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RESUMO 

Atualmente, as feridas crónicas são uma patologia cada vez mais recorrente, apresentando 

uma maior incidência na população idosa, principalmente quando existem fatores de co-morbilidade,  

tais como Diabetes Mellitus e doenças cardiovasculares. Nos últimos anos, têm sido propostos novos 

materiais de penso, incorporando uma diversidade de agentes bioativos para o tratamento de feridas 

crónicas. Entre os biomateriais naturais propostos, a seda ganhou atenção devido à sua 

biocompatibilidade, biodegradação, por ser facilmente modificada quimicamente e por possuir boas 

propriedades mecânicas. O objetivo deste estudo foi o desenvolvimento, otimização, e caracterização 

de membranas biofuncionais feitas à base de fibroína de seda (SF), com a incorporação de dois  

agentes antioxidantes (ácido cafeico – CA – e ácido tânico – TA) para o tratamento de feridas crónicas 

superficiais e consequente regeneração da pele. Através da técnica de solvent casting, seguida de um 

tratamento térmico, produziram-se membranas estáveis, que foram posteriormente caracterizadas 

relativamente à morfologia da superfície (SEM e perfilometria ótica), à composição química (FTIR-ATR),  

perfil de degradação, performance mecânica, análise térmica (TG-DTA), capacidade antioxidante e 

citocompatibilidade. A degradação foi avaliada pela percentagem de peso perdido pelas amostras. A 

atividade antioxidante foi avaliada pelo método ABTS. Os testes de citocompatibilidade foram 

realizados, utilizando a linha celular imortalizada de células de fibroblastos de rato (L929), através do 

método de contacto direto e dos extratos. Todas as membranas desenvolvidas demonstraram ser 

transparentes, inodoras, apresentando uma superfície homogénea, ainda que com espessura variável.  

As imagens de SEM mostraram que todas as membranas apresentavam uma superfície lisa e 

homogénea, sem rugosidade aparente à escala micrométrica. Através da perfilometria ótica concluiu-

se que, à escala nanométrica, a adição de glicerol aumentou a rugosidade da superfície e, através dos 

ensaios mecânicos, verificou-se que este composto reduziu a rigidez das membranas, tornando-as 

mais maleáveis. Com as membranas no estado seco, os agentes antioxidantes potencializaram um 

efeito anti-plasticizante, enquanto, no estado hidratado, a água potencializou o efeito plasticizante do 

glicerol. As membranas de SF apresentaram uma massa constante ao longo de 15 dias, em PBS, 

enquanto que as restantes membranas apresentaram uma perda de massa inicial de aproximadamente 

30%, após as primeiras 2 horas de incubação, maioritariamente relacionada com libertação de glicerol.  

Com a presença de Protease XIV, a mesma perda de massa inicial foi observada, aumentando 

drasticamente após 24 horas de incubação, evidenciando a suscetibilidade da seda para a degradação 

proteolítica. A resistência térmica da SF diminuiu com a introdução do glicerol nas formulações. À 

concentração de 0.5% de ambos os agentes antioxidantes essa propriedade foi aumentada e o oposto 

foi observado na concentração de 1%. As membranas de SF mostraram ter capacidade antioxidante,  

tendo a adição de 0.5% TA reforçado este efeito. Apenas o extrato puro de 1% TA revelou um efeito 

citotóxico para as células L929. Todas as restantes membranas não apresentaram citotoxicidade. Este 

sistema demonstrou ser bastante promissor, reconhecendo a capacidade das membranas de SF para 

incorporar moléculas antioxidantes e o seu possível potencial no tratamento de feridas crónicas.  

Palavras – chave: antioxidantes, feridas crónicas, membranas de fibroína de seda, pensos para 

feridas. 
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ABSTRACT 

 

Nowadays, chronic wounds are an increasingly recurrent pathology, presenting a higher 

incidence in the elderly population, especially when there are comorbidity factors such as Diabetes 

Mellitus and cardiovascular diseases. In recent years, new dressing materials incorporating a variety of 

bioactive agents have been proposed for the treatment of chronic wounds. Among the proposed natural 

biomaterials, silk gained attention due to its biocompatibility, biodegradation, for being easily chemically 

modified and due to its good mechanical properties. The objective of this study was the development ,  

optimization, and characterization of biofunctional silk fibroin (SF) based membranes, with the 

incorporation of two antioxidants agents (AA) (caffeic acid - CA - and tannic acid - TA) for the treatment  

of superficial chronic wounds and consequent regeneration of the skin. Stable membranes were 

produced using the technique of solvent casting followed by a thermal treatment, which were 

characterized regarding surface morphology (SEM and optical profilometry), chemical structure (FTIR-

ATR), degradation profile, mechanical performance, TG-DTA, antioxidant capacity and 

cytocompatibility. The degradation was assessed by obtaining the percentage of weight lost by samples. 

Antioxidant activity was evaluated by the ABTS method. Cytocompatibility tests were performed using 

the immortalized cell line of mouse fibroblast cells (L929) by direct contact and extracts tests. All the 

membranes were transparent, odorless and presented a homogeneous surface, although with variable 

thickness. SEM images showed that all membranes had a smooth and homogeneous surface, wi th no 

apparent roughness at the micrometer scale. Optical profilometry showed that, at the nanoscale, the 

introduction of glycerol (Gly) in the formulations increased the surface roughness and, the mechanical 

tests confirmed that this compound reduced the stiffness of the membranes, making them more 

malleable. With the membranes in the dry state, the AA potentiate an anti-plasticizer effect, while, in the 

hydrated state, water has potentiated the plasticizer effect of Gly. SF membranes exhibited a constant 

mass over 15 days in PBS, while the remaining membranes showed an initial weight loss of 

approximately 30%, after the first 2 hours of incubation, most  likely related to Gly release. In the 

presence of Protease XIV, the same initial weight loss was observed, increasing drastically after 24 

hours of incubation, evidencing the susceptibility of the silk to the proteolytic degradation. The thermal 

resistance of SF decreased with the introduction of Gly. At a concentration of 0.5%, the AA increased 

this property and the opposite was observed when the concentration raised to 1%.  SF membranes 

showed to have antioxidant capacity, and the addition of 0.5% TA reinforced this effect. The pure 1% 

TA extract revealed a cytotoxic effect in L929 cells. All other membranes were non-cytotoxic. This  

system proved to be quite promising, recognizing the ability of SF membranes to incorporate antioxidant  

molecules and their potential in the treatment of chronic wounds.  

 

Keywords: antioxidants, chronic wounds, silk fibroin membranes, wound dressings.  
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CHAPTER 1 

 

1. Introduction 

 

In this chapter the concept of a chronic wound is introduced, as well as the current clinical 

approaches available, wound management products available in the market for the different types of 

wounds and the innovations that are being developed in an attempt to minimize this problem. Important  

topics, such as bioactive and multifunctional membranes to promote skin regeneration and wound 

healing will also be discussed. 

 

1. Chronic Wounds 

 

 A wound results from the damage or disruption of the integrity of the skin, mucosal surfaces or 

organ tissues, which can compromise their normal anatomical structure and function (1,2). To restore 

the injured tissue, our body initiates a complex process of regeneration – the wound healing (2,3). This  

process is classically divided into four phases: haemostasis, inflammation, proliferation and tissue 

remodeling. Wounds can be classified according to the time this process takes to occur (1–5). The 

healing process can be conditioned by several factors, related to the patient: age, body type, patient's  

nutritional status, alcohol consumption, among others. In addition, the type of wound and some 

biological aspects may also influence the healing process. However, there are still some factors that 

condition the successful healing of these wounds which are not related to the patient, such as the lack 

of prevention, failure in treatment and strategies of management of these wounds  by the health 

professionals (6,7).  

Wounds can be classified according to several criteria, as previously mentioned, such as the 

healing time – this is one of the most fundamental criteria for the treatment and management of wounds  

(1,2,4). Wounds that pass through the four phases of the healing process quickly are designated acute 

wounds. However, wounds which have failed the normal reparative process of healing, over extended 

periods that range from 4 weeks to more than 3 months, often as a result of prolonged pathological 

inflammation, are classified as chronic wounds (3,8). This type of wound displays some specific  

characteristics, such as excessive levels of proinflammatory cytokines and reactive oxygen species 

(ROS), presence of senescent cells and they are stagnant in the inflammatory phase (8,9). In these 

wounds, the levels of proteases exceed their respective inhibitors, leading to the destruction of 

extracellular matrix and degradation of growth factors and their receptors. This not only prevents the 

wound from regenerating at a normal rate, but also attracts more inflammatory cells, amplifying the 

inflammation cycle. The immune cells of our body produce ROS, which in low concentrations, provide a 

defense against microorganisms (10). However, in chronic wounds, the predominant inflammatory  

environment increases ROS production, which causes cell damage. This, consequently,  makes all the 

senescent cells present in chronic wounds – which have an impaired proliferative and secretory capacity 

– to lose the responsiveness they previously had to the regeneration process, during wound healing.  
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This decrease in proliferative capacity is directly correlated with the failure of wound healing (10–12). 

Chronic wounds can be classified as vascular, diabetic and pressure ulcers, and the choice of 

the appropriate dressing will depend on the type of wound to be treated, mainly on its physiological 

characteristics (amount of exudate, location, among others) (9,10). This topic will be further discussed 

in the next chapter.  

Chronic wounds have the highest incidence on the elderly population, since wound repair 

decreases as the body age increases, and the incidence of some diseases that promote the appearance 

of chronic wounds, as diabetes and cardiovascular diseases, increases with age. In 2015, diabetes was 

the direct cause of the death of 1.6 million people worldwide. In Portugal, in the same year, the 

prevalence of this disease was about 1 million people between the ages of 20 and 79 (13,14). Adding 

to this, cardiovascular diseases remains the largest cause of death worldwide (8). 

 The treatment of a patient with a chronic wound is an economically expensive procedure.  

According to the World Health Organization, in the United Kingdom, the number of patients developing 

new ulcers in a year was estimated to be more than 100,000 people, which represents an annual 

expenditure between £168 million to £198 million, excluding subsequent related problems such as 

anxiety, depression, among others (15). In this way, it is increasingly important to find sustainable,  

innovative and viable solutions which are capable of reducing the treatment time, accelerate healing 

and reduce the physical and psychological suffering of these patients. It is also important to increase 

the success of treatments, to reduce the costs associated with the current solutions.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Leg (a) and foot (b) chronic wounds examples (16,17). 

