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Abstract. A combined Proper Orthogonal Decomposition (POD) + In Situ Adaptive
Tabulation (ISAT) is proposed for the representation of parameter-dependent solutions
of coupled partial differential equations (PDE). The method is tested on a coupled fluid-
thermal problem: the design of a simplified aircraft air control system. Furthermore, the
control of the method’s accuracy is discussed, leading to the metamodeling of the residual
itself. The presented POD-ISAT approach provides by its flexibility and robustness an
appropriate representation of the solutions for different use cases (sensitivity analysis,
optimization, etc.)

1 Introduction

Computational tools are today a success factor in Engineering Design. Finite Elements
or Finite Volumes codes become very efficient in the evaluation of criteria at given de-
sign points. However, the ’full’ exploration of the design space is still a difficult task
because of the curse of dimensionality and the weak computing performance available
for such applications. Alternative solutions are the use of meta-models or low-order op-
timal bases that show both accuracy and computational efficiency for particular classes
of problems (elliptic problems). Proper Orthogonal Decomposition (POD) [1], Reduced
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Basis Method (RBM) [2, 3], LATIN methodology [4] or Proper Generalized Decomposi-
tions (PGD) [5] are among the most known computational approaches for dimensionality
reduction of PDE solutions. But there are still big issues such as the case of hyperbolic
problems, convection-dominated problems, strongly coupled multiphysics problems, high-
dimensional design spaces, etc.
The present paper deals with the design of a simplified aircraft air control system de-
pending on inflow and exterior conditions. Navier-Stokes equations are coupled with a
thermal equation by means of a buoyancy force (Boussinesq approximation). In this work,
an innovating approach called POD-ISAT is presented. It combines Proper Orthogonal
Decomposition for the representation of the spatial fields and In Situ Adaptive Tabulation
(ISAT) for the local representation of the solution in the design space. This leads to a set
of local reduced-order models whose fidelity is controlled by means of trust regions (TR).
In Pope’s ISAT model [6, 7], ellipsoids of accuracy (EOA) are used and adapted during
the learning process of the table. Here we rather use a threshold criterion on a residual.
The whole algorithm is detailed in the paper and numerical results show the efficiency of
the approach.

2 Mathematical setting

We are interested in the modelling of stationary air circulation and heating conditions
in an aircraft cabin. For the sake of simplicity, the flow is supposed two-dimensional and
the domain of interest is the cross-section of the fuselage (see figure 1). The air is seen as
an incompressible fluid but we take into account buoyancy Archimedes forces due to air
heating. So the stationary Navier-Stokes equations with the Boussinesq approximation are
considered. At the right hand side of the Navier-Stokes momentum equation (2) appears
a buoyancy term depending on the gravity g and the temperature deviation (T − T0)
from the nominal temperature T0. The Navier-Stokes equations are coupled, through this
buoyancy term, with a thermal equation that governs the evolution of the temperature of
the fluid (equations (1)-(3)). The coefficient κ is the thermal diffusivity of the air.

∇ · u = 0 in Ω, (1)

u · ∇u− ν∆u+∇p = g (1− α(T − T0)) in Ω, (2)

u · ∇T −∇ · (κ∇T ) = 0 in Ω, (3)

In realistic conditions, the reference length L is 1 m, the characteristic speed U if 1 m/s
and the kinematic viscosity of the air at 300K is 1.57 10−5 m2/s so that the Reynolds
number is equal to

Re =
LU

ν
≈ 6.37 104.

The flow regime is turbulent, but, for the sake of simplicity, we do not take into account
any turbulence model. Moreover the thermal diffusivity of air at 300K and 1 atm is
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2.22 10−5 m2/S, thus the Péclet number is

Pe =
LU

κ
≈ 4.52 104.

