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Abstract. Hardware in the loop based on dynamic substructuring was conceived to be a 
hybrid numerical-experimental technique to simulate the non-linear behaviour of an emulated 
structure. Its challenge is to ensure that both numerical and physical substructures interact in 
real time by means of actuators –transfer systems-. With this objective in mind, the 
development and implementation of partitioned real-time compatible Rosenbrock algorithms 
are presented in this paper. In detail, we shortly introduce monolithic linearly implicit L-stable 
algorithms with two stages; and in view of the analysis of complex emulated structures, we 
present a novel interfield partitioned algorithm. Both the stability and accuracy properties of 
the proposed algorithm are examined through analytical and numerical studies carried out on 
Single-DoF model problems. Moreover, a novel test rig conceived to perform both linear and 
nonlinear substructure tests is introduced, and tests on a two-DoF split-mass system are 
illustrated. The drawbacks of this algorithm are underlined and improvements are introduced 
on a companion solution procedure.

 
 
1 INTRODUCTION 

In recent years real-time hybrid testing techniques, as depicted in Figure 1, like the 
Hardware-in-the-Loop (HiL) technique with Dynamic Substructuring (DS), became more and 
more popular in order to study the performance of components and structures subject to 
dynamic loads [1,2]. With regard to relevant time-stepping methods, they can be broadly 
classified in monolithic and partitioned. In a monolithic approach, the method integrates: i) 
the Numerical Substructure (NS) only, whilst the Physical Substructure (PS) is considered a 
black box [2]; ii) both the NS and the PS by means of stiffness estimates [3], like in a typical 
pseudo-dynamic (PsD) test [2]. Conversely, a partitioned approach solves both NS and PS 
through different integrators and takes into account the interface problem, for instance by 
prediction, substitution and synchronization of Lagrange multipliers. In detail, partitioned 
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algorithms can be applied to the Euler-Lagrange form of the equations of motion -second-
order in time- [4-6] or to the Hamilton form of the equations of motion -first-order in time- 
[7,8]. In this paper, we consider partitioned approaches based on L-stable two-stages real-time 
compatible Rosenbrock (LSRT) algorithms applied to equations of motion first-order in time. 

 
Figure 1: (a)-(d) Schematic representation of a SDoF split-mass system; (e) block diagram representation 

including delay. 
 
Most of the research works carried out on substructure tests considered structural 

integrators applied to the equations of motion second-order in time. Nonetheless, it is well 
known that the motion of a PS in a substructure test, see Fig.1d, is driven by a transfer system 
–actuator- and sensors, governed by a control unit. Since the control system is typically 
described by first-order Differential Equations, the utilized integrators have to deal with 
mixed first- and second-order ODEs. In order to solve this problem, we suggest to employ 
first-order integrators like the LSRT Rosenbrock algorithms, both for structural and control 
systems, owing to the favourable properties of LSRT algorithms employed in control [9]. 

With regard to complex emulated structures, numerical and control requirements impose 
different time steps for a NS and a PS, respectively. As a result, two main techniques can be 
identified to tackle this problem: i) model reduction, that represents an effective way to lower 
computation burdens related to the integration of a complex NS, but becomes very inaccurate 
especially for non-linear systems; ii) multi-time methods that allow to employ different time 
integrators in distinct subdomains. Furthermore, subcycling permits to use different time steps 
in different subdomains. The last strategy is relatively simple to implement, but it can hinder 
stability and accuracy properties of the original schemes. Therefore, the paper proposes some 
novel multi-time method with subcycling strategies, investigates relevant stability and 
accuracy issues and presents hardware-in-the-loop tests. Also, limits and remedies of the 
treated multi-time method are suggested. 

The remaining part of the paper is organized as follows. Firstly, LSRT algorithms with two 
stages (LSRT2) are introduced, which are nowadays used in real-time substructured tests [10], 
as an alternative to structural integrators applied to the equations of motion second-order in 
time [11,12]. Then, interfield parallel algorithms with subcycling strategies based on the 
progenitor LSRT algorithm that represent the main focus of the paper are considered. These 
linearly implicit algorithms first solve the interface problem by means of Lagrange multipliers 
and subsequently advance the solution in all subdomains. Thus, stability and accuracy 
properties of these algorithms are analysed through numerical experiments on a Single-DoF 
split-mass system, including subcycling too. Successively, real-time tests conducted by means 
of a novel test rig on a two-DoF systems are presented and commented. The limits of this 
algorithm are underlined and improvements are introduced on a companion interfield parallel 
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solution procedure. Lastly, main conclusions are drawn. 

