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In this note we propose the Moore-Gibson-Thompson heat conduction equation with two temperatures and prove 

the well posedness and the exponential decay of the solutions under suitable conditions on the constitutive param- 

eters. Later we consider the extension to the Moore-Gibson-Thompson thermoelasticity with two temperatures 

and prove that we cannot expect for the exponential stability even in the one-dimensional case. This last result 

contrasts with the one obtained for the Moore-Gibson-Thompson thermoelasticity where the exponential decay 

was obtained. However we prove the polynomial decay of the solutions. The paper concludes by giving the main 

ideas to extend the theory for inhomogeneous and anisotropic materials. 
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. Introduction 

The Fourier formulation to describe heat conduction is widely used
y scientists. In this situation, the heat flux vector is proportional to the
radient of the temperature. However, the combination of this proposi-
ion with the energy equation 

 𝜃̇ + div 𝐪 = 0 , ( 𝑐 > 0) (1)

redicts the instantaneous propagation of heat 1 . That means that every
hermal perturbation is instantaneously felt at any point of the material
egardless of the distance. This phenomenon is not well accepted from
he physical point of view because it contradicts the causality principle .
n order to overcome this drawback, several alternative proposals have
een stated. In this sense we can recall the one proposed by Tzou where
he heat flux and the gradient of the temperature have a delay in the
onstitutive equation ( Tzou, 1995 ). In this case it is usual to speak of
hase-lag theories . The constitutive equation is given by: 

 𝑖 ( 𝐱, 𝑡 + 𝜏1 ) = − 𝑘𝜃,𝑖 ( 𝐱, 𝑡 + 𝜏2 ) , 𝑘 > 0 , (2)

here 𝜏1 and 𝜏2 are the delay parameters which are assumed to be
ositive. The notation 𝜃, i means the derivative of 𝜃 with respect to the
ariable x i , and from now on the repeated subscripts mean summation.
he derivative with respect to the time is denoted using a dot over the
unction. This formulation suggests that the temperature gradient estab-
ished across a material volume at position x and time 𝑡 + 𝜏2 results in
 heat flux to flow at a different time 𝑡 + 𝜏1 . These delays are usually
nderstood in terms of the microstructure of the material. 

Choudhuri (2007) suggested a generalization of Tzou’s theory where
he heat flux vector is assumed to be in the form: 

 𝑖 ( 𝐱, 𝑡 + 𝜏1 ) = − 𝑘 1 𝛼,𝑖 ( 𝐱, 𝑡 + 𝜏3 ) − 𝑘 2 𝜃,𝑖 ( 𝐱, 𝑡 + 𝜏2 ) , (3)
E-mail address: ramon.quintanilla@upc.edu 
1 In the above equation 𝐪 = ( 𝑞 𝑖 ) is the heat flux vector and 𝜃 is the temperature. 
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here 𝛼̇ = 𝜃. The variable 𝛼 is called the thermal displacement , and was
sed by Green and Naghdi to propose their theories ( Green and Naghdi,
992; 1993 ). The new parameter 𝜏3 is again a delay parameter. Choud-
uri’s proposition is known as three-dual-phase-lag. 

These two proposals have different derivations when the heat flux
nd the gradients of the temperature are approximated by the Taylor
olynomials and one thinks that the proposal of Choudhuri tries to
ecover Green and Naghdi theories when different Taylor approxima-
ions are considered. This new approach gives rise to different equa-
ions (depending on the selected Taylor polynomial) to describe heat
onduction that have been analyzed by many authors (see, for exam-
le, Abdallah, 2009; Borgmeyer et al., 2014; Hader et al., 2002; Mi-
anville and Quintanilla, 2011; Quintanilla, 2002; Quintanilla, 2003;
uintanilla and Racke, 2006a; Quintanilla and Racke, 2006b; Quin-

anilla and Racke, 2007; Quintanilla and Racke, 2008; Quintanilla and
acke, 2015; Rukolaine, 2014; Zhang, 2009 ). 

Unfortunately both proposals (Tzou and Choudhuri), lead to ill-posed

roblems in the sense of Hadamard. It has been shown that combining
qs. (2) (or (3) ) with the energy Eq. (1) leads to the existence of a se-
uence of elements in the point spectrum such that its real part tends to
nfinity ( Dreher et al., 2009 ) and therefore the continuous dependence
f solutions fails. 

To obtain a heat conduction theory with delays but without such an
xplosive behavior, Quintanilla (2008, 2009) combined the delay pa-
ameters of Tzou and Choudhuri with the two-temperatures theory pro-
osed by Chen and Gurtin (1968) , Chen et al. (1968, 1969) , Warren and
hen (1973) . The constitutive equation reads 

 𝑖 ( 𝐱, 𝑡 + 𝜏1 ) = − 𝑘 1 𝛽,𝑖 ( 𝐱, 𝑡 + 𝜏3 ) − 𝑘 2 𝑇 ,𝑖 ( 𝐱, 𝑡 + 𝜏2 ) , (4)

here 𝛼 = 𝛽 − 𝑎 Δ𝛽, 𝜃 = 𝑇 − 𝑎 Δ𝑇 and a is a positive constant.
n fact, this theory was extended to the thermoelastic context
020 
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 Quintanilla, 2008; 2009 ). To do so, one must assume the equation of
otion 

 𝑗𝑖,𝑗 = 𝜌𝑢̈ 𝑖 , (5)

he energy equation 

 

∗ 
0 𝜂̇ = − 𝑞 𝑖,𝑖 (6)

nd the constitutive equations 

 𝑗𝑖 = 2 𝜇𝑒 𝑖𝑗 + 𝜆𝑒 𝑟𝑟 𝛿𝑖𝑗 + 𝛽∗ 𝜃𝛿𝑖𝑗 
= − 𝛽∗ 𝑒 𝑖𝑖 + 𝑐𝜃

(7) 

here t ji represents the stress tensor, 𝜂 is the entropy, ( u i ) is the displace-
ent vector, e ij is the strain tensor, 𝜆 and 𝜇 are the Lamé constants, 𝑇 ∗ 0 

s the uniform reference temperature, and 𝛽∗ is related with the thermal
xpansion constant and 𝜌 and c are the mass density and the thermal
apacity, respectively. 