  

a. b. 
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2. Current clinical approaches to chronic wounds  

 

Due to the rise of the morbidity associated to chronic wounds, wound care has become a topic 

increasingly important nowadays (18). Currently, the standard care for chronic wounds consists of 

swabbing for infection, leaning the wound, applying a dressing and, in some cases, debridement of the 

wound (18,19).  

Generally, a wound dressing may be a single product or, in some cases, the combination of two 

or more layers of dressings, consisting of a primary contact layer and a secondary absorptive layer – 

not in direct contact with the wound. An ideal dressing is considered to be the one that maintains  

adequate humidity, remove the excess of wound exudate, permits thermal insulation, allows gaseous 

exchange, conforms to the wound surface, facilitates the debridement when necessary, minimizes the 

scar formation, is impermeable to extraneous bacteria, is non-fiber shedding/non-toxic, is non-adherent ,  

comfortable and conforming (20). The use of wound dressings needs to be integrated into a general 

management plan, which must consider the different types of wounds and the problem that gave rise to 

them, and they should also be reviewed regularly with the progress of the treatment (20,21). 

Dressings can be classified in several ways, according to their function in the wound, the type 

of material employed and the physical form of the dressing (22,23). Regarding their nature of action, 

dressings can be classified as passive, interactive and bioactive products (24). According to Willi Paul 

and Chandra Sharma (24), traditional primary and secondary wound dressings are included in the 

passive products classification, which include some components, such as gauze, lint, plasters, natural 

or synthetic bandages and cotton wool, and they’re used mostly to protect the wound from 

contaminations. This type of dressings constitute the largest market segment (21,22). Interactive and 

bioactive products are included in the group of modern dressings and they are developed and designed 

not only for covering the wound, but also to facilitate their function and to deliver substances which are 

active in wound healing (24). This type of dressings and their classification is presented in Table 1, 

according to  type, advantages, disadvantages and commercial name. (21).  
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Table 1. Types of modern dressings, their major functions and design. 

Type of Dressing Advantages Wound type Disadvantages 
Commercial 

products 
References 

Alginate dressings 

Can absorb 15 to 20 times their 

weight of fluid; suitable for highly 

exuding wounds; biodegradable; 

accelerate healing process by 

activating macrophages to 

produce TNF-, which initiates 

inflammatory signals. 

Useful in cavities 

and sinuses;  

undermining 

wounds; all wound 

types with high 

exudates. 

Need for secondary dressing; need to be 

changed regularly; not suggested for dry 

wounds (adhere to healing wound surface, 

causing pain and damaging healthy tissue or 

removal), third degree burn wounds and severe 

wounds with exposed bones. 

Algisite,Algosteril, 

Kaltostat,Melgisorb, 

SeaSorb, Sorbsan,  

Sorbsan SA, 

Tegagen,Urgosorb. 

(21,25,26) 

Antimicrobial 

dressings 
- 

Used in all locally 

colonized or infected 

wounds. 

Drugs may not penetrate well into the wounds 

(due to poor blood flow and the presence of 

dead tissue); inappropriate use of systemic 

antibiotics can be associated with problems of 

allergy (due to the use of iodine), toxicity and 

the development of resistance in non-target 

organisms. 

Acticoat,  

Actisorb Silver 200,  

Aquacel Ag, 

Arglaes, Avance, 

Inadine, Iodoflex, 

Iodosorb, Metrotop 

Gel. 

(25–27) 

Bioactive 

Dressings 

Biocompatibility, biodegradability 

and non-toxic nature. Generally 

derived from natural tissue or 

artificial sources.  

- - - (21,25,26) 

Foam dressings 

Primary dressing for absorption; 

give degree of cushioning; 

transmit moisture vapour and 

oxygen and provide thermal 

insulation to the wound bed; 

Flat, shallow wounds 

(control of exudate 

depending on type of 

foam); suitable for 

lower leg ulcers and 

Need secondary dressing; not suitable for low 

exudating wounds, dry wounds and dry scars. 

Allevyn Adhesive, 

Allevyn Cavity, 

Allevyn Lite Island, 

Allevyn Thin, Allevyn 

Plus Adhesive, 

(21,25,26) 
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highly absorbent; facilitate 

uniform dispersion of exudate 

throughout the absorbent layer; 

protect the area around the wound 

from further damage; may be left 

in place for two to three days. 

moderate to highly 

exudating wounds; 

granulating wounds. 

Allevyn Plus Cavity, 

Biatain Adhesive, 

Cavi-Care, Lyofoam 

Extra Adhesive, 

Tielle Plus, Tielle 

Lite, Tielle. 

Hydrocolloids 

Can promote a moist wound 

healing; permeable to water 

vapour but impermeable to 

bacteria; absorbent; conformable; 

good in “difficult” areas – hell, 

elbow, sacrum; may be left in 

place for several days; useful 

debriding agent; highly absorbent; 

non-adherent; promote an 

autolytic debridement; reports to 

reduce wound pain; mostly used 

as a secondary dressing. 

Cavity or flat shallow 

wounds with low to 

medium exudate 

(e.g. pressure sores, 

minor burn wounds 

and traumatic 

wounds); 

recommended for 

paediatric wound 

care management 

(don’t cause pain 

removal). 

May cause maceration; 

needs secondary dressing; not indicated for 

neuropatic ulcers.  

Alione, Aquacel, 

CombiDERM, 

CombiDERM N, 

Comfeel Plus, 

Cutinova Thin, Duo 

DERM Extra Thin, 

Granuflex, GranuGel 

Paste, Tegasorb, 

Tegasorb Thin, 

Versiva. 

(21,25,26) 

Hydrogels 

Supply moist environment to 

wounds with low to medium 

exudate; may be left in place 

several days; promote wound 

debridement by rehydration of 

non-viable tissue; soft elastic 

properties, provides easy 

application and removal after 

wound is healed without any 

damage; suitable for the four 

phases of wound healing, except 

Suitable for sloughy 

or necrotic wounds; 

useful in flat wounds, 

cavities and sinuses; 

used for dry chronic 

wounds, pressure 

ulcers, burn wounds 

and chronic legs 

ulcers. 

Need secondary dressing; may cause 

maceration; difficult to handle, because of their 

low mechanical strength. 

Aquaform, Intrasite, 

GranuGel, Nu-Gel, 

Purilon, Sterigel. 

(21,25,26) 
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in infected and heavy drainage 

wounds; not irritant, no reactive, 

permeable to metabolites.  

Low adherent 

Allow exudate to pass through into 

a secondary dressing while 

maintaining a moist wound bed; 

reduce adherence at the wound 

bed. 

Useful for patients 

with sensitive or 

fragile skin. 

- - (21,25,26) 

Absorbent 

Membranes/Films 

Absorb small amounts of wound 

exudate. Allow clinicians to 

observe a wound’s progress 

without the necessity for removal 

due to their transparency.  

- - 

OpSite TM Post-Op 

Visible, Tegaderm 

Absorbent Clear 

Acrylic Dressing 

(3M). 

(28) 
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Medicated 

Membranes/Films 

Provides protection against 

infection and reduces bacterial 

load by a slowly release of iodine 

by the iodophor. 

Applicable to cover 

and protect catheter 

sites and to secure 

devices to patient’s 

skin. 

- 

Tegaderm 

Chlorhexidine 

Gluconate (CHG) IV 

Securement 

dressing (3M), 

Tegaderm TM Plus 

(3M). 

(28) 

Polymeric 

Membranes/Films  

Trap exudates, providing a moist 

environment. Impermeable to 

bacteria and liquid and permeable 

to moisture vapor and air.  

Skin of surgical 

incisions. 

Due to their non-absorbent characteristic, 

exudates can stay accumulate underneath the 

dressing. 

Seeping fluid pressure may cause a break in 

the environment maintained by the dressing.  

Aluderm, Blister,  

Poly skin II, Silon-

TSR, Tegaderm TM,  

Opsite. 

(29) 

Semipermeable 

Membranes/Films 

Promote moist environment 

(permeable to air and water 

vapor); used mainly as a 

transparent primary cover; allow 

visual checks; may be left in the 

wound place several days; useful 

as secondary dressing (due to 

their high absorbancy and 

moisture vapour permeability); 

impermeable to fluids and 

bacteria. 

Suitable for flat, 

shallow wounds with 

low to medium 

exudates; good for 

wounds in “difficult” 

anatomical sites 

(e.g. joints). 

Adhere to healthy skin (but not to wound); 

cannot be used for infected or heavily exuding 

wounds; may cause maceration. 

Bioclusive, Mefilm, 

OpSite Flexigrid, 

OpSite Plus, 

Tegaderm. 

(21,25,26) 
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3. Membranes in wound healing 

 

 In the last decades, there have been some works proposing new membrane dressings, some 

of them, presented below, with particular attention for the application in chronic wounds. The first  

membrane developed was from a form of collagen obtained from the dried bladders of fish, in the 1880s 

(28). During the Second World War, Bloom (30) described the use of cellophane in burns patients (28).   

In 1948, Bull et al. (31) developed a nylon film dressing and, in 1950, Schilling et al. (28,32) conducted 

the first clinical trial with a film dressing. However, the most important assay was the one conduct ed by 

Winter and co-workers (33), in animals, in 1962. In 1963, Hinman and Maibach (24,28,34) have 

conducted a study in humans, which provided future support for the clinical use of membrane dressing.  

Both researches have demonstrated that a moist wound healing environment, created by film dressings,  

accelerated skin epithelialization twice as on wounds allowed to dry by exposure to air (24). From that 

year, membrane dressings were introduced under various brands (28). 

 According to Sussman et al. (28), a membrane dressing is indicated for the management of 

minor burns and simple wounds, such as scalds, abrasions, lacerations and lightly exudative wounds.  

The flexibility of these dressings gives them the ability to be applied to sutures and to continue to be 

used at the incision site, even after removal of the sutures or clips. Film dressings are especially good 

for reducing skin tension on flexor surfaces, to protect skin from shearing forces and to prevent and treat  

superficial pressure ulcers (28).  

 Ahmed and Boateng (35) developed antimicrobial membranes to deliver ciprofloxacin (CIP) for 

the treatment of bacterial infection in foot ulcers. Calcium alginate films loaded with ciprofloxacin were 

evaluated in their physico-chemical properties, such as porosity, swelling, equilibrium water content,  

water absorption, water vapor transmission, evaporative water loss, mechanical strength, adhesion, IR 

spectroscopy, scanning electron microscopy, X-rays diffraction, drug release, cytological and 

antimicrobial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa .  

