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Abstract. For the most well-known constitutive model for partially saturated soils,
the Barcelona Basic Model, an optimized return mapping algorithm is proposed, which
is characterized by analytical integration of the hardening law and by solving only a
nonlinear scalar equation at the integration point level. To investigate the performance of
the proposed algorithm several implicit and explicit stress update algorithms are compared
at the integration point level. Finally, the proposed stress update algorithm is applied
to a 2D solid-fluid coupled numerical simulation of water flow through a homogeneous
embankment dam.

1 INTRODUCTION

The development of constitutive models for partially saturated soil and the implemen-
tation into FE-programs are ongoing research topics. The latter requires selection of a
suitable stress update algorithm. In addition to accuracy, robustness and efficiency of
the employed stress update algorithm play a decisive role especially for large-scale FE-
analyses. This is the motivation for developing an optimized return mapping algorithm
for the most well-known constitutive model for partially saturated soils, the Barcelona
Basic Model (BBM). In the pioneering work [1] basic concepts of modeling the behavior of
partially saturated soils were introduced, e. g. the application of two independent stress
parameters, consisting in the particular case of net stress and matric suction. The original
version of the BBM was developed further by e. g. [7, 14, 2]. However, it is employed here
in its original version, because the latter was agreed as the basis for extensive benchmark
activities within the framework of the MUSE network [9].
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Following the ideas of [5] the proposed algorithm is derived from the general formulation
of the return mapping algorithm [13]. Whereas the latter requires solving a system of
several nonlinear equations at the integration point level, the former is characterized by
analytical integration of the hardening law and by solving only a nonlinear scalar equation
at the integration point level.

To investigate the performance of the proposed algorithm several stress update algo-
rithms are compared at the integration point level. This is done on the basis of two sets
of material parameters for the BBM by prescribing different volumetric and deviatoric
strain increments at constant matric suction. The investigated stress update algorithms
include both implicit and explicit integration schemes. The latter include a forward Euler
integration scheme and a semi-explicit integration algorithm [10]. The Richardson extrap-
olation method, described in [3], is used as the basis for sub-stepping with error control,
which is an essential ingredient especially of explicit stress update algorithms. Moreover,
enhancements of implicit integration methods with sub-stepping and error control tech-
niques are investigated. In addition, a fifth-order Runge–Kutta stress update algorithm
with error control is included in this investigation [4].

Finally, the proposed stress update algorithm is applied to a 2D solid-fluid coupled nu-
merical simulation of water flow through a homogeneous embankment dam. The governing
equations of the finite element formulation are based on a three-phase model for partially
saturated soils, see e. g. [8]. Since in such structural analyses various hydro-mechanical
loading conditions are encountered at different integrations points, the robustness and
efficiency of the proposed stress update algorithm can be demonstrated.

2 THE BARCELONA BASIC MODEL

The BBM is formulated in terms of the net stress tensor σ′′ and the matric suction pc.
The net stress

σ′′ = σ − paI (1)

is the total stress σ in excess of the pore air pressure pa, and the matric suction

pc = pa − pw (2)

is the difference between the air pressure pa and the water pressure pw. For stress states
located within the elastic domain, enclosed by the yield surface, the elastic volumetric
and deviatoric strain rates are given as

ε̇ev =
κ

1 + e

ṗ′′

p′′
+

κs

1 + e

ṗc

pc + patm
, ėeij =

ṡij
2G

, (3)

with the material parameters κ and κs, representing the elastic stiffness for changes of the
mean net pressure p′′ = (σ′′ : I)/3 and for changes of the matric suction pc, respectively.
e, patm, ṡij and G denote the void ratio, the atmospheric air pressure, the deviatoric stress
rate and the shear modulus, respectively. It follows from (31) that the elastic volumetric
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strain rate ε̇ev depends on both the mean net pressure p′′ and the matric suction pc. Within
the elastic domain the stress point (p′′, e) lies on the unloading-reloading line (URL) with
slope κ. For isotropic plastic conditions it lies on the isotropic compression line (ICL)
with the suction-dependent slope

λ(pc) = λ(0)
[

(1− r) e−β pc + r
]

. (4)

λ(pc) describes the soil stiffness during plastic loading in a hydrostatic test for a given
matric suction pc in terms of the respective stiffness λ(0) at saturated conditions and the
material parameters r and β.

