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Introduction 

Dynamic Programming, [1], is an Operational Research (OR) 

technique which has found only limited usage in the Industrial 

and Business Management fields which are home to many other of 

the OR techniques. Its main application has been in problems of 

sequential decision making [2] but with the comparatively recent 

work in Artificial Intelligence, itself prompted by the advent of 

Fifth Generation Computing, Dynamic Programming has been found a 

useful tool and has been able to make significant contributions 

in  certain  areas. 

Within the field of Artificial Intelligence, the main area of 

application has been in connection with Pattern Recognition, and 

much  work  has  been  conducted  in  this  field  already  e.g.   [3]. 

This paper illustrates the way that this powerful technique may 

be used in a Pattern Recognition context by way of a particular 

well defined problem, and then gives, by way of illustration, a 

demonstration of the method using a biochemical problem in 

protein analysis. 

The   Problem  and   General  Approach

We  shall first describe the problem under study and the  way in 

which  a  solution  can  be  found  via  Dynamic   Programming. 

The general problem to be considered is one where we need to 

predict the sequence in which units of d i f f e r i n g  sorts will 

occur,    where    the    only    information    available    is    a    measure   of   the 
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probability or likelihood with which each type of unit will occur 

at each point in the sequence. As an example, let us suppose 

that we have three different sorts of unit, A, B and C and that 

we wish to predict a sequence of 10 such units. The probability 

profiles for each of the units over the sequence are found, or 

estimated, to be as in Figure 1. It may be the case that these 

distributions are not exact, either because they were estimated 

from data or because they could be subjective estimates, but it 

is assumed that over the whole length of the sequence the 

probability profile for a particular type of unit will predict 

the  correct  number  of  such  units. 

So, in the example we seek to find the correct ordering of 3 A 

type u n i t s ,  4 B type u n i t s  and 3 C type u n i t s ,  based on the 

information  supplied  by  the   three  profiles. 

Several approaches to the problem are. possible, two of which will 

be mentioned when a demonstration of this method is discussed 

later. For the present we will confine ourselves to just one way 

in which Dynamic Programming can be used to attack a problem of 

this   sort. 

An inspection of the profiles by eye can give an indication as to 

where we might expect the units to occur in the sequence. For 

example, it seems that we might expect type A units at positions 

8, 9 and possibly 7, and type B u n i t s  seem likely around 

positions 2 to 5. It is not readily apparent where type C units 

will   occur  just     by   looking   at   its   profile   since   there   are   no 
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outstanding   peaks   other   than   at   the   right   hand   end,   and   even 

these  seem  to  clash  with  the  type  A  peaks. 

In an ideal world, of course, one would like in this situation to 

have three profiles each with clearly defined peaks and troughs, 

so that it would be clear at which positions units of each type 

would    fall,   or    at    least    were    very    likely    to   fall. 

In the extreme case each profile would be a step function with 

value unity where a unit of that type occured and zero where it 

did not, making the prediction a trivial process. However, due 

to the inaccuracies in obtaining or estimating the profiles the 

peaks and troughs are smoothed out somewhat becoming less 

distinct and making accurate prediction from the profiles very 

difficult. 

The method developed here attempts to convert each of the 

profiles into a step function by reducing the profile at some 

points in the sequence and increasing other parts by the same 

amount, effectively redistributing the area under the profile 

until it takes the form of a step function with values of zero or 

unity at each point in the sequence. (At a l l  times the area 

under the profile is maintained so that the same total number of 

units   are  predicted   in   the   sequence). 

The problem now becomes one of carrying out this redistribution 

on each of the profiles simultaneously so that we ensure that 

only    one    profile    is    non    zero    at    each   point   in   the   sequence   i .e. 
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only    one    type    of    unit    is    predicted   to   occur   at   each   point.  

In addition, it is desirable to maintain the overall shape of the 

profiles as far as possible, in that it would be nice to carry 

out the redistribution process disturbing the profiles as little 

as possible. To do this we consider the cost of moving an area 

of profile to be the area moved multiplied by the distance it is 

moved. The total cost of transmuting a profile into a step 

function is then simply the sum of all these individual costs. 

It is then possible to carry out the redistribution, producing 

three step functions, in such a way as to minimise the sum of the 

costs   over   all   three  functions. 