Different 1% w/v gels were dissolved in different solutions of sodium carbonate (0.005-0.028 M). In 

addition, different Glycerol (9.1, 20.0, 33.3, 42.8 and 50.0%), based on the total weight of the polymer 

(w/w), were added to the gels. After this, 20 g of each gel were dispensed into 86 mm diameter Petri 

dishes and dried (30°C) for 18 hours for obtaining the films. The drug was after loaded onto the optimized 

film containing 33.3% glycerol (w/w). The obtained films were soft, flexible and uniform, and their 

transparency was not affected by drug incorporation. They also verified that these membranes had 

showed potential tensile and bio-adhesive properties, which is required for an easy application of the 

dressing and to guarantee adherence to the wound bed. An optimal moisture environment and high 

biocompatibility with human keratinocyte cells was also observed. These results have confirmed that 

the design of biocompatible and effective dressings was successfully obtained, however, in vivo studies 

were required to be performed to confirm its effectiveness (35). 

Chun-Hsu Yao et al (36) produced a bilayer membrane for wound dressing applications, with 

keratin extracted from human hair, blended with gelatin, sequentially electrospun onto a commercial 

polyurethane wound dressing. They verified that a gelatin/keratin blend solution can be successfully 

electrospun continuously, originating uniform and bead-free nanofibers, when appropriate 
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electrospinning parameters are used. The MTT cell viability assay showed that the residues released 

from the electrospun gelatin/keratin composite nanofibers enhanced cell proliferation. Fibroblasts  

showed a more favorable interaction with gelatin/keratin composite when compared to the gelatin mat. 

Animal studies revealed that the developed bilayer membranes promoted an earlier vascularization and 

a better skin wound healing. All of these results established the potential of the gelatin/keratin bilayer 

membranes as a wound dressing (36). 

 Ye Ma et al (37) proposed the production of a transparent flexible chitosan-based membrane 

dressing with antibacterial drugs by solvent casting method from suspension of chitosan floccules.  

Glycerol was used in different percentages in the matrix of the membranes to improve the mechanical 

properties and they verified that the introduction of this component as a plasticizer had a significant  

influence on the properties of the membranes. With the increasing of the concentration of glycerol, the 

swelling rate, water vapour permeability, wettability and tensile strength were improved significantly.  

The enzymatic degradation in vitro had showed that chitosan membranes had long-term stability and it 

was not compromised by the glycerol content. Tetracycline hydrochloride (TH) and silver sulfadiazine 

(AgSD) were added to improve the antibacterial properties of chitosan membranes and it was found that 

these membranes have a promising future in the treatment of bacterial infection – namely against E. coli 

and S. aureus – and, with the in vitro dermal fibroblasts seeded in both membranes, a significant higher 

viability during culture time of 1 to 3 days was observed. With this, it was possible to verify that the 

chitosan-based membranes with antibacterial agents could give a high therapeutic efficiency as a wound 

dressing. (37). 

 One of the demanding aspects when developing membranes for wound healing is the fact that 

there are no membrane dressings with the ability to combat the ROS produced in chronic wounds ,  

combined with biocompatibility, biodegradability, good mechanical properties and non-cytotoxicity. In 

this sense, the development of novel multifunctional and bioactive dressings with the ability to aggregate 

all of these properties and respond to the challenges of a chronic wound is highly demanded. 
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3.1. Bioactive and multifunctional membranes 

 

 

Recently, new strategies have been proposed to develop innovative wound dressings with the 

capability to enhance the healing process in chronic wounds. As explained in the previous sections, one 

of the aspects that characterizes this type of wounds is the excessive levels of ROS, which must be 

controlled by antioxidant agents, to guarantee the survival of the cells and, consequently, the 

regeneration of the wounds. Of all the types of dressings which have been investigated, bioactive and 

biofunctional membranes for wound healing applications are gaining interest. 

 Kavoosi et al. (38) investigated the improvement of the properties of a gelatin membrane 

incorporated with Ferula assafoetida essential oil (FAO) as a potential antioxidant and antibacterial 

wound dressing. These membranes were characterized regarding several physical-chemical properties ,  

such as water solubility, swelling and water vapor permeability, mechanical behaviour and antioxidant  

and antibacterial activities. The results obtained in this study suggested that the incorporation of FAO in 

the gelatin membranes caused a significant decrease in swelling and an increase in the water vapor 

permeability and solubility. The tensile strength and elastic modulus decreased with the incorporation 

of FAO, while the elongation at break increased. The authors concluded that gelatin/FAO membranes 

could be used as active membranes for biomedical applications, including as a wound dressing material,  

since they showed exceptional antioxidant and antimicrobial characteristics, (38). 

Rezvanian et al. (39) developed an alginate-based composite membrane for wound dressing 

applications, which had in its formulation simvastatin, a compound used in cardiovascular diseases for 

lipid lowering effects. These membranes were prepared and characterized based on their physical 

properties, as well as surface morphology, mechanical strength and rheology. The cytotoxicity and in 

vitro drug release results demonstrated that these membranes had appropriate wound dressing 

characteristics and high mechanical performance, as well as a controlled drug release profile and they 

were non-toxic for primary human dermal fibroblast cells, which made these membranes a good 

candidate for bioactive wound dressing. However, further in vivo investigations are required to prove the 

membrane toxicity and efficiency (39). 

Silk-based membrane dressings have been proposed for wound healing. Srivastava et al. (40) 

developed a flexible silk fibroin membrane with dextrose (5-15% w/w) incorporated. Membranes were 

obtained by the solvent-casting method followed by crystallization with 80% methanol solution. It could 

be observed that the flexibility of the membranes increased with the increasing in the dextrose content  

and the elongation ate break increased from 3.2% to 40% with the increasing of this content in the 

membrane matrix. With this, it could be concluded that dextrose has acted as plasticizer for those 

membranes. FTIR and XRD studies showed that the dextrose content did not affect the crystalline 

structure of the silk fibroin membranes. SEM and AFM analysis showed that the surface roughness of 

these membranes also increased with increasing dextrose content and that this component enhanced 

the hydrophilicity and swelling capacity of the silk fibroin membranes. Degradation profile of the 

membranes was evaluated, showing a significantly higher mass loss than pure silk fibroin membranes 

after 50 days of incubation in Protease XIV.  The adhesion, proliferation and viability of L929 fibroblas t  

cells indicated that they had ability to support cell growth and proliferation when compared with pure silk 
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fibroin membranes. These dextrose modified films presented good potential to be used as dermal wound 

dressing material (40). 

Karahaliloglu et al. (41) developed a nanostructured silk fibroin membrane for wound healing 

applications. For this, they started to modify the surface of silk fibroin membranes with NaOH alkaline 

treatment, in order to obtain a biological inspired nanofeatured surface morphology. Surface 

characteristics, such as roughness, energy and chemistry were evaluated. Skin-forming cells 

(keratinocytes) adhesion and proliferation were also studied to determine the promotion of an epidermal 

cover on the wound bed to form a new epidermal barrier, as well as dermal fibroblast adhesion and 

proliferation, in order to assess the capability of these membranes to replace injured dermal tissue in 

chronic wounds). The obtained results demonstrated that keratinocyte and fibroblast cell density was 

higher on the novel membranes compared with non-treated silk fibroin surfaces. The improvement in 

the cellular functions could be associated with a nanotopography induced by silk, wettability and a 

change in chemistry of this surface due to the NaOH treatment. With the obtained results, the developed 

nanofeatured silk fibroin membranes were considered a promising alternative for various skin 

reinforcement and wound dressing applications (41).  

Xu et al. (42) improved the mechanical performance and the swelling ratio of chitosan 

membranes, properties that, until then, had limited their application in wound healing area. Thus, silk 

microfibers were incorporated in chitosan membranes, and its multiple physical properties were 

evaluated. By adding silk microfibers in the matrix, it was possible to verify that the mechanical 

properties were significantly improved, and the swelling ratio had decreased. SEM results have showed 

embedding of the microfibers and chitosan matrix, as well as connections among the silk microfibers. In 

vitro cytocompatibility was also evaluated with mouse fibroblasts of cell line L929, and it was showed 

significant cytocompatibility, demonstrated by cell proliferation and morphology. In vivo healing effects  

of these membranes were also evaluated on a fill-thickness skin wound rat model and it was possible 

to verify that the membranes containing silk microfibers exhibited increased wound healing efficiency 

when compared with pure chitosan membranes. By examining the histological changes , a higher level 

of epithelization and collagen formation in the chitosan membranes was verified with silk microfibers  

after 21-day repair period. These results indicated that the developed membranes might be a potential 

dressing for wound healing applications (42). 

It is notorious the need to develop novel bioactive and biofunctional membranes with natural 

polymers. This strategy has been explored over the years but commercially, there are only few effect ive 

solutions. Being silk a natural biodegradable material with excellent mechanical properties ,  

biocompatibility and antioxidant properties, it is expected to be a promising material to be applied on 

wound healing membranes. Thus, further studies are necessary for the development of this type of 

membranes, possibly able to combat the high levels of ROS of chronic wounds and facilitate healing,  

as well as to promote the regeneration of the damaged skin. 
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4. Main objective  

 

The main aim of this work was the development, optimization and further characterization of 

new silk fibroin-based biofunctional membranes incorporating anti-oxidant agents to be applied in 

chronic wound healing, specifically in the stage of inflammation, to provide an efficient solution to combat 

the excessive levels of ROS, thus contributing to trigger the regeneration process. 

A SF/glycerol (GLY) membrane system was produced, incorporating for the first time, caffeic  

and tannic acids (CA and TA, respectively), two well-known anti-oxidant agents with traditional 

application in the food sector.  
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CHAPTER 2 

 

Materials and Methods 

 

2.1. Materials and Reagents 

 

2.1.1. Silk 

 

 Silk is a natural fibrous protein produced in specialized glands of various arthropods, that is 

spun into fibers during their metamorphosis phase. The silkworm Bombyx mori is the most extensively  

studied specie and the silk produced by this arthropod has been used commercially as sutures for 

biomedical applications and in textile industry for many years (43,44). Silk fibers are composed by two 

types of proteins: fibroin and sericin. Fibroin has a semi crystalline structure, providing strength and 

stiffness, and is the inner-core of the fiber. Sericin acts as an adhesive binder, forming an outer 

protective coating and maintaining the structural integrity of the fiber and cocoon (43,45). The structural 

components of Bombyx mori silk are illustrated in Figure 1.1. 

 

 
 

Figure 2.1.1. – Structural components of silk from Bombyx mori (43). 