These new theories are currently under deep study ( Banik and Kano-
ia, 2012; Ezzat et al., 2012; Leseduarte et al., 2017; Magaña et al., 2018;
019; Mukhopadhyay et al., 2011; Quintanilla and Jordan, 2009 ). 

If 𝜏2 = 𝜏3 < 𝜏1 in equation ( 3 ) and the heat flux vector is approxi-
ated by 2 

 𝑖 ( 𝐱, 𝑡 + 𝜏∗ ) ≈ 𝑞 𝑖 ( 𝐱, 𝑡 ) + 𝜏∗ 𝑞̇ 𝑖 ( 𝐱, 𝑡 ) , 𝜏∗ = 𝜏1 − 𝜏2 , 

ne obtains the thermal formulation of the Moore-Gibson-Thompson
quation ( Quintanilla, 2019 ) 3 (see also Conti et al., 2020 , Conti
t al.,Pellicer and Quintanilla, 2020 ). This equation has received a lot
f attention in the last years (see among others Conejero et al., 2015;
ell’Oro et al., 2016; Dell’Oro and Pata, 2017; Kaltenbacher et al., 2011;
asiecka and Wang, 2015; Pellicer and Said-Houari, 2017; Pellicer and
ola-Morales, 2019 ). 

Therefore it is also natural to consider the equation obtained in a sim-
lar way, but in the case that we consider the Eq. (4) instead of Eq. (3) .

e note that in this case we obtain the equation 

𝑐 
⋯ 

𝛼 + 𝑐 ̈𝛼 = 𝑘 ∗ Δ𝛽 + 𝑘 Δ𝑇 . (8)

ne thinks that it is suitable to denominate to this equation as Moore-
ibson-Thompson with two temperatures (in short MGT+2TT). 

The aim of this paper is double. First we want to study the stabil-
ty/instability of the solutions to this equation. Second we will consider
he thermoelastic one-dimensional problem. Therefore, the system of
quations that we want to study is given by 

 𝑥 = 𝜌𝑢̈ 

 

∗ 
0 𝜂̇ = − 𝑞 𝑥 

(9) 

ith the following constitutive equations: 

 = 𝜇𝑢 𝑥 + 𝛽∗ 𝜃

= − 𝛽∗ 𝑢 𝑥 + 𝑐𝜃
(10) 

nd we will prove the stability of solutions, the slow decay and the
olynomial decay. 

The results proposed in this paper have a theoretical aspect, but they
re relevant from the physical and the engineering point of view. We fo-
us our attention to prove the well-posedness of problems as well as to
btain the rate of decay of the solutions of them. The term well posed

roblem comes from the definition of Jacques Hadamard (1865–1963)
hat believed that mathematical models for the description of physical
henomena should satisfy the existence and uniqueness of solutions and
he continuous dependence with respect to the initial data. When a prob-
em is not well posed in the sense of Hadamard the solutions are highly
ensitive to changes. Small changes in the data of the problem provoke
2 From now on we omit the star. 
3 This procedure is equivalent to introduce a relaxation parameter for the type 

II heat equation extending the Cattaneo-Maxwell proposition for the Fourier 

aw. Details can be found in Quintanilla (2019) 

∫
 

c  

𝛼  
elevant differences in the behaviour of the solutions. In particular the
umerical instabilities occur. Therefore well-posedness is a needed step
o investigate numerical aspects in the analysis of a problem. On the
ther side the rate of decay of the solutions also plays a relevant rol
rom the engineering point of view. The damping of the system deter-
ines when we can despise the effects of a perturbation. For instance
hen the rate of decay is fast (exponential) the vibrations become very

mall after a short period of time and the consequences of the pertur-
ation have a negligible impact. However, when the rate of decay is
low the vibrations can be noted for a large period of time and we can-
ot despise the effects before a very large period of time. Therefore we
hoose here two examples to illustrate this aspect. They correspond to
he heat conduction of Moore-Gibson-Thompson with two temperatures
nd the one-dimensional thermoelasticity when the heat conduction is
escribed by the same heat equation. 

In the next section we obtain the suitable conditions on the consti-
utive parameters to guarantee the stability/instability of the solutions.
n fact, we see that the decay for the case of the MGT+2TT heat equa-
ion is controlled by an exponential. Later we show the stability of the
ystem of the MGT+2TT thermoelasticity, but we prove that in the one-
imensional case the decay is not controlled by an exponential. This last
esult is in contrast with the case of the MGT thermoelasticity. However
e show the polynomial decay. The paper concludes by giving the main

deas to extend the theory for inhomogeneous and anisotropic materials.
It is worth saying that the existence and the exponential decay of the

olutions of the purely thermal problem can be obtained from the ref-
rence ( Kaltenbacher et al., 2011 ) in their study from an abstract point
f view of the Moore-Gibson-Thompson equation. However, we believe
hat it is suitable to present our approach because we emphasize the
orm of the operators and the dissipation. Our proposition with respect
he heat equation is an alternative approach to the problem. Further-
ore, with the help of the approach to the heat equation problem the

hermoelastic problem is easy. 

. Thermal problem 

We consider equation (8) in a three-dimensional domain B whose
oundary is smooth enough to apply the divergence theorem. To have
 well-posed problem we need to introduce the initial conditions: 

( 𝐱, 0) = 𝛽0 ( 𝐱) , 𝛽̇( 𝐱, 0) = 𝑇 0 ( 𝐱) , 𝛽( 𝐱, 0) = 𝜓 0 ( 𝐱) , 𝐱 ∈ 𝐵, (11)

nd the homogeneous Dirichlet boundary conditions 

( 𝐱, 𝑡 ) = 0 , 𝐱 ∈ 𝜕 𝐵 . (12)

From now on, we assume that the constitutive constants satisfy: 

(i) c > 0, 𝜏 > 0, k > 0, k ∗ > 0. 
(ii) k > k ∗ 𝜏. 