Returning to the original example we could adjust the profiles as 

in Figure 2 to produce three step functions as shown in Figure 3. 

These would then produce a prediction as to the possible sequence 

of units. This particular redistribution is in fact optimal in 

the sense of minimising the cost function described above. The 

total     cost     of   this    redistribution    is     7.75. 

The     problem     therefore     is     one   of    redistributing    the    area    of   the 

profiles into step functions simultaneously and at minimum cost. 

This problem is ideally suited to a solution by Dyanmic 

Programming. 

Dynamic Programming Formulation

The problem as described was augmented by including an additional 

constraint before being formulated as a Dynamic Program. In some 

cases     (for     example     the     application    illustrated    later) it   may    be
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desirable that one or more of the type of units should occur in 

groups or runs w i t h i n  the sequence, runs whose maximum and 

minimum   lengths   can   be   specified   beforehand. 

The first stage in the process is to work through each 

probability profile marking off points in the sequence which 

bound an area of approximately unity, see Figure 4. This process 

is necessary in calculating the cost of fitting, say the second 

type A unit at position 4, having fitted the f i r s t  A unit 

beforehand.     The   cost  would   be   calculated   as 

(3   x   0.5)   +   (4   x  0.5)   =3.5 

We   shall  use  the   notation  C(A,   i,   N   )   to  be   the   cost  of  fitting  a 

unit  of   type  A  at  position   i  having  already   fitted  NA     units   of   A. 

So  here  we  have  that  C ( A ,   4,  1)  =  3.5 

Now, in order to calculate the cost of fitting a particular unit 

in say position i of the sequence we need to know how many units 

of that type have already been fitted. In addition, the 

constraint concerning the allowable length of a run of these 

units   means   that   we   must   also   know   the  type  of  unit  at  position  

i-1, and how far along a run of units it occured. If, for 

example the unit at position i-1 was of type A and was the sixth 

in a run of As, then if the maximum length of an run of As in six 

we can not fit an A at position i. Similarly, if the previous 

unit at position i-1 was an A and was the second in a run of As, 

if the minimum run length for As is four, we must fit another A 

at position i. 
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Now, the Dynamic Program will progress stage by stage fitting a 

unit at each point in the sequence in turn. In our example, the 

state description of the Dynamic Program at any stage i contains 

four  elements; 

(i)                 the     number     of     type    A    units    already    fitted;     denoted 

                     as  NA 

(ii)                the     number     of    type    B    units    already    fitted;     denoted 

                      as  NBB

                    (the    number    of    type   C    units    can   be    calculated    as 

  Nc=i-NA-NB-1) B

( i i i )             the     type    of    unit    at   position    i-1;     denoted    as 

                     U  =  A,   B  or  C 

(iv)               the      length      of       the      run      of      units      up     to,      and 

                     including,     position    i-1;     denoted    as    R. 

We   denote   the   optimal    (minimum)   cost   from   position   i   onwards   to 

the  end  as 

        Vi(NA,   NB,   U,   R) B

and   the   optimal   sequence   of   units   from   positon   i   onwards   as:- 
                P 

i  (NA ,   NB ,  U,  R) B

Each  combination  of  N A  ,   N BB  ,  U  and  R  represents  one  possible   state 

of    the    sequence    upto    the    point    i-1.      Clearly,    some   of   these 

combinations    are   not    ' legal '    in   that    they  can   not   possibly   occur. 

For  example,   we  must  have  that 

                                       NA   +   NB   <   i B

i.e.    that    we    can   not   have   fitted   more   than   i-1   unit   so   far.   (NA
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and   NB   are   always   ⋝  0) .     Also,   as   another   example,   we  must   have B

           NA   ⋝  R   if   U   =   A 

         NB   ⋝  R  if  U  =  B  and B

         NC   ⋝  R   if   U   =  C 

that    is    we   must    have    previously    fitted    at   least   as   many   units   of 

one    type   as   there    are    in   the    latest   run. 

Each of the constraints are incorporated into the Dynamic Program 

and if a particular combination of NA , NB , U and R is in B

violation of one of these constraints it can be excluded by 

setting     the     cost     for      that     combination    infinitely    large. 

As with many Dynamic Programs the process begins at, the end of 

the sequence and works backwards, so that the first stage fits a 

unit at the last position in the sequence and successive stages 

fit units successively backward along the sequence . Hence we 

always know the optimal sequence of units from any point i 

onwards to the end, given any possible sequence from positions 1 

to   i-1. 