The intersection point of the URL and the ICL is denoted as the preconsolidation
pressure p′′0. The ICL is defined by the slope λ(pc) and the void ratio e = N(pc) − 1 at
p′′ = 1 with N(pc) denoting the respective specific volume. From the volumetric behavior
of the BBM follows

e = N(pc)− 1− λ(pc) ln

(

p′′0
1

)

+ κ ln

(

p′′0
p′′

)

, (5)

from which

p′′0 = exp

(

−N(pc) + 1 + e

κ− λ(pc)

)

p′′
κ

κ−λ(pc) (6)

is obtained. The yield surface is defined as

f = J2 −
M2

3
(p′′ + p′′s) (p

′′
0 − p′′) (7)

with the second invariant of the deviatoric stress tensor J2 = sijsij/2 and

p′′s(p
c) = ksp

c , p′′0 = p′′ref

(

(p′′0)
∗

p′′ref

)

λ(0)−κ

λ(pc)−κ

. (8)

In (7)M defines the slope of the critical state line. p′′s and p′′0 both depend on the matric
suction according to (8). For negative values of p′′ the intersection of the yield surface
(7) with the plane J2 = 0 is given by p′′s according to (81) with the material parameter
ks describing the increase in cohesion due to the matric suction. The preconsolidation
pressure p′′0 and the one for saturated conditions (p′′0)

∗ are located on the so called loading
collapse yield curve (LC curve) according to (82). This curve is the intersection of the
yield surface with the plane J2 = 0 for positive values of p′′. Here, p′′ref serves as a reference
pressure such that for (p′′0)

∗ = p′′ref (82) degenerates to p′′0 = p′′ref = const.
The plastic strain rate is determined from the non-associated flow rule

ε̇pij = γ̇
∂g

∂σ
′′

ij

(9)
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Figure 1: Yield surface of the BBM for different values of the preconsolidation pressure

with the flow potential

g = αJ2 −
M2

3
(p′′ + p′′s) (p

′′
0 − p′′) , (10)

where α is a constant. The hardening law relates the rate of the preconsolidation pressure
at saturated conditions (p′′0)

∗, which serves as the hardening parameter, to the volumetric
plastic strain rate ε̇pv by

(ṗ′′0)
∗ = (p′′0)

∗ 1 + e

λ(0)− κ
ε̇pv . (11)

(11) describes the evolution of the yield surface. The latter is shown for two different
values of (p′′0)

∗ in Fig. 1.

3 AN OPTIMIZED RETURN MAPPING ALGORITHM

For deriving a computationally efficient version of the return mapping algorithm the
flow rule (9) is split into a volumetric and deviatoric part

ε̇pv = γ̇ 3
∂g

∂I ′′1
, ėpij = γ̇

∂g

∂J2

sij . (12)
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Backward Euler integration of (12) yields

∆εpv = γ 3
∂g

∂I ′′1
= ∆εv −∆εev ,

∆epij = γ
∂g

∂J2

sij = ∆eij −∆eeij ,

(13)

where γ = γ̇∆t. Note that quantities with the subscript n refer to the converged values at
the previous time instant tn, whereas all other quantities refer to the values at the current
time instant tn+1. In case of a constant value of G

sij = 2Geeij = 2G
[

(eij − epij,n)− (epij − epij,n)
]

= sTrial
ij − 2G∆epij (14)

follows from (32). Inserting (13) into (14) gives
(

1 + γ
∂g

∂J2
2G

)

sij = sTrial
ij . (15)

The term enclosed by the brackets is a scalar quantity, hence, sij and sTrial
ij differ only by

a scalar factor. Thus, from (15) it follows
(

1 + γ
∂g

∂J2
2G

)2

J2 = JTrial
2 . (16)

Making use of γ = (∆εv −∆εev)/(3∂g/∂I
′′
1 ), resulting from (131), yields

(

3
∂g

∂I ′′1
−

∂g

∂J2
2G(∆εev −∆εv)

)2

J2 −

(

3
∂g

∂I ′′1

)2

JTrial
2 = 0 . (17)

In (17) the incremental volumetric strain ∆εv is known from the current estimate of the
displacement increment at tn+1. J2 and ∆εev in (17) can be replaced by

J2 =
M2

3
(p′′ + p′′s) (p

′′
0 − p′′) (18)

and

∆εev =
κ

1 + e
ln

(

p′′

p′′n

)