 

Silk fibers spun by silkworms hold excellent mechanical properties, such as high tensile 

strength, elongation at break and energy absorption (45). Silk is insoluble in most solvents (including 

water) and detailed structural analysis on silk proteins has yielded information on the orientation and 

organization of the small numerous -sheet crystals in the fibers (43,46). This conformation of silk is 

commonly called Silk II – it’s a mixture of noncrystalline and crystalline domains and provides a basis 

for the outstanding mechanical properties of silk. Nevertheless, the structure inside the middle silk 

glands is different and is named Silk I, which is the solid structure of silk fibroin (47).  
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In fact, the biological responses to the fibroin fibers appeared to be comparable to most other 

commonly used biomaterials (44). In the literature there is a clear evidence that silk is susceptible to 

proteolytic degradation in vivo and, over longer time periods, will slowly be absorbed (44). Due to the 

unique mechanical properties, biocompatibility and low immunogenicity advantages, these fibers have 

a large application in biomedical field, such as in the development of scaffolds for tissue engineering,  

coatings and drug delivery (45,48). Therefore, it constitutes a very interesting raw material for the 

development a functional wound healing dressing.  

In the present work, cocoons from Bombyx mori were supplied by the Portuguese Association 

of Parents and Friends of Mentally Disabled Citizens (APPA-CDM, Portugal). All the remaining reagents  

were purchased from Sigma-Aldrich, unless otherwise stated. Lithium bromide was purchased from 

Honeywell, UK. 

 

 

2.1.2. Glycerol 

 

Glycerol, a derivative of natural and petrochemical raw materials. It is a viscous, colorless, 

odorless and water-soluble liquid with a wide range of applications, namely in medical and 

pharmaceutical preparations, due to its plasticizing action and low toxicity (49,50). Gly is systematically 

incorporated in film-forming solutions to prevent film brittleness, increase flexibility, workability and 

distensibility, and was used as a plasticizing agent in the developed formulations in this work (50,51). 

 

 

 
 

Figure 2.1.2. – Glycerol chemical structure (52). 
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2.1.3. Anti-oxidant molecules 

 

The excessive level of ROS in chronic wounds is a serious problem that interferes with the 

healing process of these wounds. In this way, introducing antioxidant agents into these membranes may 

be favorable for the treatment of this type of wounds. 

Tannic and Caffeic acids, two well-known molecules with anti-oxidant properties, were included 

in SF-based formulations. Tannic acid (TA) is a water-soluble polyphenolic compound which can be 

extracted from some fruits (e.g. grapes, pears and bananas), drinks (e.g. red wine, beer, coffee and 

black and green tea), lentils and chocolate (53,54). TA has shown antibacterial properties and UV-

resistant activities, due to its polyphenolic structure. This compound has also shown high antioxidant  

activity, especially in the prevention of lipid oxidation, which makes it very useful in the biomedical area 

(55,56). Caffeic acid (CA), also a phenolic compound, is the result of the secondary metabolism of plants 

and is the main hydroxycinnamic acid present in the human diet. This acid is commonly found in various 

fruits and coffee beans, as well as in wine (57,58). Several studies have shown that CA has antioxidant  

capacity, as well as anti-inflammatory, antibacterial and anticancer properties which makes it attractive 

for use in treatment of chronic wounds (57).  

Due to the natural origin and the high antioxidant potential of these two compounds, its 

introduction into the formulations of the membranes was seen as an added value. 

 

 

 

 

 

 

 

 

 

Figure 2.1.3. – Chemical structure of caffeic (a) and tannic (b) acids (59,60). 

  

a
. 

b
. 
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2.2. Preparation of silk fibroin aqueous solution 

 

SF solution was prepared using a previously developed procedure (61). Briefly, for each 

extraction, 5 g of clean cocoons were cut into small pieces and boiled in 2 L of a 0.02 M sodium 

carbonate (Na2CO3) solution for 1 hour, under constant stirring. During this process, the outer layer of 

sericin was dissolved in the sodium carbonate solution, leaving a SF mesh available for further 

processing. In order to ensure that all the remnants of sericin were removed, the obtained fibroin was 

rinsed in 1 L of distilled water, under constant stirring, for 30 minutes. Lastly, the extracted fibroin mesh 

was dried, at room temperature, for 48 hours. 

 5 g of the dry pure silk-fibroin was then dissolved in 25 mL of a 9.3 M lithium bromide solution 

(LiBr) at 70ºC, with constant magnetic stirring, until complete dissolution. After that, the SF/LiBr solution 

was dialyzed for 48 hours against 5 L of distilled water, using a benzoylated dialysis tubing (length ~ 30 

cm; molecular weight cut-off: 2000), in order to remove the salt. In the first day, the water was changed 

1 hour, 2 hours and 4 hours, after starting the dialysis. In the second day, the water was changed 3 

times, after regular time intervals. The purified SF solution was filtered using Whatman Filters (grade 

1:11 m – medium flow filter paper) and used in the same day. The concentration of SF after dialysis, 

using the described methodology, was previously determined by dry weight analysis (data not 

published) and is approximately 7% (w/w). 

 

 

 

2.3. Preparation of SF-based membranes 

 

Polymeric membranes have a huge applicability in different areas, especially in regenerat ive 

medicine (28,62). There are several techniques for producing membranes, such as solvent casting (63),  

layer-by-layer assembly (64) and electrospinning (65). However, solvent casting is the most used 

technique, namely for the production of silk fibroin membranes, because it enables the production of 

transparent films with uniform thickness distribution, at low cost and operational simplicity (63,66,67).  

This technique consists in dissolving a polymer on a solvent , casting this solution in a mold with the 

required geometry and then allowing for the solvent to evaporate under adequate conditions, leaving 

behind a membrane or a film with the same shape as the mold (63).  

A control group of membranes containing exclusively SF was produced by casting 8 mL of the 

original solution into Petri dishes (100mm x 15mm) and drying at 85ºC, during 8h. Another control group 

of membranes, composed of 70% (w/w) SF and 30% (w/w) glycerol was prepared, by mixing the 

appropriate amount of both components, and leaving under constant stirring until the solution became 

homogenous. Then, 8 mL of that solution were casted onto Petri dishes and dried under the same 

conditions. Four experimental groups containing SF at 70% (w/w), glycerol at 29.5 % or 29 % (w/w) and 

either caffeic, or tannic at 0.5% and 1% (w/w) acid were produced following the same methodology. The 

respective formulations and sample designations are summarized in Table 2. 
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Table 2. List of the different formulations that were used and corresponding designation. 

Sample Name Formulation 

SF 100% SF 

SFGly 70% SF + 30% Gly 

SF/Gly/CA05 70% SF + 29.5% Gly + 0.5% CA 

SF/Gly/CA1 70% SF + 29% Gly + 1% CA 

SF/Gly/TA05 70% SF + 29.5% Gly + 0.5% TA 

SF/Gly/TA1 70% SF + 29% Gly + 1% TA 

 

 

 

2.4. Organoleptic properties 

 

 The organoleptic properties of the membranes, such as color, transparency, smell, texture, and 

malleability, as well as their thickness and mass per unit of area, were evaluated. The organoleptic  

properties were evaluated by visual, olfactory and manual inspection. Mass and thickness were 

determined using an analytical scale (Mettler AE 200) and a digital micrometer (Adamel Lhomargy).  

Thickness was measured in 10 different points of the membrane, as suggested in Figure 2.4.1. 

 

 

 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
Figure 2.4.1 – Thickness measurement points in the samples. 
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2.5. Morphological characterization of the surface 

 

2.5.1. Scanning Electron Microscopy (SEM) 

 

The morphology of the films was analysed on a Leica Cambridge S360 (Wetzlar, Germany), by 

Scanning Electron Microscopy (SEM). The samples were fixed with mutual conductive adhesive tape 

on aluminium stubs and covered with gold/palladium using a sputter coater (Fisons Instruments, Sputter 

Coater SC502, UK) prior analysis and the micrographs were taken at an accelerating voltage of 15 kV 

at different magnifications (68).  

 

2.5.2. Optical Profilometry 

 

 In order to assess and compare the surface roughness of the produced SF, SF/Gly, SF/CA and 

SF/TA membranes, the non-contact topographic characterization technique White Light Optical 

Interferometry (WLOI) was used. 3D surface maps were obtained using an optical profiling system 

Wyko-NT1100 (Massachusetts, USA), operating in Phase-Shifting Interferometry (PSI) mode and 

Vertical Scanning Interferometry (VSI) mode. PSI used a measurement range of 160 nm, while VSI 

used a measurement range of 2 mm. All images were analyzed using the WyconVision 32 software 

package and the average roughness (Sa) was obtained. The results were expressed as the average ± 

standard deviation of 3 samples. 

 

 

 

2.6. Chemical characterization 

 

2.6.1. Fourier Transformed Infra-Red spectroscopy with Attenuated Total 

Reflectance (FTIR-ATR)  

 

In order to assess the chemical profile of the developed membranes, their spectra, as well as 

those of glycerol, caffeic acid and tannic acid were acquired using a FTIR spectrometer Nicolet 6700 

(Thermo Scientific, United States of America) equipped with an Attenuated Total Reflectance (ATR) 

device. The software was programmed to record each spectrum between 4000 and 400 cm -1 at a 

resolution of 4 cm-1. Samples and background (air) measurements were made by co-adding 32 scans. 

The analysis was performed in triplicate. 
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2.7. Degradation profile 

 

The degradation profile of the SF-based membranes was conducted in vitro, for 15 days, based 

on the standard BS EN ISO10993-13:2009. Since chronic wounds are characterized by high levels of 

proteases and  decreased  protease inhibitors levels (69),  two conditions were tested to assess the 

degradation of SF-based membranes: during incubation in PBS (negative control) and incubation in a 

solution of a protease in PBS, both at pH 7.4. Many proteolytic enzymes are used to digest silk -fibroin.  

However, protease XIV was contemplated to show high activity against beta-sheet structures in fibers,  

films and scaffolds of silk (70). Samples measuring 1.5 cm x 1.5 cm (n=3, weight ~ 14.86 mg) were 

weighted and immersed in either 1.5 mL of PBS, or in the same volume of a 0.01879 mg/mL of protease 

XIV solution in PBS (0.693 U mL-1, derived from Streptomyces griseus), in order to obtain a ratio of 1U 

of protease/mg of silk (71). They were then incubated under orbital shaking (100 rpm) at 37°C, under 

sterile conditions, obtained by adding 0.2% of sodium azide (w/v) in the PBS solution. The samples 

were collected at predetermined time points (1, 3, 6, 8, 24, 48 and 72 hours, 7 and 15 days). The 

degradation medium was replaced every 2 days to ensure the activity of the enzyme. In each timepoint, 

the samples were removed from de solution, rinsed with distilled water and dried at 40°C overnight, until 

they reached a constant weight. After cooling at room temperature for 1 hour in a desiccator, the 

specimens were weighed (7). The degradation was expressed in terms of weight loss, and was 

determined following Equation 1: 

 

(1)   weight loss (%) = 
(wi-wf)

wi

 ×100 

 

where, wi is the initial weight of the sample and wf  is the weight of the sample after incubation in PBS or 

protease XIV solutions. The results were expressed as the average of three measurements ± standard 

deviation.  

