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Abstract. We investigate two different inverse problems of determining the tsunami
source using two different additional data, namely underwater measurements and satel-
lite wave-form images, and combination of these two inverse problems. We investigate
gradient-type methods for inverse problem solutions and show that combination of two
types of data allows one to increase stability and convergence of numerical inverse problem
solutions. Results of numerical experiments of the tsunami source reconstruction are pre-
sented and discussed. We present the 3D GIS visualization and information atmosphere-
ocean system with embedded described mathematical tools of simulation of processes in
atmosphere and ocean.

1 INTRODUCTION

Atmosphere-Ocean system is mathematically described by systems of hyperbolic equa-
tions. The parameter identification of Atmosphere-Ocean system using combined addi-
tional measurements is called coupled inverse problem for hyperbolic equations. These
problems are ill-posed, i.e. their solutions are not unique or/and unstable, and should be
regularized [1, 2].

As an example we consider coupled inverse source problem for the linear shallow water
equations that use for describing long waves (tsunamis). Most suitable physical models re-
lated to simulation of tsunamis are based on shallow water equations (1), [3, 4]. There exist
many numerical approaches for solving shallow water equations such as finite-difference,
finite volume, finite element, etc [5]. An overview of methodologies and techniques related
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to estimation of tsunami source characteristics are given in [6, 7, 8, 2]. The most of them
consists in determining the tsunami source using additional measurements of a passing
wave (this problem is often called inverse tsunami problem) such as DART (Deep-ocean
Assessment and Reporting of Tsunamis) buoys positioned on the ocean floor, tide gauges
measurements, satellite wave-form images, etc. Our goal is to reconstruct the tsunami
source using a combination of two types of data: DART buoys and satellite wave-form
image. We show that using a combination of two types of data allows one to increase the
stability and efficiency of tsunami source reconstruction [9, 10].

The paper is organized as follows. In Section 2 we describe the statement of three in-
verse problems. In Section 3 we consider a variational formulation of the inverse tsunami
problem for two types of measured data: DART data (inverse problem 1) and satellite
image data measured on the part of the water surface (inverse problem 2), and then
we consider the combined inverse problem (inverse problem 3). We compare two inverse
problems and their combination and show the benefits of usage of combined data. Results
of numerical experiments of the tsunami source reconstruction are presented in Section 4.
In Section 5 we present 3D GIS visualisation and information software for tsunami simu-
lation and run-ups with real bathymetry for the specified sea coast, as well as modelling
of earthquakes, floods and other natural hazards.

2 STATEMENT OF THE PROBLEMS

The ocean domain being considered is bounded from above by the free water surface
η(x, y, t), and from below, by the bottom relief H(x, y) > 0. We assume that the compu-
tational time T is not large enough for the wave to reach the edges of the domain, and
therefore we can set homogeneous boundary conditions at the boundary of the domain
Ω := (0, Lx)× (0, Ly) (figure 1). We formulate the initial boundary-value problem in the
Cartesian coordinate system





Lη := ηtt − div(gH(x, y)grad η) = 0, t ∈ (0, T );
η|

t=0 = q(x, y), ηt|t=0 = 0, (x, y) ∈ Ω;
η|∂ΩT

= 0, ΩT := Ω× (0, T )
(1)

for the linear equations of shallow water theory in terms of the free surface without
external forces, e.g. the Coriolis force and bottom friction [4]. Here H ∈ H1(Ω) is a
known function describing the bottom relief (bathymetry), q ∈ H2(Ω) is a tsunami source
which is supposed to have a compact support belonging to Ω, g = 9.8 [m/s2]. Further,
we will use notation c(x, y) =

�
gH(x, y) that describes the tsunami propagation velocity

according to the long-wave theory.
The direct tsunami problem (1) consists in determining of a function η ∈ C(ΩT ;H

2(Ω))
in the domain Ω by known functions H(x, y) and q(x, y).