+
κs

1 + e
ln

(

pc + patm
pcn + patm

)

(19)

following from (7) and from integration of the rate constitutive equation (31). The rate
of the void ratio is given by

ė = −(1 + e) ε̇v . (20)

Integration of (20) yields the value of the void ratio at tn+1

e = (1 + en) exp(−∆εv)− 1 . (21)

(17) together with (18), (19), (21) and (6) represents a nonlinear scalar equation for the
unknown I ′′1 (or p′′ = I ′′1 /3), which can be solved, e.g., by the Newton method. Once p′′

has been determined from this equation, it is inserted into (6), yielding p′′0, and the latter
into the recast form of (82) yielding the hardening parameter (p′′0)

∗.
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4 COMPARISON OF DIFFERENT STRESS UPDATE ALGORITHMS

To investigate the performance of the proposed stress update algorithm, the following
stress update algorithms are considered in the subsequent comparative study:

(a) an explicit stress update algorithm, characterized by forward integration of the
constitutive rate equation

σ̇ = Cepε̇+Cpc,epṗc (22)

with Cep = ∂σ/∂ε and Cpc,ep = ∂σ/∂pc denoting the constitutive tangent opera-
tors, which is combined with adaptive sub-stepping and error control based on the
Richardson extrapolation method;

(b) a general return mapping algorithm [13], characterized by backward Euler integra-
tion of the rate equations for the plastic strains (9) and the hardening variable (11)
and by enforcing the condition f = 0 for the yield function (7) at tn+1, which requires
solving a system of nonlinear equations, consisting of the consistency parameter, the
net stress and the hardening variable;

(c) the optimized return mapping algorithm described in section 3 and [6] respectively;

(d) a semi-explicit stress update algorithm [10], characterized by explicit integration of
the rate equations for the plastic strains (9) and the hardening variable (11) and
by enforcing the condition f = 0 for the yield function (7) at tn+1 for determining
the consistency parameter, which is combined with adaptive sub-stepping and error
control based on the Richardson extrapolation method;

(e) the implicit fifth-order Runge–Kutta integration algorithm with error control RADAU5,
proposed in [4].

A comparison of the investigated stress update algorithms with respect to the accuracy
is performed on the basis of two different sets of material parameters for the BBM, pro-
vided in [1]. To this end, the error of the stresses computed for prescribed combinations
of volumetric and deviatoric strain increments are considered. The error is defined as a
relative error, related to the ”exact” value for the respective stress component computed
by the RADAU5 algorithm [4] prescribing an extremely small error tolerance of 10−10.

Fig. 2 shows a comparison of the integration errors obtained by means of the general
return mapping algorithm and the optimized return mapping algorithm for the relatively
large range of strain increments ranging from 0 up to 3%. A particular point of the
diagrams shown in Fig. 2 indicates the error of a single step stress update for a particular
combination of volumetric and deviatoric strain increment (εv, εs). E.g., the point (εv =
2%, εs = 3%) represents the integration error for the strain increment ∆εv = 0.02 and
∆εs = 0.03, obtained by a single step backward Euler integration. According to Fig. 2
the integration errors for the investigated strain increments reach up to 40%. Contrary
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Figure 2: Integration errors for the general return mapping algorithm (left) and the optimized return
mapping algorithm (right)

to the general return mapping algorithm the optimized return mapping algorithm gives
the exact solution for hydrostatic strain paths due to the analytical integration of the
hardening law. Because of the large integration errors, similar to the explicit and semi-
explicit stress update algorithm, the return mapping algorithms are also enhanced by
adaptive sub-stepping and error control.

For the investigation of the efficiency of the considered stress update algorithms the
stresses were computed for 25 combinations of volumetric and deviatoric strain increments
of 0.5%, 0.75%, 1.0%, 1.25% and 1.5% for prescribed maximum values of the integration
error, ranging from 10−1 to 10−10. The mean values of the number of required instructions
are shown in the diagrams of Fig. 3 for the resulting mean values of the computed errors.

It follows from Fig. 3 that for a prescribed error tolerance the optimized return mapping
algorithm is by far more efficient than the general return mapping algorithm and it is
even more efficient than the explicit integration method. The RADAU5 algorithm is very
efficient for very small prescribed values of error tolerances.

