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Abstract. The main goal of this work is to numerically investigate the behavior of
a cell flowing in a microfluidic system. In particular, we want to model flow-induced
deformations of an isolated cell to quantitatively evaluate the cell response when subjected
to a representative range of flow rates in a realistic geometry, with specific interest in the
case of cell trapping. This research will help optimize operating conditions as well as the
design of cell manipulation/culture micro-devices, so as to guarantee cell viability and
ultimately improve high-throughput performance.

1 INTRODUCTION

To analyze, describe and also predict the motion of cells in large vessels, microcap-
illaries and cell separation devices, theoretical and computational models with various
degrees of complexity and physiological relevance have been developed. In particular, in
the context of particulate microhydrodynamics, cells are treated as capsules, defined as
flexible particles formed by a well-defined, distinct, structured elastic membrane contain-
ing a liquid in the interior and possibly a stiff nucleus or core [12]. The hydrostatics and
hydrodynamics of liquid capsules enclosed by thin elastic shells have therefore received
considerable attention in cellular biology, bioengineering and even in microencapsulation
technology [11]. The properties of the membrane material play a crucial role in the dy-
namics of the capsule, therefore the effect of the membrane mechanical properties on
capsules shape at equilibrium, deformability and transient motion has been investigated
in various types of simple flows. For a review of analytical, numerical and experimen-
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tal works of the dynamics of capsules in shear flow the reader is referred to [10]. The
effect of the interfacial elasticity on the capsule deformation and on the rheology of di-
lute suspensions for small deformations of the initial spherical shape were clarified by
the pioneering theoretical investigations of Barthes-Biesel and Barthes-Biesel & Rallison
[1, 2]. Numerical studies for moderate and large deformations were presented later, often
together with experimental analyses. The effects of surface viscosity and incompressibil-
ity, relevant to biological membranes consisting of lipid bilayers, were considered more
recently [10]. The analysis of the flow in the presence of a capsule is computationally
very challenging. The kinematic and dynamic coupling of the flow enclosed in the capsule
and the one surrounding it must account for the mechanical properties of the interface;
moreover, an outstanding number of non-spherical transient shapes of the capsule can be
obtained due to the membrane deformability and these must be computed simultaneously
with the variables characterizing the flow [3].
In modern biology, a wealth of tools and new techniques are under development for cell
analysis and in particular to investigate stem cells, as they represent a primary source
of cells in the context of regenerative medicine [17]. It is believed that differentiated au-
tologus stem cells would be the perfect inhabitants of an engineered tissue surrogate to
be assembled and used surgically for bodily repair [14]. Microfluidics, due to its intrinsic
characteristics and advantages, is commonly considered to be a powerful and enabling
approach for studying cell behavior [15]. A plethora of evidence has shown that cellular
heterogeneity commonly exists within an isogenic or clonal population. The most effec-
tive approach is therefore to analyze a population at individual cell level. However, a
significant number of individual cells is required to obtain statistically meaningful data,
and therefore high-throughput analysis is essential. Since cell populations can be very
sensitive to stress, this must be taken into account when handling cell samples within
high-throughput microfluidic devices, since high velocities may imply high shear stress
acting on the cell membrane, potentially resulting in significant cell death and hence in a
loss of representative sample across the initial population. [16]
The aim of this work is therefore to develop new state-of-art numerical tools to efficiently
investigate the behavior of a cell flowing in a microfluidic system. After presenting our im-
plementation, we simulate flow-induced deformations of an isolated cell run in a realistic
microdevice.

2 MATERIALS AND METHODS

We investigate here the deformation of a cell flowing in a microchannel with a 90-
degree bend, a configuration most likely to be encountered by cells loaded and run into
a microfluidic device for cell culture, analytical purposes or cellular assays in general. To
study the evolution of liquid capsules in microchannels we adopted a hybrid boundary
integral/ immersed boundary method [13, 8], coupled with a spectral discretization of the
membrane surface [18].
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2.1 Fluid phase

For the fluid part, we solve the steady Stokes equation with boundary conditions given
by the external walls limiting our domain and a forcing related to the internal stresses
arising on the membranes

−∇p(x) + η∇2u(x) + ρ(x) = 0 (1)

∇ · u(x) = 0. (2)

In the equation above ρ(x) represents point forces due to the deformable body in the flow.
As mentioned above, these are related to the internal deformation of the suspended phase
and will be described in detail in the following section. To solve the Stokes equation in
a generally complex geometry we follow the General Geometry Ewald Method (GGEM)
proposed by Graham [13, 8]. Exploiting the linearity of Stokes problem, we decompose
the forcing as ρ(x) = ρl(x) + ρg(x) where the local and global forcing read