Let us consider three inverse problems for linear shallow water equations:
Inverse problem 1 (IP 1): find q(x, y) from (1) using function H(x, y) and data
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4-6 km



≈ 300 km

Figure 1: Domain of calculation of direct and in-
verse problems.
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Figure 2: The 1D bottom relief H(x).

f ε
m(x, y, t) from underwater systems (DART buoys, tide gauges measurements) at ε-
neighborhoods of points (xm, ym) ∈ Ω

η(x, y, t) = f ε
m(x, y, t), x ∈ (xm − ε, xm + ε), y ∈ (ym − ε, ym + ε), ε > 0,

t ∈ (T
(1)
m , T

(2)
m ), m = 1, 2, . . . ,M.

(2)

Inverse problem 2 (IP 2): find q(x, y) from (1) using function H(x, y) and satellite
altimeters data F2(x, y)

η(x, y, T ) = F2(x, y), (x, y) ∈ ω ⊂ Ω, T > 0. (3)

Here ω := (l
(1)
x , l

(2)
x )× (l

(1)
y , l

(2)
y ) is a subset of Ω.

Inverse problem 3 (combined IP 3): find q(x, y) from (1)-(3) using function H(x, y),
measured data f ε

m(x, y, t), m = 1, . . . ,M , and F2(x, y).
Let us present inverse problems 1, 2 and 3 in the operator form: Aiq = Fi, i =

1, 2, 3. Here A1 : H2(Ω) �→ C(ΩT ;E
M), A2 : H2(Ω) �→ L2(Ω) and A3 := (A1, A2)

T ,
F1 := (f ε

1 , f
ε
2 , . . . , f

ε
M) ∈ EM is the vector of discrete output data depends on (x, y, t),

F3 = (F1, F2)
T , EM is Euclidean space. The inverse problem 3 is ill-posed because A3 is a

compact operator [1]. The compactness of operators A1 and A2 is established in papers [2]
and [11, 12, 9], respectively. We will find the solution q(x, y) of inverse problems in the

class of functions q(x, y) =
K
∑

k=1

qk(x) sin (2πky/Ly) which means that we regularize our

inverse problems using cut Fourier series [1].

3 VARIATIONAL FORMULATION OF INVERSE PROBLEMS

Inverse problems Aiq = Fi can be reduced to the minimization problems min
q∈H2(Ω)

Ji(q),

i = 1, 2 [1]. Here Ji(q) = �Aiq − Fi�
2 are cost functions, i = 1, 2.

In this section we find gradients of cost functions Ji(q), i = 1, 2, and introduce a cost

function J
(β)
3 (q) for the combined IP 3.

3
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3.1 Inverse problem 1

The conditions of well-posedness of IP 1 in one-dimensional case are given in [13]. The
algorithm of constructing function q(x, y) in two-dimensional case based on truncated
singular value decomposition is proposed in [6, 7, 14].

The cost function J1(q) for IP 1 has the form:

J1(q) = �A1q − F1�
2
L2(0,T ) :=

M�
m=1

T
(1)

m�

T
(1)

m

xm+ε�

xm−ε

ym+ε�

ym−ε

[η(x, y, t; q)− f ε
m(x, y, t)]

2 dy dx dt.

Lemma 1 [2]. The gradient of the cost function J1(q) has the form J ′

1q = ψ1t(x, y, 0).
Here ψ1 ∈ C(ΩT ;H

2(Ω)) is the weak solution of the following problem:




Lψ1 = R1(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ),
ψ1(x, y, T ) = 0, ψ1t(x, y, T ) = 0, (x, y) ∈ Ω,
ψ1|∂ΩT

= 0, t ∈ (0, T ),
(4)

R1(x, y, t) = −2
M�

m=1

{[η(x, y, t)−f ε
m(x, y, t)]θ(x−xm+ε)θ(xm+ε−x) ·θ(y−ym+ε)θ(ym+

ε− y)θ(t− T
(2)
m )θ(T

(2)
m − t)}.

