1260 Infinity II with a refractive index 

detector, adapted from Nie et al. [40]. An aqueous solution of starch 0.5% (w/v) was prepared and 

mechanically stirred for 1 h at room temperature. Two milliliters of solution were filtered with a 0.45 

µm filter, to inject 50 µL in the column at 40 °C using deionized water as eluent at a flow rate of 1 

mL/min. Aqueous SEC startup kit of Polyethylene oxide/glycol (Agilent Technologies) was used as a 

calibration curve. 

2.5. Statistical Analyses 

Statistical analyses were performed to calculate the average tendency and deviation. To compare 

the yields of starch extraction from avocado seed and optimize the conditions of extraction analysis 

of variance (ANOVA) and Tukey’s test with a 99% confidence level were run in the STATISTICA 7® 

software (StatSoft, Inc., Tulsa, OK, USA). 

3. Results and Discussion 

3.1. Microwave-Assisted Extraction of Avocado Starch 

The dry avocado seed used contains 6.20 ± 0.01% of moisture, 3.63 ± 0.04% of lipids, 3.06 ± 0.15% 

of proteins, 20.65 ± 0.03% of insoluble fiber and 64.61 ± 4.79% of soluble fiber. Starch extraction from 

avocado seed was very effective using MAE technology coupled to the process of obtaining by hot 

filtration and ethanol precipitation, generating yields of 47% (w/w). Table 1 shows the values of starch 

extraction yields of each treatment. The degree of solubilization/extraction of starch increased for 

higher heating temperatures, ranged between 42.97% and 47.31% at 135 and 180 °C and decreasing 

of 47.31% to 44.82% at 180 °C with the increasing the extraction time and decrease to 26–27% at the 

conditions of less temperature (90 °C). Chel-Guerrero et al. [15] showed a yield of 20% in wet basis 

from Hass avocado using a conventional extraction with saline solutions, that means a lower yield of 

extraction than the yield obtained by MAE, considering that the seed has about 50% of moisture, in 

wet basis the yield of MAE will be about 25%, which is a superior yield. 
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Table 1. Experimental conditions used for starch extraction from avocado seed according to central 

composite design with two variables, temperature (X1) and time (X2) and results obtained for the 

response starch extraction yield (% (w/w)). 

Assay 
Variables Starch Yield 

(% (w/w)) X1 X2 

1 90 (−1) 30 (−1) 26.13 ± 0.87 

2 90 (–1) 60 (1) 27.48 ± 1.87 

3 90 (–1) 45 (0) 27.36 ± 4.92 

4 180 (1) 30 (−1) 47.31 ± 0.85 

5 180 (1) 60 (1) 44.82 ± 1.00 

6 180 (1) 45 (0) 46.06 ± 0.81 

7 135 (0) 30 (−1) 43.75 ± 0.28 

8 135 (0) 60 (1) 45.48 ± 0.26 

9 135 (0) 45 (0) 42.97 ± 0.53 

10 135 (0) 45 (0) 44.15 ± 1.46 

11 135 (0) 45 (0) 43.88 ± 3.83 

3.2. Statistical Analysis and Optimization of Starch Extraction 

Table 1 shows the experimental data of the treatments of the experimental design. The analysis 

of variance (ANOVA) was carried out to obtain, F-value, p-value and lack of fit of the model and the 

independent variables, temperature and time, X1 and X2, respectively. The ANOVA results showed 

in Table 2, revealed that the second-order polynomial model was found to be for prediction of starch 

extraction yield response within the range of experimental variables. The determination coefficient 

of the model was R2 = 0.9949, indicating a high adjustment of the model and only 0.51% of the total 

variation was not explained by the proposed model. The current model showed no significant lack 

of fit, which means a good adjustment of the model. 

It was found that the response of temperature was significant (p-value < 0.01) with a linear and 

quadratic effect, which shows that the temperature is the factor with effect to extract/solubilize the 

starch from an avocado seed. The high effect of temperature in the extraction of starch can be 

explained by the effect of high temperature on gelation of the starch (>90 °C), which increases the 

solubility of the starch in water, therefore thus increases the yields of extraction. This effect is 

observable in Table 2 since at a low temperature (90 °C) the yield of starch extraction is lower 

compared with that obtained at higher temperatures (135 and 180 °C). The yield of extraction between 

90 and 135 or 180 °C increases 1.8 times. 