Which type of unit is fitted in position i will clearly depend on 

what is fitted in position 1 to i-1, and so the process for 

considering position i is as follows; we iterate through all the 

legal combinations of NA , NB , U and R (describing the sequence B

upto i-1) and for each combination we decide which type of unit 

to fit at position i so as to minimise cost from i onwards. As 

an example let us consider the calculation of Vi (NAʹ, NBBʹ A, Rʹ) 

in  which  the  minimum  length   of   a   run   of   A   units   is   MINA  and   the 
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maximum   length   is  MAXA. 

We  would  have: 

IF  Rʹ    <  MINA  we  must   fit  another  A  unit   so  that 

Vi (NA' ,  NBʹ ,   A,  Rʹ      C(A, i,  NB

) =
Aʹ)+ Vi+1(NAʹ+1,NAʹ , A, Rʹ+1) 

IF  Rʹ    =  MAXA  we  must  not  fit  another  A  unit 

Vi (NAʹ ,N B' ,  A, Rʹ )  =  min          B
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Having    established    which    type    of    unit    we    should    fit    at   position 

i,    we    update    the    appropriate    optimal    sequence,    Pi + 1 ( .,    .,    ., )   to 

include   the    unit    fitted   at   position    i    to   give 

Pi (NAʹ,  NBʹ  , A,  Rʹ  ).      This  process   continues   until   we   arrive   at   the B

First    position      in    the    sequence.      Clearly    this    has    nothing   before 

it,    so   it   must   be   first   in .a   sequence,    so   we   have :- 

 

Total  Cost   =  Min ⎪
⎩
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+
+
+
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2
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Once we have determined the type of unit fitted in position one 

we have the optimal sequence of units from positon one onwards 

and   so  the  process   is   finished. 
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Computational        Difficulties

The Dynamic Program described above, although correctly 

formulated in theory could not infact be used to solve any 

problem with more than a few units in the sequence. The problem 

lies in the fact that the four dimensional state space has an 

enormous number of possible combinations (even discounting the 

illegal o n e s ) ,  too many to hold on the mainframe computer 

available. 

In addition to this, the time taken for a computer to iterate 

through all these combinations is very long, long enough to make 

the solution of a sequencing problem of reasonable length 

infeasible    even    with    modern    day    computing    power. 

To circumvent this problem, the following was adopted. By 

examining the probability profiles for each type of unit it was 

possible to make a guess at the sequence of units being careful 

to include the correct number of each type in the sequence. This 

initial solution was then put into the computer and the Dynamic 

Program altered in the following way. At each stage the number 

of A type units and B type u n i t s  predicted in the i n i t i a l  

solution (IA and I B )  are calculated and the Dynamic Program is 

only allowed to change them by +/- 5 units at any stage. So we 

are in effect imposing the additional constraints that at any 

position      in   the   sequence   we   must   have:- 

IA  -  5   ⋜ NA  ⋜  IA +5 

    IB  -  5  ⋜  NB BB ⋜  IB  +  5. B
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This reduces the state space considerably, but means that the 

program effectively now makes only local adjustments to the 

inital sequence. However, by running the program again using the 

latest prediction asthe input sequence the method can slowly 

transform     the      initial    prediction    into    the   minimum   cost     solution. 

An  Application  of  the  Method

To illustrate the use of the method we consider a problem of 

biochemical nature - that of predicting the secondary structure 

of   a   protein. 

Given any protein it is reasonably easy to determine its primary 

structure,    that    is    the    sequence    of   Amino    Acids    that    are   present. 

There are 20 Amino Acids which may occur in proteins and Figure 5 

shows a section of one such protein with its sequence of Amino 

Acids. 

What is of more importance is to be able to use this basic 

information of the primary structure to predict the higher level 

structures formed by the protein which are difficult and time 

consuming to determine in practice (usually by x-ray 

crystallography). 

As a first step the method proposed in this paper can be used to 

predict the occurance of three secondary structures - the 

α-helix, the β sheet and the co i l  (anything not α-helix or β 

s h e e t ) .  We are interested in p r e d i c t i n g  the way the protein 

adopts    these    structures    as   we   move   along   its    sequence    of    Amino 
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Acids. In othe words we need to predict whether an α, β, or c 

unit occurs at each position in the sequence. The actual 

structure formed by the section of protein shown in Figure 4 is 

given   in  Figure   5. 