The meaning of the positivity of c is clear. Assumptions (i) on k and
 

∗ are the natural ones and they are related with the stability of solutions
or type II/III theories. Also the positivity of 𝜏 is a standard requirement.
ondition (ii) is usual in the study of the MGT equation to guarantee the
tability of the solutions. We see here that this condition also works for
he MGT+2TT. 

From the definition of 𝛼, it is clear that 

𝐵 

𝛼2 𝑑𝑉 = ∫𝐵 
(
𝛽2 + 2 𝑎 |∇ 𝛽|2 + 𝑎 2 |Δ𝛽|2 )𝑑𝑉 

hen we assume null Dirichlet boundary conditions. Therefore, taking
nto account the Poincaré inequality, we have 

𝐵 

𝛼2 𝑑𝑉 ≈ ∫𝐵 ( |∇ 𝛽|2 + 𝑎 |Δ𝛽|2 ) 𝑑𝑉 . 
We will transform our problem into an abstract problem involving a

onvenient Hilbert space. First, we note that 𝐼𝑑 − 𝑎 Δ ∶ 𝛽 → 𝛽 − 𝑎 Δ𝛽 =
is an isomorphism on 𝑊 

2 , 2 ( 𝐵) ∩𝑊 

1 , 2 
0 ( 𝐵) and takes values in L 2 ( B ),
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2 , 2 ( 𝐵) , 𝑊 

1 , 2 
0 ( 𝐵) and L 2 ( B ) are the usual Hilbert spaces. We shall

enote by Φ( 𝛼) = 𝛽 the inverse operator. Therefore, the L 2 norm of 𝛼 is
quivalent to the W 

2,2 norm of 𝛽. 
We work in the Hilbert space 

 = 𝐿 

2 ( 𝐵) × 𝐿 

2 ( 𝐵) × 𝐿 

2 ( 𝐵) . (13)

To propose a synthetic expression to the above problem, we define
he following operators: 

 

∗ ( 𝛼) = 

𝑘 ∗ 

𝑐𝜏
ΔΦ( 𝛼) , 𝐵 ∗ ( 𝜃) = 

𝑘 

𝑐𝜏
ΔΦ( 𝜃) , 𝐶( 𝜙) = − 

1 
𝜏
𝜙. (14)

ence, our problem can be written as 

𝑑𝑈 

𝑑𝑡 
=  𝑈 , 𝑈 (0) = ( 𝛼0 , 𝜃0 , 𝜙0 ) , (15)

here 𝛼0 = 𝛽0 − 𝑎 Δ𝛽0 , 𝜃0 = 𝑇 0 − 𝑎 Δ𝑇 0 , 𝜙0 = 𝜓 0 − 𝑎 Δ𝜓 0 and 

 = 

⎛ ⎜ ⎜ ⎝ 
0 𝐼𝑑 0 
0 0 𝐼𝑑 

𝐴 

∗ 𝐵 ∗ 𝐶 

⎞ ⎟ ⎟ ⎠ . 
e will prove that  generates a contractive semigroup. We first note

hat the domain  of  agrees with the Hilbert space and then it is
ense. 

We consider the following inner product in 
𝑈, 𝑉 ⟩
= 

1 
2 ∫𝐵 

(
𝑐( 𝜃 + 𝜏𝜙)( 𝜃∗ + 𝜏𝜙∗ ) + 𝑘 ∗ ( 𝛽,𝑖 + 𝜏𝑇 ,𝑖 ) ( 𝛾∗ ,𝑖 + 𝜏𝑇 ∗ 

,𝑖 
) + 𝜏𝐾𝑇 ,𝑖 𝑇 

∗ 
,𝑖 

)
𝑑𝑣 

+ 

1 
2 ∫𝐵 

(
𝑘 ∗ 𝑎 ( 𝛽,𝑖𝑖 + 𝜏𝑇 ,𝑖𝑖 ) ( 𝛾∗ ,𝑗𝑗 + 𝜏𝑇 ∗ 

,𝑗𝑗 
) + 𝜏𝑎𝐾𝑇 ,𝑖𝑖 𝑇 

∗ 
,𝑗𝑗 

)
𝑑𝑣, (16) 

here here and from now on we denote 𝐾 = 𝑘 − 𝜏𝑘 ∗ , 𝑈 = ( 𝛼, 𝜃, 𝜙) and
 = ( 𝛼∗ , 𝜃∗ , 𝜙∗ ) where 𝛼 = 𝛽 − 𝑎 Δ𝛽, 𝛼∗ = 𝛾∗ − 𝑎 Δ𝛾∗ , 𝜃 = 𝑇 − 𝑎 Δ𝑇 , 𝜃∗ =
 

∗ − 𝑎 Δ𝑇 ∗ and the bar means the conjugated complex. It is worth noting
hat this inner product defines a norm which is equivalent to the usual
ne in the Hilbert space. 

emma 2.1. The following inequality 

e ⟨ 𝑈 , 𝑈 ⟩ ≤ 0 , (17)

s satisfied for every 𝑈 ∈  . 

roof. Straight calculations give 

e ⟨ 𝑈 , 𝑈 ⟩ = − 

𝐾 

2 ∫𝐵 ( 𝑇 ,𝑖 𝑇 ,𝑖 + 𝑎𝑇 ,𝑖𝑖 𝑇 ,𝑗𝑗 ) 𝑑𝑣 (18)

n view of the condition (ii) the lemma is proved. □

emma 2.2. Zero belongs to the resolvent of the operator  . In short 0 ∈
(  ) . 

roof. let ( 𝑓 1 , 𝑓 2 , 𝑓 3 ) ∈ . We must prove that the system 

= 𝑓 1 , 𝜙 = 𝑓 2 , 𝐴 

∗ 𝛼 + 𝐵 ∗ 𝜃 + 𝐶𝜙 = 𝑓 3 , 

as a solution. After substitution we obtain the equation: 

 

∗ 𝛼 = 𝑓 3 − 𝐵 ∗ 𝑓 1 − 𝐶𝑓 2 . 

e first note that the right hand side of this equation is in L 2 ( B ). As the
perators B 

∗ , C are bounded and − 𝐴 

∗ is bounded and coercive in L 2 this
quation has a solution. Then, the lemma is proved. □

In view of the Lumer-Phillips corollary to the Hille-Yosida theorem
e have: 

heorem 2.3. The operator  generates a contractive semigroup. 