ρl =
n∑

i=1

fi[δ(x− xi)− g(x− xi)], ρg =
n∑

i=1

fi[g(x− xi)]. (3)

fi is the force density at the discrete points representing the effect of the membrane on
the fluid and g(r) = α3

π3/2 e
(−α2r2)[2.5− α2r2] is a screen function used to decouple local and

global solution.
The local solution ul(x) =

∑n
i=1 Gl(x− xi) · fi describes the near field effects of the

forcing and does not account for any boundary effects or long range interactions. The
Green function of the local problem can be computed analytically in free space

Gl(x) =
1

8πη
[δ +

xx

r2
]
erfc(αr)

r
− 1

8πη
[δ − xx

r2
]
2α

π1/2
e−α2r2 (4)

with r the distance between the singularity and the evaluation point x. In the numerical
code, the solution at each grid point was obtained by summing only over the set of closest
points. Indeed, the parameter α represents the scale of the screen function g and, as a
consequence, it defines the length over which mutual interaction are taken into account
(cut-off radius is chosen to be 4/α) as well as the grid size required for an accurate solution
[8]. Note that Gl(x) is singular as r → 0: two approaches can be followed here. i) Use
singular integration as in traditional boundary integral methods [12, 13]; ii) regularized
Stokeslet [7]. The second approach was followed for this work. The first approach turns
out to be crucial for small confinement, small distances between walls and cell.
The global solution was obtained numerically as solution of the Stokes system (1) forced
by ρg(x) only. Boundary conditions at the solid boundaries are enforced such that the
total solution u = ul + ug satisfies no slip.
The global Stokes problem can be addressed using any solver. In the present work,
we adopted the open source Spectral Element Method (SEM) Nek5000 developed by
Paul Fischer at Argonne National Laboratory, USA [5]. Nek5000 is a numerical code
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for the simulation of steady and unsteady incompressible fluid flow and heat transfer,
as well as optional convective-diffusive passive scalar quantities. The present method
appears particularly suited for the numerical simulation of multiphase flow at vanishing
Reynolds number in complex geometries. It combines the accuracy of the boundary
integral approach and the flexibility of immersed boundary in terms of geometry. Possible
extensions are described in [8]. To the best of our knowledge, we present here the first
implementation of this method suited for any geometry.

2.2 Elastic membrane

To represent the surface of the cell we adopt spherical harmonics. Several advantages
come when using this approach, such as the spectral accuracy and the solution of sin-
gularities at the poles when computing derivatives of the basis functions. In addition,
this discretization provides uniform resolution over the surface ensuring minimum of the
L2 norm of the approximation error and removal of any time step limitation associated
with the close spacing of the collocation points near the poles. Finally, dealiasing can be
easily implemented to overcome nonlinear instability without degrading the accuracy of
the solution.
The method shortly presented here closely follows the formulation in Zhao et al.[18]. The
reader is referred to this paper for a more detailed description. The surface of each cell
is represented as series of spherical harmonics function of the two angles θ ∈ [0, π] and
φ ∈ [0, 2π)

f (θ, φ) =
N−1∑
n=0

n∑
m=0

P̄m
n (cos θ) (anm cosmφ+ bnm sinmφ) (5)

with the orthonormal Legendre polynomial

P̄m
n (x) =

1

2nn!

√
(2n+ 1) (n−m)!

2 (n+m)!

(
1− x2

)m
2

dn+m

dxn+m

(
x2 − 1

)n
(6)

and N2 the total number of spherical harmonics. Transforms are performed using the
SPHEREPACK library.
Once the stress-free reference shape of the cell is defined, the surface deformation is
described by the tensor F = aαA

α mapping the curvilinear base vector in the undeformed
stateAα, into the current tangent vectors aα, α = 1, 2. The local deformation is measured
by the Cauchy–Green tensor V2 = F · FT whose invariants are

I1 = Aαβaαβ − 2, I2 = |Aαβ||aαβ| − 1,

where | · | defines the determinant of a matrix. To model a thin hyper-elastic membrane,
two commonly used constitutive laws, the neo-Hookean law and the Skalak law are used.
In the neo-Hookean model, the elastic strain energy W is written as

W =
Es

2

(
I1 − 1 +

1

I2 + 1

)
(7)
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whereas, in the Skalak model, W is formulated as

W =
Es

4

(
I21 + 2I1 − 2I2 + CI22

)
. (8)

ES is the elastic shear modulus and C is the reduced area dilation modulus. The first
quantifies resistance to shear, whereas the second coefficient indicates resistance to area
variations.