3.2 Inverse problem 2

The cost function J2(q) for IP 2 has the form:

J2(q) = �A2q − F2�
2
L2(0,T ) :=

l
(2)

x�

l
(1)

x

l
(2)

y�

l
(1)

y

(η(x, y, T )− F2(x, y))
2 dy dx.

Lemma 2 [8, 15]. The gradient of the cost function J2(q) has the form J ′

2q =
ψ2t(x, y, 0). Here ψ2 ∈ H2(Ω) is the weak solution of the following problem:





Lψ2 = 0, (x, y) ∈ Ω, t ∈ (0, T );
ψ2(x, y, T ) = 0, ψ2t(x, y, T ) = R2(x, y), (x, y) ∈ Ω;
ψ2|∂ΩT

= 0, t ∈ (0, T )

R2(x, y) = 2 (η(x, y, T )− F2(x, y)) θ(x− l
(1)
x )θ(l

(2)
x − x) · θ(y − l

(1)
y )θ(l

(2)
y − y).

3.3 Inverse problem 3

We introduce the cost function J
(β)
3 (q) for IP 3 in the form: J

(β)
3 (q) = βJ1(q) + (1 −

β)J2(q), β ∈ [0, 1]. The gradient of a cost function J
(β)
3 (q) has the form: J

(β)′
3 q = βJ ′

1q +
(1− β)J ′

2q.

4
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Figure 3: The exact solution qe(x, y) of inverse
problems.

Figure 4: The reconstructed solution q
(1)
5 (x, y)

of IP 1 from the random noisy output data with
γ = 3%.

4 RESULTS OF NUMERICAL CALCULATION

We apply the conjugate gradient method [16, 1] for solving IP 1, IP 2 and IP 3 numer-
ically.

We choose the following parameters for numerical experiments: Lx = 50 km, Ly =
100 km, T = 60 min, ε = 125 m, Nx = 750, Ny = 500, Nt = 600. The bottom
is assumed to be one-dimensional (see figure 2) with the highest Hmax = 6 km and
lowest Hmin = 5 m average depth of the ocean. We choose an exact solution qe(x, y)
of inverse problems with a wave height A = 8 m (see figure 3). We use the explicit
finite-difference conservative scheme of the second order approximation [2] with Courant

condition ht = 0, 8 · hxhy

(
h2
x + h2

y

)
−1/2

/�c�C . We set data f ε
m, m = 1, 6, and F2 with

”white” noise 1-7%, i.e. f ε,γ
m (x, y, t) = f ε

m(x, y, t) + γRandom(f ε
m)�f

ε
m�, γ ∈ (0.01, 0.07).

Noise data for IP 1 is generated from the discrete numerical solution of the direct problem
in six points (xm, ym) equally-spaced on the interval ((40, 15); (47, 89)). We choose an
initial approximation q0 = Hmax which corresponds to an unperturbed sea surface.

We use the stopping condition Ji(qn) < εs, i = 1, 2, where choosing of εs > 0 based
on analysis of deficiency [2]. The behaviour of deficiency as a function of the iteration
number n consists of three phases: the initial phase of rapid decrease but short duration,
the second phase of slow decrease, and the third phase of almost constant behavior, after
some iterations. The numerical results show the minimum value of difference between
exact qe and approximate qn solutions is achieved between the second and third phases of
the deficiency curve versus n.

Let us denote q
(i)
n , i = 1, 2, is n-th approximation of the solution of IP 1 and 2.

The reconstructed solution q
(1)
n of IP 1 from the random noisy output data γ = 3% is

demonstrated on figure 4.
For solving numerically IP 2 we put ω = (0, 25)×(0, 50) km. The reconstructed solution

q
(2)
n of IP 2 from the random noisy output data γ = 3% is demonstrated on figure 5.
The reconstructed solution q

(3)
n,β of IP 3 from the random noisy output data with γ = 3%,

β = 0.3, is demonstrated on figure 6. Note, that the location of initial source as well as

5
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Figure 5: The reconstructed solution q
(2)
15 (x, y)

of IP 2 from the random noisy output data with
γ = 3%.