2 LINEARLY IMPLICIT ROSENBROCK-BASED ALGORITHMS 
In this section, we introduce the LSRT compatible algorithms developed and suggested by 

Bursi et al. [10]. They are linearly implicit because eliminate the need to solve non-linear 
systems for nonlinear problems. To employ LSRT algorithms, the equations of motion 

 , , tMu r u u  (1) 

can be rewritten into a state-space form 
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where M stands for the mass matrix which is assumed to be symmetric positive definite for 
simplicity  , tf y  and for the vectors of applied and internal forces, respectively. In 

a FE context, the force vector can be split as
 , , tr u u 

 , , et    r u u Ku Cu F
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with a stiffness matrix 
K, a damping matrix C and a displacement vector u. Differentiation with respect to time is 
expressed by a dot, and thus we set u  and   to define the corresponding velocity and 
acceleration vectors.  



The two-stage L-stable real-time two-stage (LSRT2) method applied to  , ty f y  reads: 

   
21

1
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    21 2

1
2 21 1 1, ,   k k k kt t t b  

         k I J f 1 1 2 2by J k y y k k , (4) 

where is the step interval andt  /  J f y is the Jacobian matrix evaluated at the first stage. 
Two sets of parameters that satisfy second-order accuracy, L-stability and real-time 
compatibility are introduced, namely 1 2 / 2    and 1 2 /   2 , respectively, together 
with 2 21 1/ 2   , 21   , and1 0b  2b 1 . The favourable performance of the LSRT2 
method with respect to low and high-frequency components of the response can be observed 
from Figure 2, where a comparison with the Generalized-α [13] method is illustrated. 

 
Figure 2: Spectral radii ρ of linearly implicit algorithms with respect to the Generalized-α method vs. the 

non-dimensional frequency Ω. 
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3 A PARTITIONED TIME INTEGRATION METHOD BASED ON 
ACCELERATION CONSTRAINT 
In this section, we present a partitioned time integration method that adopts both element-
based partitioning and the LSRT2 method presented in Section 2. Due to real-time 
compatibility, we consider the acceleration continuity at the interface of subdomains, and 
therefore, an explicit Lagrange multiplier formulation is obtained. Moreover, the novel 
partitioned method preserves favourable second-order accuracy, and very often, both 
unconditionally stability and high-frequency dissipation capabilities. 

3.1 Derivation of an explicit Lagrange multiplier vector 
In order to implement the LSRT2 method, we begin with a system of index one 
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which is modelled as a set of S non-overlapping subdomains constrained by acceleration 
continuity at the interface. For simplicity, we only consider the case with linear constraint 
equations [14]. With the assumption  TT Ty u u , one obtains 
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For easiness of notation, both the matrices  and  refer to the i-th subdomain. Both the 
vector 

iA iC
iy and the Lagrange multiplier vector  can be explicitly solved by means of (6), i.e. Λ
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Equations (7) and (8) can be expressed in compact forms as 

 1 1, Tt  y A F y A C Λ  (10) 
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with 

 11 1 ,T t
     Λ CA C CA F y , (11) 

where 
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Hence, the proposed partitioned method is based on the explicit evaluation of Λ  at the 
beginning of each time step/stage, and thus, the integration of each subdomain can 
independently advance. 

3.2 Solution procedure of partitioned time integration methods 
For simplicity, let us consider a system divided into two subdomains A and B. In the case 

that both subdomains be integrated by the LSRT2 algorithm with the same time step , i.e. 
ss=1, the solution procedure of the partitioned method can be represented as in Figure 3, 
endowed with the task numbering. In detail, it can be characterized as follows: 

t

 
Figure 3 : The procedure of the LSRT2-based partitioned parallel method with ss=1 

 
(1) Evaluate  and  and calculate the Lagrange multiplier at time , A

kF B
kF kΛ kt

1 1 1( ) ( )A A A B B B
k k

  
k    Λ H C A F C A F . (13) 

(2) Compute  where and evaluate the solutions  ( ,i A1
ik ,i A B 1/2

i
ky B ) -First stage- 

1 1 1
1 ( ) ( )i i i i i

k kt C
            k I J A F Λ t , (14) 

1/2 1
1
2

i i
k k   iy y k . (15) 

(3) Evaluate  and  and calculate at time , 1/2
A

kF 1/2
B
kF 1/2kΛ 1/2kt 

1 1 1
1/2 1/2 1/2( ) ( )A A A B B B

k k
  

  k    Λ H C A F C A F . (16) 