The time did not have a significant effect on the model, but it was evident at a temperature of 

180 °C that with increasing time of extraction from 30 to 60 min, the yield of starch extraction 

decreases, which indicates that at this temperature the starch is degrading maybe into 

oligosaccharides, glucose or other degradation compounds derived from the effect of self-hydrolysis 

caused by the high temperature. 

The second-order polynomial model of the optimization of starch extraction yield (SEY) as a 

function of the factor with statistical significance, temperature (X1), is expressed in the next Equation 

(6): 

Y (%) = 43.92 + 9.54X1 − 7.60X12 (6) 

The second-order polynomial of Equation (1) was plotted a three-dimensional response surface 

to obtain the optimum condition to starch extraction from avocado seed (Figure 1). The starch 

extraction yield was estimated to be 46.72% at optimum condition (temperature: 161.09 °C, time: 56.23 

min). With the validation of optimum condition, performed by triplicate, a yield of starch extraction 

of 49.52 ± 0.69% was obtained, showing that the model has a good fit for avocado starch extraction. 
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Table 2. Analysis of variance (ANOVA) for optimization of the yield of starch extraction from 

avocado seeds, model as a function of temperature (X1) and time (X2). 

Source Sum of Squares df Mean Square F-Value p-Value 

Model 703.87 5 140.77 196.75 0.0001 * 

x1 545.41 1 545.41 759.45 0.000001 * 

x12 146.39 1 146.39 203.83 0.00003 * 

x2 0.06 1 0.06 0.08 0.78802 

x22 0.24 1 0.24 0.33 0.58952 

x1 x2 3.69 1 3.69 5.15 0.07259 

Residual 3.59 5 0.72   

Lack of fit 2.81 3 0.94 2.45 0.3027 

Pure error 0.76 2 0.38   

Cor total 707.2153 10    

R2 0.9949     

Adj R2 0.9899     

C.V. 2.12     

* p-value < 0.01 indicate model terms are significant. 

 

Figure 1. Response surface and contour plot showing the optimization of starch extraction by effects 

of temperature (X1) and time (X2). 

3.3. Avocado Starch Extraction MAE NO–ISO and Conventional Extraction 

By comparing the starch extraction yields of the three methodologies tested, MAE obtained the 

best yields. The yield of starch extraction by OC NO–ISO was slightly lower (45.75%), when 

compared to the extraction with OC (49.52%) but was not statistically different when compared by 

the Tukey’s test with 99% confidence level. With the conventional extraction, the yield of starch 

extraction was lower (39.04%) and statistically different from the methods of extraction by MAE, 

indicating the high efficiency of the extraction promoted by microwave radiation. To select the 

condition of starch extraction by MAE (OC or OC NO–ISO) is necessary for an economic study to 

evaluate the energetic costs with the benefits of obtaining more starch or less starch with a low 

energetic cost. As MAE treatments have no statistical difference in extraction yields can be cost-

effectively using OC NO–ISO condition because the low extraction time, only heating time (about 12 
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min), allows more extractions and more starch extraction, when compared with OC in the same time 

of extraction. 

3.4. Starch Characterization 

3.4.1. Scanning Electron Microscopy (SEM) 

Figure 2 shows the scanning electron micrographs recorded for avocado seed flour (A), the 

avocado starch extracted by MAE with OC and OC NO–ISO (B and C) and by conventional extraction 

(D) and corresponding fiber residues (1). The size reported to the starch granules of the avocado seed 

is between 5–35 µm [15,18]. Starch can be classified into four categories by the size: large (>25 µm), 

medium (10–25 µm), small (5–10 µm) and very small (<5 µm) [20,41]. 