Let us consider now the boundary conditions. The cabin boundary is denoted Γ. It is

Figure 1: Spatial geometry and domain boundaries (half domain with symmetry axis)

divided into three parts: the inflow boundary Γin, the outflow Γout and the wall boundary
Γw. For the fluid, no slip boundary conditions is used on Γw, velocity is imposed at the
inflow and constant pressure is given at the outflow:

u = 0 on Γw, u = uin on Γin and p = 0 on Γout. (4)

For thermal boundary conditions, we use Dirichlet boundary conditions on Γin with im-
posed inflow temperature Tin. The heat loss at the walls is expressed by inhomogeneous
Fourier boundary conditions. The boundary heat flux may depend on the difference be-
tween the wall temperature and the exterior temperature. Finally, homogeneous Neumann
boundary conditions are written at the outflow:

T = Tin on Γin,
∂T

∂n
= 0 on Γout, κ

∂T

∂n
= Φ(T − Text) on Γw. (5)

Possibly, if interior boundaries are defined (like seats for example), then homogeneous
Neumann boundary conditions are imposed. The whole system is non linear and the
dominating phenomenon is the convection (because of the large Reynolds and Péclet
numbers). It is assumed that the domain boundaries are Lipschitz continuous, uin, Tin ∈
L2(Γin), Φ ∈ C∞, so that (u, p, T ) are searched in Uuin

× L2(Ω)×XTin
, where

Uw =
{

v ∈ [H1(Ω)]2, v = 0 on Γw, v = w on Γin

}

,

Xw =
{

τ ∈ H1(Ω), τ = w on Γin

}

.
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According to some approximate candidates ũ ∈ Uuin
, p̃ ∈ L2(Ω) and T̃ ∈ XTin

, one can
define a residual functional relative to the test functions v ∈ U0, q ∈ L2(Ω) and τ ∈ X0:

R(ũ, p̃, T̃ ,v, q, τ) =

∫

Ω

(ũ · ∇ũ) · v dx+

∫

Γout

∂ũ

∂n
· v dσ −

∫

Ω

p̃∇ · v dx

−
∫

Ω

(1− α(T̃ − T0)) g · v dx+

∫

Ω

∇ · ũ q dx+

∫

Ω

(ũ · ∇T̃ )τ dx

−
∫

Ω

κ∇T̃ · ∇τ dx−
∫

Γw

Φ (T̃ − Text)τ dσ ∀(v, q, τ) ∈ U0 × L2(Ω)×X0. (6)

Parameters There are many parameters in the problem for which we would like to
know the solutions of (1)-(5). Each parameter may vary in an interval. Among the
parameter of interest, let us mention the exterior temperature Text (that naturally varies
during the cruise), the inflow speed uin, the inflow temperature Tin. Using dimensionless
parameters θi ∈ [0, 1], i = 1, . . . , p, we are looking for the family of fluid-thermal solutions
(

uθ = u(θ, .), T θ = T (θ, .)
)

θ∈[0,1]p .

3 ROM methodology: general aspects and related works

A Reduced Order Model (ROM) for partial differential equations consists of a low-order
representation of the solution by help of an ’optimal’ basis and possibly an adaptivity
and enrichment process. Considering for example the parameterized temperature field
uθ = u(., θ), reduced-order are searched in the form

uθ(x) = ulift,θ(x) +
K
∑

k=1

ak(θ)Ψ
k(x). (7)

The function ulift,θ is a lifting function aimed at satisfying some boundary conditions
(especially Dirichlet BC), possible depending on θ but quite easy to compute (for example
the solution of a linear Stokes Problem). The family (Ψk)k=1,...,K is the ’optimal’ basis.
The truncation rank K is expected to be rather small, let us say 10. The expansion
coefficients ak(θ) are functions depending on the vector parameter θ ∈ [0, 1]p. In a ROM
methodology, there are two main steps: the design of the basis functions Ψk and the
learning process of the ak(θ).