A consequence of the previous theorem is the following result: 

heorem 2.4. For any 𝑈 (0) ∈ , there exists a unique solution to our prob-

em such that 𝑈 ( 𝑡 ) ∈ 𝐶 1 ([0 , 𝑡 1 ] ,  ) . 

Moreover, we know that the continuous dependence of solutions on
nitial data and supply terms (in case they were assumed) could also
een obtained. Therefore our problem is well posed in the sense of
adamard. Even more, the solutions are stable in the sense that the
nergy of the system does not increase. 

The spectral analysis of the equation may give some information on
he behavior of the solutions with respect to the time. In fact, we have
he following: 

emark 2.5. We have assumed that (ii) holds. If we do impose that this
ssumption holds we can obtain the instability of solutions. In fact, let us
ssume that there are solutions of the form 𝛽( 𝐱, 𝑡 ) = exp ( 𝜔𝑡 ) 𝜂𝑛 ( 𝐱) where

n ( x ) is an eigenfunction of the Laplace operator with null boundary
onditions. We see that 𝜔 will satisfy the equation 

𝑐(1 + 𝜆𝑛 𝑎 ) 𝑥 3 + 𝑐(1 + 𝜆𝑛 𝑎 ) 𝑥 2 + 𝑘𝜆𝑛 𝑥 + 𝑘 ∗ 𝜆𝑛 = 0 . 

y the Hurwitz rule the necessary and sufficient condition to guaran-
ee that the solutions of this equation are on the left hand side of the
omplex plane is that the coefficients are positive and that 

𝑐(1 + 𝜆𝑛 𝑎 ) 𝑘 ∗ 𝜆𝑛 < 𝑐(1 + 𝜆𝑛 𝑎 ) 𝑘𝜆𝑛 . 

ut this is equivalent to assume (ii). Therefore if (ii) fails to be true there
xist elements at the point spectrum which are on the right hand side of
he complex plane and the instability of solutions is proved. 

Now, we will show the exponential decay of the solutions for our
roblem when (ii) holds. 

To prove the exponential decay, we recall the characterization stated
n the book of Liu and Zheng (1999) . 

heorem 2.6. Let 𝑆( 𝑡 ) = { 𝑒  𝑡 } 𝑡 ≥ 0 be a C 0 -semigroup of contractions on a

ilbert space. Then S ( t ) is exponentially stable if and only if the following

wo conditions are satisfied: 

( i ) 𝑖 ℝ ⊂ 𝜌(  ) , 
 ii ) lim |𝜆|→∞

‖( 𝑖𝜆 −  ) −1 ‖ ( ) < ∞. 

emma 2.7. The operator  satisfies 𝑖 ℝ ⊂ 𝜌(  ) . 

roof. We here follow the arguments given in the book of ( Liu and
heng (1999) , page 25). Let us assume that the intersection of the imag-
nary axis and the spectrum is non-empty. Therefore, there exist a se-
uence of real numbers 𝜆n with 𝜆n →ϖ, | 𝜆n | < | ϖ| and a sequence of
ectors 𝑈 𝑛 = ( 𝛼𝑛 , 𝜃𝑛 , 𝜙𝑛 ) in  (  ) and with unit norm such that 

( 𝑖𝜆𝑛  −  ) 𝑈 𝑛 ‖ → 0 . (19)

In our case, writing this condition term by term we get 

𝜆𝑛 𝛼𝑛 − 𝜃𝑛 → 0 in 𝐿 

2 , (20)

𝜆𝑛 𝜃𝑛 − 𝜙𝑛 → 0 in 𝐿 

2 , (21)

𝜆𝑛 𝜙𝑛 − 𝐴 

∗ 𝛼𝑛 − 𝐵 ∗ 𝜃𝑛 − 𝐶𝜙𝑛 → 0 in 𝐿 

2 . (22)

In view of the dissipative term for the operator, we see that 

𝑛 → 0 in 𝐿 

2 . (23) 

rom (20) we also see that 𝛼n →0 in L 2 . 
We now want to see that 𝜙n tends to zero in L 2 . To this end we

ultiply (21) by 𝜙n to see that 

 ⟨𝜃𝑛 , 𝜆𝑛 𝜙𝑛 ⟩ − ||𝜙𝑛 ||2 → 0 . (24)

The convergence of 𝜙n will be guaranteed whenever we show that
𝜃n , 𝜆n 𝜙n ⟩→0. From (22) we see 

𝑐𝜏⟨𝜃𝑛 , 𝜆𝑛 𝜙𝑛 ⟩ = ⟨𝜃𝑛 , 𝐴 

∗ 𝛼𝑛 + 𝐵 ∗ 𝜃𝑛 + 𝐶𝜙𝑛 ⟩ (25)

e see that the right hand side tends to zero because A 

∗ , B 

∗ and C are
ounded. Therefore the convergence of 𝜙n to zero follows in L 2 . Then
e arrive to a contradiction and the lemma is proved. □
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emma 2.8. The operator  satisfies 

im |→∞
‖( 𝑖𝜆 −  ) −1 ‖ ( ) < ∞. 

roof. The proof also follows a contradiction argument. Suppose that
he thesis is not true. Therefore there exist a sequence of real numbers

n such that | 𝜆n | →∞ and a sequence of unit vectors in  (  ) in such
 way that (19) holds. Again, conditions (20) –(22) still hold. Now we
an use a similar argument to the one used in the proof of the previous
emma because the key point is that 𝜆n does no tend to zero. □

The two previous lemmas give rise to the following result. 

heorem 2.9. The C 0 -semigroup 𝑆( 𝑡 ) = { 𝑒  𝑡 } 𝑡 ≥ 0 is exponentially stable.

hat is, there exist two positive constants M and 𝛼 such that ‖𝑆( 𝑡 ) 𝑈‖ ≤‖𝑈‖𝑒 − 𝛼𝑡 . 
roof. The proof is a direct consequence of the two previous Lemmas
nd the Theorem 2.6 . □