Native starch granules of avocado seed flour and the starch obtained by the conventional 

method shown in Figure 2A,D, respectively, are within this size range (5–25 µm) with a clear, regular 

elliptical shape with smooth surfaces and classified as medium and small granules. The starch 

obtained by MAE have not regular shape and the same size, showing a degraded structure in an 

agglomerated form. With OC the starch obtained shows a pressing shape as in the same way if it sees 

the resulting fiber residues while the starch obtained by OC NO–ISO shows very small oval shape 

(<0.5 mm) and in fiber, residues is possible to see the wells where the starch granules were and some 

residue of starch. The effect of degradation of the starch structure by microwave radiation has also 

been demonstrated by Fan et al. [42] showing that starch granules lost their birefringence and the 

granules ruptured completely at 80 °C. A similar effect was reported by Xie et al. [43] showing that 

treatment for 20 s with final temperatures of 95 °C caused serious deformation, fracture, and collapse 

of most starch granules. Analyzing Figure 2D1, it is possible to see starch granules after extraction 

with the fiber residues explaining the low extraction yield of conventional extraction and 

demonstrating the efficiency of starch extraction of MAE. 
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Figure 2. Scanning electron micrograph of (A) avocado seed flour, (B) avocado starch extracted by 

microwave-assisted extraction (MAE) with optimal condition (OC), (C) with OC MAE non-isothermal 

mode (NO–ISO) and (D) conventional method (CONV), and (B1,C1,D1) respective residues resulting 

from each extraction. 

3.4.2. Solubility, Swelling Power (SP) and Water Absorption Capacity (WAC) of Starch 

Avocado starch patterns of solubility, swelling power (SP) and water absorption capacity (WAC) 

are shown in Figure 3. Solubility, SP and WAC are directly correlated with increases in temperature. 

The continuous rising of starch swelling, as the effect of the increase in temperature, is caused by the 

rupture of intermolecular bridges (hydrogen bond cleavage) in amorphous zones and allows a 

progressive and irreversible water absorption. The molecular organization of starch granules is 

irreversibly destroyed with gelatinization and increases the starch solubility due to the hydrogen 

bond cleavage and water fixation [13,15]. 
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B1 
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The CONV starch shows a normal behavior with temperature increases (60–90 °C) showing an 

increase of solubility of 12.8 to 24.3%, WAC of 6.7 to 13.2 g/g and SP of 7.7 to 17.4 g/g. Similar results 

were presented by dos Santos et al. [12], Chel-Guerreo [15] and Silva et al. [26] with avocado seed 

starch obtained by conventional methods. Contrary to the MAE starches have completely different 

behavior when compared with CONV starch and other authors. The MAE starches have a high 

solubility and increase with the temperature of 60 to 90 °C, the solubility increases of 86.3% and 93.2% 

to 93.6% and 96.8%, in OC and OC NO–ISO starches, respectively. Consequently, the starches have a 

low WAC, between 1%–2%, decreasing with the increase in temperature as a consequence of the 

increase of solubility. The high SP of MAE starches, which had no significant fluctuation with 

temperature, can be explained by the MAE effect in the structure of the starch. As shown in Figure 2, 

the MAE starch has a small size and probably these starches are small structures of amylose and 

amylopectin with many cleaved bonds that promote a rapid water bond and a high SP, due to the 

relation between a large number of water molecules by starch particle, however, the WAC is low due 

to the low quantity of these particles associate to the high solubility and the small particles gelatinized 

when compared with large size of a gelatinized granule of CONV starch. 
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Figure 3. Solubility, water absorption and swelling power patterns of avocado starch extracted by 

MAE (OC and OC NO–ISO) and conventional method (CONV). 
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3.4.3. Thermogravimetric Analysis 

TGA analysis showed changes in a weight loss of the sample with temperature increase and was 

performed to determine the thermal stability of the starches. As shown in Table 3, it can be observed 

three mass loss during the heating process of starches, which is characteristic from starch [18,44]. The 

first weight loss starts about 70 °C to MAE starch and about 120 °C to CONV starch was the result of 

starch dehydration. The difference showed between starches can be explained by the moisture of 

starches, that MAE starches have more moisture content and because they are not granular in shape 

it may allow a loss of water at lower temperatures. The second mass loss corresponds to the 

decomposition of organic matter. In this step occurred a great mass loss, which means that it has a 

great number of compounds with similar thermal properties, which is characteristic of a 

homopolysaccharide as the starch. The starch decomposition with temperatures exceeding 300 °C, 

consists of depolymerization of the starch, formation of pyrodextrins followed by the degradation of 

macromolecules in levoglucosan, furfural and volatile products and finally carbon residues that is 

the last mass loss. MAE starches start the second mass loss of about 280 °C and CONV starch at 300 

°C. This difference in temperature can be explained by the depolymerization of the starch generated 

with the extraction of microwaves, which begin to degrade faster at lower temperatures. Thermally, 

the starches are similar and these results were observed by other authors with starches from avocado 

seed and other botanical sources [9,18,44–47]. 