In the POD snapshot approach [1, 8], some snapshot fields (ui)i=1,...,N are computed
according to a Design of Computer Experiment (DoCE). Then, the POD basis spawns
the best linear subspace able to represent the snapshot solutions:

min
(Ψ1,...,ΨK)

(Ψk,Ψℓ)=δkℓ, 1≤k≤ℓ≤N

1

2

N
∑

i=1

�

�

�

�

�

ui −
K
∑

k=1

(ui,Ψk)Ψk

�

�

�

�

�

2

. (8)
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In the POD methodology, the (Ψk) are said to be an empirical basis because of the
empirical choice of the snapshot set (see [9] for a recent analysis on the optimal location of
the snapshots). Reduced Basis Methods or RBM [2, 3] are more rigorous approaches where
the basis is enriched during an iterative learning process. At a given iteration (k) involving
k modes, a (k + 1)th mode Ψk+1 is searched as a best corrector direction corresponding
to the the worst case location in the parameter domain. This is a kind of ’min-max’
algorithm. RBM involves easy-to-compute accuracy estimators; we refer to the literature
([10, 11, 12]) for this issue. Because of the iterative enrichment process, RBM belongs to
the family of greedy algorithms. Let us emphasize that the RBM analysis framework is
restricted to elliptic problems. Another and recent approach which knowns an increasing
interest is the Proper Generalized Decomposition or PGD pioneered by Ladevèze and
Chinesta and since extended and used in many fields of applications ([5, 13, 14, 15, 16, 17]).
PGD is also a greedy algorithm where the variables are separated. From a level-k model
ũ(k)(θ, .), a higher-fidelity model ũ(k+1)(θ, .) in the form

ũ(k+1)(θ, .) = ũ(k)(θ, .) + a
(k+1)
1 (θ1) a

(k+1)
2 (θ2) . . . a

(k+1)
p (θp)Ψ

(k+1)(x), (9)

where the one-dimensional functions a
(k+1)
1 (θ1), a

(k+1)
2 (θ2) . . . a

(k+1)
p (θp) and the spatial

modelΨ(k+1)(x) are searched in an optimal way, for example by a variational principle and
a Galerkin projection, see references [5, 18] for more details. Although very promising,
PDG still needs investigation especially for parameter problems. It is unclear from the
numerical analysis point of view what is the truncation rank K for a given error criterion.
Moreover, PGD for the moment is an intrusive approach, what can be a shortcoming in
a practical industrial context. PGD also needs more developments in the case of coupled
problems. In what follows, we are going to present the POD-ISAT methodology which is
an easy-to-implement non-intrusive approach that can be used in an industrial context.

4 The POD-ISAT algorithm

The determination of POD modes by the method of snapshots [1] relies on the com-
putation of some accurate finite element solutions. A very popular physics-based meta-
modeling technique, namely the POD-Galerkin approach, consists in carrying out the
approximation on the full Finite Element vector fields using POD modes and Galerkin
projection [19]. Nevertheless, the main drawback of this method is its intrusive feature:
the computational code has to be modified in order to develop a ROM. Besides, the
resulting system of ODEs can become unstable or chaotic, misrepresenting the physics
[20]. In the present work, we expose a non-intrusive reduced order model based on the
combination of the POD method with the famous ISAT algorithm [6, 7].

4.1 Design of Computer Experiment(DoCE)

The parameter space sampling has an important impact on the metamodels accu-
racy. Commonly used DoCE procedure include Latin Hypercube Sampling (LHS), U-
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designs [21] and Lattice Design [22]. A comparison of these methods [23], showed that
the Lattice Design method outperforms the two other methods regarding the minimum
distance criterion. Let Nexp be the number of design sites in the parameter space chosen
according to a lattice design procedure. After computing the exact solutions (e.g. the
temperature fields) for these design sites by a FE code, an initial snapshot set SNexp is
formed as follows:

SNexp =
{

ui
0, i = 1, . . . , Nexp

}

. (10)

4.2 The ISAT algorithm

The purpose of the ISAT algorithm is to tabulate a function f(x), where x and f
are of dimension nx and nf , respectively. Given a query, xq, ISAT returns fa(xq), an
approximation to f(xq). An essential aspect of ISAT is that the table is built up, not in
a pre-processing stage, but in situ (or ”on line”) as the simulation is being performed.