. One dimensional thermoelastic theory 

We consider now the three-dimensional isotropic and homogeneous
hermoelastic materials. In this situation the field equations become 4 

𝑢̈ 𝑖 = 𝜇𝑢 𝑖,𝑗𝑗 + ( 𝜆 + 𝜇) 𝑢 𝑗 ,𝑗 𝑖 + 𝛽∗ 𝜃,𝑖 (26)

 ̈𝛼 + 𝑐𝜏𝛼 = 𝛽∗ ( ̇𝑢 𝑖,𝑖 + 𝜏𝑢̈ 𝑖,𝑖 ) + 𝑘𝑇 ,𝑗𝑗 + 𝑘 ∗ 𝛽,𝑗𝑗 (27)

t is not difficult to prove the existence and uniqueness of solutions under
omogeneous Dirichlet boundary conditions by adapting the semigroup
rguments to this new situation. In fact if we define the energy of the
ystem 

( 𝑡 ) = 

1 
2 ∫𝐵 

(
𝜌 ̇̂𝑢 𝑖 

̇̂𝑢 𝑖 + 𝜇𝑢̂ 𝑖,𝑗 ̂𝑢 𝑖,𝑗 + ( 𝜆 + 𝜇) ̂𝑢 𝑖,𝑖 ̂𝑢 𝑗,𝑗 
)
𝑑𝑣 

+ 

1 
2 ∫𝐵 

(
𝑐( 𝜃 + 𝜏𝜙) 2 + 𝑘 ∗ ( 𝛽,𝑖 + 𝜏𝑇 ,𝑖 ) ( 𝛽,𝑖 + 𝜏𝑇 ,𝑖 ) + 𝜏𝐾𝑇 ,𝑖 𝑇 ,𝑖 

)
𝑑𝑣 

+ 

1 
2 ∫𝐵 

(
( 𝑎𝑘 ∗ ( 𝛽,𝑖𝑖 + 𝜏𝑇 ,𝑖𝑖 ) 2 + 𝜏𝑎𝐾( 𝑇 ,𝑖𝑖 ) 2 

)
𝑑𝑣, (28) 

here 𝑓 = 𝑓 + 𝜏 ̇𝑓 , we obtain that 

( 𝑡 ) + 𝐹 ( 𝑡 ) = 𝐸(0) , (29)

here 

 ( 𝑡 ) = ∫
𝑡 

0 ∫𝐵 𝐾( 𝑇 ,𝑖 𝑇 ,𝑖 + 𝑎𝑇 ,𝑖𝑖 𝑇 ,𝑗𝑗 ) 𝑑𝑣. (30)

herefore if we assume that 𝜌, 𝜇 and 𝜆 + 𝜇 are positive, we obtain the
tability of the solutions of the system. However we cannot expect ex-
onential decay of solutions for this problem. To show this claim we
oncentrate our attention to the one-dimensional problem. That is, we
onsider the system 

𝑢̈ = 𝜇𝑢 𝑥𝑥 + 𝛽∗ ( ̇𝛼𝑥 + 𝜏𝛼̈𝑥 ) (31)

 ̈𝛼 + 𝑐𝜏
⋯ 

𝛼= 𝛽∗ 𝑢̇ 𝑥 + 𝑘𝑇 𝑥𝑥 + 𝑘 ∗ 𝛽𝑥𝑥 , (32)

here we have drop the hats to simplify the notation. 
We consider these equations in the interval [0, 𝜋] and assuming ho-

ogeneous Dirichlet boundary conditions for the displacement and ho-
ogeneous Neumann boundary conditions for 𝛽. We could find solu-

ions of the form 

 = 𝐴 exp ( 𝜔𝑡 ) sin 𝑛𝑥, 𝛽 = 𝐵 exp ( 𝜔𝑡 ) cos 𝑛𝑥, (33)

henever 

 ( 𝜌𝜔 2 + 𝜇𝑛 2 ) − 𝐵(1 + 𝑛 2 𝑎 ) 𝛽∗ 𝜔 (1 + 𝜏𝜔 ) = 0 , (34)
4 From now on we assume that 𝑇 ∗ 0 = 1 to simplify the calculations. 

w  

a  
nd 

𝛽∗ 𝑛𝜔 + 𝐵 
[
𝑐(1 + 𝑛 2 𝑎 ) 𝜔 2 (1 + 𝜏𝜔 ) + 𝑛 2 ( 𝑘𝜔 + 𝑘 ∗ ) 

]
= 0 . (35)

o guarantee the existence of nontrivial solutions we need to impose
hat 

 𝜌𝜔 2 + 𝜇𝑛 2 ) 
[
𝑐(1 + 𝑛 2 𝑎 ) 𝜔 2 (1 + 𝜏𝜔 ) + 𝑛 2 ( 𝑘𝜔 + 𝑘 ∗ ) 

]
+ ( 𝛽∗ ) 2 𝑛𝜔 (1 + 𝑛 2 𝑎 ) 𝜔 (1 + 𝜏𝜔 ) = 0 . (36) 

e can write 

 

5 + 𝑝 1 𝜔 
4 + 𝑝 2 𝜔 

3 + 𝑝 3 𝜔 
2 + 𝑝 4 𝜔 + 𝑝 5 = 0 , (37)

here 

 1 = 𝜏−1 , 𝑝 2 = 

𝜇𝑛 2 

𝜌
+ 

( 𝛽∗ ) 2 𝑛 
𝜌𝑐 

+ 

𝑘𝑛 2 

𝑐𝜏(1 + 𝑛 2 𝑎 ) 
(38)

 3 = 

𝜇𝑛 2 

𝜌𝜏
+ 

( 𝛽∗ ) 2 𝑛 
𝜌𝑐𝜏

+ 

𝑘 ∗ 𝑛 2 

𝑐𝜏(1 + 𝑛 2 𝑎 ) 
, (39)

 4 = 

𝜇𝑘𝑛 4 

𝜌𝑐𝜏(1 + 𝑛 2 𝑎 ) 
, 𝑝 5 = 

𝜇𝑘 ∗ 𝑛 4 

𝜌𝑐𝜏(1 + 𝑛 2 𝑎 ) 
(40)

e want to see that there are solutions to the equation 𝑝 ( 𝜔 ) = 0 as near
s we want to the imaginary axis. This fact will be shown if the poly-
omial 𝑝 ( 𝜔 − 𝜖) has a root with positive real part for every 𝜖 as small as
e want, but positive. 