3.4.4. Differential Scanning Calorimetry 

Starch experiments an order–disorder phase transition called gelatinization when it is heated in 

excess of water. Gelatinization properties of starch, such as Onset Temperature (To), Melting 

Temperature (Tm), Conclusion Temperature (Tf) and Enthalpy Increment (∆H) were measured by 

Differential Scanning Calorimetry (DSC) and are presented in Table 3. All three samples showed one 

endothermic peak on the DSC thermograms, however, these peaks are located at different 

temperatures evidencing the effect of the MAE procedures on the starch granule structure. On one 

hand, the melting temperature determined for a starch obtained by conventional extraction was 60.26 

°C, this value is like the reported by Chel-Guerrero et al. [15] for native starch. 

In another hand, the starches obtained by OC and OC NO–ISO presented lower melting 

temperatures (47.43 °C and 51.96 °C, respectively), this temperature decrement could be explained in 

terms of granules structure damage, as was previously mentioned in SEM studies (Figure 2), the 

starch obtained by MAE have not regular shape and the same size, showing a degraded structure in 

an agglomerated form, in this sense, we can say that starch is already retrograded. In other words, 

granule structure has lost and new structure stabilized trough double helices is formed, these low 

melting temperatures for retrograded starches was previously reported by (Vamadevan & Bertoft, 

2018), evidencing that avocado starch probably contains amylopectin with DP > 50 and lacks long 

internal chains (Type 1). 

Another interesting factor, is the change registered for the transition enthalpy, as can be seen in 

Table 3. Starch endothermic enthalpy can be related to the loss of double-helical order rather than the 

crystalline register (Cooke & Gidley, 1992), in this sense, it seems that the forces holding starch 

granules are greater in the starch obtained through CONV than MAE starches. This values for 

enthalpy, are similar to the reported for Silva et al. [26] for native avocado starch. 
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Table 3. Differential scanning calorimetry values and temperature to each mass loss stages in 

Thermogravimetric Analysis (TGA) analysis of MAE avocado starch optimal condition (OC), optimal 

condition non-isothermal mode (NO–ISO) and conventional extraction (CONV). 

Parameters OC Starch OC NO–ISO Starch CONV Starch 

DSC    

T0 (°C) 36.86 46.62 35.94 

Tm (°C) 47.43 51.96 60.26 

Tf (°C) 58.35 63.29 74.33 

ΔH (J/g) 113.00 218.90 562.0 

TGA    

1st 70.33 77.96 115.23 

2nd 280.5 280.4 299.3 

3rd 348.28 343.08 355.74 

Gelatinization onset (To), peak (Tp), conclusion (Tc) temperatures and melting enthalpies (∆H). 

3.4.5. Fourier-Transform Infrared Spectroscopy (FTIR) 

Figure 4 shows the infrared spectroscopy of the starches obtained by the different 

methodologies, showing a normal starch spectra profile for all samples analyzed. Starch is composed 

mainly of amylose and amylopectin that are polysaccharides composed of monomers of glucose and 

water. Starch has two characteristic regions of the spectrum, the -OH and -CH stretching vibration of 

the glucose unit, 3650–3000 cm−1 and the region of major adsorption bands or region of carbohydrate 

vibrations between 1200–800 cm−1, known as fingerprint region [37,47]. The band at 2926 cm−1 

corresponds to C–H stretching associated with the ring methane hydrogen atoms. The absorptions 

between 1638 and 1300 cm−1 were associated with H2O-bending vibration. The intensities of bands at 

1149, 1077 and 996 cm−1 are associated with C–O and C–C stretching with some C–O–H contributions 

[13,48]. The spectra of the starches obtained are quite similar to some differences in the intensities of 

main bands identified and these differences of intensities can be explained by the differences in the 

degree of humidity of the samples or some modifications induce by MAE [49]. 

 

Figure 4. FTIR spectra of MAE avocado starch of optimal condition (OC), optimal condition non-

isothermal mode (NO–ISO) and conventional extraction (CONV). 
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3.4.6. X-Ray Diffraction (XRD) 

The X-ray diffraction patterns of the avocado starches are shown in Figure 5. The X-ray 

diffraction patterns of the starch obtained by MAE have the same peaks (13° and 20° 2θ) and similar 

intensity indicating a similar crystallinity (24.15 and 25.40), though the starch extracted with CONV 

has a different diffraction pattern with peaks of 17°, 20° and 22° 2θ and different crystallinity (12.19) 

which are similar results reported by Lacerda et al. [9]. The X-ray diffraction patterns of avocado 

starch indicate that the amorphous structure is more dominant than the crystalline structure. 