4.3 Local form of the POD-ISAT ROM

Assume that the current query parameter θi becomes a new entry for the table, say
the ith entry. The corresponding solution ui (e.g. temperature field) is computed by the
FE model. Then a local reduced order model is built up at θi. This local model consists
of an approximate model ũ(i)(θ) and a region of accuracy (ROA), denoted by E(i). The
initial snapshot set SNexp is used to build a local snapshot set of Nlocal solutions that are
centred with respect to ui as follows:

SNlocal

(i) =
{

uj
0 − ui, j = 1, . . . , Nlocal

}

. (11)

Then K ≤ Nlocal local POD modes Ψk
i k ∈ [1, . . . , Nlocal] are computed using this local

snapshot set and the local reduced order model ũθ
(i) reads as follows:

ũθ
(i)(x) = ulift,θ

(i) (x) +
K
∑

k=1

ak(i)(θ)Ψ
k
(i)(x). (12)

where the local POD coefficients ak(i) depend on the parameters θ et θi.

4.4 Trust region

For θ = θi, provided that ∀k ∈ [1, . . . , K] , ak(θi) = 0, we have ũ(., θi) = u(., θi). Since
the POD coefficients are supposed to be continuous, there is a region E(i), called trust
region, such that the residual field satisfies

∀θ ∈ E(i) ∥R(ũ(i)(θ))∥2L2 ≤ ε2tol,

with εtol ≪ 1. The trust region E(i) is approximated by an ellipsoid [6] in Rp which is

defined by p2+p
2

unknown coefficients. The trust region is built by finding out M > p2+p
2

different θ∗ next to θi such as |∥R(θ∗)∥2L2 − ε2tol| is minimal. To tackle this problem, θ∗
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is searched in the form θ∗ = θi + α∗ h, with α∗ ∈ R and h ∈ Rp a fixed unit vector. By
choosing M different vectors h, M vectors θ∗h are computed in parallel on a multi-core
machine as the M minimization runs are independent. Then, the M vectors θ∗h are used
to determine an ellipsoid of accuracy (EOA) using Ellipsoidal Toolbox 1. The size of the
EOA depends obviously on the choice of εtol.

4.5 POD-ISAT algorithm

Initially, the POD coefficients ak(i)(θ), k ∈ [1, . . . , K] (see (12)) are not known, however
we have:

ak(i)(θ
j) = (u(x, θj),Ψk

(i)(x)); k = 1, . . . , K; j = 1, . . . , Nlocal. (13)

Using (13), the coefficients ak(i)(θ) can be interpolated or approximated by standard robust

methods (Moving Least Square (MLS) [24, 25], artificial neural networks (ANN) [26],
radial basis functions (RBF) [27] or Kriging approaches).
In this paper, the coefficients ak(i)(θ) are determined by minimizing the L2 norm of the
residual:

(a1(i), . . . , a
K
(i))(θ) = arg min

(a1
(i)

,...,aK
(i)

)

1

2
∥ R

(

ulift,θ
(i) (x) +

K
∑

k=1

ak(i)(θ)Ψ
k
(i)(x)

)

∥2L2 . (14)

The optimization problem (14) is formulated in a low-dimensional space and is easy
to solve. As initial guesses ak(θi) = 0, k ∈ [1, . . . , K] are used, but one can also use
interpolated POD coefficients.
Once the E(i) for θi is determined, a sampling (θj)j=1,...,M ∈ E(i) is generated and the POD
coefficients ak(θ

j), k ∈ [1, . . . , K] , j ∈ [1, . . . ,M ] are computed by minimizing the residual
(see (14)). Then, using these coefficients, a kriging interpolation model of ak(θ) is built.
Thus, the local ROM at point θi is completely defined by the EOA characteristics and
the kriging interpolation model which are added to the table which is enriched adaptively
allowing to cover the design domain [7]. The POD-ISAT algorithm is summarized in
Fig 2.