The contravariant expression for the in-plane stress tensor can be obtained as derivative
of the elastic energy

ταβ =
2

Js

∂W

∂I1
Aαβ + 2Js

∂W

∂I2
aαβ, (9)

where Js =
√
1 + I2 indicates the ratio between deformed and undeformed surface area.

To be able to simulate conditions when negative tension occurs the bending stiffness
of the membrane must be also taken into account. The bending moment was assumed to
be linear and isotropic Mα

β = −EB(b
α
β − Bα

β ) where EB is the bending modulus and Bα
β

the curvature tensor for the reference state. The transverse force on the membrane Qβ

can be obtained by a local torque balance
Mαβ

|α −Qβ = 0, (10)

where ·|α is the covariant derivative. Finally, we impose force balance to derive an expres-
sion for the force density at the membrane

ταβ|α − bβαQ
α + fβ = 0, (β = 1, 2) (11)

Qα
|α + ταβbαβ + f 3 = 0. (12)

The numerical algorithm is as follows, where the Lagrangian mesh indicates the nodes
used to discretize the membrane whereas the Eulerian mesh is used to solve the global
Stokes problem.

1. Calculate analytically the local velocity ul(x) on the Lagrangian mesh using the
force density f from the previous time step (f = 0 at first time step).

2. Calculate the global velocity ug(x) on the Eulerian mesh and interpolate onto the
Lagrangian mesh.

3. Compute the total velocity u(x) = ul(x) + ul(x) and update the position of the
Lagrangian points.

4. Compute the force density f on the membrane surface.

5. Calculate the global forcing ρg(x) on the Eulerian mesh and boundary conditions
for next time step (item 2). The boundary conditions read ug = uw − ul, with uw

prescribed at the wall.

6. Repeat from 1.
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2.3 Nondimensionalization

We use Capillary number Ca to quantify the ratio between the viscous force and the
elastic force. The definition of Ca varies for the two flow cases studied, namely, a capsule
under constant shear flow and in plane Poiseuille flow for the 90-degree bend. For the first
configuration, it is defined as Ca = ηγ̇a

Es
, where γ̇, a and ES are the flow shear rate, the

cell radius and the surface shear elastic modulus. For the second configuration, Ca = ηŪ
Es
,

where Ū is the mean bulk velocity of the channel flow. Besides the reduced area dilation
modulus C introduced in equation 8, we also introduce the reduced bending modulus CB

defined as CB = EB

a2Es
.

2.4 Grid and boundary conditions

To simulate a cell going through an L-bend, we impose the parabolic Poiseuille velocity
profile at the inlet. To produce moderate confinement, the channel width is set to 3a. As
we focus on the effect of the deformation around the corner, no confinement is added in
the spanwise direction: the length of the computational domain in this direction is set to
10a, with periodic boundary conditions. We use uniform spectral elements to discretize
the whole domain. Each element is subdivided into arrays of Gauss-Lobatto-Legendre
(GLL) nodes for the velocity and Gauss-Legendre (GL) nodes for the pressure field. In
our simulation, the size of each element is a and 4 GLL points are used in each direction.
The length of the upstream and downstream channels is equal to 20a and the total number
of velocity grid points is therefore 82560.

3 RESULTS

3.1 Code Validation

The code has been validated first against the data provided in [13]. In this work, the
authors report the solution for the motion of liquid capsules under constant shear flow.
Fluid viscosities inside and outside the capsule are matched, and a neo-Hookean model of
the membrane elasticity is adopted, while the capsule bending stiffness is neglected. The
results are presented in Fig. 1 a) in terms of capsule deformation measured by the Taylor
parameter

D =
L− B

L+ B
(13)

where L and B denote the maximum and the minimum diameters in the shear plane
of the ellipsoid of inertia of the deformed capsule. The code was also validated against
the data provided by Huang et al. [6]. Here we do not consider pre-inflated capsule,
but instead include a finite bending stiffness. Fig. 1b) reports the time evolution of the
deformation for a capillary number Ca = 0.15. The maximum discrepancy between the
solid line, our results, and the dotted like, taken from [6], is around 3%. Note however
that Huang et al. consider small but finite Reynolds number while we solve the Stokes
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Figure 1: a) Deformation parameter as a function of time for single nonprestressed NH capsules in shear
flow. Dotted lines are simulations from [13] and solid lines our results; b) Deformation parameter as a
function of time for a single capsule in shear flow. Dotted lines indicate the simulations in [6], solid lines
results from the present work; c) Vertical distance versus horizontal distance between cell centers for pair
interactions. Dotted lines are simulations from Lac [9]. Solid lines from our work.

equations for inertialess flow. Finally, we validated against the results presented in Lac
et al. [9]. These authors consider the hydrodynamic interaction between two pre-inflated
neo-Hookean capsules under shear flow. The two capsules are slightly pre-stressed to
avoid those deformation instabilities observed for a single capsule in simple shear flow
in the presence of compression and negative tension. The results in Fig. 1c) display the
vertical distance versus the horizontal distance of the cell centers during approach and
departure. The curve obtained by our simulation perfectly matches the results in [9].