Figure 6: The reconstructed solution q
(3)
4,β(x, y)

of IP 3 from the random noisy output data with
γ = 3%.

its amplitude is reconstructed better than in case of IP 1 and IP 2. The parameter β
in combined function J

(β)
3 (q) depends on sensitivity of the functional J1(q) and J2(q)

(figure 7).

We compare relative accuracy error curves Ei(n; q
(i); γ) = �qe − q

(i)
n �/�qe�, i = 1, 2,

for IP 1, 2 and E3(n; q
(3)
β ; γ) for IP 3. Figure 7 shows that using of combined underwater

systems and satellite data allows one to increase the stability and efficiency of tsunami
source reconstruction.
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Figure 7: The relative accuracy
errorsEi(n; q

(i); γ), i = 1, 2, 3, for
IP 1, IP 2 and IP 3 for β = 0.3
and β = 0.7. Note, that curves
E3 are located below curves Ei,
i = 1, 2, for n = 7 when β = 0.7
(blue line) and n = 5, 6, . . . , 14
when β = 0.3 (green line).

Note, that after reconstruction q(x, y) we can calculate the amplitude of the tsunami
wave using Airy-Green formula in case of 1D bottom profile (figure 2) [17]. In case of 2D
bottom profile and linear source q(x, y) = g(y)δ(x) we can solve 2D direct problem for
the amplitude S(z, y)

{
Sz + 0.5a1Sy + 0.5a2S = 0, z > 0, y ∈ (−∞,+∞);
S(0, y) = g(y), y ∈ (−∞,+∞)

6
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Figure 8: Numerical modelling of the Simushir tsunami
13.01.2007 using the built-in software.

Figure 9: The flooding map of Nagapatti-
nam, India, after tsunami run-up.

which coincides with Airy-Green formula in 1D case: S(x) = 4

√
H(0)/H(x). Here new

variable z = τ(x, y) denotes the solution of eikonal equation τ 2x + τ 2y = (gH(x, y))−1, a1
and a2 depend on H(x, y) [17].

5 3D VISUALIZATION SYSTEM

Non-profit organizationWAPMERR (World Agency of Planetary Monitoring and Earth-
quake Risk Reduction) in collaboration with GeoSystema Ltd. and ICM&MG SB RAS
developed the Integrated Tsunami Research and Information System (ITRIS) to simu-
late tsunami waves and earthquakes, river course changes, coastal zone floods, and risk
estimates for coastal constructions at wave run-ups and earthquakes [18]. The special sci-
entific plug-in components are embedded in a specially developed GIS-type graphic shell
for easy data retrieval, visualization and processing (see figure 8). A series of preliminary
numerical experiments on the simplified three-dimensional models with invariable forcing
is conducted based on the computational technology. These experiments give particular
examples of fluid dynamics while interacting with external objects. The presented soft-
ware can be used for analysis and research of various natural and man-made hazards.
Figure 9 demonstrates the flooding map of artificial tsunami run-up near the Nagapatti-
nam, India. For run-up modelling we solve nonlinear shallow water equations by the finite
volume method. The main advantages of this method are using Total Variation Dimin-
ishing for stability control, high speed of calculations and adaptation for any topography
of settlement area.

There are built-in catalogues and databases with set of interfaces for data managing.
Fig. 10 present visualization of earthquake epicentres and tsunami locations around Japan.

The ICM&MG SB RAS develops mathematical and computational methods for Arctic
region. The coupled model consisting of blocks for blocks of model of dynamics of the
ocean, model of dynamics of the atmosphere and their interaction block is adapted for
the computing platform of the supercomputer. A new method of observational data

7
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Figure 10: Visualization of the available seismic data (left) and tsunami locations (right) around Japan.

assimilation is elaborated, which is based on properties of diffusive random processes.
Data on the Arctic region for the subsequent assimilation in the model are collected and
programs for selection and control of these data are created.
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