We have the polynomial 

 

5 + 𝑞 1 𝑥 
4 + 𝑞 2 𝑥 

3 + 𝑞 3 𝑥 
2 + 𝑞 4 𝑥 + 𝑞 5 , 

here 

 1 = 𝑝 1 − 5 𝜖, 𝑞 2 = 𝑝 2 + 10 𝜖2 − 4 𝜖𝑝 1 

 3 = 𝑝 3 − 10 𝜖3 + 6 𝜖2 𝑝 1 − 3 𝜖𝑝 2 

 4 = 𝑝 4 + 5 𝜖4 − 4 𝜖3 𝑝 1 + 3 𝜖2 𝑝 2 − 2 𝜖𝑝 3 

 5 = 𝑝 5 − 𝜖5 + 𝜖4 𝑝 1 − 𝜖3 𝑝 2 + 𝜖2 𝑝 3 − 𝜖𝑝 4 

We use the Hurwitz theorem that says that the necessary and suffi-
ient condition to guarantee that the solutions of the equation 

 

5 + 𝑞 1 𝑥 
4 + 𝑞 2 𝑥 

3 + 𝑞 3 𝑥 
2 + 𝑞 4 𝑥 + 𝑞 5 = 0 , (41)

ave negative real part is: 

1 = 𝑞 1 > 0 , Λ2 = det 

( 

𝑞 1 1 
𝑞 3 𝑞 2 

) 

> 0 , Λ3 = det 
⎛ ⎜ ⎜ ⎝ 
𝑞 1 1 0 
𝑞 3 𝑞 2 𝑞 1 
𝑞 5 𝑞 4 𝑞 3 

⎞ ⎟ ⎟ ⎠ > 0 , (42)

4 = det 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑞 1 1 0 0 
𝑞 3 𝑞 2 𝑞 1 1 
𝑞 5 𝑞 4 𝑞 3 𝑞 2 
0 0 𝑞 5 𝑞 4 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
> 0 , and 

5 = det 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑞 1 1 0 0 0 
𝑞 3 𝑞 2 𝑞 1 1 0 
𝑞 5 𝑞 4 𝑞 3 𝑞 2 𝑞 1 
0 0 𝑞 5 𝑞 4 𝑞 3 
0 0 0 0 𝑞 5 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
> 0 . (43) 

We will study Λ2 , 

2 = 𝑞 1 𝑞 2 − 𝑞 3 = 𝑝 1 𝑝 2 − 𝑝 3 − 𝜖(2 𝑝 2 + 4 𝑝 2 1 ) + 24 𝜖2 𝑝 1 − 40 𝜖3 . (44)

t is clear that 

 1 𝑝 2 − 𝑝 3 = 

( 𝑘𝜏−1 − 𝑘 ∗ ) 𝑛 2 

𝑐𝜏(1 + 𝑛 2 𝑎 ) 
, (45)

hich is bounded as well as 24 𝜖2 𝑝 1 − 40 𝜖3 . However for every 𝜖 as small
s we want (but positive) we can select n large enough to guarantee
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5 The corresponding result for the three dimensional case can be obtained 

after the natural extension of the proposed arguments. 
hat 𝜖(2 𝑝 2 + 4 𝑝 2 1 ) becomes unbounded and therefore 𝑞 1 𝑞 2 − 𝑞 3 < 0 . This
rgument shows that the solutions of our system decay in a slow way,
r, in other words, that a uniform rate of decay of exponential type for
ll the solutions can not be obtained. We also note that from the analysis
roposed here it is clear that the result can be obtained for any finite
nterval. 

We have proved that: 

heorem 3.1. The solutions of the problem determined by the ( 31 , 32 )

ith homogeneous Dirichlet condition for the displacement and homogeneous

eumann boundary condition for the thermal variable do not decay in a

niform exponential way. 

It is worth comparing this situation with the case of the Moore-
ibson-Thompson thermoelasticity where the exponential decay was
roved for the one dimensional case ( Quintanilla, 2019 ). That is, in the
resent case a combination of a hyperbolic equation with two tempera-
ures does not imply the exponential decay even in the one dimensional
hermoelastic case. We emphasize that this is not the first time that we
bserve this result, because a similar quality was obtained in the refer-
nces ( Leseduarte et al., 2017; Magaña et al., 2019 ). 

To finish this section we will prove that the solutions of the problem
etermined by the system ( 31,32 ) with the initial conditions 𝑢 ( 𝑥, 0) =
 0 ( 𝑥 ) , 𝑢̇ ( 𝑥, 0) = 𝑣 0 ( 𝑥 ) and (11) with the boundary conditions 

 (0 , 𝑡 ) = 𝑢 ( 𝜋, 𝑡 ) = 𝛽(0 , 𝑡 ) = 𝛽( 𝜋, 𝑡 ) = 0 , (46)

ecay at least as t 1/2 . To this end we first consider the Hilbert space  =
 

1 
0 × 𝐿 

2 × 𝐿 

2 × 𝐿 

2 × 𝐿 

2 . If 𝑈 = ( 𝑢, 𝑣, 𝛼, 𝜃, 𝜙) and 𝑉 = ( 𝑢 ∗ , 𝑣 ∗ , 𝛼∗ , 𝜃∗ , 𝜙∗ ) ,
here 𝛼 = 𝛽 − 𝑎𝛽𝑥𝑥 , 𝛼

∗ = 𝛾∗ − 𝑎𝛾∗ 
𝑥𝑥 
, 𝜃 = 𝑇 − 𝑎𝑇 𝑥𝑥 , 𝜃

∗ = 𝑇 ∗ − 𝑎𝑇 ∗ 
𝑥𝑥 

we
an define the inner product 

𝑈, 𝑉 ⟩ = 

1 
2 ∫𝐵 

(
𝜌𝑣 𝑣 ∗ + 𝜇𝑢 𝑥 𝑢 

∗ 
𝑥 
+ 𝑐( 𝜃 + 𝜏𝜙)( 𝜃∗ + 𝜏𝜙∗ ) 