3.2 L-bend results

We report data of the deformation of a capsule passing through an L-bend. Fig. 2
shows the deformation of a capsule with capillary number Ca = 0.15, where the color
code indicates the magnitude of the stress. The results of the first simulations clearly
indicate the importance of bending stiffness as one of the governing parameters. This
is very often neglected in numerical simulations of capsules and vesicles. Here we show
that when flowing in bends large deformations and negative tensions easily arise. These
cause bending of the membrane and can accurately be captured only including bending
stiffness in the model. If this is not the case, numerical dissipation may still cure numerical
instabilities but the results are then grid-dependent. To give an idea of the stress acting on
a typical cell, we report also dimensional values. Assuming a flow rate of around 10µ l/h,
and as values for the coefficients describing the cell membrane E∗

S = 2.1 · 10−6 N/m and
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Figure 2: Capsule position in the microchannel at different instants of the simulation (A-F). Capillary
number Ca = 0.15

E∗
B = 1.8 · 10−19 N ·m [4, 18], the maximum stress experienced by the capsule is around

1.5 Pa and it increases to 5 Pa for more flexible capsules with Ca = 0.45.
Fig. 3 displays the area change of the capsule for three different capillary numbers:

Ca = 0.15 (blue line ), Ca = 0.3 (green line) and Ca = 0.45 (red line). The capsules with
lower capillary number undergo a larger deformation in the upstream channel (initial
dilation) and at the bend before recovering the original shape in the straight channel. In
the lower panels in the figure one can see how the initial shape varies from bullet-type at
low Capillary numbers to parachute-like for the more floppy capsules.

The same configuration is used to simulate a membrane obeying the Skalak model.
Fig. 4 shows the change of total area of a capsule going through the 90-degree bend
versus time for Ca = 0.3 and three different values of reduced area dilation modulus:
C = 1, C = 5 and C = 10, together with a visualization of the cell shape at different
positions inside the channel. For large C, i.e. large resistance to area changes, we observe
lower deformations at the corner as well as a lower propagation velocity (the cell reaches
the bend at a slightly later time). For C = 1, the cell already shows a larger area (6%
higher) in the straight upstream channel that increases to about 15% around the corner.

Next we would like to compare the results for non-Hookean capsule with those for
a membrane defined by the Skalak model. These models are the two most commonly
used for capsules: neo-Hookean model is typically used for artificial capsules whereas
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Figure 3: a) Area change of a capsule in motion for three cases with different capillary number: blue
line Ca = 0.15, green line Ca = 0.3, red line Ca = 0.45; b) Shape change of the capsules for the three
capillary numbers.

the Skalak model is used to study red blood cells. The time variation of the total area
change at Ca = 0.3 for both models is reported in Fig. 4a). The capsule defined by the

Figure 4: a) Area change of a capsule in motion for Ca = 0.3 and three different values of reduced area
dilation modulus: blue line C = 1, green line C = 5, red line C = 10; b) Shape change of the capsules for
the three reduced area dilation moduli.
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neo-Hookean model undergoes the largest deformation at the corner, followed by a small
compression in the downstream branch (t ≈ 150). The presence of the corner is also felt
earlier when there is no direct limitation on the admissible variations of the surface area.

4 CONCLUSIONS

To obtain a parametric quantification for the relations between flow rate and maximum
stress/strain as well as the details of cell deformation while flowing through microfluidic
chip for cell isolation highly accurate numerical simulations are necessary. Here we have
presented a novel implementation of the General Geometry Ewald Method (GGEM) pro-
posed in [13, 8] suited for realistic micro-devices.

Our simulations clearly underline the importance of bending stiffness as one of the
governing parameters, very often neglected in numerical simulations. Here we show that
large deformations and negative tensions easily arise, causing bending of the membrane,
which can accurately be captured only including bending stiffness in the model. Therefore,
this work allows us to accurately investigate cell behavior in flow in a complex geometry
and to compare the behavior of different models. In the future, we plan to use our new
numerical tool to optimize the design of effective micro-devices for cell isolation, where the
prediction of deformation ans stress acting on cell during processing is essential. Achieving
this still represents one of the most significant challenges in the field of stem cells.
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