In order to do this we need to generate probability profiles for 

each of the α, β, and c structures for the length of the protein 

and   then  apply  the  Dynamic  Programming  method. 

A number of proteins have been analysed, and their secondary 

structure is now known. Statistical analysis of these proteins 

have been reported by Garnier et al [4] and Robson [5] the result 

of which was the publication of tables showing the likelihood of 

a particular Amino Acid forming an α, β or c structure at its 

position in the sequence, and also the effect it will have in 

promoting α, β, and c structures in the positions eight on either 

side  of   it. 

Using these tables, and the Amino Acid sequence for a protein, it 

is     possible     to     construct     probability    profiles    for    each   of    the   α, 

β   and   c   structures, demonstrated   in  Figure   6. 

Two methods of secondary structure prediction already exist using 

the    profiles,    those   of   Robson    [5]    and   Taylor    [ 6 ] ,  

The    method    of    Robson     involves    predicting    at    each   point   in   the 

sequence the most likely type of unit judged from the p r o f i l e s .  

To increase the accuracy of prediction he used the method on the 

proteins      of      know      secondary     structure    and     then     adjusted     the 
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proteins of known secondary structure and then adjusted the 

profiles by adding a constant to each probability within a 

profile, so adjusting its height relative to the others. By 

finding a suitable constant for each profile he obtained the best 

fit    he    could     against    the    proteins     of   known   secondary    structure. 

The method of Taylor stems from his observation that the three 

types of secondary structure often occur in a form which he 

termed the β α β structure. This structure took the form of a 

number of β units followed by c units followed by α units, more c 

u n i t s  and f i n a l l y  β u n i t s .  He analysed proteins to find the 

average length of runs within the structure so producing a 

template which he could fit to the profiles. He then fitted this 

template at points along the sequence, scaling it up or down 

where appropriate. Each template was fitted so as to maximise 

the goodness-of-fit ( F ) . F was in fact the areas under each 

profile in the range of their corresponding template sections. 

He then raised the profile levels in the region of their 

corresponding template sections by an amount proportional to F. 

A secondary structure prediction was then obtained by applying 

the method of Robson on the new profiles. Thus, Taylors method 

aims to improve the fit given by Robson. In fact the fitting and 

scaling of the template is another problem which could well be 

attacked by Dynamic Programming and is shortly to be 

investigated. 

To   illustrate    the   use   of   the   method   described   in   this   paper   we 

consider     one     protein,    part    of    the    probability    profiles    for    which 
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are shown in Figure 7. Analysis of the secondary structure of a 

number of proteins indicated the maximum and minimum lengths of 

α, β, and c structures and these together with a guessed sequence 

of structures were input to the Dynamic Program. The input 

sequence and successive solutions provided by the method are 

shown in Figure 8. The final solution and the actual sequence of 

structures are shown in Figure 9. The method in this case 

correcly predicted the structure at 7 2 . 4 %  of the positions in the 

protein  sequence . 

The percentages correcly predicted by the methods of Robson and 

Taylor were 60.18 and 81.28 respectively. Using the method on a 

small number of proteins it was found to be in general as good as 

the best predictions of Robson but not as good as those of 

Taylor, whose method is effectively a two stage process. This is 

an   encouraging   result   since   the   improvement   in   Robsons   prediction 

by including Taylors template stage could equally well apply to 

the method described here (although this has still to be 

investigated), and the method may be considered better than that 

of Robson on methodological grounds since it does not require the 

rather arbitrary use of constants to improve the fit to a 

satisfactory   level . 

Although the results generated by the Dynamic Programmming 

method described here at present show no consistent improvement 

over other methods, it is a measure of the power of Dynamic 

Programming that other researchers ideas such as the notion of a 

template     proposed     by     Taylor     could     be     incorporated      into     the  
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formulation easily, thereby almost certainly improving the 

performance  of  the  model. 

The importance of this paper lies not so much in the particular 

application and results presented, but more in demonstrating the 

ease with which a technique l i t t l e  used in Industrial and 

Business settings becomes a powerful tool when applied to 

problems of comparing and matching often found in the field of 

pattern   recognition   and  A . I .  
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