 

2.8. Mechanical Performance 

 

A TA XT Plus Texture Analyzer (Stable Micro Systems Ltd., Surrey, United Kingdom) with 

tensile grips was used to determine the mechanical performance of SF-based membranes under 

uniaxial tensile stress. Films specimens were tested as suggested by Q. Sun et al. (2014) with some 

adaptations. SF, SF/Gly, SF/CA and SF/TA films were cut into strips (3 x 1 cm). Then, the thickness of 

each sample was measured with a Micrometer MI 20 (Adamel Lhomargy, France). The tests were 

conducted in dry and hydrated samples. In the latter case, the membranes were immersed in PBS for 

at least 3 hours, in order to assure that hydration equilibrium was achieved.  In order to avoid the rupture 

of the membranes near the grips, or slippage, the edges of the samples were sheathed with two strips 

of paper held together with double sided adhesive tape and fixed between the grips. The distance 

between the grips was set to 10 mm and the crosshead speed was. 5 mm.min-1. Young's Modulus (E) 

was calculated as the slope of the corresponding stress-strain curve. Ultimate tensile strength (UTS) 
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and elongation at break (ԑ) were obtained from the stress vs strain plots (72). The ultimate tensile 

strength (MPa) was calculated according to Equation 2: 

 

(2)    UTS (MPa) =
Maximum load (N)

Cross sectional area (mm2)
 

 

The percentage of elongation at the break was obtained according to equation 3:  

 

(3)   Ԑ (%) = 
Sample length at break (mm)  - Initial sample length (mm)

Initial sample length (mm)
  

 

The results were expressed as the average of six measurements ± standard deviation. 
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2.9. Thermal properties 

 

2.9.1. Thermogravimetry and Different Thermal Analysis (TG-DTA) 

 

 Thermogravimetry (TG) and Differential Thermal Analysis (DTA) were used to study the thermal 

properties of the films.  

TG is a measurement of the rate of mass loss plotted against temperature and it is used for 

degradation evaluation, while DTA allows to measure the differences between the temperature of the 

sample and a reference, and it is used to ascertain phase changes in a sample. However, although 

these two techniques can be applied separately, each of the methods does not always give sufficient  

information. In this way, both techniques can also be applied simultaneously, in the same sample, at 

the same time. They work, in this way, as complementary techniques, but the optimal conditions may 

be different for both methods – e.g. the highest sensitivity for DTA experiment is achieved at high heating 

rates while, in TG, the best resolution is reached at low rates (73). 

 Simultaneous TG/DTA of each sample was carried out under a nitrogen flow rate of 50 mL/min, 

with the temperature ranging, from 30 to 350ºC, at a heating rate of 10ºC/min, using a Scansci-Hitachi 

TG/DT 7200 Exstar equipment. Each sample was cut so as to present a minimum volume that could fill 

the aluminum crucible (n = 3, weight ~ 3 mg). Three samples were analyzed for each condition under 

study. 

 

 

2.10. Antioxidant capacity – ABTS assay 

 

In order to determine the antioxidant activity of the produced films, an improved ABTS-based 

assay was performed. This method was adapted from Gião et al. (74). The ABTS solution was prepared 

by adding 7 mmol. L-1 of ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt 

(Sigma-Aldrich, Germany) to 2.45 mmol. L-1 potassium persulfate (Merck, Germany) solutions. The 

obtained solution was stored overnight in the dark for 16 hours, for the reaction to occur. This solution 

was subsequently diluted in ultrapure water to provide a final absorbance in the range of 0.700 ± 0.020.  

The absorbance of this solution was evaluated in a UV spectrophotometer.  

For the analysis of the samples, a specific volume was added (v = 10 L) to 1 mL of ABTS, in 

order to obtain an inhibition percentage between 20 and 80%, during 6 minutes of reaction. The average 

of 3 replicates was used. The total antioxidant capacity was obtained according to the following equation,  

expressed in percentage of inhibition (PIAC): 

 

(5)  PIAC = 
AbsABTS- Abssample

AbsABTS
 × 100 

 

Where AbsABTS is the inicial absorbance of diluted ABTS and Abssample is the absorbance of the sample 

after the 6 minutes reaction. A calibration curve was made in the same day, with ascorbic acid (as a 
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standard) solutions with known concentrations. The results were expressed as equivalent concentration 

of ascorbic acid, I g.L-1. From equation (5), the results were normalized relative to the membrane mass 

present in the 10 microliters. 

 

 

2.11. Cytotoxicity tests 

 

 For the evaluation of the cytotoxicity of the produce film dressings, an assay based on the 

international standard ISO 10993-5 was conducted, in vitro, by direct contact and extract tests.  

 

 
 
Cell culture and seeding 

 

Immortalized mouse fibroblast cell line (L929), with 39 passages, were maintained at 37ºC in a 

humidified atmosphere containing 5% CO2 in culture medium supplemented with 89% of MEM-alpha,  

2mM of glutamine, 10% of fetal bovine serum and 1% of antibiotic. Culture medium was removed, and 

5 mL of pre-warmed PBS was added to wash the cells, in order to remove dead cells and cellular debris. 

To detach the cells from the culture flaks, an enzymatic digestion with of trypsin was made. 2 mL of 

TrypLE Express (Gibco) was added, and the flask was incubated for 5 minutes at 37ºC in 5% CO2 

atmosphere. After this time, 5 mL of culture medium was added to neutralize the effect of trypsin. The 

flask was observed under the microscope to guarantee that cell detachment occurred. The obtained cell 

suspension was centrifuged (5 minutes, 1200 rpm) and the obtained pellet was resuspended in 10 mL 

of culture medium, adjusting cell density to 1x105 cells/ml. The cells were subsequently seeded (2x104 

cells/well) in a 96-well tissue culture plate and incubated for 24 hours (37ºC, 5% CO2 atmosphere), to 

ensure cell recovery, adherence and progression to exponential growth phase. After 24 hours of 

incubation, culture medium was removed, and cells were washed twice with 200 L of PBS, in order to 

remove dead cells and cellular debris. After this, direct contact and extract tests were performed at the 

same time.  

 

 

Materials preparation 

 

Membranes were sterilized by ethanol sterilization method. Samples were placed in ethanol 

solutions with different concentrations (90%, 50%, 10% and 0%) for 10 minutes in each solution. The 

use of a decreasing concentration of ethanol is to assure the elimination of traces of ethanol from the 

samples, in order to prevent cell death.  
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Extract tests 

 

Extracts of each material were made based on ISO 10993-5. For films with irregular thickness, 

6 cm2 of each sample were added per mL of culture medium used. Samples were placed in falcon tubes 

containing culture medium and were introduced in an oven at 37ºC for 24 hours in a 5% CO2 air 

atmosphere. A positive control, in which the cells were incubated with culture medium containing 20% 

of Dimethyl Sulfoxide (DMSO), a negative control in which the cells were incubated with regular culture 

medium and an extract control in which cells were incubated with regular culture medium heated for 24 

hours were prepared. Three extract solutions with different concentrations were used: 100% extract, 

50% and 30% (v/v) of the original extract diluted in culture medium original. The culture medium was 

removed, 200 L of each extract were placed in each well and incubated for 24 hours at 37ºC in a 5% 

CO2 air atmosphere.  

 

Direct contact test 

 

For the direct contact test, samples with 4 mm2 area (10% of the well surface) were sterilized 

as previously described. The culture medium was removed and 200 L of fresh culture medium were 

placed in each well. Samples of each membrane were carefully placed on the cell layer of each well  and 

incubated for 24 hours at 37ºC in a 5% CO2 air atmosphere.  

 

MTT assay 

 

For MTT assay, after 24 hours treatment, the culture medium was removed, and the cells were 

washed with 200 L of PBS. 200 L of MTT solution (0.5 mg/mL) were placed per well and the plate 

was incubated for 2 hours at 37ºC in a 5% CO2 air atmosphere. After this time, the MTT solution was 

removed and 200 L of pure DMSO was added per well. The samples were protected from light and 

absorbance was read using a microplate spectrophotometer at 570 nm and 630 nm. Three independent  

replicates were performed with n = 3 per replicate. The percentage of cell viability was calculated by 

normalizing the results relative to the negative control. 

 

 

2.12. Statistical analysis 

 

GraphPad Prism software was used for statistical analysis. The differences between the groups 

under study were analyzed for statistical significance by employing one-way ANOVA (n > 6), non-

parametric tests (n < 6) and repeated measures ANOVA. A p-level inferior to 0.05 was considered to be 

significant.  
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CHAPTER 3 

 

Results and Discussion 

 

 

3.1. Organoleptic properties 

 

Film wound dressings were designed to be in close contact with the injured tissue in superficial 

and shallow wounds with low exudate (62,75). When designing these devices, there are several 

requisites that need to be met in order to guarantee their good performance and safety. Along with 

specific chemical and physical attributes that will be discussed later in this chapter, the organoleptic  

properties play an important role on the applicability of this type of product. The first approach of 

clinicians and patients to a wound dressing will be through the senses, so, the general aspect of the 

product odor and its handling capability will have a significant contribution to its general acceptance 

(26).  

In this study, SF-based membranes containing either caffeic or tannic acids were produced by 

solvent casting and thermally crosslinked at 85 °C for 8 hours. After that, the samples were cooled at 

room temperature until the equilibrium moisture content was reached, carefully removed from the molds 

and evaluated by visual, olfactory and manual inspection. The samples were then weighted, the 

thickness was measured, and the mass/area ratio was determined. The organoleptic properties of the 

membranes, as well as the thickness and the mass/area ratio are summarized in Table 3. 
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Table 3. Organoleptic properties and some physical aspects of SF-based membranes. 