+ 𝑘 ∗ ( 𝛽𝑥 + 𝜏𝑇 𝑥 ) ( 𝛾∗ 𝑥 + 𝜏𝑇 ∗ 
𝑥 
) + 𝜏𝐾𝑇 𝑥 𝑇 

∗ 
𝑥 

)
𝑑𝑥 

+ 

1 
2 ∫𝐵 

(
𝑘 ∗ 𝑎 ( 𝛽𝑥𝑥 + 𝜏𝑇 𝑥𝑥 ) ( 𝛾∗ 𝑥𝑥 + 𝜏𝑇 ∗ 

𝑥𝑥 
) + 𝜏𝑎𝐾𝑇 𝑥𝑥 𝑇 

∗ 
𝑥𝑥 

)
𝑑𝑥, (47) 

his product is equivalent to the usual one in . 
We can write our problem in the form 

𝑑𝑈 

𝑑𝑡 
=  𝑈 , 𝑈 (0) = ( 𝑢 0 , 𝑣 0 , 𝛼0 , 𝜃0 , 𝜙0 ) , (48)

here 𝛼0 , 𝜃0 and 𝜙0 are defined as in second section. Our operator 
an be written as 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 𝐼 0 0 0 
𝑀 0 0 𝑁 𝐿 

0 0 0 𝐼 0 
0 0 0 0 𝐼 

0 𝑃 𝐴 

∗ 𝐵 ∗ 𝐶 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

here 𝑀𝑢 = 𝜇𝜌−1 𝑢 𝑥𝑥 , 𝑁𝜃 = 𝛽∗ 𝜌−1 𝜃𝑥 , 𝑁𝜙 = 𝜏𝛽∗ 𝜌−1 𝜙𝑥 , 𝑃 𝑣 = 𝛽∗ ( 𝑐𝜏) −1 
 𝑥 and A 

∗ , B 

∗ and C are the restriction of the operators defined at section
wo in the one dimensional case. 

We note that the domain of the operator is determined by the ele-
ents of the Hilbert space such that 𝑣 ∈ 𝐻 

1 
0 and 𝑀𝑢 + 𝑁𝜃 + 𝐿𝜙 ∈ 𝐿 

2 .
t is clear that is a dense subspace. At the same time we also have 

e ⟨ 𝑈 , 𝑈 ⟩ = − 

𝐾 

2 ∫𝐵 ( |𝑇 𝑥 |2 + 𝑎 |𝑇 𝑥𝑥 |2 ) 𝑑𝑥 ≤ 0 . (49)

It is also easy to prove that zero belongs to the resolvent of the oper-
tor. If we consider ( 𝑓 1 , 𝑓 2 , 𝑓 3 , 𝑓 4 , 𝑓 5 ) ∈  we need to solve the system 

 = 𝑓 1 , 𝜃 = 𝑓 3 , 𝜙 = 𝑓 4 

𝑢 + 𝑁𝜃 + 𝐿𝜙 = 𝑓 2 , 𝑃 𝑣 + 𝐴 

∗ 𝛼 + 𝐵 ∗ 𝜃 + 𝐶𝜙 = 𝑓 5 . 

e have 𝑣, 𝜃 and 𝜙 and we need to solve the equations 

𝑢 = 𝑓 − 𝑁𝑓 − 𝐿𝐹 , 𝐴 

∗ 𝛼 = 𝑓 − 𝑃 𝑓 − 𝐵 ∗ 𝑓 − 𝐶𝑓 . 
2 3 4 5 1 3 4 
ow it is transparent the existence of this solutions for u and 𝛼 and we
ave proved: 

heorem 3.2. The operator  generates a contractive semigroup. And for

ny U (0) in the domain of the operator, there exists a unique solution to our

roblem such that 𝑈 ( 𝑡 ) ∈ 𝐶 1 ([0 , 𝑡 1 ] ,  ) 5 . 

We now prove the decay estimate: 

heorem 3.3. Our semigroup is polynomially stable of order 1/2 . That is,

or every U (0) in the domain of the operator there exists a constant (inde-

endent of the initial data) such that ‖𝑆( 𝑡 ) 𝑈‖ ≤ 𝐶‖𝑈 (0) ‖𝑡 −1∕2 . 
roof. To show the result we will prove that the imaginary axis in

ncluded in the resolvent of the operator and that(see Borichev and
omilov, 2010 ) 

im |𝜆|→∞𝜆
−2 ‖( 𝑖𝜆 −  ) −1 ‖ ( ) < ∞. 

First we assume that the imaginary axis is not included at the resol-
ent. Hence it will exist a sequence 𝜆n → 𝜆 and a unit norm sequence
 𝑛 = ( 𝑢 𝑛 , 𝑣 𝑛 , 𝛼𝑛 , 𝜃𝑛 , 𝜙𝑛 ) such that 

( 𝑖𝜆𝑛  −  ) 𝑈 𝑛 ‖ ( ) → 0 . 

n this case, we have 

𝜆𝑛 𝑢 𝑛 − 𝑣 𝑛 → 0 in 𝐻 

1 , (50)

𝜆𝑛 𝑣 𝑛 − 𝑀𝑢 𝑛 − 𝑁𝜃𝑛 − 𝐿𝜙𝑛 → 0 in 𝐿 

2 , (51)

𝜆𝑛 𝛼𝑛 − 𝜃𝑛 → 0 in 𝐿 

2 , (52)

𝜆𝑛 𝜃𝑛 − 𝜙𝑛 → 0 in 𝐿 

2 , (53)

𝜆𝑛 𝜙𝑛 − 𝑃 𝑣 𝑛 − 𝐴 

∗ 𝛼𝑛 − 𝐵 ∗ 𝜃𝑛 − 𝐶𝜙𝑛 → 0 in 𝐿 

2 . (54)

In view of the dissipation we see that 𝜃n goes to zero in L 2 and hence

n and 𝜙n also tend to zero because the origin is not on the resolvent.
t follows that 𝑃 𝑣 𝑛 → 0 in L 2 which implies that 𝑣 𝑛 → 0 in H 

1 and then
lso u n tends to zero at the same norm. We arrive to a contradiction. 