Diffraction patterns of granules starches have been classified in 3 types, A, B and C. The results 

obtained indicate that the starch obtained is type A because the peaks identified 17°, 20° and 22° 2θ 

[13,50]. MAE starches and CONV starch have a different pattern of diffraction indicating that they 

have a different structure or organization of the chains of amylose and amylopectin, creating a 

different level of crystallinity and changes in amorphous zone. 

 

Figure 5. X-ray diffraction patterns of avocado starch extracted by the conventional method (1) and 

avocado starch extracted by MAE with OC NO–ISO (2) and OC (3). 

3.4.7. Molecular Exclusion Chromatography (GPC) 

Figure 6 shows the GPC chromatograms and Table 4 shows the molecular weight (MW) of main 

peaks identified in starches obtained by MAE and CONV. As expected, by analysis of SEM results, it 

was found that the starches obtained by MAE have a family of particles with different and more size 

groups. Starch extracted with OC has seven groups of MW between 411 and 1.91 × 108 g/mol, 

indicating a high fragmentation of granular structure of native starch, generating more fragments of 

starch that OC NO–ISO because the autohydrolysis by the effect of more time of extraction. To starch 

obtained with OC NO–ISO was identified five molecular weights between 533 and 1.65 × 105 and in 

CONV starch only was identified four molecular weights between 324 and 2.23 × 106 with low 

intensity indicating a low concentration of these sizes. 
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Table 4. Molecular weights and polydispersity of MAE avocado starch of optimal condition (OC), 

optimal condition non-isothermal mode (NO–ISO) and conventional extraction (CONV). 

 OC OC NO–ISO CONV 

Peak Mp (g/mol) Pd Mp (g/mol) Pd Mp (g/mol) Pd 

1 190,732,143 * 1.128 165,387 1.020 2261,719 * 1.037 

2 27,003,383 * 1.201 120,484 1.011 38,172 1.021 

3 512,653 1.194 78,030 1.053 16,601 1.086 

4 262,398 1.036 3866 1.281 324 1.062 

5 57,883 1.065 533 1.155   

6 5165 1.386     

7 441 1.049     

* Value calculated by extrapolation of the calibration curve. Pd: polydispersity. 

Autohydrolysis is a method widely used to extract added value compounds from lignocellulosic 

materials as hemicellulose, lignin, oligosaccharides and others. These compounds are obtained by the 

deconstruction of the linkages and disruption of the cross-linked structure of lignocellulosic biomass 

by the effect of the autoionization of water into hydronium ions and acetyl group hydration [51–54]. 

A similar effect may have occurred in the structure of MAE starch by disruption of α-1–4 and 1–6-

linked glucans of amylose and amylopectin structures. 

 

Figure 6. Double gel permeation chromatography (GPC) chromatograms of starch extracted by (a) 

MAE with OC, (b) with OC NO–ISO and (c) starch isolated by CONV. 
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4. Conclusions 

Avocado seeds are a currently unused agroindustrial residue that can be utilized as an 

unconventional starch source. MAE technology has been shown to be a simple, efficient and rapid 

extraction process for the extraction of starch from avocado seeds, using only water as a solvent. 

However, it did induce some differences in structure and properties of starch as the solubility and 

water absorption capacity, the granule structure, the molecular weight of the starch and generation 

of chains of starch with different sizes and a structural organization that show a different 

diffractogram of the conventional starch. These modifications, for example, the starch chain of small 

size, can provide a new application to MAE starch, maybe in biotechnological applications 

(nanoparticle formulation, production of oligomers with bioactivity) or for example, the high starch 

solubility can provide good aqueous dispersion in food applications. The world of starch applications 

is huge and the starch modifications are so vast that they create innumerable uses. Avocado seed 

starch has a good potential in food industry applications as candies, meat products, drinks, sauces, 

bread products and many more applications as pharmaceutical products, biodegradable polymers 

for food packaging to decrease the use of plastics. 
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