5 APPLICATION TO A COUPLED FINITE ELEMENT ANALYSIS

The application of the developed optimized return mapping algorithm is demonstrated
by a coupled solid-fluid Finite Element analysis of the water flow through a homogeneous
earth dam. The cross section of the homogeneous earth dam is shown in Fig. 4, the
employed hydraulic parameters and material parameters are reported in [11, 12]. A rigid
foundation of the dam is assumed by constraining the displacements on the bottom of the
dam. For the undrained part of the base an impermeable boundary is assumed, whereas
for the drained part a permeable boundary is considered by applying a mass flux with a
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Figure 3: Work precision diagrams for two sets of material parameters: (a) explicit stress update, (b) gen-
eral return mapping algorithm, (c) optimized return mapping algorithm, (d) semi-explicit stress update
algorithm, (e) implicit fifth-order Runge–Kutta algorithm

pressure dependent velocity

vn = ksc p
w for pw > 0,

vn = 0 for pw ≤ 0, (23)

with pw denoting the water pressure at the boundary and ksc is a sufficiently large seepage
coefficient to approximately enforce the requirement of a zero water pressure for a freely
draining surface. Similar boundary conditions for the fluid phase are applied at the free
surfaces, i.e. at the upstream slope above the water level, the crest and the downstream
slope.

Figure 4: Cross section of the homogeneous earth dam
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Figure 5: Distribution of matric suction for selected time instants from top to bottom: (a) t = 20 d, (b)
t = 60 d, (c) t = 310 d, (d) t = 800 d
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Figure 6: Distribution of the volumetric strain for selected time instants: t = 20 d, t = 60 d, t = 310 d,
t = 800 d

In the first step of the numerical analysis a constant matric suction of 100 kPa, corre-
sponding to an initial degree of water saturation of Sw = 0.729, is assumed for the dam
body and the primary stresses due to dead load are computed presuming elastic response.
In the second step the net stresses, the void ratio and matric suction, computed in the
first step, are taken as initial values, whereas the displacements are set equal to zero and
matric suction at the upstream boundary is reduced to zero by specifying the respective
boundary conditions. In the subsequent steps of the analysis the transient seepage flow
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Figure 7: Vertical displacements for selected points of time from top to bottom: (a) t = 20 d, (b) t =
60 d, (c) t = 310 d, (d) t = 800 d

due to a water table of H = 10 m is computed until steady state conditions are attained.
Figure 5 shows the distribution of matric suction for selected time instants. Negative

values of matric suction represent values of the water pressure in fully water saturated
regions. 20 days after impoundment only a small region close to the upstream slope is af-
fected by the water flow. With advancing time the water saturated domain is propagating
until steady state conditions are attained.

The distribution of the volumetric strain with advancing saturation front is shown in
Fig. 6. Volumetric compaction, indicated by positive values of the volumetric strain,
occurs in the lower central region and in the downstream regions which are characterized
by partial saturation. The computed distribution of the vertical displacements of the
soil skeleton (negative values denote settlements) is shown in Figure 7. Shortly after the
impoundment settlements in the vicinity of the upstream face of the dam occur, whereas
at later stages uplifting is predicted in this region. By contrast, in the upper central
region of the dam, the settlements increase with advancing saturation front.

6 CONCLUSIONS

In this paper an optimized return mapping algorithm was proposed, which is character-
ized by analytical integration of the hardening law and by solving only a nonlinear scalar
equation at the integration point level. To investigate the performance of the developed
algorithm, several stress update algorithms were compared with respect to accuracy and
efficiency: (a) an explicit stress update algorithm, (b) a general return mapping algo-
rithm, (c) the proposed optimized return mapping algorithm, (d) a semi-explicit stress
update algorithm, and (e) an implicit fifth-order Runge-Kutta stress update algorithm.
Large integration errors were encountered for the return mapping algorithms when larger
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strain increments were integrated in one step. Hence, similar to the explicit and semi-
explicit stress update algorithm, they were enhanced by adaptive sub-stepping and error
control. It was shown that for a prescribed error threshold value the optimized return
mapping algorithm is by far more efficient than the general return mapping algorithm
and it is even more efficient than the explicit integration method. Finally, to demonstrate
the robustness and efficiency of the proposed algorithm within a Finite Element context,
a simplified 2D coupled transient numerical simulation of the behavior of an embankment
dam due to impoundment was performed.
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