We now prove the asymptotic condition. Assume that it is not true.
e also obtain the existence of a sequence 𝜆n →∞ and a unit norm

equence 𝑈 𝑛 = ( 𝑢 𝑛 , 𝑣 𝑛 , 𝛼𝑛 , 𝜃𝑛 , 𝜙𝑛 ) such that 

2 
𝑛 
( 𝑖𝜆𝑛 𝑢 𝑛 − 𝑣 𝑛 ) → 0 in 𝐻 

1 , (55)

2 
𝑛 
( 𝑖𝜆𝑛 𝑣 𝑛 − 𝑀𝑢 𝑛 − 𝑁𝜃𝑛 − 𝐿𝜙𝑛 ) → 0 in 𝐿 

2 , (56)

2 
𝑛 
( 𝑖𝜆𝑛 𝛼𝑛 − 𝜃𝑛 ) → 0 in 𝐿 

2 , (57)

2 
𝑛 
( 𝑖𝜆𝑛 𝜃𝑛 − 𝜙𝑛 ) → 0 in 𝐿 

2 , (58)

2 
𝑛 
( 𝑖𝜆𝑛 𝜙𝑛 − 𝑃 𝑣 𝑛 − 𝐴 

∗ 𝛼𝑛 − 𝐵 ∗ 𝜃𝑛 − 𝐶𝜙𝑛 ) → 0 in 𝐿 

2 . (59)

issipation inequality implies that 𝜆n 𝜃n →0 in L 2 and therefore 𝛼n and

n also tend to zero in L 2 . From the last convergence we see that
−1 
𝑛 
𝑃 𝑣 𝑛 → 0 in L 2 which implies that u n →0 in H 

1 and we also obtain
hat 𝑣 𝑛 → 0 in L 2 which finish the proof of the theorem. □

We point out that the analysis for Neumann boundary conditions
or the temperature can be done in a similar way (see for instance
eseduarte et al., 2017 ) 
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. Inhomogeneous case 

It is possible to extend the previous analysis to inhomogeneous ma-
erials. We recall that in this case the equations are given by: 

 𝑖 + 𝜏𝑞̇ 𝑖 = 𝑚 𝑖𝑗 ( 𝐱)( 𝑘 ∗ 𝛽,𝑗 + 𝑘𝑇 ,𝑗 ) , (60)

= 𝛽 − 𝑎 ( 𝑚 𝑖𝑗 ( 𝐱) 𝛽,𝑖 ) ,𝑗 , 𝜃 = 𝑇 − 𝑎 ( 𝑚 𝑖𝑗 ( 𝐱) 𝑇 ,𝑖 ) ,𝑗 , (61)

here m ij ( x ) is a symmetric positive definite matrix. 
In this case the heat equation becomes 

𝑐 ( 𝐱) 
⋯ 

𝛼 + 𝑐 ( 𝐱) ̈𝛼 = ( 𝑚 𝑖𝑗 ( 𝐱)( 𝑘 ∗ 𝛽,𝑗 + 𝑘𝑇 ,𝑗 )) ,𝑖 . (62)

e now assume that (i) and (ii) hold as well as that m ij ( x ) is positive
efinite. That is, there exists a positive constant C such that 

 𝑖𝑗 ( 𝐱) 𝜉𝑖 𝜉𝑗 ≥ 𝐶𝜉𝑗 𝜉𝑗 (63)

or every vector ( 𝜉j ) and for every point. The energy of the system de-
ermined by this new equation with the initial and boundary conditions
roposed in section two reads 

( 𝑡 ) = 

1 
2 ∫𝐵 

(
𝑐( 𝐱 ) ( 𝜃 + 𝜏𝜃̇) 2 + 𝑘 ∗ 𝑚 𝑖𝑗 ( 𝐱 )( 𝛽,𝑖 + 𝜏𝑇 ,𝑖 )( 𝛽,𝑗 + 𝜏𝑇 ,𝑗 ) + 𝜏𝐾𝑚 𝑖𝑗 ( 𝐱) 𝑇 ,𝑖 𝑇 ,𝑗 

)
𝑑𝑣 

+ 

1 
2 ∫𝐵 

(
𝑘 ∗ 𝑎 ( 𝑚 𝑖𝑗 ( 𝐱)( 𝛽,𝑖 + 𝜏𝑇 ,𝑖 ) ,𝑗 ) 

2 + 𝐾𝜏𝑎 
(
( 𝑚 𝑖𝑗 ( 𝐱) 𝑇 ,𝑖 ) ,𝑗 

)2 )
𝑑𝑣 

+ ∫
𝑡 

0 ∫𝐵 𝐾 

(
𝑚 𝑖𝑗 ( 𝐱) 𝑇 ,𝑖 𝑇 ,𝑗 + 𝑎 

(
( 𝑚 𝑖𝑗 ( 𝐱) 𝑇 ,𝑖 ) ,𝑗 

)2 )
𝑑 𝑣𝑑 𝑠 = 𝐸(0) . (64) 

he exponential stability can be obtained following a similar argument
s the one we used in section two. 

The problem can also be extended to the thermoelastic situation as-
uming that 

 𝑗𝑖 = 𝐶 𝑖𝑗𝑘𝑙 ( 𝐱 ) 𝑢 𝑘,𝑙 + 𝛽∗ 
𝑖𝑗 
( 𝐱 ) 𝜃, 𝜂 = − 𝛽∗ 

𝑖𝑗 
( 𝐱 ) 𝑢 𝑖,𝑗 + 𝑐( 𝐱 ) 𝜃. (65)

fter combination of these equations with the equation of motion, the
nergy equation and the constitutive equation proposed in this section
or the heat flux vector we obtain a new system of the MGT+2TT ther-
oelasticity. Assuming, as ususal, that the elasticity tensor is positive
efinite and symmetric tensor the existence and uniqueness of the solu-
ions can be proved. 
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