 

(4) Compute  and advance the solution to 2
ik 1

i
ky  in both subdomains, respectively, -Second 
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stage- 
1 1 1

2 1/2 1/2( ) ( )i i i i i i
k kt C 

  
    1

i t        k I J A F Λ J k , (17) 

1 2
i i
k k

i y y k . (18) 

Since the LSRT2 method contains two stages, inter-domain exchange of information is not 
only required at the beginning of each time step, but also at the beginning of the second stage. 
This algorithm can be defined as parallel, because the interconnection is only done at the 
beginning of each stage to compute the Lagrange multiplier; then each subdomain can 
independently advance in each stage. 

4 AN INTERFIELD PARALLEL SOLUTION PROCEDURE 
Along the line of [6], the Rosenbrock-based method developed above can be exploited to 

develop an interfield parallel procedure. To illustrate that, let us consider again two 
subdomains A and B . The solution procedure is highlighted in Figure 4 with the numbering of 
the two processes and the subscript i referred to the time step t . In detail, Subdomain is 
integrated with the coarse time step 

A
ttA  4 , while Subdomain B  with the fine time 

step ssttB  , where . The solution procedure for Subdomain 2ss A is as follows: 
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A

iF and with the solutions 2
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(2) Compute and advance the solution to 1
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(3) Evaluate  and and then calculate , A
iF B
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(4) Evaluate and advance the solution to2
Ak 2

A
iy , 

    11

2 14 4
TA A A A A A

i it t
            

k I J A F C Λ J k A , (23) 

2 2
A A A
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Figure 4 The interfield parallel procedure of the LSRT2-based partitioned method with ss=2. 
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At the same time, the advancement procedure for  sj ,...,1  substep in subdomain B , i.e. 
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(4) Calculate  and advance the solution to 2k 1
B
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The method is not self-starting and to preserve second-order accuracy and parallel 
characteristics, we have chosen the LSRT2-based partitioned method with no subcycling to 
initiate the procedure.  

 7
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5 NUMERICAL SIMULATIONS AND HARDWARE-IN-THE-LOOP TESTS 
In order to examine numerical properties of the newly-developed method, spectral stability 

and convergence are analysed on a Single-Dof split mass system. Additionally, results 
provided with Hardware-in-the-loop tests on a two-Dof system are presented as well. 

5.1 Stability and convergence analysis on a Single-Dof split mass system 

 
Figure 5: A Single-DoF emulated system with the relevant split-mass system. 

 
Figure 6: i of the SDoF problem for the interfield parallel procedure with ss=10 and (a) b1=0.1, 

1 2 /   2 ; (b) b1=0.5, 1 2 /   2 . 
 

We consider the test problem depicted in Figure 5. For simplicity, we choose the following 
system variables and 1A Bm m m   1A Bk k k   ; and  defined as 1b

1
A B

B A

m kb
m k

  . (32) 

In order to highlight the numerical dissipation properties of the method on the solution, we 
consider no physical damping. Moreover, no external force is involved as well. The 
application of the integration methods to this model problem leads to the recursive formula 

 1k k k y Ry L , (33) 

where R is the amplification matrix and L is the load vector that depends on external forces, 
respectively. The spectral stability of the method is analysed through the spectral eigenvalues  

i of R. 

 

 8
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Figure 7: Global errors of the inter-field parallel method with ss=10 and (a) 1 2 /   2 ; 

(b) 1 2 /   2  
 
The parallel method is not self-starting and therefore the choice of proper state variables for 
the stability analysis represents the main difficulty. The initial solutions are composed of 

2
A
ky , 2

B
ky , A

ky , B
ky and 1

A
ky ,while the output contains only 1

B
ky  and 2

A
ky . Moreover, another 

pair of intermediate solutions 1
A
ky , 1

B
ky  are needed. As a result, the state vector involved in 

the spectral stability analysis reads 

             2 2 1 1 1

TT T T T T T TA B A B A B A
k k k k k k k k    

    
X y y y y y y y . (34) 

Consequently  has a dimension 8kX 6An nB , with  and  the DoFs of the two 
subdomains, respectively. For the single-DoF split-mass system, the dimension is 14. 