Formulation Membrane Color Transparency Texture Malleability Smell 
Thickness 

(mm) 

Membrane mass/Area 

of membrane (mg/mm2)  

SF 

 

Colorless Transparent 
Smooth and 

homogeneous 

Not 

malleable 

(very brittle) 

Odorless 0.180 ± 0.337 8.22 

SF/Gly 

 

Light yellow  Transparent 
Smooth and 

homogeneous 
Malleable Odorless 0.063 ± 0.014 7.39 

SF/Gly/CA05 

 

Yellow  Transparent 
Smooth and 

homogeneous 
Malleable Odorless 0.044 ± 0.031 6.87 

SF/Gly/CA1 

 

 Brigth yellow Transparent 
Smooth and 

homogeneous 
Malleable Odorless 0.074 ± 0.043 7.88 

SF/Gly/TA05 

 

Light brown  Transparent 
Smooth and 

homogeneous 
Malleable Odorless 0.039 ± 0.018 7.17 

SF/Gly/TA1 

 

Strong brown  Transparent 
Smooth and 

homogeneous 
Malleable Odorless 0.079 ± 0.032 8.17 
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The developed membranes were transparent, odorless, with a soft coloration and presented a 

homogeneous surface with a smooth texture. These features are quite interesting for the proposed 

wound healing application. The transparency of the developed membranes will enable direct monitoring 

of the wound without dressing removal, which minimizes costs and patient discomfort. Wound malodor 

is a very important aspect for the clinical assessment of wounds, as it may be indicative of bacterial 

infection in the wound bed and can help to identify and manage the causing agents (76). Introducing 

odor to wound dressings may mask the wound odor and create an added difficulty in its assessment. 

Therefore, it is important that the developed membranes do not have odor, so as not to camouflage the 

odor of the wound. Colour is also an important aspect on the wound assessment, once it can indicate 

which process is occurring inside the wound. For instance, a red-coloured wound indicates the presence 

of granulation tissue, whereas black coloration shows the existence of necrotic tissue (26). Therefore, it 

is important that the dressings do not misrepresent the true colour of the wound, so that it is possible to 

more easily detect the wound stage without removing the dressing, in order to better match the treatment  

to be applied. SF membranes are colorless. However, SF/Gly membranes presented a very discrete 

light-yellow tonality. The incorporation of 0.5% and 1% CA led to a less subtle yellow tone and the 

incorporation of 0.5% and 1% TA led to membranes with a brown tonality. Although the incorporation of 

antioxidants caused the emergence of moderate levels of either yellow, or brown tones in the 

membranes, that coloration is discrete enough to guarantee proper color assessment of a wound without  

dressing removal (Table 3).   

The handling capability is a crucial feature of a wound dressing. These devices must be easy to 

manipulate and adapt to the wound shape, for optimal functionality and patient comfort (26,77). SF 

membranes were very brittle and presented handling challenges, starting by the detachment from the 

molds. The remaining membranes were very pliable, easily detached from the molds and easily handled.  

With the addition of glycerol to the silk matrix, a remarkable improvement in the malleability of the 

dressing was promoted. Gly is a plasticizing agent and the main role of these additives in a material is 

to increase its flexibility (50). As a consequence, these substances reduce the deformation tension and 

hardness of the materials, and, at the same time, increase polymer chain flexibility and resistance to 

fracture (50). This plasticizer is commonly used in the manufacturing of polymeric membranes, in order 

to render them less brittle and it is recognized as a safe substance by Food & Drug Administration  

(50,78). This qualitative evaluation of membrane malleability was complemented with a quantitative 

assessment of the mechanical performance of the membranes, as presented in section 3.5. 

Lastly, the thickness of the membranes was measured in the dry state, in 10 different points of each 

membrane, as described in section 2.4. The results are summarized in Figure 3.1.1 and Table 3. 
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Figure 3.1.1 – Thickness of dry membranes measured in 10 different points of the silk -based 

membranes (n = 3, Kruskal-Wallis test, P = 0.0061, * – significant differences). 

 

 

The thickness of the membranes, in the dry state, ranged between 0.039 and 0.180 mm. There 

were significant differences between SF/Gly and SF/Gly/TA05 membranes. Nevertheless, it should be 

noted that there is a wide variability in the thicknesses of the membranes. This may be related to the 

conditions they are subjected to the heat treatment (e.g. uncontrolled drying atmosphere, non-

homogeneous molds), as well as the conditions in which the cooling process of these materials occurs 

(e.g. drying at room temperature in closed Petri dishes, protected from light). A possible approach to 

circumvent this variability could be to place the Petri dishes in a desiccator without the caps , during the 

cooling process, in order to avoid the condensation process on the surface of the membranes and thus 

better homogenize the surface thickness.  

The appropriate thickness of the membranes for wound dressing application will depend on the type 

of wound and the amount of exudate present in the wound. 
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3.2. Morphologic characterization of the surface 

 

As referred in the previous section, film wound dressings are designed to be in close contact 

with injured tissue, in shallow wounds with low exudate. Therefore, an in-depth analysis of the surface 

of the dressing is important to guarantee its adequate performance. The morphological characterization 

of the surface was performed by SEM analysis and Optical Profilometry, in order to assess the effect of 

the addition of glycerol and antioxidant agents (CA and TA) on the micro- and nanostructure of the SF 

membranes. 

 

3.2.1. Scanning Electron Microscopy (SEM) 

 

SEM analysis provided relevant information about the micro- and nanostructure of the 

membranes, as presented in Figure 3.2.1 and Figure 3.2.2.  

 

 

(a)  

 

(b) 

 

(c)  

Figure 3.2.1 – SEM images of (a) SF, (b) SF/Gly and (c) SF/Gly/CA05 membranes (Magnifications of 

500x and 20000x). 
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(a)  

 

(b)  

 

(c)  

 

Figure 3.2.2 – SEM images of (a) SF/Gly/CA1, (b) SF/Gly/TA05 and (c) SF/Gly/TA1 membranes  

(Magnifications of 500x and 20000x). 

 

The use of a low magnification (500x) enabled to assess the microtopography of the samples. 

All the membranes display a homogeneous surface, with no apparent roughness in the micrometric  

scale, which corroborates the macroscopic analysis performed on the organoleptic properties . The use 

of a high magnification (20 000x) allowed to visualize the nanotopography of the membranes surface,  

which shows a small roughness. Although extremely important, this analysis is merely qualitative and 

does not allow to assess for any nanotopographic differences in the evaluated samples. In order to do 

so, a quantitative analysis was performed by optical profilometry, as presented in the next section.  
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3.2.2. Optical Profilometry (OP) 

 

Representative 3D surface maps showing the nanostructure of the surface of the membranes 

are presented in Figure 3.2.3. The images corroborate the results obtained by SEM and further suggest  

that introducing glycerol in the membrane formulations leads to an increase in the surface roughness,  

characterized by the presence of more red regions in the respective maps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.3. – OP nanostructure images of SF (a), SF/Gly (b), SF/Gly/CA05 (c), SF/Gly/CA1 (d),  

SF/Gly/TA05 (e) and SF/Gly/TA1 (f) membranes. 

 

 

This observation is supported by the quantitative analysis  of the average roughness (Sa), as 

presented in Figure 3.2.4. 

 

 

 

Figure 3.2.4. – Average roughness of the SF and SF/GLY membranes incorporating 0.5 and 1% of 

caffeic acid (a), tannic acid (b) obtained by optical profilometry (n = 3, Kruskal-Wallis test, P = 0.0078,   

* – significant differences). 

 

a. b. c. 

d. e. f. 
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The average roughness ranged from 7 nm in SF membranes, to 33 nm in SF/Gly/TA1 

membranes. Despite the evident roughness increase in the formulations containing glycerol, statistical 

differences were only observed between the values obtained for SF and SF/Gly/TA05 films (P = 0.0078).  

Most likely, a higher sample number would have enabled to discriminate statistical differences between 

other experimental groups and the control group. It has been reported that protein-based films require 

the addition of plasticizers to reduce its fragility, and that the use of plasticizing agents like glycerol in 

the production of thin membranes leads to an increase on surface roughness (79). Other studies have 

demonstrated that nanotopographic features in silk-based membranes similar to the ones obtained in 

this work are adequate for the development of natural-based wound dressings (80–82).  

 

 

3.3. Mechanical Performance  

 

The evaluation of the mechanical properties of a wound dressing is of extreme importance in 

order to predict its mechanical behavior in the clinical application context, as well as to help to define 

how the clinical team can handle safely these dressings. It is also important to know its ability to resist 

the stresses to which it will be exposed to during handling and in the physiological wound healing 

environment. In this study, the mechanical properties of the obtained silk fibroin-based membranes were 

investigated by performing uniaxial tensile tests. Figure 3.3.1 demonstrates distinct mechanical 

behaviors for all membranes developed. Young’s Modulus (E), Ultimate Tensile Strength (UTS) and 

Elongation at Break (ε) parameters were investigated. 

 The mechanical performance of the membranes was evaluated both in dry and hydrated states. 

The distinction in the physical state of the membranes was made to predict their behavior when stored 

and manipulated by clinicians (dry state), as well as when applied to a wound (hydrated state). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

42 

 

Figure 3.3.1 – Young’s Modulus (E), Ultimate Tensile Strength (UTS) and Elongation at Break (ε) 

parameters of all membranes, in dry and wet state (n = 10, One-way ANOVA test, P = 0.0078, * – 

significant differences). 

 

In the dry state, SF membranes demonstrated a significant difference in the Young’s Modulus,  

which decreased with the introduction of glycerol in the membrane’s matrix. The UTS decreased while 

an increase was observed for the ε. The introduction of Gly into the matrix of SF membranes has 

reduced its stiffness, which makes them more malleable, flexible and resistant to fracture, as described 

in section 3.1. According to Sobral (83), the mechanical properties of films produced by solvent-casting 

method depends strongly on the type and concentration of plasticizers, as glycerol  (83,84). It has been 

reported that Gly makes SF membranes more ductile than membranes of pure silk (85). This  

phenomenon occurs, because when Gly is added into SF solution before the thermal treatment, hydroxyl  

groups in glycerol form hydrogen bonds with hydrophilic polar groups in SF macromolecules and water  

molecules. With these interactions, a network structure between SF and glycerol is created and the 

elongation at break of the films increases (86). 

When antioxidant agents were incorporated in the SF/Gly membranes matrix, significant  

differences were observed between E, UTS and  of both CA and TA. However, there were no significant  

differences in  between SF/Gly/TA1 and SF/Gly membranes. CA membranes showed an increase in 

all parameters when compared with SF/Gly membranes. Although, 1% CA membranes showed lower 

values when compared with 0.5% ones. TA membranes showed the same behavior as CA ones, with 

the exception of  parameter in 1% membranes. In this case it can be supposed that the antioxidants  

added to the matrix of SF/Gly membranes exerted an anti-plasticizing effect, opposing to what was 
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observed to glycerol, since they made the membranes more rigid and resistant. In section 3.1, it could 

be verified an increase in the thickness of the membranes when the incorporation of the antioxidant  

agents in the SF/Gly matrix. However, 0.5% TA membranes showed lower thickness when compared 

with the SF/Gly membranes. Thicker membranes may be more rigid. Though, membranes that have a 

lower thickness may have a more fragile behavior due to higher the contribution of the surface 

properties, which corroborates the mechanical results obtained. 