5 Numerical results

Table 1 shows all the control parameters that impact the quality of the POD-ISAT
ROM. The most important is εtol which controls the threshold error of the ROM. Some
exact solutions computed with the FE model are plotted in figure 3. The significant CPU
costs are outlined in Table 2. The speed-up, defined as the ratio of the time to evaluate
a solution with the FE code by the time needed to compute a solution with the ROM, is
1000/0.6 ∼ 1700, which shows the efficiency of the POD-ISAT algorithm. A 100 random

1http://www.mathworks.com/matlabcentral/fileexchange/21936-ellipsoidal-toolbox-et
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a solution with the FE code by the time needed to compute a solution with the ROM, is
1000/0.6 ∼ 1700, which shows the efficiency of the POD-ISAT algorithm. A 100 random

1http://www.mathworks.com/matlabcentral/fileexchange/21936-ellipsoidal-toolbox-et
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Figure 2: Schematic of the POD-ISAT algorithm

Table 1: Properties of reduced model

Nexp 60 Initial DoCE Size

ε2tol 5 10−10 Tolerance

Nlocal 10 Number of nearest neighbours
for local POD

K 5 Number of POD modes used

p 3 Number of parameters

parameters vectors θi, i = 1, . . . , 100 are drawn in the parameter space. Then, the ROM
is compared with the FE model using the following error formula:

relative error =
∥ũ(θ)− u(θ)∥L2

∥u(θ)∥L2

. (15)

In Figure 4, where each color represents an EOA, we can see that the mean relative error is
about 0.3% an that the maximum relative error is attained for the solution corresponding
to θ12(1.2%). Furthermore, θ12, θ70, θ81 and θ57 are in the same EOA (they have the
same color), which shows that their EOA was the worst defined because it is too large
and inaccurate. Figure 5 shows the temperature fields of θ12 obtained by both reference
model and reduced model. In order to better see the difference between both temperature
fields, the difference in absolute value is plotted in Fig. 6.
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Figure 3: Reference FE solutions for different parameter samples.

Online Outline

EOA Building 1200 sec

Kriging model 300 sec

FE computation of u(x, θ) 1000 sec

Retrieve 0.17 sec

FE computation of ulift(x, θ) 0.43 sec

Table 2: CPU costs

6 Concluding remarks

In this paper a non intrusive adaptive ROM combining POD and ISAT has been
presented on the design of an aircraft control system. The numerical results show that
the ROM is both efficient and accurate. However, the EOA can be inaccurately defined
and as pointed out by [7] this problem can be tackled by adding an ellipsoid of inaccuracy
or EOI around an EOA to control the inaccuracy of the EOA. Furthermore, the εtol
controls the error on the residual and not on the solution itself which is not convenient,
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Figure 4: Relative errors for 100 random computations

Figure 5: Solution of parameter θ12 for both reference model(left) and reduced model(right)

IsoValue
-0.440938
-0.329203
-0.254713
-0.180223
-0.105733
-0.0312425
0.0432477
0.117738
0.192228
0.266718
0.341208
0.415698
0.490189
0.564679
0.639169
0.713659
0.788149
0.862639
0.93713
1.01162
1.08611
1.1606
1.23509
1.30958
1.38407
1.45856
1.53305
1.60754
1.68203
1.75652
1.83101
1.9055
1.97999
2.05448
2.12897
2.20346
2.27795
2.35244
2.42693
2.61316

Figure 6: The error field for sample θ12 between the reference model and reduced model ( ◦C)

which points out the need to consider different approaches to define the error.
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