An Bn

i  
relevant to the model problem integrated with the algorithm vs. the numerical frequency 

/ Atk m   are plotted in Figure 5.  The number of nonzero eigenvalues is found to be 10: 
one is unitary, four pairs of them are complex conjugate and the other one is frequently less 
than 1. Besides, four zero eigenvalues are included. The method with 1 2 /   2  exhibits 
unconditional stability, while the one characterized by 1 2 / 2    sometimes is only 
conditionally stable (see Figure 6). Moreover, the stability of the parallel method depends on 
the parameter  defined in (32). Larger values of  introduce more damping and render the 
method more stable. For more information, readers are referred to [8]. 

1b 1b

Successively, the global error is analysed on the SDoF split mass system with the initial 
conditions and . Figure 7 shows that the order of convergence of state 
variables is in agreement with the theoretical analysis and hence the method exhibits second-
order accuracy [8].  

0( ) 1d t  0( ) 1v t 
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(a)  (b)  
Figure 8: The test rig : (a) drawing; (b) photo. 

 

(a)  
 (b)  

Figure 9: The simulation model: (a) 2Dof emulated structure; (b) the split system. 
 

5.2 Tests on Two-Dof split-mass system 
Table 1: Characteristics of both emulated and split subdomains in Hardware-in-the-loop tests  

  Struct. 
types 

 
Properties 

Emulated system Numerical substructure Physical 
substructure 

Items M K C MN KN CN MP KP CP

Translational 2210.9 346310 555.66 1658.2 306640 555.66 552.7 39670 0
Rotational 157.2 138524 22.226 117.9 12265 22.226 39.3 1711 0

Note: all valuables are in International Units.  
 
In ordrer to validate the effectiveness of the proposed methods in Hardware-in-the-loop 

tests, a versatile system was conceived and installed at the University of Trento, Italy. It 
consists of four actuators, one dSpace DS1103 control board and other high performance 
devices, shown in Figure 8. This section briefly describes the application of the new parallel 
method on the 2Dof split mass system, illustrated in Figure 9.  

The system characteristics are collected in Table 1. In view of the different sampling times 
in different subdomains, multitasking techniques are exploited to make most of the 
advantages of the algorithm, such as multiple rates and parallel implementation. In the test, 
we selected and4 16msAt t    / 2msBt t ss    . Additionally, the system delay of 
about 20ms was compensated for by means of a polynomial delay compensation scheme [14]. 

 10
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Test results compared with reference numerical simulations are presented in Figure 10. Both 
displacements fit well to the simulated ones considering the fact that friction forces existing in 
the system were not modelled. In addition, smaller limited drifts between displacements 
relevant to both the numerical and the physical substructure were observed. 

 

(a)   (b)  
Figure 10: Test results: (a) translational displacement time histories; (b) rotational time histories. 

6 AN IMPROVED PARALLEL SOLUTION PROCEDURE 

 
Figure 11: The solution procedure of the improved parallel algorithm 

 
The interfield parallel method presented in Section 4 and tested in Section 5 is appealing, 

because of its flexibility of dealing with different substructure requirements. Unfortunately, 
the drift-off effects may limit its applications. Additionally, four parallel integration processes 
are required for Subdomain A. Based on this insight, the integration method was simplified by 
conducting the integration in Subdomain A with different stage sizes. Its characteristics can 
be observed in Figure 11. In addition, displacement drift observed in the progenitor algorithm 
was reduced via velocity projection at the end of each step [15]. The complete solution 
procedure of the improved method is also illustrated in Figure 11. Convergence analyses and 
applications to real-time Hardware-in-the-loop tests will be presented elsewhere.  

 

7 CONCLUSIONS 
Initially in this paper, we introduced and applied linearly implicit L-stable Rosenbrock 

methods with two-stages to real time hardware-in-the-loop substructure tests. The methods 
are endowed with several favourable characteristics, among which real-time compatibility, 
explicit evaluation of state variables and user-defined high-frequency dissipation capabilities. 
In detail and in view of hybrid testing of complex emulated structures, we developed and 

 11
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 12

illustrated a novel interfield parallel partitioned algorithm based on the progenitor Rosenbrock 
method, that can incorporate subcycling. Through spectral analysis and numerical simulations 
on an SDoF split-mass system, both stability and accuracy properties were shown. In a greater 
detail, the partitioned algorithm preserved second-order accuracy as the progenitor monolithic 
method and favourable stability properties. Moreover a novel test rig conceived to perform 
both linear and nonlinear substructure tests was introduced, and tests on a two-DoF split-mass 
system were illustrated. The drawbacks of this algorithm were commented and improvements 
were implemented on a companion solution procedure. Finally, these algorithms will allow an 
in-depth study of errors and control strategies of actuators. 
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