In the wet state, SF membranes demonstrated a decrease in E and UTS values with significant  

differences when compared with SF/Gly membranes. The  value increased, but without statistical 

significance. With hydration, the membranes became more flexible and resistant. It has been reported 

that water acts as a mobility enhancer (87). Gly and water molecules create hydrogen bonding 

interactions frequently (84). However, during silk protein conformational shift toward β-sheet formation,   

a disruption in the hydrogen bonding occurs and hydrogen bonding sites become available for 

interaction by water molecules in aqueous media (84). Therefore, active and available hydration sites 

are reactive with water molecules and it has been reported that this result has significant implications 

for the formation of less brittle silk materials (84).  Minoura et al. (88) described an increase in softness 

of silk-fibroin based membranes when in presence of water, which suggested the plasticizer effect of 

water in these membranes. In that study it was also suggested that silk fibroin membranes become 

more elastic with the increase of absorbed water by the membranes (88). Results similar to the ones  

obtained in this study for the hydrated SF/Gly membranes were described by Shenzhou et al. (89). The 

addition of the antioxidant agents in the SF/Gly membranes, in wet state, did not show significant  

differences on their mechanical performance when compared with the SF/Gly membranes. 

Healthy skin is known to have a high degree of elasticity, as compared to other biological 

tissues. In this way, Young’s Modulus of the skin is an important parameter to evaluate the skin 

characteristics (90). It has been reported that, for tensile tests, E values for healthy skin are between 25 

kPa and 140 MPa. Despite E values of the membranes developed in this work being lower than skin’s 

values, when they are compared with the developed non-commercial dressings, they are in the same 

range. Is important to note that, although the developed membranes are not a skin substitute, it is 

essential that their properties are similar to the skin properties. If this is verified, the dressing may be 

better adapted to the wound. It is also important to ensure that the properties of the developed 

membranes are also similar to the ones of the commercial dressings. 

UTS and ε values obtained in this work are similar to the ones reported in other studies of non -

commercial wound dressings, which can be a possible validation for these membranes to be applied as 

a skin wound dressing (37,39,79). These membranes more malleable than skin which can be an 

advantage to allow for a better manipulation during the clinical application (42,91).  
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3.4. Fourier transform infrared attenuated total reflectance (FTIR-ATR) 

spectroscopy 

 

In this study, Fourier Transformed Infrared Spectroscopy (FTIR) was performed to understand 

the chemical structure of SF membranes and to evaluate possible effects from the blending with Gly 

and further incorporation of CA (Figure 3.4.1 (a)) and TA (Figure 3.4.1 (b)). 

 

Figure 3.4.1. – FTIR spectra of the SF and SF/GLY membranes incorporating 0.5 and 1% of caffeic  

acid (a), tannic acid (b). 

 

Glycerol contains an O-H bending at 920 cm-1, C-O and C-H stretching at 1000 and 1100 cm-1, 

respectively, a C-O-H bending around 1400-1460 cm-1, C-H stretching between 2880 and 2930 cm-1 

and a —OH band at 3000-3500 cm-1 (92,93). Caffeic acid is characterized by the presence of hydroxyl 

and carbonyl functional groups. The vibration of the —OH groups attached to benzene ring are located 

at 1200-1270 cm-1 and the C=O stretching peaks are generally observed at 1600-1700 cm-1 (94). Tannic  

acid presents a strong absorption around 3450 and 3000 cm-1. This band is due to a varied hydrogen 

bonding between OH which are consigned to the stretching vibrations of the —OH groups (95). 

The amide bands are the more informative infrared bands to analyze proteins. Therefore, Amide 

I vibrations are associated to C-O stretching (1600-1700 cm-1), amide II vibrations describe the bending 

of N-H bond related with C-N stretching (1520-1540 cm-1), and amide III vibrations characterize the 

combination of C-N stretching vibration with the N-H deformation (1220-1300 cm-1) (96). In addition, the 

molecular conformations of protein materials are described by random coil absorption peaks at 1650 

cm-1 (amide I), 1540 cm-1 (amide II), and 1230 cm-1 (amide III) and -sheet absorption peaks around 

1630 cm-1 (amide I), 1520 cm-1 (amide II), 1270 cm-1 (amide III) (97). In SF membranes, the presence 

of -sheet conformation was confirmed due to the peaks detected at 1625 cm -1 and 1521 cm-1. In caffeic  

and tannic acid membranes -sheet conformation was also present. Therefore, the incorporation of the 

acids in the silk-based matrix and further thermal crosslinking did not affect the expected chemical 

structure, i.e., it was not possible to observe any shift in the amide I, II and III.  
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3.5. Degradation profile 

 

 Some studies have focused on the characterization of acute and chronic wounds , in order to 

understand the processes that transform an acute cicatricial wound into a chronic wound (11). These 

studies have led to the hypothesis that diabetic chronic wounds (e.g. diabetic foot wounds) often cannot  

heal due to high concentrations of pro-inflammatory cytokines in the wound that induce high 

concentrations of proteases (such as matrix metalloproteinases), which degrade multiple growth factors,  

receptors and matrix proteins that are essential for wound healing process, when they are not in a 

balanced concentration (11,98).  

 Matrix metalloproteinases are the enzymes that naturally degrade extracellular matrix proteins  

and they are classified into different classes based on their in vivo substrate specificity (99). Within each 

class, these metalloproteinases recognize specific peptide sequences. Protease XIV, a serine protease,  

recognizes some of the sequences which lie within the amino acid profile of the silk fibroin heavy chain  

and it can degrade both crystalline and non-crystalline domain of silk, and these was the main reason 

that it was applied in this assay (85,100,101). 

Macroscopic evaluation of the degradation of the samples incubated in PBS and Protease XIV 

media, up to 15 days, is presented in Figure 3.5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1 – Macroscopic evaluation of the samples before and after incubation in either PBS, or 

protease XIV (derived from Streptomyces griseus, 0.693 U.mL-1), up to 15 days. 
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In Figure 3.5.1 it is possible to observe that the integrity of all the membranes was preserved 

throughout the 15 days, in PBS. The same is not observed in membranes that have been exposed to 

the action of Protease XIV. SF and SF/Gly/CA05 membranes maintained their integrity throughout the 

15 days. However, this observation does not mean that degradation did not occur, since they may have 

undergone erosion degradation (102), which does not immediately lead to membrane disintegration.  

The remaining membranes suffered disintegration at the end of different timepoints. 1% CA membranes 

disintegrated after 24 hours. SF/Gly and 0.5% TA membranes have disintegrated after 72 hours. 1% TA 

membranes have disintegrated after 7 days, which made them more resistant to the action of this 

enzyme when compared with the previous ones. With the analysis of Figure 3.5.2, the results obtained 

in the degradation tests can be better understood. 

 

Figure 3.5.2 – Degradation profile of the samples incubated in either Phosphate Buffered Saline (PBS), 

or protease XIV (derived from Streptomyces griseus) (0.693 U.mL-1), up to 15 days. 

 

It is possible to observe that the mass of SF membranes remained constant throughout the 15 

days of incubation in PBS. However, SF/Gly, SF/Gly/CA05, SF/Gly/CA1, SF/Gly/TA05 and SF/Gly/TA1 

membranes have shown a decrease in the initial mass of approximately 30%, after the first 2 hours of 

incubation. In order to assess the significance of the observed differences, a repeated measure s  

ANOVA was performed, and it revealed statistical differences (P < 0.0001) between the different  

timepoints of each membrane. After that initial loss, the weight of the samples remained constant until  

the end of the study. This may be related to the release of the Gly to the degradation medium, since the 

lost mass corresponds to the percentage of Gly present in the formulations of the films. This is in 

agreement with other study were it was reported that the silk membranes lost the majority of the mass 

corresponding to the percentage of glycerol in the first hour of incubation, during the degradation assay 

(85). It has been reported that polar solvents displace glycerol from the silk materials and almost all of 

the glycerol in the silk blended materials is extracted when incubated in water which corroborates the 
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obtained results (84). With the release of Gly from the membrane’s matrix, its mechanical properties  

modify. Gly reduces film fragility, confers some plastic properties and reduces the mechanical strength 

of materials, as previously mentioned (50). However, this is not verified in the mechanical tests. 

Therefore, the results obtained in this assay corroborate the fact that water may be acting as a plasticizer 

when the 30% Gly is exited after 1 hour of incubation. In order to better evaluate the interaction of Gly 

with the SF matrix, it would be important to carry out release studies with the resulting solutions from 

the different timepoints of the degradation assay. The introduction of 0.5% of TA in the matrix of the 

membranes has shown to confer some resistance to degradation. Studies related with the structure and 

mechanisms of silk degradation and with the in vitro degradation of silk fibroin have confirmed the 

stability of SF membranes in PBS, which corroborates the results obtained in this study  (102,103).  

With the addition of Protease XIV, it is possible to observe the same initial mass loss of 

approximately 30%, followed by a large loss after 24 hours of incubation. In order to assess the 

significance of the observed differences, a repeated measure ANOVA was also performed, and it 

revealed statistical differences (P < 0.0001) between the different timepoints of each membrane. Due 

to the existence of -sheet conformation in the silk membranes, they become more rigid, which makes 

their degradation difficult to occur, which makes SF films more stable (100). With the introduction of Gly 

and TA in the matrix, the membranes become more susceptible to degradation by Protease XIV. The 

mechanical tests demonstrated that the introduction of TA increased the resistance of the membranes.  

However, the introduction of 0.5% TA in the matrix of the SF/Gly membranes made them less thick, 

which may interfere with their physical resistance. Less thickened membranes may be subject to faster 

degradation, which corroborates the results obtained. Possibly due to the release of the antioxidant  

agents from the matrix, this output could function as an easier way for the degradation mechanism to 

occur, because it creates more space for the enzyme to penetrate the sample.  It should be noted that 

although there was a large degradation observed with Protease XIV, this behavior does not illustrate 

what necessarily happens in vivo. Horan et al.  (102) demonstrated that the complex in vivo environment 

specific for a type and location of the wound is essential to determine the rate of degradation (102).  

However, Numata et al. (70) reported that the degradation by the Protease XIV is faster than other types 

of enzymes present on wound exudates (70). The authors had also demonstrated that the fast  

degradation observed in beta-sheet crystals of silk by Protease XIV is not present in the human body,  

which leads to believe that the results obtained in this study of degradation do not invalidate the use of 

the developed silk membranes as wound dressings for periods of 4 days, or more (70). 
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3.6. Thermal properties 

 

3.6.1. Thermogravimetry and Different Thermal Analysis (TG – DTA) 

 

 TG – DTA is an important method for the determination of the decomposition temperature/steps 

and kinetics parameters for solid materials (104).  

The results obtained are presented in Figure 3.6.1. 

 

 

Figure 3.6.1. – TG and DTA curves for SF, SF/Gly, SF/Gly/CA05, SF/Gly/CA1, SF/Gly/TA05 and 

SF/Gly/TA1 membranes, from 30 to 330ºC. 

 

With the analysis of DTA and TG curves, an inflection point around 95ºC can be observed which 

can be associated to the evaporation of water (105). Around 280ºC, an endothermic peak is observed,  

which corresponds to the thermal decomposition of silk (105). The mass loss due to the evaporation of 

Gly starts at 120ºC (106) and its evaporation starts around 211ºC (84). In the region of 180ºC – 250ºC, 

a gradual decrease in mass is observed with the increasing of the temperature.  It has been hypothesized 

that a variety of chemical interactions that glycerol may establish with silk matrix, resulting in a gradual 

evaporation (84). A decrease in thermal resistance of SF is observed with the introduction of Gly in the 

membrane matrix. Gly seems to be the major contribution to the differences observed in the thermal 

profile of SF membranes.  With the addition of 0.5% of the antioxidant agents, it is verified an increase 

in thermal resistance and the opposite is observed in the presence of 1% of these compounds . These 

results can be related to the roughness and the mechanical performance of the membranes. There is 

an increase in roughness for greater amounts of antioxidants, with a loss of mechanical properties ,  

which may be related to the formation of some internal microporosity, which may have some 

consequences in the thermal behavior of the samples. With a high surface area (due to an increase of 

roughness), greater will be the thermal degradation. The analysis of cross section by SEM would have 

been useful to verify the porosity of the samples.  

SF/Gly/TA05 membranes, when in the presence of PBS solution, increase the resistance to 

degradation of the SF matrix. With an increasing of the resistant to degradation, these membranes have 

gained thermal resistance. On the other hand, at the mechanical level, membranes with 0.5% of CA and 

TA revealed to have a higher stiffness, which can also confer a higher thermal resistance.  
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3.7. Antioxidant properties – ABTS assay 

 

 The obtained values for the antioxidant activity of the different produced membranes are plotted 

in Figure 3.7.1, ranging from 0.08 mg Ascorbic Acid Eq/mg membrane in SF films, to 0.13 mg Ascorbic 

Acid Eq/mg membrane in SF/Gly/TA05 membranes. SF membranes showed antioxidant capability  

Other studies have also demonstrated the antioxidant capacity of silk fibroin (107,108). Kruskal-Wallis  

multicomparisons test only revealed statistical differences between the values obtained for SF and 

SF/Gly/TA05 membranes (P = 0.0369).  With the results obtained in this study, it was found that the 

addition of antioxidants, in particular of TA at 0.5% w/w, to the silk-fibroin matrix helped to improve the 

antioxidant effect of the SF membranes.  

Since wounds dressings are designed to cover a determined area of wound, and the interactions  

between the dressing and the wound will be governed by the area of exposure, besides the antioxidant  

capacity per mass unit, it is also important to assess the antioxidant capacity per unit of area. Therefore,  

the ratio between the values of mass of Ascorbic Acid Equivalent per area of membrane was calculated.  

The values are plotted in Figure 3.7.1, ranging from 0,010 mg Ascorbic Acid Eq/cm2 membrane in SF 

films to 0,019 mg Ascorbic Acid Eq/cm2 membrane in SF/Gly/CA05 membranes. A one-way ANOVA 

test only revealed statistical differences between SF and SF/Gly membranes, and SF/Gly and 

SF/Gly/CA05 membranes (P < 0.0001). This result may be related to the higher thickness present in SF 

membranes when compared to SF/Gly membranes, which increase the surface area of the films. With 

the addition of 0.5% CA in SF/Gly matrix, the antioxidant capabi lity per area of membrane also 

increased. With the obtained results, it was found that the addition of Gly and 0.5% CA to the matrix of 

SF membranes also helped to improve the antioxidant effect of the silk -based membranes. 

Other studies have confirmed the antioxidant activity of SF and TA by the ABTS method 

(53,107,108). However, the results of these studies were not related to equivalents of ascorbic acid, 

therefore it is not possible to compare the final results and it will not be possible to compare the 

antioxidant activity of the developed membranes with others already produced. However, in order to 

verify if the obtained results for the antioxidant activity changes with the effect of the thermal treatment  

to which the membranes are subjected, it would be interesting to test the antioxidant activity of the 

preparation solutions of the membranes in their liquid state by the ABTS method. Another possible 

solution would be quantifying the antioxidant activity through other method, more commonly used, such 

as ORAC. 

Although it is not possible to compare the antioxidant activity obtained in the developed 

membranes with others already available, the fact that these membranes have an antioxidant potential 

is a characteristic that makes them possible to be used as wound dressings, since they can have great  

benefits in the healing process of chronic wounds. 
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Figure 3.7.1 –Results of (a) mg Ascorbic Acid Eq/mg membrane (n = 6, Kruskal-Wallis test, P = 0.0369,  

* – significant differences) and (b) mg Ascorbic Acid Eq/cm2 membrane (n = 15, One-way ANOVA test, 

P < 0.0001, * – significant differences) obtained by the ABTS assay.   

 

 
 
 

3.8. Cytotoxicity tests  

 

 Assessing the potential cytotoxic effects of biomedical devices is crucial. Potentially hazardous 

effects arising from the biomaterial itself or from any additives used during film manufacturing have to 

be dismissed before pre-clinical studies may be considered. Figure 3.8.1 shows the results obtained 

when both films extracts, and film samples were incubated with L929 cells for 24h. 

 

 

Figure 3.8.1 – Cell viability results for the membranes (a) and for the extracts (b) in L929 fibroblasts  

after the 24 hours of incubation. 

 

For both direct and extracts tests, statistical analysis revealed no significant changes between 

the cell viability of the negative control and all the other tested conditions for the membranes (One-way 

ANOVA, P < 0.0001). No cytotoxic effects were observed during the period of study for the film samples 
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of all the formulations. For extract tests, a large decrease in cell viability of the pure 1% TA extract was 

observed. According to the international standard ISO 10993-5, a cell viability lower than 70% indicates 

that there is cytotoxicity, which makes this concentration of TA cytotoxic to the cell type used in this 

study. Sahiner et al. (109) reported the cytotoxic behavior of TA particles. When applied for 24 hours at 

a concentration of 75 μg.mL-1, this compound has shown to be cytotoxic to L929 cells. The authors also 

concluded that the cytotoxic effect of this compound is dependent on the concentration of the particles. 

This leads to believe that the pure 1% TA extract may have revealed a cytotox ic effect for L929 cells, 

because of the high concentration of this compound in the extract.  Despite the results obtained for 1% 

TA, all the other tested extracts, regardless of the used concentration, did not cause a decrease in cell 

viability, evidencing no toxic effects towards L929 cells.  

The obtained results in both tests are quite encouraging and establish a first validation regarding 

the safety of these films, and their application as wound dressings. Once film wound dressings can stay 

in place for a week (28), this study should be repeated for a period of 7 days to evaluate the effects of 

longer exposure.
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CHAPTER 4 

 

Conclusions  

 
 

In the present study, the development of novel SF-based stable membranes incorporating 

caffeic and tannic acids for the treatment of superficial chronic wounds was successfully accomplished.  

The results obtained for the organoleptic and mechanical properties are suitable for the function for 

which these membranes were designed to and comparable with the results found in the literature for the 

dressings available commercially. The malleability of the membranes can facilitate membrane 

application by the health professionals, in a clinical context. The transparency of the films allows the 

evaluation and the analysis of the wound without removing the dressing, which can promote the patient  

comfort and reduce the costs associated with the treatment. Since odor is an important characteristic in 

the evaluation of chronic wounds, the fact that the membranes were odorless is an advantage, since 

the odors emanated from chronic wounds are not misrepresented. The increase in the concentration of 

the antioxidant agents in the SF/Gly membranes caused a change in the mechanical properties of the 

membranes, because an anti-plasticizing effect was observed, which made the membranes more rigid 

and resistant. The degradation profile with Protease XIV showed that SF membranes were the more 

resistant to degradation. With the presence of Gly and the increasing in the concentration of the 

antioxidant agents, the SF-based membranes became more susceptible to degradation with Protease 

XIV. Gly decreased the thermal resistance of the membranes. 0.5% of CA and TA increased this 

property while the presence of 1% of these compounds showed the opposite. SF membranes showed 

antioxidant capability and the addition of Gly, 0.5% CA and 0.5% TA helped to improve the antioxidant  

effect. The antioxidant activity also decreases with the increase to 1% of the antioxidant agents in the 

matrix of the SF-based membranes. This behavior leads to hypothesize that the introduction of 

increasing concentrations of the antioxidant agents in SF-based membranes may induce nanoporosity ,  

and this feature may be compromising the physicochemical properties of the membranes , in general.  

The antioxidant capacity observed in the membranes is a promising feature in combating the high levels  

of ROS present in chronic wounds, as it helps to prevent cell death and consequent wound regeneration.  

The cytocompatibility of the membranes is also a promising aspect in the application of these 

membranes as wound dressings. Despite pure 1% TA extract revealed a cytotoxic effect for L929 cells, 

the membrane samples of all the formulations and the remaining extracts revealed no cytotoxic effects,  

which is a quite encouraging result and can establish a first validation for the safety and application of 

these films as wound dressings. The developed membranes presented characteristics that make them 

interesting for the application in superficial chronic wounds, suitable to be used as a wound dressing.  

However, other physico – chemical parameters (described in the following section) need to be evaluated 

until they can be proceeded to preclinical tests.  
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Future work 

 

In order to assess the full functionality of the developed materials, more physical and biological 

tests should be performed. Within the physical tests, the study of the water vapor permeability of the 

membranes, hydration degree with wounds exudates, adhesion tests using pig skin models and release 

studies in wound exudates should be performed. Further structural and morphologic characterization 

tests should be performed, such as contact angle, AFM, XPS and NMR to have a better surface 

characterization of the dressings. Within the biological tests, an in vitro oxidative stress assay should be 

performed in order to evaluate the antioxidant capacity of these membranes in cells exposed to oxidative 

stress, as well as cytotoxicity tests with longer timepoints (3 to 7 days). In vivo tests in mice models  

should be performed for a better evaluation of the applicability of these films as a possible wound 

dressing. 
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